
Prepared exclusively for Bob Erb www.allitebooks.com

http://www.allitebooks.org

ß Under Construction: The book you’re reading is still under
development. As part of our Beta book program, we’re releasing
this copy well before a normal book would be released. That
way you’re able to get this content a couple of months before
it’s available in finished form, and we’ll get feedback to make
the book even better. The idea is that everyone wins!

Be warned: The book has not had a full technical edit, so it will contain errors.
It has not been copyedited, so it will be full of typos, spelling mistakes, and the
occasional creative piece of grammar. And there’s been no effort spent doing
layout, so you’ll find bad page breaks, over-long code lines, incorrect hyphen-
ation, and all the other ugly things that you wouldn’t expect to see in a finished
book. It also doesn't have an index. We can’t be held liable if you use this book
to try to create a spiffy application and you somehow end up with a strangely
shaped farm implement instead. Despite all this, we think you’ll enjoy it!

Download Updates: Throughout this process you’ll be able to get updated
ebooks from your account at pragprog.com/my_account. When the book is com-
plete, you’ll get the final version (and subsequent updates) from the same ad-
dress.

Send us your feedback: In the meantime, we’d appreciate you sending us your
feedback on this book at pragprog.com/titles/dswdcloj2/errata, or by using the links
at the bottom of each page.

Thank you for being part of the Pragmatic community!

Dave & Andy

Prepared exclusively for Bob Erb www.allitebooks.com

http://pragprog.com/my_account
http://pragprog.com/titles/dswdcloj2/errata
http://www.allitebooks.org

Web Development with Clojure,
2nd Edition

Build Bulletproof Web Apps with Less Code

Dmitri Sotnikov

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Prepared exclusively for Bob Erb www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-082-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: B2.0—February 14, 2016

Prepared exclusively for Bob Erb www.allitebooks.com

https://pragprog.com
rights@pragprog.com
http://www.allitebooks.org

Contents

Changes in the Beta Releases vii

Introduction ix

1. Getting Your Feet Wet 1
Set Up Your Environment 1
Build Your First Web App 3
Refine Your App 8
What You’ve Learned 23

2. Clojure Web Stack 25
Route Requests with Ring 26
Extend Ring 32
Define the Routes with Compojure 35
What You’ve Learned 39

3. Luminus Architecture 41
Manage the Project 41
Think in Terms of Application Components 43
HTML Templating using Selmer 51
What You’ve Learned 58

4. Add ClojureScript 61
Understand ClojureScript 61
Configure ClojureScript Support 63
Add ClojureScript Support 63
Build the UI with Reagent 66
What You’ve Learned 79

Prepared exclusively for Bob Erb www.allitebooks.com

http://www.allitebooks.org

5. Real-time Messaging With Websockets 81
Set Up Websockets on the Server 81
Make Websockets from ClojureScript 85
Websockets Using Sente 89

6. Writing RESTful Web Services 97
Use Compojure-API 97
What You’ve Learned 113

7. Database Access 115
Work with Relational Databases 115
Use Yesql 121
Generate Reports 124
What You’ve Learned 136

8. Picture Gallery 137
The Development Process 137
What’s in a Gallery 138
Create the Application 140
Configure the Database 141
Task A: Account Registration 143
Task B: Login and Logout 162
Task C: Uploading Pictures 171
Task D: Displaying Pictures 180
Task E: Deleting Pictures 192
Task F: Account Deletion 195
Adding Some Color 199

9. Finishing Touches 205
Unit Tests 205
Package the Application 211
What You’ve Learned 221

A1. Clojure Primer 223
A Functional Perspective 223
Data Types 225
Using Functions 226
Anonymous Functions 227
Named Functions 227
Higher-Order Functions 229
Closures 230
Threading Expressions 231

Contents • iv

Prepared exclusively for Bob Erb www.allitebooks.com

http://www.allitebooks.org

Being Lazy 232
Structuring the Code 232
Destructuring Data 233
Namespaces 235
Dynamic Variables 237
Polymorphism 237
What about Global State? 240
Writing Code That Writes Code for You 241
The Read-Evaluate-Print Loop 243
Calling Out to Java 243
Calling Methods 244
Summary 244

A2. Authentication with OAuth 247
Why Use OAuth 247

A3. Document-Oriented Database Access 253
Picking the Right Database 253
Using CouchDB 254
Using MongoDB 257

A4. Writing RESTful Web Services With Liberator 261
Using Liberator 261
Defining Resources 262
Putting It All Together 267

A5. Leiningen Templates 273
What’s in a Template 273

Contents • v

Prepared exclusively for Bob Erb www.allitebooks.com

http://www.allitebooks.org

Changes in the Beta Releases
Beta 2, February 14

• Examples have been updated to the latest version of the Luminus template.
The source paths have been changed, and the Swagger examples now use
the latest version of compojure-api.

• Fixed typos and improved phrasing based on errata and beta reader
feedback.

• Additional explanations have been added for sections that were found
confusing.

• New appendix on using OAuth with Twitter.

Beta 1, February 3

report erratum • discussPrepared exclusively for Bob Erb www.allitebooks.com

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2
http://www.allitebooks.org

Introduction
This book’s cover has a bonsai tree on it. I chose it to represent elegance and
simplicity, as these qualities make Clojure such an attractive language. A
good software project is like a bonsai. You have to meticulously craft it to
take the shape you want, and the tool you use should make it a pleasant
experience. I hope to convince you here that Clojure is that tool.

What You Need
This book is aimed at readers of all levels. While having some basic proficiency
with functional programming will be helpful, it’s by no means required to
follow the material in this book. If you’re not a Clojure user already, this book
is a good starting point, as it focuses on applying the language to solve con-
crete problems. This means we’ll focus on a small number of language features
needed to build common web applications.

Why Clojure?
Clojure is a small language that has simplicity and correctness as its primary
goals. Being a functional language, it emphasizes immutability and declarative
programming. As you’ll see in this book, these features make it easy and
idiomatic to write clean and correct code.

There are many languages to choose from and as many opinions on what
makes any one of them a good language. Some languages are simple but
verbose. You’ve probably heard people say that verbosity really doesn’t matter,
the argument being that when two languages are Turing complete, anything
that can be written in one language can also be written in the other with a
bit of extra code.

I think that’s missing the point, however. The real question is not whether
something can be expressed in principle. It’s how well the language maps to
the problem being solved. One language will let you think in terms of your

report erratum • discussPrepared exclusively for Bob Erb www.allitebooks.com

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2
http://www.allitebooks.org

problem domain while another will force you to translate the problem to its
constructs.

The latter is often tedious and rarely enjoyable. You end up writing a lot of
boilerplate code and constantly repeating yourself. There’s a certain amount
of irony involved in having to write repetitive code.

Other languages aren’t verbose and they provide many different tools for
solving problems. Unfortunately, having many tools does not directly translate
into higher productivity.

The more features there are, the more things you have to keep in your head
to work with the language effectively. With many languages I find myself
constantly expending mental overhead thinking about all the different features
and how they interact with one another.

What matters to me in a language is whether I can use it without thinking
about it. When a language is lacking in expressiveness I’m acutely aware that
I’m writing code that I shouldn’t be. On the other hand, when a language has
too many features I often feel overwhelmed or I get distracted playing with
them.

To make an analogy with mathematics, having a general formula that you
can derive others from is better than having to memorize a whole bunch of
formulas for specific problems.

This is where Clojure comes in. It allows us to easily derive a solution to a
particular problem from a small set of general patterns. All you need to become
productive is to learn a few simple concepts and a bit of syntax. These concepts
can then be combined in a myriad ways to solve all kinds of problems.

Why Make Web Apps in Clojure?
Clojure boasts tens of thousands of users; it’s used in a wide range of settings,
including banks and hospitals. Clojure is likely the most popular Lisp dialect
today for starting new development. Despite being a young language, it has
proven itself in serious production systems and the feedback from users has
been overwhelmingly positive.

As web development is one of the major domains for using Clojure, several
popular libraries and frameworks have sprouted in this area. The Clojure web
stack is based on the Ring and Compojure libraries.1,2 Ring is the base HTTP

1. https://github.com/ring-clojure/ring
2. https://github.com/weavejester/compojure

Introduction • x

report erratum • discussPrepared exclusively for Bob Erb www.allitebooks.com

https://github.com/ring-clojure/ring
https://github.com/weavejester/compojure
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2
http://www.allitebooks.org

library, while Compojure provides routing on top of it. In the following chapters
you’ll become familiar with the web stack and how to use it effectively to build
your web applications.

There are many platforms for doing web development, so why should you
choose Clojure over other options?

Well, consider those options. Many popular platforms force you to make trade-
offs. Some platforms lack performance, others require a lot of boilerplate, and
others lack the infrastructure necessary for real-world applications.

Clojure addresses the questions of performance and infrastructure by being
a hosted language. The Java Virtual Machine is a mature and highly perfor-
mant environment with great tooling and deployment options. Clojure brings
expressive power akin to that of Ruby and Python to this excellent platform.
When working with Clojure you won’t have to worry about being limited by
your runtime when your application grows.

The most common way to handle the boilerplate in web applications is by
using a framework. There are many frameworks, such as Ruby on Rails,
Django, and Spring. The frameworks provide canned functionality needed for
building a modern site.

The benefits the frameworks offer also come with inherent costs. Since many
operations are done implicitly, you have to memorize what effects any action
might have. This opaqueness makes your code more difficult to reason about.
When you need to do something that is at odds with the framework’s design
it can quickly become awkward and difficult. You might have to dive deep
into the internals of the particular framework and create hacks around the
expected behaviors.

So instead of using frameworks, Clojure makes a number of powerful libraries
available, and we can put these libraries together in a way that makes sense
for our particular project. As you’ll see, we manage to avoid having to write
boilerplate while retaining the code clarity we desire. As you read on I think
you’ll agree that this model has clear advantages over the framework-based
approach.

My goal is to give you both a solid understanding of the Clojure web stack
and the expertise to quickly and easily build web applications using it. The
following chapters will guide you all the way from setting up your development
environment to having a complete real-world application. I will show what’s
available, then guide you in structuring your application using the current
best practices.

report erratum • discuss

Why Make Web Apps in Clojure? • xi

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

CHAPTER 1

Getting Your Feet Wet
In the Introduction, on page ix, we looked at some of the benefits of the
functional style when it comes to writing applications. Of course, you can’t
learn a language simply by reading about it. To really get a feel for it you have
to write some code yourself.

In this chapter you’ll dive right in and build a guestbook application that
allows users to leave messages for each other. You’ll see the basic structure
of a web application as well as the tools necessary for effective Clojure devel-
opment. And you’ll get a feel for how web development in Clojure works. If
you’re new to Clojure, I recommend you read through Appendix 1, Clojure
Primer, on page 223, for a crash course on the basic concepts and syntax.

The material I’ll cover in this book is based on the experience and personal
preferences of the author. It’s worth noting that there are other equally valid
approaches. The libraries and methodologies that we’ll explore are just one
way to structure Clojure web applications, but they should provide you with
a solid starting point using the current best practices.

Set Up Your Environment
Clojure distribution is provided as a JAR that needs to be available on your
project’s classpath. Clojure requires the Java Virtual Machine (JVM) to run,
and you will need a working Java Development Kit (JDK), version 1.7 or
higher.1 You’ll also need to have Leiningen2 installed in order to create and
build the projects.

1. http://www.oracle.com/technetwork/java/javase/downloads/index.html
2. http://leiningen.org/

report erratum • discussPrepared exclusively for Bob Erb

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://leiningen.org/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Managing Projects with Leiningen
Leiningen lets you create, build, test, package, and deploy your projects. In
other words, it’s your one-stop shop for all your project-management-related
needs.

Leiningen is the Clojure counterpart of Maven,3 a popular Java build tool. It
uses a Maven compatible dependency management system and as such it
has access to large and well-maintained repositories of Java libraries. In
addition, Clojure libraries are commonly found in the Clojars repository.4 This
repository is enabled by default in Leiningen.

With Leiningen, you don’t need to worry about manually downloading all the
libraries for your project. Specifying the top-level dependencies will cause any
libraries that they depend on to be pulled in automatically.

Installing Leiningen is accomplished by downloading the installation script
from the official project page and running it.5 Let’s test this. Create a new
project by downloading the script and running the following commands:

wget https://raw.github.com/technomancy/leiningen/stable/bin/lein
chmod +x lein
sudo mv lein ~/bin
lein new myapp

Note that the preceding code expects that ~/bin is available on the shell path.
Since we’re running lein for the first time, it will need to install itself. Once
the install is finished you should see the following output if the command
completes successfully:

Generating a project called myapp based on the 'default' template.
To see other templates (app, lein plug-in, etc), try `lein help new`.

Take a moment to look at what we have now.

A new folder called myapp has been created, containing a skeleton application.
The code for the application can be found in the src folder. There we’ll have
another folder called myapp containing a single source file named core.clj. This
file has the following code inside:

(ns myapp.core)

(defn foo
"I don't do a whole lot."

3. http://maven.apache.org/
4. https://clojars.org/
5. http://leiningen.org/#install

Chapter 1. Getting Your Feet Wet • 2

report erratum • discussPrepared exclusively for Bob Erb

http://maven.apache.org/
https://clojars.org/
http://leiningen.org/#install
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[x]
(println x "Hello, World!"))

Note that the namespace declaration matches the folder structure. Since the
core namespace is inside the myapp folder, its name is myapp.core.

What’s in the Leiningen Project File

Inside the myapp project folder we have a project.clj file. This file contains the
description of our application. The project configuration is represented
declaratively using regular Clojure data structures. It contains the application
name, version, URL, license, and dependencies.

(defproject myapp "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.7.0"]])

The project.clj file will allow us to manage many different aspects of our appli-
cation. For example, we could set the foo function from the myapp.core names-
pace as the entry point for the application using the :main key:

(defproject myapp "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.7.0"]]
;;this will set foo as the main function
:main myapp.core/foo)

The point of all this, though, is that you can now run the application from
the command line using lein run. Since the foo function expects an argument,
you’ll have to pass one in:

lein run Obligatory
Obligatory Hello, World!

Build Your First Web App
In the preceding example we created a very simple application that has only
a single dependency: the Clojure runtime. If you used this as the base for a
web application, then you’d have to write a lot of boilerplate to get it up and
running. Let’s see how we can use a Leiningen template to create a web-
application project with all the boilerplate already set up.

report erratum • discuss

Build Your First Web App • 3

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Our primary goal here is to get a high level understanding of the project
structure and get something done. I’ll gloss over some of the finer details in
order to maintain our momentum. Don’t worry if you don’t fully understand
all the steps at this point. We’ll get into the details in subsequent chapters.

Creating an Application From a Template
A template consist of a skeleton project that is instantiated with the desired
parameters such as the project name. A number of different templates exist
to quickly initialize different kinds of projects. Later on we’ll even see how we
can create such templates ourselves. But the Luminus template provides a
good base and we’ll be using it.6

By default, Leiningen will use the latest version of the template that has been
published to the Clojars repository7. Therefore, the skeleton projects generated
by the template may not be exactly the same as the ones discussed in the
book. In order to ensure that you’re able to follow the book exactly, I recom-
mend adding the following plugin reference in the ~/.lein/profiles.clj file. This will
ensure that the projects are generated using the same version of the template
that was used in the book.

{:user {:plugins [[luminus/lein-template "2.9.9.2"]]}}

In order to tell Leiningen that we want to use a specific template for the project
we must specify it as the argument following the new parameter when running
lein, followed by the name of the project. Any other parameters will be passed
in as the arguments to the selected template.

We’ll create a new application by specifying luminus as the template name,
guestbook as the name of the project, and add the +h2 parameter to indicate
that we’d like to have an instance of the H28 embedded database initialized
for us:

lein new luminus guestbook +h2

What’s in a Web App
This type of application needs to start up a web server in order to run. The
template project comes with an embedded Immutant server configured for
us, and we can start it by running lein run as we did with the myapp project
that we used to test the Leiningen setup.9

6. http://www.luminusweb.net/
7. https://clojars.org/luminus/lein-template
8. http://www.h2database.com/html/main.html
9. http://immutant.org/

Chapter 1. Getting Your Feet Wet • 4

report erratum • discussPrepared exclusively for Bob Erb

http://www.luminusweb.net/
https://clojars.org/luminus/lein-template
http://www.h2database.com/html/main.html
http://immutant.org/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

When you run the application, it may take a little while, because Leiningen
will first have to retrieve all of its dependencies. But once downloaded the
dependencies will be cached locally in the ~/.m2/repositoryfolder and will be
available on subsequent runs. After the dependencies are downloaded, you
should see the following output in the console.

lein run
21:53:07.252 [main] DEBUG org.jboss.logging - Logging Provider: Slf4jLoggerProvider
15-Jul-19 21:53:08 Nyx INFO [guestbook.handler] - nREPL server started on port 7000
15-Jul-19 21:53:08 Nyx INFO [guestbook.handler] -
-=[guestbook started successfully using the development profile]=-
21:53:08.463 INFO [org.wunderboss.web.Web] (main) Registered web context /
15-Jul-19 21:53:08 Nyx INFO [guestbook.core] - server started on port: 3000

Once the application starts we can open a new browser window and navigate
to http://localhost:3000 to see the home page of our application.

report erratum • discuss

Build Your First Web App • 5

Prepared exclusively for Bob Erb

http://localhost:3000
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 1—Default Page

Now that we’ve created our applications and tested that it’s working, let’s take
a brief tour of what’s been generated for us. Following are the folders in the
generated project with the files omitted for brevity.

├── env
│ ├── dev
│ │ ├── clj
│ │ │ └── guestbook
│ │ └── resources
│ └── prod
│ ├── clj
│ │ └── guestbook
│ └── resources

Chapter 1. Getting Your Feet Wet • 6

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

├── resources
│ ├── docs
│ ├── migrations
│ ├── public
│ │ ├── css
│ │ ├── img
│ │ └── js
│ ├── sql
│ └── templates
├── src
│ └── clj
│ └── guestbook
│ ├── db
│ └── routes
└── test

└── clj
└── guestbook

└── test
└── db

This time around the project structure is significantly more complex than
what we had in the myapp project. We’ll learn what all the pieces are for as
we build different applications throughout the book. For now, we’ll just take
a quick overview of how the project is structured and what types of files go
where.

The majority of our code lives under the src folder. This folder contains a clj
folder that’s reserved for Clojure source files. Since our application is called
guestbook, this is the root namespace for the project. The application is further
broken down into different namespaces based on function. We’ll explore each
of these in detail in the following chapter. The namespace that will be of
immediate interest to us is the routes namespace.

The routes namespace is reserved for defining application routes. Each route
is bound to a function that is responsible for processing the request and
generating the response. This is where majority of our application logic will
live.

The db namespace houses the database related logic and serves as the model
layer for the application. The guestbook.db.core namespace contains the logic for
defining queries and managing the database connection, while the guest-
book.db.migrations namespace is responsible for managing the migrations logic.

The other folder that will be relevant for our application is the resources folder
that contains all the static assets associated with the application. These
include HTML templates, CSS styles, and so on. Since we created a database

report erratum • discuss

Build Your First Web App • 7

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

for the application, it also contains a migrations folder with the SQL migration
files in it.

Refine Your App
OK, enough with the overview. Let’s write some code.

Managing Database Migrations
You’ll notice that the home page of our application instructs us to run lein
run migrate in order to initialize the database. This will use the resources/migra-
tions/20150719215253-add-users-table.up.sql file to initialize the database for us. Note
that the date on your file will be different since it’s set to the date the applica-
tion was instantiated.

Before we run the migrations, let’s open up the file and update it to create
the tables we need for our particular application. The current contents should
look as follows:

CREATE TABLE users
(id VARCHAR(20) PRIMARY KEY,
first_name VARCHAR(30),
last_name VARCHAR(30),
email VARCHAR(30),
admin BOOLEAN,
last_login TIME,
is_active BOOLEAN,
pass VARCHAR(100));

Since we’re writing a guestbook application we’ll replace the table definition
with one that’s more appropriate for our application:

guestbook/resources/migrations/20150719215253-add-users-table.up.sql
CREATE TABLE guestbook
(id INTEGER PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(30),
message VARCHAR(200),
timestamp TIMESTAMP);

We’ll store the messages along with the name of the author and a timestamp
indicating when the message was written. We’ll also create an auto-generated
id column to keep track of the messages. Let’s run our migrations as
instructed:

lein run migrate
23:05:38 [main] DEBUG org.jboss.logging - Logging Provider: Slf4jLoggerProvider
23:05:39 INFO [migratus.core] (main) Starting migrations
23:05:39 INFO [migratus.database] (main) creating table 'schema_migrations'
23:05:39 INFO [migratus.core] (main) Running up for [20150719215253]

Chapter 1. Getting Your Feet Wet • 8

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/resources/migrations/20150719215253-add-users-table.up.sql
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

23:05:39 INFO [migratus.core] (main) Up 20150719215253-add-users-table
23:05:39 INFO [migratus.core] (main) Ending migrations

Now that the migrations have completed, our database is ready to use and
we can start working with it.

Querying to the Database
Our next step is to write the queries to create and list messages. We’ll put
these queries in the resources/sql/queries.sql file. Note that using a single file for
queries will not scale for larger applications and you’ll likely want to create
multiple files to track different types of queries in that case.

The file is used by the Yesql library to automatically create our database
access functions. The function name is specified using the –name: comment,
and the parameters are prefixed with the : as shown in the sample queries
already populated in this file.10

The existing queries aren’t very useful to us, so let’s replace them with new
queries that will allows us to work with the tables we just created. We’d like
to be able to save messages in our database, so we’ll create a query called
save-message!. Note that the name ends with ! to indicate that it mutates
data. The second query will be used to retrieve currently stored messages
and we’ll call it get-messages.

guestbook/resources/sql/queries.sql
--name:save-message!
-- creates a new message
INSERT INTO guestbook
(name, message, timestamp)
VALUES (:name, :message, :timestamp)

--name:get-messages
-- selects all available messages
SELECT * from guestbook

The guestbook.db.core namespace contains a call to the yesql.core/defqueries macro.
This macro will read the SQL queries we defined above and create Clojure
functions that call them using the name specified using the –name: comment.

guestbook/src/clj/guestbook/db/core.clj
(ns guestbook.db.core

(:require
[yesql.core :refer [defqueries]]
[config.core :refer [env]]))

10. https://github.com/krisajenkins/yesql

report erratum • discuss

Refine Your App • 9

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/resources/sql/queries.sql
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/db/core.clj
https://github.com/krisajenkins/yesql
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(def conn
{:classname "org.h2.Driver"
:connection-uri (:database-url env)
:make-pool? true
:naming {:keys clojure.string/lower-case

:fields clojure.string/upper-case}})

(defqueries "sql/queries.sql" {:connection conn})

Now that we have our data layer set up, we can try querying it to make sure
that everything works correctly. The entirety of the guestbook.db.core namespace
looks as follows:

guestbook/src/clj/guestbook/db/core.clj
(ns guestbook.db.core

(:require
[yesql.core :refer [defqueries]]
[config.core :refer [env]]))

(def conn
{:classname "org.h2.Driver"
:connection-uri (:database-url env)
:make-pool? true
:naming {:keys clojure.string/lower-case

:fields clojure.string/upper-case}})

(defqueries "sql/queries.sql" {:connection conn})

The database connection is specified using the conn map. It is populated with
the database connection specification. The :connection-uri key points to the value
of the :database-url environment variable. This variable is populated in the pro-
files.clj file found in the root of the project.

The profiles.clj contains information about the local environment that’s not
meant to be checked into the shared code repository. Database connection
parameters are an example of such environment variables. We can see that
the contents of the file look as follows:

guestbook/profiles.clj
{:profiles/dev {:env {:database-url "jdbc:h2:./guestbook_dev.db"}}
:profiles/test {:env {:database-url "jdbc:h2:./guestbook_test.db"}}}

The :profiles/dev environment URL specifies that the database will be stored in
a file called guestbook_dev.db in the path relative to where the application is run.
In our case this will be the root folder of the project.

Back in the guestbook.db.core namespace, the queries that we just wrote are
bound to functions using the defqueries macro when the namespace is loaded.

Chapter 1. Getting Your Feet Wet • 10

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/db/core.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/profiles.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The functions generated by the macro accept the parameter map representing
the dynamic query variables as their arguments. Since the queries are
parametarized any variables we pass in will be sanitized to prevent SQL
injection.

To test that everything works correctly, let’s connect to the REPL. When the
application starts in development mode, it automatically runs the nREPL on
port 7000. We can connect the editor to this REPL and inspect the running
application.

The REPL starts in the user namespace that’s found at the env/dev/clj source
path. This namespace is reserved for any development code that we wouldn’t
want to package in our application. It also provides a scratch pad where we
can try things out. Let’s add a reference to the guestbook.db.core namespace and
try running the queries we just wrote:

;;switch to the namespace
(use 'guestbook.db.core)

;;check if we have any existing data
(get-messages)
;;output: ()

;;create a test message
(save-message! {:name "Bob"

:message "Hello World"
:timestamp (java.util.Date.)})

;;output 1

;;check that the message is saved correctly
(get-messages)
({:timestamp #inst "2015-01-18T16:22:10.010000000-00:00"

:message "Hello World"
:name "Bob"
:id 1})

Creating Tests
Now that we’ve tested the database operations in the REPL, it’s a good idea
to create some tests based on them. The project already comes with some
default test operations defined. These are found in the test folder of the
application. The database tests are located in the test/clj/guestbook/test/db/core.clj
file.

The current tests are defined with the generated users table in mind. Since
we’ve changed our table structure, we’ll replace it with the following test
instead:

report erratum • discuss

Refine Your App • 11

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

guestbook/test/clj/guestbook/test/db/core.clj
(ns guestbook.test.db.core

(:require [guestbook.db.core :as db]
[guestbook.db.migrations :as migrations]
[clojure.test :refer :all]
[clojure.java.jdbc :as jdbc]
[config.core :refer [env]]
[mount.core :as mount]))

(use-fixtures
:once
(fn [f]

(migrations/migrate ["migrate"])
(f)))

(deftest test-messages
(jdbc/with-db-transaction [t-conn db/conn]

(jdbc/db-set-rollback-only! t-conn)
(let [timestamp (java.util.Date.)]
(is (= 1 (db/save-message!

{:name "Bob"
:message "Hello World"
:timestamp timestamp}

{:connection t-conn})))
(is (=

{:name "Bob"
:message "Hello World"
:timestamp timestamp}

(-> (db/get-messages {} {:connection t-conn})
first
(select-keys [:name :message :timestamp])))))))

We can now run the following command in the project folder to make sure
our tests are passing:

lein test

Testing guestbook.test.db.core
23:30:39.404 [main] INFO migratus.core - Starting migrations
23:30:39.786 [main] INFO migratus.database - creating table 'schema_migrations'
23:30:39.806 [main] INFO migratus.core - Running up for [20150719215253]
23:30:39.808 [main] INFO migratus.core - Up 20150719215253-add-users-table
23:30:39.813 [main] DEBUG migratus.database - found 1 up migrations
23:30:39.822 [main] DEBUG migratus.database - marking 20150719215253 complete
23:30:39.827 [main] INFO migratus.core - Ending migrations

Testing guestbook.test.handler

Ran 2 tests containing 4 assertions.
0 failures, 0 errors.

Chapter 1. Getting Your Feet Wet • 12

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/test/clj/guestbook/test/db/core.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

You might have noticed earlier that our profiles.clj file contained two database
connections. One was defined under the :profiles/dev profile, while the other
under the :profiles/test profile. When the tests are run the test profile will be
used and our development database will not be affected.

Developing the functionality using the REPL and then generating the tests is
a common workflow in Clojure. This approach provides a faster feedback loop
than TDD since we don’t have to constantly switch between tests and code
while developing a feature. Instead, the development can be done interactively
using the REPL. Then once the feature works as desired, we can take the
code from the REPL session and turn it into unit tests for this feature.

Defining HTTP Routes
We’ve now confirmed that we’re able to store and retrieve the messages from
the database. Next, we’ll need to write a user interface and hook it up to these
functions. We’ll create HTTP end points and have these call the appropriate
functions. The endpoints are commonly referred to as routes and the route
that renders the home page for our application is found in the guest-
book.routes.home namespace.

guestbook/src/clj/guestbook/routes/home.clj
(defroutes home-routes

(GET "/" [] (home-page))
(POST "/message" request (save-message! request))
(GET "/about" [] (about-page)))

You can see that the / route calls the home-page function that in turn renders
the home.html template. You can also see that we’re passing a map of parameters
to the render function, currently the only parameter being the :docs key. These
parameters indicate dynamic content that will be injected into our template
before it’s sent to the client. Let’s take a quick look at the contents of the
resources/templates/home.html file:

{% extends "base.html" %}
{% block content %}

<div class="jumbotron">
<h1>Welcome to guestbook</h1>
<p>Time to start building your site!</p>
<p>

Learn more »

</p>
</div>

<div class="row">
<div class="span12">

report erratum • discuss

Refine Your App • 13

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

{{docs|markdown}}
</div>

</div>
{% endblock %}

You can see that this file extends a template called base.html and renders a
block called content. The parent template provides a common layout for the
pages in our application and each individual page can render the portion of
the page relevant to it. If you’re familiar with Rails or Django templates then
the preceding syntax should look very familiar. You’ll also note that the tem-
plates are set up to use Twitter Bootstrap as the default scaffolding for the
page layout.

We’ll remove the existing content of the block and replace it with a div that
will display the list of existing messages. The messages will be supplied using
a variable called messages. Each item in messages will be a map containing
the keys called timestamp, message, and name. We’ll then iterate over the messages
and create a li item for each message inside a ul tag. Like so:

guestbook/resources/templates/home.html
<div class="row">

<div class="span12">
<ul class="content">

{% for item in messages %}

<time>{{item.timestamp|date:"yyyy-MM-dd HH:mm"}}</time>
<p>{{item.message}}</p>
<p> - {{item.name}}</p>

{% endfor %}

</div>

</div>

OK, let’s go back to the guestbook.routes.home namespace and add the code to
render the existing messages. First, we’ll add references to the guestbook.db.core
and the ring.util.response namespaces.

guestbook/src/clj/guestbook/routes/home.clj
(ns guestbook.routes.home

(:require [guestbook.layout :as layout]
[compojure.core :refer [defroutes GET POST]]
[ring.util.http-response :as response]
[guestbook.db.core :as db]))

We can now update the home-page function to associate the messages with the
:messages key when rendering the template.

Chapter 1. Getting Your Feet Wet • 14

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/resources/templates/home.html
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

guestbook/src/clj/guestbook/routes/home.clj
(defn home-page []

(layout/render
"home.html"
{:messages (db/get-messages)}))

Since we’ve already populated a message in our database during earlier testing
we should now see it when we reload the page. We can now take a look at
adding a form to create new messages from the page.

We’ll create another div that will contain a field to hold any error messages
that might be populated by the server and a form for submitting new messages.
Note that we need to provide a {% csrf-field %} in our form.11 Luminus enables
anti-forgery protection by default and any POST requests that do not contain
the anti-forgery token are rejected by the server.

guestbook/resources/templates/home.html
<div class="row">

<div class="span12">
<form method="POST" action="/message">

<div class="form-group">
{% csrf-field %}
<p>

Name:
<input class="form-control"

type="text"
name="name"
value="" />

</p>
<p>

Message:
<textarea class="form-control"

rows="4"
cols="50"
name="message"></textarea>

</p>
<input type="submit" class="btn btn-primary" value="comment" />
</div>

</form>
</div>

</div>

Our final template should look as follows.

guestbook/resources/templates/home.html
{% extends "base.html" %}
{% block content %}
<div class="row">

11. http://en.wikipedia.org/wiki/Cross-site_request_forgery

report erratum • discuss

Refine Your App • 15

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/resources/templates/home.html
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/resources/templates/home.html
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

<div class="span12">
<ul class="content">

{% for item in messages %}

<time>{{item.timestamp|date:"yyyy-MM-dd HH:mm"}}</time>
<p>{{item.message}}</p>
<p> - {{item.name}}</p>

{% endfor %}

</div>

</div>
<div class="row">

<div class="span12">
<form method="POST" action="/message">

<div class="form-group">
{% csrf-field %}
<p>

Name:
<input class="form-control"

type="text"
name="name"
value="" />

</p>
<p>

Message:
<textarea class="form-control"

rows="4"
cols="50"
name="message"></textarea>

</p>
<input type="submit" class="btn btn-primary" value="comment" />
</div>

</form>
</div>

</div>
{% endblock %}

We now need to create a new route on the server called /message that will
respond to HTTP POST method. The route will call a function called save-mes-
sage! with the request.

guestbook/src/clj/guestbook/routes/home.clj
(POST "/message" request (save-message! request))

The route handler will call the save-message! function that follows. The function
will grab the params key from the request. This key contains a map of param-
eters that were sent by the client when the form was submitted to the server.

Chapter 1. Getting Your Feet Wet • 16

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

guestbook/src/clj/guestbook/routes/home.clj
(defn save-message! [{:keys [params]}]

(db/save-message!
(assoc params :timestamp (java.util.Date.)))

(response/found "/"))

Since we named our fields name and message, they match the fields we
defined in our table: all we have to do to create a new record is to add a
timestamp field with the current date and call the save-message! function from
the db namespace. Once the message is saved we’ll redirect back to the home
page. The final code in the namespace should look as follows.

guestbook/src/clj/guestbook/routes/home.clj
(ns guestbook.routes.home

(:require [guestbook.layout :as layout]
[compojure.core :refer [defroutes GET POST]]
[ring.util.http-response :as response]
[guestbook.db.core :as db]))

(defn home-page []
(layout/render

"home.html"
{:messages (db/get-messages)}))

(defn save-message! [{:keys [params]}]
(db/save-message!
(assoc params :timestamp (java.util.Date.)))

(response/found "/"))

(defn about-page []
(layout/render "about.html"))

(defroutes home-routes
(GET "/" [] (home-page))
(POST "/message" request (save-message! request))
(GET "/about" [] (about-page)))

At this point our guestbook should display existing messages as well as allow
the users to post new messages. As a last touch we’ll add some CSS to style
our app. Static assets such as CSS, images, and JavaScript are found in the
resources/public folder and will be served without the need to define routes for
them. Let’s add the following CSS in the resources/public/css/screen.css file.

guestbook/resources/public/css/screen.css
*/
.content {

background: white;
width: 520px;

}

report erratum • discuss

Refine Your App • 17

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/resources/public/css/screen.css
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

form, .error {
width: 520px;
padding: 30px;
margin-bottom: 50px;
position: relative;
background: white;

}
ul {

list-style: none;
}

li {
position: relative;
font-size: 16px;
padding: 5px;
border-bottom: 1px dotted #ccc;

}

li:last-child {
border-bottom: none;

}

li time {
font-size: 12px;
padding-bottom: 20px;

}

The guestbook page should now look like the following figure.

Chapter 1. Getting Your Feet Wet • 18

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 2—Styled Guestbook

Validating Input
What else should we do? Currently, our guestbook doesn’t do any validation
of user input. That’s weak. Let’s see how we can ensure that user messages
contain the necessary information before trying to store them in the database.

Luminus defaults to using the Bouncer library to handle input validation. The
library provides a straight forward way to check that our parameter map
contains the required values.

Bouncer provides bouncer.core/validate and bouncer.core/valid? functions for handling
validation. These functions each accept a map containing the parameters
followed by the validators. The former will validate the input and return error
messages for any invalid fields, while the latter returns a boolean value indi-
cating whether the input is valid.

Many common validators such as required, email, matches, and so on are provided
by the library out of the box. These validators can be used individually or
chained together to validate different aspects of the input value. We can also

report erratum • discuss

Refine Your App • 19

Prepared exclusively for Bob Erb www.allitebooks.com

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2
http://www.allitebooks.org

easily create custom validators for the situations where the default ones won’t
do.

Before we see how validation works, we want to include bouncer.core along with
the bouncer.validators in our guestbook.routes.home namespace.

(ns guestbook.routes.home
(:require

[bouncer.core :as b]
[bouncer.validators :as v]
...))

We can now use the b/validate function to check that the input values are valid
and produce an error message in case of an error. In our case, we’ll make
sure both that the user name is not empty and that the message has at least
10 characters before persisting them to the database. Our validation function
will look as follows:

guestbook-validation/src/clj/guestbook/routes/home.clj
(defn validate-message [params]

(first
(b/validate
params
:name v/required
:message [v/required [v/min-count 10]])))

We pass the params submitted from the form as the input and then create
validators for the keys :name and :message. The :name key has a single validator,
while the :message key has two validators associated with it. The second valida-
tor takes an additional parameter indicating the minimum length. Bouncer
uses the vector notation for specifying additional parameters to the validator
functions.

The result of the validate function is a vector where the first element will either
be nil when the validation passes, or a map of errors. The keys in the map will
be the parameters that failed validation and the values will be the error
messages.

The next step is to hook up the validation function into our workflow. Cur-
rently, the save-message! function attempts to store the message and then
redirects back to the home page. We’ll need to add the ability to pass back
the error message along with the original parameters when validation fails.

A common approach is to do this is to use a flash session variable to track
the errors. Flash session variables have lifespan of a single request, making
them ideal storage for this purpose. The save-message! function will validate
the input and check if there are any errors. In case of errors it will associate

Chapter 1. Getting Your Feet Wet • 20

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-validation/src/clj/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

a :flash key with the response that will contain the parameters along with the
errors. If no errors are generated then it will save the message to the database
and redirect as it did before.

guestbook-validation/src/clj/guestbook/routes/home.clj
(defn save-message! [{:keys [params]}]

(if-let [errors (validate-message params)]
(-> (response/found "/")

(assoc :flash (assoc params :errors errors)))
(do
(db/save-message!
(assoc params :timestamp (java.util.Date.)))

(response/found "/"))))

We’ll now update the home route to pass the request to the home-page function
that will check for the flash key.

guestbook-validation/src/clj/guestbook/routes/home.clj
(GET "/" request (home-page request))

guestbook-validation/src/clj/guestbook/routes/home.clj
(defn home-page [{:keys [flash]}]

(layout/render
"home.html"
(merge {:messages (db/get-messages)}

(select-keys flash [:name :message :errors]))))

We’ll select the name, message, and errors keys from the flash session and merge
them with our parameter map. And finally, we’ll update our page to render
the errors when they’re present.

guestbook-validation/resources/templates/home.html
<div class="row">

<div class="span12">
<form method="POST" action="/message">

{% csrf-field %}
<p>

Name:
<input class="form-control"

type="text"
name="name"
value="{{name}}" />

</p>
{% if errors.name %}
<div class="alert alert-danger">{{errors.name|join}}</div>
{% endif %}
<p>

Message:
<textarea class="form-control"

rows="4"
cols="50"

report erratum • discuss

Refine Your App • 21

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-validation/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-validation/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-validation/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-validation/resources/templates/home.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

name="message">{{message}}</textarea>
</p>
{% if errors.message %}
<div class="alert alert-danger">{{errors.message|join}}</div>
{% endif %}
<input type="submit" class="btn btn-primary" value="comment" />

</form>
</div>

</div>

You should now be able to see error messages whenever bad parameters are
supplied in the form.

Figure 3—Validation Error

Running Standalone
Up to now, we’ve been running our app using the lein run command. This
starts an embedded server in development mode so that it watches files for
changes and reloads them as needed. In order to package our application for
deployment, we can package it into a runnable jar as follows.

lein uberjar

Chapter 1. Getting Your Feet Wet • 22

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The archive will be created in the target folder of our application and you can
run it using the java command.

Since we’re using a database we also have to make sure that the connection
is specified as an environment variable. When we ran our application in
development mode it was provided in the profiles.clj file. However, now that the
application has been packaged for production this variable is no longer
available. Let’s create a connection variable and then run our application as
follows:

export DATABASE_URL="jdbc:h2:./guestbook_dev.db"
java -jar target/guestbook.jar

What You’ve Learned
OK, that’s the whirlwind tour. By this point you should be getting a feel for
developing web applications with Clojure. And you should be comfortable
with some of the Clojure basics. You saw how to use the Leiningen tool to
create and manage an application. You learned about HTTP routing and some
basic HTML templating. While we didn’t explore many aspects of the skeleton
application that was generated for us, you saw how the basic request lifecycle
is handled.

We’ll be diving deeper and writing more code in upcoming chapters. If you
aren’t already, I encourage you to start using one of the popular Clojure-aware
editors such as Light Table, Emacs, Cursive, or Counterclockwise.

In the next chapter we’ll delve into the details of the Clojure web stack to
understand some of the details of how our application works.

report erratum • discuss

What You’ve Learned • 23

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

CHAPTER 2

Clojure Web Stack
Now that we’ve gone through the process of building a web application using
Clojure, let’s take a step back and look at what we’ve been doing. And this
means looking at the core components of the Clojure web stack.

Many popular platforms, such as Rails or Django, take the approach of pro-
viding a monolithic framework for building web applications. The Clojure
community has traditionally shunned this approach in favor of using compos-
able components that the user can assemble in a way that best fits her par-
ticular application.

Of course, in order to do that the user has to know what libraries exist and
what they are for and how to put them together effectively. Even if you know
the libraries that you wish to use there is still a certain amount of boilerplate
to set up for any given project.

The Clojure community tackles this problem by using Leiningen templates
that generate the necessary boilerplate for specific types of projects. In this
book we’re primarily using the Luminus template. Luminus removes the
burden or having to find the libraries, configure middleware, and add the
common boilerplate. The application generated by the template is ready for
deployment out of the box. The only part that’s missing is the domain logic
for your application.

The core of the template consists of the Ring/Compojure stack that’s well
established and has been used to build many real-world applications. Ring
provides the API for handling HTTP requests and responses, while Compojure
provides routing allowing us to bind request-handler functions to specific
URIs.

Let’s take a look at how to handle HTTP requests and responses using Ring
and structure routes using Compojure by building a web app from scratch.

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Route Requests with Ring
Ring aims to abstract the details of HTTP into a concise and modular API that
can be used to build a large spectrum of applications. If you’ve developed web
applications in Python or Ruby, then you’ll find it similar to the WSGI and
Rack libraries found in those languages.1,2

Since Ring has become the de facto standard for building web applications,
a lot of tools and supporting libraries have been developed around it. While
in most cases you won’t need to use Ring directly, it’s useful to have a high-
level understanding of its design, as it will help you in developing and trou-
bleshooting your applications.

Ring adapters for the Java HTTP Servlet application programming interface
(API)3 allow applications to be deployed on any servlet container, such as
Jetty or Tomcat. However, the most common approach is to run Clojure
applications standalone using an embedded HTTP server such as Immutant
or Jetty.4,5,6

Ring applications consist of four basic components: the handler, the request,
the response, and the middleware. Let’s look at each one of these by creating
a new Leiningen project.

Creating a Web Server
We’ll create a new project called ring-app by running the following command.

lein new ring-app

Next, we’ll open the project.clj file to add the dependency for Ring and specify
the :main key that points to the namespace that will have the -main function.
This function will be used as the entry point for starting the application.

(defproject ring-app "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.7.0"]

[ring "1.4.0"]]

1. http://wsgi.readthedocs.org/en/latest/
2. http://rack.github.io/
3. http://www.oracle.com/technetwork/java/index-jsp-135475.html
4. http://tomcat.apache.org/
5. http://immutant.org/
6. http://www.eclipse.org/jetty/

Chapter 2. Clojure Web Stack • 26

report erratum • discussPrepared exclusively for Bob Erb

http://wsgi.readthedocs.org/en/latest/
http://rack.github.io/
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://tomcat.apache.org/
http://immutant.org/
http://www.eclipse.org/jetty/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:main ring-app.core)

We’re now ready to update the ring-app.core namespace with the code to create
a web server and handle HTTP requests.

Handling Requests
Ring uses standard Clojure maps to represent the client requests and the
responses returned by the server. The handlers are functions that process
the incoming requests and generate the responses. A very basic Ring handler
might look like this:

(defn handler [request-map]
{:status 200
:headers {"Content-Type" "text/html"}
:body (str "<html><body> your IP is: "

(:remote-addr request-map)
"</body></html>")})

As you can see, it accepts a map representing an HTTP request and returns
a map representing an HTTP response. Ring takes care of converting the HTTP
servlet request into a map, and response map into the corresponding response
object. Let’s open the ring-app.core and add the handler there.

The handler will need to be passed to an instance of the web server, so we’ll
reference it in the namespace declaration and then add the -main function to
start it. Our namespace should look as follows.

(ns ring-app.core
(:require [ring.adapter.jetty :as jetty]))

(defn handler [request-map]
{:status 200
:headers {"Content-Type" "text/html"}
:body (str "<html><body> your IP is: "

(:remote-addr request-map)
"</body></html>")})

(defn -main []
(jetty/run-jetty

handler
{:port 3000
:join? false}))

The run-jetty function accepts the handler function we just created along with a
map containing options such as the HTTP port. The :join? key indicates whether
the server thread should block. We’ll set it to false so that we’re able to work
in the REPL while it’s running.

report erratum • discuss

Route Requests with Ring • 27

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

With the above changes to the namespace, we can open up the terminal and
start our application using the lein run command.

lein run
2015-10-31:INFO:main: Logging initialized @1796ms
2015-10-31:INFO:main: jetty-9.2.10.v20150310
2015-10-31:INFO:main: Started ServerConnector{HTTP/1.1}{0.0.0.0:3000}
2015-10-31:INFO:main: Started @1902ms

At this point our server is ready to handle requests and we can navigate to
the http://localhost:3000 to see our app in action. The page should be display-
ing the text your IP is: 0:0:0:0:0:0:0:1 since we’re accessing it from localhost
and the server is listening on all the available interfaces.

The handler that we wrote serves an HTML string with the client’s IP address
and sets the response status to 200. Since this is a common operation, the
Ring API provides a helper function for generating such responses found in
the ring.util.response namespace. Let’s reference it and update our handler as
follows.

(ns ring-app.core
(:require [ring.adapter.jetty :as jetty]

[ring.util.response :as response]))

(defn handler [request-map]
(response/response

(str "<html><body> your IP is: "
(:remote-addr request-map)
"</body></html>")))

We should now be able to restart the app in the terminal and see the same
page displayed as before. If you want to create a custom response, you’ll have
to write a function that would accept a request map, and return a response
map representing your custom response. Let’s look at the format for the
request and response maps.

Request and Response Maps
The request and response maps will contain information such as the server
port, URI, remote address, and content type, plus the body with the actual
payload. The keys in these maps are based on the servlet API and the official
HTTP RFC.7

7. http://www.w3.org/Protocols/rfc2616/rfc2616.html

Chapter 2. Clojure Web Stack • 28

report erratum • discussPrepared exclusively for Bob Erb

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

What’s in the Request Map

The request defines the following standard keys. Note that not all of these
keys, such as :ssl-client-cert, are guaranteed to be present in a request.

• :server-port — The port on which the server is handling the request.

• :server-name — The server’s IP address or the name it resolves to.

• :remote-addr — The client’s IP address.

• :query-string — The request’s query string.

• :scheme — The specifier of the protocol, which can be either :http or :https.

• :request-method — The HTTP request method, such as :get, :head, :options, :put,
:post, or :delete.

• :content-type — The request body’s MIME type.

• :content-length — The number of bytes in the request.

• :character-encoding — The name of the request’s character encoding.

• :headers — A map containing the request headers.

• :body — An input stream for the body of the request.

• :context — The context in which the application can be found when not
deployed as root.

• :uri — The request URI path on the server; this string will have the :context
prepended when available.

• :ssl-client-cert — The client’s SSL certificate.

In addition to the standard keys from the Ring specification, it is possible to
use middleware functions to extend the request map with other application-
specific keys. Later in this chapter we’ll cover how to accomplish this.

What’s in the Response Map

The response map contains only three keys needed to describe the HTTP
response:

• :status — The response’s HTTP status
• :headers — Any HTTP headers to be returned to the client
• :body — The response’s body

The status is a number representing one of the status codes specified in the
HTTP RFC, the lowest allowed number being 100.

report erratum • discuss

Route Requests with Ring • 29

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The header is a map containing the HTTP-header key/value pairs. Headers
may be strings or a sequence of strings, in which case a key and a value will
be sent for each string in the sequence.

Finally, the response body can contain either a string, a sequence, a file, or
an input stream. The body must correspond appropriately with the response’s
status code.

When the response body is a string, it will be sent back to the client as is. If
it is a sequence, then a string representing each element is sent to the client.
Finally, if the response is a file or an input stream, then the server sends its
contents to the client.

Adding Functionality with Middleware
The middleware allows wrapping the handlers in functions that can modify
the way the request is processed. Middleware functions are often used to
extend the base functionality of Ring handlers to match your application’s
needs.

A middleware handler is a function that accepts an existing handler with
some optional parameters, then returns a new handler with some added
behavior. The following is an example of such a function:

(defn handler [request]
(response/response

(str "<html><body> your IP is: "
(:remote-addr request)
"</body></html>")))

(defn wrap-nocache [handler]
(fn [request]

(-> request
handler
(assoc-in [:headers "Pragma"] "no-cache"))))

(defn -main []
(jetty/run-jetty

(wrap-nocache handler)
{:port 3000
:join? false}))

The wrapper in our example accepts the handler and returns a function that
in turn acts as a handler. Since the returned function was defined in the local
scope, it can reference the handler internally. When invoked, it will call the
handler with the request and add Pragma: no-cache to the headers of the response

Chapter 2. Clojure Web Stack • 30

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

map. The wrapper function is called a closure because it closes over the
handler parameter and makes it accessible to the function it returns.

The technique you’ve just seen allows us to create small functions, each
dealing with a particular aspect of the application. We can then easily chain
them together to provide complex behaviors needed for real-world applications.

There are many libraries available that provide middleware functions for
modifying the request and response maps. Ring itself comes with a number
of such middleware helpers. For example, you may have noticed that we didn’t
have to keep restarting the guestbook app to see the changes. Instead, the
code on the server was automatically reloaded by the wrap-reload middleware
function found in the ring.middleware.reload namespace. Let’s add this piece of
middleware to our app.

(ns ring-app.core
(:require [ring.adapter.jetty :as jetty]

[ring.util.response :as response]
[ring.middleware.reload :refer [wrap-reload]]))

(defn handler [request]
(response/response

(str "<html><body> your IP is: "
(:remote-addr request)
"</body></html>")))

(defn wrap-nocache [handler]
(fn [request]

(-> request
handler
(assoc-in [:headers "Pragma"] "no-cache"))))

(defn -main []
(jetty/run-jetty

(-> handler var wrap-nocache wrap-reload)
{:port 3000
:join? false}))

Note that we have to create a var from the handler in order for this middleware
to work. This is necessary to ensure that the Var object containing the current
handler function is returned. If we used the handler instead then the app would
only see the original value of the function and changes would not be reflected.
A more common way to create a var would be using the #' prefix as follows (-
> #'handler wrap-nocache wrap-reload).

