W =k S e)
| & % A .
o \ 5 3 | s, \“‘;‘ -.____“:: . .
= o e ’_.- i 13 TYSF. _‘_\-‘\‘ | i I
= &) A : I
XE. » r : \ . .. s)
L] ' . . '
N i) L - A\ . ;
AN / ikt W A |
‘s I | . o = s
7l T .
] ' '

Windows 10 for
the Internet of

Things

Charles Bell

ApreSS®

http://www.allitebooks.org

Windows 10 for the
Internet of Things

Charles Bell

Apress’

[vww allitebooks.cond

http://www.allitebooks.org

Windows 10 for the Internet of Things

Charles Bell
Warsaw, Virginia, USA

ISBN-13 (pbk): 978-1-4842-2107-5 ISBN-13 (electronic): 978-1-4842-2108-2
DOI10.1007/978-1-4842-2108-2

Library of Congress Control Number: 2016956879
Copyright © 2016 by Charles Bell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

The MIT License (MIT)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the Software), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Managing Director: Welmoed Spahr

Lead Editor: Jonathan Gennick

Technical Reviewer: Reggie Burnett

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano

Copy Editor: Kim Burton-Weisman

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,

6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www. springer.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress. com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to readers at
www. apress. com. For detailed information about how to locate your book’s source code, go to www. apress.com/source-
code/. Readers can also access source code at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

vww allitebooks.conl

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.apress.com/source-code/
http://www.allitebooks.org

—I dedicate this book to my good friend Russ,
who thought I had given up on Windows. Clearly, I haven't.

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUthOrccvcsmimmmisrne s —————————— Xix
About the Technical REVIEWETccusemsssmsssmsssmssmmsssmssmssmsssssssssssssssssssssssssssnsssssnns XXi
AcknOwIedgmENtScueremissssssmmnnnmsemssssssssssnsnssssssssssssssssnnnssssssssssssnnnnnsssssssssnnnnnns XXiii
INtroduction........cccuvemismnsm s ————————————— XXV
Chapter 1: What Is the Internet of Things?.......ccccunmmmmnnnssnnmmnssssnmmssssnmmsssssmms 1
Chapter 2: Introducing the Windows 10 10T Core........oousmmmmmmmmmmsssssssssssssssssssssssns 21
Chapter 3: Introducing the Raspherry Pi.......ccccinnnsemnmmssssssssmssssssssssssssssssssssssnns 1
Chapter 4: Developing loT Solutions with Windows 10.........cccusceemmmnssssnnnmssssssnns 97
Chapter 5: Windows 10 loT Development with C++ccceeemmnrninnnnsssesnnnnneessnn, 125
Chapter 6: Windows 10 loT Development with C#............cccivnnemmnnnssssnnnnnssnnnns 155
Chapter 7: Windows 10 loT Development with Python............cccvnmeeennnnnnnsninn. 183
Chapter 8: Electronics for Beginners.......ccccuusesmmmssssssnssssssssnsssssssssssssssnsnssssssnnnss 203
Chapter 9: The Adafruit Microsoft loT Pack for Raspberry Pi.......ccccccvnnenrnsseneas 233
Chapter 10: Project 1: Building an LED Power Metercccccuseemnnnsssnnnnssssssnnns 255
Chapter 11: Project 2: Measuring Light.......cccccccimininnnnsssssmmmmmnnmmsssssssssnssesnnes 271
Chapter 12: Project 3: Using Weather Sensors........cccuummsssmsmsssnssssssssssssnssssansas 291
Chapter 13: Project 4: Using MySQL to Store Data...........cccernssnemmnnnsssnnnnnssssnnnnns 307
Chapter 14: Project 5: Using a Web Server to Control Hardwareccceeeinnes 331
Chapter 15: Project 6: Windows 10T and Arduino........ccuusseeremssssssssssssssssssssssnnnes 361

v

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS AT A GLANCE

Chapter 16: Azure loT Solutions: Cloud Servicescuusmmesmmmnmsssssssssssnssssssssssns 397

Chapter 17: Where to Go from Here?cccusemmmmsssemnmnssssssnmsssssssssssssssssssssssnnnns 435

APPCNAIX.rteeirssssssnnnnnnnnreessssssssssssnnneesssssssssssssnsseesssssssssnsnnnsnessssssssssnnnnnneesssssssnnnnnns 447
1T L 457
vi

[vww allitebooks.cond

http://www.allitebooks.org

Contents

AbOUt the AUTNOLcceiiireeeiiirreneiirrensssr s s ns s r s s nna s annnss s annnnasannnnnsnsnnnnnnns XiX
About the Technical REVIEWETcoerrrrrrmmmmnssssssssmmsssssnssssssssssssssssnnssssssssssssnnnnnsssnsss XXI
AcknOWIedgmMENtScuuerimissssssmnsnmmmmessssssssssssnssssssssssssssssnnnssssssssssssnnnnnssssssssssnnnnnns XXiii

L 0T T 0 XXV

Chapter 1: What Is the Internet of Things?.......cccccunmmmmnsssnnnmnnssssnnmnsssssssssssssssenns 1

The Internet of ThINgS and YOU........c.ccocreriercersr s 2
IoT Is More Than Just Connected to the Internet............coonnnnn s 2

L0 -] 1L 3

A Brief LOOK at 10T SOIULIONScoecvierencresinesscsesese e s 4
SENSON NBIWOTKSvveriiiscsis bbb bbb bbb bbb bbb bbb bbb bbb e 4
Medical APPIICALIONS.........cceerereeeerer et e n s 5
Automotive 10T SOIULIONS ... ———— 7
Fleet Man@gemENt...........ccovriririninininiis s 10
Lo I 1T BT o1 1SS 11
Security BEGINS @t HOMEccverereereerere et eres e ses e sas e saesesae e sae e saesas e saesesassesaesassessnesasnenas 1
SECUIE YOUF DBVICES ...uvvisiucsirrisisssssssissss s sss s bbb 12
USE ENCIYPLION......cceceeeeeererereeeree e raesas e s e e s se e saesasaesas e sae e saesessesesaesassesae e saesesaesesseassessnnessssnananaens 12
Security Doesn’t End at the Cloud ... 13
INtroducing WindoWS 10........cceeeeeeenere e e ssessessesse e sssssessssssssssssssssssssssssssssssssssssnes 13
Overview of WindOWS 10 FEALUIEScvnerrininsriesisss s ssssens 14
Windows 10 @nd the 10T ... 18
1141 1P SRS 18
vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 2: Introducing the Windows 10 10T COre......ccccusseemmrmssssnnsssssssnsssssssnnnnnes 21

Windows 10 10T Core FEAtUres..........cocurrrnnncnnsin s 21
Interacting With HArdWArE...........cocceeireeecce et e s nn e 22
L0 LT 0T 1T o] 010 S 22
One Platform, Many DEVICES.........ccuurriernierercre e e st e sse s e e e s s e sss e ssssesnesesnssnnnens 22
SUPPOITEA HAMAWANE.........ee ettt sa s sa e e e e e b e e et e e e e e e e e e e e e e e e e e e e nn 23
S0 Which One Should I CROOSE? ..o 29

ThiNgS YOU' I NEE.........eeeeererirer sttt sn e sn s sn e nn e nnnnn 30
Additional HAMAWANEcoceereririiiiriseseesesesi s 30
Software DeVelOPMENT TOOISccueueeererereeserer e ne s s 33

Getting Started with Windows 10 10T COre.......ccccvevereereresrnreeree e sessessesses e sassenens 34
Setting UP YOUr COMPULET.......coeeeceeeeeree et res s e se e ses e e s e saesesae e ssesasaesas e saesesaenesaesasseansersnnenans 34
Getting Started With YOUr BO@rdcccoeeeercrerire s ser e re e sessesaesesaesessesessesassessssessssesassanaens 45
Rasphberry Pi CoNfigUIration...........cccoeeeriereierercreriresereses e rseses e ses e sessessssesaesessssessesessessssessssessssesasanaens 46
MinnowBoard Max Turbot Configurationcccceereererrereres e rae e saesesaesesaesanaens 51
DragonBoard 410C CONFIQUIALIONcceeueereercrerere st rer e e e re s ae e ae e saese s e sas e saesesaesesasanaens 58
Connecting 10 YOUr BOGITcccooerevererercre e seree s e res e sae e e s e sessesassesaesesassessssessesassessssessenesasnanaens 63

SUMMEAIY ...t e e e e s R e AR e ene e s ae e e e nne e nanas 70

Chapter 3: Introducing the Raspberry Pi........ccccicnnsemmnmmssssnnnmnssssssssssssssssssssssnsnees 71

Getting Started with the Raspberry Pi.........ccorercrecne e 71
RaSPDEITY Pi OFIgiNSccceeiceecccsire e sa s se e r e r s r e e ae e p e n e n e ne e nnennnnnns 72
Versions that Work with Windows 10 10T COrecovvrrnnnnsnsississsssssssssssssssssssssssssssssssssssssesenes 73
LN LT 20 o 75
REQUIFEA ACCESSOIIBS ..veververeerrersersessesiessessessessessessessessessesaesaesaesaesaessesaessesaessesaesaesaesaesasssesssnsssssssnssensnns 76
RecOMMENdEd ACCESSONIEScouvuriesiiisisisisisisisiss s 77
WREIE 10 BUY ...ttt r e s b e bR e R e s R e e e e b e nenrnnas 77

Setting up the RASPDEITY Pi ... e 77
Choosing a Boot Image (Operating SYStEM)cccccerrerererneererre e 78
Creating the BOOt IMAQE........c.cueeeerereeecririeees s r s 79
BOOtING the BOAIM...........ceeeeeeeecre ettt nenp s 80
Setting up Wi-Fi on the RASPDEITY Pi 3........ccoeiieieccriseeseress s sees 82

viii

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

A Brief LINUX PHIMEE ..ot sss s e s s s s s 82
GEHING HEIP ..t enp s 83
File and DireCtory COMMANUSceceeerereeererereneesesseseseses e sese e e e ss e e s ss s e e sssssssessnssnes 84
SYSTEM COMMEANUS........ceerireeecsireeese s s s s s et se s e e e e s e se e e s s se e e s nse e e e nsnnnaes 86
Administrative COMMANGS..........orurererererererereserese e se s se e se e es 87
USETUI ULIIITIES. ..o 90

Working with Python: Blink @n LEDcccovrvrvrinsrrrsrsen s sessessnnnns 90
Hardware CONNEBCLIONS ..o s 92
WHEING The COUEcveeereeereereree s s s ree e sae e raesessera s e sa e e sae e saesesaesasaesassesae e sae e saenesaenasaesasseraenenannsnan 93
RUNNING the SCHPL... .t s e re e e s a s s ae e ae e a e s e s ae e e e ae e saenenanananns 94

R0] 1 96

Chapter 4: Developing loT Solutions with Windows 10........ccccuseemmmnsssssnsssssssnnns 97

Working with GPIO HEAUETScccecerircercerrer et sn s sn s snsnne e 97
LTS 010 1= T O 98
MinnowBoard TUrDOL..........corr s ————————— 99
DragonBoard 410C..........coveeierrcreire e s r e e e e e AR e e e R R 100

Visual Studio 2015 PrIMEN......ccccieeiereircrnere e s sn s sasesnes 101
M@JOF FEATUIES ...ttt e s snn e e e s e e e e 102
THE INTEITACE ... s 103
Windows 10 0T Core Project TEMPIALES..........ccoverrrerereririrrrereseree e 107

Example Project: Hello, WOrld...........cocvvrierieniensenser s ses e e e e e e sassesnns 111
L0 L= Lol o0 T 112
WIIE ThE COURcueriticcsr s 113
Build and TeSt YOUr COUEcouvrririnisrrrsinissssnssessss s ssens 115
Set up your Windows 10 10T DEVICEeceveerererererererserersesersesessessssersssesssssssessssessssessssessssessessssessssens 116
Deploy and Test to your Windows 10 10T DEVICEcccceverererrererrerrerersesessesesersssessesesssssssesessessssessenenes 117

SUMIMAIY ...t ees e s s s s s s s s e s e s s s s e s e sr e s s nr e s s nn e e e nnennenn e e e nneneennnnnennnnnennannan 124

ix

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Chapter 5: Windows 10 loT Development with C++.....cccceeernnnnnnnnnssssssssssessnnns 129

Getting Started ..o ——————————— 125
CH+ Crash COUISE.......ccuvererirresinesre s sas s e s s sn s s snn s 127
LI TCN 5 T 127
VariableS @N0 TYPEScocovrueeererrreiererisee s se s e s s et esp e e s e s e e s e 131
L1131 01T 133
Flow Control StatBMENTS ... 134
BasSiC Data SIUCTUIES........cococeiceec e 136
POINTEIS ... 138
Blink @n LED, C4+ SEYIEcocererererer ettt se e se e sn s sn s sa s sassnssa e sns e 141
Required COMPONENTEScccoueereeereerere e s rse e rassesaese s e s s e e saesesaesesaesasaesassesaesesaesesassasaeassesnnenes 142
Set UP the HAAWANE.........ccceveeeeeerer ettt s e e sae s sasaesae e ae e ae e sae e saesae e sae e saenenaenananns 142
Write the Code: USer INTEITACE..........ocurirririnnsrinssss s 143
Test and Execute: USer INterface ONIYccoeeeeerereerererereree e sereesessesesesssessssessesessessssesssnessenenaes 147
Add the GPI0 COUE.......ce.eeereereeesresreseeseesessessessessesssessessessessssssssssessessessssssssssessessessssesssssessessesessssesens 148
Deploy and Execute: Completed APpliCationcoveveevercercre s sa e e 152
SUMMEAIY ...ttt ae s e e e e e e a e e s A e e ae e e e ne e naens 154
Chapter 6: Windows 10 loT Development with C#.........cccccmmrnnnnnnsssssssssssnnesssnns 199
(E T 10 [- T (<1 o OSSR 156
CH Crash COUISE......ccueuiereriresissesse s ses s s sas s s s s sassn s sns s sns s nns 158
CH FUNAAMENTAIS.........ceeeccceeececee e 158
How C# Programs Are STrUCTUIEU..........cccocruruierererree e sss s ses s nenens 162
VariableS @N0 TYPEScocovreecrerereeririree s e s s e s s e e s e ne s e e e e s ans 164
L1131 01O 165
Flow Control STAtBMENTS ... 166
BasSiC Data SIUCIUIES........coceeieecee e 168
Blink @n LED, CH STYIEccocerierererrer et se s e e e sessn s se s e sassasnnssnsnns 169
Required COMPONENTEScccoueereerereerere e s eree e rseseraesesaese s sae e ssesesaesesae e saesassesaesesassesassasaeassesnnenes 170
SEt UP the HAAWANE.........ccceeeeeeceere ettt res e e ae s e sae s ae e s ae e ae e sae e saesa e e sae e saenenaenananns 170
Write the Code: USer INTEITACE..........ocurirririnnsrinssss s 17
Test and Execute: USer INterface ONIYccoecevererererererereesereesereesessesessesessesassessesessessssessssesssesaes 174

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS

Add the GPI0 COUE.......ce.eueererereereereseesessessessessessesssssssessessess s sssssessesse s s s s st ssesssssssssnssees 175
Deploy and Execute: Completed APpliCationccocvevreveriersreresere e sas e saenenns 179
RS0 1 - 182
Chapter 7: Windows 10 loT Development with Python.........cc.cccceniineennnnsssnnnna 183
GEtting STArEdcoeeeeecee e e nn e nrenen 183
Why Do | Need 10 Learn PYTNONT ...t 184
Installing Python on WINAOWS 10..........cccoririieirereecsisescceses e sssnens 185
Python Crash COUISE.........ccouvereeiierreiresessesse e s s se s sn s s sne e s sssssnnes 186
THE BASICS ... ne e e e s 186
AFTIMETIC ...t E e e e e e s 189
FIOW CONtrol STAtBMENTSccocoeeeeccc e e 190
0 110 191
BaSiC DAta SIFUCTUIESc.cceccccc e 192
Blink an LED, PYython STYI.........ccucviernnieriererersir s ss e sessss s sesssssessassasssesssnnns 195
Required COMPONENTEScccvueereerereerere st s s e sersesesaesessesassesse e ssesessesesaesassesassessesesassssassasseassessenenes 195
SEt UP the HAAWAE.........ccceveeeerererererte st s s ae e sa e s ae e e e e s e e sae e saesa e e sae e sae e nnenanaens 196
WIIE The COUR ...t 196
Deploy and St @S STAMTUDcceveeereere et a e e sa e e a e e ae e e e na e a e s 200
1111 112 SRS 202
Chapter 8: Electronics for Beginners......ccccuusessssssssnssssssssssssssssssssssssssnssssssssnnnss 203
L Lo 2 T[S 204
POWErING YOUF EIECIIONICScocoviuecerereeecririee e s e 204
00 205
SOIABTING IFON ...t e E R e a e e p e 206
USING @ MURIMELE ...ttt 209
Electronic COMPONENTScccvvrierieriirrer s se e sn s sn e sn e 216
BULLON ... 216
L0 o2 (071 (0] OSSPSR 216
DIOAE ..o ———————————————————————————— 217
FUSE ..t 217
Light EMitting DiOde (LED)......cveeeeererreeseresssesesessssssesessssssesessssssssesssnnns 218

CONTENTS

LTSS 219
RESISTON ..o ———————————————————— 220
SWITCH .t 220
TrANSISTON ... 221
VORAGE REGUIALON ..ottt r st a e e a e e s e e e ne e e e e 222
Breakout Boards and CirCUIS ... sssssens 223
Using a Breadboard to Build CirCUILS..........ccceeererereseiressessessessesssssesesssssnsssssnssnssesnnns 223
WRAL ArE SENSOIS?cierirerir sttt sttt e s e sn e n e n e e sn e nn e nn e n s 226
HOW SENSOIS MBASUIE..........cceeeeeceeee e 226
EXQMPIES OF SEBNSOIS ...vvivecerirreesisrsseeesesssesese s e ses e s e e s sss s e s ssss s s sssssssssssssssesssssssssnsnnns 228
E3 1111 1P 7R 231
Chapter 9: The Adafruit Microsoft loT Pack for Raspberry Pi......cccccusseeennnsssnnans 233
OVEIVIBW .o se s 233
ComMPONENES INCIUARA.........ceeeeereeereeere st sr e e a e s a e e sae e e a e e ae e ae e nae e nne e enees 234
Are There AREINALIVES?cvcrriisisiss bbb 237
Example Project: A SIMple SENSOFccccvcversercrcr e sne e 239
Required COMPONENTS ...t s e e e se e e 240
Set Up the HArAWAE..........cou e e s r e e 240
WIILE the COUR ... 244
DEPIOY ANU EXECULE ...ttt 251
SUMMEAIY ...ttt r s ne e e sae e n e er e e s e a e e e nenr s e nnnnnnnns 253
Chapter 10: Project 1: Building an LED Power Meterccccovennnssmssmsnnnnsssssssnes 255
OVEIVIBW ...eeceeeeseese e ses e s e s sas s e s a s ne e nn e e s e n e sae e e e n e e snn e n e nns 255
Required COMPONENTS.......ccveieeercrrrcre e ene s 256
Set up the HAFAWAIEcoceceeceeceeceeee e n s 256
WIIte the COUE......ccueeeeeeerereererir e nr e nnn s 259
DEDUG QULPUL......eeeee ettt p s enn e e n e e n e 260
NEW PIOJECT ...ttt r e a e e s s e e n e nennn e nnnes 261
INIHANIZE GPIO..........cceceee e e 262

xii

CONTENTS

00 (0 LT T i =0 = 263
Code fOr the MCP3008...........cocrerererererereesesesesesesesesesesesesesesesssasasas 264
Deploy and EXECULE........ccvcercercircir st sn e sn s s sn e nnen 269
SUMMEAIY ...ttt e s s e e sae e e e ere e s e nan e nne e s e nnnnnnnns 270
Chapter 11: Project 2: Measuring Light........cccccciminnnnnnsssssmmmmmnmmsssssssssssssssssnnes 271
OVEIVIBW ...t ses e e e sas s se s s e e sne e a e s n e sae e n e nn e e s ne e n e nns 271
Required COMPONENTS.......ccveieeirerrrire s n e sn s 272
Set up the HAFAWAIE ..ot sn s n s 272
WIIte the COUE......ccueeeeeeereeeeererer e nnn s 275
LT 0 R 276
Lighting PrOVIAEIS.......cceeeeveeecrerrsreesessssseesessssesesssss s e e sasse e e s s e sessssssesssssssssssssssssssssssssssssssssssssnsnns 277
USEE INTEITACEcveveeceerece et r e e s e s e s s s ne e ne e e e nennnnnes 279
CONErOlliNgG The LEDcccovoeeeeeereseecsesesssesesessse e e s e s s se s s s e sssss s s sssssssssssssssssssssssssssssssssssnsnns 281
Completing the Main ClassS.........ccccerrrerererenrssesesesssssesessssesesesssssesessanes 283
Code for the MCP3008..........cccoruerererrrreeneresrsesesesssssesessssesesesss s e sssnsnnes 284
Code TOr the PWIM........covieceeeereseeesrsss s sas s s s sa s sn s sn s s sn s s s s nsssnssssanes 286
Deploy and EXECULE........cccevereeree et 289
1111 112 SRS 290
Chapter 12: Project 3: Using Weather Sensors.........ccccumsennmmssssnsssssssssssssssssnnns 291
L0 292
Required COMPONENTS.........ccvcerierierririersirer s se e e se s sn e sn s sn s sn s sn e sn e saennens 293
Setup the HArdWArec.cocereeerircrese e sne e sn s sne e 293
WIIte the COUE......c.ceeeirceir et 294
NEW PIOJECT ...ttt e e et p e 295
Add a C# Runtime COMPONENt PrOJECT...........ccoeurueireririeescsisise e 295
BMP280 CIASS......ccueueueeereeueeseresseesessssesesesesssssessssssssesesssss e e ssssesesessssasssssssssssnsssssssnsssssssssssssssnssanns 296
USEI INTEITACE ...ttt esp s 300

xiii

CONTENTS

LT ey (T (] T N 301
Reading the Weather Data ..o sr s n s 302
Deploy and EXECULE........ccvcercercircir st sn e sn s s sn e nnen 304
SUMMEAIY ...ttt e s s e e sae e e e ere e s e nan e nne e s e nnnnnnnns 305
Chapter 13: Project 4: Using MySQL to Store Data...........cccenssnmmnsnssssnnnsssssnnnnns 307
WHaL IS MYSQL? ..ottt ettt sn e e s 307
Getting Started with MySQL..........ccooeerieinnserr e s 310
How and Where MySQL St0res Data..........ccccerevrererenereneneresessssessesessesessessssesssessssesssssssssassessssesssnenes 311
The MySQL Configuration FilEcecvierrrererrererereseressssesssessssessssessssessessssesssessssesssssssessssessesssssssses 314
How to Get and INStall MYSQLcccccoeeereriereriererereeseseesesesesessssessesessesessesassesassessssesssssssssassesassessssenes 314
How to Start, Stop, and Restart MySQLccoeererrrrrierereresrersesessesessesesesssessssessssessssassessssesssnenes 315
Creating Users and Granting ACCESScccvuererrererrrrerereressssessssessesessesessessssessssessessssssssssssssessssesseneres 316
OVEBIVIBW ...t 317
Set up the DAtabase.........cccvvevrrrrerrrrr s ——————— 317
Required COMPONENTS.......ccveieeircrrrire s n s ene s 318
Set up the HAFAWAIEccoceeeeeceeceecrene et sn s nn e sn e 318
WIIte the COUE......ccueeeeeereeeer e sn e nnen e 319
NEW PIOJECT ...ttt r e a e e s s e e n e nennn e nnnes 319
GIOVEDOX.IOT.DEVICES ... 321
UNIES.NET ...ttt s s e na s s b e s e s e e s e se e e nnnne e e e nnnnnnnnnes 322
0] 44T (0] 322
WiNAOWS 10 10T EXEENSIONScceeereerereseseseseseresesesesese s seses s sesesesesesesesesesesesseseseenes 324
CoNNECHING 10 MYSQLcueeeerereeererere s resesse e reresas e e sasasseseresasseseresassesesessssssesesasasseenasssssneens 324
Reading the Weather DAta...........cccoeieerrnniesesrrsese e sss e s ssssssssnens 325
Writing the Data to the Database...........cocoveerrreiesr s 325
Deploy and EXECULE........cocevveeeeree e n e e 326
1111 112 SRS 330

xiv

CONTENTS

Chapter 14: Project 5: Using a Web Server to Control Hardwareccccessueeeee 331

OVEIVIBW .t sa e 331
Required COMPONENTES.........coeeicrerrersr s s 334
Set up the HArdWAEccevevieereree e ssse s sss e ssae s ssnessessnesanesnesanesnenns 335
Write the COUE.......coceiiiri s 337
NEW PIOJECT ...ttt p e e nn e n e s 337
WED INTEITACE ... ——————————————— 340
WED SErVEr COUE ... s 341
Initializing the GPIO and Starting the Web Server...........orrcrccnccress e 346
Completing the COUE ... e p s r e 346
Deploy and EXECULE........cccvcerrerierer s se e e e sn e nnenn 348
Prototyping the Out of Office Sign ENCIOSUIEccccvvercerierierrer et 351
Assembling the CIrCUIt BOAITcccoeeerererereerererereserereseressesseserassessesessessssessssessssessessssessssesssesaes 352
MaKing the ENCIOSUIEcceeeeereeereeereerereresereesersesesaesessesessesassessesessssesssssssessssessesesssnessssassessssesseneres 354
BT T o T LT 0T LT o =T O 357
TeSting the PrototyPe.......ccceerereere st rae s e ae e rae e aesas e sae e sae e saesesaesa s e sa e e saenenans 358
Taking it @ STEP FUINETc.cvvrcc 359
SUMMEAIY ...ttt ae s e e e e e e a e e s A e e ae e e e ne e naens 360
Chapter 15: Project 6: Windows loT and Arduing........cucseeeesnnnsssssssssssssssssssssnnss 361
What IS @n Arduing? ... s 361
Arduing MOGEIS........ccoiviriniriisisiisii i —————— 362
S0, WHICH DO | BUY? ...ttt sre e sas s s e s st n s s n e ene e enennsnnnnnnens 364
WREIE 10 BUY ..ottt e e b e e n e e a e e e e e n e nenrnnas 364
Getting Started With Arduingcoeeeeeeeeeeec e 365
LEArNiNG RESOUICES.....ccceueueerererreesesesseesesessssssesessssssesesssss s sessssesssessssasssssssssssnsssssssssssssssssssssssssnssnnns 365
THEAFAUINO IDE ... 366
Arduino Wiring and UWP Lightning Providers..........cccceeeverereerssssessessessessessesssssessenses 368
Required COMPONENTEScccoueereecreerere e res e rae s e rae e s e se s e sa e e saesesaesesaesasaesassesaesesaenesassasaeassesnnenes 368
Set UP the HAAWAE.........ccceeeeeeceere et s e e ae s ae e sae s ae e ae e saesesae e saesa e e sae e saenenaenenanns 369