With the wrap-reload middleware in place we’ll have to restart the server one
more time for it to take effect. After the server is restarted we should be able

report erratum • discuss

Route Requests with Ring • 31

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

to modify the handler function, save the file, and reload the page to see the
changes.

What Are the Adapters?
Adapters sit between the handlers and the underlying HTTP protocol. They
provide any necessary configuration, such as port mappings, and handle
parsing HTTP requests into request maps and constructing HTTP responses
from the handler response maps. The adapters allow Ring to run on a number
of different containers such as Jetty and HTTP Kit.8 You will generally not
need to interact with adapters directly in your application.

Extend Ring
Ring provides a simple base for handling the HTTP request and response
cycle. We’ll now look at several libraries that provide many additional utility
functions that extend the functionality of Ring.

As we saw earlier, the Ring stack consists of a chain of middleware functions.
Each function accepts the request map, modifies it in some way, then passes
it on to the next function in the chain. The middleware functions have to be
wrapped in order of dependency. For example, session based authentication
relies on the presence of a session and the session middleware must run
before it to make the session available.

The ring-defaults library provides a standard set of middleware that’s useful
for typical web applications. The middleware is split into API middleware and
site middleware. The api-defaults is meant to be used for web service APIs
and its counterpart secure-api-defaults extends it with SSL redirects and
enables HSTS. Conversely, site-defaults provide the middleware stack for a
typical website, while secure-site-defaults provide security extensions such
as SSL and secure cookies. Luminus defaults to using the site-defaults mid-
dleware.

Ideally, the responses returned by the server should follow the HTTP status
codes whenever appropriate. When an operation is successful we should
return status 200, when we have an internal error we would return status
500, and so on. The ring-http-response library provides a set of handler
functions that map to HTTP codes.9

8. http://www.http-kit.org//
9. https://github.com/metosin/ring-http-response

Chapter 2. Clojure Web Stack • 32

report erratum • discussPrepared exclusively for Bob Erb

http://www.http-kit.org//
https://github.com/metosin/ring-http-response
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Using this library we can return meaningful responses that map to specific
HTTP status codes such as ok, found, internal-server-error, and so on.

Let’s add the library to the dependencies in project.clj and updating the handler
function in the project.

(defproject ring-app "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.7.0"]

[ring "1.4.0"]
[metosin/ring-http-response "0.6.5"]]

:main ring-app.core)

We can now replace the ring.util.response reference with a reference to ring.util.http-
response and update the handler as follows.

(ns ring-app.core
(:require [ring.adapter.jetty :as jetty]

[ring.util.http-response :as response]
[ring.middleware.reload :refer [wrap-reload]]))

(defn handler [request]
(response/ok

(str "<html><body> your IP is: "
(:remote-addr request)
"</body></html>")))

Try using different types of responses as seen in the following examples:

(response/continue)
;=> {:status 100, :headers {}, :body ""}

(response/ok "<html><body><h1>hello world</h1></body></html>")
;=> {:status 200

:headers {}
:body "<html><body><h1>hello world</h1></body></html>"}

(response/found "/messages")
;=> {:status 302, :headers {"Location" "/messages"}, :body ""}

(response/internal-server-error "failed to complete request")
;=> {:status 100, :headers {}, :body "failed to complete request"}

When exposing a service API, it’s often necessary to communicate with
external clients that may use different encoding formats. The ring-middleware-
format library provides middleware for automatically serializing and deserial-
izing different data formats based on the Accept and the Content-Type request

report erratum • discuss

Extend Ring • 33

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

headers. The library handles common formats such as JSON, YAML as well
as Clojure specific formats such as EDN and transit. Let’s add this library to
the project.

(defproject ring-app "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.7.0"]

[ring "1.4.0"]
[metosin/ring-http-response "0.6.5"]
[ring-middleware-format "0.7.0"]]

:main ring-app.core)

The library provides a middleware wrapper function called ring.middleware.for-
mat/wrap-restful-format. This function accepts the handler and an optional
map of parameters. Let’s reference the wrap-restful-format middleware and change
the handler to accept a request containing a JSON encoded request. The
request will contain a parameter called id, and return a response where the
:result key is set to the value of this parameter.

(ns ring-app.core
(:require [ring.adapter.jetty :as jetty]

[ring.util.http-response :as response]
[ring.middleware.reload :refer [wrap-reload]]
[ring.middleware.format :refer [wrap-restful-format]]))

(defn handler [request]
(response/ok

{:result (-> request :params :id)}))

(defn wrap-nocache [handler]
(fn [request]

(-> request
handler
(assoc-in [:headers "Pragma"] "no-cache"))))

(defn wrap-formats [handler]
(wrap-restful-format

handler
{:formats [:json-kw :transit-json :transit-msgpack]}))

(defn -main []
(jetty/run-jetty

(-> #'handler wrap-nocache wrap-reload wrap-formats)
{:port 3000
:join? false}))

Chapter 2. Clojure Web Stack • 34

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can now test the new functionality using cURL:

curl -H "Content-Type: application/json" -X POST -d '{"id":1}' localhost:3000/json
{"result":1}

Using middleware such as ring-middleware-format is a common pattern for
capturing common tasks, such as a data encoding, in a centralized fashion.
The alternative would be to have each handler function handle its own serial-
ization and deserialization logic. The latter approach is both error prone and
repetitive, thus it should be avoided whenever possible. As a rule, general
patterns that are not specific to a particular request are good candidates for
middleware functions.

It’s also worth noting that different sets of handlers can be wrapped with their
own middleware. For example, CSRF protection makes sense for routes that
are called by the pages generated within the same session as we saw with
the guestbook application. However, if we were creating a public service API
then we would not wish the routes to require a CSRF token.

If we look at the app-routes in the guestbook.handler namespace, we’ll see that the
home-routes are wrapped with the middleware/wrap-csrf by calling the compo-
jure.core/wrap-routes macro.

guestbook/src/clj/guestbook/handler.clj
(def app-routes

(routes
(wrap-routes #'home-routes middleware/wrap-csrf)
(route/not-found
(:body

(error-page {:status 404
:title "page not found"})))))

The macro makes sure that the route is resolved before the middleware is
applied. This ensures that middleware is only applied to the specified routes
as opposed to being run globally for all routes. Another example we’ll see
later in the book will be to selectively apply authentication middleware for
the routes that require that the user is logged in in order to be accessed.

We already saw some examples of routing using Compojure when we built
our first application in the Chapter 1, Getting Your Feet Wet, on page 1, now
let’s take a closer look at the functionality it provides.

Define the Routes with Compojure
Compojure is a routing library built on top of Ring. It provides a way to
associate handler functions with a URL and an HTTP method. Let’s add it as
a dependency in the ring-app project and see how it works.

report erratum • discuss

Define the Routes with Compojure • 35

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

ring-app/project.clj
(defproject ring-app "0.1.0-SNAPSHOT"

:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.7.0"]

[ring "1.4.0"]
[metosin/ring-http-response "0.6.5"]
[ring-middleware-format "0.7.0"]
[compojure "1.4.0"]]

:main ring-app.core)

With the dependency in place we’ll update the namespace to reference compo-
jure.core and add a route for the / URI.

(ns ring-app.core
(:require [ring.adapter.jetty :as jetty]

[compojure.core :as compojure]
[ring.util.http-response :as response]
[ring.middleware.reload :refer [wrap-reload]]))

(defn response-handler [request]
(response/ok

(str "<html><body> your IP is: "
(:remote-addr request)
"</body></html>")))

(def handler
(compojure/routes
(compojure/GET "/" request response-handler)))

The function that generates the response is now called response-handler, and it’s
being called by the compojure/GET macro when the client requests the / URI.
The GET route is wrapped using the routes function that aggregates a set of
routes into a Ring handler.

The route name maps to an HTTP method name, such as GET, POST, PUT,
DELETE, or HEAD. There’s also a route called ANY that matches any method
the client supplies. The URI can contain keys denoted by using a colon, and
their values can be used as parameters to the route. This feature was inspired
by a similar mechanism used in Rails and Sinatra.10,11 The route’s response
will be automatically wrapped in the Ring response described earlier.

10. http://rubyonrails.org/
11. http://www.sinatrarb.com/

Chapter 2. Clojure Web Stack • 36

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/ring-app/project.clj
http://rubyonrails.org/
http://www.sinatrarb.com/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The route URI can contain dynamic segments that are specified using the :.
Let’s add another route to our handler that will accept an :id URI segment
and display its value on the page.

(def handler
(compojure/routes
(compojure/GET "/" request response-handler)
(compojure/GET "/:id" [id] (str "<p>the id is: " id "</p>"))))

We can now navigate to a URI such as http://localhost:3000/foo and see the
text the id is: foo displayed on the page.

Compojure also lets us extract JSON parameters using the same destructuring
syntax. For example, we can now rewrite the route for handling JSON
encoded POST requests as follows:

(def handler
(compojure/routes

(compojure/GET "/" request response-handler)
(compojure/GET "/:id" [id] (str "<p>the id is: " id "</p>"))
(compojure/POST "/json" [id] (response/ok {:result id}))))

Since defining routes is a very common operation, Compojure also provides
the defroutes macro that generates a Ring handler from the supplied routes:

ring-app/src/ring_app/core.clj
(compojure/defroutes handler
(compojure/GET "/" request response-handler)
(compojure/GET "/:id" [id] (str "<p>the id is: " id "</p>"))
(compojure/POST "/json" [id] (response/ok {:result id})))

Using Compojure routes, we can easily map functionality to each URL of our
site, and provide much of the core functionality needed in a web application.
We can then group these routes together using the defroutes macro as we did
previously. Compojure, in turn, takes care of creating the Ring handlers for
us.

Compojure also provides a powerful mechanism for filtering out common
routes in the application based on the shared path elements. Let’s say we
have several routes that handle operations for a specific user:

(defn display-profile [id]
;;TODO: display user profile
)

(defn display-settings [id]
;;TODO: display user account settings
)

report erratum • discuss

Define the Routes with Compojure • 37

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/ring-app/src/ring_app/core.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(defn change-password [id]
;;TODO: display the page for setting a new password
)

(defroutes user-routes
(GET "/user/:id/profile" [id] (display-profile id))
(GET "/user/:id/settings" [id] (display-settings id))
(GET "/user/:id/change-password" [id] (change-password-page id))

There’s a lot of repetition in that code, where each route starts with the /user/:id
segment. We can use the context macro to factor out the common portion of
these routes:

(def user-routes
(context "/user/:id" [id]

(GET "/profile" [] (display-profile id))
(GET "/settings" [] (display-settings id))
(GET "/change-password" [] (change-password-page id))))

In that code the routes defined in the context of /user/:id will behave exactly
the same as the previous version and have access to the id parameter. The
context macro exploits the fact that handlers are closures. When the outer
context handler closes over the common parameters, they are also available
to handlers defined inside it.

Accessing Request Parameters
For some routes, we’ll need to access the request map to access the request
parameters. We do this by declaring the map as the second argument to the
route.

(GET "/foo" request (interpose ", " (keys request)))

That route reads out all the keys from the request map and displays them.
The output will look like the following.

:ssl-client-cert, :remote-addr, :scheme, :query-params, :session, :form-params,
:multipart-params, :request-method, :query-string, :route-params, :content-type,
:cookies, :uri, :server-name, :params, :headers, :content-length, :server-port,
:character-encoding, :body, :flash

Compojure also provides some useful functionality for handling the request
maps and the form parameters. For example, in the guestbook application,
which we created in Chapter 1, Getting Your Feet Wet, on page 1, we saw
the following route defined:

(POST "/" request (save-message! request))

Chapter 2. Clojure Web Stack • 38

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The route takes the request and passes it as a parameter to the save-message!
function. If you’ll recall, the request contains the name and the message
parameters that are entered by the user in the form. We could extract these
parameters from the request as follows:

(POST "/" [name message] (println name message))

This route extracts the :name and :message keys found in the request map under
the :params key, then binds them to variables of the same name. We can now
use them as any other declared variable within the route’s scope.

It’s also possible to use the regular Clojure destructuring inside the route.
Given a request map containing the following parameters…

{:params {"name" "some value"}}

…we can extract the parameter with the key "name" as follows:

(GET "/:foo" {{value :name} :params}
(str "The value of name is " value))

Furthermore, Compojure lets you destructure a subset of form parameters
and create a map from the rest:

[x y & z]
x -> "foo"
y -> "bar"
z -> {:v "baz", :w "qux"}

In the preceding code, parameters x and y have been bound to variables, while
parameters v and w remain in a map called z. Finally, if we need to get at the
complete request along with the parameters, we can do the following:

(GET "/" [x y :as request] (str x y request))

Here we bind the form parameters x and y, and bind the complete request
map to the request variable.

Armed with the functionality that Ring and Compojure provide, we can easily
create pages and routes for our site. However, any nontrivial application
requires many other features, such as HTML templating and input validation.

What You’ve Learned
In this chapter we saw how to handle requests using Ring and structure
routes using Compojure. In the following chapter we’ll take a deeper look at
overall application structure and how all the pieces fit together.

report erratum • discuss

What You’ve Learned • 39

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

CHAPTER 3

Luminus Architecture
At the start of the book we jumped right into building a simple application.
This let us get comfortable with the development environment and provided
a glimpse at what to expect in terms of project structure. We looked at the
directory layout as well at the purpose of some of the files found in the project.
However, we didn’t focus very closely on the code in these files. In this chapter,
you’ll learn the background necessary to fully understand our guestbook
application. We’ll start by revisiting the application structure in more detail
and then take a closer look at using Selmer HTML templating engine.

Manage the Project
As we already learned working on the guestbook application, the lifecycle of
the project is managed using the project.clj and the profiles.clj files. The former
contains the common configuration for the project while the latter is used for
any local configuration that’s not meant to be checked into source control.

Leiningen uses the concept of profiles to identify different build scenarios for
a project. The dev and the test profiles are used for development and testing
respectively. The :dev profile is composed of the :project/dev and the :pro-
files/dev sub-profiles, while the :test profile is composed using the :project/test
and the :profiles/test. This allows us to merge the local configuration
parameters with the global ones. In the case of the guestbook project the local
configuration consists of the development and test database URLs.

The profiles can specify any configuration options that can be specified in the
global scope. For example, we can add specific dependencies or plugins that
are only necessary for development. Since we wouldn’t want to package those
for production we don’t specify them at top level. The profiles also specify
environment variables such as the HTTP port that would be expected to be
found in the system environment variables when running in production.

report erratum • discussPrepared exclusively for Bob Erb www.allitebooks.com

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2
http://www.allitebooks.org

The uberjar profile is used for packaging the application for production. When
the production build happens, the compiled bytecode is emitted in the
resulting jar archive. This results in a self-contained application that can be
run using the standard Java Runtime Environment (JRE).

Running Code Selectively
Some code in the application may behave differently between development
and production modes. For example, we may use more verbose log levels
during development, or display stacktraces in the browser when we have
errors while developing the application. However, once we put it in production
then we’d like to use more restrictive settings.

One approach is to use an environment variable to indicate the mode that
application runs in and use conditional logic to select what code should be
executed at runtime. This approach has a number of drawbacks. The condi-
tional logic is error prone, it can add runtime overhead, and we end up having
to package all the libraries used for development in our production build.

A better approach is to decide what code should be included at build time.
This way only the code that’s necessary ends up being packaged for production
and we don’t have to worry about checking what mode the application is in
at runtime. This is the approach that Luminus defaults to.

The guestbook project contains an env folder. This folder contains the dev and
the prod source paths. The code in the dev path is included for development,
while the code in the prod path is included in production.

The development code includes a guestbook.config namespace with the configu-
ration optimized for development use.

guestbook/env/dev/clj/guestbook/config.clj
(ns guestbook.config

(:require [selmer.parser :as parser]
[clojure.tools.logging :as log]
[guestbook.dev-middleware :refer [wrap-dev]]))

(def defaults
{:init
(fn []

(parser/cache-off!)
(log/info "\n-=[guestbook started successfully using the development profile]=-"))

:middleware wrap-dev})

The namespace consists of the defaults map that contains keys called :init and
:middleware. The first key points to a function that should be run during startup.
The second point to additional development middleware for live code reloading

Chapter 3. Luminus Architecture • 42

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/env/dev/clj/guestbook/config.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

and error reporting. The middleware itself is found in the guestbook.dev-middleware
namespace. The prod source path contains the production version of the
guestbook.config namespace with the settings suited for production use.

The profiles in the project.clj are responsible for deciding what additional source
paths should be used. The :uberjar profile sets the :source-paths key to point to
["env/prod/clj"], while the :dev profile points to ["env/dev/clj"]. These paths become
available in addition to the default src path where the compiler will look for
the application code.

Think in Terms of Application Components
The approach that a typical Clojure web application takes is probably different
from what you’re used to. Most frameworks favor using the Model-View-
Controller (MVC) pattern for partitioning the application logic, with strong
separation between the view, the controller, and the model.

Luminus does not enforce any strict separation between the view and the
controller portion of the application. Instead, Luminus encourages organizing
the application to keep any related code in the same namespace. The route
handler functions are typically responsible for processing HTTP requests from
the client and dispatching actions based on them. This approach provides a
clean separation between the domain logic and the presentation layer of your
application without introducing any unnecessary indirection.

However, since the Clojure web stack is designed to be flexible, it will ultimate-
ly let you design the site any way you like. If you do feel strongly about having
traditional-style MVC in your application, there’s nothing stopping you from
doing that.

A typical application would be broken up into several logical components.
Let’s look at these in some more detail. A Luminus application is typically
comprised of the following core namespaces:

• core — The core manages the lifecycle of the HTTP server.

• handler — This is the root handler for the requests and responses that
aggregates all the routes.

• routes — The routes namespace contains the namespaces that are
responsible for handling different types of client requests.

• db — The db namespace is reserved for the data model of the application
and the persistence layer.

report erratum • discuss

Think in Terms of Application Components • 43

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

• layout — The layout namespace contains common logic for generating the
application layout.

• middleware — The middleware namespace contains any custom middleware
we want to use in our application.

Application Core
The core namespace is used to start the application. This is where the -main
function is found. The -main function is the entry point for the application, the
- in front of the function name indicates that it should be compiled to a Java
method. This is necessary in order for the JVM to be able to invoke it. The
namespace compilation is triggered by the :gen-class hint in its declaration.

There are two functions that control the lifecycle of the application, these are
the start-app and the stop-app functions respectively.

The start-app function is called by the -main function when the application is
run, and it’s responsible for running any initialization tasks such as starting
the HTTP server. The template defaults to using the Immutant HTTP server1

unless otherwise specified. The server is passed the guestbook.handler/app function
to handle any incoming client requests.

guestbook/src/clj/guestbook/core.clj
(defn start-app

"e.g. lein run 3000"
[[port]]
(let [port (http-port port)]

(.addShutdownHook (Runtime/getRuntime) (Thread. stop-app))
(when-let [repl-port (env :nrepl-port)]
(repl/start {:port (parse-port repl-port)}))

(http/start {:handler app
:init init
:port port})))

The stop-app function is set as the shutdown hook in the start-app function. It
will be called when the JVM runtime is shutting down. This function is
responsible for handling any cleanup that needs to be done when the app
stops.

guestbook/src/clj/guestbook/core.clj
(defn stop-app []

(repl/stop)
(http/stop destroy)
(shutdown-agents))

1. http://immutant.org/

Chapter 3. Luminus Architecture • 44

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/core.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/core.clj
http://immutant.org/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

That’s all there is to bootstrapping the application. Now let’s see how we can
add some routes to provide the functionality specific to our application.

Application Handler
The guestbook.handler namespace is responsible for aggregating all the routes
and wrapping them with any necessary middleware. This namespace also
contains the init and destroy functions that house the code that needs to be
run during startup or shutdown phases. One example of using an init function
is to initialize the logging configuration as seen in the following code sample.

guestbook/src/clj/guestbook/handler.clj
(logger/init env)

These functions are also responsible for initializing and destroying stateful
resources such as connections to databases and queues. The lifecycle of these
resources is managed by the mount library.2. We’ll discuss it in more detail
in later chapters.

The app-routes function aggregates the routes for handling all the requests to
our application. In addition to the user defined routes it provides a default
not-found route that will serve the 404 page if none of the routes match the URI
specified in the request.

The routes aggregated by the app-routes are then wrapped with the wrap-base
function in the app definition to apply the common middleware.

guestbook/src/clj/guestbook/handler.clj
(def app-routes

(routes
(wrap-routes #'home-routes middleware/wrap-csrf)
(route/not-found
(:body

(error-page {:status 404
:title "page not found"})))))

(def app (middleware/wrap-base #'app-routes))

Notice that the home-routes are additionally wrapped with the wrap-csrf middle-
ware. The wrap-routes macro is used to ensure that the middleware is applied
after the route is resolved, allowing us to restrict it to the home-routes. Had we
wrapped these routes directly with (middleware/wrap-csrf home-routes) then the wrap-
csrf would end up being applied to any routes defined below home-routes as it’s
now part of the common middleware chain.

2. https://github.com/tolitius/mount

report erratum • discuss

Think in Terms of Application Components • 45

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/handler.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/handler.clj
https://github.com/tolitius/mount
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Application Middleware
The guestbook.middleware namespace is reserved for any wrapper functions that
are used to modify the requests and responses. The main purpose of the
middleware is to provide a central place for handling common tasks such as
CSRF protection.

If you’ll recall we had to specify an anti-forgery token when submitting forms
in our guestbook application. This token is checked by the wrap-csrf middleware
function. It checks each request to see if it contains a valid token and returns
an error page in case a valid token is not present. This way we don’t have to
remember to check for a CSRF token in each handler function eliminating
potential errors.

The wrap-base function is used to tie all the common middleware together in
the order of dependency. It also adds the ring-defaults middleware that we dis-
cussed earlier along with wrap-webjars for serving static assets from the WebJars
repository.3

Routing Requests
As we discussed earlier, application routes represent URIs that the client can
call to cause the server to perform an action. Each route is mapped to a par-
ticular function that will be executed when the client requests the URI asso-
ciated with it.

Any real-world applications will require more than a single route. In our
guestbook application we have three separate routes, each performing a dis-
tinct action:

guestbook/src/clj/guestbook/routes/home.clj
(defroutes home-routes

(GET "/" [] (home-page))
(POST "/message" request (save-message! request))
(GET "/about" [] (about-page)))

When an incoming request matches the URI and the HTTP method then the
associated handler function will be invoked. For example, when the server
receives an HTTP GET request for the / URI then the home-page function will
be called. This retrieves the messages from the database and renders a page
displaying them alongside a form for creating a new message.

Even a trivial workflow will require more than a single route. One such
workflow can be seen in the guestbook application. The / route is responsible

3. http://www.webjars.org/

Chapter 3. Luminus Architecture • 46

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/routes/home.clj
http://www.webjars.org/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

for displaying the page that renders the messages along with the form to write
new messages. The corresponding /message route is responsible for handling
creation of new messages.

When we identify a specific workflow in our application, it makes sense to
group all the logic relating to this workflow in a single place. The routes package
in our application is reserved for the namespaces that describe these
workflows.

Since our guestbook application is very small, we define a single set of routes,
along with some helper functions, right in the guestbook.routes.home namespace.

In an application that has more pages, we would want to create additional
namespaces to keep the code manageable. We would then create separate
routes under each namespace and group them together in the handler names-
pace using the routes macro provided by Compojure.

Creating separate route groups also allows us to selectively apply middleware
using wrap-routes as we’ve already seen with wrap-csrf middleware being applied
specifically to home-routes.

The routes macro will combine all the routes into a single set that will be used
to create the final handler. Be aware that the handler for the first route that
matches will be called. The app-routes contains the catch-all route/not-found route,
any routes placed following it will be masked by the not-found route.

Application Model
All but the most trivial applications need some sort of a model. The model
describes the data stored by the application and relationships between indi-
vidual data elements.

When we use a relational database it can often become the model for our
application. Unlike object oriented languages, Clojure does not require us to
define a separate model in code and map it to the one defined in the database.
Instead, the query results are represented by sequences of maps where the
keys correspond to the column names in the tables being queried.

All namespaces dealing with the model and the persistence layer traditionally
live under the application’s db package. This is a topic that warrants further
discussion and we’ll revisit it in a later chapter.

The guestbook database connection resides in the conn variable. Note that the
connection URI is populated using an environment variable called :database-
url. This ensures that we’re not hardcoding our connection in the application
or checking into the code repository.

report erratum • discuss

Think in Terms of Application Components • 47

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

In development mode, the connection variable is populated in the profiles.clj
file that’s used to keep local configuration.

guestbook/profiles.clj
{:profiles/dev {:env {:database-url "jdbc:h2:./guestbook_dev.db"}}
:profiles/test {:env {:database-url "jdbc:h2:./guestbook_test.db"}}}

When you run the application in production, the database connection URL
should be provided via an environment variable instead as seen in the following
example.

export DATABASE_URL="jdbc:h2:./guestbook.db"

The application will read the environment variable when it starts up and use
it as to connect to the database. This approach ensures that the application
is environment agnostic.

Application Layout
The layout namespace is reserved for providing the visual layout and other
common elements for our pages.

guestbook/src/clj/guestbook/layout.clj
(ns guestbook.layout

(:require [selmer.parser :as parser]
[selmer.filters :as filters]
[markdown.core :refer [md-to-html-string]]
[ring.util.http-response :refer [content-type ok]]
[ring.util.anti-forgery :refer [anti-forgery-field]]
[ring.middleware.anti-forgery :refer [*anti-forgery-token*]]))

(declare ^:dynamic *app-context*)
(parser/set-resource-path! (clojure.java.io/resource "templates"))
(parser/add-tag! :csrf-field (fn [_ _] (anti-forgery-field)))
(filters/add-filter! :markdown (fn [content] [:safe (md-to-html-string content)]))

(defn render
"renders the HTML template located relative to resources/templates"
[template & [params]]
(content-type

(ok
(parser/render-file

template
(assoc params

:page template
:csrf-token *anti-forgery-token*
:servlet-context *app-context*)))

"text/html; charset=utf-8"))

Chapter 3. Luminus Architecture • 48

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook/profiles.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook/src/clj/guestbook/layout.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(defn error-page
"error-details should be a map containing the following keys:
:status - error status
:title - error title (optional)
:message - detailed error message (optional)

returns a response map with the error page as the body
and the status specified by the status key"

[error-details]
{:status (:status error-details)
:headers {"Content-Type" "text/html; charset=utf-8"}
:body (parser/render-file "error.html" error-details)})

The namespace declares the *app-context* variable. This variable is dynamically
bound by the guestbook.middleware/wrap-context middleware either to the value of
the :servlet-context key in the request map or the :app-context environment variable.

JVM servlet containers allow running multiple web applications on the same
server. When this is the case each application is assigned its own context.4

The context is then used by the server to route requests and responses to the
appropriate applications.

Alternatively, we may wish to front multiple applications using a server such
as Apache or Nginx. In this case each application could have its own context
and any requests from the browser will be required to include it as part of
the URL. This allows running multiple applications without having to setup
subdomains for each one.

Next, the resource path is set to the resources/templates folder. This sets the base
template directory for the Selmer HTML templating library. Without setting
the variable we’d have to prefix all template names with templates/.

Following the parser/set-resource-path! call, a custom tag is defined for the CSRF
field. We already saw this tag in action when we submitted the form in the
last chapter.

Similarly to the tag above it, a filter is added for processing Markdown content
in the HTML templates. We’ll take a closer look at how tags and filters work
shortly.

The render function sets some default keys on the context map used to generate
the HTML from the template. Since these keys are common to all pages it
makes sense to keep them centralized in one place. The result of the function
is a regular response map with the rendered template string set as the body.

4. http://docs.oracle.com/javaee/7/api/javax/servlet/ServletContext.html

report erratum • discuss

Think in Terms of Application Components • 49

Prepared exclusively for Bob Erb

http://docs.oracle.com/javaee/7/api/javax/servlet/ServletContext.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We call it when we render our page in the guestbook.routes.home/home-page function.
It accepts the name of the template file located under resources/templates and
an optional map of context variables that will be used to inject dynamic content
in the template.

Finally, we have the error-page function that provides a common layout for
rendering error pages in our application. This function is used to generate
the 404 page in the handler, the 500 page for server errors, as well the 403
page by the anti-forgery middleware.

The function accepts a map that contains the :status, the :title, and the :message
keys. These are passed to the resources/templates/error.html template in order to
generate the error page.

Defining Pages
The pages are defined by creating routes that accept the request parameters
and generate the appropriate response. A route can return HTML markup,
perform a server-side operation, redirect to a different page, or return a spe-
cific type of data, such as a JavaScript Object Notation (JSON) string or a
file.

In many cases a page will have multiple route components. One route responds
to GET requests and returns HTML to be rendered by the browser. The rest
handle events such as form submissions generated by the client when the
user interacts with the page.

The page body can be generated by any means we choose, and Compojure is
agnostic as to the method we use. This leaves us with the option of using any
templating library we like, and there are several to choose from. Some popular
choices are Hiccup, Enlive, and Selmer.5,6,7

Hiccup uses Clojure data structures to define the markup and generates the
corresponding HTML from it. Enlive takes the opposite approach of defining
pages using pure HTML without the use of any special processing tags. The
HTML templates are then transformed by adapters specific to your models
and domains. Selmer is modeled on the Django template system.8 from Python
and uses template tags to inject dynamic content into the page.

5. https://github.com/weavejester/hiccup
6. https://github.com/cgrand/enlive
7. https://github.com/yogthos/Selmer
8. https://docs.djangoproject.com/en/dev/ref/templates/

Chapter 3. Luminus Architecture • 50

report erratum • discussPrepared exclusively for Bob Erb

https://github.com/weavejester/hiccup
https://github.com/cgrand/enlive
https://github.com/yogthos/Selmer
https://docs.djangoproject.com/en/dev/ref/templates/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

In this book we’ll primarily focus on using Selmer for server side templates.
Later on we’ll also see how to write single-page applications where most of
the templating is done on the client.9 This approach nicely separates your
application’s client and server components. It also facilitates using other
clients with the server, such as native mobile applications.

Regardless of your favorite templating strategy, it’s good practice not to mix
domain logic with views. In a properly designed application it should be rela-
tively easy to swap out one templating engine for another.

HTML Templating using Selmer
Selmer is a general purpose templating engine that’s content agnostic. While
it’s primarily geared towards working with HTML, it can be used to transform
any kind of text. If you’re already familiar with Django or similar templating
languages, you should feel right at home using Selmer.

When applied to generating HTML templates it encourages a clean separation
between the presentation and the business logic. On top of that, the templates
can be maintained by somebody without any knowledge of Clojure. Let’s create
a new project where we’ll learn to use different features of Selmer. We’ll use
the default Leiningen template for this purpose.

lein new html-templating

Once the project is created we’ll add the Selmer dependency to it in the project.clj
file.

[selmer "0.9.6"]

We’re now ready to take a look at what Selmer has to offer using the REPL.
Let’s open up the html-templating.core namespace and add a reference to Selmer
there.

(ns html-templating.core
(:require [selmer.parser :as selmer]))

Once we’ve added the reference we should be able to load the namespace and
test that everything is working by evaluating the following command in the
REPL.

(selmer/render "Hello {{name}}" {:name "World"})

Once the code runs we should see the "Hello World" text printed. The render
function accepts the template string followed by a map containing the

9. http://en.wikipedia.org/wiki/Single-page_application

report erratum • discuss

HTML Templating using Selmer • 51

Prepared exclusively for Bob Erb

http://en.wikipedia.org/wiki/Single-page_application
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

dynamic content. The map contains any variables that we’d like to render in
our template and provides a context for it. In our case we’re populating the
name tag using the :name key in the context map.

In most real world applications we’ll want to keep the templates as separate
files instead of using strings directly in code. Selmer is optimized for this use
case and will memoize the file templates when it parses them. Let’s take a
look at how Selmer works with files.

Creating Templates
The templates are expected to be found on the resource path. Let’s create a
new template called hello.html and place it in the resources folder in our project.
The template will consist of HTML with additional template tags.

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>My First Template</title>

</head>
<body>

<h2>Hello {{name}}</h2>
</body>

</html>

With the file created we can run the render-file function to render it.

(selmer/render-file "hello.html" {:name "World"})

The result will once again have the {{name}} tag replaced with the string "World".

The render-file function accepts a string pointing to a resource that’s expected
to be found relative to the resource path of the application. Since we placed
our template file in the resources folder the path consists of its name.

Selmer also provides us with the ability to set a custom resource path using
the selmer.parser/set-resource-path! function. For example, we could run the following
code to specify that the templates should be found in the /var/html/templates
folder.

(selmer.parser/set-resource-path! "/var/html/templates/")

In the preceding code we passed in a string as the value for the variable name.
However, we’re not restricted to strings and can pass in any type we like. For
example, if we pass in a collection we can iterate it using the for tag. Let’s add
the following content to our hello.html template.

{% for item in items %}

Chapter 3. Luminus Architecture • 52

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

 {{item}}
{% endfor %}

When we run the render-file function we’ll pass it a range of numbers keyed on
the :items key.

(selmer/render-file "hello.html" {:items (range 10)})

Note that since we passed no value for the {{name}} tag its content will be left
blank. If an item happens to be a map, we can access the keys by name, as
follows.

(selmer/render "<p>Hello {{user.first}} {{user.last}}</p>"
{:user {:first "John" :last "Doe"}})

When no special processing is specified in the template, the parameter’s
default str representation will be used.

Using Filters
Filters allow for postprocessing the variables before they are rendered. For
example, you can use a filter to convert the variable to uppercase, compute
a hash, or count its length. Filters are specified by using a pipe symbol (|)
after the variable name, as seen here:

{{name|upper}}

Selmer comes with a number of handy filters, such as upper, date, and pluralize,
out of the box. On top of that we can easily define our own filters using the
selmer.filters/add-filter! function. Let’s try this in the REPL by adding a reference
to selmer.filters and creating a custom filter to check whether a collection is
empty.

(ns html-templating.core
(:require [selmer.parser :as selmer]

[selmer.filters :as filters]))

(filters/add-filter! :empty? empty?)

(selmer/render "{% if files|empty? %}no files{% else %}files{% endif %}"
{:files []})

By default the content of the filters will be escaped; we can override this
behavior as follows:

(filters/add-filter! :foo
(fn [x] [:safe (.toUpperCase x)]))

(selmer/render "{{x|foo}}" {:x "<div>I'm safe</div>"})

report erratum • discuss

HTML Templating using Selmer • 53

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

You should only unescape content that’s generated by the server and known
to be safe. You should always escape any user input as it can contain mali-
cious content.

Using Template Tags
Selmer provides two types of tags. The first type are inline tags such as extends
and include. These tags are self-contained statements and do not require an
end tag. The other type are the block tags. These tags have a start and an
end tag with the tag content placed in-between. An example of this would be
the if ... endif block.

Defining Custom Tags
In addition to tags already provided, you can also define custom tags using
the selmer.parser/add-tag! macro. Let’s look at an example to see how it works:

(selmer/add-tag!
:image
(fn [args context-map]

(str "")))

(selmer/render "{% image \"http://foo.com/logo.jpg\" %}" {})

We can also define a block tag by using the overloaded add-tag! definition. In
this case we will provide the opening tag, followed by the handler function
and any closing tags. The handler will accept an addition parameter that
holds the content of each block. The content will be keyed on the name of the
block, as in the following example:

(selmer/add-tag!
:uppercase
(fn [args context-map content]

(.toUpperCase (get-in content [:uppercase :content])))
:enduppercase)

(selmer/render "{% uppercase %}foo {{bar}} baz{% enduppercase %}" {:bar "injected"})

Inheriting Templates
Selmer templates can refer to other templates. There are two ways to refer to
a template. We can either extend templates using the extends tag or include
templates with the include tag.

Chapter 3. Luminus Architecture • 54

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Extending Templates
When we use the extends tag, the current template will use the template it’s
extending as the base. Any block tags in the base template with the names
matching the current template will be overwritten.

Let’s look at a concrete example. First, we’ll define our base template called
base.html and place it in the resources folder along side the hello.html template we
already have.

<!DOCTYPE html>
<head>

<link rel="stylesheet" href="style.css" />
<title>{% block title %}My amazing site{% endblock %}</title>

</head>
<body>

<div id="content">
{% block content %}default content{% endblock %}

</div>
</body>
</html>

Then we’ll then update the hello.html to extend base.html as follows:

{% extends "base.html" %}

{% block content %}
<h2>Hello {{name}}</h2>

{% for item in items %}
 {{item}}
{% endfor %}

{% endblock %}

When the hello.html is rendered the content block will display the entries defined
there. However, since we did not define a block for the title, the one from
base.html will be used.

Optionally, we can include the parent content in the child block by using the
{{block.super}} tag. It will be replaced by the content of the parent when the
template is rendered.

{% extends "base.html" %}

{% block content %}
{{block.super}}
<h2>Hello {{name}}</h2>

report erratum • discuss

HTML Templating using Selmer • 55

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

{% for item in items %}
 {{item}}
{% endfor %}

{% endblock %}

Note that you can chain extended templates together. In this case the latest
occurrence of a block tag will be the one that’s rendered.

One caveat to be aware of is that the templates are memoized by default. This
means that a final version of the template will be compiled once and kept in
memory. This can be toggled with the selmer.parser/cache-on! and selmer.parser/cache-
off! functions. You’d likely want to turn template caching off during develop-
ment.

Including Templates
The include tag allows including content from other templates in the current
template. Let’s look at an example. Say we want to include some additional
content in our hello.html template. We’ll create another template called register.html
with the following content.

<form action="/register" method="POST">
<label for="id">user id</label>
<input id="id" name="id" type="text"></input>
<input pass="pass" name="pass" type="text"></input>
<input type="submit" value="register">

</form>

Then we’ll update the hello.html template to include it.

{% extends "base.html" %}

{% block content %}
{% include "register.html" %}
<h2>Hello {{name}}</h2>

{% for item in items %}
 {{item}}
{% endfor %}

{% endblock %}

Note that the hello.html template extends the base.html template. Any content in
the template must be placed inside the block tags. When the template is com-
piled the parser will look for the matching blocks in the parent and inject the

Chapter 3. Luminus Architecture • 56

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

content from the child. Any content outside the blocks will therefore be
ignored.

When the hello.html is rendered it will replace the include tags with the content
from the included template.

Error Handling
Selmer attempts to provide meaningful errors when the templates contain
syntax errors. For example, should we try to run the following code then we’ll
get an exception informing us that safea is not a valid tag.

(selmer/render "{{content|safea}}" {})

Selmer further provides a middleware function called selmer.middleware/wrap-error-
page. This function will capture any errors and generate an error page that
can be rendered in the browser to notify you that a template compilation error
has occurred.

Figure 4—Selmer Error Page

You can try out this middleware in the REPL yourself. Let’s create a template
file called error.html with the following content.

{{content|safea}}

If you’ll recall from the last chapter, middleware functions accept a handler
function as a parameter and return a function that accepts the request map.
We’ll create a renderer function that will return a handler that accepts the
template name as its input and return a 200 status response.

(defn renderer []
(wrap-error-page

(fn [template]
{:status 200
:body (selmer/render-file template {})})))

report erratum • discuss

HTML Templating using Selmer • 57

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can now call it with different template files to see the result. First, let’s
call it with a proper template such as hello.html, the result will be the response
from calling the handler.

((renderer) "hello.html")

However, when we call it with the error.html template then we’ll get a response
of 500 with the body containing the error page.

((renderer) "error.html")

This middleware is setup by default in Luminus for development providing
feedback right in the browser when a template fails to compile.

Revisiting Guestbook Templates
Now that we’re familiar with the basics of HTML templating using Selmer,
let’s see how it’s used in our guestbook application. As we saw, Luminus
places HTML templates in the resources/templates folder. Here we have three files,
base.html, home.html, and about.html. As we saw earlier, home.html and about.html files
are used to render home and about pages respectively. The base template is
extended by both these templates and provides all the common elements for
each page.

The base template is where we declare common assets such as CSS, Java-
Script, or ClojureScript as well as common UI elements such as navbars,
headers, and footers. Both home and about page templates extend the base
and override its content block.

When the browser requests a particular page the route will call the handler
for the page. It will in turn handle any business logic and then call guestbook.lay-
out/render to generate the page. The render function accepts the name of the
template along with an optional context map containing dynamic content to
be rendered. This is then passed to Selmer and the rendered page is returned.

What You’ve Learned
In this chapter you’ve learned about the general layout of a Luminus applica-
tion and how different pieces interact with one another. You should also now
be familiar with HTML templating using Selmer. Hopefully, you’re now com-
fortable reading and understanding the code in the guestbook project we
created in Chapter 1, Getting Your Feet Wet, on page 1. If this isn’t the case,
I urge you to reread this chapter and try the examples yourself using the
REPL environment.

Chapter 3. Luminus Architecture • 58

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

So far we’ve focused on building a traditional application where all the logic
lives on the server and the client simply renders the HTML generated by the
backend. In the next chapter we’ll revisit our guestbook project and see how
it could be implemented as a Single Page Application (SPA) using ClojureScript
for client-side scripting. 10

10. https://en.wikipedia.org/wiki/Single-page_application

report erratum • discuss

What You’ve Learned • 59

Prepared exclusively for Bob Erb

https://en.wikipedia.org/wiki/Single-page_application
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

CHAPTER 4

Add ClojureScript
In the preceding chapters you wrote a typical web application and learned
how its components interact with one another. For example, you now know
how to manage the routes, write HTML templates, and use sessions to manage
user state. In this chapter we’ll look ClojureScript and see how to use it to
improve the way we write web applications.

As you’ve probably noticed, the separation between the client and the server
portions of the application is not enforced. If we’re not careful we could easily
end up with tightly coupled client and server components. This could become
a problem if we want to add a different client later on—for example, if we
decided to create a native mobile version of our application.

Up to now, we’ve been using Clojure exclusively on the backend. In this
chapter we’ll look at ClojureScript, a dialect of Clojure that compiles to
JavaScript bringing Clojure to the browser. Let’s look at some specifics of
why you might want to use ClojureScript for front-end development.

Understand ClojureScript
If you’ve worked with JavaScript you’ve probably concluded that it has a few
shortcomings. On the other hand, JavaScript does have the advantage of
being a standard programmable environment for all modern browsers. Java-
Script engines have been improving their performance dramatically as the
demand for rich client-side applications continues to grow.

It would be nice to leverage this platform with a robust programming language
like Clojure, wouldn’t it? This is precisely where ClojureScript comes into
play. Much like its cousin Clojure, ClojureScript embraces its hosting platform
and allows seamless interop with JavaScript. We can continue leveraging

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

mature JavaScript libraries while enjoying the benefits of Clojure language
semantics.

Finally, if you’re using Clojure on the server then it’s possible to share code
between the server and the client. One example where this is useful is valida-
tion logic that can now be written once in a single place.

You should be aware of a few of cautions when using ClojureScript. Since
ClojureScript runs in the browser, you can’t leverage any code that relies on
interfacing with Java. The syntax for interop with JavaScript is also slightly
different from that for interacting with Java. Keep those facts in mind, though,
and you’ll be fine.

JavaScript Interop
Interacting with JavaScript turns out to be remarkably straightforward. You
can access any standard JavaScript functions using the js namespace. For
example, if you want to make a logger that logs to the console, you can write
something like the following:

(defn log [& items]
(.log js/console (apply str items)))

One thing that’s not obvious is the interaction with JavaScript object proper-
ties. To access these, use (.-property obj) notation, where the hyphen (-) indicates
that you’re referencing a property and not a function. You update properties
by calling the set! function. Here’s an example:

(defn init []
(let [canvas (.getElementById js/document "canvas")

ctx (.getContext canvas "2d")
width (.-width canvas)
height (.-height canvas)]

(.log js/console (str "width: " width " height: " height))
;;set a property
(set! (.-fillStyle ctx) "black")
(.fillRect ctx 0 0 width height)))

In the preceding example we call the getElementById and the getContext methods
the same way we would call Java methods in Clojure. However, we access
the width and height properties using the ClojureScript specific .- interop syntax.
We set the .-fillStyle property to string "black" by calling the set! helper.

Chapter 4. Add ClojureScript • 62

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Macros
Another area where ClojureScript differs from Clojure is that you have to
reference macros with the :require-macros keyword in your namespace
declaration:

(ns my.app
(:require-macros [app.macros :refer [fancy-macro]))

Furthermore, You can’t mix macros with regular ClojureScript source inside
.cljs files. You have to place them inside .clj files in order for them to be compiled
by the Clojure compiler instead.

Concurrency
While ClojureScript supports atoms, there is no Software Transactional
Memory and therefore there are no refs or agents. The binding semantics are
slightly different as well, because there are no Vars or runtime reification.

Aside from these differences, development in ClojureScript is very similar to
that in regular Clojure.

Configure ClojureScript Support
ClojureScript leverages the Google Closure compiler.1 The compiler can perform
a number of optimizations, such as dead code pruning, to produce lean
JavaScript output.

You leverage the Google Closure library to provide a rich API for common
tasks such as handling AJAX requests, managing cookies, currency formatting
and so on.2 This means that you don’t need to include any additional Java-
Script libraries such as jQuery in order to do most tasks.

The easiest way to add ClojureScript support to the project is by using the
lein-cljsbuild plugin.3 The plugin will compile the ClojureScript sources and
output the resulting JavaScript in the specified location.

Add ClojureScript Support
Currently, our guestbook application uses server side rendering and the
browser simply displays a static page. We’ll now see how to rewrite it as a
Single Page Application (SPA) using ClojureScript.

1. https://github.com/google/closure-compiler
2. https://github.com/google/closure-library
3. https://github.com/emezeske/lein-cljsbuild

report erratum • discuss

Configure ClojureScript Support • 63

Prepared exclusively for Bob Erb

https://github.com/google/closure-compiler
https://github.com/google/closure-library
https://github.com/emezeske/lein-cljsbuild
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

There are a few approaches for compiling ClojureScript in development mode.
The simplest approach is to use the incremental compilation feature. Using
this approach, the compiler will watch for changes in the source and recompile
JavaScript as needed.

The downside of this approach is that you have to reload the page to see the
changes. A slightly more sophisticated approach that we’ll see later allows
pushing the changes to the browser live without the need to reload the page.

The first thing we have to do is to add the ClojureScript runtime dependency
to our project. Note that it’s scoped as provided. Since we’ll be outputting
compiled JavaScript it only needs to be present for development.

:dependencies
[...
[org.clojure/clojurescript "1.7.228" :scope "provided"]]

Next, we’ll have to update our project.clj to add the plugin and provide a default
configuration for it.

guestbook-cljs/project.clj
:plugins [[lein-environ "1.0.1"]

[migratus-lein "0.2.0"]
[lein-cljsbuild "1.1.1"]]

:resource-paths ["resources" "target/cljsbuild"]
:cljsbuild
{:builds {:app {:source-paths ["src/cljs"]

:compiler {:output-to "target/cljsbuild/public/js/app.js"
:output-dir "target/cljsbuild/public/js/out"
:main "guestbook.core"
:asset-path "/js/out"
:optimizations :none
:source-map true
:pretty-print true}}}}

:clean-targets
^{:protect false}
[:target-path
[:cljsbuild :builds :app :compiler :output-dir]
[:cljsbuild :builds :app :compiler :output-to]]

The compiler configuration has a number of options and compiler hints, these
are:

• :source-paths — specifies where to find ClojureScript source files

• :resource-paths — specifies the paths to static assets such as the generated
JavaScript files produced by the ClojureScript build

Chapter 4. Add ClojureScript • 64

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/project.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

• :main — used by the compiler to find the entry point for the compiled
application

• :asset-path — used to specify where to look for supporting JavaScript assets

• :output-to — name of the resulting JavaScript file

• :output-dir — specifies where the temporary JavaScript files will be generated

• :source-map — used to provide a mapping between the compiled JavaScript
and the original ClojureScript source

Finally, we’ve also added a :clean-targets key below the :cljsbuild key. This
tells Leiningen that we would like to delete any JavaScript that is generated
in the target/cljsbuild folder when lein clean is run.

We’re now ready to create a new source folder and a ClojureScript namespace
called guestbook.core in src/cljs/guestbook/core.cljs. Note that the ClojureScript
extension is cljs as opposed to the clj extension for Clojure files. If the file
ends with clj it will still compile, but it will not have access to the JavaScript
runtime.

To make sure everything works correctly we’ll start by putting the obligatory
Hello World! on the page. To do that we’ll update the namespace with the
following code:

(ns guestbook.core)

(-> (.getElementById js/document "content")
(.-innerHTML)
(set! "Hello World!"))

When the script runs it will find the tag with the id content on the page and
set its inner HTML to Hello World!. Next, let’s replace the contents of the
resources/templates/home.html template with a div with the id content.

{% extends "base.html" %}
{% block content %}
<div id="content"></div>
{% endblock %}

Finally, we’ll update the resources/templates/base.html template to load the compiled
ClojureScript. We’ll replace all the JavaScript libraries that are currently
included with the app.js script that will contain our compiled applications.

guestbook-cljs/resources/templates/base.html
<script type="text/javascript">

var context = "{{servlet-context}}";
</script>
{% script "/js/app.js" %}

report erratum • discuss

Add ClojureScript Support • 65

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/resources/templates/base.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

{% block page-scripts %}
{% endblock %}

We’re now ready to see if our setup works. To do that we have to run the
server as we’ve been doing up to now and in addition we’ll run the Clojure-
Script compiler to generate the app.js file we’re referencing in the template.
The following commands will compile ClojureScript and start the server
respectively.

lein cljsbuild once
lein run

If everything went well you should now see the Hello World! text displayed
when the page loads.

Build the UI with Reagent
Reagent is a ClojureScript UI component library built on top of the popular
Facebook React library. Reagent provides a way to define UI elements using
Hiccup style syntax for DOM representation.4,5 Each UI component is a data
structure that represents a particular DOM element. By taking a DOM-centric
view of the UI, Reagent provides an intuitive way to write composable compo-
nents.