XV

CONTENTS

WIIE ThE COUR ...t 37
DEPIoY aNd EXECULEcocvereirisisisisiiisiiisisssissss s 378
Windows Remote Arduingcccccverienemsmssnssss s 379
Required COMPONENTS ...t s e s e p e 380
Set Up the HArAWANE...........co e e s r et 381
Prepare the ArdUINO ... e e e e 382
Prepare YOUE PC......... ettt et st st st b e e et 383
Running the Remote Arduino AppliCALIONcceccvevrirrcrr s 384
Windows Virtual Shields for ArdUingcoccevieeeneiesnsesesesesesse e sse s sessessessssens 386
Required COMPONENTScccourrirererirrrreesesesssese e s e e s s se s sssss e e e sssssesnsssssssssssssssesssssssssnsnnns 387
Set UP the HArAWAIE..........ccceeeerreeere e s a s nnnp s 388
Prepare the ArUINO..........cceeeerrreeeserrre e se s s s s sn s s s nn s ss e e e ssnnnnnnnes 389
PrEPare YOUE PC.........cooiiiieeresesseesesssssssesssssesesssss s e e ssssssesessssssesesssssssssssssssnssssssssssssssssssnssssssssnsnns 391
Running the Virtual Shields APPlICALION..........ccoerrrererrneeserr e sas e senens 391
R3]0 111 395
Chapter 16: Azure loT Solutions: Cloud Servicesuusememmmrrrsssssssssssssnssssssssnns 397
What IS MiCroSoft AZUIE?cccceiririririrssss s s 397
Getting Started with MiCroSOft AZUrecoeeeeeeeceeece e 398
Sign Up fOr @n AZUrE ACCOUNTc.coceereeccrereee e s e e 399
AZUIE [OT HUD . s 401
AZUIE (0T SUIE ... 401
D o =] 0] - RSO S 402
Building 10T SOIUtIONS With AZUFEceeeeeeeeeeee e 402
Hello, WOrld! AZUIE SEYI......cou ettt e s a e e 407
OVEIVIBW ...t se e e s s sas s e s sas s a s sae e s na e e s aenn e saenn s e ne e snn e nsenns 418
Required COMPONENTS.......cccvverierierrersersersessesse e s ses e s sessesses e s snssessessassassnssnssssssssnssssnsnns 418
Set uUp the HAFAWAIEccceceeeeeceecectrre e n s 418
Set up a New Azure Remote Monitoring SOIUtONcccoveeveerienesnceee s 419

xvi

CONTENTS

WIItE the COUE......cceeeeeeercetr e 428
NEW PIOJECT ...ttt ae e ne e p e e s e e e e 428
Adding References for the HArdWare ... sessns 429
Create a Class for the Weather Data............cocovrerirennnnncnss s 431
Reading the Weather Data and Sending it to the Azure 10T Hub........c.cooeeerreeennreereeeeeeseeeeens 431
Writing the Data t0 the 10T HUD ... 432

Deploy and EXECULE........cccevceeeerer e 432

SUMMAIY ...t see e ss s s e s s s s s s sr s s s sn s s e s e s s nrenr s nn e e e nnennennennenr e e e nnennnnnennnnnnnan 434

Chapter 17: Where to Go from Here?cueemmmmmmmmsmsssssssssssssssssssssssssssssssssssssnns 435

More Projects 10 EXPIOreccocveercerserseressesses s se s e e se e e e sn e e snssnesnnnns 435
Microsoft Windows 10 10T SAMPIES........cccerrrirnnnrrnersess s ss e s ses s ssssens 435
HACKSIBLI0 .. ——————————— 437

JOiN the COMMUNILYccceeeeeiiecrc e 438
WHY CONTHDULE? ...t 438
HOW WE SRAIE ... 439
Suggested COMMUNITIES.......ccccorrreerererrrese e nss e e s e e s nnn s 442

BECOME @ MAKET ..o s 444
WRHAE'S @ MAKEI?.....oviiciriis s 444
SHArE YOUF [ABS.....cciurriiiiisciriisss bbb 444
ALENd aN EVEN ... 445

SUMMAIY ...t sre e sr e s s s s s s s r s s s n e s e s s s s e e s s nr e e e nnennennennenn e s e s e nnnnnnnnnnannan 445

APPCNUIX.rereeinssssnnnnnnnssmmsmsmsssssnssssssmsssssssssnsssssssessssssssssnnsssssssssssssssnnnnnnssssssssssnnnnns 447
Hardware DY ChaPLE ..ottt rss e ree e se s e s sas e s e e saesasne e s e sa e e sae e sae e saenasnesasnenes 447
Consolidated HAardWare LiSt...........cumninsssssssss s sssssssssssens 452
Suggestions for Purchasing the Hardware ... 453

INO@X . ueeeiiienisisnnnsssnnssssnnsssssnsssssnsssssnssssansasssn s sassnn e s snnnansannansannanssnnn s nnnnnssnnnnsnnnnssnnss 457

xvii

About the Author

Dr.Charles Bell conducts research in emerging technologies. He is a
member of the Oracle MySQL Development team as a senior developer
working on a variety of database administration and high-availability
projects. He lives in a small town in rural Virginia with his loving wife. He
received his doctorate of philosophy in engineering from Virginia
Commonwealth University in 2005. His research interests include
database systems, software engineering, sensor networks, and 3D printing.
He spends his limited free time as a practicing maker, focusing on
microcontroller and 3D printers and printing projects.

Xix

About the Technical Reviewer

Reggie Burnett is currently employed as senior software development
manager for Oracle Corp., where he is in charge of development projects
spanning many different platforms and architectures. Specializing in
Windows and .NET technologies, Reggie has written articles for
publications such as the .NET Developers Journal.

Reggie is married and has four children. He lives in central Tennessee
where he plays golf and pool and works on his next geeky project.

XXi

Acknowledgments

I'would like to thank all of the many talented and energetic professionals at Apress. I appreciate the
understanding and patience of my editor, Jonathan Gennick, and managing editor, Jill Balzano. They were
instrumental in the success of this project. I would also like to thank the army of publishing professionals at
Apress for making me look so good in print. Thank you all very much!

I'd like to especially thank the technical reviewer, Reggie Burnett, for his often-profound insights,
constructive criticism, and encouragement. I'd also like to thank my friends for their encouragement and
suggestions for things to include in the book.

Most importantly, I want to thank my wife, Annette, for her unending patience and understanding while
I spent so much time with my laptop.

xxiii

Introduction

Internet of Things (IoT) solutions are not nearly as complicated as the name may seem to indicate. Indeed,
the IoT is largely another name for what we have already been doing. You may have heard of connected
devices or Internet-ready or even cloud-enabled. All of these refer to the same thing—be it a single device
such as a toaster or a plant monitor or a complex, multidevice product like home automation solutions. They
all share one thing in common: they can be accessed via the Internet to either display data or interact with
the devices directly. The trick is applying knowledge of technologies to leverage them to the best advantages
for your IoT solution. Until the release of Windows 10 IoT Core, those who use Windows wanting to
experiment with IoT solutions and in particular hardware like the Raspberry Pi had to learn a new operating
system in order to get started. That is no longer true! In this book, we explore how to leverage Windows 10 in
your IoT solutions.

Intended Audience

I wrote this book to share my passion for IoT solutions and Windows 10. I especially wanted to show how
anyone could use Windows 10 along with a low-cost computing board to create cool IoT projects—all
without having to learn a new operating system!

The intended audience therefore includes anyone interested in learning how to use Windows 10 for
IoT projects, such as hobbyists and enthusiasts, and even designers and engineers building commercial
Windows 10-based IoT solutions.

How This Book Is Structured

The book was written to guide the reader from a general knowledge of IoT to expertise in developing
Windows 10 solutions for the IoT. The first several chapters cover general topics, which includes a short
introduction to the Internet of Things, the Windows 10 IoT Core technologies, and some of the available
hardware for IoT. Additional chapters are primers on how to write IoT solutions in a variety of programming
languages. Rather than focusing on a single language, which often forces readers unfamiliar with the
language to learn new skills just to read the book, I've included tutorials in a number of languages to make
the book usable by more readers. Throughout the book are examples of how to implement IoT solutions

in the various languages. As you will see, some languages are better suited for certain projects. The book
contains six detailed and increasingly complex projects for you to explore and enjoy as you develop IoT
solutions with Windows 10. There is even a chapter that shows you how to work with Arduino-compatibe
microcontroller boards. The book concludes with a look at how to grow beyond the material presented. An
appendix listing the hardware components for each chapter is included for your convenience. The following
is a brief overview of each chapter in this book.

XXV

INTRODUCTION

XXVi

Chapter 1: What Is the Internet of Things? This chapter answers general questions
about the IoT and how IoT solutions are constructed. You are introduced to some
terminology describing the architecture of IoT solutions and you are provided
examples of well-known IoT solutions. The chapter concludes with a brief
introduction to Windows 10.

Chapter 2: Introducing the Windows 10 IoT Core. This chapter presents a version of
Windows 10 called the Windows 10 IoT Core that runs on low-cost computers, such
as the Raspberry Pi. You discover the basic features of Windows 10, including how to
prepare your PC and get started with Windows 10 on your device. You will also see
how to boot up the Raspberry Pi with Windows 10!

Chapter 3: Introducing the Raspberry Pi. This chapter explores the Raspberry Pi

and how to set up and configure it using the Linux operating system in order to
understand the platform and supporting technologies. You'll also discover a few key
concepts of how to work with Linux and get a brief look at writing Python scripts,
which are used to write Windows 10 IoT applications in later chapters.

Chapter 4: Developing IoT Solutions with Windows 10. This chapter presents

a demonstration on how to get started using Visual Studio 2015. The chapter
introduces several Windows 10 IoT Core-compatible hardware boards, including the
layout of the GPIO headers. The chapter demonstrates how to build, deploy, and test
your first Windows 10 IoT Core application.

Chapter 5: Windows 10 IoT Development with C++. This chapter provides a crash
course on the basics of C++ programming in Visual Studio, including an explanation
of some of the most commonly used language features. As such, this chapter
provides you with the skills that you need to understand the growing number of

IoT project examples available on the Internet. The chapter concludes by walking
through a C++ example project that shows you how to interact with hardware.

Chapter 6: Windows 10 IoT Development with C#. This chapter offers a crash course
on the basics of C# programming in Visual Studio, including an explanation of
some of the most commonly used language features. As such, this chapter provides
you with the skills that you need to understand the growing number of IoT project
examples available on the Internet. The chapter concludes by walking through a C#
example project that shows you how to interact with hardware.

Chapter 7: Windows 10 IoT Development with Python. This chapter is a crash course
on the basics of Python programming in Visual Studio, including an explanation of
some of the most commonly used language features. As such, this chapter provides
you with the skills that you need to understand the growing number of IoT project
examples available on the Internet. The chapter concludes by walking through a
Python example project that shows you how to interact with hardware.

Chapter 8: Electronics for Beginners. This chapter presents an overview of electronics
for those who want to work with the types of electronic components commonly
found in IoT projects. The chapter includes an overview of some of the basics,
descriptions of common components, and a look at sensors. If you are new to
electronics, this chapter gives you the extra boost that you need to understand the
components used in the projects in this book.

Chapter 9: The Adafruit Microsoft IoT Pack for Raspberry Pi. This chapter explores
the Adafruit Microsoft IoT Pack for Raspberry Pi 3 and demonstrates a small project
that uses the components in the kit (well, mostly) to read data from a simple sensor.

http://dx.doi.org/10.1007/978-1-4842-2108-2_1
http://dx.doi.org/10.1007/978-1-4842-2108-2_2
http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://dx.doi.org/10.1007/978-1-4842-2108-2_4
http://dx.doi.org/10.1007/978-1-4842-2108-2_5
http://dx.doi.org/10.1007/978-1-4842-2108-2_6
http://dx.doi.org/10.1007/978-1-4842-2108-2_7
http://dx.doi.org/10.1007/978-1-4842-2108-2_8
http://dx.doi.org/10.1007/978-1-4842-2108-2_9

INTRODUCTION

Chapter 10: Project 1: Building an LED Power Meter. This chapter walks through a
project using LEDs to display power (volts). You see how to use a potentiometer as
a variable input device, read from an analog to digital converter (ADC), learn how
to set up and use a serial peripheral interface (SPI), discover a powerful debugging
technique, and learn how to create a class to encapsulate functionality.

Chapter 11: Project 2: Measuring Light. This chapter explores a solution that
demonstrates how to measure light using a sensor. The project measures the
ambient light in the room and then calculates how much power to send to the LED
using a technique called pulse-width modulation (PWM).

Chapter 12: Project 3: Using Weather Sensors. This chapter demonstrates a very
common type of IoT solution—a weather station. In this case, the project uses
sensors from the Adafruit kit and implements the code by mixing C# and C++ in the
same solution, reusing existing code, and combining it with new code in another
language.

Chapter 13: Project 4: Using MySQL to Store Data. This chapter revisits the project
from Chapter 12 and modifies it to store the IoT data collected in a MySQL database.
Thus, you see an example of how to complete the data storage element of your IoT
solutions.

Chapter 14: Project 5: Using a Web Server to Control Hardware. This chapter presents
one method for building IoT solutions that control hardware remotely using a web

page.

Chapter 15: Project 6: Windows IoT and Arduino. In this chapter, you explore the
Arduino platform along with the three Arduino technologies from Microsoft. You
begin with a short tutorial on the Arduino and an in-depth look at using the Arduino
Wiring libraries. This project combines many of the techniques and components
from the previous chapters.

Chapter 16: Azure IoT Solutions: Cloud Services. This chapter presents a few of the
newer concepts and features of Microsoft Azure at a high level and in context of a
sample project. You can therefore consider this chapter a bonus project chapter.

Chapter 17: Where to Go from Here? This chapter explores what you can do to
continue your craft of building IoT solutions. Most people want to simply continue to
develop projects for themselves, either for fun or to solve problems around the home
or office. However, some want to take their skills to the next level. This chapter shows
you how to do just that.

Appendix. Contains a list of the required hardware components for each chapter.

How to Use This Book

This book is designed to guide you through learning more about what the Internet of Things is, discovering
the power of Windows 10 IoT Core, and seeing how to build your IoT solutions using the best language
suited for the task.

If you are familiar with some of the topics early in the book, I recommend you skim them so that you
are familiar with the context presented so that the later chapters—especially the examples—are easy to
understand and implement on your own. You may also want to read some of the chapters out of order so
that you can get your project moving, but I recommend going back to the chapters you skip to ensure that
you get all of the data presented.

xxvii

http://dx.doi.org/10.1007/978-1-4842-2108-2_10
http://dx.doi.org/10.1007/978-1-4842-2108-2_11
http://dx.doi.org/10.1007/978-1-4842-2108-2_12
http://dx.doi.org/10.1007/978-1-4842-2108-2_13
http://dx.doi.org/10.1007/978-1-4842-2108-2_12
http://dx.doi.org/10.1007/978-1-4842-2108-2_14
http://dx.doi.org/10.1007/978-1-4842-2108-2_15
http://dx.doi.org/10.1007/978-1-4842-2108-2_16
http://dx.doi.org/10.1007/978-1-4842-2108-2_17

INTRODUCTION

If you are just getting started with Windows 10 or are not well versed in using Visual Studio, I
recommend reading Chapters 1-9 in their entirety before developing your own IoT solution or jumping to
the example projects. That said, many of the examples permit you to build small examples that you can use
to help learn the concepts.

Downloading the Code

The code for the examples shown in this book is available on the Apress web site, www.apress.com. You can
find a link on the book’s information page on the Source Code/Downloads tab. This tab is located in the
Related Titles section of the page.

Contacting the Author

Should you have any questions or comments—or even spot a mistake you think I should know about—you
can contact me, the author, at drcharlesbell@gmail.com.

xxviii

http://dx.doi.org/10.1007/978-1-4842-2108-2_1
http://dx.doi.org/10.1007/978-1-4842-2108-2_9
http://www.apress.com/

CHAPTER 1

What Is the Internet of Things?

Much has been written about the Internet of Things.! Some texts expand on the science and technology to
implement and manage the Internet of Things, while other texts concentrate on the future or the inevitable
evolution of our society as we become more connected to the world around us each and every day. However,
you need not dive into such tomes or be able to recite rhetoric to get started with the Internet of Things. In
fact, through the efforts of many companies, including Microsoft, you can explore the Internet of Things
without intensive training or expensive hardware and software.

This book is intended to be a guide to help you understand the Internet of Things and to begin building
solutions that you can use to learn more about it. We will explore many aspects—from understanding what
the Internet of Things is, to basic knowledge of electronics, and even how to write custom software for
building solutions for the Internet of Things. Best of all, we do so using one of the most popular platforms for
personal computers: Windows 10.

So what is this Internet of Things, hence IoT??I'll begin by explaining what itisn’t. The IoT is not a new
device or proprietary software, or some new piece of hardware. It is not a new marketing scheme to sell you
more of what you already have by renaming it and pronouncing it “new and improved.”* While it is true that
the IoT employs technology and techniques that already exist, the way they are employed, coupled with the
ability to access the solution from anywhere in the world, makes the IoT an exciting concept to explore. Now
let’s discuss what the IoT is.

The essence of the IoT is simply interconnected devices that generate and exchange data from
observations, facts, and other data, making it available to anyone. While there seems to be some marketing
efforts attempting to make anything connected to the Internet an IoT solution or device (not unlike the
shameless labeling of everything “cloud”), IoT solutions are designed to make our knowledge of the world
around us more timely and relevant by making it possible to get data about anything from anywhere at any time.

Asyou can imagine, if we were to connect every device around us to the Internet and make sensory data
available for those devices, it is clear there is potential for the number of IoT devices to exceed the human
population of the planet and for the data generated to rapidly exceed the capabilities of all but the most
sophisticated database systems. These concepts are commonly known as addressability and big data, which
are two of the most active and debated topics in IoT.

However, the IoT is all about understanding the world around us. That is, we can leverage the data to
make our world and our understanding of it better.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-2108-2_1)
contains supplementary material, which is available to authorized users.

'And here’s some more!
*https://en.wikipedia.org/wiki/Internet_of Things
For example, everything seems to be cloud-this, cloud-that when in reality nothing was changed.

© Charles Bell 2016 1
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_1

https://en.wikipedia.org/wiki/Internet_of_Things
http://dx.doi.org/10.1007/978-1-4842-2108-2_1

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

The Internet of Things and You

How do we observe the world around us? The human body is a marvel of ingenious sensory apparatus that
allow us to see, hear, taste, and even feel through touch anything we come into contact with or get near. Even
our brains are capable of storing visual and auditory events recalling them at will. IoT solutions mimic many
of these sensory capabilities and therefore can become an extension of our own abilities.

While that may sound a bit grandiose (and it is), IoT solutions can record observations in the form of
data from one or more sensors. Sensors are devices that produce either analog or digital values. We can then
use the data collected to draw conclusions about the subject matter.

This could be as simple as a sensor to detect when a mailbox is opened. In this case, the knowledge we
gain from a simple switch opening or closing (depending on how it is implemented and interpreted) may be
used to predict when incoming mail has arrived or when outgoing mail has been picked up. I use the term
predict because the sensor (switch) only tells us the door was opened or closed, not that anything was placed
in or removed from the mailbox itself—that would require additional sensors.

A more sophisticated example is using a series of sensors to record atmospheric data such as
temperature, humidity, barometric pressure, wind speed, ambient light, rain fall, and so forth, to monitor
the weather and perform analysis on the data to predict trends in weather. That is, we can predict within a
reasonable certainty that precipitation is in the area.

Now, add the ability to see this data not only in real time (as it occurs), but also remotely from anywhere
in the world and the solution becomes more than a simple weather station. It becomes a way to observe the
weather about one particular place from anywhere in the world.

This example may be a bit commonplace since you can tune into any number of television, Web, and
radio broadcasts to hear the weather from anywhere in the world. But consider the implications of building
such a solution in your home. Now you can see data about the weather at your own home from anywhere!

In the same way, but perhaps on a smaller scale, we can build solutions to monitor plants to help us
understand how often they need water and other nutrients. Or perhaps we can monitor our pets while we are
away at work. Further, we can record data about wildlife in our area to better understand our effect on nature.

IoT Is More Than Just Connected to the Internet

So if a device is connected to the Internet, does that make it an IoT solution? That depends on whom you
ask. Some believe the answer is yes. However, others (like me) contend that the answer is not unless there is
some benefit from doing so.

For example, if you could connect your toaster to the Internet, what would be the benefit of doing so? It
would be pointless (or at least extremely eccentric) to get a text on your phone from your toaster stating that your
toast is ready. So in this case, the answer is no. However, if you have someone—such as a child or perhaps an
older adult—whom you would like to monitor, it may be helpful to be able to check to see how often and when
they use the toaster. That is, you can use the data to help you make decisions about their care and safety.

Allow me to illustrate with another example. I was fortunate to participate in a design workshop held on
the Microsoft campus in the late 1990s. During our tour of the campus, we were introduced to the world’s first
Internet-enabled refrigerator (also called a smart refrigerator). There were sensors in the shelves to detect the
weight of food. It was suggested that, with a little ingenuity, you could use the sensors to notify your grocer
when your milk supply ran low, which would enable people to have their grocery shopping not only online
but also automatic. This would have been great if you lived in a location where your grocer delivers, but not
very helpful for those of us who live in rural areas. While it wasn’t touted an IoT device (the term was coined
later), many felt the device illustrated what could be possible if devices were connected to the Internet.

Thus, being connected to the Internet doesn’t make something IoT. Rather, IoT solutions must be those
things that provide some meaning—however small that has benefit is to someone or some other device
or service. More importantly, IoT solutions allow us to sense the world around us and learn from those
observations. The real tricky part is in how the data is collected, stored, and presented. We will see all of
these in practice through examples in later chapters.

2

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

IoT solutions can also take advantage of companies that provide services that can help enhance or
provide features that you can use in your IoT solutions. These features are commonly called IoT services and
range from storage and presentation to infrastructure services, such as hosting.

IoT Services

Sadly, there are companies that tout having IoT products and services that are nothing more than marketing
hype—much like what some companies have done by prepending “cloud” or appending “for the cloud” to
the name. Fortunately, there are some really good products and services being built especially for IoT. These
range from data storage and hosting to specialized hardware.

Indeed, businesses are adding IoT services to their product offerings and it isn’t the usual suspects,
such as the Internet giants. I have seen IoT solutions and services being offered by Cisco, AT&T, HP, and
countless start-ups and smaller businesses. I use the term IoT vendor to describe those businesses that
provide services for IoT solutions.

You may be wondering what these services and products are and why someone would consider using
them. That is, what is an IoT service and why would you decide to buy it? The biggest concerns in the
decision to buy a service are cost and time to market.

If your developers do not have the resources or expertise, and obtaining them will require more than the
cost of the service, it may be more economical to purchase the service. However, you should also consider
any additional software or hardware changes (sometimes called retooling) necessary in the decision. I once
encountered a well-meaning and well-documented contracted service that permitted a product to go to
market sooner than projected at a massive savings. Sadly, while the champions of that contract won awards
for technical achievement, they failed to consider the fact that the systems had to be retooled to use the new
service. More specifically, it took longer to adopt the new service than it would to write one from scratch. So
instead of saving money, the organization spent nearly twice the original budget and were late to market.
Clearly, you must consider all factors.

Similarly, if your time is short or you have hard deadlines to meet to make your solution production-
ready, it may be quicker to purchase an IoT service rather than create or adapt your own. This may require
spending a bit more, but in this case, the motivation is time and not (necessarily) cost. Of course, in reality
project planning is a balance of cost, time, and features.

So what are some of the IoT services available? The following lists a few that have emerged in the last
few years. It is likely more will be offered as IoT solutions and services mature.

e Enterprise IoT data hosting and presentation. Services that allow your users to
develop enterprise IoT solutions from connecting to, managing, and customizing
data presentation in a friendly form, such as graphs, charts, and so forth. Example:
Xively (https://xively.com)

e [oT data storage. Services that permit you to store your IoT data and get simple
reports. Example: SparkFun’s IoT Data service (https://data.sparkfun.com)

e Networking. Services that provide networking and similar communication protocols
or platforms for IoT. Most specialize in machine-to-machine (M2M) services
Example: AT&T’s cellular global SIM service (business.att.com/enterprise/
Family/mobility-services/internet-of-things)

e JoT hardware platforms. Vendors that permit you to rapidly develop and prototype
IoT devices using a hardware platform and a host of supported modules and tools for
building devices ranging from a simple component to a complete device. Example:
Intel’s IoT gateway development kits (Wwww-ss1.intel.com/content/www/us/en/
embedded/solutions/iot-gateway/overview.html)

Now that you know more about what IoT is, let’s look at a few examples of IoT solutions to get a better
idea of what IoT solutions can do and how they are employed.

https://xively.com/
https://data.sparkfun.com/
business.att.com/enterprise/Family/mobility-services/internet-of-things
business.att.com/enterprise/Family/mobility-services/internet-of-things
www-ssl.intel.com/content/www/us/en/embedded/solutions/iot-gateway/overview.html
www-ssl.intel.com/content/www/us/en/embedded/solutions/iot-gateway/overview.html

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

A Brief Look at loT Solutions

An IoT solution is simply a set of devices designed to produce, consume, or present data about some event
or series of events or observations. This can include devices that generate data, such as a sensor, devices that
combine data to deduce something, devices or services designed to tabulate and store the data, and devices
or systems designed to present the data. Any or all of these may be connected to the Internet.

IoT solutions may include one or all of these qualities, whether it is combined into a single device
such as a web camera; use a sensor package and monitoring unit, such as a weather station; or use a
complex system of dedicated sensors, aggregators, data storage, and presentation, such as complete home
automation system. Figure 1-1 shows a futuristic picture of all devices—everywhere—connected to the
Internet through databases, data collectors or integrators, display services, or other devices.

Figure 1-1. The future of IoT - all devices, everywhere*

Let’s take a look at some example IoT solutions. The IoT solutions described in this section are a mix of
solutions that should give you an idea of the ranges of sizes and complexities of IoT solutions. I also point
out how some of these solutions leverage services from IoT vendors.

Sensor Networks

Sensor networks are one of the most common forms of IoT solutions. Simply stated, sensor networks allow
you to observe the world around you and make sense of it. Sensor networks could take the form of a pond
monitoring system that alerts you to water level, water purity (contamination), or water temperature; or
detects predators; or even turns on features automatically, such as lighting or fish feeders.

*https://pixabay.com/en/network-iot-internet-of-things-782707/

4

https://pixabay.com/en/network-iot-internet-of-things-782707/

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

If you, or someone you know, have spent any time in a medical facility, it’s likely that a sensor network
was employed to monitor body functions, such as temperature, cardiac and respiratory rates, and even
movement. Modern automobiles also contain sensor networks dedicated to monitoring the engine, climate,
and even in some cars, road conditions. For example, the lane-warning feature uses sensors (typically a
camera, microprocessor, and software) to detect when you drift too far toward lane or road demarcations.

Thus, sensor networks employ one or more sensors that take measurements (observations) about an event
or state, and communicate that data to another component or node in the network, which is then presented, in
some form or another, for analysis. Let’s take a look at an example of an important medical IoT solution.

Medical Applications

Medical applications—including health monitoring and fitness—are gaining a lot of attention as consumer

products. These solutions cover a wide range of capabilities, such as the fitness features built into the Apple
Watch to fitness bands that keep track of your workout, and even medical applications that help you control
life-threatening conditions. For example, there are solutions that can help you manage diabetes.

Diabetes is a disease that affects millions of people worldwide (www.diabetes.org). There are several
forms: the most serious being type 1 (www.diabetes.org/diabetes-basics/type-1/?loc=db-slabnav).
Those afflicted with type 1 diabetes do not produce enough (or any) insulin due to genetic deficiencies, birth
defects, or injuries to the pancreas. Insulin is a hormone that the body uses to extract a simple sugar called
glucose, which is created from sugars and starches, from blood for use in cells.

Thus, type 1 diabetics must monitor their blood glucose to ensure that they are using their medications
(primarily insulin) properly and balanced with a healthy lifestyle and diet. If their blood glucose levels
become too low or too high, they can suffer from a host of symptoms. Worse, extremely low blood glucose
levels are very dangerous and can be fatal.

One of the newest versions of a blood glucose tester consists of a small sensor that is inserted in the
body along with a monitor that connects to the sensor via Bluetooth. You wear the monitor on your body
(or keep it within 20 feet at all times). The solution is marketed by Dexcom (dexcom. com) and is called a
continuous glucose monitor (CGM) that permits the patient to share their data to others via their phone.
Thus, the patient pairs their CGM with their phone and then shares the data over the Internet to others.
This could be loved ones, those that help with their care, or even medical professionals. Figure 1-2 shows
an example of the Dexcom CGM monitor and sensor. The monitor is on the left and the sensor and
transmitter are on the right. The sensor is the size of a small syringe needle and remains inserted in the
body for up to a week.

Figure 1-2. Dexcom continuous glucose monitor with sensor

http://www.diabetes.org/
http://www.diabetes.org/diabetes-basics/type-1/?loc=db-slabnav

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

WHAT ABOUT BLOOD GLUCOSE TESTERS (GLUCOMETERS)?

Until solutions like the Dexcom CGM came about, diabetics had to use a manual tester. Traditional blood
glucose testers are single-use events that require the patient to prick their finger or arm and draw a small
amount of blood onto a test strip. While this device has been used for many years, it is only recently that
manufacturers have started making blood glucose testers with memory features and even connectivity

to other devices, such as laptops or phones. The ultimate evolution of these devices is a solution like
Dexcom, which has become a medical loT device that improves the quality of life for diabetics.

Dexcom also provides a free Windows application called Dexcom Studio (http://dexcom.com/dexcom-
studio) to allow patients to see the data collected and generate a host of reports they can use to see their
glucose levels over time. Reports include averages, patterns, daily trends, and more. They can even share their
data with their doctor. Figure 1-3 shows an example of the Dexcom Studio with typical data loaded.

Dexcom Studio™

File: Tooks Help Highttime Range Target Ghucose Range

won (B () o) Bl B)) @) @) 8
Home Patterns | HourlyStats Dady Tends Dutrbution Ghecose Trend Dy Stats

Success Report AlcRecords Patients Options

2014 Print Report |
View Report

N LR J L

Pattern Insights Summary

* TueDec23 & Wed Dec 24 * ThuDec 25 * FriDec 26 * SatDec 27 ¢ SunDec28 MNighttime

Lows | No sigrificant patterms detocted
0 Found,

Daytime

Lows

il patterns detected

mag/dL

1 Found) | TA4S PM

Statistics
183 mag/dL

70l 7 Days

31

Standard Deviation 1 66 mg/dL

wc 74 % High
T
23% Target
\@
3% Low
§ sget Range 80 - 130 mg/dL
Nighttime Range | 10:00 PM - 6:00 AM

No receiver attached.

Figure 1-3. Dexcom Studio

A feature called Dexcom Share permits the patient to make their data available to others via an app on
their phone. That is, the patient’s phone transmits data to the Dexcom cloud servers, which is then sent to
anyone who has the Dexcom Share app and has been given permission to see the data. Figure 1-4 shows an

example of the Dexcom Share CGM report from the Dexcom Share iOS app, which allows you to easily and
quickly check the blood glucose of a friend or loved one.

vww allitebooks.conl

http://dexcom.com/dexcom-studio
http://dexcom.com/dexcom-studio
http://www.allitebooks.org

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

®eeeC ATET LTE 9:57 AM 7 % 98% W

f

3HR sik 12HR (EZNLD

4PM 10 PM 4 AM 9:57 AM

Figure 1-4. Dexcom Share app report

Not only does the app allow the visualization of the data, it can also relay alerts for low or high blood
glucose levels, which has profound implications for patients who suffer from additional ailments or
complications from diabetes. For example, if the patient’s blood glucose level drops while they are alone,
incapacitated, or unable to get treatment, loved ones with the Dexcom Share app can respond by checking
on the patient and potentially avoiding a critical diabetic event.

While this solution is a single sensor connected to the Internet via a proprietary application, it is an
excellent example of a medical IoT device that can enhance the lives of not only the patient but everyone
who cares for them.

Combined with the programmable alerts, you and your loved ones can help manage the effects of
diabetes. If you have a loved one who suffers with diabetes, a CGM is worth every penny for peace of mind
alone. This is the true power of [oT materialized in a potentially life-saving solution.

Automotive IoT Solutions

Another personal IoT solution is the use of Internet-connected automotive features. One of the oldest
products is called OnStar (onstar.com), which is available on most late-model and new General Motors
(GM) vehicles. While OnStar predates the IoT evolution, it is a satellite-based service that has several levels
and many fee-based options, it incorporates the Internet to permit communication with vehicle owners.
Indeed, the newest GM vehicles come with a Wi-Fi access point built into the car! Better still, there are some
basic features that are free to GM owners that, in my opinion, are very valuable.

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

The free, basic features include regular maintenance reports sent to you via e-mail, and the ability to
use an app on your phone to remotely unlock, lock, and start the car—all the features on your key fob. This
is a really cool feature if you have every locked your keys in your car! Figure 1-5 shows an example of the
remote key fob app on iOS. Of course, there are even more features available for a fee, including navigation,
telephone, Wi-Fi, and on-call support.

Colorado Crew Cab

Lock Unlock

Remote Start Cancel Start

> =l

Horn & Lights Stop Horn & Lights

Figure 1-5. OnStar app key fob feature

The OnStar app works by connecting to the OnStar services in the cloud, requesting the feature
(e.g., unlock) that is sent to the vehicle via the OnStar satellite network. So it is an excellent example of how
IoT solutions use multiple communication protocols.

The feature I like most is the maintenance reports. You will receive an e-mail with an overview of the
maintenance status of your vehicle. The report includes such things as oil life, tire pressure, engine and
transmission warnings, emissions, air bag, and more. Figure 1-6 shows an excerpt of a typical e-mail that you
receive.

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

@ No Issues Found & Action Suggested @ adiage A

@ Engine and Transmissi ¥

@ Emissions System

@ Air Bag System

@ StabiliTrak® Stability Control System

@ Antilock Braking System

Vehicle Maintenance
No oil change due at this time.

Remaining Ol Life: 60%

Mileage: 8,766

View maintenance summary

Od ter-Based Items

Based on your current mileage, no items on the additional
maintenance list are due at this time.

@ Tire Pressure: Normal
= No issues found.
* Recommended tire pressure - Front: 35 psi,

Rear: 35 psi
Left Front: @ = Right Front:
34 psi ‘r 34 psi
Left Rear: @ | Right Rear:
34 psi | | 34 psi
L |
| T,

Figure 1-6. OnStar maintenance report

Notice the information displayed. This is no mere idiot light! Actual data is transmitted to OnStar from
your vehicle. For example, the odometer reading and tire pressure data is taken directly from the vehicle’s
onboard data storage. That is, data from the sensors is read, interpreted, and the report generated for you.
This feature demonstrates how automatic compilation of data in an IoT solution can help us keep our
vehicles in good mechanical condition with early warning of needed maintenance. This serves us best by
helping us keep our vehicles in prime condition and thus in a state of high resell value.

I'should note that GM isn’t the only automotive manufacturer offering such services. Many others
are working on their own solutions, ranging from an OnStar-like feature set to solutions that focus on
entertainment and connectivity.

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

Fleet Management

Another example of an IoT solution is a fleet management system.® While developed and deployed well before
the coining of the phrase Interest of Things, fleet management systems allow businesses to monitor their cars,
trucks, ships—just about any mobile unit—to not only track their current location but also to use the location
data (GPS coordinates taken over time) to plan more efficient routes, thereby reducing the cost of shipment.
Fleet management systems aren'’t just for routing. Indeed, fleet management systems also allow
businesses to monitor each unit to conduct diagnostics. For example, it is possible to know the amount
of fuel in each truck, when its last maintenance was performed—or more importantly, when the next
maintenance is due, and much more. The combination of vehicle geographic tracking and diagnostics is
called telematics. Figure 1-7 shows a drawing of a fleet management system.

%@&‘@ B ga

Telecom
Server
Traitment center

GPRS
GSM

GPS

Cartography
\

Figure 1-7. Fleet management example®

In Figure 1-7 you see the application of GPS systems to track location as well as satellite communication
to transmit additional data, such as diagnostics, payload states, and more. All of these ultimately traverse the
Internet and the data becomes accessible by the business analysts.

You may think fleet management systems are only for large shipping companies, but with the
proliferation of GPS modules and even the microcontroller market, anyone can create a fleet management
system. That is, they don’t cost millions of dollars to develop.

For example, if you owned a bicycle delivery company, you could easily incorporate GPS modules with
either cellular or wireless connectivity on each delivery person to track their location, average travel time,
and more. More specifically, you can use such a solution to minimize delivery times by allowing packages to
be handed off from one delivery person to another, rather than having them return to the depot each time
they complete a set of deliveries.

Shttps://en.wikipedia.org/wiki/Fleet_management
SFric Chassaing - via CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/).

10

https://en.wikipedia.org/wiki/Fleet_management
http://creativecommons.org/licenses/by-sa/3.0/

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

CAMERA DRONES AND THE IOT

One possible use of the loT is making data that drones generate available over the Internet. Some
people feel that drones are an invasion of privacy. | agree in situations where they are misused

or established laws are violated. Fortunately, the vast majority of drone owners obey local laws,
regulations, and property owners’ wishes.”

However, there are many legitimate uses of drones, be they land-, air-, or sea-based. For example, | can
imagine home monitoring solutions where you can check on your home remotely by viewing data from
fixed cameras, as well as data from mobile drones. | for one would love to see a solution that allowed
me to program a predetermined sentry flight path to monitor my properties with a flying camera drone.

While some vendors have Wi-Fi-enabled drones, there aren’t many consumer-grade options available
that stream data in real time over the Internet. However, it is just a matter of time before we see
solutions that include drones. Of course, the current controversy and the movement of the US
government to register and track drones, along with increasing restrictions on their use, may limit the
expansion of drones and loT solutions that include drone-acquired data.

loT and Security

The recent rash of massive data breaches proves that basic security simply isn’t good enough. We've seen
everything from outright theft to exploitation of the data stolen from very well-known businesses, like Target
(over 40 million credit card numbers may have been compromised), and government agencies, like the
United States Office of Personnel Management (over 20 million Social Security numbers compromised).

IoT solutions are not immune to security threats. Indeed, as IoT solutions become more and more
integrated into our lives, so too will our personal data. Thus, security must be taken extremely seriously and
built into the solution from the start.

This includes solutions that we develop ourselves. More specifically, if you design a weather station for
your own use, you should take reasonable steps to ensure that the data is protected from both accidental and
deliberate exploitation. You may think weather data isn’t a high risk but consider the case where you include
GPS coordinates for your sensors (a reasonable feature) so that people can see where this weather is being
observed. If someone could see that information and determine the solution uses an Internet connection,
itis possible they could gain physical access to the Internet device and possibly use it to further penetrate
and exploit your systems. Thus, security isn’t just about the data; it should encompass all aspects of the
solution—from data to software, to hardware to physical access.

There are four areas where you may want to consider spending extra care ensuring that your IoT
solution is protected with good security. As you will see, this includes a number of things you should
consider for your existing infrastructure, computers, and even safe computing habits. By leveraging all of
these areas, you will be building a layered approach to security; often called a defense-in-depth method.

Security Begins at Home

Before introducing an IoT solution to your home network, you should consider taking precautions to ensure
that the machines on your home network are protected. Some of the best practices for securing your home
networking include the following.

7As of 21 December 2015, drones in the US that weigh more than 0.55 lbs. must be registered before flying. See
https://registermyuas.faa.gov/.

11

https://registermyuas.faa.gov/

CHAPTER 1

WHAT IS THE INTERNET OF THINGS?

Passwords. This may seem like a simple thing, but always make sure that you use
passwords on all of your computers and devices. Also, adopt good password habits,
such as requiring longer strings, mixed case, numbers, and symbols to ensure that
the passwords are not easily guessed.®

Secure your Wi-Fi. If you have a Wi-Fi network, make sure that you add a password
and use the latest security protocols, such as WPA2, or even better, the built-in secure
setup features of some wireless routers.

Use a firewall. You should also use a firewall to block all unused ports (TCP or UDP).
For example, lock down all ports except those your solution uses, such as port 80 for
HTML.

Restrict physical access. Lock your doors! Just because your network has a great
password and your computers use super world-espionage spy-encrypted biometric
access, these things are meaningless if someone can gain access to your networking
hardware directly. For IoT solutions, this means any external components should
be installed in tamper-proof enclosures or locked away so that they cannot be
discovered. This also includes any network wiring.

Secure Your Devices

AsImentioned, your IoT devices also need to be secured. The following are some practices to consider.

Use passwords. Always add passwords to the user accounts you use on your IoT
devices. This includes making sure that you rename any default passwords. For
example, you may be tempted to consider a wee Raspberry Pi or BeagleBone Black
too small of a device to be a security concern, but if you consider that these devices
run one of the most powerful operating systems available (forms of Linux), a
Raspberry Pi can be a very powerful hacking tool.

Keep your software up-to-date. You should try to use the latest versions of any
software that you use. This includes the operating system as well as any firmware
that you may be running. Newer versions often have improved security or fewer
security vulnerabilities.

Ifyour software offers security features, use them. If you have servers or services
running on your devices, and they offer features such as automatic lockout for
missed passwords, turn them on. Not all software has these features, but if they are
available, they can be a great way to defeat repeated attacks.

Use Encryption

This is one area that is often overlooked. You can further protect yourself and your data if you encrypt the
data as it is stored and the communication mechanism as it is transmitted. As long as you encrypt your data,
it cannot be easily deciphered, even if someone were to gain physical access to the storage device. Use the
same care with your encryption keys and passcodes as you do your computer passwords.

8You also need to balance complexity of passwords with your ability to remember them. If you have to write it down,
you’ve just defeated your own security!

12

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

Security Doesn’t End at the Cloud

There are many considerations for connecting IoT devices to cloud services. Indeed, Microsoft has made it
very easy to use cloud services with your IoT solutions. However, there are two important considerations for
security and your IoT data.

e Do you need the cloud? The first thing you should consider is whether you need to put
any of your data in the cloud. It is often the case that cloud services make it very easy to
store and view your data, but is it really necessary to do so? For example, you may be
eager to view logistical data for where your dog spends his time while you are at work, but
who else would really care to view this data? In this case, storing the data in the cloud to
make it available to everyone is not really necessary.

e Don't relax! Many people seem to let their guard down when working with cloud
services. For whatever reason, they consider the cloud more secure. The fact is—it
isn’t! In fact, you must apply the very same security best practices when working
in the cloud that you do for your own network, computers, and security policies.
Indeed, if anything, you need to be even more vigilant because cloud services are not
in your control with respect to protecting against physical access (however remote
and unlikely) nor are you guaranteed your data isn’t on the same devices as tens,
hundreds, or even thousands of other users’ data.

Now that you have an idea of how you should include security in your projects, let’s look at how
Windows 10 has evolved into a modern platform that supports not only the usual productivity and gaming
tasks but also help us build IoT solutions.

Introducing Windows 10

Microsoft has not been idle in recent years. In fact, the latest release of the Windows operating system,
Windows 10, has shown Microsoft listens to its customers and delivers features that people want. More than
any release in the past, Windows 10 is both familiar and capable on desktop, laptop, tablets, and even phones.

Sadly, the road to where we are now was not without its bumps and detours. Windows Vista, Windows 7,
and later, Windows 8, made some dramatic changes that resulted in a lot of dissatisfied users. For example,
making the Start menu a panel instead of a menu both alienated and confused many users. The avalanche
of doubt continued to slide as the PC itself evolved from a bland box on the floor to a powerful machine that
you can hold in your hands. But this evolution hasn’t been without its problems and detours.

I've worked with and discussed the merits of various operating systems with many people. Most had loyalties
for a particular platform that stemmed from familiarity, if not emotional attachment, more than technical merit.
The rest were open-minded enough to choose to use a wide variety of platforms. Some people, like me, use
several platforms every day at work with proficiency in all the major platforms: Linux, Mac, and Windows.

However, even some of the Windows faithful reluctantly agreed that they missed key features of other
operating systems. So while they loved and used Windows exclusively—even choosing phones and tablets
that run Windows rather than the more popular iOS and Android devices—they both loved and hated what
Windows had become. Fortunately, Windows 10 makes up for many of these doubts and has redeemed itself
quite well among the PC community.

As along-term platform-independent user, I've had my favorites over the years, but some versions
of Windows have not been high on the list and at times not on the list at all. This was mostly due to the
changing face of the PC from beige boxes’ to personal, tactile, sensitive devices through the proliferation of
tablets and other smart devices.

Yes, I was using PCs when IBM put the PC in personal computer. My first PC had an Intel 8088 processor running at
8MHz with a modest 512KB of memory. Most phones exceed these capabilities by orders of magnitude.

13

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

However, with the release of Windows 10, I count my Surface Pro 3 tablet not only a great laptop
replacement (and the best PC tablet available) but also a platform that I am very comfortable using and
wouldn't hesitate to use for almost any task. It just works the way a Windows tablet should. In fact, [used my
Surface Pro 3 for all the examples in this book.

The following sections introduce a number of the newest features of Windows 10, including some
familiar behavior that has been missing for some time, and some new things that make using Windows 10
across several platforms seamless. I have included this information for those that have yet to experience
Windows 10 or those that have delayed upgrading. In order to use this book, you need a machine running
Windows 10. If you have not upgraded yet, the following sections will be helpful.

However, if you are already using Windows 10 or have been for some time, you may want to skim this
section so that you are familiar with the newest features. I have found that it is always helpful to read the
impressions of others because I often discover features that I wasn’t aware of or had yet to encounter. Plus, it
gives me a greater depth of knowledge on the subject.

Overview of Windows 10 Features

This section explores the major advances and new features of Windows 10. If you are thinking about
upgrading to Windows 10, this section should convince you to do so, because it covers what the latest
Windows operating system has become. I cover the most important features related to developing IoT
applications. Thus, this is not a complete list of the many features of the new version. For a complete list, see
the Microsoft Windows 10 site (www.microsoft.com/en-us/windows/features). Let’s begin with the most
amazing feature of all: Windows is now free to download and install.

Free Windows? That’s Insane!

Is it really such an insane concept to make an operating system free to users? If you consider that Linux
distributions have been free (technically open source) for decades, and Apple’s macOS, formerly known as Mac
0S X, (and i0S) have been free for several years, it was only a matter of time before Microsoft had to follow suit
and make Windows 10 free. Fortunately, all that you need (software-wise) is free to download and use. While
there are some items that have fee-based alternatives or versions with greater features, you can experience
Windows 10 in the IoT without buying any software. Indeed, I demonstrate how to do so in later chapters.
Getting free versions is not limited to the operating system, which is a huge part of the solution.
The other half of that equation is the development suite of tools—all of which are free. Not only can you
download a free version of Visual Studio 2015 called the Community Edition' (visualstudio.com/
products/visual-studio-community-vs) thatlooks and works like its fee-based alternatives, you can also
download and install all the libraries, examples, and sample tools needed to develop a complete IoT solution
that runs on Windows 10.

The Return of the Desktop

One of the evolutions I found to be most unappealing was the shift from a desktop with a Start menu to that of
a panel of small application interfaces. While I understand the reason for the evolution (the rise of the touch
screen and tablets), I found the dual interface of Windows 8 confusing. It was as if the operating system had
two heads: one for “legacy” users, complete with an abbreviated Start menu, and another for “new” touch-
enabled applications (which seemed to only include the latest Office applications). Switching from one to
another—particularly on a typical desktop without a touch screen—was awkward and often frustrating.

Free only for personal and non-commercial use. You can use the paid version of Visual Studio if you already have it
installed.

14

http://www.microsoft.com/en-us/windows/features
visualstudio.com/products/visual-studio-community-vs
visualstudio.com/products/visual-studio-community-vs

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

Fortunately, Windows 10 brings back the desktop concept with an all-new design that incorporates
the best of the Windows 8 Start screen with a much improved Start menu. That is, we once again have the
familiar menu, floating windows, tray, and more. Figure 1-8 shows a snapshot of the new desktop. Does this
look familiar?

HOcoraony com
WO 1 DAY ONLY! 34 Seifle Stick Sale

Movies & TV

Figure 1-8. Windows 10 desktop

If you use a tablet or a machine that can switch from laptop to tablet (also called a 2-in-1), Windows
allows you to use the new desktop when in desktop mode (a keyboard is attached) and the more tablet-
friendly Start screen when in tablet mode (the keyboard is removed). Of course, you can configure this
behavior to your liking.

Tip You can access the power user menu by pressing Windows key + X.

After having used the new desktop for some time, I must say it just works the way a PC should. That may
seem like false praise, but it isn’t. There are many things about Windows 10 that work like it should—as it
should have in previous versions.

One feature of the desktop I welcome more than any other is the use of virtual desktops. The other
platforms I use have had this feature for some time. Having it in Windows 10 allows me to use my PCs in a
very familiar manner: by placing my most frequently used (and running) applications maximized in their
own desktops.

15

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

To create a new virtual desktop, click the task view icon on the taskbar (see the red arrow in Figure 1-9).
You will then see a pop-up pane that shows a thumbnail of all the virtual desktops that are active. To add
a new virtual desktop, click the plus sign to the right. You can close a virtual desktop by clicking the X icon
on the thumbnail. Figure 1-9 shows how to access the virtual desktop feature. You may find using virtual
desktops to be very helpful when developing applications or working on productivity applications alongside
your mail and other communication applications.

Figure 1-9. Virtual desktops in Windows 10

The task view is also used in tablet mode. In fact, the virtual desktop is very similar to the tablet mode of
the desktop. You can switch from one to the other by using the task view icon.

Compatibility

With so many changes and new features, it is reasonable to expect Windows 10 to have problems

running older applications. However, Microsoft has worked very hard to make the new version run the
older applications. In fact, I have several rather old (Windows XP era) applications that I've installed on
Windows 10 and they all work well. There are a few things that you can do to adjust compatibility, but most
applications should run unaltered and without jumping through menus to customize. Thus, if you are
concerned about being able to run your older applications, you should not have to worry.

Notifications and Action Center

The Action Center is an interesting feature that allows application developers to display notices. The Action
Center is accessed by a right edge swipe or by clicking the Action Center icon on the system tray.

When applications trigger a notification, the Action Center displays the notification briefly as a
small fly-in dialog. I like this new feature, especially since the other platforms I've used have their own
implementation. Not only is it convenient to know what’s going on—such as getting new e-mails or receiving
a bid on your auction—it is also a great way to take a look at the events of the day. Just swipe and view all of
your notifications in a list (see Figure 1-10).

16

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

ACTION CENTER

eBay

!ﬁ" Bid received
8 Mini Kossel 3D Printer, rc

.B.id FP.(ei\"PLTi
.B.id received
B1d reco?i\.'.ed
1 .B.id r.eceived

Bid received

Bid received

Bid received

Bid received

P L]
Tablet mode Note All settings
S) o 3
Battery saver

/7 (S i}

Quiet hours Location

Airplane mode

Figure 1-10. Windows 10 Action Center

At the bottom of the Action Center are a number of shortcut buttons for many common tasks, which
puts the action in Action Center. Here we find buttons for switching to tablet mode, brightness, Bluetooth,
network connections, and more. The Action Center, coupled with the new desktop and Start menu,
complete the user experience.

Fortunately, you can develop your IoT solutions to include notification to users. I encourage you to do
so in your own Windows applications.

17

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

Edge: The New Web Browser

There is a new web browser in town. Yes, Microsoft has abandoned Internet Explorer with the release of
Edge in Windows 10. Edge is a complete rewrite rather than an evolution of IE. Many of the latest features
that Internet users have grown to expect are being incorporated into Edge.

Edge works well for most normal uses. It is faster and has much better security than IE, but for some of
your IoT experiments and IoT solutions, you may to use another browser. I installed Firefox because I found
Edge to be—well, not complete, and it acted a little strangely when connecting to some of my projects. You
may not experience this, but if you do, try another browser. I do not consider this a compatibility problem,
but rather more of a limited feature set issue. I am certain later updates to Windows 10 will improve Edge
and refine the rough spots.

Windows 10 and the IoT

There are several versions of Windows 10—ranging from those that run on phones to those that run on
desktop computers and laptop replacement tablets. Indeed, Microsoft Windows 10 runs on more devices
than any previous version of Windows,!! but that isn’t the end of the Windows 10 proliferation. Windows 10
also comes in a version designed to run on low-cost computing hardware, such as single-board computers
designed for integration with hardware and embedding in other solutions, which makes it an excellent
choice for use in IoT solutions.

The Windows 10 version designed to run on low-cost computing boards is called the Windows 10 IoT
Core. We use Windows 10 IoT Core in this book. The Windows 10 IoT Core is designed to run on smaller
devices, such as the Raspberry Pi, MinnowBoard Max, and other small computing boards. In essence, it is
optimized to run in smaller memory without the need for advanced processors or even a graphical user
interface. Thus, it supports only console or background applications.

Windows 10 IoT Core supports the Universal Windows Platform (UWP), allowing you to create your
applications and deploy them. As mentioned previously, we will use Visual Studio 2015 to build these
applications. As you will see in Chapter 4, Visual Studio 2015 includes all the tools you need to build UWP
applications for deployment to the Raspberry Pi. This includes APIs and drivers for accessing the general-
purpose input/output (GPIO) pins, as well as interfaces such as I2C and SPI. Best of all, there are a host of
example code that you can use for your own projects.

Windows 10 IoT also includes the Arduino Wiring API that permits the use of Arduino-like direct hardware
access. You learn more about the Arduino in Chapter 15.

This really is an exciting element to Windows 10. Indeed, except for some rather limited exploration
of Windows Embedded Compact (Windows CE), Windows 10 represents the first time that you can use the
Windows 10 IoT Core to leverage the power of Windows on your smaller devices. You explore the Windows
10 IoT Core in greater detail in the next chapter.

Summary

The Internet of Things is an exciting new world for us all. Those of us young at heart but old enough to
remember The Jetsons TV series recall seeing a taste of what is possible in the land of make believe. Talking
toasters, flying cars that spring from briefcases, and robots with attitude notwithstanding, television fantasy
of decades ago is now coming true. We have wristwatches that double as phones and video players. We can
unlock our cars from around the world, find out if our dog has gone outside, and even answer the door from
across the city. All of this is possible and working today with the advent of the IoT.

http://www.winbeta.org/news/as-2015-comes-to-a-close-windows-10-surpasses-200-million-installs

18

http://dx.doi.org/10.1007/978-1-4842-2108-2_4
http://dx.doi.org/10.1007/978-1-4842-2108-2_15
http://www.winbeta.org/news/as-2015-comes-to-a-close-windows-10-surpasses-200-million-installs

CHAPTER 1 © WHAT IS THE INTERNET OF THINGS?