First, we’ll add the Reagent dependency to our project:

:dependencies
[...
[reagent "0.5.1"]]

Let’s start the lein-cljsbuild plugin using the auto mode so that it will watch
for changes in the source and automatically recompile it as we go. Nothing
to it. Just open a new terminal and run the following command:

lein cljsbuild auto

The plugin will now wait for you to make changes and recompile the relevant
source files. Note that the compiler uses incremental compilation. Once the
compiler finishes the initial compilation any further changes will be recompiled
near instantly. Now that we have the compiler running, let’s create some
Reagent components and see how we can use them to replicate our existing
UI that’s rendered by the server.

4. https://github.com/weavejester/hiccup
5. http://facebook.github.io/react/

Chapter 4. Add ClojureScript • 66

report erratum • discussPrepared exclusively for Bob Erb

https://github.com/weavejester/hiccup
http://facebook.github.io/react/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

In order to use Reagent, you first have to include it in your namespace. Let’s
open up the guestbook.core ClojureScript namespace. Recall that it will be found
in the src/cljs source folder and not the src folder that contains the Clojure
source files. Update the namespace declaration to include the following refer-
ence:

(ns guestbook.core
(:require [reagent.core :as reagent :refer [atom]]))

You’ll note that we’re referencing the atom from Reagent instead of using the
regular ClojureScript atom. Reagent atoms behave the same way as regular
atoms with one important difference: Any UI components that reference
Reagent atoms will be repainted whenever the value of the atom is changed.
Any time we want to create a local or a global state we create an atom to hold
it.

This approach automates the process of keeping the UI in sync with the
model. With Reagent we’re able to write our UI in a declarative fashion and
have it automatically render the current state of our model. That’s the idea,
now let’s see it in practice. We can begin to see exactly how all this works by
implementing the form in our guestbook application using Reagent.

Reagent Components
Reagent uses plain Clojure vectors to define UI elements, so you don’t have
to learn a separate domain-specific language. Let’s create a simple component
that will display the contents of our page.

(defn home []
[:h2 "Hello Reagent"])

We now have to tell Reagent to render this component on the page. You do
that by calling the render function, providing it the component and the target
DOM node.

(reagent/render
[home]
(.getElementById js/document "content"))

At this point our namespace should look like this:

(ns guestbook.core
(:require [reagent.core :as reagent :refer [atom]]))

(defn home []
[:h2 "Hello Reagent"])

(reagent/render

report erratum • discuss

Build the UI with Reagent • 67

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[home]
(.getElementById js/document "content"))

We can take a look at the terminal where the ClojureScript compiler is running
and see a message that looks like the following:

Compiling "target/cljsbuild/public/js/app.js" from ["src/cljs"]...
Successfully compiled "target/cljsbuild/public/js/app.js" in 0.057 seconds.

This indicates that a recompilation of ClojureScript was triggered, and when
we reload the page we should see the Hello Reagent text rendered.

The HTML nodes are represented using a vector with the structure correspond-
ing to that of the resulting HTML tag as shown in the following example.

[:tag-name {:attribute-key "attribute value"} tag body]

<tag-name attribute-key="attribute value">tag body</tag-name>

If you wanted to create a div with a paragraph in it, you could create a vector,
where the first element is a keyword :div, followed by the map containing the
ID and the div’s class. The rest of the content consists of a vector representing
the paragraph.

[:div {:id "hello", :class "content"} [:p "Hello world!"]]

<div id="hello" class="content"><p>Hello world!</p></div>

Since it’s easy to set element attributes via the attribute map, you could style
elements inline if you wanted. However, you should resist this temptation
and instead use CSS for the styling of elements. This will ensure that the
structure is kept separate from the presentation.

Setting the id and the class attributes for elements is a very common operation.
Reagent provides CSS style shortcuts for these actions. Instead of what we
wrote earlier, we could simply write our div as follows:

[:div#hello.content [:p "Hello world!"]]

Reagent also provides syntactic sugar for collapsing nested tags into a single
tag. The code above could be rewritten as:

[:div#hello.content>p "Hello world!"]

The > indicates that the p tag is nested inside the div tag. This syntax sugar
is very helpful with CSS frameworks, such as Bootstrap, that rely on using
deeply nested tags to style elements.

As you can see, creating Reagent components takes very little code and pro-
duces output markup that’s easy to correlate back to the template definitions.

Chapter 4. Add ClojureScript • 68

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Reimplementing the Form
By this point you should have an understanding of how you can create differ-
ent kinds of HTML elements using Reagent. Now let’s take a look at how you
can hook them up with some data. The form that allows the user to input
their name and a message will be bound to an atom that will contain the
entered values.

So far we’ve only looked at components that directly represent HTML. However,
Reagent allows you to treat any function as a component. The function simply
has to return either a Reagent vector or a component that can be rendered
by React directly. The latter becomes useful when you want to use React
libraries or create our own custom components. Let’s not worry about that
just yet, though.

In our case we’ll create a function called message-form. The function will use a
let statement to create a binding for the atom that will contain the form data.
It will then return a function that generates the form and references the pre-
viously defined atom in the input fields of the following component.

(defn message-form []
(let [fields (atom {})]

(fn []
[:div.content
[:div.form-group
[:p "Name:"
[:input.form-control
{:type :text
:name :name
:on-change #(swap! fields assoc :name (-> % .-target .-value))
:value (:name @fields)}]]]

[:p "Message:"
[:textarea.form-control
{:rows 4
:cols 50
:name :message
:on-change #(swap! fields assoc :message (-> % .-target .-value))}

(:message @fields)]]
[:input.btn.btn-primary {:type :submit :value "comment"}]])))

Note that we’re using a closure to create a local state for the fields binding and
then return a function that references it. Reagent will call the returned
function on subsequent re-renders of the component and the local state will
be preserved.

Aside from that the content of the form should look very familiar, since it
closely mimics the HTML we used previously. The changes to note are that

report erratum • discuss

Build the UI with Reagent • 69

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

we’ve changed the form element to a div, and the addition of the ‘:on-change‘
key to bind the input and the textarea elements to functions that are
responsible for updating the fields atom with the current values entered by
the user. These functions accept the DOM event object as their input and
grab the value from its target. Since we’re now using a div as the container
we’ll also have to update our CSS accordingly.

.content {
background: white;
width: 520px;
padding: 30px;

}
.error {

width: 520px;
padding: 30px;
margin-bottom: 50px;
position: relative;
background: white;

}

This component can now be used in our home function as seen in the following
example.

(defn home []
[:div.row
[:div.span12
[message-form]]])

Note that we’re placing the message-form in a vector instead of calling it as a
function as we normally would. This allows Reagent to decide when the
function needs to be evaluated in case the component has to be repainted.
The components can now be re-evaluated as the state of their corresponding
atoms changes. We’ll see how this becomes important shortly.

We should now be able to reload the page and see the form rendered there
looking very much like the form we had previously. We can even type text in
the fields, but we obviously can’t see that it’s being stored anywhere. Let’s
modify the form to convince ourselves that the inputs are actually writing the
data to our fields atom by adding the following element to it:

(defn message-form []
(let [fields (atom {})]

(fn []
[:div.content
[:div.form-group
[:p "name:" (:name @fields)]
[:p "message:" (:message @fields)]

[:p "Name:"

Chapter 4. Add ClojureScript • 70

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

...

Now we can clearly see that whenever the value of the name or the message field
changes it is immediately reflected in the atom. Once the value of the atom
changes then the component is repainted and we see the new values displayed
on the screen.

Talking to the Server
At this point we’d like to take the values of the fields and send them to the
server when we click the comment button. We’ll use the cljs-ajax library to
communicate with the server and first thing we’ll need to do is to add a
dependency for it in our project.clj file.6

guestbook-cljs/project.clj
[cljs-ajax "0.5.2"]
[reagent "0.5.1"]
[org.clojure/clojurescript "1.7.228" :scope "provided"]

Once the library is added we have to clean out the existing generated Java-
Script and restart the ClojureScript compiler by re-running the following
commands.

lein clean
lein cljsbuild auto

We can now add the following reference in our namespace declaration [ajax.core
:refer [GET POST]].

(ns guestbook.core
(:require [reagent.core :as reagent :refer [atom]]

[ajax.core :refer [GET POST]]))

This will allow us to call GET and POST functions in order to talk to our server.
We can now write a function that will attempt to submit the information in
our form.

(defn send-message! [fields]
(POST "/add-message"

{:params @fields
:handler #(.log js/console (str "response:" %))
:error-handler #(.error js/console (str "error:" %))}))

The preceding function will attempt to POST to the /add-message route using
the value of the fields atom as the params and print the response to the console.
The function uses the :handler and the :error-handler keys to handle the success
and the error responses respectively. For now, let’s just print a message to

6. https://github.com/JulianBirch/cljs-ajax

report erratum • discuss

Build the UI with Reagent • 71

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/project.clj
https://github.com/JulianBirch/cljs-ajax
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

the console in both cases. We can now hook this function up to our submit
button by using the :on-click key as seen in the following example.

[:input.btn.btn-primary
{:type :submit
:on-click #(send-message! fields)
:value "comment"}]

Let’s check the terminal to see that our ClojureScript recompiled successfully
and reload the browser window. When the page reloads we’ll open up the
browser console and click on the comment button. We should see the following
error in the console as a result.

error:{:status 403,
:status-text "Forbidden",
:failure :error,
:response "<h1>Invalid anti-forgery token</h1>"}

The error indicates that we did not supply the anti-forgery token in our
request. If you’ll recall, the server has anti-forgery protection enabled and
requires the client to submit the token generated on the page to be submitted
in the POST request. Previously, we used the {% csrf-field %} tag in our template
to supply the token. Since we’re now using an Ajax call we’ll have to provide
this field manually.

In order to do that we’ll first have to update our home.html template to create
a hidden field with the value of the token.

guestbook-cljs/resources/templates/home.html
{% extends "base.html" %}
{% block content %}
<input id="token" type="hidden" value="{{csrf-token}}"></input>
<div id="content"></div>
{% endblock %}

We’ll set this token as a header on our request using the x-csrf-token key as
seen in the following version of the send-message! function.

(defn send-message! [fields]
(POST "/add-message"

{:format :json
:headers
{"Accept" "application/transit+json"
"x-csrf-token" (.-value (.getElementById js/document "token"))}

:params @fields
:handler #(.log js/console (str "response:" %))
:error-handler #(.log js/console (str "error:" %))}))

Chapter 4. Add ClojureScript • 72

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/resources/templates/home.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We will also set the Accept header to application/transit+json to tell the server
that we’d like to get the response encoded using Transit.7 This allows encoding
the data using the native EDN format.8 The advantage of using EDN is in that
it encodes data using Clojure data structures, thus preserving types such as
keywords and dates.

We’re not quite done yet however. Previously, we’ve sent our parameters to
the server as using a form POST. The parameters would be sent in the request
body and look something like the following.

x-csrf-token=%2F4wIVStDj9Fl...4PsKx&name=Bob&message=Hello

The ring-anti-forgery middleware would then check the value of the x-csrf-
token header to determine whether the request is valid.9 Once we update the
client to set the header and try to submit our request again, we’ll see that we
now get a different error.

error:{:status 404,
:status-text "Not Found",
:failure :error,
:response "Not Found"}

The new error informs us that the route we’re trying to call is not found. This
should be what we expected, since we never declared it and we previously
did a POST directly to the / URI. Let’s add a new route in our guest-
book.routes.home namespace to handle adding messages.

In our original code we used the redirect function to display the page after
attempting to add the message. This time around we’ll want to return a JSON
response indicating success or failure. We will need to add the following ref-
erences in order to generate the appropriate responses.

[ring.util.response :refer [response status]]

With that in place, we can update our save-message! functions as follows.

guestbook-cljs/src/clj/guestbook/routes/home.clj
(defn save-message! [{:keys [params]}]

(if-let [errors (validate-message params)]
(-> {:errors errors} response (status 400))
(do
(db/save-message!
(assoc params :timestamp (java.util.Date.)))

(response {:status :ok}))))

7. https://github.com/cognitect/transit-format
8. https://github.com/edn-format/edn
9. https://github.com/ring-clojure/ring-anti-forgery

report erratum • discuss

Build the UI with Reagent • 73

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/src/clj/guestbook/routes/home.clj
https://github.com/cognitect/transit-format
https://github.com/edn-format/edn
https://github.com/ring-clojure/ring-anti-forgery
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Then we can replace the route that handles the POST request with the new
URI and we should be able to test our new functionality.

(POST "/add-message" req (save-message! req))

Note that we do not have to manually deserialize the request nor serialize the
response in our route. This is handled by the ring-middleware-format library.10

The library checks the Content-Type header in the request and deserializes
the content based on that. The response is serialized to the format specified
in the Accept header. The cljs-ajax library defaults to using the transit format
and if you’ll recall we explicitly set the Accept header to transit as well. No
additional work is needed on your part.

When we try to POST invalid parameters, we should see a response in the
console that looks similar to the following one.

error:{:status 400,
:status-text "Bad Request",
:failure :error,
:response {"errors" {"message" ["message is less than the minimum"]}}}

When we submit a valid request we should see the following printed instead.

response:{:status :ok}

Notice that in the first case our error-handler was triggered, while in the second
case our success handler function is triggered. The cljs-ajax library uses the
status code in the response to select the appropriate handler.

Now that we’re communicating with the server, let’s update our code to display
the errors on the page.

(defn message-form []
(let [fields (atom {})

errors (atom nil)]
(fn []
[:div.content
[:div.form-group
[errors-component errors :name]
[:p "Name:"
[:input.form-control
{:type :text
:name :name
:on-change #(swap! fields assoc :name (-> % .-target .-value))
:value (:name @fields)}]]

[errors-component errors :message]
[:p "Message:"

10. https://github.com/metosin/ring-middleware-format

Chapter 4. Add ClojureScript • 74

report erratum • discussPrepared exclusively for Bob Erb

https://github.com/metosin/ring-middleware-format
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[:textarea.form-control
{:rows 4
:cols 50
:name :message
:on-change #(swap! fields assoc :message (-> % .-target .-value))}

(:message @fields)]]
[:input.btn.btn-primary
{:type :submit
:on-click #(send-message! fields errors)
:value "comment"}]]])))

The updated code uses a second atom called errors to store any errors received
from the server. We pass the errors to the send-message! function. The function
will now either clear the errors on success, or set the errors from the response.

We also create a new component called errors-component. The component accepts
the errors and the field id. It checks if there are any errors associated with
the id and returns an alert with the message if that’s the case. In case there
are no errors we simply return a nil. Reagent will handle this intelligently and
omit the component in that case. You can see that with the new approach
the errors are showing up just as they did in the previous version.

Reimplementing the List
Now that our form is working as expected, let’s turn our attention to displaying
the messages on the page. In order to do that we’ll have to add a route on the
server to return the list of messages, create a component to display the mes-
sages, and add a function on the client to fetch them.

Since we’re no longer baking the messages in our page, we can update our
home-page function to render the HTML on load without any parameters.

guestbook-cljs/src/clj/guestbook/routes/home.clj
(defn home-page []

(layout/render "home.html"))

Next, we’ll update the home-routes to call our home-page function without
passing it the request, and add a new route to serve messages.

guestbook-cljs/src/clj/guestbook/routes/home.clj
(defroutes home-routes

(GET "/" [] (home-page))
(GET "/messages" [] (response (db/get-messages)))
(POST "/add-message" req (save-message! req))
(GET "/about" [] (about-page)))

We can now update the client-side code to call this route when the page loads
and retrieve the messages from the server.

report erratum • discuss

Build the UI with Reagent • 75

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/src/clj/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We’ll write a function called get-messages that will call our route and retrieve
the messages. The function will accept an atom as a parameter and populate
it with the retrieved messages in the handler.

guestbook-cljs/src/cljs/guestbook/core.cljs
(defn get-messages [messages]

(GET "/messages"
{:headers {"Accept" "application/transit+json"}
:handler #(reset! messages (vec %))}))

Note that we are not required to pass the anti-forgery header for the GET
requests, and we can safely omit it when retrieving messages from the server.

We can now write a component that will use the messages atom to render
the messages in the same format as we had in our server-side template.

guestbook-cljs/src/cljs/guestbook/core.cljs
(defn message-list [messages]

[:ul.content
(for [{:keys [timestamp message name]} @messages]

^{:key timestamp}
[:li
[:time (.toLocaleString timestamp)]
[:p message]
[:p " - " name]])])

The only thing to note in this function is that we’re using the ^{:key timestamp}
annotation for each element in the ul. This allows Reagent to efficiently check
whether a particular element needs to be re-rendered. We could safely omit
the annotation in this case, but it could result in loss of performance for large
lists.

Finally, we’ll update our home component function to use an atom called mes-
sages to store the state of the message list. The function will call the get-messages
function we wrote earlier and pass it the atom.

(defn home []
(let [messages (atom nil)]

(get-messages messages)
(fn []
[:div
[:div.row
[:div.span12
[message-list messages]]]

[:div.row
[:div.span12
[message-form]]]])))

Chapter 4. Add ClojureScript • 76

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/src/cljs/guestbook/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/src/cljs/guestbook/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The component will then return a function that will render the message-list and
the message-form components. It passes the messages atom to the message-list
components. The component in turn renders the current state of the atom.
When the get-messages function finishes, the atom will be reset with the mes-
sages and the component will be repainted.

This provides us with an extremely powerful mechanism for connecting pro-
ducers and consumers in our application. The get-messages and the message-list
functions have no direct coupling between them and are not aware of each
other. The Reagent atoms provide a way for any component to observe the
current value in the model without having the knowledge of how and when
it’s populated.

One last thing we need to do is to add the message we submit to the server
to the list of messages on the page. We can do that in the handler of the send-
message! function. The function currently accepts the fields and the errors as its
parameters. We’ll update it to also accept the messages atom and append our
message to it if the server returns a success.

guestbook-cljs/src/cljs/guestbook/core.cljs
(defn send-message! [fields errors messages]

(POST "/add-message"
{:headers {"Accept" "application/transit+json"

"x-csrf-token" (.-value (.getElementById js/document "token"))}
:params @fields
:handler #(do

(reset! errors nil)
(swap! messages conj (assoc @fields :timestamp (js/Date.))))

:error-handler #(do
(.log js/console (str %))
(reset! errors (get-in % [:response :errors])))}))

Our handler will now swap! the messages atom and append the fields the user
entered and the timestamp set to the current date.

We now have to update the form function to accept the messages, and the home
function to pass the messages to it as a parameter.

guestbook-cljs/src/cljs/guestbook/core.cljs
(defn errors-component [errors id]

(when-let [error (id @errors)]
[:div.alert.alert-danger (clojure.string/join error)]))

(defn message-form [messages]
(let [fields (atom {})

errors (atom nil)]
(fn []
[:div.content

report erratum • discuss

Build the UI with Reagent • 77

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/src/cljs/guestbook/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/src/cljs/guestbook/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[:div.form-group
[errors-component errors :name]
[:p "Name:"
[:input.form-control
{:type :text
:name :name
:on-change #(swap! fields assoc :name (-> % .-target .-value))
:value (:name @fields)}]]

[errors-component errors :message]
[:p "Message:"
[:textarea.form-control
{:rows 4
:cols 50
:name :message
:value (:message @fields)
:on-change #(swap! fields assoc :message (-> % .-target .-value))}]]

[:input.btn.btn-primary
{:type :submit
:on-click #(send-message! fields errors messages)
:value "comment"}]]])))

guestbook-cljs/src/cljs/guestbook/core.cljs
(defn home []

(let [messages (atom nil)]
(get-messages messages)
(fn []
[:div
[:div.row
[:div.span12
[message-list messages]]]

[:div.row
[:div.span12
[message-form messages]]]])))

The message will be appended to the list of displayed messages when the
server acknowledges that it was saved successfully. Unlike the previous version
of the app, we do not have to reload the entire page, or even the list of mes-
sages. We simply add the new message to the list and Reagent takes care of
repainting the component for us.

Using atoms to coordinate different components is a common pattern in
Reagent. Since the atoms can either be created as global variables or within
individual components, we have a lot of flexibility in how we manage the state
of the application.

A good rule of thumb is to keep the application state in a global atom and to
use local atoms to manage the local states of the components. Such states
might include the currently selected item in a list, to indicate the state of a
button or to handle local notifications as we did earlier with errors. Ideally,

Chapter 4. Add ClojureScript • 78

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-cljs/src/cljs/guestbook/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

the components should not directly reference the application state and it
should be passed in as a parameter instead. This approach maximizes the
reusability of components since you can instantiate them with different data
in different parts of the application.

Let’s take a look at the components we created for some concrete examples.
The message-list component accepts the messages as a parameter. This makes it
possible to use it in different parts of the UI to display different sets of mes-
sages. For example, you might want to display messages for a specific user
later on and you wouldn’t have to create a new component to do that.

The message-form component also accepts the messages as its parameter, however
it creates local atoms called the fields and the errors. These represent the local
concerns of the message-form that are not part of the overall workflow in our
application. Therefore it makes sense to keep these local to the component.

The home component is the root of our UI that manages the messages atom and
passes it to its children as a parameter. Once again, it’s important to note
that it doesn’t call the components, but places them in vectors. This allows
Reagent to decide when these components should be re-evaluated based on
the state of the messages atom.

What You’ve Learned
In this chapter you’ve learned how using ClojureScript can make your app
cleaner. In the next, we’ll look at using websockets to facilitate asynchronous
communication between the client and the server. With websockets the
server is able to send push notifications to the client when server-side events
occur.

report erratum • discuss

What You’ve Learned • 79

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

CHAPTER 5

Real-time Messaging With Websockets
In this chapter we’ll take a look at using websockets for client-server commu-
nication. With the traditional Ajax approach the client sends a message to
the server and then handles the reply using an asynchronous callback.
Websockets provide the ability for the web server to initiate the message
exchange with the client.

Currently, our guestbook application does not provide a way to display mes-
sages generated by other users without reloading the page. If we wanted to
solve this problem using Ajax our only option would be to poll the server and
check if any new messages are available since the last poll. This is inefficient
as the clients end up continuously polling the server regardless whether any
new messages are actually available.

Instead, we’ll have the clients open a websocket connection when the page
loads and then the server will notify all the active clients any time a new
message is created. This way the clients are notified in real-time and the
messages are only sent as needed.

Set Up Websockets on the Server
Websockets require support on both the server and the client side. While the
browser API is standard, each server provides its own way of handling web-
socket connections. In this section we’ll take a look at using the API for the
Immutant web server that Luminus defaults to.

We’ll start by updating the server-side code in the project to provide a web-
socket connection. Once the server is updated we’ll look at the updates
required for the client.

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Add Websocket Routes
The first thing we’ll do is create a new namespace for handling websocket
connections. We’ll call this namespace guestbook.routes.ws and put the following
references in its declaration.

guestbook-websockets/src/clj/guestbook/routes/ws.clj
(ns guestbook.routes.ws

(:require [compojure.core :refer [GET defroutes]]
[clojure.tools.logging :as log]
[immutant.web.async :as async]
[cognitect.transit :as transit]
[bouncer.core :as b]
[bouncer.validators :as v]
[guestbook.db.core :as db]))

The immutant.web.async reference is the namespace that provides the functions
necessary to manage the lifecycle of the websocket connection.

The cognitect.transit namespace provides the functions to encode and decode
messages using the transit format. When we used Ajax, the middleware was
able to serialize and deserialize the messages automatically based on the
content type, however we’ll have to do that manually for messages sent over
the websocket.

Since we’ll be saving messages we’ll need to reference the bouncer and the
database namespaces so that we can move over the validate-message and the
save-message! functions that we originally used in the guestbook.routes.home
namespace.

The server will need to keep track of all the channels for the clients that are
currently connected in order to push notifications. We’ll use an atom contain-
ing a set for this purpose.

guestbook-websockets/src/clj/guestbook/routes/ws.clj
(defonce channels (atom #{}))

Next, we’ll need to implement a callback function to handle the different states
that the websocket can be in, such as when the connection is opened and
closed. We’ll want to add the channel to the set of open connections when a
client connects and we’ll want to remove the associated channel when the
client disconnects.

guestbook-websockets/src/clj/guestbook/routes/ws.clj
(defn connect! [channel]

(log/info "channel open")
(swap! channels conj channel))

Chapter 5. Real-time Messaging With Websockets • 82

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/routes/ws.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/routes/ws.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/routes/ws.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(defn disconnect! [channel {:keys [code reason]}]
(log/info "close code:" code "reason:" reason)
(swap! channels #(remove #{channel} %)))

As mentioned earlier, the messages have to be encoded and decoded manually.
We’ll create a couple of helper functions for that purpose.

guestbook-websockets/src/clj/guestbook/routes/ws.clj
(defn encode-transit [message]

(let [out (java.io.ByteArrayOutputStream. 4096)
writer (transit/writer out :json)]

(transit/write writer message)
(.toString out)))

(defn decode-transit [message]
(let [in (java.io.ByteArrayInputStream. (.getBytes message))

reader (transit/reader in :json)]
(transit/read reader)))

When the client sends a message we’ll want to validate it and attempt to save
the message as we did earlier. We’ll take the save-message! and the validate-message
function from the guestbook.routes.home and move them over to the new names-
pace. The save-message! function no longer needs to generate a Ring response,
so we’ll have it return the result directly instead.

guestbook-websockets/src/clj/guestbook/routes/ws.clj
(defn validate-message [params]

(first
(b/validate
params
:name v/required
:message [v/required [v/min-count 10]])))

(defn save-message! [message]
(if-let [errors (validate-message message)]

{:errors errors}
(do
(db/save-message! message)
message)))

Finally, we’ll create the handle-message! function that will be called when the
client sends a message to the server. When the message is saved successfully
we’ll notify all the connected clients and when any errors occur we’ll notify
only the client that sent the original message.

guestbook-websockets/src/clj/guestbook/routes/ws.clj
(defn handle-message! [channel message]

(let [response (-> message
decode-transit
(assoc :timestamp (java.util.Date.))

report erratum • discuss

Set Up Websockets on the Server • 83

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/routes/ws.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/routes/ws.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/routes/ws.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

save-message!)]
(if (:errors response)
(async/send! channel (encode-transit response))
(doseq [channel @channels]

(async/send! channel (encode-transit response))))))

The function accepts the channel of the client that sent the message along
with the message payload. The message has to be decoded using the decode-
transit function that we wrote earlier. The result should a map with the same
keys as before. We’ll associate the timestamp and attempt to save the message
to the database using the save-message! function.

When the response map contains the :error key we’ll notify the client on the
channel that was passed in, otherwise we’ll notify all clients in the channels
atom. The response is sent using the async/send! call that accepts the channel
and the message as a string, so we have to call encode-transit on the response
before it’s passed to async/send!.

Now that we’ve implemented all the callbacks we’ll put these in a map and
pass it to the async/as-channel function that will create the actual websocket
channel. This will be done in the ws-handler function that follows.

guestbook-websockets/src/clj/guestbook/routes/ws.clj
(defn ws-handler [request]

(async/as-channel
request
{:on-open connect!
:on-close disconnect!
:on-message handle-message!}))

All that’s left to do is create the route definition using the defroutes macro just
as we would with any other Compojure routes.

guestbook-websockets/src/clj/guestbook/routes/ws.clj
(defroutes websocket-routes

(GET "/ws" [] ws-handler))

Note that we could define multiple websockets and assign them to different
routes. In our case we have just a single /ws route for our socket.

Now that we’ve migrated the code for saving messages to the guestbook.routes.ws
namespace, we can clean up the guestbook.routes.home namespace as follows.

guestbook-websockets/src/clj/guestbook/routes/home.clj
(ns guestbook.routes.home

(:require [guestbook.layout :as layout]
[guestbook.db.core :as db]
[compojure.core :refer [defroutes GET POST]]
[ring.util.response :refer [response status]]))

Chapter 5. Real-time Messaging With Websockets • 84

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/routes/ws.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/routes/ws.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(defn home-page []
(layout/render "home.html"))

(defn about-page []
(layout/render "about.html"))

(defroutes home-routes
(GET "/" [] (home-page))
(GET "/messages" [] (response (db/get-messages)))
(GET "/about" [] (about-page)))

Update the Handler
Now that we’ve added the new routes we need to navigate to the guestbook.handler
namespace, reference the new namespace, and add the routes to the app-routes
definition.

(ns guestbook.handler
(:require ...

[guestbook.routes.ws :refer [websocket-routes]]))

guestbook-websockets/src/clj/guestbook/handler.clj
(def app-routes

(routes
#'websocket-routes
(wrap-routes #'home-routes middleware/wrap-csrf)
(route/not-found
(:body

(error-page {:status 404
:title "page not found"})))))

(def app (middleware/wrap-base #'app-routes))

We’re now done with all the necessary server-side changes to facilitate web-
socket connections. Let’s turn our attention to the client.

Make Websockets from ClojureScript
Now that we’ve created a websocket route on the server, we’ll need to write
the client-side portion of the socket. Once that’s done we’ll have full-duplex
communication between the server and the client.

Create the Websocket
Let’s start by creating a namespace for the websocket client called guestbook.ws.
This namespace will be responsible for creating a socket as well as sending
and receiving messages over it. In the namespace declaration we’ll add a ref-
erence to cognitect.transit.

report erratum • discuss

Make Websockets from ClojureScript • 85

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/clj/guestbook/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

guestbook-websockets/src/cljs/guestbook/ws.cljs
(ns guestbook.ws

(:require [cognitect.transit :as t]))

Next, we’ll create an atom to house the channel for the socket and add helpers
for reading and writing transit encoded messages.

guestbook-websockets/src/cljs/guestbook/ws.cljs
(defonce ws-chan (atom nil))
(def json-reader (t/reader :json))
(def json-writer (t/writer :json))

We can now add functions to receive and send transit encoded messages
using the channel. The receive-message! function is a closure that accepts a
handler function and returns a function that will deserialize the message
before passing it to the handler.

guestbook-websockets/src/cljs/guestbook/ws.cljs
(defn receive-message! [handler]

(fn [msg]
(->> msg .-data (t/read json-reader) handler)))

The send-message! function checks if there’s a channel available, then encodes
the message to transit and sends it over the channel.

guestbook-websockets/src/cljs/guestbook/ws.cljs
(defn send-message! [msg]

(if @ws-chan
(->> msg (t/write json-writer) (.send @ws-chan))
(throw (js/Error. "Websocket is not available!"))))

Finally, we’ll need to write a function to initialize the websocket. The function
will call the js/WebSocket with the supplied url to create the channel. Once the
channel is created it sets the onmessage callback to the supplied handler
function and puts the channel in the ws-chan atom.

As you can see, setting up a basic websocket connection is no more difficult
than using Ajax. The main differences are that we have to manually handle
serialization and that the messages received by the receive-message! are not
directly associated with the ones sent by the send-message! function.

Let’s navigate back to the guestbook.core to use a websocket connection to
communicate with the server instead of Ajax for saving and receiving messages.
It’s worth noting that websockets and Ajax are not mutually exclusive, and
we can continue using the existing Ajax call to retrieve the initial list of mes-
sages.

Chapter 5. Real-time Messaging With Websockets • 86

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/cljs/guestbook/ws.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/cljs/guestbook/ws.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/cljs/guestbook/ws.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/cljs/guestbook/ws.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

First, we’ll update the namespace declaration to remove the unused POST ref-
erence and add the guestbook.ws that we just wrote.

guestbook-websockets/src/cljs/guestbook/core.cljs
(ns guestbook.core

(:require [reagent.core :as reagent :refer [atom]]
[ajax.core :refer [GET]]
[guestbook.ws :as ws]))

The message-list, the get-messages, and the errors-component functions will remain
unchanged. However, we’ll no longer need the old send-message! function as
the messages will be sent using the send-message! function from the guestbook.ws
namespace.

guestbook-websockets/src/cljs/guestbook/core.cljs
(defn message-list [messages]

[:ul.content
(for [{:keys [timestamp message name]} @messages]

^{:key timestamp}
[:li
[:time (.toLocaleString timestamp)]
[:p message]
[:p " - " name]])])

(defn get-messages [messages]
(GET "/messages"

{:headers {"Accept" "application/transit+json"}
:handler #(reset! messages (vec %))}))

(defn errors-component [errors id]
(when-let [error (id @errors)]

[:div.alert.alert-danger (clojure.string/join error)]))

The message-form function no longer needs to update the message list as it will
be updated by the callback that we use to initialize the websocket. Conversely,
we can no longer set the values of the fields and the errors and so the atoms
that hold these values will be passed in instead.

The form will set the values in the fields atom and display the currently popu-
lated values in the errors atom. The comment button will now send the current
value of the fields atom to the server by calling ws/send-message!.

guestbook-websockets/src/cljs/guestbook/core.cljs
(defn message-form [fields errors]

[:div.content
[:div.form-group
[errors-component errors :name]
[:p "Name:"
[:input.form-control

report erratum • discuss

Make Websockets from ClojureScript • 87

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/cljs/guestbook/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/cljs/guestbook/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/cljs/guestbook/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

{:type :text
:on-change #(swap! fields assoc :name (-> % .-target .-value))
:value (:name @fields)}]]

[errors-component errors :message]
[:p "Message:"
[:textarea.form-control
{:rows 4
:cols 50
:value (:message @fields)
:on-change #(swap! fields assoc :message (-> % .-target .-value))}]]

[:input.btn.btn-primary
{:type :submit
:on-click #(ws/send-message! @fields)
:value "comment"}]]])

We’ll now add the response-handler function that will receive the messages from
the server and set the values of the messages, the fields, and the errors atoms
accordingly. Specifically, if the :errors key is present in the response then the
errors atom will be set with its value. Otherwise, the errors and fields will be
cleared and the response added to the list of messages.

guestbook-websockets/src/cljs/guestbook/core.cljs
(defn response-handler [messages fields errors]

(fn [message]
(if-let [response-errors (:errors message)]
(reset! errors response-errors)
(do

(reset! errors nil)
(reset! fields nil)
(swap! messages conj message)))))

The home function will now initialize all the atoms and then pass these to the
response-handler that will in turn be passed to the ws/start-router! function and
used to handle responses. The URL for the websocket is composed of the
ws:// protocol definition, the host of origin, and the /ws route that we defined
earlier.

Next, the function will call get-messages to load the messages currently available
on the server and return a component that will be used to render the page.
This function remains largely unchanged aside from the fact that it will pass
the updated arguments to the message-form component.

guestbook-websockets/src/cljs/guestbook/core.cljs
(defn home []

(let [messages (atom nil)
errors (atom nil)
fields (atom nil)]

(ws/connect! (str "ws://" (.-host js/location) "/ws")
(response-handler messages fields errors))

Chapter 5. Real-time Messaging With Websockets • 88

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/cljs/guestbook/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-websockets/src/cljs/guestbook/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(get-messages messages)
(fn []
[:div
[:div.row
[:div.span12
[message-list messages]]]

[:div.row
[:div.span12
[message-form fields errors]]]])))

With these changes implemented we should be able to test that our app
behaves as expected by running it as we did previously.

lein cljsbuild once
lein run

Everything should look exactly the same as it did before, however we’re not
done yet. Now that we’re using websockets we should be able to open a second
browser and add a message from there. The message will now show up in
both browsers as soon as it’s processed by the server!

Websockets Using Sente
Now that we have some familiarity with how websockets work, let’s take a
look at using the Sente library that provides a number of useful features seen
in the following figure.1

• Ajax fallback support — automatically fall back to using Ajax polling when
websockets are not available

• keep-alives — keep-alives to ensure the connection is not dropped

• buffering — internal buffering for messages

• data encoding — takes care of serializing and deserializing the message data

• Ring security — compatible with Ring ant-forgery middleware

Update the Server
We’ll start by adding the Sente dependencies in the project.clj file. At the time
of writing Sente has a somewhat specific set of dependencies. It has to be
placed above the tower dependency and requires the latest version of the
timbre library to be placed above it as seen in the snippet below.

:dependencies [...
[com.taoensso/timbre "4.1.5-SNAPSHOT"]

1. https://github.com/ptaoussanis/sente

report erratum • discuss

Websockets Using Sente • 89

Prepared exclusively for Bob Erb

https://github.com/ptaoussanis/sente
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[com.taoensso/sente "1.7.0"]
[com.taoensso/tower "3.0.2"]
...]

We can now update the guestbook.routes.ws namespace to use Sente to manage
the server-side websocket connection. We’ll start by updating the dependencies
to add taoensso.sente and taoensso.sente.server-adapters.immutant references.

guestbook-sente/src/clj/guestbook/routes/ws.clj
(ns guestbook.routes.ws

(:require [compojure.core :refer [GET POST defroutes]]
[bouncer.core :as b]
[bouncer.validators :as v]
[guestbook.db.core :as db]
[mount.core :refer [defstate]]
[taoensso.sente :as sente]
[taoensso.sente.server-adapters.immutant
:refer [sente-web-server-adapter]]))

With Sente we don’t have to worry about manually serializing the data and
so we won’t need the transit helpers we used previously, nor will we have to
worry about managing the set of connected clients.

Sente is initialized by calling the sente/make-channel-socket! function. The function
accepts the server adapter and a map of initialization options. We’ll pass in
the Immutant server adapter, since that’s the server we’re using and set the
:user-id-fn option to use the :client-id key in the request parameters. This is
needed in order to provide a unique identifier for each client. The reason we
have to specify this option is that Sente defaults to using a :uid key from the
session and we won’t be creating Ring sessions for the clients. The :client-id
key is a UUID that’s automatically generated for each client connection and
provides a perfect way to identify each anonymous client.

The sente/make-channel-socket! function returns a map that contains a number
of variables that were initialized.

• :ajax-post-fn — function for handling Ajax POST requests

• :ajax-get-or-ws-handshake-fn — function for negotiating the initial connection

• :ch-recv — the receive channel for the socket

• :send-fn — the function that’s used to send push notifications to the client

• :connected-uids — an atom containing the IDs of the connected clients

We’ll assign each of these keys to local variables using def statements.

guestbook-sente/src/clj/guestbook/routes/ws.clj
(let [connection (sente/make-channel-socket!

Chapter 5. Real-time Messaging With Websockets • 90

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/clj/guestbook/routes/ws.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/clj/guestbook/routes/ws.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

sente-web-server-adapter
{:user-id-fn
(fn [ring-req] (get-in ring-req [:params :client-id]))})]

(def ring-ajax-post (:ajax-post-fn connection))
(def ring-ajax-get-or-ws-handshake (:ajax-get-or-ws-handshake-fn connection))
(def ch-chsk (:ch-recv connection))
(def chsk-send! (:send-fn connection))
(def connected-uids (:connected-uids connection)))

The functions for validating and saving the message will remain unchanged.
However, the handle-message! function will be replaced by a version that will
have to be updated to act as the event handler.

guestbook-sente/src/clj/guestbook/routes/ws.clj
(defn validate-message [params]

(first
(b/validate
params
:name v/required
:message [v/required [v/min-count 10]])))

(defn save-message! [message]
(if-let [errors (validate-message message)]

{:errors errors}
(do
(db/save-message! message)
message)))

(defn handle-message! [{:keys [id client-id ?data]}]
(println "\n\n+++++++ GOT MESSAGE:" id (keys ?data))
(when (= id :guestbook/add-message)

(let [response (-> ?data
(assoc :timestamp (java.util.Date.))
save-message!)]

(if (:errors response)
(chsk-send! client-id [:guestbook/error response])
(doseq [uid (:any @connected-uids)]

(chsk-send! uid [:guestbook/add-message response]))))))

Sente will call the event handler function whenever an event, such as receiving
a new message from the client, occurs. The function will be passed a map
containing the keys that describe the event.

Sente uses the :id key to identify messages of different types and handle them
accordingly. The :client-id is the unique UUID for each client that matches the
ID used by the :user-id-fn that we specified when we created the socket. The
:?data key contains the request payload.

report erratum • discuss

Websockets Using Sente • 91

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/clj/guestbook/routes/ws.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The handle-message! function will check the request id to see if it matches the
:guestbook/add-message key. This key allows us to identify messages for creating
new guestbook entries. When we receive such a message we can take the
value of the :?data key and process it as we did previously.

When the save-message! result contains errors we’ll use the chsk-send! function
to send the :guestbook/error type message back to the client that made the
request. Otherwise we’ll broadcast the response to all the connected clients
listed by the connected-uuids variable.

Sente uses a core.async go-loop to manage the message routing between clients.
This router is initialized by calling the sente/start-chsk-router! function and passing
it the handle-message! as the event handler. Once the router is started a function
that stops routing is returned. We’ll store this function in the router atom.

guestbook-sente/src/clj/guestbook/routes/ws.clj
(defn stop-router! [stop-fn]

(when stop-fn (stop-fn)))

(defn start-router! []
(println "\n\n+++++++ STARTING ROUTER! +++++++\n\n")
(sente/start-chsk-router! ch-chsk handle-message!))

(defstate router
:start (start-router!)
:stop (stop-router! router))

Finally, we’ll have to update the routes to use the ring-ajax-get-or-ws-handshake
and the ring-ajax-post functions to handle client requests. These are all the
changes that are needed for us to start using Sente on the server.

guestbook-sente/src/clj/guestbook/routes/ws.clj
(defroutes websocket-routes

(GET "/ws" req (ring-ajax-get-or-ws-handshake req))
(POST "/ws" req (ring-ajax-post req)))

Updating the Client
Now that we’ve switched the server implementation to use Sente, we’ll need
to update our client to match it. We’ll start by updating the guestbook.ws
namespace. We’ll first update the namespace declaration by replacing the
current references with taoensso.sente.

guestbook-sente/src/cljs/guestbook/ws.cljs
(ns guestbook.ws

(:require [taoensso.sente :as sente]))

Chapter 5. Real-time Messaging With Websockets • 92

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/clj/guestbook/routes/ws.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/clj/guestbook/routes/ws.clj
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/cljs/guestbook/ws.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Once again, we won’t need to manually serialize our messages to transit as
the library will handle that for us. Likewise, we won’t need the send-message
and the receive-message functions any longer.

Instead, we’ll initialize the connection using the sente/make-channel-socket! function
that matches the one we used on the server. The difference is that we have
to specify the route /ws where the connection will be made. In the options
we’ll specify the :type key set as :auto, to indicate that we’d like the client to
automatically decide whether to use websockets or Ajax based on availability.

Once again, the function will return a map with the initialized variables. We’ll
use it to define the ch-chsk channel for receiving and the chsk-send! function for
sending messages.

guestbook-sente/src/cljs/guestbook/ws.cljs
(let [connection (sente/make-channel-socket! "/ws" {:type :auto})]

(def ch-chsk (:ch-recv connection)) ; ChannelSocket's receive channel
(def send-message! (:send-fn connection)))

The event handling is done on the client in analogous way to the server. We’ll
use a message router to handle incoming messages. The router will use the
event-msg-handler function to process incoming messages. This function will
check the :id key on the incoming message and route it accordingly. We’ll
initialize it with a map containing functions for handling the events for
handshake, state change, and incoming message. We’ll also define some
default event handling functions along with it.

guestbook-sente/src/cljs/guestbook/ws.cljs
(defn state-handler [{:keys [?data]}]

(.log js/console (str "state changed: " ?data)))

(defn handshake-handler [{:keys [?data]}]
(.log js/console (str "connection established: " ?data)))

(defn default-event-handler [ev-msg]
(.log js/console (str "Unhandled event: " (:event ev-msg))))

(defn event-msg-handler [& [{:keys [message state handshake]
:or {state state-handler

handshake handshake-handler}}]]
(fn [ev-msg]

(case (:id ev-msg)
:chsk/handshake (handshake ev-msg)
:chsk/state (state ev-msg)
:chsk/recv (message ev-msg)
(default-event-handler ev-msg))))

report erratum • discuss

Websockets Using Sente • 93

Prepared exclusively for Bob Erb www.allitebooks.com

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/cljs/guestbook/ws.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/cljs/guestbook/ws.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2
http://www.allitebooks.org

Next, we’ll add the router code, that looks similar to the code we added on
the server. We’ll set the event-msg-handler function as the event handler and
initialize it with the functions to handle different socket events. The function
for handling the incoming messages will be passed in when start-router! is called.

guestbook-sente/src/cljs/guestbook/ws.cljs
(def router (atom nil))

(defn stop-router! []
(when-let [stop-f @router] (stop-f)))

(defn start-router! [message-handler]
(stop-router!)
(reset! router (sente/start-chsk-router!

ch-chsk
(event-msg-handler
{:message message-handler
:state handshake-handler
:handshake state-handler}))))

All that’s left is to modify the guestbook.core namespace to reflect the changes
in the guestbook.ws namespace. We’ll start by updating the namespace declara-
tion.

guestbook-sente/src/cljs/guestbook/core.cljs
(ns guestbook.core

(:require [reagent.core :as reagent :refer [atom]]
[ajax.core :refer [GET]]
[guestbook.ws :as ws]))

Next, we’ll have to update the comment button in the message-form component
to call the updated version of the send-message! function that’s now defined by
calling sente/make-channel-socket!. The function accepts a vector containing the
message id and the data followed by the timeout value. The message id
:guestbook/add-message is the same one we defined on the server in the last sec-
tion.

guestbook-sente/src/cljs/guestbook/core.cljs
(defn message-form [fields errors]

[:div.content
[:div.form-group
[errors-component errors :name]
[:p "Name:"
[:input.form-control
{:type :text
:on-change #(swap! fields assoc :name (-> % .-target .-value))
:value (:name @fields)}]]

[errors-component errors :message]
[:p "Message:"

Chapter 5. Real-time Messaging With Websockets • 94

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/cljs/guestbook/ws.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/cljs/guestbook/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/cljs/guestbook/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[:textarea.form-control
{:rows 4
:cols 50
:value (:message @fields)
:on-change #(swap! fields assoc :message (-> % .-target .-value))}]]

[:input.btn.btn-primary
{:type :submit
:on-click #(ws/send-message! [:guestbook/add-message @fields] 8000)
:value "comment"}]]])

The response handling function returned by the response-handler also has to be
updated to match the data that will be passed to it by Sente when a message
is received. The function has to accept a map representing the message. This
map contains a key called ?data that contains the actual message payload.

The payload format matches the one we use in the comment button, where it’s
a vector with the id of the message followed by the value. All we need to do
is to destructure this map to access the message data.

guestbook-sente/src/cljs/guestbook/core.cljs
(defn response-handler [messages fields errors]

(fn [{[_ message] :?data}]
(if-let [response-errors (:errors message)]
(reset! errors response-errors)
(do

(reset! errors nil)
(reset! fields nil)
(swap! messages conj message)))))

Finally, we’ll have to replace the ws/connect! call with the call to start the router.

guestbook-sente/src/cljs/guestbook/core.cljs
(defn home []

(let [messages (atom nil)
errors (atom nil)
fields (atom nil)]

(ws/start-router! (response-handler messages fields errors))
(get-messages messages)
(fn []
[:div
[:div.row
[:div.span12
[message-list messages]]]

[:div.row
[:div.span12
[message-form fields errors]]]])))

At this point our app should work just as it did before while having Sente
handle many underlying details such as keep-alives and data encoding. This

report erratum • discuss

Websockets Using Sente • 95

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/cljs/guestbook/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/guestbook-sente/src/cljs/guestbook/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

is the recommended method for building any non-trivial applications using
websockets.

Now that we’ve learned some basics about writing Clojure web applications,
let’s take a look at adding a bit of structure for our service endpoints. The
guestbook application has a very simple service API and using undecorated
Compojure routes is not a problem here. However, a more complex application
may have a large number of service endpoints. Each of these will take its own
set of parameters and return different kinds of data.

In the next chapter, we’ll see how to use the compojure-api2 library to define
service endpoints in our application. This library will allow us to annotate
each route using a schema. This schema will provide documentation and
validation for each service operation ensuring that the API is well documented.

2. https://github.com/metosin/compojure-api

Chapter 5. Real-time Messaging With Websockets • 96

report erratum • discussPrepared exclusively for Bob Erb

https://github.com/metosin/compojure-api
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

CHAPTER 6

Writing RESTful Web Services
In the last chapter, we saw how we can leverage ClojureScript on the client
to handle the UI state. This allowed us to refactor our server side code into
stateless service operations. However, our services were declared in ad-hoc
fashion using an arbitrary convention. While this approach works fine for
small applications, it doesn’t scale well for situations where we have many
service operations and many common concerns such as authentication that
are shared between them. In this chapter we’ll cover how to use the compojure-
api library to provide some structure for our service end points.1

Use Compojure-API
Having a well documented and discoverable service API is key to building a
stable and maintainable application. Let’s see how compojure-api will allow
us to achieve this goal. The Schema library is used to define the Swagger style
RESTful service endpoints.2,3 Schema provides us with a number of benefits,
such as documentation for the structure of the data, input validation, and
optional data coercion. Couple this with the ring-swagger library and we can
automatically generate an interactive documentation page for our API.4

Let’s see how this all works in practice by working through a new project.
The goal of our project will be to entertain the users with an endless stream
of cat pictures. Luckily for us, a public API exists for just such an occasion
a the Cat API site5. Our app will fetch the cat picture links from there and
use these links to display the pictures on the page using ClojureScript.

1. https://github.com/metosin/compojure-api
2. https://github.com/plumatic/schema
3. http://swagger.io/
4. https://github.com/metosin/ring-swagger
5. http://thecatapi.com/docs.html

report erratum • discussPrepared exclusively for Bob Erb

https://github.com/metosin/compojure-api
https://github.com/plumatic/schema
http://swagger.io/
https://github.com/metosin/ring-swagger
http://thecatapi.com/docs.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We’ll create the project with the +swagger and the +cljs profiles. The first flag
will add the boilerplate for using compojure-api, and the second will enable
ClojureScript support out of the box.

lein new luminus swagger-service +swagger +cljs

The project will have a couple of sample routes already set up for us. Let’s
take a look at these to get a taste for how compojure-api works. The generated
routes will be found in the swagger-service.routes.services namespace. We can see
that routes are declared using the compojure-api helpers such compo-
jure.api.sweet/GET as opposed to compojure.core/GET that we used previously. The
syntax for these endpoints is similar to the standard Compojure syntax except
that it also requires us to annotate each service operation, as seen in the
following snippet.

(GET "/plus" []
:return Long
:query-params [x :- Long, {y :- Long 1}]
:summary "x+y with query-parameters. y defaults to 1."
(ok (+ x y)))

The service routes are wrapped using the context macro that sets the base
path of /api for all the routes inside it. The macro also specifies a :tags key
that contains the metadata for grouping the routes in the generated documen-
tation.

Each service route must declare its return type and the types of its parameters,
and provide a description of its functionality. We can further see that we must
specify where the parameters are found in the request. We specify :query-params
for the URL query parameters, :body-params when the parameters are part of
the request body, and :path-params when the parameters are part of the request
path. Alternatively, we can specify the :body key that points to the description
of the request body.

This is seen in the last two /echo routes.

(PUT "/echo" []
:return [{:hot Boolean}]
:body [body [{:hot Boolean}]]
:summary "echoes a vector of anonymous hotties"
(ok body))

(POST "/echo" []
:return Thingie
:body [thingie Thingie]
:summary "echoes a Thingie from json-body"
(ok thingie))

Chapter 6. Writing RESTful Web Services • 98

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The :body key points to a vector that has the symbol name on the left and the
type on the right. The request body will be checked against the type specified
and bound to the supplied name. The first route creates an anonymous inline
schema definition, while the second uses the schema element that’s defined
at the top of the namespace.

The :return key specifies the type returned by the function. This can be a simple
type such as a Long or a complex schema such as the Thingie seen in the
example.

We can also see that the first argument to service-routes is a configuration map.
This map specifies the routes for the JSON API, a Swagger UI test page, and
the description metadata for the services.

{:swagger {:ui "/swagger-ui"
:spec "/swagger.json"
:data {:info {:version "1.0.0"

:title "Sample API"
:description "Sample Services"}}}}

Let’s start the application and take a look at what the generated documenta-
tion looks like by executing the lein run command in the terminal. When we
navigate to http://localhost:3000/swagger-ui/index.html we should see a
page listing the API endpoints defined in our services namespace.

We can try out the services directly from the page and see how they behave.
Note that we’re able to call services that use the HTTP POST method without
getting anti-forgery errors as we did in the last chapter. Since anti-forgery
protection only makes sense for pages generated by the server it’s not appli-
cable to public API endpoints. Therefore, the generated service-routes are not
wrapped using the wrap-csrf middleware and are exempt from CSRF checks.

swagger-service/src/clj/swagger_service/handler.clj
(def app-routes

(routes
#'service-routes
(wrap-routes #'home-routes middleware/wrap-csrf)
(route/not-found
(:body

(error-page {:status 404
:title "page not found"})))))

Now that we’ve seen a few examples of how compojure-api works, let’s go
ahead and write a service endpoint using it.

report erratum • discuss

Use Compojure-API • 99

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/clj/swagger_service/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Creating the API
As the first step, let’s see how we can connect to the REST API provided by
the Cat API site and extract the content that we need.

Parsing Cat Picture Links

In order to fetch the links we’ll need to create an HTTP client. We’ll use the
excellent clj-http library for this task.6 for this task. As always, we start by
adding the dependency to our project.clj file.

:dependencies [... [clj-http "2.0.0"]]

Noe that if your application is running then you’ll need to restart it in order
for the library to become available.

With the library in place we can navigate to the swagger-service.routes.services
namespace and add the code for reading the links. We’ll first reference it in
our namespace as client.

(:require ...
[clj-http.client :as client])

Now let’s test getting some data back from the service by writing the following
function.

(defn get-links [link-count]
(client/get

(str
"http://thecatapi.com/api/images/get?format=xml&results_per_page="
link-count)))

The function will call the HTTP GET method on the remote server and request
the results packaged using the XML format. We’ll pass in the number of
results to fetch as a parameter. When we call the function in the REPL we
should see something like the following as the result.

(get-links 3)
=>
{:status 200
:headers {"Date" "Sun, 15 Nov 2015 07:00:35 GMT"

"Server" "Apache"
"X-Powered-By" "PHP/5.4.45"
"Connection" "close"
"Transfer-Encoding" "chunked"
"Content-Type" "text/xml"}

:body
"<?xml version=\"1.0\"?>

6. https://github.com/dakrone/clj-http

Chapter 6. Writing RESTful Web Services • 100

report erratum • discussPrepared exclusively for Bob Erb

https://github.com/dakrone/clj-http
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

<response>
<data>
<images>




</images>

</data>
</response>\n"
:request-time 681
:trace-redirects
["http://thecatapi.com/api/images/get?format=xml&results_per_page=3"]
:orig-content-encoding nil}

As you can see the result consists of a map representing the HTTP response
from the server. The :body key of this map contains the XML describing the
links to the cat pictures that we desire. Now that we’re getting the data from
the remote server we need a way to parse out the links from it.

Clojure provides the clojure.xml namespace for working with XML data. This
namespace contains the parse function that can be used to turn an XML input
stream into a Clojure data structure. We’ll have to reference the clojure.xml and
the clojure.java.io namespaces to create input stream from the response string
and then parse it.

(:require ...
[clojure.java.io :as io]
[clojure.xml :as xml])

With the namespaces referenced we’ll write the parse-xml function that will take
the XML string as the input, get the byte array from the string, wrap it with
an input stream, and pass it to clojure.xml/parse function to extract the data.

swagger-service/src/clj/swagger_service/routes/services.clj
(defn parse-xml [xml]

(-> xml .getBytes io/input-stream xml/parse))

report erratum • discuss

Use Compojure-API • 101

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/clj/swagger_service/routes/services.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can now update the get-links function to parse the XML result as follows.

(defn get-links [link-count]
(-> "http://thecatapi.com/api/images/get?format=xml&results_per_page="

(str link-count)
client/get
:body
parse-xml))

When we call the function again we’ll see a Clojure data structure as the
result.

(get-links 1)
=>
{:tag :response,
:attrs nil,
:content
[{:tag :data,

:attrs nil,
:content
[{:tag :images,

:attrs nil,
:content
[{:tag :image,

:attrs nil,
:content
[{:tag :url,

:attrs nil,
:content
["http://25.media.tumblr.com/tumblr_m4371fTcUo1qb4lb6o1_500.jpg"]}

{:tag :id, :attrs nil, :content ["ddk"]}
{:tag :source_url,
:attrs nil,
:content ["http://thecatapi.com/?id=ddk"]}]}]}]}]}

All we have to do now is parse out the :url tags from the :image tags in the data.
We can accomplish that by writing a few helper functions.

swagger-service/src/clj/swagger_service/routes/services.clj
(defn get-first-child [tag xml-node]

(->> xml-node :content (filter #(= (:tag %) tag)) first))

(defn parse-link [link]
(->> link (get-first-child :url) :content first))

(defn parse-links [links]
(->> links

(get-first-child :data)
(get-first-child :images)
:content
(map parse-link)))

Chapter 6. Writing RESTful Web Services • 102

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/clj/swagger_service/routes/services.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

While XML format allows for multiple tags in the :content, most of the tags in
the structure we’re working with will only have a single child node. The get-
first-child function is used to extract these tags by their name. Once we parse
out the collection of links we can map the parse-link function across them to
get the actual URL strings.

Finally, you might have noticed that the app produces a very noisy log in the
console each time we call the client/get function. The log should look something
like the following:

[2016-02-02 19:12:17,802][DEBUG][org.apache.http.wire] >> "GET /api/images/get?format=xml&results_per_page=50 HTTP/1.1[\r][\n]"
[2016-02-02 19:12:17,803][DEBUG][org.apache.http.wire] >> "Connection: close[\r][\n]"
[2016-02-02 19:12:17,804][DEBUG][org.apache.http.wire] >> "accept-encoding: gzip, deflate[\r][\n]"
[2016-02-02 19:12:17,804][DEBUG][org.apache.http.wire] >> "Host: thecatapi.com[\r][\n]"
[2016-02-02 19:12:17,804][DEBUG][org.apache.http.wire] >> "User-Agent: Apache-HttpClient/4.5 (Java/1.8.0_25)[\r][\n]"
[2016-02-02 19:12:17,804][DEBUG][org.apache.http.wire] >> "[\r][\n]"

The reason is that the global logging configuration is set to debug level in the
development mode. This will cause any libraries we use to log at this level as
well. However, we can easily fix this problem by adding an exclusion for
org.apache.http in the log configuration. Let’s open the env/dev/resources/log4j.properties
file and add the following line there.

log4j.logger.org.apache.http=INFO

When we restart the app, the noisy logs should now be gone. The line says
that we would like to configure the logger for the org.apache.http package to use
info level. Any time you see the logs get noisy, you can use this method to
suppress the logs for the particular package.

Creating the API

All that’s left to do is to create a compojure-api route for this operation. At this
point we can safely remove the existing sample endpoints from the namespace.
We’ll replace these with an endpoint that will accept the number of links to
fetch as the argument and return a collection of link strings as its result. The
response will be of type [s/Str].

swagger-service/src/clj/swagger_service/routes/services.clj
(GET "/cat-links" []

:query-params [link-count :- Long]
:summary "returns a collection of image links"
:return [s/Str]
(ok (get-links link-count)))

Since we’re using a GET operation, the input parameter will be parsed as a
string by default. However, compojure-api provides auto-coercion for many

report erratum • discuss

Use Compojure-API • 103

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/clj/swagger_service/routes/services.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

common data types such as UUIDs, integers, longs, and booleans. Therefore,
the argument will be coerced automatically to the expected type.

Finally, we can test that our service works as expected by visiting the
http://localhost:3000/swagger-ui/index.html#!/tumbler/get_api_pugs page and testing the GET
method that we created. We should see something like the following figure.

Figure 5—Cat API

Chapter 6. Writing RESTful Web Services • 104

report erratum • discussPrepared exclusively for Bob Erb

http://localhost:3000/swagger-ui/index.html#!/tumbler/get_api_pugs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Next, let’s take a look at using a ClojureScript client with the compojure-api
service we’ve just created.

Adding the UI

Now that we have all these exciting links to amazing cat pictures, it would be
nice for us to actually see them. We’ll navigate to the src/cljs/swagger_service/core.cljs
file and the code to fetch them from the server and display them. We’ll partition
the list of URLs that we get from the server and then create pages, each dis-
playing a subset of images.

The lein-cljsbuild plugin we used previously requires us to reload the page
each time the sources are recompiled.

When we created our current project, we used the +cljs flag that added Clo-
jureScript support for us. This profile adds a more sophisticated way to
compile ClojureScript using the lein-figwheel plugin.7 This plugin will not only
compile the code, but also take care of reloading it in the browser as it
changes.

Compiling ClojureScript with Figwheel

With lein-figwheel the changes are pushed to the browser using a websocket
and are reflected live without the need to reload the page. When we start the
server and navigate to http://localhost:3000 once it’s ready.

lein run

we’ll see the following page informing us that we need to run lein figwheel to
compile our ClojureScript sources.

7. https://github.com/bhauman/lein-figwheel

report erratum • discuss

Use Compojure-API • 105

Prepared exclusively for Bob Erb

https://github.com/bhauman/lein-figwheel
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 6—Default Page

When we run the command we should see the following output in the console.
The last line in the output tells us that figwheel is waiting to connect to the
application in the browser.

lein figwheel
Figwheel: Starting server at http://localhost:3449
Focusing on build ids: app
Compiling "target/cljsbuild/public/js/app.js" from ["src/cljs" "env/dev/cljs"]...
Successfully compiled "target/cljsbuild/public/js/app.js" in 8.719 seconds.
Started Figwheel autobuilder

Launching ClojureScript REPL for build: app
Figwheel Controls:
(stop-autobuild) ;; stops Figwheel autobuilder
(start-autobuild [id ...]) ;; starts autobuilder focused on optional ids
(switch-to-build id ...) ;; switches autobuilder to different build
(reset-autobuild) ;; stops, cleans, and starts autobuilder
(build-once [id ...]) ;; builds source one time
(clean-builds [id ..]) ;; deletes compiled cljs target files
(fig-status) ;; displays current state of system
(add-dep [org.om/om "0.8.1"]) ;; add a dependency. very experimental
Switch REPL build focus:

Chapter 6. Writing RESTful Web Services • 106

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:cljs/quit ;; allows you to switch REPL to another build
Docs: (doc function-name-here)
Exit: Control+C or :cljs/quit
Results: Stored in vars *1, *2, *3, *e holds last exception object
Prompt will show when figwheel connects to your application

Once we reload the page we should see that there is now a navbar and a
Welcome to ClojureScript message on the page. These elements were generated
by the compiled ClojureScript as seen in the following figure.

Figure 7—Default Page

We can now navigate to the src/cljs/swagger_service/core.cljs file that contains our
swagger-service.core ClojureScript namespace and start editing it. Any changes
we make will be reflected live in the browser. For example, let’s change th
content of the home-page function as follows.

(defn home-page []
[:div
[:h2 "Welcome to ClojureScript"]
[:p "live code reloading is fun!"]])

report erratum • discuss

Use Compojure-API • 107

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Note that if there are any compilation errors or warnings then they will be
displayed directly on the page as seen in the next figure.

Figure 8—Default Page

At mentioned earlier, Figwheel uses a websocket to push the code to the
browser. The socket requires additional code to be run when the ClojureScript
application starts. This code should only be run in development mode and
not in production.

In order to automate loading different environments for development and
production the template sets up a env/dev and env/prod source paths. The dev
path is then included in the :dev profile and the prod path is included in the
:uberjar profile in the project.clj file.

The env/dev/cljs/dev.cljs file contains the namespace that’s the entry point for our
ClojureScript application and has the following contents.

Chapter 6. Writing RESTful Web Services • 108

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

swagger-service/env/dev/cljs/swagger_service/dev.cljs
(ns ^:figwheel-no-load swagger-service.app

(:require [swagger-service.core :as core]
[figwheel.client :as figwheel :include-macros true]))

(enable-console-print!)

(figwheel/watch-and-reload
:websocket-url "ws://localhost:3449/figwheel-ws"
:on-jsload core/mount-components)

(core/init!)

It enables console printing, creates a Figwheel websocket, and connects the
Weasel REPL library to the Clojure nREPL started by the server.8 Finally, the
swagger-service.core/init! function is called. The prod entry point disables the
console printing functionality and then calls the core/init! function to bootstrap
the application.

swagger-service/env/prod/cljs/swagger_service/prod.cljs
(ns swagger-service.app

(:require [swagger-service.core :as core]))

;;ignore println statements in prod
(set! *print-fn* (fn [& _]))

(core/init!)

Since the source path is selected based on the profile, no application-specific
code needs to be aware of the environment. This approach avoids the need
to manually track what parts of application need to be loaded for development
and deployment.

With Figwheel running any changes we make in our ClojureScript sources
should be automatically updated in the page. Let’s replace the existing code
from the namespace with the following code.

(ns swagger-service.core
(:require [reagent.core :as reagent :refer [atom]]

[ajax.core :refer [GET]])
(:require-macros [secretary.core :refer [defroute]]))

(defn home-page []
[:div
[:h1 "TODO: show some puppies..."]])

(defn mount-components []

8. https://github.com/tomjakubowski/weasel

report erratum • discuss

Use Compojure-API • 109

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/env/dev/cljs/swagger_service/dev.cljs
http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/env/prod/cljs/swagger_service/prod.cljs
https://github.com/tomjakubowski/weasel
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(reagent/render-component [home-page] (.getElementById js/document "app")))

(defn init! []
(mount-components))

When we check the browser, it should now display the new content without
having to refresh the page. We’re now ready to start thinking about what our
UI should look like.

We’re planning on querying the server for a list of links. We’ll then partition
these into groups and show them on the page. We’ll need to create an atom
to hold the results. Let’s create one in our home-page component and populate
it with some sample links from our API test page and display these links using
the img tag.

(defn home-page []
(let [links

(atom
["http://25.media.tumblr.com/Jjkybd3nSafemf3rYocB7QcC_500.jpg"
"http://25.media.tumblr.com/tumblr_ln4zdhp4Uj1qcnzavo1_500.gif"
"http://24.media.tumblr.com/tumblr_m2kmg2VK2a1qhwmnpo1_1280.jpg"
"http://24.media.tumblr.com/tumblr_m30w1mNl1w1qgjltdo1_1280.jpg"
"http://25.media.tumblr.com/tumblr_m3gm5oqm9e1r73wdao1_500.jpg"])]

(fn []
[:div
(for [link @links]

[:img {:src link}])])))

As you’ll recall we create a local state using the let binding and return a
function that will be called on each subsequent update of this component.

Next, we’ll add a fetch-links! function that will grab the list of images from the
server. This function will accept an atom along with the number of links to
fetch as its parameters and reset the atom with the links from the server. We
can now update our home-page component to to fetch the links when it’s first
called then we’ll see all the links start appearing on the page.

(defn fetch-links! [links link-count]
(GET "/api/cat-links"

{:params {:link-count link-count}
:handler #(reset! links %)}))

(defn home-page []
(let [links

(atom nil)]
(fetch-links! links 20)
(fn []
[:div
(for [link @links]

Chapter 6. Writing RESTful Web Services • 110

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[:img {:src link}])])))

As you can see that’s a lot of links to load all at once. A better user experience
would be to partition these into groups and allow the user to navigate these.
We can first change our fetch-links! function to partition the links into groups
of six.

swagger-service/src/cljs/swagger_service/core.cljs
(defn fetch-links! [links link-count]

(GET "/api/cat-links"
{:params {:link-count link-count}
:handler #(reset! links (vec (partition-all 6 %)))}))

Now, let’s write a component that will render a group of links as two rows of
images.

swagger-service/src/cljs/swagger_service/core.cljs
(defn images [links]

[:div.text-xs-center
(for [row (partition-all 3 links)]

^{:key row}
[:div.row
(for [link row]

^{:key link}
[:div.col-sm-4 [:img {:width 400 :src link}]])])])

Let’s update the home-page function to track the partition and display it using
the component we just wrote.

(defn home-page []
(let [links (atom nil)

page (atom 0)]
(fetch-links! links 20)
(fn []
[:div
(when @links

[images (@links @page)])])))

All that’s left is to create a pager component that will allow us to navigate the
partitions. The pager will create buttons based on the count of partitions and
hook up the logic to navigate back and forth within them. Any time the value
of the page atom is changed it will cause the home-page component to be
repainted showing the selected partition.

swagger-service/src/cljs/swagger_service/core.cljs
(defn forward [i pages]

(if (< i (dec pages)) (inc i) i))

(defn back [i]
(if (pos? i) (dec i) i))

report erratum • discuss

Use Compojure-API • 111

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/cljs/swagger_service/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/cljs/swagger_service/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/cljs/swagger_service/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(defn nav-link [page i]
[:li.page-item>a.page-link.btn.btn-primary
{:on-click #(reset! page i)
:class (when (= i @page) "active")}

[:span i]])

(defn pager [pages page]
(when (> pages 1)

(into
[:div.text-xs-center>ul.pagination.pagination-lg]
(concat

[[:li.page-item>a.page-link.btn
{:on-click #(swap! page back pages)
:class (when (= @page 0) "disabled")}

[:span "«"]]]
(map (partial nav-link page) (range pages))
[[:li.page-item>a.page-link.btn

{:on-click #(swap! page forward pages)
:class (when (= @page (dec pages)) "disabled")}

[:span "»"]]]))))

Finally, we’ll update the home-page component to add the pager.

swagger-service/src/cljs/swagger_service/core.cljs
(defn home-page []

(let [page (atom 0)
links (atom nil)]

(fetch-links! links 50)
(fn []
(if (not-empty @links)

[:div.container>div.row>div.col-md-12
[pager (count @links) page]
[images (@links @page)]]

[:div "Standby for cats!"]))))

That’s all there is to it. We’re now fetching data from the server, partitioning
it into groups, and providing a way to navigate these partitions, all in under
a hundred lines of code.

Chapter 6. Writing RESTful Web Services • 112

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/cljs/swagger_service/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 9—Cat Gallery

What You’ve Learned
We now have a way to organize our service endpoints in a structured way,
and we have a much better development story when it comes to ClojureScript
compilation. In the next chapter we’ll take a deeper look at connecting to and
working with databases.

report erratum • discuss

What You’ve Learned • 113

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

CHAPTER 7

Database Access
In the previous chapters we’ve primarily focused on handling the interaction
between the client and the server, and only skimmed over the topic of persist-
ing our data. In this chapter, we’ll cover how to work with relational
databases using the clojure.java.jdbc library. We’ll then discuss how to write
a simple application to generate a PDF report from database records that will
teach you about serving binary content in your web application.

Work with Relational Databases
By virtue of running on the Java Virtual Machine, Clojure works with any
database that can be accessed via Java Database Connectivity (JDBC).1 With
it, we can easily access a large number of RDBMS databases, such as MySQL,
SQL Server, PostgreSQL, and Oracle. The core library for dealing with rela-
tional databases is clojure.data.jdbc. When using this library we will have to
write custom SQL for each type of database we intend to use.

Most Clojure database libraries are based on clojure.data.jdbc; one such
library that we’ll cover in this chapter is called Yesql.2 This library takes the
approach of keeping the SQL completely separate from the Clojure source
files. While this library is new it’s already proved extremely popular and has
inspired creation of similar libraries in other languages.

Another popular library is called Honey SQL3. This library takes the approach
of representing SQL queries using Clojure data structures. This is the same
approach we saw when we generated HTML in Reagent. The advantage of this

1. http://en.wikipedia.org/wiki/Java_Database_Connectivity
2. https://github.com/krisajenkins/yesql
3. https://github.com/jkk/honeysql

report erratum • discussPrepared exclusively for Bob Erb

http://en.wikipedia.org/wiki/Java_Database_Connectivity
https://github.com/krisajenkins/yesql
https://github.com/jkk/honeysql
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

approach is that we can manipulate and compose the queries directly in
Clojure.

Finally, the SQL Korma4 will let us write our queries using a Clojure domain-
specific language (DSL) and generate the SQL statements targeting the spec-
ified back end. However, we will have to learn the DSL and will be limited to
accessing only the databases it supports.

We’ll start by seeing how to use the clojure.data.jdbc library, as it provides
all the functionality we need without any additional complexity. We’ll use
PostgreSQL as our database engine throughout this book. If you choose to
use a different database engine, be aware that there might be slight syntactic
differences in our SQL queries.

Before we start working through the examples in this chapter, make sure you
have an instance of the Postgres database available in order to follow along.

Setting Up the PostgreSQL Database
Installing PostgreSQL is quite straightforward. If you’re using OS X, then you
can simply run Postgres.app.5 On Linux, you can install PostgreSQL from
your package manager. For example, if you’re using Ubuntu you can run sudo
apt-get install postgresql.

Once installed, we set the password for the user postgres using the psql shell.
The shell can be invoked by running the psql command from the console.

sudo -u postgres psql postgres
\password postgres

With the default user set up we’ll create an admin user with the password set
to admin.

CREATE USER admin WITH PASSWORD 'admin';

Then we can create a schema called REPORTING to store our reports by running
the following command:

CREATE DATABASE REPORTING OWNER admin;

Note that we’re using the admin user here to save time. You should always
create a dedicated user and grant only the necessary privileges for any
database you wish to run in production.

4. http://sqlkorma.com/
5. http://postgresapp.com/

Chapter 7. Database Access • 116

report erratum • discussPrepared exclusively for Bob Erb

http://sqlkorma.com/
http://postgresapp.com/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Accessing the Database
We’ll start by creating a new project called db-examples by running Leiningen.

lein new db-examples

To access the database, we need to include the necessary libraries in our
project.clj file. We need to reference the org.clojure/java.jdbc library as well as
the driver for the database we’ll be accessing. In case of PostgreSQL we’ll
require the following dependencies:

[yesql "0.5.2"]
[org.clojure/java.jdbc "0.4.2"]
[org.postgresql/postgresql "9.4-1201-jdbc41"]

With that in place, we’ll navigate to the db-examples.core namespace and reference
the clojure.data.jdbc library the same way we did in the examples in Chapter 1,
Getting Your Feet Wet, on page 1.

(:require [clojure.java.jdbc :as sql])

Next we need to define our database connection. We can do this in several
ways. Let’s look at these options and their pros and cons.

Defining a Parameter Map

The simplest way to define a connection is by providing a map of connection
parameters.

db-examples/src/db_examples/core.clj
(def db {:subprotocol "postgresql"

:subname "//localhost/reporting"
:user "admin"
:password "admin"})

Above, we’ve defined a connection for an instance of the Postgres database
located on localhost using schema called reporting along with the username
and password. This is the schema that we’ll be using for examples below, so
go ahead and create it locally before proceeding.

This is the most common approach for declaring the connection information.
In a real world application the values should be read from the environment
instead of being baked directly into our application.

Extracting the configuration variables into the environment allows us to
separate the configuration concerns from the code. For example, we might
have separate development, staging, and production servers. We can configure
each server environment to specify its respective database, and when we

report erratum • discuss

Work with Relational Databases • 117

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/core.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

deploy the application it will pick up the connection details from there. Later
on we’ll see how we can use the environ library to extract this information.6

Specifying the Driver Directly

Another option is to provide a JDBC data source and configure it manually.
This option is useful if we wish to specify any driver-specific parameters not
accessible through the idiomatic parameter map configuration.

(def db
{:datasource

(doto (PGPoolingDataSource.)
(.setServerName "localhost")
(.setDatabaseName "my_website")
(.setUser "admin")
(.setPassword "admin")
(.setMaxConnections 10))})

Defining a JNDI String

Finally, we can define the connection by specifying the Java Naming and Directory
Interface (JNDI) name for a connection managed by the application server.

(def db {:name "jdbc/myDatasource"})

Here we’ve provided the JNDI name as a string. The actual connection will
be configured on the application server we’re using, and must be given the
same name as the one defined in the application. When the application runs,
it will query the server for the connection details using the name supplied.
Now that we have a database connection, let’s look at how to accomplish
some common tasks with it.

Creating Tables
We can create tables programmatically by calling the create-table-ddl function
and providing it the table name, followed by the columns and their types.
Let’s write a function to create a table to store user records, where each record
has an id and a password.

db-examples/src/db_examples/core.clj
(defn create-users-table! []

(sql/db-do-commands db
(sql/create-table-ddl
:users
[:id "varchar(32) PRIMARY KEY"]
[:pass "varchar(100)"])))

6. https://github.com/weavejester/environ

Chapter 7. Database Access • 118

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/core.clj
https://github.com/weavejester/environ
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Here, create-table-ddl is called to create a users table. The macro takes a keyword
specifying the table name, followed by vectors representing the columns. Each
column has the format of [:name type], where name is the name of the column
and the type can either be a SQL string or a keyword such as :int, :boolean, or
:timestamp. Note: the name of the column cannot have dashes because those
are not valid SQL syntax.

Note that the DDL statement is wrapped inside the db-do-commands function
that accepts the connection parameters we defined earlier and executes the
statement within the context of that connection.

Selecting Records
To select records from our database we use the query function. It accepts the
connection and a vector containing the SQL string followed by its arguments,
and returns a result as a lazy sequence. This allows us to work with the
returned data without having to load the entire result set into memory.

db-examples/src/db_examples/core.clj
(defn get-user [id]

(first (sql/query db ["select * from users where id = ?" id])))

(get-user "foo")

In the code above, we’ve created a function that accepts the user id as its
argument and returns the first item from the result set. Note that we’re using
a parameterized query by specifying a vector containing the prepared statement
string followed by its parameters. This approach should always be used in
order to prevent SQL injection attacks.

Inserting Records
There are a number of options for inserting records into the database. If we
have a map whose keys match the names of the columns in the table, then
we can simply use the insert! function.

db-examples/src/db_examples/core.clj
(defn add-user! [user]

(sql/insert! db :users user))

(add-user! {:id "foo" :pass "bar"})

If we wish to insert multiple records simultaneously, we can simply pass
multiple maps to the insert! function as well.

db-examples/src/db_examples/core.clj
(defn add-users! [& users]

(apply sql/insert! db :users users))

report erratum • discuss

Work with Relational Databases • 119

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/core.clj
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/core.clj
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/core.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(add-users!
{:id "foo1" :pass "bar"}
{:id "foo2" :pass "bar"}
{:id "foo3" :pass "bar"})

Alternatively, we can supply a vector containing the column IDs that we wish
to insert followed by vectors containing the column values.

(sql/insert! db :users [:id] ["bar"] ["baz"])

Updating Existing Records
To update an existing record, we can use the update! function. The function
expects the connection, followed by the table name, the map representing the
updated rows, and the where clause represented by a vector.

db-examples/src/db_examples/core.clj
(defn set-pass! [id pass]

(sql/update!
db
:users
{:pass pass}
["id=?" id]))

(set-pass! "foo" "bar")

Deleting Records
To delete records from the database, we can use the delete! function:

db-examples/src/db_examples/core.clj
(defn remove-user! [id]

(sql/delete! db :users ["id=?" id]))

(remove-user! "foo")

Transactions
We use transactions when we want to run multiple statements and ensure
that the statements will be executed only if all of them can be run successfully.
If any of the statements fail, then the transaction will be rolled back to the
state prior to running any of the statements.

(sql/with-db-transaction [t-conn db]
(sql/update!

t-conn
:users
{:pass "bar"}
["id=?" "foo"])

(sql/update!

Chapter 7. Database Access • 120

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/core.clj
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/core.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

t-conn
:users
{:pass "baz"}
["id=?" "bar"]))

As can be seen above, we use the with-db-transaction macro to create a transac-
tional connection that is used inside the transaction. All the statements
wrapped by with-db-transaction must use the t-conn connection to execute the
queries. Should all the statements complete successfully then the transaction
will be committed.

Use Yesql
Yesql is a library built on top of the clojure.java.jdbc library that we’ve been using
in this chapter. We already got a preview of Yesql when we developed our
guestbook application in Chapter 1, Getting Your Feet Wet, on page 1.

The major advantage of using Yesql is that it allows us to write the SQL queries
in separate files instead of having to embed strings in our code. This has a
number of advantages such as allowing us to use SQL tools to edit the queries.

Using Yesql
Yesql works by reading queries from a file and then generating Clojure
wrappers for the queries at runtime. Yesql provides a flexible API that allows
us to either declare a single query per file or group multiple queries in a single
file.

Let’s start by seeing how we can define a single query in a file and then create
a function from it using the ‘defquery‘ macro. We’ll place the query in the file
resources/find_user.sql in our project. Then we’ll create a new namespace called
db-examples.yesql with the following content.

db-examples/resources/find_user.sql
-- select user by id
SELECT *
FROM users
WHERE id = :id

db-examples/src/db_examples/yesql.clj
(ns db-examples.yesql

(:require [db-examples.core :refer [db]]
[clojure.java.jdbc :as sql]
[yesql.core :refer [defquery defqueries]]))

(defquery find-user "find_user.sql")

report erratum • discuss

Use Yesql • 121

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/db-examples/resources/find_user.sql
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/yesql.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can now call find-user just like any other function and the SQL comments
will be available as its doc string.

(find-user {:id "foo"} {:connection db})

The function accepts a map that describes the query followed by a map
describing the connection. The connection we’re using is the one that we
defined earlier for our clojure.java.jdbc examples.

In cases where our application has a single global connection we can pass it
directly to the defquery macro and it will be implicitly available to the functions
that it generates.

db-examples/src/db_examples/yesql.clj
(defquery find-user-with-connection "find_user.sql" {:connection db})

(find-user {:id "foo"})

To specify the positional arguments we use the :? syntax. The arguments are
then placed in a vector and Yesql will take care of matching them with the
query.

-- select active users by country
SELECT *
FROM users
WHERE (

country = ?
OR
country_code = ?

)
AND active = :active

(active-users-by-country {:? ["CA" "US"] :active true})

Yesql supports in-list queries where we provide a vector of values as the
parameter.

-- find users with a matching ID
SELECT *
FROM user
WHERE user_id IN (:id)

(find-users {:id ["foo" "bar" "baz"]})

Yesql also provides support for post-processing the values in the result set
by passing a map containing the columns and their formatters. Let’s see how
we can get the SQL date and return it as a Clojure date in our result.

We’ll create a query in a file resources/select_date.sql that looks like the following.

Chapter 7. Database Access • 122

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/yesql.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

db-examples/resources/select_date.sql
-- select current date
SELECT now()::date;

Then we’ll define the query as we did before.

db-examples/src/db_examples/yesql.clj
(defquery select-date "select_date.sql" {:connection db})

Now we can select the current date and format the result.

(select-date
{}
{:result-set-fn first
:row-fn :now
:identifiers identity})

Queries that insert data into tables must end with the ! to indicate that they’re
mutating data. For example, if we create a query to add a user and place it
in a file called resources/add_user.sql

db-examples/resources/add_user.sql
-- add user
INSERT INTO users
(id, pass)
VALUES (:id, :pass)

then we can define the following query to generate a function that will add
users.

db-examples/src/db_examples/yesql.clj
(defquery add-user! "add_user.sql" {:connection db})

We can now call this function as follows.

(add-user! {:id "a-new-user" :pass "foo"})

Finally, we can indicate that we would like to return the inserted value by
ending the function with <! instead.

db-examples/src/db_examples/yesql.clj
(defquery add-user<! "add_user.sql" {:connection db})

(add-user<! {:id "another-user" :pass "foo"})

Note that this functionality is database driver dependent and some drivers
do not facilitate returning the result of the insert query.

So far, we’ve been defining all our queries in separate files. We’ll now take a
look at defining multiple queries in a single file using the defqueries macro
instead.

report erratum • discuss

Use Yesql • 123

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/db-examples/resources/select_date.sql
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/yesql.clj
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/resources/add_user.sql
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/yesql.clj
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/yesql.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We’ll create a new file called resources/queries.sql and place all the queries we’ve
defined so far there. Each query will have an additional comment that starts
with –name: that will indicate the name of the function for each query.

db-examples/resources/queries.sql
-- name: add-user!
-- add user
INSERT INTO users
(id, pass)
VALUES (:id, :pass)

-- name: select-user
-- select user by id
SELECT *
FROM users
WHERE id = :id

-- name: select-date
-- select current date
SELECT now()::date;

We can now instantiate all the queries at once by calling ‘defqueries‘ as seen
below.

db-examples/src/db_examples/yesql.clj
(defqueries "queries.sql" {:connection db})

As we’ve seen Yesql is a very flexible library that allows us to define queries
in a clean and intuitive way without having to mix the SQL sources with our
Clojure code. It’s also worth noting that since it’s built on top of clo-
jure.java.jdbc we can easily mix using them. For example, if we wanted to run
queries in a transaction then we’d use the with-db-transaction macro to wrap the
calls to Yesql generated functions as seen below.

db-examples/src/db_examples/yesql.clj
(defn find-users-transaction []

(sql/with-db-transaction [t-conn db]
{:limeys (find-user {:id "foo"} {:connection t-conn})
:yanks (find-user {:id "bar"} {:connection t-conn})}))

Generate Reports
In this section we’ll cover how we can generate reports from the data we collect
in our database using the clj-pdf library.7 Then we’ll discuss how to serve the
generated PDF to the browser using the appropriate response type.

7. https://github.com/yogthos/clj-pdf

Chapter 7. Database Access • 124

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/db-examples/resources/queries.sql
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/yesql.clj
http://media.pragprog.com/titles/dswdcloj2/code/db-examples/src/db_examples/yesql.clj
https://github.com/yogthos/clj-pdf
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Our application will have an employee table that will be populated with some
sample data. We’ll use this data to create a couple of different PDF reports
and allow the users to select the type of report they wish to view. Let’s create
a new application called reporting-example using the luminus template.

lein new luminus reporting-example +postgres

We’ll now open the project.clj file to add the clj-pdf dependency.

:dependencies [...
[clj-pdf "2.1.8"]]

We also have to remember to update the database URL with the profiles.clj file
as follows.

reporting-example/profiles.clj
{:profiles/dev
{:env
{:database-url
"jdbc:postgresql://localhost/reporting?user=admin&password=admin"}}

:profiles/test
{:env
{:database-url
"jdbc:postgresql://localhost/report_test?user=admin&password=admin"}}}

Now let’s update our migrations files found in the migrations folder. The up file
will create the employee table, while the down file will remove it.

CREATE TABLE employee
(name VARCHAR(50),
occupation VARCHAR(50),
place VARCHAR(50),
country VARCHAR(50));

DROP TABLE employee;

With our migrations setup we can run the following command to initialize
the database.

lein run migrate

Let’s navigate to the namespace called reporting-example.db.core and see what we
have there. When we generated our guestbook project, we used an embedded
H2 database. That database did not require any special configuration.

Now that we’re using an external database, we need to have more intelligent
connection handling code. The connection should be initialized when the
application starts and torn down when it stops. We’d also want to create a
pooled connection in order to avoid having to create a separate connection
for each query.

report erratum • discuss

Generate Reports • 125

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/profiles.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Luminus uses the conman8 library to handle external database connections.
The library takes care of connection pooling and provides the connect! and dis-
connect! functions for managing the lifecycle of the connection.

While conman provides us with the functions to manage the state of the
connection, we still need a way to track the state of the connection in our
application. This part is handled by the mount9 library. This library is used
in Luminus for managing any stateful resources. Let’s take a closer look at
how it works in the next section.

Managing Stateful Components
Most applications will rely on stateful external resources such as database
connections and queues. The code that interacts with these resources requires
that the resource is available before it can be used.

Luminus encourages keeping related logic close together. Therefore, in cases
where we have functions that reply on an external resource the management
of the state for that resource should ideally be handled in the same namespace
where the functions using it are defined.

The mount library provides a way to define stateful components using the
mount.core/defstate macro and manage their lifecycle using the mount.core/start and
the mount.core/stop functions.

Mount will look for any namespaces in the project that have defstate declara-
tions. It will then infer the order for starting and stopping the states based
on the namespace hierarchy. For example, if namespace A contains a state
and depends on namespace B that contains another state, then state B will
be started before state A. Conversely, when the states are stopped in the
reverse order.

We can see how the connection state is declared in the application we created
in the reporting-example.db.core namespace.

reporting-example/src/clj/reporting_example/db/core.clj
(def pool-spec

{:adapter :postgresql
:init-size 1
:min-idle 1
:max-idle 4
:max-active 32})

(defn connect! []

8. https://github.com/luminus-framework/conman
9. https://github.com/tolitius/mount

Chapter 7. Database Access • 126

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/db/core.clj
https://github.com/luminus-framework/conman
https://github.com/tolitius/mount
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(let [conn (atom nil)]
(conman/connect!
conn
(assoc

pool-spec
:jdbc-url (env :database-url)))

conn))

(defn disconnect! [conn]
(conman/disconnect! conn))

(defstate ^:dynamic *db*
:start (connect!)
:stop (disconnect! *db*))

(conman/bind-connection *db* "sql/queries.sql")

The connection is defined as a dynamic *db* var that’s declared using the def-
state macro. The :start key calls the connect! function that returns an atom
containing the connection state. The :stop key calls the disconnect! function and
passes it the *db* state. These functions will be called by mount when
mount.core/start and mount.core/stop functions are called respectively.

The queries are bound to the connection using the conman/bind-connection macro.
The defqueries macro we used previously allows us to either create queries with
a supplied connection or requires us to pass the connection to each generated
function explicitly. The conman library wraps Yesql queries with functions
that use the connection in the supplied atom. This allows us to define the
queries and run them once the connection is available.

If you’ll recall, the init and the destroy functions of the application handler are
used to manage the lifecycle of the application. Therefore, the mount.core/start
function is called by the init function, while the mount.core/stop function is called
by the destroy function respectively.

reporting-example/src/clj/reporting_example/handler.clj
(defn init

"init will be called once when
app is deployed as a servlet on
an app server such as Tomcat
put any initialization code here"

[]
(logger/init env)
(doseq [component (:started (mount/start))]

(log/info component "started"))
((:init defaults)))

(defn destroy

report erratum • discuss

Generate Reports • 127

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

"destroy will be called when your application
shuts down, put any clean up code here"

[]
(log/info "reporting-example is shutting down...")
(doseq [component (:stopped (mount/stop))]

(log/info component "stopped"))
(log/info "shutdown complete!"))

Our application has a single stateful resource that is the database connection.
However, we can use the same technique to manage the lifecycle of other
resources such as queues. All we have to do is supply the :start and :stop
functions when declaring the resources using the defstate macro.

Now that we saw how the connection is managed, let’s take a look at the rest
of the code that was generated in the reporting-example.db.core namespace.

Serializing and Deserializing Data Based on Its Type
You’ll note that the namespace comes with a number of extend-protocol and
extend-type definitions. Extending the IResultSetReadColumn protocol allows us to
deserialize the column types returned by the database.

reporting-example/src/clj/reporting_example/db/core.clj
(defn to-date [sql-date]

(-> sql-date (.getTime) (java.util.Date.)))

(extend-protocol jdbc/IResultSetReadColumn
Date
(result-set-read-column [v _ _] (to-date v))

Timestamp
(result-set-read-column [v _ _] (to-date v))

Jdbc4Array
(result-set-read-column [v _ _] (vec (.getArray v)))

PGobject
(result-set-read-column [pgobj _metadata _index]

(let [type (.getType pgobj)
value (.getValue pgobj)]

(case type
"json" (parse-string value true)
"jsonb" (parse-string value true)
"citext" (str value)
value))))

The java.sql.Date and java.sql.Timestamp types are converted into java.util.Date type.
The Jdbc4Array is deserialized into a vector. Finally, The PGobject is serialized as
either JSON or text based on its type.

Chapter 7. Database Access • 128

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/db/core.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Conversely, the extend-type allows us to serialize java.util.Date as a java.sql.Timestamp.

reporting-example/src/clj/reporting_example/db/core.clj
(extend-type java.util.Date

jdbc/ISQLParameter
(set-parameter [v ^PreparedStatement stmt idx]

(.setTimestamp stmt idx (Timestamp. (.getTime v)))))

(defn to-pg-json [value]
(doto (PGobject.)

(.setType "jsonb")
(.setValue (generate-string value))))

(extend-protocol jdbc/ISQLValue
IPersistentMap
(sql-value [value] (to-pg-json value))
IPersistentVector
(sql-value [value] (to-pg-json value)))

Finally, the ISQLValue protocol allows us to serialize Clojure maps and vectors
into Postgres JSON types.

This approach allows us to keep all the type coercions in one place instead
of having to remember to do them each time we need to store or retrieve a
value.

Now that we’ve looked at all the code that’s been generated, let’s start the
read-evaluate-print loop (REPL) in this namespace and create the table that
we’ll be working with by running the following commands in the REPL.

(in-ns 'reporting-example.db.core)

(mount.core/start #'reporting-example.db.core/*db*)

(jdbc/insert!
@*db*
:employee
[:name :occupation :place :country]
["Albert Einstein", "Engineer", "Ulm", "Germany"]
["Alfred Hitchcock", "Movie Director", "London", "UK"]
["Wernher Von Braun", "Rocket Scientist", "Wyrzysk", "Poland"]
["Sigmund Freud", "Neurologist", "Pribor", "Czech Republic"]
["Mahatma Gandhi", "Lawyer", "Gujarat", "India"]
["Sachin Tendulkar", "Cricket Player", "Mumbai", "India"]
["Michael Schumacher", "F1 Racer", "Cologne", "Germany"])

Note that we’re passing the qualified reporting-example.db.core/*db* var to
mount.core/start in the example. This ensures that mount will only start the
specified state.

report erratum • discuss

Generate Reports • 129

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/db/core.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Finally, we’ll write the query to read the records from the table.

reporting-example/resources/sql/queries.sql
--name: read-employees
-- reads the list of employees
select * from employee

Let’s run the conman/bind-connection statement to re-initialize the query functions
and call the read-employees function it generates. We should see the following
in the REPL console.

(conman/bind-connection *db* "sql/queries.sql")

(read-employees)

({:country "Germany",
:place "Ulm",
:occupation "Engineer",
:name "Albert Einstein"}
{:country "UK",
:place "London",
:occupation "Movie Director",
:name "Alfred Hitchcock"}
...)

You’ll notice that the result of calling read-employees is simply a list of maps
where the keys are the names of the columns in the table. Let’s see how we
can use this to create a PDF with a table listing the employees in our database.

Generating the Reports
The clj-pdf library uses syntax similar to Hiccup’s to define the elements in
the document. The document itself is represented by a vector. The document
vector must contain a map representing the metadata as its first element. The
metadata is followed by one or more elements representing the document’s
content.

Let’s create a namespace called reporting-example.reports and look at a few
examples of creating PDF documents. We’ll use the pdf function to create the
reports, and the template macro to format the input data. We’ll also reference
the reporting-example.db.core namespace so that we can call the read-employees
function later on.

reporting-example/src/clj/reporting_example/reports.clj
(ns reporting-example.reports

(:require [reporting-example.db.core :as db]
[clj-pdf.core :refer [pdf template]]))

Chapter 7. Database Access • 130

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/resources/sql/queries.sql
http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/reports.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The pdf function accepts two arguments. The first can be either a vector rep-
resenting the document or an input stream from which the elements will be
read. The second can either be a string representing the output file name or
an output stream.

Let’s generate our first PDF by running the following code in the reporting-
example.reports namespace:

(pdf
[{:header "Wow that was easy"}
[:list
[:chunk {:style :bold} "a bold item"]
"another item"
"yet another item"]

[:paragraph "I'm a paragraph!"]]
"doc.pdf")

As you can see, the report consists of vectors, each starting with a keyword
identifying the type of element, followed by the metadata and the content. In
the preceding report we have a list that contains three rows, followed by a
paragraph. The PDF will be written to a file called doc.pdf in our project’s root.
The contents of the file should look like the following figure.

Figure 10—Our first PDF

Next, let’s see how we can use the template macro to format the employee data
into a nice table. This macro uses $ to create anchors to be populated from
the data using the keys of the same name.

The template returns a function that accepts a sequence of maps and applies
the supplied template to each element in the sequence. In our case, since
we’re building a table, the template is simply a vector with the names of the
keys for each cell in the row. We’ll add the following template to the reporting-
example.reports namespace.

reporting-example/src/clj/reporting_example/reports.clj
(def employee-template

(template [$name $occupation $place $country]))

report erratum • discuss

Generate Reports • 131

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/reports.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(def employee-template-paragraph
(template

[:paragraph
[:heading {:style {:size 15}} $name]
[:chunk {:style :bold} "occupation: "] $occupation "\n"
[:chunk {:style :bold} "place: "] $place "\n"
[:chunk {:style :bold} "country: "] $country
[:spacer]]))

(defn table-report [out]
(pdf

[{:header "Employee List"}
(into [:table

{:border false
:cell-border false
:header [{:color [0 150 150]} "Name" "Occupation" "Place" "Country"]}]

(employee-template (db/read-employees)))]
out))

(defn list-report [out]
(pdf

[{}
[:heading {:size 10} "Employees"]
[:line]
[:spacer]

(employee-template-paragraph (db/read-employees))]
out))

We should see the following output after running (employee-template (take 2 (db/read-
employees))) in the REPL:

(["Albert Einstein" "Engineer" "Ulm" "Germany"]
["Alfred Hitchcock", "Movie Director", "London", "UK"])

Looks like our template works as expected. Let’s use it to generate a report
containing the full list of our employees:

(pdf
[{:header "Employee List"}
(into [:table

{:border false
:cell-border false
:header [{:color [0 150 150]} "Name" "Occupation" "Place" "Country"]}]

(employee-template (db/read-employees)))]
"report.pdf")

The resulting report should look like the following figure.

Chapter 7. Database Access • 132

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 11—Employee table report

Of course, the template we used for this report is boring. Let’s look at another
example. Here we’ll output the data in a list and style each element:

reporting-example/src/clj/reporting_example/reports.clj
(def employee-template-paragraph

(template
[:paragraph
[:heading {:style {:size 15}} $name]
[:chunk {:style :bold} "occupation: "] $occupation "\n"
[:chunk {:style :bold} "place: "] $place "\n"
[:chunk {:style :bold} "country: "] $country
[:spacer]]))

Now let’s create a report using the employee-template-paragraph by running the
following:

(pdf
[{}
[:heading {:size 10} "Employees"]
[:line]
[:spacer]
(employee-template-paragraph (db/read-employees))]

"report.pdf")

Our new report will look like the following figure.

report erratum • discuss

Generate Reports • 133

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/reports.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 12—Employee list report

Displaying the Reports
Now that we’ve created a couple of reports on our data, let’s see how we can
serve them from our application. We’ll write the functions to create the list
and the table reports using the preceding examples:

reporting-example/src/clj/reporting_example/reports.clj
(defn table-report [out]

(pdf
[{:header "Employee List"}
(into [:table

{:border false
:cell-border false
:header [{:color [0 150 150]} "Name" "Occupation" "Place" "Country"]}]

(employee-template (db/read-employees)))]
out))

(defn list-report [out]
(pdf

[{}

Chapter 7. Database Access • 134

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/reports.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[:heading {:size 10} "Employees"]
[:line]
[:spacer]

(employee-template-paragraph (db/read-employees))]
out))

We’ll update our page to provide links to both types of reports.

reporting-example/resources/templates/home.html
{% extends "base.html" %}
{% block content %}

<div class="row">
<div class="span12">

<h1>Select report type:</h1>
<ul class="nav nav-pills">

<li class="btn btn-default">
List reports

<li class="btn btn-default">

Table reports

{% if error %}
<h2>An error has occured while generating the report:</h2>
<div class="alert alert-danger">{{error}}</div>
{% endif %}

</div>
</div>

{% endblock %}

Next, we’ll navigate to reporting-example.routes.home and add some references
needed to create the report route.

reporting-example/src/clj/reporting_example/routes/home.clj
(ns reporting-example.routes.home

(:require [ring.util.response :as response]
[compojure.core :refer [defroutes GET]]
[reporting-example.reports :as reports]
[reporting-example.layout :as layout]))

We’ll also update the home function to serve the page without passing it any
parameters.

reporting-example/src/clj/reporting_example/routes/home.clj
(defn home []

(layout/render "home.html"))

Now we’ll write a function to generate the response. We’ll create an input
stream using a supplied byte array and set it as the response. We’ll also set
the appropriate headers for the content type, the content disposition, and the
length of the content.

report erratum • discuss

Generate Reports • 135

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/resources/templates/home.html
http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/routes/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

reporting-example/src/clj/reporting_example/routes/home.clj
(defn write-response [report-bytes]

(with-open [in (java.io.ByteArrayInputStream. report-bytes)]
(-> (response/response in)

(response/header "Content-Disposition" "filename=document.pdf")
(response/header "Content-Length" (count report-bytes))
(response/content-type "application/pdf"))))

We’ll write another function to generate the report. This function will create
a ByteArrayOutputStream that will be used to store the report. Then it will call one
of our report-generation functions with it. Once the report is generated we’ll
call write-response with the contents of the output stream.

reporting-example/src/clj/reporting_example/routes/home.clj
(defn generate-report [report-type]

(try
(let [out (java.io.ByteArrayOutputStream.)]
(condp = (keyword report-type)

:table (reports/table-report out)
:list (reports/list-report out))

(write-response (.toByteArray out)))

(catch Exception ex
(layout/render "home.html" {:error (.getMessage ex)}))))

Last but not least, we’re going to create a new route to serve our reports.

reporting-example/src/clj/reporting_example/routes/home.clj
(defroutes home-routes

(GET "/" [] (home))
(GET "/about" [] (about))
(GET "/:report-type" [report-type] (generate-report report-type)))

You should now be able to navigate to http://localhost:3000 and select a link to
one of the reports. When you click on the link the corresponding report will
be served.