In this chapter, we discovered what the IoT is and saw some examples of well-known IoT solutions. We
also discovered how Microsoft is opening doors for Windows users by expanding its Windows 10 operating
system to the IoT via the Raspberry Pi and similar low-cost computing hardware. This is a very exciting
opportunity for people who do not want to learn the nuances of a Linux-based operating system to explore
the world of hardware and IoT from a familiar and well understood platform.

In the next chapter, we will discover more about the Windows 10 IoT Core including what hardware it
runs on and how to get started running Windows 10 on a Raspberry Pi. As you will see, it is not difficult. We
will then explore the Raspberry Pi in more detail in Chapter 3 to complete our tour of getting started with
Windows 10 IoT Core.

19

http://dx.doi.org/10.1007/978-1-4842-2108-2_3

CHAPTER 2

Introducing the Windows 10
loT Core

Windows 10 represents an exciting new entry in the IoT arena. Finally, Windows users have a native toolset
to experiment with building IoT solutions. While some platforms such as the Arduino are very Windows-
friendly, other platforms have forced users to learn about new, sometimes very different, operating systems
or tools that are, by contrast to Visual Studio, very challenging to learn. In fact, I've heard of some people
giving up altogether or not even trying because the operating system and tools seemed too intimidating." All
of these became roadblocks for those wanting a familiar and easy to use platform to develop IoT solutions.

Microsoft has risen to the occasion creating a unique way to develop applications for and deploy
solutions to hardware that traditionally has been off limits for many Windows users who did not want to
learn a new operating system, such as Linux, which is the most popular choice for embedded hardware
development. I firmly believe you should understand the basics of these other platforms and I present a
short primer on the Raspberry Pi in the next chapter, including a look at the base or preferred operating
system. But don’t worry; you need not become a Linux expert to use Windows 10 with the Raspberry Pi.

In this chapter, you discover a new version of Windows 10 called the Windows 10 IoT Core that runs on
low-cost computers, such as the Raspberry Pi. You will discover the basic features of Windows 10, including
how to prepare your PC and get started with the Windows 10 on your device. You will even see how to boot
up the Raspberry Pi with Windows 10! Let’s get started.

Windows 10 loT Core Features

The latest sensation in the world of Microsoft Windows and in particular the IoT is the ability for Windows
users to leverage their experience and knowledge of developing applications for Windows on smaller
devices. This new offering is called Windows 10 IoT Core. While Microsoft has offered several products
designated as “embedded” or “compact” or “embedded compact’, which was a scaled-down version of the
operating system, there were many differences and a few bridges that had to be crossed to use them. While
highly touted, the offerings never really lived up to the “write the code once and deploy everywhere” mantra.
That is, until now.

"Learning Linux isn’t really so terrible, as you shall see, but if you’ve never used such an operating system, it can be
frustratingly difficult to learn how to do even simple tasks.

© Charles Bell 2016 21
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_2

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

WHAT ABOUT WINDOWS EMBEDDED?

You may have heard about a version of Windows called Windows Embedded. This was one of the
early attempts to make the Windows operating system lightweight enough to run on low-power, low
capability hardware. Unfortunately, there wasn’t much direction or clear path for developers wanting
to leverage it in their solutions. Fortunately, Windows 10 loT Core is the answer (replacement) for
embedded Windows applications.

Unlike the previous products meant for smaller platforms, Windows 10 IoT Core shares many of the
same components as the flagship operating system for PCs. That is, it has the same core components, kernel,
and even some of the middleware is based on the same core code. In fact, the code generated can be binary-
compatible with the other platforms, which means you can write code that can run on either the IoT device
or your PC. It should be noted that this capability is highly dependent on what the code does. For example, if
your code access the general-purpose input/output (GPIO) hardware pins on the low-cost computing board,
you cannot run the application on the PC (there are no GPIO pins on the PC).?

Interacting with Hardware

The ability to access hardware directly—such as the GPIO pins—is what makes Windows 10 IoT Core so
attractive to hobbyists and IoT enthusiasts who want to build custom hardware solutions using small,
inexpensive hardware.

For example, if you wanted to build a simple device to signal you when someone opens your screen
door, you would likely not use a PC costing several hundreds of dollars. Not only would that be expensive
and bulky, there isn’t an easy way to connect a simple switch (sensor) to your PC, much less to a PC located
elsewhere. It would be much more cost effective to use a simple switch connected to a small, inexpensive
set of electronic components using a simple application to turn on an LED or ring a buzzer. What makes the
Windows 10 IoT Core even more appealing is you don’t have to relearn how to write software—you can write
a Windows application to run on the small device.

Video Support

Since most IoT devices do not include a monitor (some may), Windows 10 IoT Core is designed to run
headless (without a monitor) or headed (with a monitor). Headless solutions require less memory since
they do not load any video libraries or subsystems. Headed solutions are possible if the hardware chosen
supports video (all current hardware options have HDMI video capabilities).

Thus, you can create IoT solutions with visual components or interactive applications, such as those for
kiosks, or even interactive help systems. You choose whether the application is headless or headed by the
configuration of the device. In fact, the configuration is accessible from the device or remotely through a set
of tools running on your PC. You'll see more about these features later in this chapter.

One Platform, Many Devices

For developers of Windows 10 applications, including IoT solutions, Microsoft has adopted a “one Windows”
philosophy where developers can develop their code once and run it on any installation of Windows. This is
accomplished with a technology called the Universal Windows Applications API (sometimes called UWP or
universal applications or UWP apps).

2Well, most PCs. Some low-cost computing boards are simply a fancy case away from a fully functional PC.

22

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Thus, developers can create an application that runs on phones, tablets, desktop, and even servers
without having to change their code or exchange different libraries. A you will see once you start with the
projects in this book, you are developing your applications (apps, scripts, etc.) on your Windows 10 desktop
(tablet) and deploying them to the Raspberry Pi—all without having to move the code to the Raspberry Pi,
alter it, compile it, and so on. This is a huge improvement for IoT developers over other development choices.

For example, if you chose to use a Raspberry Pi with its default operating system, you would have to
learn how to develop Linux applications—complete with learning new development tools (if not a new code
editor). With Windows 10, you use an old favorite—Visual Studio—to build and deploy the application. How
cool is that?

The real power of the UWP API is discussed in Chapter 4 as you explore how a single application (code)
can be compiled on your PC and deployed to the Raspberry Pi. Indeed, the UWP API allows you to write one
solution (source code) and deploy it to any Windows 10 device from a phone, low-cost computing board,
PC, tablet, and so forth. This opens the possibility of using any of the Windows 10 supported devices in your
projects.

Supported Hardware

Windows 10 IoT Core is designed and optimized to run on smaller devices, such as low-cost computing
boards. Furthermore, Windows 10 IoT Core can run headless® (without a display) thereby removing the need
for sophisticated graphics (but still supports graphic applications with special libraries). All this is possible
with the extensible Universal Windows Platform (UWP) API, as described earlier.

The hardware requirements for running Windows 10 IoT Core include the following.

e Memory (headless): 256 MB RAM (at least 128MB free for the operating system)

e Memory (with display): 512MB RAM (at least 256MB free for the operating system)
e Storage: 2GB (can be SD card, non-volatile memory, or disk)

e Processor: 400MHz or faster ARM or Intel x86

Currently, the Windows 10 IoT Core runs on the Raspberry Pi, MinnowBoard Max-compatible boards,
and the Arrow DragonBoard 410c. All of these boards are considered low-cost computing platforms.
I describe each of these briefly in the upcoming sections.

Note Some early documentation, including web sites from Microsoft and Intel report and demonstrate
using early releases of the Windows 10 loT Core on the Intel Einstein and Galileo boards.* However, the latest
releases of Windows 10 loT Core have dropped support for these boards.

LOW-POWER COMPUTING PLATFORMS

Low-powered computing platforms, sometimes called low-cost computer boards or mini-computers,
are built from inexpensive components designed to run a low-resource-intensive operating system.
Most boards have all the normal features you would expect from a low-cost computer, including video,
USB, and networking features. However, not all boards have all of these features.

30h, no, a harbinger for headless hardware!
See https://software.intel.com/en-us/iot/home.

23

http://dx.doi.org/10.1007/978-1-4842-2108-2_4
https://software.intel.com/en-us/iot/home

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

The reason they are sometimes called low power isn’t because of their smaller CPUs or memory
capabilities; rather, it is because of their power requirements, which are typically between 5V
and 24V. Since they do not require a massive, PC-like power supply, these boards can be used
in projects that need the capabilities of a computer with a real operating system but do not have
space for a full-sized computer, cannot devote the cost of a computer, or must run on a lower
voltage.

There are many varieties of low-cost computing boards. Some support the full features of a typical
computer (and can be used as a pretty decent laptop alternative), while others have the bare essentials
to make them usable as embedded computers. For example, some boards permit you to connect a
network cable, keyboard, mouse, and monitor for use as a normal laptop or desktop computer while
others have only networking and USB interfaces, requiring you to remotely access them in order to

use them. Fortunately, all the low-cost computing boards available for Windows 10 have support for
networking, video, and USB peripherals.

Raspberry Pi

The Raspberry Pi 3 Model B is the latest iteration of the Raspberry Pi (www.raspberrypi.org/products/
raspberry-pi-3-model-b/). It has all the features of the original Raspberry Pi 2 but with a faster 64-bit quad
core processor and onboard Wi-Fi (a first for the Raspberry Pi). However, the Raspberry Pi 2 is more than
capable for running Windows 10 IoT Core solutions.

Note | use the term Raspberry Pi henceforth to refer to either the Raspberry Pi 2 or 3.

The Raspberry Pi is a popular board with IoT developers mainly because of its low cost and ease of use.
Given the popularity of the Raspberry Pi, I cover it in greater detail in Chapter 3, including a short tutorial
on how to get started using it with its native operating system. Thus, I briefly cover the highlights here and
reserve a more detailed discussion on using the board for Chapter 3.

Note |describe the Raspberry Pi 2 here, but you can use either the Raspberry Pi 2 or Raspberry Pi 3 for
this book.

The Raspberry Pi 2 hardware includes a 900MHz A7 ARM CPU, 1GB RAM, video graphics with HDMI
output, four USB ports (up from just two on older boards), Ethernet, a camera interface (CSI), a display
interface (DSI), a micro-SD card, and 40 GPIO pins. Figure 2-1 shows the Raspberry Pi 2 board.

24

http://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://dx.doi.org/10.1007/978-1-4842-2108-2_3

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Figure 2-1. Raspberry Pi model 2

The camera interface is really interesting. You can buy a camera module like the ones at Adafruit
(http://adafruit.com/categories/177) and connect it to the board for use as a remote video-monitoring
component. I've used this feature extensively by turning a couple of my Raspberry Pi boards into 3D-printing
hubs where I can send print jobs over the network to print and check the progress of the prints remotely or
as low-cost video surveillance devices.

The LCD interface is also interesting because there is now a 7-inch LCD touch panel that connects
to the DSI port (http://element14.com/community/docs/DOC-78156/1/raspberry-pi-7-touchscreen-
display). I have also seen a number of interesting Raspberry Pi tablets built using the new LCD touch panel.
You can learn about one promising example (made by Adafruit, so I expect it to be excellent) at http://
thingiverse.com/thing:1082431.

To date, the Raspberry Pi has been my go-to board for all manner of small projects due to its low cost
and availability. There are also many examples from the community on how to employ the Raspberry Pi in
your projects. For more information about the Raspberry Pi, see Chapter 3.

Tip There is a list of frequently asked questions (FAQ) on using Windows 10 loT Core that includes a
section on the Raspberry Pi (http://ms-iot.github.io/content/en-US/Fags.htm). You may want to check it
for answers if you encounter a problem using your Raspberry Pi.

WHAT ABOUT THE RASPBERRY PI ZERO?

Sorry, Windows 10 loT Core does not work on the new and widely popular Raspberry Pi Zero board. The
processor on the Zero is the older processor from one of the original Raspberry Pi boards. Perhaps in
the future a “Zero 2” board is compatible, but for now, you can use only the Raspberry Pi 2 or 3 with
Windows 10 loT Core.

25

http://adafruit.com/categories/177
http://element14.com/community/docs/DOC-78156/l/raspberry-pi-7-touchscreen-display
http://element14.com/community/docs/DOC-78156/l/raspberry-pi-7-touchscreen-display
http://thingiverse.com/thing:1082431
http://thingiverse.com/thing:1082431
http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://ms-iot.github.io/content/en-US/Faqs.htm

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

One of the things I like about the Raspberry Pi is you can run a number of operating systems on it by
installing the operating system on a micro-SD card. This allows me to use a single Raspberry Pi for a host
of projects; each with its own micro-SD card. In fact, the basic setup at waw.raspberrypi.orgincludes a
special boot loaded that permits you to install the operating system of your choice. Sadly, Windows 10 is not
on that list (yet) but Windows 10 permits you to load it directly from your PC.

MinnowBoard Max—Compatible Boards

The MinnowBoard Max and compatible boards are a very interesting lot. They use an Intel processor with

a wider array of features than the other boards, including an Intel Atom E3826 dual core 1.46GHz CPU,
integrated HDMI output Intel HD Graphics with hardware-accelerated drivers (for Linux), 2GB of fast
DDR3L 1067MT/s DRAM, 8MB SPI Flash memory, Ethernet, USB, SATA (e.g., a hard drive), micro-SD card
drive, GPIO, and more. In many respects, this is the most powerful board of the lot with more features. About
the only thing lacking is onboard Wi-Fi but that can be quickly remedied with any number of Wi-Fi USB
dongles.®

One very interesting aspect to the MinnowBoard Max is that the developer has retained compatibility
over several iterations of the board. The Microsoft web site lists the MinnowBoard Max as officially
supporting Windows 10 IoT Core but actually any MinnowBoard Max derivative will work. In fact, the
MinnowBoard Wiki page (www.minnowboard.org) refers to the line as simply “MinnowBoard Max-
compatible” boards.

When I purchased my board, I bought the latest, most powerful MinnowBoard Max-compatible board
available: the MinnowBoard Max Turbot. The Turbot offers a number of minor improvements over the older
boards, including improved performance and many smaller improvements in the GPIO subsystem as well as a
defect repair or two. Figure 2-2 shows my MinnowBoard Max Turbot. Now, that’s a handsome board, isn't it?

Figure 2-2. MinnowBoard Max Turbot

SJust make sure that you get one that is compatible with Windows 10 IoT Core.

26

http://www.raspberrypi.org/
http://www.minnowboard.org/

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

The MinnowBoard Max-compatible boards have one thing that may be very important for some IoT
solutions that the Raspberry Pi lacks: an onboard Real Time Clock (RTC)—battery not included. You can see
the battery holder in the photo between the power and Ethernet connectors on the left side of the board.
Older boards did not come with this header installed but you can add it yourself if you know how to solder
(or know someone who does). You can set the current date and time using the Unified Extensible Firmware
Interface (UEFI) shell date command (see http://wiki.minnowboard.oxrg/Shell Commands).

WHAT IS A REAL TIME COCK AND WHY SHOULD | CARE?

A real-time clock allows you to keep accurate time of day for recording date and time of events (or
simply reporting such to the user). Without an RTC, the Raspberry Pi needs either connection to the
Internet to synchronize time or a seed value to keep time itself. However, without a RTC circuit, time
keeping can become inaccurate over long periods.® | discuss time keeping in the later chapters with
examples of recording events.

Note The other board supported by Windows 10 loT Core, the DragonBoard 410c, has a RTC too but it
does not require an external battery, which suggests it must be reset on boot.

Another interesting thing about the MinnowBoard Max is that it is open hardware so if you wanted
to build one yourself or a derivative or perhaps an accessory board (called a Lure), you can find all the
information to do so online. In fact, there are a number of vendors offering Lures (add-on boards) for the
MinnowBoard Max-compatible boards. The wiki at http://wiki.minnowboard.org/Lures lists a number of
available Lures and accessories (and a few retired ones).

I much prefer an open hardware (or open source) solution to proprietary offerings because I find it is
often the case that there is more information available about the products if they have a strong (and growing)
community to support it. This is the case with the MinnowBoard Max. You can find almost anything you
want to know about this board on the http://wiki.minnowboard.org wiki.

Tip You can find additional information about the MinnowBoard Max—compatible boards at http: //wiki.
minnowboard.org.

Asyou can imagine, given the added performance, these boards do cost quite a bit more than the
Raspberry Pi (about $150 vs. about $35) but the jump in performance may warrant the extra cost. If you
search around, you may be able to save a bit by buying an older board rather than the newest board
described here. Most sites I visited were out of stock but it is just a matter of time before they become more
plentiful.

Thus, finding a MinnowBoard Max can be a bit of a challenge. Fortunately, the newer MinnowBoard
Max Turbot is 100 percent-compatible (and a bit better) than the original MinnowBoard Max described on
the Microsoft Windows 10 IoT web site. In the United States, you can buy a MinnowBoard Max Turbot at
NetGate (http://store.netgate.com/Turbot.aspx). You can also find the MinnowBoard Turbot at Maker
Shed at www.makershed.com/products/minnow-turbot. In the EU, you can find them at RS Components Ltd.
(http://uk.rs-online.com/web/cpo/8842199/?searchTerm=minnowboard+max).

®There is much more to this than what I list, but suffice to say a typical clock on a computer cannot keep accurate time.
That’s the whole point of the RTC.

27

vww allitebooks.conl

http://wiki.minnowboard.org/Shell_Commands
http://wiki.minnowboard.org/Lures
http://wiki.minnowboard.org/
http://wiki.minnowboard.org/
http://wiki.minnowboard.org/
http://store.netgate.com/Turbot.aspx
http://www.makershed.com/products/minnow-turbot
http://uk.rs-online.com/web/cpo/8842199/?searchTerm=minnowboard+max
http://www.allitebooks.org

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Arrow DragonBoard 410c

The Arrow DragonBoard 410c is a low-cost computing board that incorporates the Qualcomm quad core
Snapdragon 410 processor. This processor is an ARM Cortex-based single-chip system supporting a wide
variety of hardware from USB to networking. The processor runs up to 1.2GHz per core in either 32- or 64-bit
mode, which is a bit more powerful than the Raspberry Pi.

The board is a fully featured low-cost computing platform complete with 1GB of RAM, 8GB onboard
storage (eMMC), an HDMI 1080p display (with audio over HDMI), Wi-Fi, Bluetooth, GPS (yes, GPS!), USB
ports, and even a micro-SD card. Figure 2-3 shows the DragonBoard 410c.

- -

® ® & 8 8 0 0 80 0 8RN

I EE N KN NN R
o. T

Figure 2-3. Arrow DragonBoard 410c

Interestingly, the DragonBoard 410c can be booted from the onboard memory using the Android 5.1
operating system; provided you haven’t loaded Windows 10 IoT Core because you will overwrite the base
operating system. However, you can recover the factoring settings by following the procedure at https://
github.com/96boards/documentation/wiki/Dragonboard-410c-Installation-Guide-for-Linux-and-
Android. Figure 2-4 shows the default operating system (Android-based) of the DragonBoard 410c. Thus,
you could use the DragonBoard 410c as an ultra-compact desktop or laptop computer.

28

https://github.com/96boards/documentation/wiki/Dragonboard-410c-Installation-Guide-for-Linux-and-Android
https://github.com/96boards/documentation/wiki/Dragonboard-410c-Installation-Guide-for-Linux-and-Android
https://github.com/96boards/documentation/wiki/Dragonboard-410c-Installation-Guide-for-Linux-and-Android

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

MOTOROLA

Figure 2-4. Onboard Android OS on the DragonBoard 410c

Note The DragonBoard 410c does not use an SD card to boot Windows 10 loT Core. | discuss these
differences in a later section.

Given its small size, onboard Wi-Fi, USB, GPIO header, and more, the DragonBoard 410c is a good
alternative to the Raspberry Pi. Yes, it does cost more (about $75 versus about $35 for the Raspberry Pi), but
ifyou need the more powerful processor and convenience of onboard Wi-Fi, you may want to consider it for
solutions that need a bit more processing power.

Tip For more details on the DragonBoard 410c, visit the Arrow data sheet at www.arrow.com/en/
products/dragonboard410c/arrow-development-tools#partsDetailsDatasheet.

The best source for purchasing an Arrow DragonBoard 410c is from the manufacturer directly; go to
www.arrow.com for details on ordering a board to complete your low-cost computer board arsenal. Note
that the manufacturer stocks a host of additional electronic components making them another source for
gathering components for your IoT project. You can also find it on Maker Shed at www.makershed. com/
products/dragonboard.

So Which One Should I Choose?

The three boards are those that are currently supported for use with Windows 10 IoT Core. Which you
choose is largely up to you as each has their merits. Perhaps the most compelling reasons to choose one over
the others for most hobbyists and enthusiasts are cost and availability.

29

http://www.arrow.com/en/products/dragonboard410c/arrow-development-tools#partsDetailsDatasheet
http://www.arrow.com/en/products/dragonboard410c/arrow-development-tools#partsDetailsDatasheet
http://www.arrow.com/
http://www.makershed.com/products/dragonboard
http://www.makershed.com/products/dragonboard

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

At the time of this writing, the Raspberry Pi costs less than the other boards and is much easier to find.
The Raspberry Pi costs about $35, the DragonBoard 410c about $75, and the MinnowBoard Max Turbot
about $150 making the Raspberry Pi the most economic for initial cost.

Since most readers want to limit their investment (hardware can get expensive quickly once you start
buying sensors and other bits and bobs you need), I focus on the Raspberry Pi in this book. Even if you plan
to use one of the other boards, following along with the Raspberry Pi helps you learn the skills that you need
without spending considerably more for the base component. However, if you need to use one of the other
boards, the examples in the rest of this book can be adapted without much fuss.

Consider another possibility. If you are new to electronics, or you make a mistake with powering your
board or components, you could damage the board.” Yikes! I have a small, sad box of components I've
managed to destroy over the years. Fortunately, it is a small box with only a few inexpensive (but quite dead)
components. I keep it around to remind me what a simple mistake reading a wiring diagram can do to your
wallet. Wouldn’t a $35 board that you can get from a host of vendors be a bit easier to accept if you kill it?

Although this book favors the Raspberry Pi for its economy and availability, the other boards are strong
alternatives that you should consider especially for IoT solutions that need more powerful hardware. My
own experience with these boards shows each to be a great solution. If cost were not an option, I would
likely use the other boards more often. I particularly like the features of the MinnowBoard Max Turbot but
the DragonBoard 410c’s onboard Wi-Fi is a nice addition.

Things You’ll Need

If you are just getting started with these boards, there are a number of things that you need, including some
additional hardware (e.g., cables) to connect to and use the boards. You also need some software to write
and deploy your software to the board.

Additional Hardware

To use these boards, you need, at a minimum, a power supply, network connection, and a micro-SD card.
There is some optional hardware you may want to have on hand as well. I explain some of these in more
detail.

Power Supply

The Raspberry Pi can be powered by a USB port on your computer via a USB type A male to a micro-A male
cable (a commonly used cable for small electronic devices). Be careful with this cable, as the smaller end is
rather fragile and easy to damage.

The DragonBoard 410c and the MinnowBoard Max-compatible boards must be powered by a
dedicated power supply. The DragonBoard needs a power supply capable of delivering 6.5-18V whereas
the MinnowBoard Max-compatible boards require a 5V 2.5A power supply. You can buy the correct power
supply for each of these boards from the supplier, but you can use any power supply rated for the correct
voltage and amperage.

Ilike to use universal power supplies with a variety of connectors that can be switched to different
voltages. Figure 2-5 shows a typical universal power supply with several tips. If you want to minimize the
gear knocking around on your workbench, get a universal power supply like this one. However, be sure to
test the adapter at the proper setting. Some inexpensive universal power supplies are quite inaccurate and
may produce more or less voltage or amperage than what is advertised. Thus, you should buy one that has
been reviewed by others and has good reviews from buyers.

"Hey, it happens to everyone.

30

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Figure 2-5. Universal power supply

Be sure to get one that can generate at least 3.3V, has a variety of tips (sizes), and the polarity of the plug
can be selected. That is, some devices require the center pin to be positive. Having the ability to switch the
polarity of the center pin makes the power supply usable on a wider variety of boards. I should note that
most of the power supplies I've seen that have replaceable tips permit selecting polarity by plugging in the
tip in one of two ways. However, this isn’t always easy to tell which way the tip is oriented so check it twice
before using it.

Caution Some universal power supplies may not generate the required amperage for your board. Be sure
to check the power rating of the power supply to be sure it matches your board before you buy or use it to
power the board.

Networking

The Raspberry Pi and the MinnowBoard Max-compatible boards have an Ethernet port. While you can use
wireless connections with both boards (via a USB dongle for example), it is easier to simply use an Ethernet
cable and plug it into your network. The DragonBoard 410c, on the other hand, has wireless networking
onboard and can be used to connect to your wireless network. If you choose to use a Raspberry Pi 3, you can
use the onboard WiFi.

Optional Hardware

There are a number of optional hardware components you may want to have on hand. In fact, they can be
quite convenient for getting started with the board. Fortunately, all the boards have built-in video and USB
host capabilities making it easy to set them up with interactive peripherals.

31

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

You need an HDMI-compatible monitor. The monitor doesn’t have to be an expensive, 30-inch 4K display,
since none of these boards has that sort of video capability. I recommend a small HDMI monitor of about 7
inches or larger. Naturally, you also need the appropriate HDMI cable. The Raspberry Pi and DragonBoard
410c use a standard HDMI cable, but the MinnowBoard Max-compatible boards use a micro-HDMI cable.
When buying HDMI cables, be sure to purchase high-quality cables because not all cables are fully wired and
they may not work. I've found the best are those designed to support audio and Ethernet but these do cost a bit
more. The cables at waw.mycablemart. com are of sufficient high quality and you can get whatever configuration
of connectors you need including an assortment of adapters if you already have some HDMI cables.

If you want to interact with the device for setup or configuration, you should consider a small USB
keyboard and mouse. Only the Raspberry Pi has a surplus of USB ports so you may want to consider a
keyboard that has a USB hub or the mouse built in. Figure 2-6 shows an example of a compact wireless
keyboard that I use for my low-cost computing boards (see https://www.adafruit.com/products/922).
I like it for its small size, built-in mouse and even a small speaker for audio.?

FA F5 F6 F7 F8 BACK®

‘g9 0
b @ W/ E R o P

L

-

caps A''ST'D'F K
SHITE P2 FacT P poy e

Ctrl -

Figure 2-6. Mini wireless keyboard

The keyboard is only about 6 inches long, making it easy to pack away in your kit bag but typing on one
won’t earn you any speed typing merit badges and can be a bit tedious. The keyboard comes with its own
USB dongle that is compatible with Windows 10 IoT Core. You can find these under various vendor names
on Amazon and other popular online computer vendors.

However, since these small keyboards are sold in many slight variations, you may want to buy one from
a vendor that is willing to accept it as a return if it doesn’t work. That said, a wired USB keyboard and mouse
are the safer alternatives.

There is one other possibility you may want to consider. Motorola has been making a thin, compact
clamshell keyboard and monitor, called a Lapdock, which permits certain mobile phones to connect to the
Lapdock—turning the phone into a small laptop. The Lapdock has a small USB hub and battery. In fact, it
has a micro-HDMI and micro-A USB port that you can use to connect to your low-cost computer board. Yes!
This means you can turn your device into a laptop.