What You’ve Learned
This covers the basics of working with relational databases. You’ve now learned
how to do the basic database queries, manage the connection lifecycle, and
wrote a reporting application that serves binary content in action. As we’ve
covered in this chapter, database records are easily mapped to Clojure data
structures. Therefore, the Clojure community largely sees object-relational
mapping libraries as unnecessary.

In the next chapter we’ll put together all the skills you’ve learned so far to
write a picture-gallery application.

Chapter 7. Database Access • 136

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/reporting-example/src/clj/reporting_example/routes/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

CHAPTER 8

Picture Gallery
In this chapter we’ll bring together all the concepts you’ve learned thus far
by building a picture gallery application. We’ll write the application using the
Single Page Application (SPA) style.

Traditional applications rely on the server to both handle the business logic
and render the HTML for the UI. This can easily lead to tight coupling between
the client and the server components. It also requires the server to do addi-
tional work that can be handled by the client instead.

Single page applications rely on the client for handling all the presentation
logic. The client typically communicates with the server using a RESTful API
thus providing a clear separation between the client and server responsibilities.

There are a number of advantages to this approach. The user experience is
improved since there is no need to reload the entire page to reflect changes.
The work of rendering the UI is amortized among the clients instead of having
to be handled by the server. The client state is kept on the client allowing the
server to be written in a stateless fashion. The server API is easily testable
and can be extended for different types of clients such as native mobile apps.

The Development Process
We’ll build our application by creating a brief outline of the features to work
from, then filling in the details as we go along.

Luminus based applications automatically start a network REPL when running
in development mode. I recommend that you connect your editor to the REPL
as you’re working. This will allow you to get immediate feedback on the code
you’re writing. For example, if you’re writing a function to pull some data
from the database, try it right in the editor and see its output before hooking
it up to the page.

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

What’s in a Gallery
We’ll identify the different use cases for our site and then start implementing
the functionality needed to support each case. Let’s go over a list of actions
we’d like our site’s users to be able to perform. Each of these use cases will
constitute a particular workflow that we can complete independent of others.

Task A: Account Registration
For a user to put content on the site, she needs to have an account. To facil-
itate this we need a registration form to collect some user details such as a
username and a password, validate those, and create a database entry for
the user.

Task B: Login and Logout
Once a user creates an account, she should be able to log in using the cre-
dentials provided. We need to display a login form on our pages if there is no
user in the session. When the user logs in successfully, we want to display
a logout button instead.

Task C: Uploading Pictures
With the preliminaries out of the way, we can focus on adding some core
functionality. First, we need to provide a way for users to upload content to
the site. When a picture is uploaded we need to create a thumbnail to display
when listing the galleries. The thumbnail should then be saved along with
the original image.

Task D: Displaying Pictures
Now that we can upload pictures, we need to display them. We’ll display the
thumbnails and use them as links to the full-sized pictures. Since our site is
a multi-user one, we also need a way to list user galleries. This way visitors
will be able to browse the content grouped by the user who uploaded it.

Task E: Deleting Pictures
Users might wish to remove some of their uploads, and we’ll provide an
interface to do so. When a user chooses to delete a picture, she’ll need a way
to select it and then delete the picture along with the thumbnail.

Chapter 8. Picture Gallery • 138

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Task F: Account Deletion
A user may also wish to remove her account; hopefully this scenario never
comes up, but we’ll facilitate it just in case. When an account is deleted, we’ll
have to remove the user from our database and remove all the pictures and
thumbnails for that user.

Code Architecture
Now that we’ve identified what we’d like our site to do, we can begin thinking
about how to implement it. It’s a good idea to organize the code with main-
tainability in mind. As your application grows it becomes increasingly
important to be able to reason about parts of it in isolation.

The majority of the server-side code will be focused on providing service
operations for the client side of the application. We can organize these services
into namespaces representing different types of workflows in the application.
For example, we’ll need namespaces for handling authentication, uploads,
and displaying the galleries.

The client side of the application is primarily focused on presentation.
Therefore, we’ll need to create namespaces to represent different pages and
UI components in the application. Ideally, we’d like to organize our UI to
minimize shared state between different screens in the application. This will
allow us to reason about the implementation of each screen independently.

The first step toward understanding the nature of our application is to con-
sider its data model. Figuring out what data we wish to collect and how it will
be used will help us understand the workflow and our use cases. Therefore,
setting up our database and creating the necessary tables will be the first
step of building our application.

If you’ve worked with a web framework in an object-oriented language, you’re
probably used to creating an object model and then mapping it to the
database, either by writing SQL statements by hand or using an object-rela-
tional mapping framework such as Hibernate to do that for you.1

In our application, the database will be our data model. As we saw in Chapter
7, Database Access, on page 115, the clojure.java.jdbc library represents tables
as maps where the keys represent the columns. Since it’s idiomatic to use
core data structures to represent the data in Clojure, there’s no need to map
the data to classes as is the case with OO languages. Following this rationale,
we’ll use our table definitions as the data model for the application.

1. http://www.hibernate.org/

report erratum • discuss

What’s in a Gallery • 139

Prepared exclusively for Bob Erb

http://www.hibernate.org/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Create the Application
So let’s get started. To create the application, generate a new Luminus project
called picture-gallery with authentication, Swagger, ClojureScript, and PostgeSQL
database features.

lein new luminus picture-gallery +auth +swagger +cljs +postgres

As I mentioned earlier, I recommend that you develop the application interac-
tively using the REPL. The project.clj file contains an environment variable called
:nrepl-port; it’s used to allow us to connect the editor to the REPL once the
application is started. The port is set to 7000 by default. All popular Clojure
editors will allow you to connect to a remote REPL and evaluate the code from
the editor using it.

picture-gallery-a/project.clj
:env {:dev true

:port 3000
:nrepl-port 7000}

Let’s start the application in development mode as follows.

cd picture-gallery
lein run
12:31:37.225 [main] DEBUG org.jboss.logging - Logging Provider: Slf4jLoggerProvider
15-Aug-23 12:31:38 INFO [picture-gallery.core] - nREPL server started on port 7000
15-Aug-23 12:31:38 INFO [picture-gallery.handler] -
-=[picture-gallery started successfully using the development profile]=-
12:31:38.290 INFO [wunderboss.web.Web] (main) Registered web context /
15-Aug-23 12:31:38 INFO [picture-gallery.core] - server started on port: 3000

Once the server starts, the application will be available at http://localhost:3000
and the nREPL will accept connections at localhost:7000 as seen in the server log.
Let’s now also start the Figwheel ClojureScript compiler in a separate terminal.

lein figwheel

Once Figwheel starts up, we can navigate the browser to http://localhost:3000 to
see the default Luminus landing page.

Chapter 8. Picture Gallery • 140

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/project.clj
http://localhost:3000
localhost:7000
http://localhost:3000
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 13—Default page

The page advises us that we have to set up our database and run the migra-
tions. Let’s look at accomplishing that task in the next section.

Configure the Database
The data model is a critical part of our application. We need to understand
the type of data our application collects and how it’s presented to the users.
Since we’re using a relational model for our application, we’ll need to identify
the relevant tables before we implement the workflows that rely on them.

report erratum • discuss

Configure the Database • 141

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Create the database
We’ll use a Postgres database for our application; you can refer to Chapter
7, Database Access, on page 115 for details on configuring the database.

Let’s start this database creation by creating a user called gallery with the
password pictures and a new schema called picture_gallery_dev in the
database. Do this by running the following commands in the psql shell.

CREATE USER gallery WITH PASSWORD 'pictures';
CREATE DATABASE picture_gallery_dev OWNER gallery;

Configure the Application
Now that our database is ready to use, let’s open up the profiles.clj file in the
root of our project and set the development database user credentials there.
The template generates two separate profiles for development and testing.

{:profiles/dev
{:env
{:database-url "<dev database url>"}}

:profiles/test
{:env
{:database-url "<test database url>"}}}

We’ll have to set the :database-url in the :profiles/dev profile to the following string.

"jdbc:postgresql://localhost/picture_gallery_dev?user=gallery&password=pictures"

We’ll now have to restart the app for the new environment variables to become
available.

Define the Data Model
With the connection set up, we can now look at defining the necessary tables.
We’ll use the migration files found in the resources/migrations folder to track the
tables that we add for our application.

Where to start? Think of the user tasks we identified. Since our first task will
be to implement user registration, we should try to identify the model for
storing the user information. Each user will need to have a username and a
password. Both of these variables can be strings.

Well look at that. The application happens to already have generated migra-
tions files for the users table. The up migrations file creates a table that’s
suitable for a typical user. Let’s use that.

picture-gallery-a/resources/migrations/20150816001606-add-users-table.up.sql
CREATE TABLE users
(id VARCHAR(20) PRIMARY KEY NOT NULL,

Chapter 8. Picture Gallery • 142

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/resources/migrations/20150816001606-add-users-table.up.sql
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

first_name VARCHAR(30),
last_name VARCHAR(30),
email VARCHAR(30),
admin BOOLEAN,
last_login TIME,
is_active BOOLEAN,
pass VARCHAR(200) NOT NULL);

Since the id represents a unique user, it’s set as a primary key. This will
prevent users with duplicate usernames from being created. Note: the pass-
word will be hashed and thus necessitates a longer field to accommodate the
length of the hashed string.

Let’s run the migrations to create the table. You should see the following
output indicating that the table was created successfully.

lein run migrate
2015-07-04 21:52:44.061:INFO::main: Logging initialized @10780ms
Jul 04, 2015 9:52:44 PM clojure.tools.logging$eval464$fn__470 invoke
INFO: Starting migrations
Jul 04, 2015 9:52:44 PM clojure.tools.logging$eval464$fn__470 invoke
INFO: creating migration table 'schema_migrations'
Jul 04, 2015 9:52:44 PM clojure.tools.logging$eval464$fn__470 invoke
INFO: Running up for [20150816001606]
Jul 04, 2015 9:52:44 PM clojure.tools.logging$eval464$fn__470 invoke
INFO: Up 20150728223411-add-users-table
Jul 04, 2015 9:52:44 PM clojure.tools.logging$eval464$fn__470 invoke
INFO: Ending migrations
(0)

With our users table in place, we’re ready to move on to our first task of
showing a registration page and providing a way to create user accounts.

Task A: Account Registration
User registration and authentication represent a self-contained workflow that
is independent from the rest of our application’s functionality. Each workflow
in our application will consist of complimentary client and server components.
The server part will be responsible for handling the business logic and provid-
ing an API for the client. The client-side will be responsible for managing the
UI and the client application state.

Before we continue we need to understand the workflow involved in user
registration. The user has to enter some identifying information in a form and
send that information to the server. The server will route this information to
a handler function that will decide whether a user account should be created
based on the account creation rules.

report erratum • discuss

Task A: Account Registration • 143

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We’ll need a form to collect the user information and call the server. The client
then has to handle the result of the operation and notify the user of the out-
come.

Add Authentication Routes
Since we’re building our application using the SPA style, most of our server
routes will consist of service operations. The application already has a picture-
gallery.routes.services namespace generated by the +swagger profile. This
namespace will contain the routes for all the services that we’ll write going
forward.

However, we don’t want to pollute this namespace with all the different handler
functions for each of the workflows, so we’ll put these in their respective
namespaces. The functions used for the authentication workflow will therefore
live in the picture-gallery.routes.services.auth namespace.

We’ll need to reference picture-gallery.db.core to access the database, ring.util.http-
response to generate the appropriate response map, buddy.hashers to hash the
password, and clojure.tools.logging to log any errors that might occur.

(ns picture-gallery.routes.services.auth
(:require [picture-gallery.db.core :as db]

[ring.util.http-response :as response]
[buddy.hashers :as hashers]
[clojure.tools.logging :as log]))

Our first step will be to write a function that creates a user using the supplied
parameter and notifies the client of the status of the operation. When the
registration is successful, the function will set the :identity key in the session
to indicate that the user is now logged in.

(ns picture-gallery.routes.services.auth
(:require [picture-gallery.db.core :as db]

[ring.util.http-response :as response]
[buddy.hashers :as hashers]
[clojure.tools.logging :as log]))

(defn register [{:keys [session]} user]
(try

(db/create-user!
(-> user

(dissoc :pass-confirm)
(update :pass hashers/encrypt)))

(-> {:result :ok}
(response/ok)
(assoc :session (assoc session :identity (:id user))))

(catch Exception e

Chapter 8. Picture Gallery • 144

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(log/error e)
(response/internal-server-error

{:result :error
:message "server error occurred while adding the user"}))))

The function attempts to store the user without doing any validation on the
input. We’ve already looked at handling input validation using the Bouncer
library when we worked on the guestbook application in Chapter 2, Clojure
Web Stack, on page 25. The next step will be very similar to that. Registering
users consists of collecting the user information we wish to store and creating
a record in the database. In this case, we’ll collect the username, a password,
and a retyped password to ensure it was entered correctly.

However, this time around we would also like to be able to notify the user of
incorrect input before it’s sent to the server. Since we’re using ClojureScript
on the front end, we can share the validation logic between the client and the
server. Let’s see how that’s done.

We’ll navigate to the source folder called src/cljc. This source path contains a
namespace folder called picture_gallery. Clojure 1.7 introduced reader condition-
als that can be used to output platform specific code that interops with Java
and JavaScript respectively.2 Using these extensions it’s possible to write
Clojure code that targets both platforms without having to duplicate the logic.
Any code that we wish to cross-compile between different platforms should
use the cljc extension. It is used to indicate that the file can be cross-compiled
between Clojure and ClojureScript.

The source paths are defined using the :source-paths key in the project.clj file. The
top level defines the source folders for Clojure, while the one found under the
:cljsbuild configuration specifies ones for ClojureScript. The :resource-paths key
defines the paths for any non-code assets for the project.

picture-gallery-a/project.clj
:source-paths ["src/clj" "src/cljc"]
:resource-paths ["resources" "target/cljsbuild"]

We can create a new namespace called picture-gallery.validation. It will be placed
in the file called src/cljc/picture_gallery/validation.cljc. Notice the extension cljc. The
namespace will reference the Bouncer library, that itself cross-compiles
between Clojure and ClojureScript, to provide a validation function for our
application.

picture-gallery-a/src/cljc/picture_gallery/validation.cljc
(ns picture-gallery.validation

2. http://dev.clojure.org/display/design/Reader+Conditionals

report erratum • discuss

Task A: Account Registration • 145

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/project.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/cljc/picture_gallery/validation.cljc
http://dev.clojure.org/display/design/Reader+Conditionals
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(:require [bouncer.core :as b]
[bouncer.validators :as v]))

(defn registration-errors [{:keys [pass-confirm] :as params}]
(first

(b/validate
params
:id v/required
:pass [v/required

[v/min-count 7 :message "password must contain at least 8 characters"]
[= pass-confirm :message "re-entered password does not match"]])))

The registration-errors function accepts a map with the keys id, pass, and pass-confirm
as its parameters. It then checks that the password contains at least seven
characters, and that it matches the retyped password.

We can now navigate back to the picture-gallery.routes.services.auth namespace and
reference the validation namespace there as follows.

picture-gallery-a/src/clj/picture_gallery/routes/services/auth.clj
(ns picture-gallery.routes.services.auth

(:require [picture-gallery.db.core :as db]
[picture-gallery.validation :refer [registration-errors]]
[ring.util.http-response :as response]
[buddy.hashers :as hashers]
[clojure.tools.logging :as log]))

Let’s update the register function to validate the input. We’ll use our newly
created registration-errors function to check if there are any errors and return an
error response to the client.

picture-gallery-a/src/clj/picture_gallery/routes/services/auth.clj
(if (registration-errors user)

(response/precondition-failed {:result :error})

If no errors were found during validation, then we’ll attempt to create the user
and catch the exception. When the user is created successfully, then we
return the ok response to the client. In case of errors, we’ll call the handle-regis-
tration-error function.

picture-gallery-a/src/clj/picture_gallery/routes/services/auth.clj
(defn handle-registration-error [e]

(if (-> e (.getNextException)
(.getMessage)
(.startsWith "ERROR: duplicate key value"))

(response/precondition-failed
{:result :error
:message "user with the selected ID already exists"})

(do
(log/error e)

Chapter 8. Picture Gallery • 146

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/clj/picture_gallery/routes/services/auth.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/clj/picture_gallery/routes/services/auth.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/clj/picture_gallery/routes/services/auth.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(response/internal-server-error
{:result :error
:message "server error occurred while adding the user"}))))

The function checks whether the error indicates that the user id is already
taken and returns a custom error message in that case; otherwise it will
return an internal server error.

The entire register! function should now look as follows.

picture-gallery-a/src/clj/picture_gallery/routes/services/auth.clj
(defn register! [{:keys [session]} user]

(if (registration-errors user)
(response/precondition-failed {:result :error})
(try
(db/create-user!

(-> user
(dissoc :pass-confirm)
(update :pass hashers/encrypt)))

(-> {:result :ok}
(response/ok)
(assoc :session (assoc session :identity (:id user))))

(catch Exception e
(handle-registration-error e)))))

If any of these conditions fail, then the function will return the precondition-failed
type response with a map that contains a :result key set to the value of :error.

Otherwise, the function will attempt to create the user account in the database.
Before the account is created, we need to remove the :pass-confirm key from the
user map, and encrypt the :pass key. When the record is created successfully,
then we return the result of :ok. We’ll catch any exceptions thrown when the
account is being created and return the internal-server-error response if the
operation fails.

Our function expects the create-user! function to be present in the picture-
gallery.db.core namespace. This function will be defined by the Yesql library that
was discussed in Chapter 7, Database Access, on page 115. We’ll need to open
the resources/sql/queries.sql file and update it as follows.

picture-gallery-a/resources/sql/queries.sql
-- name: create-user!
-- creates a new user record
INSERT INTO users
(id, pass)
VALUES (:id, :pass)

-- name: get-user
-- retrieve a user given the id.

report erratum • discuss

Task A: Account Registration • 147

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/clj/picture_gallery/routes/services/auth.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/resources/sql/queries.sql
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

SELECT * FROM users
WHERE id = :id

-- name: delete-user!
-- delete a user given the id
DELETE FROM users
WHERE id = :id

We now have queries to add, select, and delete user accounts. Let’s switch
to the picture-gallery.db.core and run the (conman/bind-connection *db* "sql/queries.sql")
command. This will load the query functions that we just defined.

We can now test the register! function by navigating back to the picture-
gallery.routes.services.auth namespace and running it with a test user in the REPL
as follows:

(register! {} {:id "foo" :pass "12345678" :pass-confirm "12345678"})

We should see the result of {:result :ok}. If we run (db/get-user {:id "foo"}) next, then
we should see the user we just created as the result. We can also test the
other cases by supplying an invalid user map and seeing how the function
behaves in each case.

Once we’re satisfied that the function is working properly, we’ll navigate to
the picture-gallery.routes.services namespace and replace the sample routes with
the one needed for registration.

picture-gallery-a/src/clj/picture_gallery/routes/services.clj
(ns picture-gallery.routes.services

(:require [picture-gallery.routes.services.auth :as auth]
[ring.util.http-response :refer :all]
[compojure.api.sweet :refer :all]
[schema.core :as s]))

(s/defschema UserRegistration
{:id String
:pass String
:pass-confirm String})

(s/defschema Result
{:result s/Keyword
(s/optional-key :message) String})

(defapi service-routes
{:swagger {:ui "/swagger-ui"

:spec "/swagger.json"
:data {:info {:version "1.0.0"

:title "Picture Gallery API"
:description "Public Services"}}}}

(POST "/register" req

Chapter 8. Picture Gallery • 148

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/clj/picture_gallery/routes/services.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:return Result
:body [user UserRegistration]
:summary "register a new user"
(auth/register! req user)))

Since the compojure-api library uses schemas to define the request and
response for each service operation, we also have to add the UserRegistration
and Result definitions. The first will match the parameters expected by the
register! function, while the second describes the response produced by it.

Once we reload the namespace in the REPL, we should be able to navigate to
http://localhost:3000/swagger-ui/ and test the service operation from the
Swagger test UI.

report erratum • discuss

Task A: Account Registration • 149

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 14—Registration Test

With the routes in place, we can focus our attention on the client-side code
that will be responsible for facilitating the registration workflow for the user.
We’ll need to create a form where the user can enter their info, send the info
to the server, and then notify the user of the result.

Chapter 8. Picture Gallery • 150

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Add the Registration UI
We’ll display the form as a modal dialog in order to provide a smooth workflow
that doesn’t require the user to navigate to a separate page to register. Let’s
start by creating a modal component and testing it. Since the modal is a
general purpose component, we’re likely to reuse it for other parts of the
application as well. Let’s create a picture-gallery.components.common namespace
and create a modal component there.

picture-gallery-a/src/cljs/picture_gallery/components/common.cljs
(defn modal [header body footer]

[:div
[:div.modal-dialog
[:div.modal-content
[:div.modal-header [:h3 header]]
[:div.modal-body body]
[:div.modal-footer
[:div.bootstrap-dialog-footer
footer]]]]

[:div.modal-backdrop.fade.in]])

The modal component will accept the header, the body, and the footer as its
arguments, then generate the markup for the Bootstrap modal dialog, placing
the parameters in their appropriate places. Note that each of the arguments
can also be a component itself, and the modal component simply specifies
the layout for them.

In order to gray out the background, we’re going to place the modal in a div
followed by [:div.modal-backdrop.fade.in]. We’ll also have to add the appropriate
CSS in the resources/public/css/screen.css file.

picture-gallery-a/resources/public/css/screen.css
*/
.modal-dialog {

z-index: 100;
margin: auto;
position: absolute;
top: 150px;
left: 0;
right: 0;

}

.modal-backdrop {
z-index: 1;

}

report erratum • discuss

Task A: Account Registration • 151

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/cljs/picture_gallery/components/common.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/resources/public/css/screen.css
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can now test that our modal works by referencing picture-gallery.components.com-
mon in picture-gallery.core and creating a new modal inside the page component.

(ns picture-gallery.core
(:require ...

[picture-gallery.components.common :as c])
(:import goog.History))

...

(defn page []
[:div
;;modal test
[c/modal "I'm a Modal" [:p "this is the body"] "this is a footer"]
[(pages (session/get :page))]])

When we look at the page in the browser, we should see something like this:

Figure 15—Modal Test

Now that we have a place for displaying our registration form, let’s create a
couple of additional helper functions for generating input fields. The form will
collect the username, the password, and the password confirmation fields.
We’ll create the following helpers to facilitate that.

picture-gallery-a/src/cljs/picture_gallery/components/common.cljs
(defn input [type id placeholder fields]

Chapter 8. Picture Gallery • 152

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/cljs/picture_gallery/components/common.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[:input.form-control.input-lg
{:type type
:placeholder placeholder
:value (id @fields)
:on-change #(swap! fields assoc id (-> % .-target .-value))}])

(defn form-input [type label id placeholder fields optional?]
[:div.form-group
[:label label]
(if optional?

[input type id placeholder fields]
[:div.input-group
[input type id placeholder fields]
[:span.input-group-addon
"✱"]])])

(defn text-input [label id placeholder fields & [optional?]]
(form-input :text label id placeholder fields optional?))

(defn password-input [label id placeholder fields & [optional?]]
(form-input :password label id placeholder fields optional?))

The input component will create an input HTML element with the given type. It
will use the id to look it up in the fields atom that we’ll supply and display the
value of the placeholder parameter as its placeholder text.

Next, we’ll create a form-input component that will create a Bootstrap form group
using the input component that we just created. The form group will add a
label to the input and add an asterisk next to required inputs.

Finally, we’ll create the text-input and the password-input components that will
create the types of inputs that we need in our form.

With that in place, let’s create a namespace called picture-gallery.components.regis-
tration and proceed to write the form component there.

(ns picture-gallery.components.registration
(:require [reagent.core :refer [atom]]

[picture-gallery.components.common :as c]))

...

(defn registration-form []
(let [fields (atom {})]

(fn []
[c/modal
[:div "Picture Gallery Registration"]
[:div
[:div.well.well-sm
[:strong "✱ required field"]]

report erratum • discuss

Task A: Account Registration • 153

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[c/text-input "name" :id "enter a user name" fields]
[c/password-input "password" :pass "enter a password" fields]
[c/password-input "password" :pass-confirm "re-enter the password" fields]]

[:div
[:button.btn.btn-primary "Register"]
[:button.btn.btn-danger "Cancel"]]])))

Let’s navigate back to picture-gallery.core and remove the code that loads the
documents from the server as we won’t be needing it.

picture-gallery-a/src/cljs/picture_gallery/core.cljs
(defn mount-components []

(r/render [#'navbar] (.getElementById js/document "navbar"))
(r/render [#'page] (.getElementById js/document "app")))

(defn init! []
(load-interceptors!)
(hook-browser-navigation!)
(mount-components))

Next, let’s reference the picture-gallery.components.registration namespace and replace
the test modal we created earlier with the registration modal.

(ns picture-gallery.core
(:require ...

[picture-gallery.components.registration :as reg])
(:import goog.History))

...

(defn page []
[:div
;;registration modal test
[reg/registration-form-example]
[(pages (session/get :page))]])

When we look at the page, we should see a nice registration form like the one
in the following figure.

Chapter 8. Picture Gallery • 154

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/cljs/picture_gallery/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 16—Registration Form

Our modal certainly looks nice, but it doesn’t do much yet. Let’s add some
functionality to it. We’ve already created an atom to store the data collected
by the registration form, the next step is to send this data to the server via
Ajax and handle the response.

Calling the Server using Ajax

As you’ll recall from previous projects, we have to provide a CSRF token to
the server in our requests. The resources/templates/home.html template contains a
variable that holds this token. Recall that the csrf-token field is added to the
context map by the picture-gallery.layout/render function. This value is assigned to
the csrfToken variable when the page is rendered.

picture-gallery-a/resources/templates/home.html
<script type="text/javascript">

var context = "{{servlet-context}}";
var csrfToken = "{{csrf-token}}";

</script>

report erratum • discuss

Task A: Account Registration • 155

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/resources/templates/home.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The project also contains a ClojureScript namespace called picture-gallery.ajax
with the following code.

(ns picture-gallery.ajax
(:require [ajax.core :as ajax]))

(defn default-headers [request]
(-> request

(update :uri #(str js/context %))
(update

:headers
#(merge

%
{"Accept" "application/transit+json"
"x-csrf-token" js/csrfToken}))))

(defn load-interceptors! []
(swap! ajax/default-interceptors

conj
(ajax/to-interceptor {:name "default headers"

:request default-headers})))

This namespace uses an interceptor to set the context and the default request
headers for the application. The interceptors are applied to each request and
provide a central way to set common parameters. The Accept header indicates
that the server should return data encoded using the transit format. The x-
csrf-token header sets the CSRF token that’s found on the page.

The context variable in the preceding code is used when our application has
a URL prefix. We may wish to use a context in a couple of scenarios.

The first scenario is when we’re deploying the application to an application
server such as Apache Tomcat. In this case, each application must have its
own context path in order for the server to route requests accordingly.

The second scenario is when we wish to front multiple applications by a
server such as Apache HTTP Server or Nginx without creating subdomains
for each. The HTTP server would route requests to each application to a dif-
ferent URI.

Since the browser is not aware that our application has a context, the server
has to provide that information when it generates the page. Luckily for us,
the picture-gallery.layout namespace populates the :servlet-context key using the
value bound to the *app-context* variable. Its value is in turn bound by the
middleware found in the picture-gallery.middleware namespace.

picture-gallery-a/src/clj/picture_gallery/middleware.clj
(defn wrap-context [handler]

Chapter 8. Picture Gallery • 156

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/clj/picture_gallery/middleware.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(fn [request]
(binding [*app-context*

(if-let [context (:servlet-context request)]
;; If we're not inside a servlet environment
;; (for example when using mock requests), then
;; .getContextPath might not exist
(try (.getContextPath ^ServletContext context)

(catch IllegalArgumentException _ context))
;; if the context is not specified in the request
;; we check if one has been specified in the environment
;; instead
(:app-context env))]

(handler request))))

The middleware checks for either the :servlet-context key in the request or the
:app-context environment variable to populate the *app-context* variable. The
:servlet-context key will be present when the application is deployed to an
application server such as Apache Tomcat.

The home.html template sets the value of the :servlet-context key as a JavaScript
variable on the page.

picture-gallery-a/resources/templates/home.html
<script type="text/javascript">

var context = "{{servlet-context}}";
var csrfToken = "{{csrf-token}}";

</script>

Register the User
We’re now ready to call the service operation to register the user using our
registration form. We’ll navigate back to the picture-gallery.components.registration
namespace and add a register! function that will call the service. Next, we’ll
reference the ajax.core and the picture-gallery.validation namespaces.

(ns picture-gallery.registration
(:require ...

[ajax.core :as ajax]
[picture-gallery.validation :refer [registration-errors]]))

(defn register! [fields errors]
(reset! errors (registration-errors @fields))
(when-not @errors

(ajax/POST "/register"
{:params @fields
:handler

#(do
(session/put! :identity (:id @fields))
(reset! fields {}))

:error-handler

report erratum • discuss

Task A: Account Registration • 157

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/resources/templates/home.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

#(reset!
errors
{:server-error (get-in % [:response :message])})})))

We can now update our registration form to call the register! function when
the Register button is clicked. We’ll also add an atom to hold the error that
will be displayed when it’s populated by the :error-handler callback in the register!
function.

(defn registration-form []
(let [fields (atom {})

error (atom nil)]
(fn []
[c/modal
[:div "Picture Gallery Registration"]
[:div
[:div.well.well-sm
[:strong "✱ required field"]]

[c/text-input "name" :id "enter a user name" fields]
[c/password-input "password" :pass "enter a password" fields]
[c/password-input "password" :pass-confirm "re-enter the password" fields]
(when-let [error (:server-error @error)]

[:div.alert.alert-danger error])]
[:div
[:button.btn.btn-primary
{:on-click #(register! fields error)}
"Register"]

[:button.btn.btn-danger "Cancel"]]])))

At this point we should be able to fill in some information and try to register
the user from our form. If we do not see an error displayed in the form, we
can check the database to confirm that the user was created.

The next step is to show the form conditionally. We can use the reagent.session
provided by the reagent-utils3 library for this purpose. We’ll create a session
key called :modal and whenever this key is populated, we’ll display its value
on the page. The modal can then be set in the session from anywhere in the
application.

We’ll add a reference to the reagent.session namespace and update the Cancel
button in our form to remove the :modal key from the session.

(ns picture-gallery.components.registration
(:require [reagent.core :refer [atom]]

[reagent.session :as session]
[picture-gallery.components.common :as c]))

3. https://github.com/reagent-project/reagent-utils

Chapter 8. Picture Gallery • 158

report erratum • discussPrepared exclusively for Bob Erb

https://github.com/reagent-project/reagent-utils
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

...

(defn registration-form []
(let [fields (atom {})]

(fn []
[c/modal
[:div "Picture Gallery Registration"]
[:div
[:div.well.well-sm
[:strong "✱ required field"]]

[c/text-input "name" :id "enter a user name" fields]
[c/password-input "password" :pass "enter a password" fields]
[c/password-input "password" :pass-confirm "re-enter the password" fields]]

[:div
[:button.btn.btn-primary
{:on-click #(register! fields error)}
"Register"]

[:button.btn.btn-danger
{:on-click #(session/remove! :modal)}
"Cancel"]]])))

Next, we’ll add a component to the registration button that will set the registra-
tion-form as the modal in the session.

picture-gallery-a/src/cljs/picture_gallery/components/registration.cljs
(defn registration-button []

[:a.btn
{:on-click #(session/put! :modal registration-form)}
"register"])

When the registration button is clicked the registration modal will be set in
the session and when the Cancel button on the modal is clicked it will be
removed.

We’ll now navigate to the picture-gallery.core namespace where we’ll create a user
menu component that we’ll place in the navbar.

picture-gallery-a/src/cljs/picture_gallery/core.cljs
(defn user-menu []

(if-let [id (session/get :identity)]
[:ul.nav.navbar-nav.pull-xs-right
[:li.nav-item
[:a.dropdown-item.btn
{:on-click #(session/remove! :identity)}
[:i.fa.fa-user] " " id " | sign out"]]]

[:ul.nav.navbar-nav.pull-xs-right
[:li.nav-item [reg/registration-button]]]))

report erratum • discuss

Task A: Account Registration • 159

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/cljs/picture_gallery/components/registration.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/cljs/picture_gallery/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The component will check if there’s an :identity key present in the session.
When it is, then it will present a logout button that will clear the identity from
the session. Otherwise, it will display the registration-button that we just created.

We can now update the navbar component to add the user-menu to the navbar
on the home page.

picture-gallery-a/src/cljs/picture_gallery/core.cljs
(defn navbar []

(let [collapsed? (r/atom true)]
(fn []
[:nav.navbar.navbar-light.bg-faded
[:button.navbar-toggler.hidden-sm-up
{:on-click #(swap! collapsed? not)} "☰"]

[:div.collapse.navbar-toggleable-xs
(when-not @collapsed? {:class "in"})
[:a.navbar-brand {:href "#/"} "picture-gallery"]
[:ul.nav.navbar-nav
[nav-link "#/" "Home" :home collapsed?]
[nav-link "#/about" "About" :about collapsed?]]]

[user-menu]])))

We should now see a register button in the navbar as seen in the following
figure.

Figure 17—Registration Button

Now that we have the button hooked up, we’ll also need to update the code
to display the modal conditionally in our page component.

picture-gallery-a/src/cljs/picture_gallery/core.cljs
(defn modal []

(when-let [session-modal (session/get :modal)]

Chapter 8. Picture Gallery • 160

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/cljs/picture_gallery/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/cljs/picture_gallery/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[session-modal]))

(defn page []
[:div
[modal]
[(pages (session/get :page))]])

Note that the modal is written as a separate function instead of being added
inline as seen in the following example.

(defn page []
[:div
(when-let [session-modal (session/get :modal)]

[session-modal])
[(pages (session/get :page))]])

There is one very important reason to separate the page and the modal compo-
nents. When we put the modal inside the page component, then whenever the
value of the :modal key in the session changes, it will force the entire page
component to be re-rendered. That includes the current page selected from
the session using the :page key and causes the state of the page to be lost.

When we split out the modal component into a separate function, then when-
ever the value of the :modal key changes only that component will be affected.
As a rule, we always want to ensure that the minimal necessary set of compo-
nents is affected by a change in the application state.

We can now test that everything works as expected. When we click the register
button, the registration modal should pop up. Conversely, when we click the
Cancel button, then it should disappear again.

Let’s go back to the picture-gallery.components.registration namespace and add a few
more finishing touches. We’ll update the :handler callback in the register! function
to remove the modal from the session, and update the form to display the
validation errors.

picture-gallery-a/src/cljs/picture_gallery/components/registration.cljs
(ns picture-gallery.components.registration

(:require [reagent.core :refer [atom]]
[reagent.session :as session]
[picture-gallery.components.common :as c]
[ajax.core :as ajax]
[picture-gallery.validation :refer [registration-errors]]))

(defn register! [fields errors]
(reset! errors (registration-errors @fields))
(when-not @errors

(ajax/POST "/register"
{:params @fields

report erratum • discuss

Task A: Account Registration • 161

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-a/src/cljs/picture_gallery/components/registration.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:handler
#(do
(session/put! :identity (:id @fields))
(reset! fields {})
(session/remove! :modal))

:error-handler
#(reset!
errors
{:server-error (get-in % [:response :message])})})))

(defn registration-form []
(let [fields (atom {})

error (atom nil)]
(fn []
[c/modal
[:div "Picture Gallery Registration"]
[:div
[:div.well.well-sm
[:strong "✱ required field"]]

[c/text-input "name" :id "enter a user name" fields]
(when-let [error (first (:id @error))]

[:div.alert.alert-danger error])
[c/password-input "password" :pass "enter a password" fields]
(when-let [error (first (:pass @error))]

[:div.alert.alert-danger error])
[c/password-input "password" :pass-confirm "re-enter the password" fields]
(when-let [error (:server-error @error)]

[:div.alert.alert-danger error])]
[:div
[:button.btn.btn-primary
{:on-click #(register! fields error)}
"Register"]

[:button.btn.btn-danger
{:on-click #(session/remove! :modal)}
"Cancel"]]])))

(defn registration-button []
[:a.btn
{:on-click #(session/put! :modal registration-form)}
"register"])

With the error handling hooked up, the client can notify the user of the errors
before calling the server. This wraps up the user registration workflow. We’re
now ready to tackle our next task: allowing users to log in and log out after
creating an account on our site.

Task B: Login and Logout
The actions for logging in and logging out are based on the state of the session.
When there is no user identity present in the session then we should present

Chapter 8. Picture Gallery • 162

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

the user with a login form. Conversely, when there is an identity present then
we will present an option for the user to logout.

To log in, the user will submit her username and password using a form on
the page. These will be checked against the stored credentials. When they
match, we’ll put her identity in the session.

When the user logs in, we’ll send the credentials using basic HTTP authenti-
cation.4 The specification states that the username and the password are
joined using the : separator. The string is then encoded using base 64, and
the authorization method Basic is prepended. The string is then set as the
Authorization header in the request. The resulting header might look as follows:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

We’ll start by adding the necessary service routes in the picture-gallery.routes.ser-
vices namespace under the service-routes route group.

picture-gallery-b/src/clj/picture_gallery/routes/services.clj
(POST "/login" req

:header-params [authorization :- String]
:summary "login the user and create a session"
:return Result
(auth/login! req authorization))

(POST "/logout" []
:summary "remove user session"
:return Result
(auth/logout!))

The login route will receive a POST request at the /login URI with the autho-
rization credentials as header parameters using the :header-params key. These
will be passed to the login! function in the picture-gallery.routes.services.auth
namespace that we’ll write shortly. The result of the function will be sent back
to the client.

We’ll also write a logout route that will call the picture-gallery.routes.ser-
vices.auth/logout! function. The logout route doesn’t require any parameters since
all we have to do is remove the user session from memory when the user logs
out.

Let’s go ahead and write the login! and logout! functions in the picture-
gallery.routes.services.auth namespace. We’ll start with the login function.

4. https://en.wikipedia.org/wiki/Basic_access_authentication

report erratum • discuss

Task B: Login and Logout • 163

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/clj/picture_gallery/routes/services.clj
https://en.wikipedia.org/wiki/Basic_access_authentication
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The login function will have to decode the base 64 string and then split the
username and password using the : character. We’ll write a helper function
called decode-auth for that.

picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
(defn decode-auth [encoded]

(let [auth (second (.split encoded " "))]
(-> (.decode (java.util.Base64/getDecoder) auth)

(String. (java.nio.charset.Charset/forName "UTF-8"))
(.split ":"))))

We’ll use the decoded username and password to query the database to check
whether the user exists and if the supplied password matches the hashed
one that was created when the user registered. This will be done by the
authenticate function.

picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
(defn authenticate [[id pass]]

(when-let [user (first (db/get-user {:id id}))]
(when (hashers/check pass (:pass user))
id)))

Finally, we can write the login! function that uses the two functions we just
defined to handle the login operation.

picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
(defn login! [{:keys [session]} auth]

(if-let [id (authenticate (decode-auth auth))]
(-> {:result :ok}

(response/ok)
(assoc :session (assoc session :identity id)))

(response/unauthorized {:result :unauthorized
:message "login failure"})))

The function accepts the request and the authentication string as its
parameters. It attempts to log the user in using this string. When the login
is successful, then we return the ok result and set the :identity key in the session
that was provided in the request. Otherwise, we will return the unauthorized
response with the message stating that there was a login failure.

The logout! function returns an ok result and sets the :session in the response
to nil. Setting the session explicitly to nil will cause the Ring session middleware
to remove the existing session.

picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
(defn logout! []

(-> {:result :ok}
(response/ok)
(assoc :session nil)))

Chapter 8. Picture Gallery • 164

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Once again, we can navigate to the Swagger test page to test that our service
operations work correctly. We’ll need to generate a base 64 encoded credentials
string to test the login! operation. We can generate this string in the REPL as
follows:

(str "Basic "
(.encodeToString
(java.util.Base64/getEncoder)
(.getBytes "user:pass")))

When we paste the result in the authorization field on the test page, we’ll see
the server response. We should see a 200 response when we supply the correct
credentials and a 401 response otherwise.

Figure 18—Login Test

report erratum • discuss

Task B: Login and Logout • 165

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can also test the logout! function the same way to see whether it works
correctly. Once we’re satisfied that the service routes are working, we can
turn our attention to the client UI.

The login workflow will look very similar to the registration workflow we
developed earlier. We’ll create a modal that will collect the username and the
password. These will be sent to the server via Ajax. If the server responds
that the authentication was successful, then we’ll set the username as the
:identity in the session. Otherwise, we’ll display an error to the user to indicate
that their login attempt was rejected.

Let’s create a new ClojureScript namespace under the src/cljs folder called picture-
gallery.components.login. We’ll write separate functions to encode the credentials,
call the server, display the registration modal, and display a button that will
put the modal in the session.

The namespace declaration will need to include the following references. Most
of these we’ve seen before, and the only new reference is the goog.crypt.base64.
Since ClojureScript leverages the Google Closure library, the namespaces it
provides can be included the same way as ones written in ClojureScript. The
goog.crypt.base64 namespace provides a encodeString function that can be used
to encode the username and the password as a base 64 string.

picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
(ns picture-gallery.components.login

(:require [reagent.core :refer [atom]]
[reagent.session :as session]
[goog.crypt.base64 :as b64]
[clojure.string :as string]
[ajax.core :as ajax]
[picture-gallery.components.common :as c]))

We can create the encode-auth function to generate the authorization header
using the b64/encodeString function.

picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
(defn encode-auth [user pass]

(->> (str user ":" pass) (b64/encodeString) (str "Basic ")))

Next, we’ll write the login! function that will call the server and send it the
credentials supplied in the fields atom. The fields will be sent using the
Authorization header after being encoded using the encode-auth function we
just wrote. The success handler will remove the modal from the session, set
the :identity key to the username, and clear out the form atom. The error handler
will instead populate the error atom with the error message from the server.

(defn login! [fields error]

Chapter 8. Picture Gallery • 166

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(let [{:keys [id pass]} @fields]
(reset! error nil)
(ajax/POST "/login"

{:headers {"Authorization" (encode-auth (string/trim id) pass)}
:handler #(do

(session/remove! :modal)
(session/put! :identity id)
(reset! fields nil))

:error-handler #(reset! error (get-in % [:response :message]))})))

We can now write the login-form function that will create a modal similar to the
one we used for registration. We’ll use the helper functions from the picture-
gallery.components.common namespace to define the text and password input
fields.

picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
(defn login-form []

(let [fields (atom {})
error (atom nil)]

(fn []
[c/modal
[:div "Picture Gallery Login"]
[:div
[:div.well.well-sm
[:strong "✱ required field"]]

[c/text-input "name" :id "enter a user name" fields]
[c/password-input "password" :pass "enter a password" fields]
(when-let [error @error]

[:div.alert.alert-danger error])]
[:div
[:button.btn.btn-primary
{:on-click #(login! fields error)}
"Login"]

[:button.btn.btn-danger
{:on-click #(session/remove! :modal)}
"Cancel"]]])))

All that’s left to do is to create a component that will insert the login modal
into the session.

picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
(defn login-button []

[:a.btn
{:on-click #(session/put! :modal login-form)}
"login"])

Let’s navigate to the picture-gallery.core namespace. We’ll reference the ajax.core
and the picture-gallery.components.login there.

(ns picture-gallery.core
(:require ...

report erratum • discuss

Task B: Login and Logout • 167

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[ajax.core :as ajax]
[picture-gallery.components.login :as l])

(:import goog.History))

With that done, let’s update our user-menu to display both the login-button and
the registration-button components. The logout button will now call the server
/logout route and remove the :identity from the session in its handler.

picture-gallery-b/src/cljs/picture_gallery/core.cljs
(defn user-menu []

(if-let [id (session/get :identity)]
[:ul.nav.navbar-nav.pull-xs-right
[:li.nav-item
[:a.dropdown-item.btn
{:on-click #(ajax/POST

"/logout"
{:handler (fn [] (session/remove! :identity))})}

[:i.fa.fa-user] " " id " | sign out"]]]
[:ul.nav.navbar-nav.pull-xs-right
[:li.nav-item [l/login-button]]
[:li.nav-item [reg/registration-button]]]))

With that in place, we should now be able to log in to our application and see
the username displayed in the navbar menu. Once logged in to the app, then
we should see the logout link displayed in the navbar instead.

Figure 19—Navbar With a User in Session

Chapter 8. Picture Gallery • 168

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/cljs/picture_gallery/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

However, we’re not quite done yet. Should we refresh the page, we’ll lose the
client session state and the client-side of the app will revert back to the default
state asking the user to login again. In order to fix this problem, the server
has to provide the client with the information about its session state when
the page loads.

If you’ll recall, when the user logs in, we set the :identity key in the session.

picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
(defn login! [{:keys [session]} auth]

(if-let [id (authenticate (decode-auth auth))]
(-> {:result :ok}

(response/ok)
(assoc :session (assoc session :identity id)))

(response/unauthorized {:result :unauthorized
:message "login failure"})))

A middleware function called wrap-identity in the picture-gallery.middleware namespace
then binds it to the picture-gallery.layout/*identity* dynamic variable.

picture-gallery-b/src/clj/picture_gallery/middleware.clj
(defn wrap-identity [handler]

(fn [request]
(binding [*identity* (get-in request [:session :identity])]
(handler request))))

We can now update the render function in the picture-gallery.layout namespace to
set the :identity key in the context map that’s passed to Selmer when rendering
pages. We can use this variable to provide the client part of the application
with information about the state of the user session.

picture-gallery-b/src/clj/picture_gallery/layout.clj
(defn render

"renders the HTML template located relative to resources/templates"
[template & [params]]
(content-type

(ok
(parser/render-file

template
(assoc params

:page template
:csrf-token *anti-forgery-token*
:servlet-context *app-context*
:identity *identity*)))

"text/html; charset=utf-8"))

To do this, we’ll open up the resources/templates/home.html file and create a Java-
Script variable called identity. This variable will be set to the value of the
:identity key in the context map.

report erratum • discuss

Task B: Login and Logout • 169

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/clj/picture_gallery/routes/services/auth.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/clj/picture_gallery/middleware.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/clj/picture_gallery/layout.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

picture-gallery-b/resources/templates/home.html
<script type="text/javascript">

var context = "{{servlet-context}}";
var csrfToken = "{{csrf-token}}";
var identity = {{identity|json|safe}};

</script>

Now when the page loads and there is an :identity key in the session, its value
will be populated on the page and become available to the client. All that’s
left to do is to take the value of the js/identity and set it as the :identity key in the
client session in the init! function.

picture-gallery-b/src/cljs/picture_gallery/core.cljs
(defn init! []

(load-interceptors!)
(hook-browser-navigation!)
(session/put! :identity js/identity)
(mount-components))

The page will now correctly preserve the session state when it’s refreshed in
the browser.

There’s one last thing we need to do before we’re finished with the login
workflow. The session middleware on the server defaults to timing sessions
out after half an hour of inactivity. However, the client code is not aware of
the timeout event. Once the user is logged in, the page will behave the same
way whether the server session is active or not.

Let’s fix this problem by writing a session-timer function that will check the
session status periodically and log the user out if the session stays inactive
for too long.

We’ll track the session status using a :user-event variable that will be set any
time a user action is initiated. In our case, the action would be represented
by Ajax calls to the server. We’ll open up the picture-gallery.ajax namespace to
add a new interceptor that will set set this variable in the session.

picture-gallery-b/src/cljs/picture_gallery/ajax.cljs
(defn user-action [request]

(session/put! :user-event true)
request)

(defn load-interceptors! []
(swap! ajax/default-interceptors

into
[(ajax/to-interceptor {:name "default headers"

:request default-headers})
(ajax/to-interceptor {:name "user action"

:request user-action})]))

Chapter 8. Picture Gallery • 170

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/resources/templates/home.html
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/cljs/picture_gallery/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/cljs/picture_gallery/ajax.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Now, any time we make an Ajax call, both the client and the server will know
about the user action. The next step is to go back to the picture-gallery.compo-
nents.login namespace and write the timeout function. The function will check
whether there’s an :identity key in the session and then check if a user event
has occurred. In case of an event, we’ll remove the :user-event variable from the
session and schedule the next check using the timeout-ms variable. In case no
event occurred, we’ll remove the :identity key from the session.

picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
(def timeout-ms (* 1000 60 30))

(defn session-timer []
(when (session/get :identity)

(if (session/get :user-event)
(do

(session/remove! :user-event)
(js/setTimeout #(session-timer) timeout-ms))

(session/remove! :identity))))

We can now update the handler in the login! function to start the session-timer
when the user logs in successfully.

picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
(defn login! [fields error]

(let [{:keys [id pass]} @fields]
(reset! error nil)
(ajax/POST "/login"

{:headers {"Authorization"
(encode-auth (when id (string/trim id)) pass)}

:handler #(do
(session/remove! :modal)
(session/put! :identity id)
(js/setTimeout session-timer timeout-ms)
(reset! fields nil))

:error-handler #(reset! error (get-in % [:response :message]))})))

With this code in place, we can ensure that the client times out sessions at
the same time the server does. We’re now ready to take a look at the core
workflow of our application related to uploading and displaying pictures.

Task C: Uploading Pictures
Once again, our workflow consists of two parts. We have to implement the
service operation that will handle file uploads, and then we have to provide
the UI for the user to upload the file. In addition to saving the file, it would
also be nice to generate a thumbnail for it. This will allow us to show image
previews on the gallery page without having to retrieve full sized images. The

report erratum • discuss

Task C: Uploading Pictures • 171

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-b/src/cljs/picture_gallery/components/login.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

files will be stored in the database and associated with their owner via the
username.

We’ll start by implementing the server workflow and then testing it using the
Swagger UI page. Once it’s working the way we need, we can turn our attention
to implementing the client side of the workflow.

Updating the Model
Let’s update our database to handle file uploads. We’ll create a new table
called files and then write a query function that will populate it. The first step
is to create a new migrations file by running the following command.

lein migratus create add-files-table

The command will use the Migratus plugin to create the up and down
migration files in the resources/migrations folder under the root of the application.

The next step is to write the statement to create the files table in the up
migration file. The table will track the owner, the type of file, the name of the
file, and the file content.

picture-gallery-c/resources/migrations/20150819224308-add-files-table.up.sql
CREATE TABLE files
(owner VARCHAR(20) NOT NULL,
type VARCHAR(50) NOT NULL,
name VARCHAR(50) NOT NULL,
data BYTEA,
PRIMARY KEY(owner, name));

The down migration file will remove the table created by the up migration
statement.

picture-gallery-c/resources/migrations/20150819224308-add-files-table.down.sql
DROP TABLE files;

We can now run the following command to update the database tables.

lein run migrate

The next step is to write a statement for saving files in our database and place
it in the resources/sql/queries.sql file.

picture-gallery-c/resources/sql/queries.sql
--name: save-file!
-- saves a file to the database
INSERT INTO files
(owner, type, name, data)
VALUES (:owner, :type, :name, :data)

Chapter 8. Picture Gallery • 172

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/resources/migrations/20150819224308-add-files-table.up.sql
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/resources/migrations/20150819224308-add-files-table.down.sql
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/resources/sql/queries.sql
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The SQL statement will accept the parameters that match the :owner, :type,
:name, and :data keys in the parameter map and create a new row in the files
table.

Handling the Upload
Since we’re creating a new workflow, we should create a new namespace for
it. Let’s make a picture-gallery.routes.services.upload namespace for handling the
task of saving the files. We’ll add the following references to the namespace
declaration.

picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
(ns picture-gallery.routes.services.upload

(:require [picture-gallery.db.core :as db]
[ring.util.http-response :refer :all]
[clojure.tools.logging :as log])

(:import [java.awt.image AffineTransformOp BufferedImage]
[java.io ByteArrayOutputStream FileInputStream]
java.awt.geom.AffineTransform
javax.imageio.ImageIO
java.net.URLEncoder))

We can break down the server operations into a series of tasks and then write
the corresponding functions to accomplish each of these tasks. The first
function we’ll write is the save-image! function. It will handle the top level
workflow of saving the image and generating the response.

A good way to figure out what helper functions we’ll need is to stub them out
in our top level function and then implement them once we understand the
workflow a little better.

picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
(defn save-image! [user {:keys [tempfile filename content-type]}]

(try
(let [db-file-name (str user (.replaceAll filename "[^a-zA-Z0-9-_\\.]" ""))]
(db/save-file! {:owner user

:type content-type
:name db-file-name
:data (file->byte-array tempfile)})

(db/save-file! {:owner user
:type "image/png"
:data (image->byte-array

(scale-image tempfile thumb-size))
:name (str thumb-prefix db-file-name)}))

(ok {:result :ok})
(catch Exception e
(log/error e)
(internal-server-error "error"))))

report erratum • discuss

Task C: Uploading Pictures • 173

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The function will accept the user identity stored in the session and the file
description sent from the client as a map. The file is described by a map that
in turn contains the following keys:

• :tempfile — The file itself
• :filename — The name of the file being uploaded
• :content-type — The content type of the file being uploaded
• :size — The size of the file in bytes

The keys that are of particular interest to us are called filename and tempfile.
We’ll try to store the file in the database by converting the content of the
:tempfile key into a byte array. Then we’ll create a thumbnail by scaling the
tempfile and store it with a thumb-prefix prepended to its name. If both operations
succeed, then we’ll return the ok status, otherwise we’ll return a server error.

Now let’s define the constants for the prefix and the size of the thumbnail at
the top of the namespace.

picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
(def thumb-size 150)

(def thumb-prefix "thumb_")

Then we’ll write a function to convert the file to a byte array. The function
creates an input stream from the file and copies its contents into a byte array
output stream. The output stream is then converted to a byte array that’s
returned.

picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
(defn file->byte-array [x]

(with-open [input (FileInputStream. x)
buffer (ByteArrayOutputStream.)]

(clojure.java.io/copy input buffer)
(.toByteArray buffer)))

Next, we need to work on the scaling the image. Here we’ll leverage the Affine-
Transform class provided by the Java standard library to create a scale operation,
and use AffineTransformOp to do the transformation. The filter method on the
transform-op will use the original image to produce the scaled image we require.

picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
(defn scale [img ratio width height]

(let [scale (AffineTransform/getScaleInstance
(double ratio) (double ratio))

transform-op (AffineTransformOp.
scale AffineTransformOp/TYPE_BILINEAR)]

(.filter transform-op img (BufferedImage. width height (.getType img)))))

Chapter 8. Picture Gallery • 174

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Let’s test that our scale function works correctly; copy an image file with the
name image.jpg into our project’s root and run the following from the REPL:

(ImageIO/write
(scale (ImageIO/read (io/input-stream "image.jpg")) 0.5 150 150)
"jpeg"
(File. "scaled.jpg"))

If the function worked correctly, then we should end up with a scaled.jpg in the
same folder, with a size of 150 pixels by 150 pixels.

We can now write a scale-image function to read the uploaded file’s image data
using the ImageIO class. Once we have an image, we’ll grab its width and height
values, then scale it to the height defined by the thumb-size constant.

picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
(defn scale-image [file thumb-size]

(let [img (ImageIO/read file)
img-width (.getWidth img)
img-height (.getHeight img)
ratio (/ thumb-size img-height)]

(scale img ratio (int (* img-width ratio)) thumb-size)))

The scale-image can now also be tested from the REPL. It’s a good idea to test
it with a few images that have different dimensions to see that they all scale
correctly.

(ImageIO/write
(scale-image (io/input-stream "image.jpg") thumb-size)
"jpeg"
(File. "scaled.jpg"))

We’ll also need to write a image->byte-array function to take the scaled thumbnail
image and convert it to a byte array that will be stored in the database.

picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
(defn image->byte-array [image]

(let [baos (ByteArrayOutputStream.)]
(ImageIO/write image "png" baos)
(.toByteArray baos)))

The function writes the image to a byte array output stream using the
ImageIO/write method from the Java standard library. The contents of the output
stream are then returned as a byte array.

With these functions in place, we can now navigate to the picture-
gallery.routes.services namespace and create a route for file uploads. However,
we don’t want to add this route to the service-routes we have already defined
since it shouldn’t be publicly accessible.

report erratum • discuss

Task C: Uploading Pictures • 175

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/clj/picture_gallery/routes/services/upload.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Instead, we’ll create a new set of routes called restricted-service-routes and place
the route there. We’ll also need to reference the upload namespace in order to
use it.

(ns picture-gallery.routes.services
(:require [picture-gallery.routes.services.auth :as auth]

[picture-gallery.routes.services.upload :as upload]
...))

The route will accept a POST request containing the multipart params. This
map contains the :file key that in turn points to a map containing the file
description we discussed earlier. We’ll take this map and pass it to the save-
image! function we just wrote along with the user identity from the session.

picture-gallery-c/src/clj/picture_gallery/routes/services.clj
(defapi restricted-service-routes

{:swagger {:ui "/swagger-ui-private"
:spec "/swagger-private.json"
:data {:info {:version "1.0.0"

:title "Picture Gallery API"
:description "Private Services"}}}}

(POST "/upload" req
:multipart-params [file :- TempFileUpload]
:middleware [wrap-multipart-params]
:summary "handles image upload"
:return Result
(upload/save-image! (:identity req) file)))

We now have to remember to add the new restricted-service-routes to the app-routes
declaration in the picture-gallery.handler namespace.

(ns picture-gallery.handler
(:require ...

[picture-gallery.routes.services
:refer [service-routes restricted-service-routes]]

...))

picture-gallery-c/src/clj/picture_gallery/handler.clj
(def app-routes

(routes
#'service-routes
(wrap-routes #'restricted-service-routes middleware/wrap-auth)
(wrap-routes #'home-routes middleware/wrap-csrf)
(route/not-found
(:body

(error-page {:status 404
:title "page not found"})))))

With all that in place, we should now restart the application if it’s already
running and then navigate to the Swagger UI page to test our newly imple-

Chapter 8. Picture Gallery • 176

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/clj/picture_gallery/routes/services.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/clj/picture_gallery/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

mented upload functionality. We can now test uploading some files and check
the database to confirm that the entries were indeed created there. Our next
logical step is to see how we can display these files in the browser.

Creating the Upload UI
Now that the services are implemented and working, it’s time to add the UI
component that will allow users to do image uploads. Let’s create a new
namespace called picture-gallery.components.upload. The namespace will contain a
form that allows the user to select a file to upload and a function that will
handle the upload.

Since we’re uploading a file, we must use the multipart/form-data encoding
for the form. This type of form can’t be created directly through JavaScript.
Luckily, the Google Closure library that ClojureScript is built on top of provides
a way to create an iFrame that can be used to submit the file. Let’s take a
look at how this all works. We’ll start by including the needed references in
our namespace declaration.

picture-gallery-c/src/cljs/picture_gallery/components/upload.cljs
(ns picture-gallery.components.upload

(:require [goog.events :as gev]
[reagent.core :as reagent :refer [atom]]
[reagent.session :as session]
[picture-gallery.components.common :as c])

(:import goog.net.IframeIo
goog.net.EventType
[goog.events EventType]))

Note the imports for IframeIO and EventType. These are needed to generate the
iFrame and submit the file. These have to be accessed through interop simi-
larly to the way Java classes are accessed in Clojure. We’ll call the upload-file!
function that handles the upload that looks as follows.

picture-gallery-c/src/cljs/picture_gallery/components/upload.cljs
(defn upload-file! [upload-form-id status]

(reset! status nil)
(let [io (IframeIo.)]

(gev/listen
io goog.net.EventType.SUCCESS
#(reset! status [:div.alert.alert-success "file uploaded successfully"]))

(gev/listen
io goog.net.EventType.ERROR
#(reset! status [:div.alert.alert-danger "failed to upload the file"]))

(.setErrorChecker io #(= "error" (.getResponseText io)))
(.sendFromForm
io
(.getElementById js/document upload-form-id)

report erratum • discuss

Task C: Uploading Pictures • 177

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/cljs/picture_gallery/components/upload.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/cljs/picture_gallery/components/upload.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

"/upload")))

The function will accept the form id for the element where the iFrame should
be created and an atom to set the status of the Ajax request. The form creates
the IFrameIo object then adds the listeners for the events when the upload
succeeds as well as when it fails. Each listener will set the appropriate status
in the atom. The function calls sendFromForm on the io object and passes it the
DOM element pointed to by the upload-form-id.

Since the event to submit the form is triggered by the user pressing the button,
the form has to be mounted in the browser DOM in order for the user to
access it. Therefore, we don’t have to worry about the lifecycle of the DOM
component in this instance.

The form itself will look similar to the registration and login forms we’ve
written in the previous sections. Once again, we’ll use a modal to display the
content of the form and an atom to track its state.

picture-gallery-c/src/cljs/picture_gallery/components/upload.cljs
(defn upload-form []

(let [status (atom nil)
form-id "upload-form"]

(fn []
[c/modal
[:div "Upload File"]
[:div
(when @status @status)
[:form {:id form-id

:enc-type "multipart/form-data"
:method "POST"}

[:label {:for "file"} "select an image for upload"]
[:input {:id "file" :name "file" :type "file"}]]

[:button.btn.btn-primary
{:on-click #(upload-file! form-id status)}
"Upload"]

[:button.btn.btn-danger
{:on-click #(session/remove! :modal)}
"Cancel"]]])))

Finally, we’ll add a button component that we’ll place in the navbar when the
user is logged in.

picture-gallery-c/src/cljs/picture_gallery/components/upload.cljs
(defn upload-button []

[:a.btn
{:on-click #(session/put! :modal upload-form)}
"upload image"])

Chapter 8. Picture Gallery • 178

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/cljs/picture_gallery/components/upload.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/cljs/picture_gallery/components/upload.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Let’s navigate back to the picture-gallery.core namespace where we’ll reference
the upload namespace and add the button to the user-menu component.

(ns picture-gallery.core
(:require ...

[picture-gallery.components.upload :as u])
(:import goog.History))

picture-gallery-c/src/cljs/picture_gallery/core.cljs
(defn user-menu []

(if-let [id (session/get :identity)]
[:ul.nav.navbar-nav.pull-xs-right
[:li.nav-item [u/upload-button]]
[:li.nav-item
[:a.dropdown-item.btn
{:on-click #(ajax/POST

"/logout"
{:handler (fn [] (session/remove! :identity))})}

[:i.fa.fa-user] " " id " | sign out"]]]
[:ul.nav.navbar-nav.pull-xs-right
[:li.nav-item [l/login-button]]
[:li.nav-item [reg/registration-button]]]))

We should now be able to log in and see the upload link in the menu. When
we click on the link, the freshly minted upload form will pop up and allow
the user to upload the file.

Figure 20—File Upload Dialog

report erratum • discuss

Task C: Uploading Pictures • 179

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-c/src/cljs/picture_gallery/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

If we select an image file and upload it, then we should be able to check the
database to confirm that the upload was handled successfully as we did when
we tested the service using Swagger UI. Now that we have some pictures in
the database, it’s time to look at how we can display them on the page.

Task D: Displaying Pictures
We now have all the pieces in place to start working on the gallery portion of
the application. Each gallery consists of the images that the user uploaded
to our server. Since the images can be large, we’d like to display the thumb-
nails that we generate for each image on the page instead. When clicked, a
thumbnail will display the full-size picture.

Displaying a Gallery for a User
The first thing we need to do is write a query to select the names of the
thumbnail files for a particular user and then send those to the client. The
client can then create image links for each thumbnail that will point to the
actual image. We’ll also have to write a function that retrieves the image from
the database and serves it using the appropriate mime type. Let’s start by
writing the queries in the resources/sql/queries.sql file.

picture-gallery-d/resources/sql/queries.sql
--name: list-thumbnails
-- selects thumbnail names for the given gallery owner
SELECT owner, name FROM files
WHERE owner = :owner
AND name LIKE 'thumb_%'

--name: get-image
-- retrieve image data by name
SELECT type, data FROM files
WHERE name = :name

Next, we’ll create a new namespace called picture-gallery.routes.services.gallery with
the following references.

picture-gallery-d/src/clj/picture_gallery/routes/services/gallery.clj
(ns picture-gallery.routes.services.gallery

(:require [picture-gallery.layout :refer [error-page]]
[picture-gallery.db.core :as db]
[ring.util.http-response :refer :all])

(:import java.io.ByteArrayInputStream))

With that done, let’s add the get-image and list-thumbnails functions to accomplish
the tasks we’ve outlined.

Chapter 8. Picture Gallery • 180

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/resources/sql/queries.sql
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/clj/picture_gallery/routes/services/gallery.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

picture-gallery-d/src/clj/picture_gallery/routes/services/gallery.clj
(defn get-image [name]

(if-let [{:keys [type data]} (first (db/get-image {:name name}))]
(-> (ByteArrayInputStream. data)

(ok)
(content-type type))

(error-page {:status 404
:title "page not found"})))

(defn list-thumbnails [owner]
(ok (db/list-thumbnails {:owner owner})))

The get-image function will accept the name of the image as its parameter and
run the SQL query to retrieve the content type along with the image data.
The function then initializes a ByteArrayInputStream using the data and sets the
content type to the type of the image. In case the image cannot be found, an
error page is generated instead. All the list-thumbnails function does is wrap the
database query with the ok response.

We’re now ready to create new routes in the picture-gallery.routes.services namespace
using these functions.

picture-gallery-d/src/clj/picture_gallery/routes/services.clj
(GET "/gallery/:owner/:name" []

:summary "display user image"
:path-params [name :- String]
(gallery/get-image name))

(GET "/list-thumbnails/:owner" []
:path-params [owner :- String]
:summary "list thumbnails for images in the gallery"
:return [Gallery]
(gallery/list-thumbnails owner))

The route for retrieving the image will use a RESTful format where we generate
the URI for the image using the /gallery/:owner/:name format. We’ll then
use the name parameter to look up the image using the function we just
wrote. The route for listing the thumbnails will return the list of image names
for the specified owner.

We’ll also need to create a schema description for the response that will consist
of a collection of gallery descriptions. The gallery will consist of a map with
the :owner and the :name keys to specify the gallery owner and the image name.

(s/defschema Gallery
{:owner String
:name String})

Once again, we can navigate to the Swagger UI test page and confirm that
both functions behave as desired. When we specify a username for the list-

report erratum • discuss

Task D: Displaying Pictures • 181

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/clj/picture_gallery/routes/services/gallery.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/clj/picture_gallery/routes/services.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

thumbnails route we should see the list of thumbnail file descriptions for that
user.

Figure 21—Listing Thumbnails

Chapter 8. Picture Gallery • 182

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Similarly, when we specify one of the image names in the gallery route, then
we should see the actual image returned in the response.

Figure 22—Returning the Image

We’re now ready to implement the client-side UI for this part of the application.
The gallery is on a separate page in our application and we should create a
namespace for it that will be called picture-gallery.components.gallery. The gallery
page will consist of a grid of thumbnails where the user will be able to click
on an individual thumbnail to see the original size image.

Since we may have a lot of images in a particular gallery, we’ll partition the
list of images into sub-lists and navigate those using a pager as we did with

report erratum • discuss

Task D: Displaying Pictures • 183

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

the cat API viewer in Chapter 6, Writing RESTful Web Services, on page 97.
Let’s start by adding the following references in our namespace declaration.

picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
(ns picture-gallery.components.gallery

(:require [reagent.core :refer [atom]]
[reagent.session :as session]
[ajax.core :as ajax]
[clojure.string :as s]
[picture-gallery.components.common :as c]))

As usual, we’ll start by writing the top level functions and then work our way
through the helper functions that we’ll be needing. The topmost function is
going to be the gallery-page. This function will be responsible for rendering the
page with the thumbnails.

picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
(defn gallery-page []

(let [page (atom 0)]
(fn []
[:div.container
(when-let [thumbnail-links (partition-links (session/get :thumbnail-links))]

[:div.row>div.col-md-12
[pager (count thumbnail-links) page]
[gallery (thumbnail-links @page)]])])))

The function will use an atom to track the position in the thumbnail pager.
The thumbnails will be expected to be present in the session atom under the
:thumbnail-links key. When the key is populated, the function will render the
pager and the selected gallery partition. We’ll partition the links using the
partition-links function that follows.

picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
(defn partition-links [links]

(when links
(vec (partition-all 6 links))))

The function will partition the collection of links into groups of 6 and then
coerce the result into a vector so that we can address each group by its index.

The pager function will display the navigation links based on the number of
groups generated by the partition-links function. The logic in the pager is the
same as the last time. When a page is selected, then the page atom is updated
with its index. When the first page is selected, then the back navigation button
is disabled. Conversely, when the last page is selected, then the forward
navigation button is disabled.

picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
(defn pager [pages page]

Chapter 8. Picture Gallery • 184

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(when (> pages 1)
(into
[:div.text-xs-center>ul.pagination.pagination-lg]
(concat

[[:li.page-item>a.page-link.btn.btn-primary
{:on-click #(swap! page back pages)
:class (when (= @page 0) "disabled")}

[:span "«"]]]
(map (partial nav-link page) (range pages))
[[:li.page-item>a.page-link.btn.btn-primary

{:on-click #(swap! page forward pages)
:class (when (= @page (dec pages)) "disabled")}

[:span "»"]]]))))

We’ll also extract the logic for updating the selected page index into the fol-
lowing helper function.

picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
(defn forward [i pages]

(if (< i (dec pages)) (inc i) i))

(defn back [i]
(if (pos? i) (dec i) i))

(defn nav-link [page i]
[:li.page-item>a.page-link.btn.btn-primary
{:on-click #(reset! page i)
:class (when (= i @page) "active")}

[:span i]])

The gallery function will be responsible for displaying the table given the links
for the particular partition. We’ll further partition the links into sets of three
per row, then create a column for each thumbnail within the row.

picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
(defn gallery [links]

[:div.text-xs-center
(for [row (partition-all 3 links)]

^{:key row}
[:div.row
(for [link row]

^{:key link}
[thumb-link link])])])

Each link contains the owner and the name keys. We’ll use these to construct
the preview for the image. This will be done by the thumb-link function.

picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
(defn thumb-link [{:keys [owner name]}]

[:div.col-sm-4>img
{:src (str js/context "/gallery/" owner "/" name)

report erratum • discuss

Task D: Displaying Pictures • 185

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:on-click #(session/put!
:modal
(image-modal

(str js/context "/gallery/" owner "/"
(s/replace name #"thumb_" ""))))}])

The function will create a td that contains the thumbnail with preview of the
image. The thumbnail will in turn create a modal that displays the original
image when clicked.

Note that the thumb-link function uses the js/context variable as part of the URL
that it constructs. This is done for the same reason we added the js/context in
the picture-gallery.ajax namespace. Should the application be run with a context,
such as when deploying to an application server, then it will need to be
explicitly prepended on the client.

The modal will contain a div with the image and another div for the background.
When the image is clicked, the modal will be removed from the session,
allowing us to navigate back to the gallery. The background div will use the
modal-backdrop.fade.in classes to darken the rest of the page.

picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
(defn image-modal [link]

(fn []
[:div
[:img.image.panel.panel-default
{:on-click #(session/remove! :modal)
:src link}]

[:div.modal-backdrop.fade.in]]))
;end:image-modal

(defn thumb-link [{:keys [owner name]}]
[:div.col-sm-4>img
{:src (str js/context "/gallery/" owner "/" name)
:on-click #(session/put!

:modal
(image-modal

(str js/context "/gallery/" owner "/"
(s/replace name #"thumb_" ""))))}])

(defn gallery [links]
[:div.text-xs-center
(for [row (partition-all 3 links)]

^{:key row}
[:div.row
(for [link row]

^{:key link}
[thumb-link link])])])

Chapter 8. Picture Gallery • 186

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(defn forward [i pages]
(if (< i (dec pages)) (inc i) i))

(defn back [i]
(if (pos? i) (dec i) i))

(defn nav-link [page i]
[:li.page-item>a.page-link.btn.btn-primary
{:on-click #(reset! page i)
:class (when (= i @page) "active")}

[:span i]])

(defn pager [pages page]
(when (> pages 1)

(into
[:div.text-xs-center>ul.pagination.pagination-lg]
(concat

[[:li.page-item>a.page-link.btn.btn-primary
{:on-click #(swap! page back pages)
:class (when (= @page 0) "disabled")}

[:span "«"]]]
(map (partial nav-link page) (range pages))
[[:li.page-item>a.page-link.btn.btn-primary

{:on-click #(swap! page forward pages)
:class (when (= @page (dec pages)) "disabled")}

[:span "»"]]]))))

(defn fetch-gallery-thumbs! [owner]
(ajax/GET (str "/list-thumbnails/" owner)

{:handler #(session/put! :thumbnail-links %)}))

(defn partition-links [links]
(when links

(vec (partition-all 6 links))))

(defn gallery-page []
(let [page (atom 0)]

(fn []
[:div.container
(when-let [thumbnail-links (partition-links (session/get :thumbnail-links))]

[:div.row>div.col-md-12
[pager (count thumbnail-links) page]
[gallery (thumbnail-links @page)]])])))

We’ll also need to add a bit of CSS in order to have our modal show up in the
center of the page. As you’ll note, we’ve added the image.panel.panel-default
classes to the image tag. Next, we are going to set the following style for the
image class in screen.css.

report erratum • discuss

Task D: Displaying Pictures • 187

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

picture-gallery-d/resources/public/css/screen.css
*/
.image {

z-index: 100;
position: absolute;
margin: auto;
left: 0;
right: 0;
padding:20px;

}

The image should now show up in a panel at the center of the screen. Finally,
we’ll have to write a function to fetch the image links via Ajax that we’ll use
to load the gallery thumbnail data.

picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
(defn fetch-gallery-thumbs! [owner]

(ajax/GET (str "/list-thumbnails/" owner)
{:handler #(session/put! :thumbnail-links %)}))

We’re now ready to hook up the gallery display on the home page. Let’s navi-
gate back to picture-gallery.core and add the required functionality. First thing
we have to do is reference the namespace we just created.

(ns picture-gallery.core
(:require ...

[picture-gallery.components.gallery :as g])
(:import goog.History))

Next, we’ll add the gallery-page function to the map of available pages.

picture-gallery-d/src/cljs/picture_gallery/core.cljs
(def pages

{:home #'home-page
:gallery #'g/gallery-page
:about #'about-page})

With the page added, we can update the client-side routes to call the fetch-
gallery-thumbs! function to load the thumbnails and set the page to :gallery when
the user navigates to the /gallery/:owner URI.

picture-gallery-d/src/cljs/picture_gallery/core.cljs
(secretary/defroute "/" []

(session/put! :page :home))
(secretary/defroute "/gallery/:owner" [owner]

(g/fetch-gallery-thumbs! owner)
(session/put! :page :gallery))

(secretary/defroute "/about" []
(session/put! :page :about))

Chapter 8. Picture Gallery • 188

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/resources/public/css/screen.css
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/components/gallery.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can now test navigating to a particular gallery page and see the thumbnails
displayed there. For example, if we had a user foo, then we should be able to
navigate to http://localhost:3000/#/gallery/foo to see the gallery for that
user as seen in the following figure.

Figure 23—Gallery for User Foo

The next step is to display the list of galleries for all the users on the home
page. To do that, we’d like to grab an image for each user in the database and
display these in the table. When the user clicks on a particular image, they
will be taken to the gallery page associated with the owner of the image.

Displaying All Available Galleries
We first have to update our SQL queries to add a function that will pull a
unique image for each user from the database.

picture-gallery-d/resources/sql/queries.sql
--name: select-gallery-previews
-- selects a thumbnail for each user gallery
WITH summary AS (

SELECT f.owner,
f.name,
ROW_NUMBER() OVER(PARTITION BY f.owner

ORDER BY f.name DESC) AS rk
FROM files f WHERE name like 'thumb_%')

SELECT s.*
FROM summary s

WHERE s.rk = 1

With the function added, we either have to rerun the (conman/bind-connection conn
"sql/queries.sql") from the picture-gallery.db.core namespace in the REPL, or restart
the application to load the new query. Next, we have to write a service function
that will wrap the gallery previews in an ok response.

report erratum • discuss

Task D: Displaying Pictures • 189

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/resources/sql/queries.sql
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

picture-gallery-d/src/clj/picture_gallery/routes/services/gallery.clj
(defn list-galleries []

(ok (db/select-gallery-previews)))

Finally, we need to create a route for the list-galleries function in the picture-
gallery.routes.services namespace.

picture-gallery-d/src/clj/picture_gallery/routes/services.clj
(GET "/list-galleries" []

:summary "lists a thumbnail for each user"
:return [Gallery]
(gallery/list-galleries))

The query that we run will produce an additional :rk key when grouping the
results. Since the result is otherwise identical to the Gallery schema we’ve
already defined, we’ll add this as an optional key allowing us to use it for both
list-thumbnails and the list-galleries routes.

picture-gallery-d/src/clj/picture_gallery/routes/services.clj
(s/defschema Gallery

{:owner String
:name String
(s/optional-key :rk) s/Num})

Once again, we can test that we’re getting the right data by navigating to the
Swagger UI page and calling the list-galleries route that we just created.

Chapter 8. Picture Gallery • 190

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/clj/picture_gallery/routes/services/gallery.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/clj/picture_gallery/routes/services.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/clj/picture_gallery/routes/services.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Figure 24—List Available Galleries API

Back on the client-side, we can now update the picture-gallery.core namespace
to fetch the available galleries and display them on the home page.

picture-gallery-d/src/cljs/picture_gallery/core.cljs
(defn galleries [gallery-links]

[:div.text-xs-center
(for [row (partition-all 3 gallery-links)]

^{:key row}
[:div.row
(for [{:keys [owner name]} row]

^{:key (str owner name)}
[:div.col-sm-4
[:a {:href (str "#/gallery/" owner)}

report erratum • discuss

Task D: Displaying Pictures • 191

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-d/src/cljs/picture_gallery/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[:img {:src (str js/context "/gallery/" owner "/" name)}]]])])])

(defn list-galleries! []
(ajax/GET "/list-galleries"

{:handler #(session/put! :gallery-links %)}))

(defn home-page []
(list-galleries!)
(fn []

[:div.container
[:div.row
[:div.col-md-12>h2 "Available Galleries"]]

(when-let [gallery-links (session/get :gallery-links)]
[:div.row>div.col-md-12
[galleries gallery-links]])]))

The galleries function partitions the links into sets of three, then proceeds to
render them as image links in a table. Then, we have the list-galleries! function
that fetches the galleries via Ajax and sets them as the :gallery-links key in the
session. Finally, the home-page function will call list-galleries! and render the gal-
leries component when the :gallery-links is populated in the session with the
gallery data.

When we reload the page, it should now display the galleries using the
thumbnails, and if we select a particular thumbnail, then the gallery page
associated with it will be displayed.

Figure 25—List Available Galleries

Task E: Deleting Pictures
It’s reasonable for a user to want to remove images they no longer wish to
display. Therefore, we need to provide a way for the users to select images
they wish to remove and tell the application about it. To delete a picture, we’ll

Chapter 8. Picture Gallery • 192

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

have to remove both the original image and the generated thumbnail from
the database.

Since the images can be removed only by the owner, we’ll check if the page
matches the user in the session. When this is the case, we’ll display a button
next to the image that will allow the user to delete it.

Implementing the Server Route
We’ll first need to write the service operation for deleting images from the
database. Let’s open up the queries.sql file and add the query for deleting files.
The query will use a combination of the username and the filename to identify
the file that needs to be deleted.

picture-gallery-e/resources/sql/queries.sql
--name: delete-file!
-- deletes the file with the given name and owner
DELETE FROM files
WHERE name = :name
AND owner = :owner

Next, we’ll open up the picture-gallery.routes.services.gallery namespace and add the
delete-image! function. This function will delete both the original image and the
thumbnail that we generated when the image was uploaded.

picture-gallery-e/src/clj/picture_gallery/routes/services/gallery.clj
(defn delete-image! [owner thumb-name image-name]

(db/delete-file! {:owner owner :name thumb-name})
(db/delete-file! {:owner owner :name image-name})
(ok {:result :ok}))

With the delete-image! function added, we’ll navigate to the picture-
gallery.routes.services namespace and add the route for deleting the image. The
route will be declared under restricted-service-routes since it shouldn’t be publicly
available.

picture-gallery-e/src/clj/picture_gallery/routes/services.clj
(POST "/delete-image" req

:body-params [image-name :- String thumb-name :- String]
:summary "delete the specified file from the database"
:return Result
(gallery/delete-image! (:identity req) thumb-name image-name))

The route accepts a POST request from the client and looks for the image and
its thumbnail names in the body params of the request. It then takes these
parameters and passes them to the delete-image! function along with the user
identity from the session.

report erratum • discuss

Task E: Deleting Pictures • 193

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-e/resources/sql/queries.sql
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-e/src/clj/picture_gallery/routes/services/gallery.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-e/src/clj/picture_gallery/routes/services.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Note that we use the identity found in the server session when deleting the
image even though the client already sent us the image name that it would
like to delete. Doing this ensures that a malicious client would not be able to
delete an image that belongs to a different user.

Implementing the UI
With the service functionality added, we can now focus on adding the UI
portion of the workflow. We’ll navigate to the picture-gallery.components.gallery
namespace where we put the logic for rendering gallery thumbnails.

Since deletion of images is a destructive operation, we’ll want to add a confir-
mation dialog before actually deleting the image. Let’s write a delete-image-button
function that looks as follows.

picture-gallery-e/src/cljs/picture_gallery/components/gallery.cljs
(defn delete-image-button [owner name]

(session/put!
:modal
(fn []
[c/modal
[:h2 "Remove " name "?"]
[:div [:img {:src (str "/gallery/" owner "/" name)}]]
[:div
[:button.btn.btn-primary
{:on-click #(delete-image! name)}
"delete"]

[:button.btn.btn-danger
{:on-click #(session/remove! :modal)}
"Cancel"]]])))

The function will create a modal asking the user to confirm that they really
wish to delete the image with the given name. Should the user choose to
cancel, we’ll remove the modal from the session, otherwise we’ll call the delete-
image! function that follows.

picture-gallery-e/src/cljs/picture_gallery/components/gallery.cljs
(defn delete-image! [name]

(ajax/POST "/delete-image"
{:params {:image-name (s/replace name #"thumb_" "")

:thumb-name name}
:handler #(do

(session/update-in!
[:thumbnail-links]
(fn [links]

(remove
(fn [link] (= name (:name link)))
links)))

(session/remove! :modal))}))

Chapter 8. Picture Gallery • 194

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-e/src/cljs/picture_gallery/components/gallery.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-e/src/cljs/picture_gallery/components/gallery.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The delete-image! function will call the /delete-image route that we defined
earlier and pass it the names of the image and its thumbnail as the parame-
ters. The handler will update the :thumbnail-links key to remove the link with the
name of the image from the list. This will ensure that the image is also removed
in the UI once it’s deleted by the server.

Figure 26—Gallery check box

One last task on our list is to allow users to delete their accounts from our
app. Let’s take a look at how that’s accomplished next.

Task F: Account Deletion
When the user decides to delete her account, we need to delete all the user-
related information from the database, as well as all the user’s files.

Implementing Account Deletion Service Operations
The first thing to do is to write the queries to delete the user along with the
files associated with them. So, let’s add the following code to the queries.sql file.

picture-gallery-f/resources/sql/queries.sql
--name: delete-user!
-- deletes the user account
DELETE FROM users
WHERE id = :id

--name: delete-user-images!

report erratum • discuss

Task F: Account Deletion • 195

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-f/resources/sql/queries.sql
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

-- deletes all the images for the specified user
DELETE FROM files
WHERE owner = :owner

Since account deletion is a single operation, the queries we just wrote have
to be run atomically, meaning that either both queries complete successfully
or neither query is run. In other words, we have to run these queries in a
transaction. Let’s open up the picture-gallery.db.core namespace and add the fol-
lowing function there.

picture-gallery-f/src/clj/picture_gallery/db/core.clj
(defn delete-account! [id]

(conman/with-transaction [t-conn *db*]
(delete-user! {:id id})
(delete-user-images! {:owner id})))

The function uses the conman/with-transaction macro, which takes the database
connection and creates a transaction using it. Since the functions that it calls
have been generated using the conman/bind-connection macro they default to using
the transactional connection without us having to pass them t-conn explicitly.

Our next step is to define the service handler function in the picture-
gallery.routes.services.auth namespace. The function will accept the identity of the
user that is logged in, call the delete-account! function that we just wrote, and
set the response session to nil to indicate that the user is no longer logged in.

picture-gallery-f/src/clj/picture_gallery/routes/services/auth.clj
(defn delete-account! [identity]

(db/delete-account! identity)
(-> {:result :ok}

(response/ok)
(assoc :session nil)))

With that in place, we’re ready to add the service route for deleting the account.
Again, this route should be placed under the restricted-service-routes routes defi-
nition in the picture-gallery.routes.services namespace.

picture-gallery-f/src/clj/picture_gallery/routes/services.clj
(POST "/delete-account" req

(auth/delete-account! (:identity req)))

That’s all that we need to do on the server side. We can now turn our attention
to the client and implement the UI components that will allow the user to
delete her account.

Chapter 8. Picture Gallery • 196

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-f/src/clj/picture_gallery/db/core.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-f/src/clj/picture_gallery/routes/services/auth.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-f/src/clj/picture_gallery/routes/services.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Implementing Account Deletion UI Components
To keep things simple, we’ll place the account deletion under the user menu
in the navbar component. However, the current menu is starting to get a little
busy. Let’s refactor it so that when the user is logged in, she’s able to click
on her name and show a dropdown with the options to delete the account
and logout.

picture-gallery-f/src/cljs/picture_gallery/core.cljs
(defn user-menu []

(if-let [id (session/get :identity)]
[:ul.nav.navbar-nav.pull-xs-right
[:li.nav-item
[u/upload-button]]

[:li.nav-item
[account-actions id]]]

[:ul.nav.navbar-nav.pull-xs-right
[:li.nav-item [l/login-button]]
[:li.nav-item [reg/registration-button]]]))

The menu now uses the account-actions component. The component will manage
the state of the dropdown and populate it with the buttons to handle the two
actions we just described.

picture-gallery-f/src/cljs/picture_gallery/core.cljs
(defn account-actions [id]

(let [expanded? (r/atom false)]
(fn []
[:div.dropdown
{:class (when @expanded? "open")
:on-click #(swap! expanded? not)}

[:button.btn.btn-secondary.dropdown-toggle
{:type :button}
[:span.glyphicon.glyphicon-user] " " id [:span.caret]]

[:div.dropdown-menu.user-actions
[:a.dropdown-item.btn
{:on-click

#(session/put!
:modal reg/delete-account-modal)}

"delete account"]
[:a.dropdown-item.btn
{:on-click

#(ajax/POST
"/logout"
{:handler (fn [] (session/remove! :identity))})}

"sign out"]]])))

The component uses an atom to check whether the menu is expanded or not.
The atom state is flipped whenever the list item containing the username is

report erratum • discuss

Task F: Account Deletion • 197

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-f/src/cljs/picture_gallery/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-f/src/cljs/picture_gallery/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

clicked. When that happens, the user should see a dropdown menu that
contains the buttons to delete the account and to logout.

When we click on the username, a dropdown menu will show up below the
button. However, the menu will end up at the edge of the screen and the
content will only be partially displayed. We can fix this by adding a bit of CSS
to offset the dropdown.

picture-gallery-f/resources/public/css/screen.css
*/
.user-actions {

margin-left: -80px;
}

Since account deletion is a destructive operation, we’ll use the confirmation
modal as we did when deleting images. We’ll place the modal in the picture-
gallery.components.registration namespace. Let’s navigate there and add the following
code.

picture-gallery-f/src/cljs/picture_gallery/components/registration.cljs
(defn delete-account-modal []

(fn []
[c/modal
[:h2.alert.alert-danger "Delete Account!"]
[:P "Are you sure you wish to delete the account and associated gallery?"]
[:div
[:button.btn.btn-primary
{:on-click (fn []

(delete-account!)
(session/remove! :modal))}

"Delete"]
[:button.btn.btn-danger
{:on-click (fn [] (session/remove! :modal))}
"Cancel"]]]))

The modal will confirm that the user is sure she wishes to perform this action
and then call the delete-account! function when the Delete Account! button is
clicked. The Cancel button will simply remove the modal from the session.

picture-gallery-f/src/cljs/picture_gallery/components/registration.cljs
(defn delete-account! []

(ajax/POST "/delete-account"
{:handler #(do

(session/remove! :identity)
(session/put! :page :home))}))

The function will call the /delete-account route we just wrote and remove the
:identity key from the session in the callback handler. At this point the account
should be removed from the database and the session cleared from the server.

Chapter 8. Picture Gallery • 198

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-f/resources/public/css/screen.css
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-f/src/cljs/picture_gallery/components/registration.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-f/src/cljs/picture_gallery/components/registration.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Since the :identity key is no longer in the client session, the user will be pre-
sented with the login and registration options instead of the user menu.

Now that our application is fully functional, we can have a bit of fun by using
a JavaScript library to set the background color of the image modal based on
the average image colors. This exercise will illustrate how we can interact
with JavaScript code that isn’t aware of the React virtual DOM as well as the
nuances of using external JavaScript libraries when doing advanced Clojure-
Script compilation.

Adding Some Color
We’ll take a look at how we can use the AlbumColors5 library to create a 3-
color palette using the image colors. We’ll then use these colors to set a
background gradient for the DOM node containing the image.

Let’s start by adding the library JavaScript file6 to our project. We’ll save the
file in the resources/public/vendor/js folder as color.js.

Next, we’ll add the new JavaScript file to the resources/templates/home.html template
file in order to load it on the page.

picture-gallery-colors/resources/templates/home.html
<!-- scripts and styles -->
{% style "/assets/bootstrap/css/bootstrap.min.css" %}
{% style "/assets/font-awesome/css/font-awesome.min.css" %}
{% style "/css/screen.css" %}
{% script "/vendor/js/colors.js" %}

We can now start using this library to figure out the colors for the image
background. Let’s navigate to the picture-gallery.components.gallery namespace and
update the code to do that.

The AlbumColors library works by taking a link to an image and returning a
vector of three colors, each in turn represented by a vector of R,G,B values.
For example, the output might look as follows [[254, 254, 254], [2, 138, 14], [4, 171,
21]]. Since we’d like to use the output to create a gradient background for the
image, we can start by writing a couple of helper functions to do that.

picture-gallery-colors/src/cljs/picture_gallery/components/gallery.cljs
(defn rgb-str [[r g b] mask]

(str "rgba(" r "," g "," b "," mask ")"))

(defn set-background! [style [c1 c2 c3]]

5. https://github.com/chengyin/albumcolors
6. https://raw.githubusercontent.com/chengyin/albumcolors/master/albumcolors.js

report erratum • discuss

Adding Some Color • 199

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-colors/resources/templates/home.html
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-colors/src/cljs/picture_gallery/components/gallery.cljs
https://github.com/chengyin/albumcolors
https://raw.githubusercontent.com/chengyin/albumcolors/master/albumcolors.js
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(set! (.-background style)
(str "linear-gradient("

(rgb-str c3 0.8) ","
(rgb-str c2 0.9) ","
(rgb-str c1 1) ")")))

The set-background! function will accept a JavaScript style object and the three
colors generated by calling AlbumColors. It will then proceed to generate the
style string using these. The rgb-str function is used to generate the string to
represent each color.

Our next problem is that we need to get access to the actual DOM node that’s
mounted in the browser in order to set the style. Recall that Reagent internally
uses a virtual DOM and the elements aren’t guaranteed to be mounted in the
browser DOM at any one time. Therefore, in order to work with the actual
browser DOM node, we have to use a different approach.

Luckily, each component has a lifecycle that Reagent lets us hook into. The
lifecycle consists of the following states.

• :component-did-mount
• :get-initial-state
• :component-will-receive-props
• :should-component-update
• :component-will-mount
• :component-will-update
• :component-did-update
• :component-will-unmount
• :render

The states that are of particular interest to us are the :component-did-mount and
the :render states. The handler for the first state will be called whenever the
component is mounted in the browser DOM, and the one for the second state
is called when Reagent attempts to render the component. When we specify
the component using a function as we’ve been doing up to now, only the
:render state was being used.

However, once we hook into the :component-did-mount state, then we’re able to
manipulate the browser DOM directly. This is precisely what we need to do
in order to accomplish our task. Let’s modify the image-modal component to
split out the image component into a separate function.

picture-gallery-colors/src/cljs/picture_gallery/components/gallery.cljs
(defn image-modal [thumb-link link]

(fn []
[:div

Chapter 8. Picture Gallery • 200

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-colors/src/cljs/picture_gallery/components/gallery.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[image-panel thumb-link link]
[:div.modal-backdrop.fade.in]]))

We’ll also update the component to accept the thumb-link argument that we’ll
use to calculate the average image color. Since the original image could be
large, it may take a long time to process. it. The thumbnail images, on the
other hand, are always guaranteed to be a fixed size, making them perfect
for this task. We also have to remember to update the thumb-link component
to pass the second argument to the image-modal.

picture-gallery-colors/src/cljs/picture_gallery/components/gallery.cljs
(defn thumb-link [{:keys [owner name]}]

[:div.col-sm-4
[:img
{:src (str js/context "/gallery/" owner "/" name)
:on-click #(session/put!

:modal
(image-modal

(str js/context "/gallery/" owner "/" name)
(str js/context "/gallery/" owner "/"

(s/replace name #"thumb_" ""))))}]
(when (= (session/get :identity) owner)

[:div.text-xs-center>div.btn.btn-danger
{:on-click #(delete-image-button owner name)}
[:i.fa.fa-times]])])

The image-panel function will call reagent/create-class to generate the component.
The function accepts a map keyed on the lifecycle events that we just dis-
cussed. We’ll provide callback functions for the :component-did-mount and the
:render events.

picture-gallery-colors/src/cljs/picture_gallery/components/gallery.cljs
(defn image-panel-did-mount [thumb-link]

(fn [div]
(.getColors
(js/AlbumColors. thumb-link)
(fn [colors]

(-> div reagent/dom-node .-style (set-background! colors))))))

(defn render-image-panel [link]
(fn []

[:img.image.panel.panel-default
{:on-click #(session/remove! :modal)
:src link}]))

(defn image-panel [thumb-link link]
(reagent/create-class {:render (render-image-panel link)

:component-did-mount (image-panel-did-mount thumb-link)}))

report erratum • discuss

Adding Some Color • 201

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-colors/src/cljs/picture_gallery/components/gallery.cljs
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-colors/src/cljs/picture_gallery/components/gallery.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The render-image-panel callback looks just like a regular Reagent component.
However, the image-panel-did-mount function returns a function that expects a
mounted Reagent component as its input. This component contains the
actual DOM node that was generated by Reagent when the it was mounted.

The function returned by the image-panel-did-mount closure will create a JavaScript
object representing the colors for the link by calling AlbumColors with the thumb-
link as its parameter. It will then call the .getColors method on this object and
pass it an anonymous callback function that’s responsible for setting the
background color on the div.

The callback uses the reagent/dom-node function to extract the div DOM element.
Next, it grabs the style property and passes it to the set-background! function that
we wrote earlier along with the generated colors.

With these changes in place, we should now be able to see a background
color gradient around the image as seen in the following figure.

Figure 27—Image With Background Color

Now, let’s try packaging our app for deployment and running it. Note that
we’ll have to specify the database URL as an environment variable when we
run the packaged application. In development mode, the variable was popu-
lated from the profiles.clj configuration file. However, once we run the packaged
application, all configuration must come from the environment. Using the
bash shell we would run the following commands.

export DATABASE_URL="jdbc:postgresql://localhost/picture_gallery_dev?..."
lein uberjar

Chapter 8. Picture Gallery • 202

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

java -jar target/picture-gallery.jar

Unfortunately, once our app starts up, the page won’t render. If we check the
browser console, then we’ll see an error that looks like the following:

Uncaught TypeError: Object [object Object] has no method 'Le'

The error is not terribly descriptive and doesn’t give us much to go on. It says
that we tried to call a method named Le on some object and that it doesn’t
exist.

The hint here is that we never defined a method called Le. What happened
was that the advanced optimizer munged the function names when it compiled
the JavaScript. This isn’t a problem for functions we’ve defined ourselves, as
they’re guaranteed to get consistent naming throughout. However, we’re now
calling a function from the AlbumColors JavaScript library. The compiler will
also munge its name as well, and the resulting name will obviously not be
found.

Luckily, there’s a simple solution to this problem. The Google Closure compiler
provides a way to protect function names in external libraries by declaring
them in an externs file. We’ll create a new file called externs.js under the resources
directory of our project and declare the functions whose names we wish to
protect in it:

picture-gallery-colors/resources/externs.js
var AlbumColors = {};
AlbumColors.getColors = function() {};

Once that is done, we will reference this file in the :externs vector under the
:cljsbuild profile as follows.

picture-gallery-colors/project.clj
:cljsbuild
{:builds
{:app
{:source-paths ["src/cljs" "src/cljc"]
:compiler
{:output-to "target/cljsbuild/public/js/app.js"
:output-dir "target/cljsbuild/public/js/out"
:externs ["react/externs/react.js"

"resources/externs.js"]
:pretty-print true}}}}

Now if we clean and recompile our ClojureScript, everything should work as
expected.

lein uberjar
java -jar target/picture-gallery.jar

report erratum • discuss

Adding Some Color • 203

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-colors/resources/externs.js
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-colors/project.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

15-Oct-02 22:05:33 Nyx INFO [picture-gallery.handler] -
-=[picture-gallery started successfully]=-
22:05:33.833 INFO [wunderboss.web.Web] (main) Registered web context /
15-Oct-02 22:05:33 Nyx INFO [picture-gallery.core] - server started on port: 3000

The above example illustrates how we can generate an externs file by hand.
However, this can be tedious if we’re using a lot of external libraries in our
application. A simpler way is to use the library itself as the externs file. This
approach will work in most cases, however it will also generate a lot of
warnings during compilation. We can suppress those as follows.

:cljsbuild
{:builds
{:app
{:source-paths ["src/cljs" "src/cljc"]
:compiler
{:output-to "target/cljsbuild/public/js/app.js"
:output-dir "target/cljsbuild/public/js/out"
:externs ["react/externs/react.js"

"resources/public/vendor/js/colors.js"]
:closure-warnings {:externs-validation :off

:non-standard-jsdoc :off}
:pretty-print true}}}}

With the above configuration the ClojureScript compiler will try to infer the
externs automatically and any warnings will be suppressed in the output.

Congratulations! You now have a working application that you can package
and deploy in production. In the next chapter, we’ll look at adding tests and
packaging the application for running in different types of environments.

Chapter 8. Picture Gallery • 204

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

CHAPTER 9

Finishing Touches
In this chapter we’ll take a look at adding tests and packaging the application
for deployment.

Unit Tests
There are many schools of thought on how, what, and when to test. This is
a very sensitive subject for many people. As such, I will simply give an overview
of the basic tools available for testing and leave it up to you to decide how
and when to use them.

The Test API
Clojure provides built-in support for testing via the clojure.test namespace.
When a new project is created a test package will be generated along with it.

Let’s take a quick look at what the clojure.test API looks like and how to work
with it. The simplest way to write tests is to create assertions using the is
macro. The following are a few examples of how it works:

(is (= 4 (+ 2 2)))

(is (= 5 (+ 2 2)))

FAIL in (:1)
expected: (= 5 (+ 2 2))
actual: (not (= 5 4))

false

(is (even? 2))

(is (instance? String 123))
FAIL in (:1)
expected: (instance? String 123)

actual: java.lang.Long

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

false

As you can see, the is macro can take any expression. If the expression fails,
the macro will print the expression along with the actual result, then return
false; otherwise it will return true.

We can also group our tests together by using the testing macro. This macro
accepts a string name for the group of tests followed by the assertions.

(testing "Collections"
(is (coll? {}))
(is (coll? #{}))
(is (coll? []))
(is (coll? '())))

Finally, we can define tests by using the deftest macro:

(deftest collections-test
(testing "Collections"

(is (coll? {}))
(is (coll? #{}))
(is (coll? []))
(is (coll? '()))))

The tests defined using deftest can be called like regular functions. You can
also run all the tests in the read-evaluate-print loop (REPL) by calling run-tests.
All tests in the application’s test folder can be run via Leiningen by calling lein
test. The API contains a number of other helpers, as well, but I hope that the
preceding examples will prove sufficient for you to get started.