There is a catch, though. Depending on the power capabilities of your board, you have to find or build
cables to connect the USB and micro-HDMI to your board. I have a detailed example of how to do this in my
book Beginning Sensor Networks (Apress, 2013). In short, you must find a micro-A extension cable, cut the
cable in the center and solder in a type-A male USB cable segment. This allows you to provide power to the
Raspberry Pi and connect the keyboard to the USB host port. Of course, you can use the Lapdock and power
your board with an external power supply, but powering it from the Lapdock makes it a bit more portable.
Video connections are best done using a female-to-female micro-HDMI adapter and a micro-HDMI male to
HDMI male cable. Finding these cables and connectors isn’t difficult but can be a little frustrating since most of
the vendors are based in Asia. If you live in the United States, shipping can take a few weeks.

¥Not supported on all platforms but works great with Android OS.

32

http://www.mycablemart.com/
https://www.adafruit.com/products/922

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

However, the wait is worth it as the Lapdock is really thin and with the battery means you can use your
low-cost computing board as a laptop just about anywhere. Figure 2-7 shows a Lapdock connected to a
Raspberry Pi running the Raspbian operating system.

™

Figure 2-7. Raspberry Pi laptop

Fortunately, the Lapdock is still available and many can be found on online auction sites in good
condition and even some new, unopened examples can be found. Expect to pay about $50 for a used one
and up to $99 for a new one. If you want one, I recommend shopping around for the best prices. Be sure to
get one with the power adapter because it is an odd voltage (19V) and can be hard to find (and expensive).

Software Development Tools

The software development tool of choice for Windows 10 IoT Core is Visual Studio 2015 (www. visualstudio.com).
You can use any version of Visual Studio 2015, including the free community version. Yes, this means developing
applications for the Windows 10 IoT Core uses a very familiar tool with a robust feature set. As you will see, you
can leverage nearly all the features of Visual Studio when developing and deploying your IoT solutions.

Better still, there is a growing list of add-ons, sample applications, and more resources available
for Visual Studio 2015 and Windows 10 IoT Core. You can develop your UWP applications in a variety
of languages, including C++, Python, Arduino Wiring, and more. I show you the Python and Arduino
extensions for Visual Studio as you explore example IoT projects. However, most examples are written in
C++, which is the more popular choice among the examples from Microsoft and the community.

If you have never used Visual Studio before, do not despair—I include a step-by-step description of how
to use the tools in each of the proceeding project chapters with a quick-start walk-through in Chapter 4.
The following section presents an overview of how to get started with the Windows 10 IoT Core and your low-
cost computing board. That is, the section demonstrates how easy it is to set up your PC and your board to
begin developing an IoT.

33

http://www.visualstudio.com/
http://dx.doi.org/10.1007/978-1-4842-2108-2_4

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Getting Started with Windows 10 loT Core

Now that you know more about the Windows 10 IoT Core and the hardware it runs on and the accessories
you need to hook things up, let’s get your hands into the hardware and boot up Windows 10 IoT Core for the
first time. As you may imagine, there are a few things that you need to do to get things going.

In this section, you see how to get all the prerequisites settled in order for you to start using the
Windows 10 IoT Core. As you will see, this requires configuring your computer as well as setting up your
board. I walk you through all of these steps for each of the boards available. Although this book focuses on
the Raspberry Pi, I include all three boards so that when you want to work with one of the other boards, you
will have everything that you need to get started.

Let’s begin with setting up your computer.

Setting up Your Computer

While most would expect this, the first thing you must know about using the Windows 10 IoT Core is that you
need to have a Windows 10 PC. Moreover, you must be running Windows 10 version 10.0.1.10240 or greater.
To check your Windows version, go to the search box next to the Start button and enter System Information.
Click the menu item shown. You see the System Information dialog, as shown in Figure 2-8. I have Windows
10 version 10.0.1.10240, which is the minimal required version.

& system Information - (] b4
File Edit View Help
System Summary G
+ Hardware Resources 0S Name Microsoft Windows 10 Pro
t Components Version 10.0.10240 Build 10240
Software Environment 3 f qor Rvanaone
0S Manufacturer Microsoft Corporation
System Name CHUCKSURFACE
Systern Manufacturer Microsoft Corporation
System Model Surface Pro 3
System Type x64-based PC
System SKU Surface_Pro_3
Processor Intel(R) Core(TM) i5-4300U CPU @ 1.90GHz, 2501 .. G
Find what: Find Close Find
[[] search selected category only [[]search category names anly

Figure 2-8. System Information

I've read some criticism about requiring a Windows 10 PC to use Windows 10 IoT Core, but again for
Windows 10 users wanting to explore the IoT, it's a non-issue. However, if you normally use another platform
for your PC (or Mac), that you need a Windows 10 machine going forward.

But there is more. That you need to configure your PC for use with the Windows 10 IoT Core tools.
Briefly, this includes the following. I explain each of these steps in more detail. Once all of these steps are
complete, your PC is ready to set up and use Windows 10 IoT Core on your low-cost computing board.

e Enable developer mode
e Install Visual Studio 2015 and the sample templates for the IoT
e Install the Windows 10 IoT Core Dashboard

34

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Enable Developer Mode

This step is one that is often overlooked and easily forgotten, especially if you have more than one Windows
10 PC. Windows 10 has initiated a new licensing mechanism for developing applications. Rather than
require a special developer license to develop and deploy your applications, you simply enable your
Windows 10 PC to turn on developer mode, which allows you to compile, deploy, and test applications for
Windows 10 IoT Core.

To enable developer mode, enter use developer features in the search box next to the Start button.
Choose the Settings menu item by the same name. Alternatively, you can open the settings application, click
Update & Security, and then click For developers. Once you have the dialog open, select the Developer
mode radio button. Once you click the button, you are asked for confirmation to turn on developer mode.
The message explains that using developer mode may increase your security risk. Be sure to take appropriate
actions to ensure that you are protected while online. Click Yes in that dialog. Figure 2-9 shows the developer
mode dialog with the correct settings selected.

€ Settings - O >

£0% UPDATE & SECURITY [Find a setting

Windows Update
Use developer features

ANindois Datencer These settings are intended for development use only.

Backup
O Don't use developer features
Recovery
Sideload apps
Activation O Ideload app:
For developers (®) Developer mode

Figure 2-9. Enabling Developer Mode

Next, you need to install the software development tools. In this case, you want to install Visual Studio
2015. You also need to install the IoT templates and add-ons. You won’t use Visual Studio in this chapter but
since it is required, you'll discover how to install it so that you can complete the process to prepare your PC
for developing IoT solutions.

Install Visual Studio Community 2015

If you do not have Visual Studio 2015, you can go to https://www.visualstudio.com/en-us/visual-
studio-homepage-vs.aspx and click Download Community 2015. This version has a license making it free
to use for individuals, open source projects, academic institutions, students, and small project teams. Visual
Studio 2015 Community has everything that you need to develop Windows 10 IoT solutions.

The download consists of a small executable named vs_community ENU.exe or similar, which you
can execute once the download is complete. This is the Internet installation version, which downloads the
components needed during installation. You use this version in this chapter since it is the easiest to do and
requires less download time.’

°This could be a big deal if your data plan is limited to a fixed amount of data per month. The full download with all
options is approximately 5.8GB or more.

35

https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx
https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

Tip If you would prefer to install from a local file, you can download an . iso file with all the components
from https://www.microsoft.com/en-us/download/details.aspx?id=49988.

Once Visual Studio Community Edition is downloaded, you can double-click the executable to begin
the installation. Once the installer launches, you see the splash screen followed shortly by the installation
type page. You also may need to authorize changes to the system via a pop-up dialog.

Next, you see a page that asks you what type of installation you want to choose: default or custom. You can
also change the location of the installation but I recommend accepting the default location. If your Internet
download speed is very slow, you may want to choose a custom installation and uncheck everything to install the
basic components and install components, as you need them. Figure 2-10 shows the installation type dialog page.

0 Visual Studio

Community 2015

Choose your installation location

Setup requires up to 7 GB across all drives.

Choose the type of installation
alt
Includes C#/VB, Web and Desktop features
® Custom

Allows you to customize features for your installation

You can add or remove additional features at any time after setup via
Programs and Features in the Control Panel.

Figure 2-10. Visual Studio 2015 Community: installation type

Tip If you already have Visual Studio 2015 (either the Professional edition or the Enterprise edition), you
can use that, but you have to install the Universal Windows App Development tools. You can do so by choosing a
custom installation or by running the installer again and modifying the installation.

36

https://www.microsoft.com/en-us/download/details.aspx?id=49988

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

The basic components that you need for this book include the UWP and Python features. You can select
these by clicking Custom and then clicking Next. Expanding the tree and check the entries you want in the
list, as shown in Figure 2-11. Here you see I have selected the UWP feature along with the Python tools and
Web development tools. The default installation choice is to install Visual C++, which you use in this book.
The components that you need are listed next.

e Visual C++ (selected by default)

e Python Tools for Visual Studio

e Universal Windows Platform (UWP)
e Web Developer Tools (optional)

Be advised, if you check Select All, the installation could exceed 15GB and require over 6GB of
download data.

0 Visual Studio

Community 2015

Figure 2-11. Visual Studio 2015 Community: custom installation

37

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

ADDING NEW FEATURES TO VISUAL STUDIO

You can add optional components and features by running the installer again. You can simply launch the
executable or use the programs and features application. To launch the application, use the search tool
to search for Program and Features and then open the application. Once open, select the Microsoft
Visual Studio Community entry and click Change. The installer will run again and you can select the
components you want.

For example, if you did not select the UWP module, you can do so by launching the installer again. Just
choose Modify when the installer dialog opens, select the UWP feature, as shown, and then select Next
and then Update on the confirmation screen. Wait for the installation to complete.

Once you've selected the features and components you want, click the Next button. You are presented
with a summary of the installation, as shown in Figure 2-12. Click Install to accept the license and install the
components.

0 Visual Studio

Community 2015

MICROSOFT SOFTWARE

Figure 2-12. Visual Studio 2015 Community: accept license

38

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Now comes the stage where the installer begins downloading the components you selected from the
Internet and installs them. Depending on what options you chose, this could be a long list. Also, depending
on your Internet download speed, downloads can take some time to complete.

Further, the installation of the components can also take a long time. It is not unusual to take several
hours to complete the installation. Again, if this is a concern, you can use a custom installation and choose
one component at a time. Once underway, you see a progress page like the excerpt shown in Figure 2-13.

oq Visual Studio

Community 2015

Visual C++ Library CRT ARM Redist Package

al Studio® 2015

Figure 2-13. Visual Studio 2015 Community: progress

Tip Do not cancel the installation. It may look like it is hung, but it may take several hours to complete the
installation during which time it may appear as if nothing is happening (but it is). If you have a slow Internet
connection, you may want to start the installation before you go to bed and let it run overnight.

When the installation completes, you see a dialog page that permits you to launch Visual Studio 2015
Community for the first time, as shown in Figure 2-14.

39

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

0 Visual Studio

Community 2015

Setup Comple

Figure 2-14. Visual Studio 2015 Community: installation complete

If you have been following along and installing Visual Studio 2015 Community, go ahead and launch
it. When you first start Visual Studio 2015 Community, you may a delay as the application configures your
system and the options you chose during installation. Figure 2-15 shows a typical layout of Visual Studio.
Don’t worry about what all the panels, menus, and hundreds of options are at this time. You learn the
essentials of what you need to know in Chapters 4 through 6.

40

http://dx.doi.org/10.1007/978-1-4842-2108-2_4
http://dx.doi.org/10.1007/978-1-4842-2108-2_6

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

DG start Page - Microsoft Visual Studio YA & ouel ul+Q P - O x
File Edit View Debug Team VisualMicco Tools Test Analyre Window Help Charles Bell. PhD ~ .
5-75"-‘ - - - P Attach... * 'p'=
Arduino 1.6 » | Arduino Yan | P - =

o X

L A Al Start Page

Solution Explorer

Visual Studio

Start

m Source Control Ready to Cloud-power your experience?

Connect to Azure @

New on Microsoft Platforms

> M

~r ASP NET and Web

Proper... Team.

Figure 2-15. Visual Studio 2015 Community user interface

Update Visual Studio 2015 Community

Next, you may need to update Visual Studio. If you just downloaded Visual Studio, this may not be necessary,
but I will explain the steps in case you need to do this in the future. To update Visual Studio, open the
Extensions and Updates dialog in Visual Studio via the Tools menu. Click Updates to connect to the
Internet and check for updates. If an update is available (for example, Update 1), go ahead and select it for
installation. Figure 2-16 shows the Extensions and Updates dialog.

b Installed
% Guline Arduino IDE for Visu... Update Created by: Visual Micro
4 Updates (2) G A A Current Version: 1511.12.0

Studio . Fully compatible... New Version: 1602.13.0

Product Updates (1) More Information

Visual Studio Gallery (1)

Samples Gallery e

Change your Extensions and Updates settings

Figure 2-16. Extensions and Updates dialog: Updates
41

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Install the Windows 10 loT Core Templates

There is one more thing you need to install: the Windows 10 IoT Core templates. You can download the
template installation file at https://visualstudiogallery.msdn.microsoft.com/55b357e1-a533-43ad-
82a5-a88ac4bo1dec. Once downloaded, double-click the file named WindowsIoTCoreTemplates.vsix or
similar. This launches the installer for the templates. Follow the prompts to install the templates.

Alternatively, the templates can be found by searching for Windows IoT Core Project Templates in the
Visual Studio Gallery.

Tip You must restart Visual Studio if it was open when you installed the templates.

Validate Your Visual Studio 2015 Community Installation

OK, now you have Visual Studio installed and updated. You can validate the installation by opening Visual
Studio and then selecting Help » About Microsoft Visual Studio. Observe the version information, as
shown in Figure 2-17.

About Microsoft Visual Studio ? b e

g Visual Studio

Microsoft Visual Studio Community 2015 Microsoft .NET Framework
Version 14.0.24720.00 Update 1 Version 4.6.01055

@ 2015 Microsoft Corporation. @ 2015 Microsoft Corporation.
All rights reserved. All rights reserved.

Installed products:

AABT2 | Copy Info

_[Visual Basic 2015 00322-20000

Visual C# 2015 003
Visual C++ 2015 00322-20000-00000-AA872
Application Insights Tools for Visual Studio Package 4.2.601283

Arduino for Visual Studic 1.0

Common Azure Tools 1.5

Microsoft Azure Mobile Services Tools 1.4
MuGet Package Manager 3.3.0

Product details:

L\fi Microsoft Visual Basic 2015

‘Warning: This computer program is protected by copyright law and international treaties. Unauthorized reproduction or
distribution of this program, or any portion of it, may result in severe civil and criminal penalties, and will be prosecuted -
to the maximum extent possible under the law. OK

Figure 2-17. Validating Visual Studio: About dialog

This lists a number of entries, but what you're checking is the version of Visual Studio which should be
14.0.24720.00 Update 1 or later. Figure 2-17 shows an example dialog from my machine. I have the correct
versions installed.

42

https://visualstudiogallery.msdn.microsoft.com/55b357e1-a533-43ad-82a5-a88ac4b01dec
https://visualstudiogallery.msdn.microsoft.com/55b357e1-a533-43ad-82a5-a88ac4b01dec

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Troubleshooting Visual Studio Installation Problems

While the installation of Visual Studio can take a very long time to complete, there are sometimes cases
where the installation fails. This is most often caused by loss of connectivity to the Internet or simply failed
download of one or more components. You can recover from this form of failure by simply restarting the
installation. Indeed, most installation failures can be fixed in this manner.

However, if something goes really wonky, you may need to repair the installation. Fortunately, you can
restart the installation or open the Program and Features application. Select the Visual Studio 2015 entry
and then click Change. You are presented with a dialog that allows you to modify or repair the installation.
Click repair to recover from the installation failure.

On very rare occasions, the installation could fail in such a way that some components will not install,
resulting in a failed installation. In these rare occasions, you can view the log of the failed installation (there
is a link on the final dialog page for the installation) and try to determine the cause. Since there are so many
things that could go wrong, it isn’t possible to list them. Thus, you must examine the log and fix each error
as described. I recommend doing a search for the error on the Internet and read the suggested solutions.
Be sure to read several solutions thoroughly before you attempt them. Also, make a restore point before
continuing.

Tip Always make a restore point when attempting to fix installation problems. If the solution fails or makes
it worse, you can restore the system to the last checkpoint and try another solution.

When you find yourself spending a lot of time trying to fix really odd errors for which you can
find no solutions on the Internet, you should first attempt to uninstall using the command line with
the /uninstall /force optionswith vs_community ENU.exe /uninstall /force and then restart
the installation. If this does not work or gives the same errors, you can try deleting the contents of the
ProgramData/Program Cache folder. Use this is a last resort because not only will it force installation to
download all the packages again, but it also removes cached packages from other applications. However,
I've found that this trick works very well.

Caution Deleting cached packages from ProgramData/Package Cache may affect your other applications
forcing them to download packages again. Use with care and only as a last resort.

Now that you have Visual Studio installed, you need only one more thing on your PC: the Windows 10
IoT tools.

Install the Windows 10 loT Tools

The last step is to install the Windows 10 IoT Core development tools. You need these tools to complete the
installation of Windows 10 IoT Core on your low-cost computing board. To download the installation, go to
http://go.microsoft.com/fwlink/?LinkID=708576. This link downloads an installation named setup.exe.
Once downloaded, launch the executable and follow the prompts. The installation begins a small download
of the tools, as shown in Figure 2-18.

43

http://go.microsoft.com/fwlink/?LinkID=708576

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

(6%) Installing Windows 10 loT Cor... — X

Installing Windows 10 loT Core Dashboard
This may take several minutes. You can use your
computer to do other tasks during the installation.

&

##: Name: Windows 10 loT Core Dashboard

From: iottools.blob.core.windows.net

=i
Downloading: 1.23 MB of 18.2 MB

Cancel

Figure 2-18. Windows 10 IoT Core Dashboard installation

Once the installation is complete, the dashboard launches. Figure 2-19 shows the Windows 10 IoT
Core Dashboard, which launches the Set up a new device page by default. This page is used to configure a
bootable SD card for your device. You see how to use this in the next section. On subsequent launches, the
application checks for updates and automatically downloads and installs them.

BT My devices Set up a new device
I B setup anow devic First, let's get Windows 10 IoT Core on your device.
’E_ Try some samples Device type
Raspberry Fi 2 * Windows 10 loT Core for Raspberry Pi 2 =

Insert an SD card into your computer.
Maoite that this process will erase all content on your card.

Drive
0 7Gb [USB DISK 2.0 USB Device]

5 Settings

Figure 2-19. Windows 10 IoT Core Dashboard

There are three tags on the left side of the window. The My devices page lists the devices running
Windows 10 IoT Core on your network. There is also a Try some samples link to a set of sample applications
that you can use to get started. You see one of these in action in Chapter 4. Finally, the Settings link displays
the version and builds information for the application.!” You explore this tool in more detail in the following
sections as you set up your hardware for use with the Windows 10 IoT Core.

Now that your PC is ready to go, let’s see how each of the low-cost computing boards is set up to install
Windows 10 IoT Core and boot for the first time.

1%0ddly, there are no settings that you can change.

44

http://dx.doi.org/10.1007/978-1-4842-2108-2_4

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Getting Started with Your Board

Windows 10 IoT Core is very easy to set up and get your board running. The general process is as follows.
I describe each in more detail through examples of each board. I recommend reading through the setup
of all the boards, especially if you haven’t decided which one you want to use. But first, I present some tips
that may be helpful in setting up your board.

1. Download the Windows 10 board-specific installation package (via the .iso
download) and install it. For the .iso images for the development boards, see
http://ms-iot.github.io/content/en-US/Downloads.htm.

2. Download and write the Windows 10 IoT Core boot image to the SD card (or
memory for the DragonBoard 410c).

Connect your hardware to power, monitor, keyboard, and mouse.
Power on the device.

Configure basic settings and connect to the network.

o o 0

Connect to your device with the IoT Core Dashboard.

Tip: Be Patient and Thorough

I should encourage you to exercise patience and perseverance should you encounter problems. Although
I will explain the steps you need to perform in detail, there are some things that could go wrong. I have
included as many pitfalls as I can, but my experience has shown troubleshooting problems with the
hardware may still arise.

For example, I spent quite some time trying to boot one of my boards only to discover one of the cables
was defective. I neglected to consider the cable as the culprit because it was new. Thus, you should approach
problems with an iterative mind-set where you check each component (SD card, cable, power supply, etc.)
one at a time for correct working order and, more importantly, change only one thing at a time. If it doesn’t
solve the problem, return it to the original setting. That is, if you swap the HDMI cable and it doesn’t fix the
problem, go back to the original one.

Tip: Downloading the .iso Image

Downloading a bootable image can be accomplished in two ways: you can download the boot image (as an
.iso file) or you can use the Windows 10 IoT Dashboard to download the image. There are also two ways

to write the image to the SD card (for the Raspberry Pi and MinnowBoard Max-compatible boards). You
can either use the Windows 10 IoT Dashboard or a helper application that comes with the . iso boot image.
You'll see how to do both in the following sections.

Tip: Use Class 10 SD Cards

Microsoft recommends using class 10 SD cards or higher."! Currently, only two SD cards have been tested—
Ultra cards from SanDisk and the EVO cards from Samsung. I've found other class 10 SD cards work well and
some of the slower classes may work but results are mixed. If you observe your device booting slowly or the
startup sequence seems jumpy (the screen flickers), you may need to use a faster SD card. Incompatible SD
cards can result in unacceptable performance or failure to boot. If you are having problems with your device
after initial setup, try a faster SD card. I prefer the SanDisk Ultra SD cards since they are more plentiful and
thus can be a bit cheaper.

"https://en.wikipedia.org/wiki/Secure Digital#Speed class rating

45

http://ms-iot.github.io/content/en-US/Downloads.htm
https://en.wikipedia.org/wiki/Secure_Digital#Speed_class_rating

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

Tip: Double-Check Your Power Supply

Be sure to double-check your power supply to ensure that it has the proper rating for your board. The
Raspberry Pi needs a 5V 1.5A power supply with a micro-USB connector, the MinnowBoard Max-compatible
boards need a 5V 2A power supply with a 5mm connector, and the DragonBoard 410c works best with a 12V
2A power supply with a 4mm tip. If your board does not boot or powers off while running, it is possible the
power supply is faulty or insufficient for the board and its peripherals.

Caution Using the wrong tip can damage the power connector on the board.'

Now that you understand the basic process and have foreknowledge of some of the pitfalls, let’s see how
to set up each of the boards in turn starting with the Raspberry Pi. You see how to connect to the board after
you learn how to configure all the boards.

Raspberry Pi Configuration

This section demonstrates how to install and boot Windows 10 IoT Core on the Raspberry Pi. You see the specific
steps needed to get your board ready for Windows 10 IoT Core, including the hardware that you need, how to
connect to the board once Windows 10 IoT Core boots, and how to configure the board for your network.

Let’s begin with the prerequisite hardware that you need.

Prerequisites

The following are the miscellaneous hardware that you need to use Windows 10 IoT Core with your board.
You will see where these cables are plugged into your board later in this section. For now, just gather the
items you need.

e RaspberryPi

e 5V micro-USB power adapter, like the one at waw.adafruit.com/products/1995
e USB wired or wireless (not Bluetooth) keyboard and mouse

e HDMI monitor with HDMI cable or a suitable adapter for use with a DVI monitor
e Ethernet cable

e micro-SD Card 8GB or larger: class 10 or better

e SD card reader® (if your computer doesn’t have one)

Download the .iso and Install the Board-specific Windows loT Core Tools

The first step is to download the . iso file for the Raspberry Pi, mount the .iso file, and then install the
board-specific setup using the .msi file. The installation installs a number of tools that you need, including
the Windows IoT Core Watcher that monitors your devices, the binary boot image for your board, and a tool
named the Windows IoT Image Helper that is an alternative tool for creating the SD image. Indeed, some
older Windows web sites show procedures for using this application. You will use the newer Windows IoT
Core Dashboard instead.

12Can you guess how I know this? It is far too easy to bend the tabs inside the connector. This is more likely when using
universal power supplies.
BA standard micro-SD to SD adapter is included with the micro-SD card.

46

http://www.adafruit.com/products/1995

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Note The Windows loT Core Watcher application loads on startup but you can change that behavior in the
Startup tab on the task manager.

You can download the file from http://go.microsoft.com/fwlink/?LinkId=691711. Once the .iso file
is downloaded, simply double-click it. This mounts as a virtual drive that opens automatically. You see a file
named Windows_10 IoT_Core RPi2.msi or similar. Double-click that file to start the installation. You'll need
to do the usual steps for most installations, including accepting the license, permitting the change on your
computer, and so on.

The binary image for the Raspberry Pi is named flash.ffu and installed in the c: \Program Files
(x86)\Microsoft IoT\FFU\RaspberryPi2. Once the installation is complete, you can unmount the virtual
drive. If you changed the installation folder, be sure to note the correct path—you need it in the next step.

Creating the SD Card Image

Now you are ready to write the Windows 10 IoT Core bootable files to the micro-SD card. You can use the
Windows 10 IoT Core dashboard to automatically download the .iso and build the image using the drop-
down box selections, but since you downloaded and installed the tools manually, you can use the custom
option in the dashboard. Let's see how to do that.

Caution The SD card image overwrites all data on the SD card. Be sure to copy any data on the card
before you start the load.

Open the Windows 10 IoT Core Dashboard and insert a suitable SD card into your SD card reader. Make
sure that you've backed up and data on the card before you proceed because the next step overwrites the
contents.

Begin by selecting the Set up a New Device tab. Figure 2-20 shows the initial setup screen.

B3 My devices

1= 1y some samples 5= ekl
= - B>

Rapidiy prototype and build your Windows loT solutions on a variety of devices running Windows 10 loT Core.
Windows 10 gives you powerful tools that let you develop fast and deploy to your device.

Discover the internet of your things

To set up a device, all you need to do is download and install Windows 10 loT Core to your device.

B settings

Figure 2-20. Windows 10 IoT Core Dashboard: Set up new device

47

http://go.microsoft.com/fwlink/?LinkId=691711

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Next, click the Set up a new device button to start the build. On the next screen, you see a drop-down
box that allows you to choose the board for automatic download. However, since we downloaded the image,
you will use the custom installation option. Choose the Custom selection from the drop-down box. Once
selected, you see a text box that contains the path to the image (the flash.ffu file).

Use the Browse button to locate the file and select it. If you have more than one SD card or USB device
connected to your computer, use the Drive drop-down box to select the correct drive. Finally, check the
license agreement checkbox at the bottom. Figure 2-21 shows the Windows 10 Core Dashboard with the
correct settings.

B Mydees Set up a new device

I B seopanewdevce First, let's get Windows 10 loT Core on your device.

Device type

]

= Try some samples

Custom

Flash the pre-downloaded image file (Flash.ffu) to the 5D Card

C\Program Files (xB&)\Microsoft loT\FF

Insert an SO card into your computes
MNote that this process will erase all content on your card,

Drive
D 7Gb [SDHC Card]

¥ | accept the

Download and install

8 Settings
Figure 2-21. Windows 10 IoT Core Dashboard: custom image build

When you are ready, click the Download and install button. Since you choose the custom installation, it
copies the file from your computer and does not download anything. Once the process begins, you see a new
console window open running the Deployment Image Servicing and Management tool (named dism.exe),
which provides feedback during the copy. Figure 2-22 shows an example of the console.