Finally, it’s worth mentioning that there are a number of test frameworks for
Clojure, such as Midje and Speclj.1,2 Furthermore, test frameworks are avail-
able specifically for testing web applications. The two popular choices to
explore are Peridot and Kerodon.3,4

These frameworks provide many features not found in the core testing API,
and if your testing needs go beyond the basics we explored here, these will
make excellent tools in your Clojure toolbox.

Testing the Application
Our application has two types of routes. There are routes that serve the user-
interface (UI) portion of the application to be rendered by the browser, and

1. https://github.com/marick/Midje
2. http://speclj.com/
3. https://github.com/xeqi/peridot
4. https://github.com/xeqi/kerodon

Chapter 9. Finishing Touches • 206

report erratum • discussPrepared exclusively for Bob Erb

https://github.com/marick/Midje
http://speclj.com/
https://github.com/xeqi/peridot
https://github.com/xeqi/kerodon
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

those that expose service endpoints accessed via Ajax by the client part of
the application.

We’ll look at writing tests for both types of routes in our application.

Luminus includes the ring-mock library5 by default. The library provides a
number of helper functions for generating mock requests.

We already have a test harness defined for our application. You can find it
under the test/clj/picture_gallery/test/ directory. The test handler is called handler.clj.
If we open it up, we can see that it defines a test called test-app.

picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
(deftest test-app

(testing "main route"
(let [response (app (request :get "/"))]
(is (= 200 (:status response)))))

(testing "not-found route"
(let [response (app (request :get "/invalid"))]
(is (= 404 (:status response))))))

The ring.mock.request/request function is used to generate the request. It accepts
a keyword indicating the request method followed by the target URI and
optional parameter map that isn’t used in the example.

(request <method> <url> <optional params>)

The request is then passed to the picture-gallery.handler/app function that is the
main entry point for our application. The result of calling app with the mock
request is a Ring style response that was discussed in Chapter 2, Clojure Web
Stack, on page 25.

The first test checks that the app responds with the status 200 when we
request the / URI. The second test checks that status 404 is returned for a
non-existent URI.

So far so good. Now let’s see what’s involved in creating a test for the login
service operation. We’d like to call the /login URL and pass it the user ID and
the password. However, the login credentials must be passed in as an
encoded Authorization header.

We can solve the first problem by writing a function that will generate the
header value given the username and the password.

picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
(defn encode-auth [user pass]

5. https://github.com/ring-clojure/ring-mock

report erratum • discuss

Unit Tests • 207

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
https://github.com/ring-clojure/ring-mock
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(->> (str user ":" pass)
(.getBytes)
(.encodeToString (java.util.Base64/getEncoder))
(str "Basic ")))

Next, we’ll write a login-request function will generate the request and set the
header using the ring.mock.request/header function.

picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
(defn login-request [id pass]

(-> (request :post "/login")
(header "Authorization" (encode-auth id pass))))

There’s one last problem that we have. The authenticate function in the picture-
gallery.routes.services.auth/ namespace calls (db/get-user {:id id}) from the picture-
gallery.db.core namespace. This function fetches the user credentials from the
database. However, we only wish to test the request handler and not the
model.

In some languages it’s possible to use monkey patching to get around this problem.
This approach allows you to simply redefine the offending function at runtime
with your own version. The downside of this approach is that the change is global
and therefore might interact poorly with code that expects the original version.

Clojure provides a with-redefs macro that redefines Vars within the scope of its
body. This approach gives us the ability to make runtime modifications in a
safer fashion, where we precisely know the scope of the code that is affected.

For our purposes, we’ll redefine the get-users function with a mock function
for the scope of our tests. It’s handy that we didn’t have to plan for this when
writing our application’s business logic. Let’s look at how this works in action.
We’ll first define a mock function that will return a test user.

picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
(defn mock-get-user [{:keys [id]}]

(if (= id "foo")
[{:id "foo"
:pass (hashers/encrypt "bar")}]))

We’ll also need to reference buddy.hashers for it to encrypt the password.

[buddy.hashers :as hashers]

We can now redefine the picture-gallery.db.core/get-user with the mock function
before running our test:

(with-redefs [picture-gallery.db.core/get-user mock-get-user]
(app (login-request "foo" "bar")))

Chapter 9. Finishing Touches • 208

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can see that the response contains the status of 200, but its body is an
input stream. Let’s write a function to parse out the response data from it.

picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
(defn parse-response [body]

(-> body slurp (parse-string true)))

Since we need to parse the response body into a Clojure data structure we’ll
need to reference the parse-string function from the Cheshire library in our
namespace declaration.

[cheshire.core :refer [parse-string]]

We can now check that the response has the following data:

(with-redefs [picture-gallery.db.core/get-user mock-get-user]
(-> (login-request "foo" "bar") app :body parse-response))
;;{:result "ok"}

In case we provide incorrect credentials we’ll see a different response instead:

(with-redefs [picture-gallery.db.core/get-user mock-get-user]
(-> (login-request "foo" "xxx") app :body parse-response))
;;{:result "unauthorized", :message "login failure"}

We can now wrap this up in an actual test that checks that the application
responds correctly in both scenarios.

picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
(deftest test-login

(testing "login success"
(with-redefs [picture-gallery.db.core/get-user mock-get-user]
(let [{:keys [body status]} (app (login-request "foo" "bar"))]

(is
(= 200 status))

(is
(= {:result "ok"}

(parse-response body))))))

(testing "password mismatch"
(with-redefs [picture-gallery.db.core/get-user mock-get-user]
(let [{:keys [body status]} (app (login-request "foo" "baz"))]

(is
(= {:result "unauthorized" :message "login failure"}

(parse-response body)))
(is
(= 401 status))))))

report erratum • discuss

Unit Tests • 209

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-tests/test/clj/picture_gallery/test/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Database Testing
Now that we’ve seen some basics of testing, let’s take a look at how we can
test our app against a database. If you’ll recall, the profiles.clj file contains two
separate database connection URLs. One is specified under the :profiles/dev key
and is used during development. The other is specified under the :profiles/test
key and will be used for testing.

It’s a good practice to create a separate schema for testing that’s independent
of the one used for development. This allows us to ensure that the data
quality in this schema will not affected by anything we do during development,
such as creating or removing users.

Let’s create a new schema called picture_gallery_test and navigate to the picture-
gallery.test.db.core namespace in the test source path. The namespace contains
a default test harness that looks as follows.

(use-fixtures
:once
(fn [f]

(mount/start #'picture-gallery.db.core/*db*)
(migrations/migrate ["migrate"])
(f)))

(deftest test-users
(with-transaction [t-conn db/*db*]

(jdbc/db-set-rollback-only! t-conn)
(is (= 1 (db/create-user!

{:id "1"
:first_name "Sam"
:last_name "Smith"
:email "sam.smith@example.com"
:pass "pass"})))

(is (= [{:id "1"
:first_name "Sam"
:last_name "Smith"
:email "sam.smith@example.com"
:pass "pass"
:admin nil
:last_login nil
:is_active nil}]

(db/get-user {:id "1"})))))

The fixtures are used to initialize the database connection and run any out-
standing migrations before the tests are run. The test-users test attempts to
create a user in the database within a transaction and tests that the user
was created successfully. The transaction is rolled back after the test runs
ensuring that the database is in a clean state for the next test.

Chapter 9. Finishing Touches • 210

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The default test that we have will fail since our create-user! function only popu-
lates the :id and the :pass keys.

-- name: create-user!
-- creates a new user record
INSERT INTO users
(id, pass)
VALUES (:id, :pass)

We can update the test as follows to make it pass by setting the expected
values.

(is (= [{:id "1"
:first_name nil
:last_name nil
:email nil
:pass "pass"
:admin nil
:last_login nil
:is_active nil}]

(db/get-user {:id "1"})))

Using a test schema allows us to test our application end to end. This is the
recommended approach for any integration and validation testing.

Package the Application
Our application is now ready to be packaged and deployed. Let’s see how to
accomplish this using Leiningen and go over some of the things to be aware
of depending on how you wish to run the application in production.

Up to this point we’ve been running our application by calling lein run to start
up the HTTP server in development mode. In this mode the server watches
the files for changes and reloads them as needed. This obviously causes a
significant performance hit. Since we should optimize our application for
performance when we deploy in production we’ll need package it differently.
Let’s look at the two most popular ways to run Clojure web applications in
production along with the benefits and the drawbacks of these approaches.

The first approach is to create a standalone executable with an embedded
HTTP server such as Immutant. This way the application will not have any
external dependencies aside from having the Java runtime installed on the
system.

The downside of this approach is that we’ll have to manage all the configura-
tion for each application individually. We’ll have to configure things like log-
ging, database connections, SSL configuration, and so on. It also means that

report erratum • discuss

Package the Application • 211

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

each application will have more overhead, as we need to spawn an independent
instance of the JVM for it.

The second approach is to create a web application archive (WAR) that can
be deployed to an application server such as Apache Tomcat. With this
approach we can do all the environment-specific configuration on the appli-
cation server.

The application server can also host multiple applications on a shared domain.
This allows us to have less overhead per application and the ability to provide
a common configuration for all the applications deployed on the server. The
container can keep track of database connection settings, logging configura-
tions, managing HTTPS listeners, and so on.

The downside of this approach is that the application server will have higher
overhead than embedded Jetty. The application server’s configuration is often
more complex, as well. The work involved may not be justified, depending on
how you plan to manage your application in production.

Another problem with using application servers is that a single application
can bring down the whole domain affecting all the applications deployed to
the server. Running applications as standalone instances avoids this problem
by design.

The good news is that it’s equally easy to package the application for either
type of deployment. If you start with one approach you can switch to the
other with minimal effort.

Standalone Deployment
Here, we’ll take a closer look at what’s involved in deployment as a standalone
application.

Running as an Uberjar

When we wish to package the application for standalone deployment, we
simply run the following from the application’s root:

lein uberjar

If you’ll recall, when the application is now running standalone then the
environment variables declared in project.clj are no longer available. Therefore,
we have to specify the database connection variable before running the
package application.

Chapter 9. Finishing Touches • 212

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Luminus uses the luminus/configg library6 for configuration management. The
library provides a number of options for specifying the configuration settings.

The first option is to include the configuration directly in the jar. The library
will look for a config.edn file on the classpath and read the configuration from
there. Alternatively, we can specify the location of the EDN configuration file
using an environment variable called config. The configuration found in this
file will be merged with the configuration in the config.edn file when former is
present. The keys in the external configuration will overwrite the keys in the
packaged one. Finally, we can specify configuration as envrionment variables.
These take precedence over the former two options. Since we only have a
single environment variable in our case, let’s specify it as an environment
variable.

export DATABASE_URL="jdbc:postgresql://localhost/picture_gallery_dev?..."

The resulting artifact will be created in the target folder. We can now run this
JAR by invoking java -jar target/picture-gallery.jar. Once the server starts, you can
see it running by browsing to localhost:3000. We’ll also have to remember to
provide the database connection environment variable for the application to
use.

export DATABASE_URL="jdbc:postgresql://localhost/picture_gallery_dev?..."
java -jar target/picture-gallery.jar

The server runs on port 3000 by default. To override the default port use the
$PORT environment variable.

Running with HTTP Kit

The uberjar we created uses an embedded Immutant server. However, it’s
possible to swap out Immutant for a different container. One such container
is HTTP Kit.

HTTP Kit is a Ring-compliant event-driven server for Clojure that aims to be
a drop-in replacement for Immutant. HTTP Kit uses the non-blocking I/O
model to handle requests. This allows for extremely high throughput.

To use HTTP Kit, we’ll have to reference it in our project.clj dependencies and
update the picture-gallery.core namespace to use it instead.

:dependencies [... [http-kit "2.1.19"]]

(ns picture-gallery.main
(:require ...

[org.httpkit.server :as http-kit])

6. https://github.com/luminus-framework/config

report erratum • discuss

Package the Application • 213

Prepared exclusively for Bob Erb

https://github.com/luminus-framework/config
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(:gen-class))

Then we just replace the start-http-server and the stop-http-server functions with
the ones using HTTP Kit server instead.

(defn start-http-server [port]
(init)
(reset! http-server

(http-kit/run-server
app
{:port port})))

(defn stop-http-server []
(when @http-server

(destroy)
(@http-server :timeout 100)
(reset! http-server nil)))

We can now compile the application as a standalone executable and run it
using the HTTP Kit server.

lein uberjar
java -jar target/picture-gallery.jar

That’s all there is to it. Thanks to Ring architecture the application is largely
insulated from the implementation details of the underlying HTTP server being
used.

Running as a Daemon

We can run our application as a daemon on *nix systems. For example, to
daemonize it on Ubuntu, we could create an upstart configuration.7 To do
that we’ll make a configuration file /etc/init/gallery.conf, where we’ll add the follow-
ing settings:

Upstart config file (use 'start gallery', 'stop gallery')
stdout and stderr will be captured in /var/log/upstart/gallery.log
author "Me"
description "Start the Picture Gallery webapp on its default port"
start on (local-filesystems and net-device-up IFACE!=lo)
exec java -jar /srv/picture-gallery-0.1.0-SNAPSHOT-standalone.jar

Try to restart up to 10 times within 5 min:
respawn limit 10 300

7. http://upstart.ubuntu.com/

Chapter 9. Finishing Touches • 214

report erratum • discussPrepared exclusively for Bob Erb

http://upstart.ubuntu.com/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Application-Server Deployment
Now that we know how to run our application standalone, let’s see how that
compares to running it on an application server.

Tomcat Deployment

Before starting this section you will need to download a copy of the Tomcat
server and extract the archive locally.

Tomcat is started by running the bin/catalina.sh start command under the
Tomcat directory. You can see the server logs under logs/catalina.out. When the
server starts, you should see something like the following in your log:

May 5, 2013 11:12:25 AM org.apache.catalina.core.AprLifecycleListener init
INFO: The APR based Apache Tomcat Native library which allows optimal performance
in production environments was not found on the java.library.path:
.:/Library/Java/Extensions:/System/Library/Java/Extensions:/usr/lib/java
May 5, 2013 11:12:25 AM org.apache.coyote.AbstractProtocol init
INFO: Initializing ProtocolHandler ["http-bio-3000"]
...

Stopping the server is equally simple. To do that we run bin/catalina.sh stop.

One of the features provided by the application server provides is managing
JDBC connections. Let’s configure the server to provide the connection for
the picture gallery database.

We’ll start by adding the jar file for the database driver to the lib folder in the
Tomcat root directory. The driver can be found in the Maven cache folder
located at ~/.m2/repository/org/postgresql/postgresql/9.4-1201-jdbc41/. This driver was
downloaded by Leiningen when we added it as a dependency for our applica-
tion. Note that the specific version of the driver may be different from the one
used in the book.

With the driver in pace we will have to create a resource definition for the
database. We’ll open up the conf/server.xml file and add the following XML in
the GlobalNamingResources section.

<Resource name="jdbc/picture-gallery"
auth="Container"
type="javax.sql.DataSource"
maxTotal="100"
maxIdle="30"
maxWaitMillis="10000"
username="gallery"
password="pictures"
driverClassName="org.postgresql.Driver"
url="jdbc:postgresql://localhost/picture_gallery_dev"/>

report erratum • discuss

Package the Application • 215

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We also have to expose this resource to the applications deployed on the
server by creating a resource link in the conf/context.xml file. The resource link
will look as follows.

<ResourceLink name="jdbc/picture-gallery"
global="jdbc/picture-gallery"
type="javax.sql.DataSource" />

Using JNDI Database Connection

Let’s update the app to use this resource instead of managing its own connec-
tion. We’ll first navigate to the picture-gallery.db.core namespace and change the
connection settings as follows.

picture-gallery-war/src/clj/picture_gallery/db/core.clj
(def ^:dynamic *db* (atom {:name "java:comp/env/jdbc/picture-gallery"}))

(conman/bind-connection *db* "sql/queries.sql")

We no longer have to manage the lifecycle of the connection as the application
server will do that for us. Instead, we just have to refer to the JNDI name we
gave the resource when we configured it. Note that the name has to be prefixed
with the java:comp/env/ context in order to be found.

Since we changed the *db* atom to use a JNDI connection we’ll have to supply
it manually when we’re running the application in development mode. We’ll
have to add the [directory-naming/naming-java "0.8"] dependency in the dependencies
under the :project/dev profile. Then we can open up the picture-gallery.core
namespace and add the following code there.

picture-gallery-war/env/dev/clj/picture_gallery/core.clj
(defn start-app

"e.g. lein run 3000"
[[port]]

;;JNDI connection
(System/setProperty "java.naming.factory.initial"

"org.apache.naming.java.javaURLContextFactory")
(System/setProperty "java.naming.factory.url.pkgs"

"org.apache.naming")

(doto (new javax.naming.InitialContext)
(.createSubcontext "java:")
(.createSubcontext "java:comp")
(.createSubcontext "java:comp/env")
(.createSubcontext "java:comp/env/jdbc")
(.bind "java:comp/env/jdbc/picture-gallery"

(doto (org.postgresql.ds.PGSimpleDataSource.)
(.setServerName "localhost")
(.setDatabaseName "picture_gallery_dev")

Chapter 9. Finishing Touches • 216

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-war/src/clj/picture_gallery/db/core.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-war/env/dev/clj/picture_gallery/core.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(.setUser "gallery")
(.setPassword "pictures"))))

(let [port (http-port port)]
(.addShutdownHook (Runtime/getRuntime) (Thread. stop-app))
(when-let [repl-port (env :nrepl-port)]
(repl/start {:port (parse-port repl-port)}))

(http/start {:handler app
:init init
:port port})))

This will create a naming context and bind an instance of the driver to it.
With this code in place the app should still work the same as it did before
when started using lein run.

To deploy our application as a WAR, we need to use the uberwar plugin:

picture-gallery-war/project.clj
:plugins [[lein-environ "1.0.1"]

[migratus-lein "0.2.1"]
[lein-cljsbuild "1.1.1"]
[lein-uberwar "0.1.0"]]

:uberwar {:handler picture-gallery.handler/app
:init picture-gallery.handler/init
:destroy picture-gallery.handler/destroy
:name "picture-gallery.war"}

The plugin uses the :uberwar configuration key and allows us to specify the
hooks to the functions that should be run during the application lifecycle.
The :handler is the entry point for the application that will route the requests.
The :init function runs the application is loaded, and the :destroy function runs
when it’s shut down. the :name key specifies the name of the resulting archive.

Since we’re going to be running the application on a server, we no longer need
to include the Immutant server as a dependency in production. We’ll move
this dependency to the :dependencies key under the :project/dev profile. Our
development dependencies should now look as follows.

picture-gallery-war/project.clj
:dependencies [[prone "1.0.1"]

[ring/ring-mock "0.3.0"]
[ring/ring-devel "1.4.0"]
[pjstadig/humane-test-output "0.7.1"]
[com.cemerick/piggieback "0.2.2-SNAPSHOT"]
[lein-doo "0.1.6"]
[lein-figwheel "0.5.0-6"]
[mvxcvi/puget "1.0.0"]
[directory-naming/naming-java "0.8"]
[luminus-immutant "0.1.0"]]

report erratum • discuss

Package the Application • 217

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-war/project.clj
http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-war/project.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We’ll now have to move the src/clj/picture_gallery/core.clj file to the env/dev/clj/pic-
ture_gallery/core.clj location. Since the Immutant dependency is only available
during development any code referencing it has to be moved to the dev source
path.

We’ll also need to switch the session store to a generic data store instead of
using the Immutant one. We’ll add [ring-ttl-session "0.3.0"] dependency in the root
dependencies instead.

picture-gallery-war/project.clj
:dependencies [[org.clojure/clojure "1.8.0"]

[selmer "1.0.0"]
[markdown-clj "0.9.85"]
[luminus/config "0.5"]
[ring-middleware-format "0.7.0"]
[metosin/ring-http-response "0.6.5"]
[bouncer "1.0.0"]
[org.webjars/bootstrap "4.0.0-alpha.2"]
[org.webjars/font-awesome "4.5.0"]
[org.webjars.bower/tether "1.1.1"]
[org.webjars/jquery "2.2.0"]
[org.clojure/tools.logging "0.3.1"]
[com.taoensso/tower "3.0.2"]
[compojure "1.4.0"]
[ring-webjars "0.1.1"]
[ring/ring-defaults "0.1.5"]
[ring "1.4.0" :exclusions [ring/ring-jetty-adapter]]
[mount "0.1.8"]
[luminus-nrepl "0.1.2"]
[buddy "0.10.0"]
[migratus "0.8.9"]
[conman "0.3.0"]
[org.postgresql/postgresql "9.4-1206-jdbc4"]
[org.clojure/clojurescript "1.7.228" :scope "provided"]
[reagent "0.5.1"]
[reagent-forms "0.5.13"]
[reagent-utils "0.1.7"]
[secretary "1.2.3"]
[org.clojure/core.async "0.2.374"]
[cljs-ajax "0.5.3"]
[metosin/compojure-api "1.0.0-RC1"]
[org.webjars/webjars-locator-jboss-vfs "0.1.0"]
[luminus-log4j "0.1.2"]
[ring-ttl-session "0.3.0"]]

We’ll now proceed to update our picture-gallery.middleware to use the ttl-memory-
store. We’ll have to replace the reference to [immutant.web.middleware :refer [wrap-
session]] with [ring-ttl-session.core :refer [ttl-memory-store]].

(ns picture-gallery.middleware

Chapter 9. Finishing Touches • 218

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-war/project.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(:require ...
;removed: [immutant.web.middleware :refer [wrap-session]]
[ring-ttl-session.core :refer [ttl-memory-store]]))

We’ll then update the wrap-base function to use the new session store as follows:

picture-gallery-war/src/clj/picture_gallery/middleware.clj
(defn wrap-base [handler]

(-> ((:middleware defaults) handler)
wrap-auth
wrap-formats
wrap-webjars
wrap-flash
(wrap-defaults

(-> site-defaults
(assoc-in [:security :anti-forgery] false)
(assoc-in [:session :store] (ttl-memory-store (* 60 30)))))

wrap-context
wrap-internal-error))

Now that we’ve removed the HTTP server from the production dependencies
and updated our session store to a server agnostic one, we can run the follow-
ing command to build the application for deployment.

lein uberwar

This will produce the WAR artifact that can be run on the server. Deploying
the application consists of copying the generated archive to the webapps
directory under Tomcat. When the application is deployed it will have a context
relative to the server’s root. By default the context is inferred from the archive
name. Let’s deploy the archive we created as picture-gallery.war

cp target/picture-gallery.war \
~/tomcat/webapps/picture-gallery.war

We can look at the logs/catalina.out log to see whether our WAR was deployed
successfully. Any logs from our application will also be found in this log since
it captures stdout and our default logging configuration has it as one of its
appenders.

The application should now be available at http://localhost:8080/picture-gallery.

The approaches we’ve discussed require us to manage our own server. An
alternative is to deploy the application on a cloud service. Heroku in particular
provides explicit support for running Clojure applications. In the following
section we’ll look at how to deploy our application there.

report erratum • discuss

Package the Application • 219

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/picture-gallery-war/src/clj/picture_gallery/middleware.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Heroku Deployment
Heroku is a cloud service with a free hosting option. Before we start using
Heroku we need to make sure we have Git and Heroku Toolbelt installed.8,9

Heroku uses the command specified in a file called Procfile to start up the
application. This file must be placed in the project’s root directory.

In order to run a Clojure application on Heroku we need a Procfile that specifies
the command that starts the application. Luminus generates this file for us
by default:

web: java $JVM_OPTS -cp target/picture-gallery.jar \
clojure.main -m picture-gallery.core

Next we need to initialize a Git repository for our application by running the
following commands:

git init
git add .
git commit -m "init"

Once our repository is created, we can test the application by running foreman
start. If the application starts up fine, then we’re ready to deploy it to the cloud
by running the following command:

heroku create

To add Postgres support for the application, we run this command:

heroku addons:add heroku-postgresql

You can find the connection settings for the database on your Heroku
dashboard. You’ll need to add these to your database configuration in the
application. We’re now ready to push our application to Heroku:

git push heroku master

Once the upload completes, Heroku will attempt to build and deploy your
application. If this process completes successfully, you should be able to
browse to the application URL specified in your administration console.

8. http://git-scm.com/
9. https://toolbelt.heroku.com/

Chapter 9. Finishing Touches • 220

report erratum • discussPrepared exclusively for Bob Erb

http://git-scm.com/
https://toolbelt.heroku.com/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

What You’ve Learned
This concludes the design, implementation, and deployment of our site. We
covered many aspects of creating a real-world application, such as handling
static resources, database access, and Ajax during our journey.

Although our site is functional, it clearly could use some improvements. You
may wish to consider implementing paging for large galleries, creation of
multiple galleries per user, upload of multiple images in batches, and setting
the visibility of uploaded images. I encourage you to try and implement these
features on your own to test your knowledge of the material.

The skills you’ve learned by building applications throughout the book should
allow you to create a wide variety of web applications using Clojure. It is my
hope that you’ll be able to apply these skills in building real-world applications
going forward.

report erratum • discuss

What You’ve Learned • 221

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

APPENDIX 1

Clojure Primer
As there are numerous books already available for learning Clojure, I’ll keep
this overview short. Even if you’re not familiar with Clojure, I hope you’ll find
that most of the code in this book is easy to follow. Instead of looking at
syntax in depth, I’d like to briefly go over the way Clojure programs are
structured and some of the unique aspects of the language.

All the mainstream languages belong to the same family. Once you learn one
of these languages there is very little effort involved in learning another.
Generally, all you have to do is learn some syntax sugar and the useful
functions in the standard library to become productive. There might be a new
concept here and there, but most of your existing skills are easily transferable.

This is not the case with Clojure. Being a Lisp dialect, it comes from a different
family of languages and requires learning new concepts in order to use
effectively. However, I assure you that Clojure is not inherently more difficult
to understand, and with a bit of practice you might even feel it’s quite the
opposite.

A Functional Perspective
Clojure is a functional language. This makes it extremely well positioned for
writing modern applications. As the application grows it’s imperative to be
able to reason about parts of the application in isolation. It’s equally important
to have code that is testable and reusable. Let’s take a look at the aspects of
functional programming that facilitate these qualities.

Managing State
Functional languages are ideal for writing large applications because they
eschew global state and favor immutability as the default. When the data is

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

predominantly immutable we can safely reason about parts of the application
in isolation.

Immutable data structures might sound like a strange idea at first. However,
many of the benefits associated with functional languages are directly facili-
tated by them. Let’s look at what makes these data structures such a powerful
tool.

In most languages data can be passed around either by value or by reference.
Passing data by value is safe since we know that any changes we make to
the data will not have any effect outside the function. However, it’s also pro-
hibitively expensive in many cases, so any substantial amount of data is
passed around by reference. This makes code more difficult to reason about,
as you have to know all the places where a piece of data is referenced to
update it safely.

Immutable data structures provide us with a third option. Every time a change
is made to a data structure a new revision is created. The price we pay when
altering the data is proportional to the size of the change. When a piece of
data is no longer referenced it simply gets garbage-collected.

Instead of having to manually track every reference to a piece of data we can
offload this work to the language runtime. This allows us to effectively “copy”
data any time we make a change without having to worry about where it
comes from or what the scope of our change will be.

Having such data structures facilitates writing pure functions. A pure function
is simply a function that has no side effects. Since such functions can be
reasoned about in isolation, the applications written using such functions
are composed of individual self-contained components. This type of code is
referred to as being referentially transparent.

Achieving Code Reuse
Object-oriented languages tend to have strong coupling between the data and
the functions that operate on it. In this scenario we can’t easily reuse methods
written in one class when we have a similar problem that we need to solve in
another.

This problem does not exist in a functional language because the logic and
the data are kept separate. The language provides a small set of common
data structures such as lists, maps, and sets. All the functions operate on
these data structures and when we come to a new problem, we can easily
reuse any function we write.

Appendix 1. Clojure Primer • 224

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Each function represents a certain transformation that we wish to apply to
our data. When we need to solve a problem we simply have to understand
the sequence of transformations and map those to the appropriate functions.
This style of code is referred to as declarative.

Declarative code separates what is being done from how it is done. For
example, when we wish to iterate over a collection, we use an iterator function.
The logic that we want to execute on each step of the iteration will be passed
in as a parameter.

One important advantage of this style is that we benefit from having code
reuse at the function level. An iterator function can be written once to handle
the edge cases and boundary checks. We can now reuse this logic without
having to worry about remembering to do these checks time and again.

Leveraging Multiprocessing
Functional code also makes it easier to tackle the difficult problems of paral-
lelism and concurrency. While there is no silver bullet for addressing either
problem, the language can certainly make it easier to reason about them.

Since pure functions depend solely on their arguments, they do not rely on
any shared state and can be safely computed in parallel. This means we can
easily parallelize many algorithms to take advantage of the extra cores. An
example of this is mapping a function over the items in a collection. We can
start by writing a version using the map function. Should we discover that
each operation takes a significant amount of time, then we can simply switch
to using pmap to run the operations in parallel.

Meanwhile, the immutable data structures provide an excellent tool for
managing shared state. Clojure provides a Software Transactional Memory
(STM) API based on these data structures. With transactional memory we no
longer have to worry about manual locking when dealing with threads. Addi-
tionally, the data only needs to be locked for writing. Since the existing data
is immutable, it can be read safely even while an update is happening.

Data Types
Clojure provides a number of data types, most of which are unsurprising:

• Vars provide mutable storage locations. These can be bound and rebound
on a per-thread basis.

• Booleans can have a value of true or false; nil values are also treated as
false.

report erratum • discuss

Data Types • 225

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

• Numbers can be integers, doubles, floats, and fractions.

• Symbols are used as identifiers for variables.

• Keywords are symbols that reference themselves and are denoted by a
colon; these are often used as keys in maps.

• Strings are denoted by double quotes and can span multiple lines.

• Characters are denoted by a preceding backslash.

• Regular expressions are strings prefixed with a hash symbol.

In addition to the data types, Clojure provides a rich set of standard collec-
tions. These include lists, vectors, maps, and sets.

• List: (1 2 3)
• Vector: [1 2 3]
• Map: {:foo "a" :bar "b"}
• Set: #{"a" "b" "c"}

Interestingly, Clojure logic is written using its data structures. Using the same
syntax for both data and logic allows for powerful metaprogramming features.
We can manipulate any piece of Clojure code just like we would any other
data structure. This feature makes it trivial to template the code for recurring
patterns in your problem domain. In Clojure, code is data and data is code.

Using Functions
Function calls in Clojure work the same as any mainstream languages. The
main difference being that the function name comes after the paren in the
Clojure version.

functionName(param1, param2)

(function-name param1 param2)

There is a very simple reason for this difference. The function call is simply
a list containing the function name and its parameters. In Clojure, a list is a
special type of data structure reserved for creating callable expressions. To
create a list data structure we’d have to call the list function:

(list 1 2 3)

Appendix 1. Clojure Primer • 226

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Anonymous Functions
As the name implies, anonymous functions are simply functions that aren’t
bound to a name. Let’s take a look at the following function that accepts a
single argument and prints it.

(fn [arg] (println arg))

The function is defined by using the fn form followed by the vector containing
its argument and the body. We could call the above function by setting it as
a first item in a list and its argument as the second.

((fn [arg] (println arg)) "hello")

=>"hello"

Clojure provides syntactic sugar for defining anonymous functions using the
notation. With it we can rewrite our function more concisely as follows.

#(println %)

Here, the % symbol indicates an unnamed argument. If the function accepted
multiple arguments, then each one would be followed by a number indicating
its position. This can be seen in the next example:

#(println %1 %2 %3)

The preceding anonymous function accepts three arguments and prints them
out in order. This type of function is useful when you need to perform a one-
off operation that doesn’t warrant defining a named function. These functions
are often used in conjunction with the higher-order functions that we’ll look
at in a moment.

Named Functions
Named functions are simply anonymous functions bound to a symbol used
as an identifier. Clojure provides a special form called def that’s used for cre-
ating global variables. It accepts a name and the body to be assigned to it.
We can create a named function by using def as follows:

(def square (fn ([x] (* x x))))

Since this is such a common operation, Clojure provides a special form called
defn that does it for us:

(defn square [x]
(* x x))

report erratum • discuss

Anonymous Functions • 227

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The first argument to defn is the name of the function being defined. It is fol-
lowed by a vector containing the arguments and the body of the function. In
the preceding code, we passed in a single item for the body; however, we could
pass as many items as we like.

(defn bmi [height weight]
(println "height:" height)
(println "weight:" weight)
(/ weight (* height height)))

Here we define a function to calculate the BMI using the height and weight parame-
ters. The body consists of two print statements and a call to divide the weight by
the square of the height. All the expressions are evaluated from the inside out.
In the last statement, (* height height) is evaluated, then the weight is divided by the
result and returned. In Clojure, mathematical operators, such as / and *, are
regular functions and so we call them using the prefix notation as we would with
any other function.

Note that only the result from the last expression is returned from the function,
the results of all the other expressions are discarded. Therefore, any interme-
diate expressions should strictly be used for side effects as is the case with
the println calls above.

Clojure uses a single pass compiler. For this reason, the functions must be
declared before they are used. In a case when we need to refer to a function
before it’s been defined, we must use the declare macro to provide a forward
declaration.

(declare down)

(defn up [n]
(if (< n 10)

(down (+ 2 n))
n))

(defn down [n]
(up (dec n)))

As you might have noticed, the code structure is a tree. This tree is called the
abstract syntax tree, or AST for short. This is the same AST that the compiler
sees when compiling the code. By being able to see the AST directly, we can
see the relationships between pieces of logic visually.

Since we write our code in terms of data, there are fewer syntactic hints than
in most languages. For example, there are no explicit return statements.
Instead, the last expression of the function body is returned implicitly. This
might take a little getting used to if you’re accustomed to seeing a lot of

Appendix 1. Clojure Primer • 228

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

annotations in your code. To aid readability, functions are often kept short
(five lines or less is a good rule of thumb) while indentation and spacing are
used for grouping code visually.

In Clojure, there is no distinction between functions and variables. You can assign
a function to a label, pass it as a parameter, or return a function from another
function. Functions that can be treated as data are referred to as being first-class
because they don’t have any additional restrictions attached to them.

Higher-Order Functions
Functions that take other functions as parameters are called higher-order
functions. One example of such a function is map:

(map #(* % %) [1 2 3 4 5])
=>(1 4 9 16 25)

Here we pass in two parameters to the map function. The first parameter is
an anonymous function that squares its argument and the second is a collec-
tion of numbers. The map function will visit each item in the collection and
square it. One advantage of using higher-order functions is that we don’t have
to worry about boundary conditions, such as nil checks. The iterator function
handles these for us.

Another example of a higher-order function is filter. This function goes through
a collection and keeps only the items matching the condition specified.

(filter even? [1 2 3 4 5])
=>(2 4)

You can, of course, chain these functions together to solve problems:

(filter even?
(map #(* 3 %) [1 2 3 4 5]))

=>(6 12)

Here we multiply each item by 3, then we use filter to only keep the even items
from the resulting sequence.

Thanks to higher-order functions, you should practically never have to write
loops or explicit recursion. When you need to iterate a collection, use a
function such as map or filter instead. Since Clojure has a rich standard library,
practically any data transformation can be achieved by a combination of
several higher-order functions.

Instead of having to learn a lot of different language features and syntax, you
simply have to learn the functions in the standard library. Once you learn to

report erratum • discuss

Higher-Order Functions • 229

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

associate data transformations with specific functions, many problems can
be solved by simply putting them together in the right order.

Here is a real-world example of this idea. The problem is to display a formatted
address given the fields representing it. Commonly an address has a unit
number, a street, a city, a postal code, and a country. We’ll have to examine
each of these pieces, remove the nil and empty ones, then insert a separator
between them.

Let’s say we have a table in our database that contains the following fields:

unit | street | city | postal_code | country
"" | "1 Main street" | Toronto | nil | Canada

Given the preceding data as strings, we would like to output the following
formatted string:

1 Main street, Toronto, Canada

All we have to do is find the functions for the tasks of removing empty fields,
interposing the separator, and concatenating the result into a string:

(defn concat-fields [& fields]
(clojure.string/join ", " (remove empty? fields)))

(concat-fields "" "1 Main street" "Toronto" nil "Canada")
=> "1 Main street, Toronto, Canada"

The & notation in the above parameter definition states that the function
accepts a variable number of arguments. The arguments will be represented
by a list inside the function body.

Notice that we didn’t have to specify how to do any of the tasks when writing
our code. Most of the time we simply say what we’re doing by composing the
functions representing the operations we wish to carry out. The resulting
code also handles all the common edge cases:

(concat-fields) => ""
(concat-fields nil) => ""
(concat-fields "") => ""

Closures
We’ve now seen how we can declare functions, name them, and pass them
as parameters to other functions. One last thing we can do is write functions
that return other functions as their result. One use for such functions is to
provide the functionality facilitated by constructors in object-oriented lan-
guages.

Appendix 1. Clojure Primer • 230

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Let’s say we wish to greet our guests with a warm greeting. We can write a
function that will accept the greeting string as its parameter and return a
function that takes the name of the guest and prints a customized greeting
for that guest:

(defn greeting [greeting-string]
(fn [guest]

(println greeting-string guest)))

(let [greet (greeting "Welcome to the wonderful world of Clojure")]
(greet "Jane")
(greet "John"))

The inner function in the greeting has access to the greeting-string value since
the value is defined in its outer scope. The greeting function is called a closure
because it closes over its parameters, in our case the greeting-string, and makes
them available to the function that it returns.

You’ll also notice that we’re using a form called let to bind the greet symbol
and make it available to any expressions inside it. The let form serves the
same purpose as declaring variables in imperative languages.

Threading Expressions
By this point you’re probably noticing that nested expressions can get difficult
to read. Fortunately, Clojure provides a couple of helper forms to deal with
this problem. Let’s say we have a range of numbers, and we want to increment
each number, interpose the number 5 between them, then sum the result.
We could write the following code to do that:

(reduce + (interpose 5 (map inc (range 10))))

It’s a little difficult to tell what’s happening above at a glance. With a few more
steps in the chain we’d be really lost. On top of that, if we wanted to rearrange
any of the steps, such as interposing 5 before incrementing, then we’d have
to re-nest all our expressions. An alternative way to write the above expression
is to use the ->> form:

(->> (range 10) (map inc) (interpose 5) (reduce +))

Here, we use ->> to thread the operations from one to the next. This means
that we implicitly pass the result of each expression as the last argument of
the next expression. To pass it as the first argument we’d use the -> form
instead.

report erratum • discuss

Threading Expressions • 231

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Being Lazy
Many Clojure algorithms use lazy evaluation where the operations aren’t
performed unless their result actually needs to be evaluated. Laziness is
crucial for making many algorithms work efficiently. For example, you might
think the preceding example is very inefficient since we have to iterate our
sequence each time to create the range, map across it, interpose the numbers,
and reduce the result.

However, this is not actually the case. The evaluation of each expression
happens on demand. The first value in the range is generated and passed to
the rest of the functions, then the next, and so on, until the sequence is
exhausted. This is a similar approach that languages like Python take with
their iterator mechanics.

Structuring the Code
One nontrivial difference between Clojure and imperative languages is the
way the code is structured. In imperative style, it’s a common pattern to
declare a shared mutable variable and modify it by passing it different func-
tions. Each time we access the memory location we see the result of the code
that previously worked with it. For example, if we have a list of integers and
we wish to square each one then print the even ones, the following Python
code would be perfectly valid:

l = range(1, 6)

for i, val in enumerate(l) :
l[i] = val * val

for i in l :
if i % 2 == 0 :

print i

In Clojure this interaction has to be made explicit. Instead of creating a shared
memory location and then having different functions access it sequentially,
we chain functions together and pipe the input through them:

(println
(filter #(= (mod % 2) 0)

(map #(* % %) (range 1 6))))

Or, as we’ve covered, we could use the ->> macro to flatten the operations:

(->> (range 1 6)
(map #(* % %))
(filter #(= (mod % 2) 0))

Appendix 1. Clojure Primer • 232

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(println))

Each function returns a new value instead of modifying the existing data in
place. You might think that this can get very expensive, and it would be with
a naïve implementation where the entirety of the data is copied with every
change.

In reality, Clojure is backed by persistent data structures that create in-
memory revisions of the data.1 Each time a change is made a new revision is
created proportional to the size of the change. With this approach we only
pay the price of the difference between the old and the new data structures
while ensuring that any changes are inherently localized.

Destructuring Data
Clojure has a powerful mechanism called destructuring for declaratively
accessing values in data structures. If you know the data structure’s type,
you can describe it using a literal notation in the binding. Let’s look at some
examples of what this means.

(let [[small big] (split-with #(< % 5) (range 10))]
(println small big))

=>(0 1 2 3 4) (5 6 7 8 9)

Here we use the split-with function to split a range of ten numbers into a
sequence containing two elements: numbers less than 5 and numbers greater
than or equal to 5. The split-with function returns a sequence containing two
elements: the first is the sequence of items that are less than 5, and the other
is the ones that are greater or equal to it. Since we know the result’s format,
we can write it in a literal form as [small big], and then use these named ele-
ments within the let binding.

We can use this type of destructuring in function definitions as well. Let’s
say we have a function called print-user that accepts a vector with three items.
It names the items name, address, and phone, respectively.

(defn print-user [[name address phone]]
(println name address phone))

(print-user ["Bob" "12 Jarvis street, Toronto" "416-987-3417"])

1. http://en.wikipedia.org/wiki/Persistent_data_structure

report erratum • discuss

Destructuring Data • 233

Prepared exclusively for Bob Erb

http://en.wikipedia.org/wiki/Persistent_data_structure
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can also specify variable arguments as a sequence in cases where a vari-
able number of arguments can be supplied. This is done by using the
ampersand followed by the name for the argument list.

(defn foo [& args]
(println args))

(foo "a" "b" "c")
=>(a b c)

Since the variable arguments are stored in a sequence, it can be destructured
like any other.

(defn foo [first-arg & [second-arg]]
(println (if second-arg

"two arguments were passed in"
"one argument was passed in")))

(foo "bar")
=>"one argument was passed in"

(foo "bar" "baz")
=>"two arguments were passed in"

Destructuring can also be applied to maps. When destructuring a map, we
create a new map where we supply the names for the local bindings pointing
to the keys from the original map:

(let [{foo :foo bar :bar} {:foo "foo" :bar "bar"}]
(println foo bar)

It’s possible to destructure a nested data structure, as well. As long as you
know the data’s structure, you can simply write it out.

(let [{[a b c] :items id :id} {:id "foo" :items [1 2 3]}]
(println id " has the following items " a b c))

Finally, since extracting keys from maps is a very common operation, Clojure
provides syntactic sugar for this task

(defn login [{:keys [user pass]}]
(and (= user "bob") (= pass "secret")))

(login {:user "bob" :pass "secret"})

Another useful destructuring option allows us to extract some keys while
preserving the original map.

(defn register [{:keys [id pass repeat-pass] :as user}]
(cond

(nil? id) "user id is required"
(not= pass repeat-pass) "re-entered password doesn't match"

Appendix 1. Clojure Primer • 234

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:else user))

Namespaces
When writing real-world applications we need tools to organize our code into
separate components. Object-oriented languages provide classes for this
purpose. The related methods will all be defined in the same class. In Clojure,
we group our functions into namespaces instead. Let’s look at how a names-
pace is defined.

(ns colors)

(defn hex->rgb [[_ & rgb]]
(map #(->> % (apply str "0x") (Long/decode))

(partition 2 rgb)))

(defn hex-str [n]
(-> (format "%2s" (Integer/toString n 16))

(clojure.string/replace " " "0")))

(defn rgb->hex [color]
(apply str "#" (map hex-str color)))

Above, we have a namespace called colors containing three functions called
hex->rgb, hex-str, and rgb->hex. The functions in the same namespace can call
each other directly. However, if we wanted to call these functions from a dif-
ferent namespace we would have to reference the colors namespace there
first.

Clojure provides two ways to do this, we can either use the :use or the :require
keywords.

The :use Keyword
When we reference a namespace with :use, all its Vars become implicitly
available as if they were defined in the namespace that references it.

(ns myns
(:use colors))

(hex->rgb "#33d24f")

There are two downsides to this approach. We don’t know where the function
was originally defined, making it difficult to navigate the code, and if we ref-
erence two namespaces that use the same name for a function, we’ll get an
error.

report erratum • discuss

Namespaces • 235

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can address the first problem by selecting the functions we wish to use
explicitly using the :only keyword in our :use declaration.

(ns myns
(:use [colors :only [rgb->hex]]))

(defn hex-str [c]
(println "I don't do much yet"))

This way we document where rgb->hex comes from, and we’re able to declare
our own hex-str function in the myns namespace without conflicts. Note that
rgb->hex will still use the hex-str function defined in the colors namespace.

The :require Keyword
The approach of using the :require keyword to reference the namespace provides
us with more flexible options. Let’s look at each of these.

We can require a namespace without providing any further directives. In this
case, any calls to Vars inside it must be prefixed with the namespace decla-
ration indicating their origin.

(ns myns
(:require colors))

(colors/hex->rgb "#324a9b")

This approach is explicit about the origin of the Vars being referenced and
ensures that we won’t have conflicts when referencing multiple namespaces.
One problem is that when our namespace declaration is long, it gets tedious
to have to type it out any time we wish to use a function declared inside it.
To address this problem, the :require statement provides the :as directive,
allowing us to create an alias for the namespace.

(ns myotherns
(:require [colors :as c]))

(c/hex->rgb "#324a9b")

We can also require functions from a namespace by using the :refer keyword.
This is synonymous with the :use notation we saw earlier. To require all the
functions from another namespace, we can write the following:

(ns myns
(:require [colors :refer :all]))

If we wish to select what functions to require by name, we can instead write
this:

Appendix 1. Clojure Primer • 236

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(ns myns
(:require [colors :refer [rgb->hex]))

As you can see, there’s a number of options available for referencing Vars
declared in other namespaces. If you’re not sure what option to pick, then
requiring the namespace by name or alias is the safest route.

Dynamic Variables
Clojure provides support for declaring dynamic variables that can have their
value changed within a particular scope. Let’s look at how this works.

(declare ^:dynamic *foo*)

(println *foo*)
=>#<Unbound Unbound: #'bar/*foo*>

Here we declared *foo* as a dynamic Var and didn’t provide any value for it.
When we try to print *foo* we get an error indicating that this Var has not
been bound to any value. Let’s look at how we can assign a value to *foo* using
a binding.

(binding [*foo* "I exist!"]
(println *foo*))

=>"I exist!"

We set *foo* to a string with value "foo" inside our with-foo function. When the
println function is called within the binding then we no longer get an error
when trying to print its value.

This technique can be useful when dealing with resources such as file streams,
database connections, or scoped variables. In general, the use of dynamic
variables is discouraged since they make code more opaque and difficult to
reason about. However, there are legitimate uses for them, and it’s worth
knowing how they work.

Polymorphism
One useful aspect of object-orientation is polymorphism, while it happens to
be associated with that style it’s in no way exclusive to it. Clojure provides
two common ways to achieve runtime polymorphism. Let’s look at each of
these in turn.

Multimethods
Multimethods provide an extremely flexible dispatching mechanism using a
selector function associated with one or more methods. The multimethod is

report erratum • discuss

Dynamic Variables • 237

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

defined using defmulti and its methods are each defined using defmethod. For
example, if we had different shapes and we wanted to write a multimethod
to calculate the area we could do the following:

(defmulti area :shape)

(defmethod area :circle [{:keys [r]}]
(* Math/PI r r))

(defmethod area :rectangle [{:keys [l w]}]
(* l w))

(defmethod area :default [shape]
(throw (Exception. (str "unrecognized shape: " shape))))

(area {:shape :circle :r 10})
=> 314.1592653589793

(area {:shape :rectangle :l 5 :w 10})
=> 50

Above, the dispatch function uses a keyword to select the appropriate method
to handle each type of map. This works because keywords act as functions
and when passed a map will return the value associated with them. The dis-
patch function can be as sophisticated as we like however:

(defmulti encounter
(fn [x y] [(:role x) (:role y)]))

(defmethod encounter [:manager :boss] [x y]
:promise-unrealistic-deadlines)

(defmethod encounter [:manager :developer] [x y]
:demand-overtime)

(defmethod encounter [:developer :developer] [x y]
:complain-about-poor-management)

(encounter {:role :manager} {:role :boss})
=> :promise-unrealistic-deadlines

Protocols allow defining an abstract set of functions that can be implemented
by a concrete type. Let’s look at an example protocol:

(defprotocol Foo
"Foo doc string"
(bar [this b] "bar doc string")
(baz [this] [this b] "baz doc string"))

Appendix 1. Clojure Primer • 238

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

As you can see, the Foo protocol specifies two methods, bar and baz. The first
argument to the method will be the object instance followed by its parameters.
Note that the baz method has multiple arity. We can now create a type that
implements the Foo protocol using the deftype macro:

(deftype Bar [data]
Foo
(bar [this param]

(println data param))
(baz [this]

(println (class this)))
(baz [this param]

(println param)))

There we create type Bar that implements protocol Foo. Each method will print
out some of its parameters. Let’s see what it looks like when we create an
instance of Bar and call its methods:

(let [b (Bar. "some data")]
(.bar b "param")
(.baz b)
(.baz b "baz with param"))

some data param
Bar
baz with param

The first method call prints out the data Bar was initialized with and the
parameter that was passed in. The second method call prints out the object’s
class, while the last method call demonstrates the other arity of baz.

We can also use protocols to extend the functionality of existing types,
including existing Java classes. For example, we can use extend-protocol to
extend the java.lang.String class with the Foo protocol:

(extend-protocol Foo String
(bar [this param] (println this param)))

(bar "hello" "world")
=>"hello world"

The above examples illustrate the basic principles of how protocols can be
used to write polymorphic code. However, there are many other uses for
protocols as well and I encourage you to discover these on your own.

report erratum • discuss

Polymorphism • 239

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

What about Global State?
While predominantly immutable, Clojure provides support for shared mutable
data as well via its STM library.2 The STM ensures that all updates to mutable
variables are done atomically. There are two major kinds of mutable types:
the atom and the ref. The atom is used in cases where we need to do uncoordi-
nated updates and the ref is used when we might need to do multiple updates
as a transaction.