48

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

B Y CAWINDOWS\SysWOWeEd\dism.exe =] x

Deployment Image Servicing and Management tool
Version: 10.0.10240.16384

Applying image
[:::::: 11.0%]

Figure 2-22. Windows 10 IoT Core Dashboard: custom image build

Once the image build is complete, the window closes and the dashboard displays the process complete
screen, as shown in Figure 2-23.

T Dashboard = o
B My devices Your SD card is ready.
1. Insert your 5D card into the device
H Set up a new device
=
IE Try some samples %

2. Get Connected

0 ethernet (recommended)
Connect your Ethernet cable to your local network and boot up your device

& WI-Fl
Plug in your Wi-Fi adapter and boot up your device,
See a list of supported Wi-Fi adapters

3. Find your device
Note: It will take a few minutes for your device to boot and appear in "My Devices™

Set up another device

@ Settings

Figure 2-23. Windows 10 IoT Core Dashboard: image build complete

49

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

You can now take the SD card out of your computer. Be sure to eject it properly like you would any
other USB or removable drive by using the Safely Remove Hardware and Eject Media icon on the system
tray. Wait until you see a message that it is safe to remove the media before removing it. You're now ready
to connect the hardware and boot the image for the first time. Before you do that, click the My devices tab
(or button) in the Windows 10 IoT Core Dashboard. You'll be using this screen to connect to the Raspberry
Piin alater step.

Connecting the Hardware

If this is your first time using a Raspberry Pi, orient the board on the table with the Raspberry Pi logo facing
you. Figure 2-24 helps you locate the connection points. Insert the micro-SD card into the Raspberry Pi SD
card reader located on the bottom of the left side. Connect the HDMI monitor to the HDMI port located on
the bottom. You can connect your Ethernet cable and USB mouse and keyboard to the ports on the right side
of the board.

GPIO

NET

PWR HDMI
Figure 2-24. Connections for the Raspberry Pi

OK, you're now ready to power the board and boot up Windows 10 IoT Core!

Booting Windows 10 loT Core for the First Time

Now you can power on the board and boot from the SD card. Plug your AC adapter into a power source
and then insert the micro-USB power located in the bottom-left corner of the board, as shown. You should
see the power LED illuminate and the SD card activity LEDs blink. These LEDs are located on the left side
of the board.

You see the Windows logo and an activity cursor appear on the monitor connected to the Raspberry
Pi. The first boot may take some time but eventually you be asked to choose the default language. Use the
mouse or keyboard to select your language.

50

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Next, you see the boot up screen, as shown in Figure 2-25. You can configure your board using this
screen, as well as shut down or reboot the board. The Device Settings button is the small gear located in the
upper right portion of the screen. If you click it, you see the Device Settings screen that allows you to change
the default language or connect to a Wi-Fi network if you have a wireless network adapter plugged into the
Raspberry Pi. Finally, you can shut down or restart the board by clicking the power button in the upper right
of the screen.

Device name

minwinpe

MNetwork
Ethernet

IP adidress
10.0.1.70

05 Version
10.0.10586.0

Connected devices
Generic USE Hub
Generic USB Hub
USB Cordless Mouse
Generic USE Hub
Matorola HD Dock

ey 14

Figure 2-25. Windows 10 IoT Core boot screen: Raspberry Pi

I have highlighted the network information located on the left side of the screen. Take note of the IP
address as you may need this if you want to connect to the Raspberry Pi from your computer. Since the
methods for connecting are the same for all the boards, you will see how to connect to the board after you
learn how to set up the other two boards.

MinnowBoard Max Turbot Configuration

This section demonstrates how to install and boot Windows 10 IoT Core on MinnowBoard Max-compatible
boards as demonstrated with the MinnowBoard Max Turbot. You will see the specific steps needed to get
your board ready for Windows 10 IoT Core, including the hardware you need and how to connect to the
board once Windows 10 IoT Core boot as well as how to configure the board for your network.

Since many of the steps are similar for this board as the Raspberry Pi, some of the following is familiar if
you read the section on the Raspberry Pi. However, I demonstrate an alternative method for building the SD
card image. You will also see two additional steps that you need to perform on the MinnowBoard Max; you
must ensure that the board has the 32-bit version of the firmware loaded. You do not need to do this step for
the other boards and you need only do it once when setting up the board for the first time.

Let’s begin with the prerequisite hardware that you need.

51

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

Prerequisites

The following are the miscellaneous hardware that you need to use Windows 10 IoT Core with your board.
You see where these cables are plugged into your board later in this section. For now, just gather the items
you need.

e MinnowBoard Max-compatible board

e 5V 2.,5A power adapter with a 5.5mm x 2.1mm barrel male plug that is configured
with the center pole positive and the outer casing negative. If you use a universal
power adapter, you should double-check the power ratings.

e USBwired or wireless (not Bluetooth) keyboard and mouse

e HDMI monitor with HDMI cable or a suitable adapter for use with a DVI monitor.
The board uses a micro-HDMI connector so make sure that you have the correct
cable or a HDMI to micro-HDMI adapter.

e Ethernet cable
e micro-SD Card 8GB or larger: class 10 or better
e SD card reader (if your computer doesn’t have one)

e USB thumb drive, 2GB or larger (for loading the firmware)

Download the .iso and Install the Board-specific Windows loT Core Tools

The first step is to download the . iso file for the MinnowBoard Max, mount the . iso file, and then install the
board-specific setup using the .ms1i file. The installation installs a number of tools that you need, including
the Windows IoT Core Watcher that monitors your devices, the binary boot image for your board, and a tool
named the Windows IoT Image Helper that is an alternative tool for creating the SD image. Indeed, some
older Windows web sites show procedures for using this application.

You can download the file from http://go.microsoft.com/fwlink/?LinkId=691712. Once the .iso file
is downloaded, simply double-click it. This mounts as a virtual drive that opens automatically. You see a file
named Windows 10 IoT_Core Mbm.msi or similar. Double-click that file to start the installation. You'll need
to do the usual steps for most installations, including accepting the license, permitting the change on your
computer, and so on.

The binary image for the MinnowBoard Max is named flash. ffu and installed in the c: \Program
Files (x86)\Microsoft IoT\FFU\MinnowBoardMax. Once the installation is complete, you can unmount the
virtual drive. If you changed the installation folder, be sure to note the correct path—you need it in the next
step.

Creating the SD Card Image

Now you are ready to write the Windows 10 IoT Core bootable files to the micro-SD card. Rather than use
the Windows 10 IoT Core Dashboard to create the SD card image, you will use the older Windows IoT Image
Helper application. Let’s see how to do that.

Open the Windows IoT Image Helper (search for the app named WindowsIOTImageHelper) and
insert a suitable SD card into your SD card reader. Make sure you've backed up and data on the card before
you proceed because the next step overwrites the contents. Simply select the drive associated with the SD
card and then click the Browse button to locate the flash.ffu file. This is located in the c: \Program Files
(x86)\Microsoft IoT\FFU\MinnowBoardMax folder. Figure 2-26 shows the Windows IoT Image Helper
application with the drive and flash file selected.

52

http://go.microsoft.com/fwlink/?LinkId=691712

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

@ Windows loT Core Image Helper - m| >

Put loT Core onto your SD card

Select the SD card

D: 7Gb [SDHC Card]

Select the image (.ffu)

C:\Program Files (x86)\Microsoft loT\FFU\MinnowBoard|

Figure 2-26. Windows IoT Image Helper

Caution The SD card image overwrites all data on the SD card. Be sure to copy any data on the card
before you start the load.

When you are ready, click the Flash button to begin writing the image to the SD card. You see a new
console open that runs the Deployment Image Servicing and Management tool (dism.exe) to write the
image. Figure 2-27 shows an example of the output.

B C\Program Files (x86)\Microsoft loT\dism\dism.exe - [m] K

Deployment Image Servicing and Management tool
Version: 10.0.10586.0

pplying image
=====s==== 1?-6%]

Figure 2-27. Deployment Image Servicing and Management tool

53

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Once that is done, Windows mounts the card. Eject the SD card and set it aside. You will use it in a
future step but first let’s see how to connect the hardware and prepare the firmware on the board for use with
Windows 10 IoT Core.

Connecting the Hardware

If this is your first time using a MinnowBoard Max-compatible board, orient the board on the table with
the Ethernet port on the left. Figure 2-28 helps you locate the connection points. The micro-SD card drive
is located on the right side of the board. Don't insert the card at this time. You must do one additional step
before you can boot Windows 10 IoT Core.

PWR

Figure 2-28. Connections for the MinnowBoard Turbot

Connect the HDMI monitor to the HDMI port located on the left side of the board. This is a micro-
HDMI connector so you need to make sure that you have the correct cable. You can connect your Ethernet
cable on the left side as well. Connect the USB mouse and keyboard to the USB ports on the right side of the
board. Now that all the cables are connected, you can connect the power and let the board boot up.

Load the 32-bit Firmware

The MinnowBoard Max-compatible boards are preloaded with a 64-bit version of its firmware.
Unfortunately, you need to use the 32-bit version of the firmware before you can boot Windows 10 IoT Core
because Windows 10 IoT Core does not work with the 64-bit version. Loading (also called flashing) the new
firmware requires downloading the firmware files, copying them to a USB thumb drive, booting the board
and using commands entered in a special administration tool called the UEFI shell.

However, you should first check the current firmware version displayed on the boot configuration
screen (also called BIOS like on your PC). If your board has the 32-bit firmware loaded, you may be able to
skip this section. However, most new boards have the 64-bit version loaded. You may also want to load the
latest version of the firmware since the newer firmware typically is more stable. Moreover, you need to know
whether the current firmware is 32-bit or 64-bit.

54

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Go ahead and connect your monitor, keyboard, network, and power as described in the previous
section. Be sure to remove any SD card before you turn the power on. Once powered on, you see the
boot up sequence. You can enter the BIOS by pressing F2 when the board boots up. If you miss it, you
can simply wait until the UEFI shell is launched and then enter the EXIT command. Figure 2-29 shows
the location of the firmware version on the screen (at the top). This statement is located in the upper-left
corner of the BIOS screen.

MinnowBoard MAX B3 PLATFORM
Intel(R) E3825 @ 1.33GHz 1.34 GHz
MNW2MAX1 1503101347

_ _ This selection will direct
Select Language <Standard English> the system to continue to

Boot Manager booting process
Device Manager
Boot Maintenance Manager

Figure 2-29. MinnowBoard Max firmware version (courtesy of minnowboard.org)

In Figure 2-29 the BIOS is running a 64-bit version as noted by the X64 in the name. You can now power
off the board and prepare the USB thumb drive for the next step.

You need to download several files. Visit the MinnowBoard Max firmware download page at http://
firmware.intel.com/projects/minnowboard-max. Locate the latest version of the firmware and download
both the 32-bit and 64-bit versions. The files are .zip archives, which you expand before placing on the USB
thumb drive. For example, I downloaded version 0.90. You want the release versions of the software (there
are links for both debug and release, choose release). Thus, I downloaded the MinnowBoard MAX 0.90 64-
Bit and MinnowBoard MAX 0.90 32-Bit files.

Next, unzip the files and copy the contents to the USB thumb drive. The thumb drive does not need
to be empty (so long as there is room for the files) but it must be formatted as a FAT drive (usable from a
Windows PC). If you are using a larger SD card, you may need to use extFat. For example, my USB thumb
drive has the following files loaded.

MinnowBoard.MAX.0.90.BIN-ReleaseNotes.txt
MinnowBoard.MAX.FirmwareUpdateIA32.efi
MinnowBoard.MAX.FirmwareUpdateX64.efi
MinnowBoard.MAX.I32.90.R01.bin
MinnowBoard.MAX.X64.90.R01.bin

Note that the release notes file is the same in both archives. You only need the one file, and only for
reference. Once you have the files copied, eject the drive, insert it into the MinnowBoard Max USB port, and
power it on. Allow the board to boot into the UEFI shell. Once the shell is open, you can flash the firmware.

The command needed depends on whether your board has the 32-bit or 64-bit firmware loaded. More
specifically, if it has the 32-bit firmware, you must use the 32-bit flashing tool to load the firmware. Similarly,
if it has the 64-bit firmware, you must use the 64-bit flashing tool even though you are loading the newer 32-
bit version.

The first step is to change to the USB thumb drive. This is either fs0: or fsi:. Enter the map -u
command to see the drives attached. The following shows an example where my board associated the fs0:
drive with the USB thumb drive.

EFI Shell version 2.40 [1.0]

Current running mode 1.1.2
Device mapping table

55

http://firmware.intel.com/projects/minnowboard-max
http://firmware.intel.com/projects/minnowboard-max

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

fs0 :Removable HardDisk - Alias hd15a0b blko
PciRoot(0x0)/Pci(0x14,0x0)/USB(0x0,0x0)/HD(1,MBR,0x3CAE3447,0%x800,0x1DD0000)
blko :Removable HardDisk - Alias hdi5aob fso
PciRoot(0x0)/Pci(0x14,0x0)/USB(0x0,0x0)/HD(1,MBR,0x3CAE3447,0x800,0x1DD0000)
blk1 :Removable BlockDevice - Alias (null)
PciRoot(0x0)/Pci(0x14,0x0)/USB(0x0,0x0)

You can change to the drive by entering its name, as shown next. You can also list the contents of the
drive, as shown.

Shell> fso0:
fs0:\> 1s
Directory of: fso0:\

01/27/16 06:20p 8,388,608 MinnowBoard.MAX.I32.090.R01.bin
03/09/15 06:19p 8,388,608 MinnowBoard.MAX.X64.090.R01.bin
08/14/14 07:54p 23,040 MinnowBoard.MAX.FirmwareUpdateX64.efi
08/14/14 08:11p 14,144 MinnowBoard.MAX.FirmwareUpdateIA32.efi
02/05/16 01:49p 9,806 MinnowBoard.MAX.0.90.BIN-ReleaseNotes.txt
5 File(s) 16,824,448 bytes
0 Dir(s)

Next, you flash the firmware. If you have the 32-bit version of the firmware, execute the following
command substituting the version number of the firmware you downloaded. I highlight the executable in
bold. Listing 2-1 shows the complete execution of the firmware update for the 32-bit version. You see the
progress of the flashing and when it is done, the board reboots. Once rebooted, check the firmware version
to make sure that the flashing was successful.

Listing 2-1. Flashing the MinnowBoard Max with 32-bit Firmware Loaded

fs0:\> MinnowBoard.MAX.FirmwareUpdateA32.efi MinnowBoard.MAX.A32.090.R01.bin
Intel(R) UDK2014 Firmware Update Utility for the Intel(R) Server Board S1200V3RPS
Version 0.97

Copyright(c) Intel Corporation 2006 - 2014

Reading file MinnowBoard.MAX.A32.090.R01.bin

Updating Firmware. This may take a few minutes.

..................

..

Update successful
Shutdown system in 5 seconds ...

If you have the 64-bit version of the firmware, execute the following command substituting the version
number of the firmware you downloaded. I highlight the executable in bold. Listing 2-2 shows the complete
execution of the firmware update for the 64-bit version. You will the progress of the flashing and when it
is done, the board reboots. Once rebooted, check the firmware version to make sure that the flashing was
successful.

56

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

Listing 2-2. Flashing the MinnowBoard Max with 64-bit Firmware Loaded

fs0:\> MinnowBoard.MAX.FirmwareUpdateX64.efi MinnowBoard.MAX.A32.090.R01.bin
Intel(R) UDK2014 Firmware Update Utility for the Intel(R) Server Board S1200V3RPS
Version 0.97

Copyright(c) Intel Corporation 2006 - 2014

Reading file MinnowBoard.MAX.A32.090.R01.bin

Updating Firmware. This may take a few minutes.

..................

..

Update successful
Shutdown system in 5 seconds ...

Now, there is just one more step to accomplish and you need to do this in the BIOS so while you're
there, let’s complete the BIOS setup.

Configure the BIOS

If you haven’t booted into the BIOS, do that now. Press F2 as the board boots or you can enter the EXIT
command on the UEFI shell to enter the BIOS setup. In this step, that you need to change the boot order so
that the SD card gets checked first and turn off a couple of BIOS settings.

First, enter the BIOS and use the down arrow to select Boot Maintenance Manager and press Enter.
Choose the Boot Options option and then the Change Boot Order item. Use the arrow keys to select the EFI
MISC Device option. Use the + key to move it to the top and then press Enter. This moves the SD card to the
top. To save your changes, press F10 and reply Y to confirm the changes.

Next, you need to turn two settings off (disabled). Navigate to the main menu and select Device
Manager » System Setup » South Cluster Configuration » LPSS & SCC Configuration. Use the arrow
keys to locate the following pulse-wave modulation extensions and set each to Disable. You do not need
these for Windows 10 IoT Core.

LPSS PWM #1 Support
LPSS PWM #2 Support

When complete, press Esc until you are asked to save the changes. Save them and allow the board to
reset. OK, you're now ready to power the board and boot up Windows 10 IoT Core!

Booting Windows 10 loT Core for the First Time

Now you can power on the board and boot from the SD card. Plug your AC adapter into a power source and
then power on the board. You see the Windows logo and an activity cursor appear on the monitor. The first
boot may take some time but eventually you be asked to choose the default language. Use the mouse or
keyboard to select your language.

57

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Once selected, you see the boot up screen, as shown in Figure 2-30. Recall from the “Raspberry
Pi Configuration” section that you can configure your board using this screen, as well as shut down
or reboot the board. The Device Settings button is the small gear located in the upper right portion
of the screen. If you click it, you see the Device Settings screen that allows you to change the default
language or connect to a Wi-Fi network if you have a wireless network adapter plugged into the USB
port. Finally, you can shut down or restart the board by clicking the power button in the upper right of
the screen.

Visit www.windowsondevices.com to start developing

NETWORK INFORMATION

Figure 2-30. Windows 10 IoT Core boot screen excerpt: MinnowBoard Turbot

Now let’s see how you can configure the DragonBoard 410c. After that section, you learn how you can
connect to your board from your PC.

DragonBoard 410c Configuration

This section demonstrates how to install and boot Windows 10 IoT Core on the DragonBoard 410c. You
see the specific steps needed to get your board ready for Windows 10 IoT Core, including the hardware
that you need, how to connect to the board once Windows 10 IoT Core boot, and how to configure the
board for your network.

Many of the steps are similar for this board as the Raspberry Pi. However, you do not use an SD card
to boot the DragonBoard 410c. Instead, you will use a special application to download the boot image into
a special memory drive (re-writable, non-volatile memory) on the DragonBoard 410c. Thus, that step is
completely different that either of the other boards, but as you will see, you still download and install the
firmware tools.

Let’s begin with the prerequisite hardware that you need.

Note The DragonBoard 410c does not use an SD card to boot Windows 10 loT Core.

58

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

Prerequisites

The following are the miscellaneous hardware that you need to use Windows 10 IoT Core with your board.
You see where these cables are plugged into your board later in this section. For now, just gather the items
you need.

e DragonBoard 410c

e +6.5Vto +18Vpower adapter with a 4.75 x 1.75mm barrel male plug, like the one at
WwW.arrow.com/en/products/wm24p-12-a-ql/autec-power-systemsipage-1

e USBwired or wireless (not Bluetooth) keyboard and mouse
e HDMI monitor with HDMI cable or a suitable adapter for use with a DVI monitor
e micro-SD Card 8GB or larger: class 10 or better

e SD card reader (if your computer doesn’t have one)

Download the .iso and Install the Board-specific Windows loT Core Tools

The first step is to download the . iso file for the DragonBoard 410c, mount the .1iso file, and then install
the board-specific setup using the .msi file. The installation installs a number of tools that you need,
including the Windows IoT Core Watcher that monitors your devices, the binary boot image for your
board, and a tool named the DragonBoard Update Tool, which permits you to download the binary image
to the board.

You can download the file from http://go.microsoft.com/fwlink/?LinkId=691713. Once the .iso file
is downloaded, simply double-click it. This mounts as a virtual drive that opens automatically. You see a file
named Windows_10_IoT_Core_QCDB410C.msi or similar. Double-click that file to start the installation. You'll
need to do the usual steps for most installations, including accepting the license, permitting the change on
your computer, and so on.

The binary image for the Raspberry Pi is named flash.ffu and installed in the c: \Program Files
(x86)\Microsoft IoT\FFU\QCDB410C. Once the installation is complete, you can unmount the virtual drive.
If you changed the installation folder, be sure to note the correct path—you need it in the next step.

Connecting the Hardware

If this is your first time using a DragonBoard 410c, orient the board on the table with the Arrow logo facing
you. Figure 2-31 helps you locate the connection points.

59

http://www.arrow.com/en/products/wm24p-12-a-ql/autec-power-systems#page-1
http://go.microsoft.com/fwlink/?LinkId=691713

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

Figure 2-31. Connections for the DragonBoard 410c

Connect the HDMI monitor to the HDMI port located on the bottom of the board. Connect the USB
mouse and keyboard to the USB ports on bottom of the board to the right of the HDMI connector. Now that
all the cables are connected, you can connect the power and let the board boot up.

Downloading the Image to the DragonBoard 410c

The process to download the image to the DragonBoard 410c requires you to power it off, change one switch
on the bottom of the board, and then use a USB to micro-USB cable to connect the board to your PC. Let’s
begin with setting the micro switch.

If you turn the board over, you see a set of four small switches located in the lower-right corner (reorient
the board so you can view it this way). If you look closely, the switches are labeled from the bottom up as the
following and referred to in this order starting from switch 1. The default setting for all switches is off (tab
oriented to the right): (1) USB BOOT, (2) SD BOOT, (3) USB HOST, and (4) HDMI SEL.

When the USB BOOT switch is turned on, the board boots from a USB host connected to the
programming port (labeled PGM in Figure 2-31). Similarly, when the SD BOOT switch is turned on, the
board boots from the SD drive. When both of these switches are off, the board boots from memory.

To download the Windows 10 IoT Core image to the board, power off the board and set the USB BOOT
switch to the on position, as shown in Figure 2-32.

60

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

NIYN'BAd

Twodjend

Figure 2-32. DragonBoard 410c USB boot mode

Next, you can connect the micro-USB to USB cable to the DragonBoard 410c and your PC. Launch the
DragonBoard Update Tool (you can search for this string in the search box) on your PC and power on the
board. Once your PC recognizes the board, the DragonBoard Update Tool connects and then prompts you
for the image file. Click the Browse button and locate the flash.ffu file. This is located in the c: \Program
Files (x86)\Microsoft IoT\FFU\QCDB410C folder and select it. You should now see the Program button
and connection status light turn green, as shown in Figure 2-33.

& DragonBoard Update Tool e X

C:\Program Files (x86)\Microsoft loT\FFU\QCDB410C\flash.ffu m

Figure 2-33. DragonBoard Update Tool: connection established

Tip If the DragonBoard Update Tool does not connect, try using a different USB cable and that the board is
powered on. If that doesn’t work, reinstall the DragonBoard 410c tools and reboot your computer. If you are still
having problems, check the Device Manager for issues with the USB driver.

When you are ready, press the Program button. This begins the transfer of the image to the board.
This overwrites the base Android image. Figure 2-34 shows the DragonBoard Update Tool in progress of
downloading the image to the board.

61

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

s,- DragonBoard Update Tool - X

C:\Program Files (x86)\Microsoft loT\FFU\QCDB410C\flash.ffu

Figure 2-34. DragonBoard Update Tool downloading

When the process is complete, you are prompted to power off the board and reset the USB BOOT
switch, as shown in Figure 2-35.

X

Programming successful.
Turn switch 1 off.

Figure 2-35. DragonBoard Update Tool: complete

Click OK and then power off the board and disconnect the USB cable from your computer. Then turn
the USB BOOT switch to the off position. You will not need the USB cable for the next step.

Booting Windows 10 loT Core for the First Time

Now it’s time to boot the board with Windows 10 IoT Core. Connect the HDMI monitor, USB keyboard
and mouse, and then the power adapter. Power on the device. It takes a couple of minutes for Windows to
boot the first time but subsequent boots are a bit faster. You see the Windows logo and an activity cursor
appear on the monitor. The first boot may take some time but eventually you be asked to choose the default
language. Use the mouse or keyboard to select your language.

Once selected, you see the bootup screen, as shown in Figure 2-36. Recall from the Raspberry Pi
section, you can configure your board using this screen, as well as shut down or reboot the board. The
Device Settings button is the small gear located in the upper right portion of the screen. If you click it,
you see the Device Settings screen that allows you to change the default language and connect to a Wi-Fi
network. Finally, you can shut down or restart the board by clicking the power button in the upper right of
the screen.

62

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Device name

IP address
100191

05 Version
10.0.10586.0

om to start developing

Connected devices
USB Composite Device

L]
00191 192.168.173.1

Status Status
Local and Internet access Local and Internet access

Figure 2-36. Windows 10 IoT Core boot screen excerpt: DragonBoard 410c

The DragonBoard 410c has Wi-Fi, so you can connect your board to your Wi-Fi network by clicking the
Device Settings icon (looks like a gear) in the upper-right portion of the screen.

On the Device Settings page, select Network & Wi-Fi via the menu on the left. The board begins to
search for Wi-Fi networks. When your Wi-Fi network name (SSID) appears in the list, select it and click
the Connect button to connect. You can then close the Device Settings and view the network name and
IP address on the home screen. Be sure to note this IP address as that you need it to connect to the board
remotely.

Connecting to Your Board

Now that your board is booted and connected to your network, you can log in remotely from your computer.
Indeed, once you've set up the board, you normally would not connect it to a monitor and keyboard. That is,
itis more common that would deploy your board in your solution and run it headless.

Connecting to your board can be done in a number of ways, including the Windows 10 IoT Core
Dashboard, a secure shell (SSH) connection via the command line, or using Windows PowerShell. There
are other ways, but these are the most common and most useful. I'll discuss each of these in the following
sections. These methods are the same for all the boards—there are no special steps for the MinnowBoard
Max-compatible or DragonBoard 410c boards.

Connect with the Windows 10 loT Core Dashboard

The Windows 10 IoT Core Dashboard offers two ways to connect to your board, both of which are initiated
from the My Devices panel. Once the board is booted, click the My Devices tab to see the list of all of your

Windows 10 IoT Core devices. It could take a few minutes for your board to appear in the list. If it does not,
make sure that the board is connected to the same network as your computer. If you have multiple boards

running, you see all of them in the list. Figure 2-37 shows an example of the My Devices list.

63

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

I'—' S My devices
i setupanewdevice Fiter | All
if Try some samples Name Type P Address
minwinpe 10.0.1.70
Can't find your device?
£ Settings e

Figure 2-37. Windows 10 IoT Core Dashboard: My Devices list

ertngs Open in Device Poral o5

Note Once the board is booted, it could take a few minutes for the board to show up in the My Devices list.

There is one device in the list named miniwpc (the default name for all boards—but you can change

that). You also see the IP address of the board and two small icons.

The first icon (shown as a pencil icon) permits you to connect to the board and change its name and
password. I recommend you do this as your first action to secure your board. Simply click the pencil icon
on the row that shows your board and enter the default password (p@sswOrd). Optionally, you change the
name of the board, choose a new password, and save the settings. Figure 2-38 shows the settings dialog.