Let’s look at an example of defining an atom and using it.

(def global-val (atom nil))

We’ve defined an atom called global-val and its current value is nil. We can now
read its value by using the deref function, which returns the current value.

(println (deref global-val))
=>nil

Since this is a common operation, there is a shorthand for deref: the @ symbol.
So writing (println @global-val) is equivalent to the preceding example.

Let’s look at two ways of setting a new value for our atom. We can either use
reset! and pass in the new value, or we can use swap! and pass in a function
that accepts the current value and updates it.

(reset! global-val 10)
(println @global-val)
=>10
(swap! global-val inc)
(println @global-val)
=>11

Note that both swap! and reset! end in an exclamation point (!); this is a conven-
tion to indicate that these functions operate on mutable data.

We define a ref the same way we define an atom, but the two are used rather
differently. Let’s take a quick look at a concrete example of how a ref is used.

(def names (ref []))

(dosync
(ref-set names ["John"])
(alter names #(if (not-empty %)

(conj % "Jane") %)))

2. http://clojure.org/concurrent_programming

Appendix 1. Clojure Primer • 240

report erratum • discussPrepared exclusively for Bob Erb

http://clojure.org/concurrent_programming
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The preceding code defines a ref called names, then opens a transaction using
a dosync statement. Inside the transaction, the names are set to a vector with
the value "John". Next, the alter function is called to check if names is not empty
and add "Jane" to the vector of names when that’s the case.

Note that since this is happening inside a transaction, the check for emptiness
depends on the existing state along with any state built up within the same
transaction. If we tried to add or remove a name in a different transaction, it
would have no visible effect on ours. In case of a collision, one of the transac-
tions would end up being retried.

Writing Code That Writes Code for You
Clojure, being a Lisp, provides a powerful macro system. Macros allow tem-
plating repetitive blocks of code and deferring evaluation, among numerous
other uses. A macro works by treating code as data instead of evaluating it.
This allows us to manipulate the code tree just like any other data structure.

Macros execute before compile time and the compiler sees the result of macro
execution. Because of this level of indirection, macros can be difficult to reason
about, and thus it’s best not to use them when a function will do the job.

However, there are legitimate uses for macros, and it’s worth understanding
how they work. In this book we use very few macros, so we’ll only touch on
their syntax superficially.

Let’s look at a concrete example of a macro and see how it differs from the
regular code we saw previously. Imagine that we have a web application with
a session atom that might contain a user. We might want to load certain
content only if a user is present in the session and not otherwise.

(def session (atom {:user "Bob"}))

(defn load-content []
(if (:user @session)

"Welcome back!"
"please log in"))

This will work, but it’s tedious and error-prone to write our if statement every
single time. Since our condition’s logic stays the same, we can template this
function as follows:

(defmacro defprivate [name args & body]
`(defn ~(symbol name) ~args

(if (:user @session)
(do ~@body)
"please log in")))

report erratum • discuss

Writing Code That Writes Code for You • 241

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The macros are defined using the defmacro special form. The major difference
between defn and defmacro is that the parameters passed to defmacro are not
evaluated by default.

To evaluate the parameter we use the tilde, as we’re doing with ~(symbol name).
Using the ~ notation indicates that we’d like to replace the name with the
value it refers to. This is called unquoting.

The ~@ notation used in (do ~@body) is called unquote splicing. This notation
is used when we’re dealing with a sequence. The contents of the sequence
will be merged into the outer form during the splicing. In this case body consists
of a list representing the function’s body. The body must be wrapped in a do
block because the if statement requires having no more than two arguments.

The backtick (`) sign means that we wish to treat the following list as data
instead of executing it. This is the opposite of unquoting, and it’s referred to
as syntax-quoting.

As I mentioned earlier, the macros are executed before evaluation time. To
see what the macro will be rewritten as when the evaluator sees it, we can
call macroexpand-1.

(macroexpand-1 '(defprivate foo [greeting] (println greeting)))

(clojure.core/defn foo [greeting]
(if (:user (clojure.core/deref session))

(do (println greeting))
"please log in"))

You can see that (defprivate foo (println "bar")) gets rewritten with a function defini-
tion that has the if statement inside. This resulting code is what the evaluator
will see, and it’s equivalent to what we would have to write by hand otherwise.
Now we can simply define a private function using our macro, and it will do
the check for us automatically.

(defprivate foo [message] (println message))

(foo "this message is private")

The preceding example might seem a little contrived, but it demonstrates the
power of being able to easily template repetitions in code. This allows creating
a notation that expresses your problem domain using the language that is
natural to it.

Appendix 1. Clojure Primer • 242

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The Read-Evaluate-Print Loop
Another big aspect of working in Clojure is the read-evaluate-print loop (REPL).
In many languages you write the code, then run the entire program to see
what it does. In Clojure, most development is done interactively using the
REPL. In this mode we can see each piece of code we write in action as soon
as it’s written.

In nontrivial applications it’s often necessary to build up a particular state
before you can add more functionality. For example, a user has to log in and
query some data from the database, then you need to write functions to format
and display this data. With a REPL you can get the application to the state
where the data is loaded and then write the display logic interactively without
having to reload the application and build up the state every time you make
a change.

This method of development is particularly satisfying because you see
immediate feedback when making changes. You can easily try things out and
see what approach works best for the problem you’re solving. This encourages
experimentation and refactoring code as you go, which in turn helps you to
write better and cleaner code.

Calling Out to Java
One last thing that we’ll cover is how Clojure embraces its host platform to
benefit from the rich ecosystem of existing Java libraries. In some cases we
may wish to call a Java library to accomplish a particular task that doesn’t
have a native Clojure implementation. Calling Java classes is very simple,
and follows the standard Clojure syntax fairly closely.

Importing Classes
When we wish to use a Clojure library, we employ :use and :require statements.
However, when we wish to import a Java class, we have to use the :import
statement.

(ns myns
(:import java.io.File))

We can also group multiple classes from the same package in a single import,
as follows:

(ns myns
(:import [java.io File FileInputStream FileOutputStream]))

report erratum • discuss

The Read-Evaluate-Print Loop • 243

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Instantiating Classes
To create an instance of a class, we can call new just as we would in Java.

(new File ".")

There is also a commonly used shorthand for creating new objects:

(File. ".")

Calling Methods
Once we have an instance of a class, we can call methods on it. The notation
is similar to making a regular function call. When we call a method, we pass
the object its first parameter followed by any other parameters that the method
accepts.

(let [f (File. ".")]
(println (.getAbsolutePath f)))

There, we created a new file object f, and we called .getAbsolutePath on it. Notice
that methods have a period (.) in front of them to differentiate them from
regular Clojure functions. If we wanted to call a static function or a variable
in a class, we would use the / notation, as follows.

(str File/separator "foo" File/separator "bar")

(Math/sqrt 256)

There’s also a shorthand for chaining multiple method calls together using
the double period (..) notation. Say we wanted to get the string indicating the
file path and then get its bytes; we could write the code for that in two ways.

(.getBytes (.getAbsolutePath (File. ".")))

(.. (File. ".") getAbsolutePath getBytes)

The second notation looks more natural and easier to read. Although there
is other syntactic sugar for working with Java, the preceding is sufficient for
following the material we cover in this book.

Summary
This concludes our tour of Clojure basics. Although we touched on only a
small portion of the overall language, if you understand the preceding exam-
ples then you should have no trouble following any of the code in the rest of
the book. Once you have your development environment up and running,

Appendix 1. Clojure Primer • 244

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

don’t hesitate to try out the examples shown here in the REPL and play around
with them until you feel comfortable moving on.

report erratum • discuss

Summary • 245

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

APPENDIX 2

Authentication with OAuth
In this appendix we’ll cover how to use the the clj-oauth library to authenticate
users vai Twitter. 1

Why Use OAuth
There are numerous benefits to delegating authentication to a third party
service. It can make it easier for users to use your service as they don’t have
to create a separate account. Conversely, it offloads user management to the
third party, making your application simpler. Let’s take a look at what’s
involved in allowing users to login to the application using their existing
Twitter accounts.

Creating the Application
Let’s create a new Luminus project called oauth-example by running the fol-
lowing command.

lein new luminus oauth-example

Next, we’ll have to add the clj-oauth dependency in the project.clj file.

:dependencies [...
[clj-oauth "1.5.4"]]

We’re now ready to implement the Twitter Oauth workflow in the application.
Let’s create a new namespace called oauth-example.twitter-oauth. Let’s add the
following references in the namespace declaration.

oauth-example/src/clj/oauth_example/twitter_oauth.clj
(ns oauth-example.twitter-oauth

(:require [oauth.client :as oauth]
[config.core :refer [env]]))

1. https://github.com/mattrepl/clj-oauth

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/oauth-example/src/clj/oauth_example/twitter_oauth.clj
https://github.com/mattrepl/clj-oauth
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We’ll need the oauth.client namespace for handling the OAuth calls and the
config.core/env for reading the secret tokens for the application.

With that in place, we’ll define the constants for the Twitter OAuth URLs,
these are used to fetch the tokens and call the authorization service.

oauth-example/src/clj/oauth_example/twitter_oauth.clj
(def request-token-uri

"https://api.twitter.com/oauth/request_token")

(def access-token-uri
"https://api.twitter.com/oauth/access_token")

(def authorize-uri
"https://api.twitter.com/oauth/authenticate")

We’ll now call the oauth.client/make-consumer function to create a consumer
instance. The consumer will require the consumer and access keys that will
be provided by Twitter. These should not be embedded in the application,
and therefore will come from the environment. We’ll expect the :twitter-consumer-
key and the :twitter-consumer-secret variables to be set in order to provide these
keys. We can now define functions to generate the callback URI, fetch the
tokens, and generate the redirect URI.

oauth-example/src/clj/oauth_example/twitter_oauth.clj
(defn oauth-callback-uri

"Generates the twitter oauth request callback URI"
[{:keys [headers]}]
(str (headers "x-forwarded-proto") "://" (headers "host") "/oauth/twitter-callback"))

(defn fetch-request-token
"Fetches a request token."
[request]
(->> request

oauth-callback-uri
(oauth/request-token consumer)
:oauth_token))

(defn fetch-access-token
[request_token]
(oauth/access-token consumer request_token (:oauth_verifier request_token)))

(defn auth-redirect-uri
"Gets the URI the user should be redirected to when authenticating with twitter."
[request-token]
(str (oauth/user-approval-uri consumer request-token)))

That’s all we need to do to facilitate authentication via Twitter. Now, let’s go
to the oauth-example.routes.home namespace and add the routes that will enable

Appendix 2. Authentication with OAuth • 248

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/oauth-example/src/clj/oauth_example/twitter_oauth.clj
http://media.pragprog.com/titles/dswdcloj2/code/oauth-example/src/clj/oauth_example/twitter_oauth.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

the authentication workflow. We’ll start by referencing the oauth-example.twitter-
oauth that we just wrote.

oauth-example/src/clj/oauth_example/routes/home.clj
(ns oauth-example.routes.home

(:require [oauth-example.layout :as layout]
[compojure.core :refer [defroutes GET]]
[ring.util.http-response :refer [ok found]]
[clojure.java.io :as io]
[clojure.tools.logging :as log]
[oauth-example.twitter-oauth :as tw]))

We’ll now write functions to handle initiating the workflow and handling the
callback from Twitter.

oauth-example/src/clj/oauth_example/routes/home.clj
(defn twitter-init

"Initiates the Twitter OAuth"
[request]
(-> (tw/fetch-request-token request)

tw/auth-redirect-uri
found))

(defn twitter-callback
"Handles the callback from Twitter."
[request_token {:keys [session]}]
; oauth request was denied by user
(if (:denied request_token)

(-> (found "/")
(assoc :flash {:denied true}))

; fetch the request token and do anything else you wanna do if not denied.
(let [{:keys [user_id screen_name]} (tw/fetch-access-token request_token)]
(log/info "successfully authenticated as" user_id screen_name)
(-> (found "/")

(assoc :session
(assoc session :user-id user_id :screen-name screen_name))))))

The twitter-init function will call the fetch-request-token function we just wrote, pass
its result to the auth-redirect-uri function, and redirect to the URI that it generates.

Te twitter-callback function handles the callback from Twitter that contains the
result of the authentication attempt by the user. When the user fails to login
then the request_token will contain the :denied key. In this case we’ll stick the
:denied key in a flash session and redirect the user back to the home page.
When a successful login is accomplished, then we’ll call the fetch-access-token
function we wrote earlier. It will give us the :user_id and the :screen_name keys.
We’ll log that the user authenticated successfully, and put the user identity
in the session. We’ll now redirect the user to the home page.

report erratum • discuss

Why Use OAuth • 249

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/oauth-example/src/clj/oauth_example/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/oauth-example/src/clj/oauth_example/routes/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We’ll now need to update the home-page function to accept options for rendering
the home page.

oauth-example/src/clj/oauth_example/routes/home.clj
(defn home-page [opts]

(layout/render "home.html" opts))

Finally, we’ll create two routes to handle the authentication workflow and
pass the correct options to the home-page function.

oauth-example/src/clj/oauth_example/routes/home.clj
(defroutes home-routes

(GET "/" {:keys [flash session]} (home-page (or flash session)))
(GET "/about" [] (about-page))
(GET "/oauth/twitter-init" req (twitter-init req))
(GET "/oauth/twitter-callback" [& req_token :as req] (twitter-callback req_token req)))

The only thing left to do is to update the HTML page to add a Twitter sign in
button and display the result. We’ll open up the resources/templates/home.html
template and update it as follows.

oauth-example/resources/templates/home.html
{% extends "base.html" %}
{% block content %}

<div class="jumbotron">
<h1>Welcome to oauth-example</h1>
<p>Time to start building your site!</p>
<p>Learn more »</p>

</div>

<div class="row">
<div class="span12">

{% if denied %}
<h2>Failed to sign in!</h2>

{% endif %}

{% if screen-name %}
<h2>Welcome {{screen-name}}</h2>

{% else %}

{% endif %}
</h2>

</div>
</div>

{% endblock %}

Appendix 2. Authentication with OAuth • 250

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/oauth-example/src/clj/oauth_example/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/oauth-example/src/clj/oauth_example/routes/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/oauth-example/resources/templates/home.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

When the denied key is present in the context, then we’ll inform the user that
access was denied. When the screen-name is present then we’ll greet the user.
Otherwise, we’ll display the sign in button.

We’ve now finished all the tasks necessary for our application to allow the
users to sign in using Twitter. Next, let’s see what we need to do on the other
end in order for Twitter to accept login requests via our app.

Setting Up Twitter Application
In order to use Twitter sign in functionality, your must have an application
hosted on a public facing server. In case you don’t already have a publicly
available server, then you can easily setup a free hosted application using
Heroku.2

Using Twitter sign in functionality requires you to create a Twitter account
and an application configured. Once you’ve registered with Twitter, then you’ll
have to go to the https://apps.twitter.com/ URL and create a new application there.

Make sure that you fill out the Callback URL section. This is the URL that
Twitter will call in your application with the result of the authentication
attempt. This is the /oauth/twitter-callback route that we defined in our app.
Note that we have to supply the full URL that includes the server, e.g:
https://myapp.herokuapp.com/oauth/twitter-callback.

Once you’ve created the application, go to its settings and make sure that the
Allow this application to be used to Sign in with Twitter option is checked.

You’ll now need to navigate to the Keys and Access Tokens section. This is
where you’ll find the Consumer Key (API Key) and the Consumer Secret (API Secret) fields.
You will have to take these values and set them as the environment variables
on the server where you deploy the application, e.g:

export TWITTER_CONSUMER_KEY="Qwr35oKzkiAtoFEalDb2At1za"
export TWITTER_CONSUMER_SECRET="aTFbaZlw1md3sABkCwyNeYzWPeX9Y7HzpBZtyrw7uYyuXeWvRu"

With the keys in place you should be able to navigate to the home page of
your app and initiate the Twitter sign in workflow by clicking the sign in
button. This will redirect you to the official Twitter authentication page. Note
that if you’re already signed to Twitter in the browser, then the page will
redirect you back to your app. Otherwise you’ll be prompted to sign in using
your Twitter credentials. When you’re redirected back then you’ll either see
your username displayed or a notification that access was denied by Twitter.

2. https://www.heroku.com/

report erratum • discuss

Why Use OAuth • 251

Prepared exclusively for Bob Erb

https://apps.twitter.com/
https://www.heroku.com/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

APPENDIX 3

Document-Oriented Database Access
A SQL database may not always be a good fit for your application. Many
applications do not require a relational schema. If the application simply
needs a persistence layer to store and retrieve records, then a document store
may be a good fit.

Picking the Right Database
There are three main aspects to consider when picking a document-based
database. These are consistency, availability, and partition tolerance, as
defined by the CAP theorem.1 Since these goals are at odds with each other,
you’ll have to decide on the two that are most important to you.

Consistency
When we have consistency, each client has the same view of the data. This
aspect comes into play when you have a database cluster with multiple nodes.
In a consistent database, each node is guaranteed to have the same view of
the data.

Some databases, such as CouchDB,2 provide eventual consistency. This
means that while each node in the cluster is self-consistent, it’s not guaranteed
to be serving up the latest data.

Availability
Availability means there’s no global lock on the database. A client connected
to any node can read and write freely. However, the data is guaranteed to

1. http://en.wikipedia.org/wiki/CAP_theorem
2. http://couchdb.apache.org/

report erratum • discussPrepared exclusively for Bob Erb

http://en.wikipedia.org/wiki/CAP_theorem
http://couchdb.apache.org/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

propagate through the cluster eventually. The downside of this approach is
that clients are not guaranteed to see the latest data at all times.

CouchDB uses this model to allow high-availability clustering. Note that the
clusters should always have an odd number of nodes. This allows CouchDB
to use a quorum to decide what record will be kept in case of a conflict. Such
a scenario can occur if two clients are updating a record while connected to
different nodes. One of the clients will end up with a revision conflict in this
scenario.

Partition Tolerance
A partition-tolerant database works well across physical network partitions.
This means that even if your cluster experiences a serious network outage,
the nodes will be able to resync automatically when the network becomes
available.

Using CouchDB
CouchDB values availability and partition tolerance. This makes it ideal for
creating clusters where you want high throughput without a bottleneck.

In this section we’ll cover how to use CouchDB from Clojure to accomplish
basic tasks such as storing, retrieving, and deleting documents.

As a prerequisite to working with the following examples, you’ll need to either
set up a local instance of CouchDB or use one of the free CouchDB services,
such as Iris Couch.3 Once you have the database set up, create a new table
using its web user interface, accessible at http://hostname:5984/_utils. We’ll call
this table clutchtest.

Clutch Library
The easiest way to access CouchDB from Clojure is to use the Clutch library.4

Clutch provides a very simple and intuitive interface. To use the library we
must first add its dependency to our project. The latest version at the time
of writing is [com.ashafa/clutch "0.4.0"].

Connecting to the Database
To use clutch, we must require it in our namespace declaration.

(:require [com.ashafa.clutch :as couch])

3. http://www.iriscouch.com/
4. https://github.com/clojure-clutch/clutch

Appendix 3. Document-Oriented Database Access • 254

report erratum • discussPrepared exclusively for Bob Erb

http://www.iriscouch.com/
https://github.com/clojure-clutch/clutch
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Then we have to define our connection URL. Since CouchDB is accessible
over HTTP, our URL can be a simple string specifying the database address.

(def db "http://localhost:5984/clutchtest")

We could also add authentication to the URL directly in our connection string.

(def db "http://user:pass@localhost:5984/clutchtest")

Or we could use the URL library to create a URL and attach the credentials
to it as a map.5

(def db (assoc (cemerick.url/url "https://localhost:5984/" "clutchtest")
:username "user"
:password "pass"))

Now that we have the connection created, let’s look at how to store documents
in our database.

Storing Documents
All interaction with the database must happen inside the with-db macro. This
macro ensures that the connection is closed properly after we’re done.

To store a document in the database, we can call the put-document function and
pass it a Clojure map representing our document.

(couch/with-db db
(couch/put-document {:foo "bar"}))

The preceding will create a new document in our database with a randomly
generated ID assigned to it. To assign a specific ID to a document, we must
include the :_id key in our map.

(couch/with-db db
(couch/put-document

{:_id "user" :username "foo" :pass "$dfsdf#23434"}))

When we wish to update an existing document, we must also include the
revision of the current document in the map. For example, if we already
inserted a user document into our database, we must now specify the revision
we’re updating using the :_rev key:

(couch/with-db db
(couch/put-document

{:_id "user" :_rev "<revision number>" :username "foo" :pass "$dfsdf#23434"}))

5. https://github.com/cemerick/url

report erratum • discuss

Using CouchDB • 255

Prepared exclusively for Bob Erb

https://github.com/cemerick/url
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

When we retrieve a document from the database it will have both the :_id and
:_rev keys populated, so make sure to preserve them for when you wish to
save the document again. Now let’s look at how we get a document from the
database.

Retrieving a Single Document
Documents are retrieved using the get-document function, which accepts a string
representing the ID of the document being retrieved.

(couch/with-db db
(couch/get-document "user"))

We can, of course, combine multiple statements inside a single with-db state-
ment. For example, if we wanted to retrieve the user, set a new username,
and save the document, we could do the following:

(couch/with-db db
(let [doc (couch/get-document "user")]

(couch/put-document
(assoc doc :username "bar")))

(println (couch/get-document "user")))

Retrieving Multiple Documents
Sometimes we need to do a batch operation to retrieve multiple documents
from the database. Clutch provides a function for doing this, called all-documents.

(couch/with-db db
(couch/all-documents))

The preceding call returns the IDs and revisions for all the documents in the
specified database. It is also possible to retrieve the complete documents from
the database by setting the :include_docs key to true.

(couch/with-db db
(couch/all-documents {:include_docs true}))

Additionally, we can restrict the bulk retrieval to a set of documents containing
the IDs specified by the :keys keyword, as follows:

(couch/with-db db
(couch/all-documents

{:include_docs true}
{:keys ["doc1" "doc2" "doc3"]}))

To do more-complex selections from CouchDB, you would typically create
views to filter and return documents based on the application’s needs. A view
is analogous to a stored procedure in a relational database.

Appendix 3. Document-Oriented Database Access • 256

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Deleting Documents
Finally, we delete documents by using the delete-document function. It accepts
the document ID as a string and removes that document from the database.

(couch/with-db db
(couch/delete-document "user"))

That’s all there is to it when using CouchDB from Clojure. Clutch makes it
trivial to store and retrieve documents from the database, and more-complex
functionality can be added to the database directly via its rich-views support.
Now let’s look at what’s involved in accessing MongoDB using the Monger
library.6,7

Using MongoDB
MongoDB is another popular document-oriented database. Unlike CouchDB,
it favors consistency and partition tolerance as its primary goals. If you’re
not concerned with having global locks, then MongoDB is an fine choice.

Connecting to the Database
We’ll use the Monger library8 for accessing MongoDB. Monger provides an
idiomatic Clojure API for working with the database. It provides comprehensive
support for the features MongoDB 2.2+ offers. As is the case with Clutch, we
can use native Clojure data structures without having to worry about trans-
lating them into the MongoDB/BSON format. Finally, Monger defaults to
configuration that emphasizes safety and consistency. The latest version at
the time of writing is [com.novemberain/monger "3.0.0-rc2"].

Connecting to the database is as easy as calling monger.core/connect!. When
supplied no parameters, connect! will attempt to connect to a local instance of
the database using the default port. Alternatively, we can either provide a
map with the :host and :port keys, or fine-tune the connection using mongo-
options. Let’s see how this looks:

(ns mongo-example.core
(:require [monger.core :as [m]])
(:import

org.bson.types.ObjectId
[com.mongodb MongoOptions]))

;;connects to a local instance

6. http://www.mongodb.org/
7. http://clojuremongodb.info/
8. http://clojuremongodb.info/

report erratum • discuss

Using MongoDB • 257

Prepared exclusively for Bob Erb

http://www.mongodb.org/
http://clojuremongodb.info/
http://clojuremongodb.info/
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

(m/connect!)
;;connect to myhost.com on port 5001
(m/connect! {:host "myhost.com" :port 5001})

;;connect using custom options
(m/connect! (m/server-address "127.0.0.1" 27017)

(m/mongo-options
:threads-allowed-to-block-for-connection-multiplier 300))

We can also set the default database using the *mongodb-database* Var by calling
the set-db! function, as follows:

(defn connect! [& [params]]
((partial monger.core/connect!) params)
(monger.core/set-db! (monger.core/get-db "local")))

Setting the database with set-db! makes it implicitly available to subsequent
queries.

Most of the interaction with the database is provided via the monger.collection
namespace. Here we have functions to insert, select, update, and delete
records. Let’s look at each of these tasks:

Inserting Records
We use the insert function to insert new records in the database. The function
accepts the name of the collection, denoted by a string and a map representing
the document to be inserted.

(monger.collection/insert "users" { :first_name "John" :last_name "Doe" })

The function returns a write result, the status of which can be checked by
using monger.result/ok?. The monger.result/ok? will return true if the write was
successful.

If we wish to specify an ID for our document, we have to generate it using the
org.bson.types.ObjectId:

(monger.collection/insert "users" { :first_name "John" :last_name "Doe" })

(monger.collection/insert
"users"
{ :_id (ObjectId.) :first_name "John" :last_name "Doe" })

Next, we have the insert-and-return function. It acts exactly like insert, except it
returns the inserted document as a map.

(monger.collection/insert-and-return "users"
{ :_id (ObjectId.) :first_name "John" :last_name "Lennon" })

Appendix 3. Document-Oriented Database Access • 258

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We can also make batch inserts using the insert-batch function. This function
accepts the collection name followed by a sequence of maps representing the
documents.

(monger.collection/insert-batch
"users"
[{ :first_name "John" :last_name "Doe" }
{ :first_name "Jane" :last_name "Smith" }])

Selecting Records
Monger provides several functions for searching for records and returning
them as Clojure maps. These functions are find-maps, find-one-as-map, and
find-map-by-id.

The find-maps function can query for documents in the collection using a map
that contains the key and the value. Objects containing the key with the
specified value are returned. All documents will be returned if no parameters
are specified.

(monger.collection/find-maps "users" {:first_name "John"})

The find-one-as-map function will return a single object matching the query.

(monger.collection/find-one-as-map "users"
{ :first_name "John"})

Finally, the find-map-by-id function accepts an object ID as the search parameter.

(monger.collection/find-map-by-id "users"
(ObjectId. "514f455d03642f52431b5bfe"))

It’s also possible to use the standard MonogDB query operators in search
queries, as seen here:

(monger.collection/find-maps "products" { :price { "$gt" 300 "$lte" 5000 } })

Updating Records
We update records by using the update function, which inserts the record if it
doesn’t exist when :upsert true is specified.

(update "users" { :first_name "John" :last_name "Doe" })
;;update existing or insert a new record
(update "users" { :first_name "John" :last_name "Doe" } :upsert true)

Deleting Records
Finally, we can delete documents from the database using the remove function.
When no match criteria is specified, all documents are removed.

report erratum • discuss

Using MongoDB • 259

Prepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

;;remove ALL documents
(monger.collection/remove "users")

;;remove documents with the specified key
(monger.collection/remove "users" { :language "English" })

As you can see, working with document-oriented databases is quite
straightforward. Depending on your application needs, you may wish to use
a document store instead of a relational store, or a combination of the two.
Whatever approach you choose, Clojure has you covered.

Appendix 3. Document-Oriented Database Access • 260

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

APPENDIX 4

Writing RESTful Web Services With
Liberator

In this appendix we’ll cover how to use the liberator library to generate our
application end points.1

Using Liberator
Liberator is a Clojure library for writing RESTful services modeled after web-
machine,2 a popular service framework for Erlang. Its primary feature is that
it puts a strong emphasis on decoupling the front end from the back end of
your application.

Conceptually, Liberator provides a clean way to reason about your service
operations. Each request passes through a series of conditions and handlers
defined in the resource. These map to the codes specified by the HTTP
RFC 2616, such as 200 - OK, 201 - created, 404 - not found, and so on.

This approach makes it very easy to write standards-compliant services and
to group the operations logically. It also means that your services will auto-
matically use the appropriate HTTP codes associated with a particular
response.

Due to its focus on the separation of the front-end and back-end logic, Liber-
ator is a natural choice for writing many types of web applications. These
include general-purpose services, single-page applications, and applications
that might have non-web clients, such as mobile applications.

1. http://clojure-liberator.github.io/liberator/
2. https://github.com/basho/webmachine

report erratum • discussPrepared exclusively for Bob Erb

http://clojure-liberator.github.io/liberator/
https://github.com/basho/webmachine
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

In this section we’ll cover how to create a simple application that serves
static resources, provides basic session management, and handles service
operations.

We’ll create a new application called liberator-service using the reagent tem-
plate. This template is less opinionated than the Luminus template and as
such provides a better starting point for liberator based applications.

lein new reagent liberator-service

Once the application is created, add Liberator, Cheshire, and cljs-ajax
dependencies to our project.clj dependencies vector:3

:dependencies
[...

[cheshire "5.5.0"]
[liberator "0.13"]
[cljs-ajax "0.5.2"]]

Cheshire is a fast and easy-to-use JSON parsing library. We’ll use it for
parsing the requests from the client and generating the responses.

The application generated by the template containes a file called src/clj/libera-
tor_service/handler.clj that contains the routes for the application. The home-page
function generates the HTML using the Hiccup HTML templating library. The
syntax is the same as the Reagent HTML templating syntax we covered previ-
ously.

Defining Resources
Liberator uses the concept of resources to interact with the client. The resources
are simply Ring-compliant handlers that can be used inside your Compojure
routes. These resources are defined using the resource and the defresource macros.
We’ll need to reference these functions the liberator-service.handler namespace in order
to start working with Liberator.

(ns liberator-service.handler
(:require ...
[liberator.core :refer [defresource resource]]))

Now we can replace our routes definition with a resource as follows:

liberator-snippets/home.clj
(defroutes routes

(ANY "/" request
(resource

:handle-ok home-page

3. https://github.com/dakrone/cheshire

Appendix 4. Writing RESTful Web Services With Liberator • 262

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-snippets/home.clj
https://github.com/dakrone/cheshire
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:etag "fixed-etag"
:available-media-types ["text/html"])))

Note that we’re using ANY Compojure route for our resource. This allows the
Liberator resource to handle the request type. Let’s start the app by running
the following command and navigate to http://localhost:3000/ in the browser.
We should see the home page displayed advising us to start Figwheel in order
to compile ClojureScript.

lein run

Say we want to name the resource handler; we can use defresource instead:

liberator-snippets/home.clj
(defresource home

:handle-ok home-page
:etag "fixed-etag"
:available-media-types ["text/html"])

(defroutes routes
(ANY "/" request home))

The request in the preceding route is simply a map that’s described in What's
in the Request Map, on page 29.

A set of keys defined by the Liberator API represents each resource type to
represent different actions. A key can fall into one of four categories:

• Decision
• Handler
• Action
• Declaration

Each key can be associated with either constants or functions. The functions
should accept a single parameter that is the current context, and return a
variety of responses.

The context parameter contains a map with keys for the request, the resource,
and optionally the representation. The request key points to the Ring request.
The resource represents the current state of the resource, and the represen-
tation contains the results of content negotiation.

Let’s take a close look at each of the categories and their purposes.

report erratum • discuss

Defining Resources • 263

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-snippets/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Making Decisions
The decisions are used to figure out how to handle the client request. The
decision keys end with a question mark (?) and their handler must evaluate
to a Boolean value.

A decision function can return a Boolean value indicating the result of the
decision, or it can return a map or a vector. In case a map is returned, the
decision is assumed to have been evaluated to true and the contents of the
map are merged with the response map. In case a vector is returned, it must
contain a Boolean indicating the outcome, followed by a map to be merged
with the response.

When any decision has a negative outcome, its corresponding HTTP code will
be returned to the client. For example, if we wanted to mark as unavailable
the route we defined earlier, we could add a decision key called service-available?
and associate it with a false value:

liberator-snippets/home.clj
(defresource home

:service-available? false
:handle-ok home-page
:etag "fixed-etag"
:available-media-types ["text/html"])

If we reload the page we’ll see the 503 response type associated with the
Service not available response.

Alternatively, we could restrict access to the resource by using the method-
allowed? decision key along with a decision function.

liberator-snippets/home.clj
(defresource home

:method-allowed?
(fn [context]

(= :get (get-in context [:request :request-method])))
:handle-ok home-page
:etag "fixed-etag"
:available-media-types ["text/html"])

Since checking the request method is a common operation, Liberator provides
a key called :allowed-methods. This key should point to a vector of keywords
representing the HTTP methods.

liberator-snippets/home.clj
(defresource home

:allowed-methods [:get]
:handle-ok home-page
:etag "fixed-etag"

Appendix 4. Writing RESTful Web Services With Liberator • 264

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-snippets/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/liberator-snippets/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/liberator-snippets/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:available-media-types ["text/html"])

(defresource home
:service-available? true

:method-allowed? (request-method-in :get)

:handle-method-not-allowed
(fn [context]

(str (get-in context [:request :request-method]) " is not allowed"))

:handle-ok home-page
:etag "fixed-etag"
:available-media-types ["text/html"])

(defresource home
:service-available? false
:handle-service-not-available
"service is currently unavailable..."

:method-allowed? (request-method-in :get)
:handle-method-not-allowed
(fn [context]

(str (get-in context [:request :request-method]) " is not allowed"))

:handle-ok home-page
:etag "fixed-etag"
:available-media-types ["text/html"])

(defresource add-item
:method-allowed? (request-method-in :post)
:post!
(fn [context]

(let [item (-> context :request :params :item)]
(spit (io/file "items") (str item "\n") :append true)))

:handle-created (io/file "items")
:available-media-types ["text/plain"])

We can also combine multiple decision functions in the same resource, as
seen here:

liberator-snippets/home.clj
(defresource home

:service-available? true

:method-allowed? (request-method-in :get)

:handle-method-not-allowed
(fn [context]

(str (get-in context [:request :request-method]) " is not allowed"))

report erratum • discuss

Defining Resources • 265

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-snippets/home.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:handle-ok home-page
:etag "fixed-etag"
:available-media-types ["text/html"])

Creating Handlers
A handler function should return a standard Ring response. Handler keys
start with the handle- prefix. We saw a handler function when we used the
handle-ok key to return the response in our resource.

There are other handlers, such as handle-method-not-allowed and handle-not-found.
The full list of handlers can be found on the official documentation page.4

These handlers can be used in conjunction with the decisions to return a
specific response for a particular decision outcome.

For example, if we wanted to return a specific response when the service is
not available, we could do the following:

liberator-snippets/home.clj
(defresource home

:service-available? false
:handle-service-not-available
"service is currently unavailable..."

:method-allowed? (request-method-in :get)
:handle-method-not-allowed
(fn [context]

(str (get-in context [:request :request-method]) " is not allowed"))

:handle-ok home-page
:etag "fixed-etag"
:available-media-types ["text/html"])

Our resource now has custom handlers for each decision outcome.

Taking Actions
An action represents an update of the current state by the client, such as a
PUT, POST, or DELETE request. The action keys end with an exclamation
point (!) to indicate that they’re mutating the application’s internal state. Once
an action occurs, we can return the result to the client using the handle-created
handler.

4. http://clojure-liberator.github.io/liberator/doc/handlers.html

Appendix 4. Writing RESTful Web Services With Liberator • 266

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-snippets/home.clj
http://clojure-liberator.github.io/liberator/doc/handlers.html
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Writing Declarations
Declarations are used to indicate the resource’s capabilities. For example,
our resource uses the available-media-types declaration to specify that it returns
a response of type text/html. Another declaration we saw is the etag, allowing
the client to cache the resource.

Putting It All Together
Let’s look at an example of a service that has a couple of resources that allow
the client to read and write some data. The application will display a list of
to-do items and allow the user to add additional items to the list.

The client will be implemented in ClojureScript and use Ajax to communicate
with the service. The client code will consist of a few functions to retrieve,
render, and save to-do items. Let’s look at each of these in turn.

The first function will render the items in our list.

liberator-service/src/cljs/liberator_service/core.cljs
(defn item-list [items]

(when (not-empty items)
[:ul
(for [item items]

^{:key item}
[:li item])]))

Next, we’ll add a function called get-items to grab the items from the server as
a string and a function called parse-items to parse it into a list. The parse-items
function expects to receive data as a newline-separated string, generates a
vector from non-empty items.

liberator-service/src/cljs/liberator_service/core.cljs
(defn parse-items [items]

(->> items
clojure.string/split-lines
(remove empty?)
vec))

(defn get-items []
(GET "/items"

{:error-handler
#(session/put! :error (:response %))
:handler
#(session/put! :items (parse-items %))}))

report erratum • discuss

Putting It All Together • 267

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/cljs/liberator_service/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/cljs/liberator_service/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Note that the function is calling session/update-in! to store the result. This function
is provided by the reagent-utils library. The session namespace contains a Reagent
atom and provides a number of utility functions for managing its state.

The session provides way to represent the global state for the application,
such as the user information. It should not be used for any component-spe-
cific data however. Since our application is extremely simple it’s a convenient
way to track the to-do items.

When we receive an error the :error-handler will be invoked and populate the
:error key in the session.

We’ll also need to add a function for adding new items to the list. We’ll call
this function add-item! and its code will look as follows.

liberator-service/src/cljs/liberator_service/core.cljs
(defn add-item! [item]

(session/remove! :error)
(POST "/add-item"

{:headers {"x-csrf-token"
(.-value (.getElementById js/document "__anti-forgery-token"))}

:format :raw
:params {:item (str @item)}
:error-handler #(session/put! :error (:response %))
:handler #(do

(println "updating")
(session/update-in! [:items] conj @item)
(reset! item nil))}))

This function will look for the anti-forgery token on the page and set it as the
header as we’ve done before. It will also set the :format key to :raw value indicat-
ing that we do not wish to do any processing on the data we send and receive.
The success handler will update the session to conj the value to the list and
reset the item atom to nil. We’ll handle the errors the same way as in the
previous component.

In order to use the add-item! function we’ll have to create a UI component; we’ll
call it item-input-component and put the the following code in it.

liberator-service/src/cljs/liberator_service/core.cljs
(defn item-input-component []

(let [item (atom nil)]
(fn []
[:div
[:input
{:type :text
:value @item
:on-change #(reset! item (-> % .-target .-value))
:placeholder "To-Do item"}]

Appendix 4. Writing RESTful Web Services With Liberator • 268

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/cljs/liberator_service/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/cljs/liberator_service/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

[:button
{:on-click #(add-item! item)}
"Add To-Do"]])))

The component creates a local state to hold the value of the item as it is being
typed in by the user and then calls the add-item! function to send it to the
server.

Finally, we’ll create the error-component that will display itself whenever the :error
key is present in the session.

liberator-service/src/cljs/liberator_service/core.cljs
(defn error-component []

(when-let [error (session/get :error)]
[:p error]))

Let’s update the home-page component to display the components that we just
created.

liberator-service/src/cljs/liberator_service/core.cljs
(defn home-page []

[:div
[:h2 "To-Do Items"]
[error-component]
[item-list (session/get :items)]
[item-input-component]])

Finally, we will update the init! function to fetch the initial list of to-do items
from the server when the page loads.

liberator-service/src/cljs/liberator_service/core.cljs
(defn init! []

(hook-browser-navigation!)
(get-items)
(mount-root))

report erratum • discuss

Putting It All Together • 269

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/cljs/liberator_service/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/cljs/liberator_service/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/cljs/liberator_service/core.cljs
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

We’ll now create corresponding resources to handle each of the operations.
Let’s start by adding a reference to clojure.java.io in order to read and write the
to-do file, ring.util.anti-forgery for handling CSRF.

(ns liberator-service.routes.home
(:require ...

[clojure.java.io :as io]
[ring.util.anti-forgery :refer [anti-forgery-field]]))

Next we’ll change the home-page and add the anti-forgery-field to it. This is neces-
sary to ensure that a fresh anti-forgery value is generated for each session.
We’ll also have to update the home resource accordingly.

liberator-service/src/clj/liberator_service/handler.clj
(defn home-page []

(html
[:html
[:head
[:meta {:charset "utf-8"}]
[:meta {:name "viewport"

:content "width=device-width, initial-scale=1"}]
(include-css (if (env :dev) "css/site.css" "css/site.min.css"))]

[:body
(anti-forgery-field)
[:p (str (anti-forgery-field))]
[:div#app
[:h3 "ClojureScript has not been compiled!"]
[:p "please run "
[:b "lein figwheel"]
" in order to start the compiler"]]

(include-js "js/app.js")]]))

(defresource home
:allowed-methods [:get]
:handle-ok (home-page)
:etag "fixed-etag"
:available-media-types ["text/html"])

The first resource will respond to GET requests and return the contents of
the items file found in the root directory of the project. Note that when we’re
working with mutable resources such as files we do not wish to place them
in the resources folder. Once the application is packaged as a jar then the
resources become read-only. Therefore, we will need to reference these from
an external location.

liberator-service/src/clj/liberator_service/handler.clj
(defresource get-items

:allowed-methods [:get]
:handle-ok (fn [_] (io/file "items"))

Appendix 4. Writing RESTful Web Services With Liberator • 270

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/clj/liberator_service/handler.clj
http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/clj/liberator_service/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

:available-media-types ["text/plain"])

In the resource, we use the :allowed-methods key to restrict it to only serve GET
requests. We use the available-media-types declaration to specify that the response
is of type text/plain. The resource will read the items file from disk and return
its contents to the client.

The second resource will respond to POST and add the item contained in the
params to the list of items on disk.

liberator-snippets/home.clj
(defresource add-item

:method-allowed? (request-method-in :post)
:post!
(fn [context]

(let [item (-> context :request :params :item)]
(spit (io/file "items") (str item "\n") :append true)))

:handle-created (io/file "items")
:available-media-types ["text/plain"])

In this resource we check that the method is POST, and use the post! action
to update the existing list of items. We then use the handle-created handler to
return ok upon success.

You’ll notice that nothing is preventing us from adding a blank item. Let’s
add a check in our service to validate the request to add a new item:

liberator-service/src/clj/liberator_service/handler.clj
(defresource add-item!

:allowed-methods [:post]
:malformed? (fn [context]

(-> context :request :params :item empty?))
:handle-malformed "item value cannot be empty!"
:post!
(fn [context]

(let [item (-> context :request :params :item)]
(spit (io/file "items") (str item "\n") :append true)))

:handle-created "ok"
:available-media-types ["text/plain"])

Now, if the value of the item parameter is empty, we’ll be routed to handle-mal-
formed to inform the client that the item name cannot be empty. Next time we
try to add an empty user, we’ll see a 400 error in the browser:

POST http://localhost:3000/add-user 400 (Bad Request)

If we click the Add To-Do button without filling in the item field we’ll see the
following error:

report erratum • discuss

Putting It All Together • 271

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/liberator-snippets/home.clj
http://media.pragprog.com/titles/dswdcloj2/code/liberator-service/src/clj/liberator_service/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

As you can see, Liberator ensures separation of concerns by design. With the
Liberator model you will have small self-contained functions, each of which
handles a specific task.

Appendix 4. Writing RESTful Web Services With Liberator • 272

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

APPENDIX 5

Leiningen Templates
Once we create a particular type of application, such as our picture gallery
app, we may want to write other similar applications that use the same
structure. It would be nice to be able to create a skeleton application template
that could be used for this task. This is precisely what we can do with
Leiningen templates.

Throughout this book we’ve been primarily using the Luminus template for
starting new projects. Here we’ll cover how a template works and how to make
templates of our own.1

What’s in a Template
A Leiningen template is a collection of assets that are used to generate a
particular project. The templates use the Stencil library2 to inject dynamic
content, such as the name of the project, into the asset files when they’re
rendered.

We’ll take a look at the compojure-template template project to see how it
works3.

Since templates are Leiningen projects, they each contain a project.clj file.

compojure-template/project.clj
(defproject compojure/lein-template "0.4.2"

:description "Compojure project template for Leiningen"
:url "https://github.com/weavejester/compojure-template"
:eval-in-leiningen true
:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"})

1. https://github.com/luminus-framework/luminus-template
2. https://github.com/davidsantiago/stencil
3. https://github.com/weavejester/compojure-template

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/compojure-template/project.clj
https://github.com/luminus-framework/luminus-template
https://github.com/davidsantiago/stencil
https://github.com/weavejester/compojure-template
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

It looks like a regular project file, except for the eval-in-leiningen key that prevents
Leiningen from launching a separate process for the given project during the
build time.

The template itself is found at src/leiningen/new/compojure.clj, and it looks like this:

compojure-template/src/leiningen/new/compojure.clj
(ns leiningen.new.compojure

(:require [leiningen.core.main :as main]
[leiningen.new.templates :refer [renderer year project-name

->files sanitize-ns name-to-path
multi-segment]]))

(def render (renderer "compojure"))

(defn compojure
"Create a new Compojure project"
[name]
(let [main-ns (sanitize-ns name)

data {:raw-name name
:name (project-name name)
:namespace main-ns
:dirs (name-to-path main-ns)
:year (year)}]

(->files data
[".gitignore" (render "gitignore")]
["project.clj" (render "project.clj" data)]
["README.md" (render "README.md" data)]
["src/{{dirs}}/handler.clj" (render "handler.clj" data)]
["test/{{dirs}}/handler_test.clj" (render "handler_test.clj" data)]
"resources/public")))

The compojure function is where all the fun happens, and it’s what gets called
when we run lein new compojuremyapp to create an application using this template.
The function declares a map called data with some useful variables, such as
the sanitized project name, that will be used to render the assets.

The leiningen.new.templates/render function is used to generate the resulting files
at the specified path. Each resource is represented by a vector where the first
element is the name of the file to be generated and the second is a call to the
render function with the name of the template file. The {{dirs}} tag will be
replaced by the value of the :dirs key from the data map.

We find the template files at the resources/leiningen/new/compojure path. These files
don’t need to have the same folder structure as the resulting project. As you
can see in the preceding code, we specify the target path explicitly when we
render each asset.

Appendix 5. Leiningen Templates • 274

report erratum • discussPrepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/compojure-template/src/leiningen/new/compojure.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

The template files use tags that mach the keys in the data map such as the
{{namespace}} anchor whenever dynamic content needs to be injected. This
anchor will be replaced with the value specified at that key when the resource
is generated. Let’s look at the hander.clj template file as an example:

compojure-template/resources/leiningen/new/compojure/handler.clj
(ns {{namespace}}.handler

(:require [compojure.core :refer :all]
[compojure.route :as route]
[ring.middleware.defaults :refer [wrap-defaults site-defaults]]))

(defroutes app-routes
(GET "/" [] "Hello World")
(route/not-found "Not Found"))

(def app
(wrap-defaults app-routes site-defaults))

Note that since Stencil uses {{ and }} delimiters, it can end up interpreting
the contents of the template as tags. To avoid this it’s possible to temporarily
change the delimiters as follows.

{{=<% %>=}}
(let [{{:keys [foo bar]} :baz} m]

(println foo bar))
<%={{ }}=%>

Now that we’ve seen what a Leiningen template looks like, let’s create a fresh
template project by running the following command.

lein new template my-template

The resulting project will contain the following files. Note that the package
structure matches the name of the template that we supplied.

____.gitignore
|____.hgignore
|____CHANGELOG.md
|____LICENSE
|____project.clj
|____README.md
|____resources
| |____leiningen
| | |____new
| | | |____my_template
| | | | |____foo.clj
|____src
| |____leiningen
| | |____new
| | | |____my_template.clj

report erratum • discuss

What’s in a Template • 275

Prepared exclusively for Bob Erb

http://media.pragprog.com/titles/dswdcloj2/code/compojure-template/resources/leiningen/new/compojure/handler.clj
http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

Once we’ve created our template, we can install it locally by running lein install.
Then we can start using it instead of having to write the boilerplate for this
kind of project. If we wish to make our template available to others, we can
publish it to Clojars by running lein deploy clojars.

Appendix 5. Leiningen Templates • 276

report erratum • discussPrepared exclusively for Bob Erb

http://pragprog.com/titles/dswdcloj2/errata/add
http://forums.pragprog.com/forums/dswdcloj2

	Cover
	Table of Contents
	Changes in the Beta Releases
	Beta 2, February 14
	Beta 1, February 3

	Introduction
	What You Need
	Why Clojure?
	Why Make Web Apps in Clojure?

	1. Getting Your Feet Wet
	Set Up Your Environment
	Build Your First Web App
	Refine Your App
	What You've Learned

	2. Clojure Web Stack
	Route Requests with Ring
	Extend Ring
	Define the Routes with Compojure
	What You've Learned

	3. Luminus Architecture
	Manage the Project
	Think in Terms of Application Components
	HTML Templating using Selmer
	What You've Learned

	4. Add ClojureScript
	Understand ClojureScript
	Configure ClojureScript Support
	Add ClojureScript Support
	Build the UI with Reagent
	What You've Learned

	5. Real-time Messaging With Websockets
	Set Up Websockets on the Server
	Make Websockets from ClojureScript
	Websockets Using Sente

	6. Writing RESTful Web Services
	Use Compojure-API
	What You've Learned

	7. Database Access
	Work with Relational Databases
	Use Yesql
	Generate Reports
	What You've Learned

	8. Picture Gallery
	The Development Process
	What's in a Gallery
	Create the Application
	Configure the Database
	Task A: Account Registration
	Task B: Login and Logout
	Task C: Uploading Pictures
	Task D: Displaying Pictures
	Task E: Deleting Pictures
	Task F: Account Deletion
	Adding Some Color

	9. Finishing Touches
	Unit Tests
	Package the Application
	What You've Learned

	A1. Clojure Primer
	A Functional Perspective
	Data Types
	Using Functions
	Anonymous Functions
	Named Functions
	Higher-Order Functions
	Closures
	Threading Expressions
	Being Lazy
	Structuring the Code
	Destructuring Data
	Namespaces
	Dynamic Variables
	Polymorphism
	What about Global State?
	Writing Code That Writes Code for You
	The Read-Evaluate-Print Loop
	Calling Out to Java
	Calling Methods
	Summary

	A2. Authentication with OAuth
	Why Use OAuth

	A3. Document-Oriented Database Access
	Picking the Right Database
	Using CouchDB
	Using MongoDB

	A4. Writing RESTful Web Services With Liberator
	Using Liberator
	Defining Resources
	Putting It All Together

	A5. Leiningen Templates
	What's in a Template