I'—""-’ My device minwinpc

n Set up a new device Settings

IE Ty some samples Device name

User name

= -~

Device Portal

‘Windows Device Portal allows you to configure your device in detail

& setings

Figure 2-38. Windows 10 IoT Core Dashboard: Settings dialog

64

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Tip The default password for the Windows 10 loT Core is p@ssword (the 0 is a zero). You should change
the administrator password when your device boots for the first time.

The second method is where all the fun begins. You see the Windows Device Portal link (shown as a
world icon). This option connects to a special web page running on the board that allows you to configure all
manner of things on the board, including the following features, organized as a series of tabs or panels.

Apps: Allows you to install or uninstall packages on your device.

Processes: Allows you to see which processes are currently running as well as the
memory used.

Performance: Displays real-time diagnostics of the CPU, I/O usage, and memory.
Debugging: Provides tools to help you diagnose problems with your application.
ETW: An advanced tool for Windows event tracing.

Perf Tracing: Allows you to create a log of system changes and settings.

Devices: Lists the devices connected to the board.

Bluetooth: Allows you to configure Bluetooth connections.

Audio: Allows you to configure the audio options (if audio capable).

Networking: Displays the IP address and description of the network.

Windows Update: Allows you to update the system files on the board (just like your
computer).

Don’t worry about learning what each and every one of these do; you'll discover the most frequently
used throughout this book. As you can see, some of these are advanced features for performance testing,
debugging, and event tracing. Most hobbyists and enthusiasts do not use these advanced features, but
they’re there if you need them. Sadly, there isn’t a lot of documentation for how to use some of them.

To connect to the Windows Device Portal, click the world icon. You are asked to enter the user account
and password. You want to use the administrator account and the new password you set previously.

Figure 2-39 shows an example of the web page that you see once connected.

65

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

B Home X + = O x .
) 10.0.1.70 *| = @ O

(I) O B ? 11:59 AM

HOI’T‘IE Shutdown Restart Feedback Help 2/21/2016

H Device information

Device Name: minwinpc
Device Model: Raspberry Pi 2 Model B
OS Version: 10.0.10586

& Preferences

<2 Change your device name

Save

S Change your password

Save Cancel

Figure 2-39. Windows Device Portal

You can also shut down and restart the board from this web page. Interestingly, there is help available
for the options but the content is still rather terse. Again, you will see how to use some of these features in
later chapters, starting with how to deploy applications in Chapter 4.

Connecting with SSH

Another, popular method for connecting to your board and indeed a method I use often is to use secure shell
(SSH). Sadly, Windows, unlike other platforms, does not come with a SSH client.* Fortunately, there are
several varieties available as third-party applications. One of the ones I like is called PuTTY, which is actually
a general terminal session application. The SSH feature in PuTTY is very easy to use. What I like most about
PuTTY is it is open source software and therefore free to download and use.

You can download PuTTY from www.chiark.greenend.org.uk/~sgtatham/putty/download.html.
The download is not an installation package (.ms1i), rather, it is simply the PuTTY executable (putty.exe).
Simply download the file and place it in a folder that is in your path environment variable. You can also put it
in your documents folder and simply execute it from there or by referencing the folder.

There are other applications available from the download site, including an installation package that
installs most of the tools. You only need the PuTTY executable for connecting to your boards but I encourage
you to check out the other tools.

Tip For more information about PUuTTY, visit www. putty.org.

T’ve never understood why that is.

66

http://dx.doi.org/10.1007/978-1-4842-2108-2_4
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.putty.org/

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

To connect to your board, you need the IP address from the Windows 10 IoT Core boot screen on the
board. You captured this when you booted the board for the first time. When you launch the putty.exe
executable, you see the initial dialog, as shown in Figure 2-40. Select the SSH radio button and enter the IP
address of your board in the Host Name (or IP address) box. Leave the port as 22.

&B puTTY Configuration ? X

Category:
— Session Basic options for your PuTTY session

Logging

Terminal
Keyboard Host Name (or IP address) Port
Bell 110.0.1.70{ 22
Features ;

Window Connection type:
Appearance (ORaw (O Teinet () Riogin ®)SSH () Serial
Behaviour
Translation
Selection Saved Sessions
Colours

Connection
Data Default Settings Load
Proxy
Telnet Save
Riogin

+ SSH Delete
Senal

Specify the destination you want to connect to

Load, save or delete a stored session

Close window on exit:
(OAways (O Never (@) Onlyon clean exit

About Help Cancel

Figure 2-40. PuTTY dialog

When you are ready, click the Open button. Once the connection completes, you see a new command

window open and be asked to log in. Enter Administrator as the user and press Enter. Then enter the
password that you set in a previous step (or the default p@sswOrd, if you have not changed it) and press
Enter. Figure 2-41 shows an example of the SSH session.

67

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

22 10.0.1.70 - PuTTY - O %

login as: administrator A
administrator@10.0.1.70's password:

Microsoft Windows [Version 10.0.10586]

Copyright (c) Microsoft Corporation. All rights reserved.

C:\Data\Users\Administrator>dir

Volume in drive C is MainOS
Volume Serial Number is AOF6-8EEl

Directory of C:\Data\Users\Administrator

12/31/2015 04:20 PM <DIR>
12/31/2015 04:20 PM <DIR> i
12/31/2015 04:20 PM <DIR> Documents

0 File(s) 0 bytes

3 Dir(s) 2,482,012,160 bytes free

C:\Data\Users\Administrator>Jj

Figure 2-41. SSH connection example

There are a variety of commands you can use. You can perform nearly all the operations on the
home screen via command-line utilities, such as boot configuration, startup applications, shutdown,
restart, and more.

Thus, you can do everything you need to do remotely via the command line rather than use the
Windows Device Portal (but I've found the portal more convenient). For more details about the command
utilities available, see https://ms-iot.github.io/content/en-US/win10/tools/CommandLineUtils.htm.

Connecting with the Windows PowerShell

You can also connect to your board with Windows PowerShell. However, it isn’t quite as obvious or
intuitive unless you've used PowerShell previously. You can launch PowerShell, but you should do so as the
administrator since some commands require elevated privileges. Simply search for powershell. When the
application appears in the list, right-click it and select the Run as administrator option.

The steps you need to perform require starting the Windows remote management service, creating a
trust relationship between your PC and the board, and then opening a session. See, not so intuitive, is it?
Let’s see how to do this.

Note Connecting to your board may take several seconds from the PowerShell.

Once the PowerShell launches, start the Windows remote management service with the following
command. Since this is a network operation, you use the net command. You see messages stating that the
service has started.

> net start WinRM

68

https://ms-iot.github.io/content/en-US/win10/tools/CommandLineUtils.htm

CHAPTER 2 * INTRODUCING THE WINDOWS 10 10T CORE

Next, you create the trust relationship with the set-item command. Type the following command
substituting the IP address from the board as you recorded earlier when you booted Windows 10 IoT Core
for the first time. You are asked to confirm the change. Enter Y to continue.

> Set-Item WSMan:\localhost\Client\TrustedHosts -Value 10.0.1.70

Tip If you want to connect to more than one board, you can place the list of IP addresses inside double
quotes separated by commas, such as "10.0.1.70,10.0.1.71".

Finally, you can start a session with your Windows IoT Core device using the Enter-PSSession. Yes,
another unintuitive command.'® Here you provide the computer name (IP address is fine) and user name
(Administrator). You are prompted for the password in a pop-up dialog. The following shows the command
I'used to open a session to my board at 10.0.1.70. Figure 2-42 shows the PowerShell session once login
succeeds.

> Enter-PSSession -ComputerName 10.0.1.70 -Credential 10.0.1.70\Administrator

ved.

Remote M 1age (Mz -] tarting. :
indows Remote Mar e started successfully.

10 1.70\Administrator

Figure 2-42. Connecting with the Windows PowerShell: session established

The IP address of the board is in square brackets. This lets you know which board you are currently
connected to, should you connect to more than one at the same time. From here you can use the command-
line utilities described in the previous section.

SFor muggles at least.

69

CHAPTER 2 © INTRODUCING THE WINDOWS 10 10T CORE

Summary

The Windows 10 IoT Core offers an option to explore electronics and the IoT for the rest of us. While

there have been and continue to be options for exploring electronics and IoT for users of other platforms,
Windows users have had to learn alternative operating systems and (seemingly) arcane commands in order
to explore even the most basic of hobbyist electronics. With Windows 10, those days are gone!

This chapter explored the Windows 10 IoT Core and the hardware it runs on. You discovered some of
the key features of the platform along with the details of the three low-cost computing boards that support
Windows 10 IoT Core. You also discovered how to get your PC and your hardware configured to run
Windows 10 IoT Core along with a walk-through for each of the available boards; from creating the boot
image to booting and configuring the board to connecting to the board from your PC.

In the next chapter, you take a short break to examine the Raspberry Pi in more detail. You will learn
more about the features and specifications of the Raspberry Pi, including a quick overview of how to boot
it in its native operating system as well as how to write a simple program to illuminate an LED from code
written in Python. While the chapter does not use Windows 10, you learn a great deal about the Raspberry
Pi and a little bit about Python, which you will use in later chapters to write applications for Windows 10 IoT
Core. How cool is that?

70

CHAPTER 3

Introducing the Raspberry Pi

The Raspberry Pi is one of the latest disruptive devices that have changed the way that we think about

and design embedded solutions and the IoT. In fact, the Raspberry Pi has had tremendous success among
hobbyists and enthusiasts. This is partly due to its low cost but also because it is a full-fledged computer
running an open source operating system that has a wide audience: Linux.

Fortunately for us, Windows 10 runs on the Raspberry Pi. However, given the popularity of the
Raspberry Pij, it is likely that you will encounter examples and resources that are written for or only work with
Linux. Thus, learning more about the Raspberry Pi and its native environment allows you to leverage the
plethora of data for the Raspberry Pi and adapt, or helps you develop similar solutions for Windows 10. Plus,
it gives you a brief insight into the non-Windows world of Raspberry Pi.!

This chapter explains how to set up and configure the Raspberry Pi using the Linux operating system.
You'll also discover a few key concepts of how to work with Linux and even a brief look at writing Python
scripts, which you will use to write Windows 10 IoT applications in later chapters. Let us begin with an in-
depth look at the Raspberry Pi.

Note While there are several versions of the Raspberry Pi, including the compute module, Zero,
Model 1 A+, 2 Model B, and 3 Model B, | discuss only those versions that run Windows 10 loT Core: the
Raspberry Pi 2 Model B and Raspberry Pi 3 Model B. For more details about all of the Raspberry Pi boards,
See www.raspberrypi.org.

Getting Started with the Raspberry Pi

The Raspberry Pi is a small, inexpensive personal computer, also called a low-cost computing board.
Although it lacks the capacity for memory expansion and can’t accommodate on-board devices such as CD,
DVD, and hard drives, it has everything a simple personal computer requires. That is, it has USB ports, an
Ethernet port, HDM], and even an audio connector for sound. The latest version, the Raspberry Pi 3 Model
B, even has Bluetooth and Wi-Fi!

The Raspberry Pi has a micro-SD drive that you can use to boot the computer into any of several Linux
operating systems (and Windows 10 IoT Core). All you need is an HDMI monitor (or DVI with an HDMI-to-DVI
adapter), a USB keyboard and mouse, and a 5V power supply—and you're off and running.

'This should reinforce how well Windows 10 IoT Core works!

© Charles Bell 2016 71
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_3

http://www.raspberrypi.org/

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

Tip You can also power your Raspberry Pi using a USB port on your computer. In this case, you need a USB
type A male to micro-USB type B male cable. Plug the type A side into a USB port on your computer and the
micro-USB type B side into the Raspberry Pi power port.

The Raspberry Pi costs as little as $35.% It can be purchased online from electronics vendors such as
SparkFun and Adafruit. Most vendors have a host of accessories that have been tested and verified to work
with the Raspberry Pi. These include small monitors, miniature keyboards, and cases for protecting the board.

This section explores the origins of the Raspberry Pi 3, tours the hardware connections, and covers the
accessories needed to get starting using the Raspberry Pi.

Raspberry Pi Origins

The Raspberry Pi was designed to be a platform to explore topics in computer science. The designers saw
the need to provide inexpensive, accessible computers that could be programmed to interact with hardware
such as servomotors, display devices, and sensors. They also wanted to break the mold of having to spend
hundreds of dollars on a personal computer, and thus make computers available to a much wider audience.

The designers observed a decline in the experience of students entering computer science curriculums.
Instead of having some experience in programming or hardware, students are entering their academic years
having little or no experience working with computer systems, hardware, or programming. Rather, students
are well versed in Internet technologies and applications. One of the contributing factors cited is the higher
cost and greater sophistication of the personal computer, which means parents are reluctant to let their
children experiment on the family PC.

This poses a challenge to academic institutions, which have to adjust their curriculums to make
computer science palatable to students. They have had to abandon lower-level hardware and software
topics due to students’ lack of interest or ability. Students no longer wish to study the fundamentals of
computer science such as assembly language, operating systems, theory of computation, and concurrent
programming. Rather, they want to learn higher-level languages to develop applications and web services.
Thus, some academic institutions are no longer offering courses in fundamental computer science.® This
could lead to a loss of knowledge and skillsets in future generations of computer professionals.

To combat this trend, the designers of the Raspberry Pi felt that, equipped with the right platform, today’s
youth could return to experimenting with personal computers as in the days when PCs required a much
greater commitment to learning the system and programming it in order to meet your needs. For example,
the venerable Commodore 64, Amiga, and early Apple and IBM PC computers had very limited software
offerings. Having owned a number of these machines, I was exposed to the wonder and discovery of hardware
and programming at an early age. Perhaps that is why I find low-cost computing boards so fascinating.

WHY IS IT CALLED RASPBERRY PI?

The name was partly derived from design committee contributions and partly chosen to continue a
tradition of naming new computing platforms after fruit (think about it). The Pi portion comes from

Python, because the designers intended Python to be the language of choice for programming the

computer. However, other programming language choices are available.

2Although history shows new releases of the board can command higher prices until supply catches up with demand.
3Sadly, my alma mater is a fine example of this decline.

72

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

The Raspberry Pi is an attempt to provide an inexpensive platform that encourages experimentation.
The following sections further explore the Raspberry Pi, discussing topics such as the required accessories
and where to buy the boards.

Versions that Work with Windows 10 IoT Core

There are currently several versions of Raspberry Pi boards. The latest boards that support Windows 10 IoT
Core are the Raspberry Pi 2 Model B and Raspberry Pi 3 Model B. The model nomenclature has to do with
the layout and ports available. Essentially, there is a model A variant that does not include Ethernet, whereas
the model B variant does.

WINDOWS 10 I0T CORE FOR THE RASPBERRY PI 3

Microsoft’s latest stable release of Windows 10 loT Core may not support the latest boards. However,
for those of us who want to use the latest boards or the latest features (such as the Raspberry Pi 3),
Microsoft provides a preview release called the Windows 10 loT Core Insider Preview. Sometimes
these preview releases are built for specific boards, so choose the one that matches the board or other
feature that you want.

To download this release, you must have a valid Microsoft account. You can initiate the download by
visiting https://ms-iot.github.io/content/en-US/Downloads.htm and clicking the link for the
Insider Preview. Once you log in, the download begins. You can create an account from the page if you
do not have one.

This downloads a new .1iso file that you mount. Install the .msi and create the SD image in the same
manner as the base images, as described in Chapter 2. However, the preview may overwrite existing
files, so be sure to backup any files you want to keep.

The Raspberry Pi 2 and 3 are very similar. In fact, they are very hard to tell apart without reading
the label on the top of the board. This is because they share the same layout (model B) with the same
connectors. The hardware differences are very minor and difficult to spot. Figure 3-1 shows the two boards
together, with the Raspberry Pi 2 on the left.

73

https://ms-iot.github.io/content/en-US/Downloads.htm
http://dx.doi.org/10.1007/978-1-4842-2108-2_2

CHAPTER 3 " INTRODUCING THE RASPBERRY PI

Figure 3-1. Raspberry Pi 2 and 3 top side

Can you tell them apart? Hint: look at the lower-left corner of each board. The Raspberry Pi 3 has a
small antenna, whereas the Raspberry Pi 2 has LEDs in the same spot.

While the boards appear nearly identical, the Raspberry Pi 3 has a much faster 64-bit quad core
processor (Windows 10 IoT Core runs only in 32-bit mode currently) that has shown to be as much as ten
times faster than the Raspberry Pi 2. Furthermore, the Raspberry Pi 3 has both Bluetooth and Wi-Fi onboard,
whereas the Raspberry Pi 2 has neither. There are a number of smaller changes, but these are by far the most
significant features you should use to decide which board to buy.

The underside is easier to distinguish the boards. Figure 3-2 shows the underside of both boards, again,
with the Raspberry Pi 2 on the left. Here you can see the difference at the top-left corner of the boards, where
the Raspberry Pi 3 has a small rectangular chip that contains the Wi-Fi and Bluetooth components.

74

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

-
¥
)
2
o
<
o
2

Figure 3-2. Raspberry Pi 2 and 3 bottom side

A Tour of the Board

Not much larger than a deck of playing cards, the Raspberry Pi board contains a number of ports for
connecting devices. This section presents a tour of the board. If you want to follow along with your board,

hold it with the Raspberry Pilogo face up. I work around the board clockwise. Figure 3-3 depicts a drawing of
the board with all the major connectors labeled.

GPIO

LCD
connector

SD drive
(underside)

Power
micro-USB

HDMI Camera Audio
connector

Figure 3-3. Raspberry Pi 3 Model B

75

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

Let’s begin by looking at the bottom edge of the board (looking from above). In the center of the bottom
side, you see an HDMI connector. To the left of the HDMI connector is the micro-USB power connector.
The power connector is known to be a bit fragile on some boards, so take care plugging and unplugging it.
Be sure to avoid putting extra strain on this cable while using your Raspberry Pi. To the right of the HDMI
connector is the camera ribbon cable connector and next to that is the audio connector.

On the left side of the board is the LCD ribbon cable. You can use this connector with the Raspberry
Pi 7-inch Touch LCD and similar devices. On the underside of the board is the micro-SD card drive. When
installed, the SD card protrudes a few millimeters out of the board. If you plan to use a case for your
Raspberry Pi, be sure the case provides access to the SD card drive (some do not).

Caution Because the board is small, it is tempting to use it in precarious places, like in a moving vehicle
or on a messy desk. Ensure that your Raspberry Pi is in a secure location. The micro-USB power, HDMI, and SD
card slots seem to be the most vulnerable connectors.

On the top edge of the board is the general-purpose input/output (GPIO) header (a double row of 20
pins each), which can be used to attach to sensors and other electronic components and devices. You will
work with this connector later in this chapter.

On the right side of the board are two USB connectors with two USB ports each and the Ethernet
connector. An external powered USB hub connected to the USB ports on the Raspberry Pi can power some
boards, but it is recommended that you use a dedicated power supply connected to the micro-USB connector.

Take a moment to examine the top and bottom faces of the board. As you can see, components are
mounted on both sides. This is a departure from most printed circuit boards (PCB) that have components
on only one side. The primary reason the Raspberry Pi has components on both sides is that it uses multiple
layers for trace runs (the connecting wires on the board). Stacking the trace runs on multiple levels means
that you don’t have to worry about crossing paths. It also permits the board to be much smaller and enables
the use of both surfaces. This is probably the most compelling reason to consider using a case—to protect
the components on the bottom of the board and thus avoid shorts (accidental connection of contacts or
pins) and can lead board failure.

Required Accessories

The Raspberry Pi is sold as a bare system board with no case, power supply, or peripherals. Depending on
how you plan to use the Raspberry Pi, you need a few commonly available accessories. If you have been
accumulating computer and electronic spares like me, a quick rummage through your stores may locate
most of what you need.

If you want to use the Raspberry Pi in console mode (no graphical user interface), you need a USB
power supply, a keyboard, and an HDMI monitor. The power supply should have a minimal rating of 700mA
or greater. If you want to use the Raspberry Pi with a graphical user interface, you also need a pointing device
(such as a mouse).

If you have to purchase these items, stick to the commonly available brands and models without extra
features. For example, avoid the latest multifunction keyboard and mouse because they may require drivers
that are not available for the various operating system choices for the Raspberry Pi.

You also must have a micro-SD card. I recommend an 8GB or higher version. Recall that the micro-SD is
the only on-board storage medium available. You need to put the operating system on the card, and any files
you create are stored on the card.

If you want to use sound in your applications, you also need a set of powered speakers that accept a
standard 3.5mm audio jack. Finally, if you want to connect your Raspberry Pi to the Internet, you need an
Ethernet cable, or if you are using a Raspberry Pi 3, you need a Wi-Fi network.

76

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

Recommended Accessories

I highly recommend, at a minimum, adding small 5mm to 10mm rubber or silicone self-adhesive bumpers
to the bottom side of the board over the mounting holes to keep the board off your desk. On the bottom of
the board are many sharp prongs that can come into contact with conductive materials, which can lead to
shorts, or worse, a blown Raspberry Pi. They can also damage your skin and clothing. Small self-adhesive
bumpers are available at most home-improvement and hardware stores.

If you plan to move the board from room to room or you want to ensure that your Raspberry Pi is well
protected against accidental damage, you should consider purchasing a case to house the board. Many cases
are available, ranging from simple snap-together models to models made from laser-cut acrylic or even
milled aluminum.

Tip If you plan to experiment with the GPIO pins, or require access to the power test pins or the other ports located
on the interior of the board, you may want to consider either using the self-adhesive bumper option or ordering a case
that has an open top to make access easier. Some cases are prone to breakage if opened and closed frequently.

Aside from a case, you should also consider purchasing (or pulling from your spares) a powered USB
hub. The USB hub power module should be 700mA to 1000mA or more. Even though the Raspberry Pi 2 and
3 have four USB ports, a powered hub is required if you plan to use USB devices that draw a lot of power,
such as a USB hard drive or a USB toy missile launcher.

Where to Buy

The Raspberry Pi 2 has been available in Europe for some time, so it is relatively easy to find. However, at
the time of this writing, the Raspberry Pi 3 was in very short supply. It is getting easier to find, but very few
brick-and-mortar stores stock the Raspberry Pi 3. Fortunately, a number of online retailers stock it, as well
as a host of accessories that are known to work with the Raspberry Pi. The following are some of the more
popular online retailers with links to their Raspberry Pi catalog entry.*

e Adafruit: www.adafruit.com/category/105
e SparkFun: www.sparkfun.com/categories/233
e Maker Shed: www.makershed.com/collections/raspberry-pi

The next section presents a short tutorial on getting started using the Raspberry Pi. If you have already
learned how to use the Raspberry Pi, you can skip to the following section to begin learning how to use your
board.

Setting up the Raspberry Pi

The Raspberry Pi is a personal computer with a surprising amount of power and versatility. You may be
tempted to consider it a toy or a severely limited platform, but that is far from the truth. With the addition of
onboard peripherals like USB, Ethernet, and HDMI video, (as well as Bluetooth and Wi-Fi for the Raspberry
Pi 3), the Raspberry Pi has everything you need for a lightweight desktop computer. If you consider the
addition of the GPIO header, the Raspberry Pi becomes more than a simple desktop computer and fulfills its
role as a computing system designed to promote hardware experimentation.

4Although some vendors do not currently have the Raspberry Pi 3 in stock, they should have them in stock by the time
this book is published.

7

vww allitebooks.conl

http://www.adafruit.com/category/105
http://www.sparkfun.com/categories/233
http://www.makershed.com/collections/raspberry-pi
http://www.allitebooks.org

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

The following sections present a short tutorial on getting started with your new Raspberry Pi, from a
bare board to a fully operational platform. A number of excellent works cover this topic in much greater
detail. If you find yourself stuck or wanting to know more about beginning to use the Raspberry Pi and
more about the Raspbian operating system, read Learn Raspberry Pi with Linux by Peter Membrey and
David Hows (Apress, 2012). If you want to know more about using the Raspberry Pi in hardware projects, an
excellent resource is Practical Raspberry Pi by Brendan Horan (Apress, 2013).

As mentioned in the “Required Accessories” section, you need a micro-SD card, a USB power supply
rated at 700mA or better with a male micro-USB connector, a keyboard, a mouse (optional), and an HDMI
monitor. However, before you can boot your Raspberry Pi and bask in its brilliance, you need to create a boot
image for your micro-SD card.

Choosing a Boot Image (Operating System)

The first thing you need to do is decide which operating system variant you want to use. There are several
excellent choices, including the standard Raspbian “Jessie” variant. Each is available as a compressed file
called an image or card image. You can find a list of recommended images along with links to download
each on the Raspberry Pi foundation download page: www.raspberrypi.org/downloads. The following
images are available at the site.

e Raspbian (Jessie). A Debian-based official operating system and contains a graphical
user interface (Lightweight X11 Desktop Environment [LXDE]), development tools
and rudimentary multimedia features.

e Ubuntu Mate. Features the Ubuntu desktop and a scaled-down version of the
Ubuntu operating system. If you are familiar with Ubuntu, you will feel at home with
this version.

e Snappy Ubuntu Core. The developer’s edition of core Ubuntu system. It is the same
as Mate with addition of the developer core utilities.

e Windows 10 IoT Core. Windows 10 for the IoT. Microsoft’s premier IoT operating
system.

e OSMC (Open Source Media Center). Build yourself a media center.

e OpenELEC (Open Embedded Linux Entertainment Center). Another media center
option.

e PiNet. A classroom management system. A special edition for educators using the
Raspberry Pi in the curriculum.

e RISC OS. A non-Linux, Unix-like operating system. If you know what IBM AIX is, or
you've used other Unix operating systems, you'll recognize this beastie.

Tip If you are just starting with the Raspberry Pi and haven’t used a Linux operating system, you should
use the Raspbian image as it is the most popular choice and more widely documented in examples. Plus, it is
the base or default image for Raspberry Pi.

There are a few other image choices, including a special variant of the Raspbian image from Adafruit.
Adafruit calls their image “occidentals” and includes a number of applications and utilities preinstalled,
including Wi-Fi support and several utilities. Some Raspberry Pi examples—especially those from Adafruit—
require the occidentals image. You can find out more about the image and download it at http://learn.
adafruit.com/adafruit-raspberry-pi-educational-linux-distro/overview.

78

http://www.raspberrypi.org/downloads
http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro/overview
http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro/overview

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

Wow! That'’s a lot of choices, isn’t it? As you can see, the popularity of the Raspberry Pi is very wide and
diverse. This makes Windows 10 a huge deal for the platform and Windows users alike. While you may not
use these operating systems, it is good to know what choices are available should you need to explore them.

Now let’s see how to install the base operating system. As you will see, it is very easy.

Creating the Boot Image

There are two methods for installing the boot image. You can use the automated, graphical user interface
platform called New Out Of Box Software (NOOBS?) or you can install your image from scratch onto a micro-
SD drive. Both require downloading and formatting the micro-SD drive.

Since you are curious about using the Raspberry Pi native operating system as an experiment or
for research, let’s stick to the easier method and use NOOBS. Aside from formatting the micro-SD card,
everything is automated; nothing requires any complicated commands.

With NOOBS, you download a base installer image that contains Raspbian Jessie. You can choose to
install it or configure NOOBS to download another image and install it. But first, you have to get the NOOBS
boot image and copy it to your micro-SD drive.

Begin by downloading the NOOBS installer from www.raspberrypi.org/downloads/noobs/. You see
two options: an offline and network installer that includes the Raspbian image or a network installer that
does not contain any operating systems (called NOOBS Lite). The first option (the one with the base image)
is what you should use if you are following along with this chapter.

Once you've downloaded the installer (to date about 1.4GB), you need to format a micro-SD card of at
least 8GB. You'll use the SD Formatter 4.0 utility for Windows (www. sdcard.org/downloads/formatter 4/).
Simply download the application and install it. Then insert your micro-SD card in your card reader and
launch the application. Once you verify that you've selected the correct media, enter a name for the card (I
used RASPI) and click the Format button. Figure 3-4 shows the SD Formatter application.

{2 soFormatter v4.0 X
I - Format your drive. All of the data e
A— on the drive will be lost when SP
IS.'D you format it. X

SD, SDHC and SDXC Logos are trademarks
of SD-3C, LLC.

Drive : E: v Refresh
Size : 1.01 GB Volume Label : RASPI| '
Format Option : Option

QUICK FORMAT, FORMAT SIZE ADJUSTMENT OFF

Figure 3-4. SDFormatter 4.0

>An unfortunate resemblance to the slightly derogatory slang noob or newbie.

79

http://www.raspberrypi.org/downloads/noobs/
http://www.sdcard.org/downloads/formatter_4/

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

Once you've formatted the micro-SD card, you now must copy the contents of the NOOBS image to
the card. Right-click the file that you downloaded and choose the option to unzip or unarchive the file. This
creates a folder containing the NOOBS image. Copy all of those files (not the outside folder) to the SD card
and eject it. You are now ready to boot into NOOBS and install your operating system. When this process has
finished, safely remove the SD card and insert it into your Raspberry Pi.

Booting the Board

You are now ready to hook up all of your peripherals. I like to keep things simple and only connect a monitor,
keyboard, and (for NOOBS) a mouse. If you want to download an operating system other than Raspbian, you
also need to connect your Raspberry Pi to your network. If you are planning to use the Wi-Fi option on the
Raspberry Pi 3, you'll need to set up your Wi-Fi configuration after you boot up. I'll show you how to do that
in a moment.

Once your Raspberry Pi powers on, you see a scrolling display of various messages. This is normal and
may scroll for some time before NOOBS starts. When NOOBS is loaded, you see a screen similar to Figure 3-5.

53

- Disk space T — Ll

| Needed: 0 MB
Available: 29364 MB

Language {I): | ZiJ English (UK} ~ Keyboard (9): lgb | ¥

Figure 3-5. NOOBS startup screen

80

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

Notice the Raspbian image in the list of operating systems. To install it, just tick the check box beside the
thumbnail and then click the Install button. Note the two boxes at the bottom. They set the language and
keyboard for use in NOOBS, which does not affect the Raspbian setup.

Once you initiate the install, you see a series of dialogs as Raspbian begins its installation to the SD card.
This could take a while. The good news is that the dialogs provide a lot of useful information to help you get
started. You learn about how to log in to Raspbian, tips for configuring and customizing, and suggestions on
how to get the most out of your experience.

When installation finishes, click OK on the completed dialog and then wait for the Raspberry Pi to
reboot into Raspbian. The system boots and automatically logs on as the pi user. You can change this in the
Raspberry Pi Configuration dialog. The configuration dialog (click the Edit config button) is used to set the
time and date for your region, enable hardware such as a camera board, create users, change the password,
and more. Figure 3-6 shows the configuration dialog. If you want to change the auto login feature, you can
open the dialog from the Menu » Preferences » Raspberry Pi Configuration menu option.

Tip The default password for the pi user is raspberry.

.| Raspberry Pi Gonfiguration | [

System Interfaces | Performance | Localisation

Filesystem

Password: Change Password...
Hostname: iraspberryp;

Boot To Desktop @ To CLI

Auto login: Login as user 'pi'
Overscan *) Enable Disable
Rastrack: Add to Rastrack...

Cancel OK

I I

Figure 3-6. Raspbian configuration dialog

There are four tabs that you can use to change settings for the system. The following list briefly explains
each and includes the recommended settings for each. Once you have made your changes, click OK to close
the dialog. Depending on which settings you choose, you may be asked to reboot.

e System. The board controls for the system. Use this panel to change the root
password (highly recommended), hostname (optional), type of boot (use command-
line interface [CLI] if you want to set up the Raspberry Pi to boot headless, and
automatic login (not recommended).

e Interfaces. Used to enable system and hardware services such as the camera, SSH
(recommended), and hardware interfaces for the GPIO header.

e Performance. Used to make changes to how the processor performs. You can choose
to overclock (run the CPU faster) but I do not recommend this setting for a Raspberry
Pi that hosts IoT solutions.

81

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

e Localization: Used to set the default language, keyboard, and date and time. If you
change nothing else, be sure to set these to your local settings.

To shut down or reboot Raspbian, click Menu and then choose Shutdown. You see a prompt for
rebooting, shutting down, or returning to the command line. If you are at the command line, use the
command shutdown -h now to shut down the system.

Setting up Wi-Fi on the Raspberry Pi 3

You can use the Wi-Fi feature of the Raspberry Pi 3 with the latest version of Raspbian. In fact, there are three
ways to configure the Wi-Fi (www.raspberrypi.org/documentation/configuration/wireless/). I prefer
the command-line option, which requires editing a file to add your Wi-Fi information. Let’s begin by editing
the wpa_supplicant.conf configuration file used to read network configurations. You can do this from the
terminal using the following command.

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

The sudo portion of the command tells the operating system to run as a super user, which is roughly
equivalent as run as administrator for Windows.

Add the following to the end of the file, replacing the values with the SSID and password for your Wi-Fi
network.

network={
ssid="YOUR SSID GOES HERE"
psk="YOUR PASSWORD GOES HERE"

Save the file by pressing Ctrl-X and replying Y. Next, shut down and restart the wireless network
connector with the following commands.

sudo ifdown wlano
sudo ifup wlano

You should now be connected to your Wi-Fi network. If you have trouble, revisit the URL specified
earlier for updated instructions.

A Brief Linux Primer

OK, now you have a Raspberry Pi booting Linux (Raspbian) into the desktop environment. And although it
looks cool, it can be a bit confusing and intimidating. The best way to learn the GUI is to simply spend some
time clicking your way through the menus. You'll find the most basic of features, including productivity tools.

However, working with hardware typically requires knowledge of basic commands used in a terminal
(also called the command line). This section describes a number of the more basic commands you need
to use. This is by no means meant to be a complete or thorough coverage of all of the commands. Rather, it
gives you the basics that you need to get started.

Thus, this primer is more like a 15-minute guided tour of an automobile engine. You cannot possibly
learn all of the maintenance requirements and internal components in 15 minutes. You would need to have
an automotive technician’s training or years of experience before you could begin to understand everything.
What you get in a 15-minute lightning tour is more of a bird’s eye view with enough information to permit
you to know where the basic maintenance items are located, not necessarily how they work.

82

http://www.raspberrypi.org/documentation/configuration/wireless/

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

The latest versions of Raspbian boot into the desktop, but you can boot directly into the command
line. Just open the Raspberry Pi Configuration dialog and select To Cli (command-line interface). In fact, I
normally do this since most of my Raspberry Pi projects run headless and thus there is no need to start the
desktop. You can always restart the desktop with the startx command from the command line.

I recommend you read through the following sections to familiarize yourself with the commands that
you may need. You can refer back to these sections should you need to recall the command name. Often
times it is simply a matter of learning a different name for the same commands (conceptually) that you're
familiar with from Windows. As you will see, many of these commands are familiar in concept, as they also
exist on Windows albeit with a different name and parameters.

Tip If you want to master the Linux command-line commands, tools, and utilities, read the book Beginning
the Linux Command Line by Sander van Vugt (Apress, 2015).

Let’s begin with how to get help about commands.

Getting Help

Linux provides help for all commands by default. While it can be a bit terse, you can always get more
information about a command by using the manual command as shown in Listing 3-1. Here you want more
help with the list directory command (1s).

Listing 3-1. Getting Help for a man (manual) Command

pi@raspberrypi:~ $ man ls
LS(1) User Commands LS(1)

NAME
1s - list directory contents

SYNOPSIS
1s [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort is speci-
fied.

Mandatory arguments to long options are mandatory for short options
too.

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..

83

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

File and Directory Commands

Like any operating system, some of the most basic commands are those that allow you to manipulate files
and directories. These include operations such as copying, moving, and creating files and directories. I list a
few of the most common commands in the following sections and provide an example of each. If you want
to know more about each, try using the manual command (man) to learn about each. Just use the name of the
command you want to know more about as the option. For example, to learn more about Is, enter man ls.

List Directories and Files

The first command you will likely need is the ability to list files and directories. In Linux, we use the 1s (list

files and directories) command. Without any options, the command lists all of the files and directories in the
current location. There are many options available, but the ones I find most helpful are show long listing format
(-1), sort the output (-s), and show all files (-a). You can combine these options in a single string, such as -1sa.

The command uses color and highlighting to help distinguish directories from files, executable files,
and more. The long listing format also shows you the permissions for the file (the series of rwx values). The
first character in the directory list refers to the file type (d means a directory and - is a regular file), the next
three characters refer to file owner permissions, the next three are group permissions, and the final three are
for other users’ permissions. Figure 3-7 shows an example of the 1s -1sa command output.

pi@raspberrypi: 1s -1lsa

total 24

4 drwxr-xr-x 3 pi pi 4096 Mar 13 17:43

4 drwxr-xr-x 20 pi pi 4096 Mar 12 00:34

4 -rw-r--r-- 1 pi pi 8 Mar 13 17:39 me. txt

4 -rw-r--r-- 1 pi pi 8 Mar 13 17:40 my.txt
4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37

4 -rw-r--r-- 1 pi pi 16 Mar 13 17:40 that.txt
pi@raspberrypi:

Figure 3-7. Output of list directories (1s) command

Change Directory

You can change from one directory to another by using the cd command, which is quite familiar.

pi@raspberrypi:~ $ cd source
pi@raspberrypi:~/source $

Tip The Linux path separator is a /, which can take some getting used to.

Copy

You can copy files with the cp command with the usual expected parameters of <from_file> <to_file>, as
shown next. You can also use full paths to copy files from one directory to another.

pi@raspberrypi:~/source $ ls

84

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

me.txt python

pi@raspberrypi:~/source $ cp me.txt my.txt
pi@raspberrypi:~/source $ 1s

me.txt my.txt python

Tip Use the * symbol as a wildcard to specify all files (Synonymous with *.* in Windows). For example, to
copy all of the files from one folder to another, use the cp ./0ld/* ./new command.

Move

If you want to move files from one folder to another, you can use the mv command with the usual expected
parameters of <from> <to>, as shown next. You can also use full paths to move files from one directory to
another.

pi@raspberrypi:~/source $ ls

me.txt my.txt python this.txt
pi@raspberrypi:~/source $ mv this.txt that.txt
pi@raspberrypi:~/source $ ls

me.txt my.txt python that.txt

Create Directories

Creating directories can be accomplished with the mkdir command. If you do not specify a path, the
command executes in the current directory.

pi@raspberrypi:~/source $ 1s

me.txt my.txt python that.txt
pi@raspberrypi:~/source $ mkdir test
pi@raspberrypi:~/source $ 1s

me.txt my.txt python test that.txt

Delete Directories

If you want to delete a directory, use the rmdir command. This command requires that the directory be
empty. You will get an error if the directory contains any files or other directories.

pi@raspberrypi:~/source $ 1s

me.txt my.txt python test that.txt
pi@raspberrypi:~/source $ rmdir test
pi@raspberrypi:~/source $ 1s

me.txt my.txt python that.txt

Create (Empty) Files

Sometimes you may want to create an empty file for use in logging output or just to create a placeholder for
editing later. The touch command allows you to create an empty file.

85

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

pi@raspberrypi:~/source $ 1s ./test
pi@raspberrypi:~/source $ touch ./test/new_file.txt
pi@raspberrypi:~/source $ 1s ./test

new_file.txt

pi@raspberrypi:~/source $ rmdir test

rmdir: failed to remove ‘test’: Directory not empty

Delete Files

If you want to delete a file, use the rm command. There are a number of options for this command, including
recursively deleted files in subfolders (-1) and options for more powerful (thorough) cleaning.

pi@raspberrypi:~/source $ rm ./test/new_file.txt
pi@raspberrypi:~/source $ 1s ./test

Caution You can use the rm command with the force option to remove directories, but you should use
such options with extreme caution. Executing sudo rm * -rf in a directory will permanently delete all files!

System Commands

The Linux operating system provides a huge list of system commands to do all manner of operations on the
system. Mastering all of the system commands can take quite a while. Fortunately, there are only a few that
you may want to learn to use Linux with a minimal of effort.

Show (Print) Working Directory

The system command I use most frequently is the print working directory (pwd) command. This shows you
the full path to the current working directory.

pi@raspberrypi:~/new_source $ pwd
/home/pi/new_source

Command History

The one system command that you may find most interesting and helpful is the history command. This
command lists the commands that you have entered over time. So if you find that you need to issue some
command you used a month ago, use the history command to show all of the commands executed until
you find the one you need. This is especially helpful if you cannot remember the options and parameters!
However, this list is only for the current user. The following is an excerpt of the history for my Raspberry Pi 3.

pi@raspberrypi:~/source $ history
1 sudo apt-get update

2 sudo apt-get upgrade
3 sudo shutdown -1 now
4 rpi-update

5 sudo

6

sudo rpi-update

86

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

sudo apt-get dist-upgrade
sudo shutdown -r now
startx

10 1s /lib/firmware/brcm

O oo

Tip Use the Up and Down keys on the keyboard to call back the last command issued, and scroll forward
and backward through the history one command at a time.

Archive Files

Occasionally, you may need the ability to archive or unarchive files, which you can do with a system
command (utility). The tape archive (tar) command shows the longevity of the Linux (and its cousin/
predecessor, Unix) operating system from the days when offline storage included tape drives® (no disk drives
existed at the time). The following shows how to create an archive and extract it. The first tar command
creates the archive and the second extracts it.

pi@raspberrypi:~ $ tar -cvf archive.tar ./source/
./source/

./source/test/

./source/my.txt

./source/that.txt

./source/python/

./source/python/blink_me.py

./source/me.txt

pi@raspberrypi:~ $ mkdir new_source
pi@raspberrypi:~ $ cd new_source
pi@raspberrypi:~/new_source $ tar -xvf ../archive.tar
./source/

./source/test/

./source/my.txt

./source/that.txt

./source/python/

./source/python/blink_me.py

./source/me.txt

pi@raspberrypi:~/new_source $ 1s

source

There are a host of options for the tape archive command. The most basic are the create (-cvf) and
extract (-xvf) option strings, as shown in the preceding code. See the manual for the tape archive command
if you want to perform more complicated operations.

Administrative Commands

Like the system commands, there is a long list of administrative operations that you may need to perform.
Ilist those operations that you may need to perform for more advanced operations, starting with the run as
administrator equivalent command.

®Anyone remember punch cards?

87

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

Run as Super User

To run a command with elevated privileges, use the sudo command. Some commands and utilities require
sudo. For example, to ping another computer, install software, or change permissions, and so forth, you need
elevated privileges.

pi@raspberrypi:~/new_source $ sudo ping localhost

PING localhost (127.0.0.1) 56(84) bytes of data.

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.083 ms
64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 time=0.068 ms
64 bytes from localhost (127.0.0.1): icmp_seq=3 ttl=64 time=0.047 ms
~C

--- localhost ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1998ms

rtt min/avg/max/mdev = 0.047/0.066/0.083/0.014 ms

Change File/Directory Permissions

In Linux, files and directories have permissions, as described in the previous section. You can see the
permissions with the list directory command. To change the permissions, use the chmod command as
shown in the following code. Here we use a series of numbers to determine the bits of the permissions. That
is, 7 means rwx, 6 means rw, and so forth. For a complete list of these numbers and an alternative form of
notation, see the manual for chmod.”

pi@raspberrypi:~/source $ ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:07 .

4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..

0 -rw-r--r-- 1 pi pi 0 Mar 13 18:07 cmd

4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python
pi@raspberrypi:~/source $ chmod 0777 cmd
pi@raspberrypi:~/source $ 1ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:07 .

4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..

0 -rwxrwxrwx 1 pi pi 0 Mar 13 18:07 cmd

4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python

Change Owner

Similarly, you can change ownership of a file with the chown command, if someone else created the file
(or took ownership). You may not need to do this if you never create user accounts on your Raspberry Pi, but
you should be aware of how to do this in order to install some software such as MySQL.

pi@raspberrypi:~/source $ 1ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:07 .
4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..

"For more information, see the numerical permissions section at https://en.wikipedia.org/wiki/Chmod.

88

https://en.wikipedia.org/wiki/Chmod

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

0 -Twxrwxrwx 1 pi pi 0 Mar 13 18:07 cmd

4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python
pi@raspberrypi:~/source $ sudo chown chuck cmd
pi@raspberrypi:~/source $ ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:13 .

4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..

0 -rw-r--r-- 1 chuck pi 0 Mar 13 18:13 cmd

4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python
pi@raspberrypi:~/source $ sudo chgrp chuck cmd
pi@raspberrypi:~/source $ 1ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:13 .

4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..
0 -rw-r--1-- 1 chuck chuck 0 Mar 13 18:13 cmd
4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python

Tip You can change the group with the chgrp command.

Install/Remove Software

The second most used administrative operation is installing or removing software. To do this on Raspbian
(and similar Linux distributions), you use the apt-get command, which requires elevated privileges.

Linux maintains a list of header files that contain the latest versions and locations of the source
code repositories for all components installed on your system. Occasionally, you need to update these
references and you can do so with the following options. Do this before you install any software. In fact,
most documentation for software requires you to run this command. You must be connected to the Internet
before running the command and it could take a few moments to run.

sudo apt-get update

To install software on Linux, you use the install option (conversely, you can remove software with
the remove option). However, you must know the name of the software you want to install, which can be a
challenge. Fortunately, most software providers tell you the name to use. Interestingly, this name can be the
name of a group of software. For example, the following command initiates the installation of MySQL, which
involves a number of packages (shown in bold).

pi@raspberrypi:~/source $ sudo apt-get install mysql-server

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:
libaio1 libdbd-mysql-perl libdbi-perl libhtml-template-perl libmysqlclient18
libterm-readkey-perl mysql-client-5.5 mysql-common mysql-server-5.5
mysql-server-core-5.5

Suggested packages:
libclone-perl libmldbm-perl libnet-daemon-perl libsql-statement-perl
libipc-sharedcache-perl mailx tinyca

The following NEW packages will be installed:

89

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

libaio1 libdbd-mysql-perl libdbi-perl libhtml-template-perl libmysqlclient18
libterm-readkey-perl mysql-client-5.5 mysql-common mysql-server
mysql-server-5.5 mysql-server-core-5.5

0 upgraded, 11 newly installed, 0 to remove and 0 not upgraded.

Need to get 8,121 kB of archives.

After this operation, 88.8 MB of additional disk space will be used.

Do you want to continue? [Y/n]

Shutdown

Finally, you want to shut down your system when you are finished using it or perhaps reboot it for a variety
of operations. For either operation, you need to run with elevated privileges (sudo) and use the shutdown
command. This command takes several options: use -1 for reboot and -h for halt (shutdown). You can
also specify a time to perform the operation but I always use the now option to initiate the command
immediately.

To reboot the system, use this command:

sudo shutdown -1 now
To shut down the system, use this command:

sudo shutdown -h now

Useful Utilities

There are a number of useful utilities that you need at some point during your exploration of Linux. Those
that I use most often are described in the following list, which includes editors. There are, of course, many
more examples but these will get you started for more advanced work.

e Text editor: nano (A simple, easy to use text editor. It has a help menu at the bottom of
the screen. Some operations may seem odd after using Windows text editors, but it is
much easier to use than some other Linux text editors.)

e Filesearch: find (Locates files by name in a directory or path.)
e File/text search: grep (Locates a text string in a set of files or directory.)
e Archive tools: gzip, gunzip (A zip file archive tool (an alternative to tar)).

e Textdisplay tools: less, more (less shows the last portion of a file; more shows the file
contents a page (console page) at a time.)

Now that you know more about how to get around in Linux and use the command line, let’s look at how
you can write a simple program to run on the Raspberry Pi.

Working with Python: Blink an LED

Now that you know a little bit about how to use Raspbian, let’s take an interesting diversion into the world

of programming the Raspberry Pi with Python and working with the GPIO pins. This may seem a bit
premature, but I provide this example for those readers who want to experience programming the Raspberry
Pi, especially those who want to jump into working with hardware. Thus, I don’t explain every detail about

90

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

the electronic components; however, I present a primer on electronics in Chapter 7. More specifically,
Iuse some components from the Microsoft Internet of Things Pack for the Raspberry Pi from Adafruit
(www.adafruit.com/products/2702), which is discussed in more detail in Chapter 9.

If you prefer to wait until you've learned more about electronics and the Microsoft Internet of Things
Pack for the Raspberry Pi, you can always read through the example and revisit it later once you read through
the later chapters. However, you will find a very similar example in Chapters 5 and 6. Reading through this
example gives you some insights about what you will accomplish later.

The programming language that you will use is a very easy scripting language called Python.? As you
will see, the commands are quite intuitive and very expressive. For the purposes of this demonstration, you
do not need to be an expert with the language. I provide all of the code and commands you need, explaining
each as we go along. Once again, this is a lightning tour rather than a comprehensive study. Let’s begin with
a description of the project.

PYTHON? ISN'T THAT A SNAKE?

The Python programming language is a high-level language designed to be as close to like reading
English as possible while being simple, easy to learn, and very powerful. Pythonistas® will tell you the
designers have indeed met these goals.

Python does not require a compilation step prior to being used. Rather, Python applications (whose
file names end in .py) are interpreted on the fly. This is very powerful, but unless you use a Python
development environment, some syntax errors (such as incorrect indentation) are not discovered until
the application is executed. Fortunately, Python provides a robust exception-handling mechanism.

If you have never used Python or you would like to know more about it, the following are few good
books that introduce the language. A host of resources are also available on the Internet, including the
Python documentation pages at www. python.org/doc/.

e Programming the Raspberry Piby Simon Monk (McGraw-Hill, 2013)

e Beginning Python from Novice to Professional, 2nd Edition, by Magnus Lie Hetland
(Apress, 2008)

e Python Cookbook by David Beazley and Brian K. Jones (O’Reilly Media, 2013)

Interestingly, Python was named after the British comedy troupe Monty Python, not the reptile. As you
learn Python, you may encounter campy references to Monty Python episodes. | find these references
entertaining. Of course, your mileage may vary.

You're going to build a very simple circuit that turns on an LED briefly in a loop that makes the LED
appear to blink (you turn it on then off again repeatedly). This may sound like mad scientist work or
something that requires years of electronics training, but it really isn’t. You will use only two electronics
components—an LED and a resistor—as well as a two wires and a breadboard to complete this project.

8A plethora of information is available about Python at https://www.python.org.
Python experts often refer to themselves using this term. It is reserved for the most avid and experienced Python
programmers.

91

http://dx.doi.org/10.1007/978-1-4842-2108-2_7
http://www.adafruit.com/products/2702
http://dx.doi.org/10.1007/978-1-4842-2108-2_9
http://dx.doi.org/10.1007/978-1-4842-2108-2_5
http://dx.doi.org/10.1007/978-1-4842-2108-2_6
http://www.python.org/doc/
https://www.python.org/

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

Tip If you do not feel comfortable working with electronics, that’s OK! Just read through this section and
come back to it once you’ve read the later chapters on electronics (Chapters 6 and 7).

Hardware Connections

Let’s begin by gathering the hardware that you need. The following lists the components that are needed. All
of these are available in the Microsoft Internet of Things Pack for the Raspberry Pi from Adafruit. If you do
not have that kit, you can find these components separately on the Adafruit web site (www.adafruit.com), or
from SparkFun (www. sparkfun.com), or any electronics store that carries electronic components.

e 560 ohm 5% 1/4W resistor (green, blue, brown stripes!?)
e Diffused 10mm red LED (or similar)

e Breadboard (mini, half, or full sized)

e (2) male-to-female jumper wires

Take a look at the breadboard. You see a center divide (normally a groove or a thick line). This sections
the breadboard into two sides. The holes running perpendicular to the center groove are connected together
but are not connected to adjacent holes (rows). If you use a half or full sized breadboard, you may have
power rails, which run horizontally to the center grove, which are connected. Thus the power rails run
parallel to the center groove and the interior connections run perpendicular to the groove. Now that you
know how the breadboard is wired, let’s build our circuit.

The only component that is polarized is the LED. Take a look at the LED. You see that one leg (pin) of
the LED is longer than the other. This longer side is the positive side.

Begin by placing the breadboard next to your Raspberry Pi and power the Raspberry Pi off orienting
the Raspberry Pi with the label facing you (GPIO pins in the upper-left corner). Next, take one of the jumper
wires and connect the female connector to pin 6 on the GPIO. The pins are numbered left-to-right starting
with the lower left pin. Thus, the left two pins are 1 and 2 with pin 1 below pin 2. Connect the other wire to
pin 7 on the GPIO.

Next, plug the resistor into the breadboard with each pin on one side of the center groove. You can
choose whichever area you want on the breadboard. Then, connect the LED so that the long leg (sometimes
shown as the leg with a bend in drawings) is plugged into the same row as the resistor and the other pin on
another row. Finally, connect the wire from pin 6 to the same row as the negative side of the LED and the
wire from pin 7 to the row with the resistor. Figure 3-8 shows how all of the components are wired together.
Be sure to study this drawing and double-check your connections prior to powering on your Raspberry Pi.
Once you're satisfied that everything is connected correctly, you're ready to power on the Raspberry Pi and
write the code.

%See https://en.wikipedia.org/wiki/Electronic_color_code.

92

http://dx.doi.org/10.1007/978-1-4842-2108-2_6
http://dx.doi.org/10.1007/978-1-4842-2108-2_7
http://www.adafruit.com/
http://www.sparkfun.com/
https://en.wikipedia.org/wiki/Electronic_color_code

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

VIDEO AUDIO

:I-I-I.u-

R Y

Raspberry Pi
Model B

-
-
-
-
-
-
.
..
..
..
-
-
.
-
.
.
-

.
.
.
-
.
.
.
.
.
.
.
.

.

.

..

..

.

I R
LR R R A R)
R R R R RN)
LR R R Y

Figure 3-8. Wiring the LED to a Raspberry Pi

Writing the Code

The code (a Python script) that you need for this project manipulates one of the GPIO pins on the Raspberry
Pi. Recall that you connected the negative side of the LED to pin 6, which is a ground pin. You connected
the other side to pin 7. You will write a Python script to turn this pin on (applying power) and off (no power)
through a simple command.

Now, create a new directory and open a text editor with the following commands. Use the name blink_
me. py for the file.

pi@raspberrypi:~ $ mkdir source

pi@raspberrypi:~ $ cd source
pi@raspberrypi:~/source $ mkdir python
pi@raspberrypi:~/source $ cd python
pi@raspberrypi:~/source/python $ nano blink me.py

Asyou can see, I like to place my source code in folders organized by language, but you can use
whatever folder names you'd like. When the editor opens, enter the code as shown in Listing 3-2.

You can skip the comment statements (those that start with #) if you like, but I highly recommend
that you get used to documenting your code. You can add your own name if that helps. Notice that I added
comments to some of the lines to help understand what the code does. This is another excellent skill to hone.

Listing 3-2. Blink LED Script

Windows 10 for the IoT
Raspberry Pi Python GPIO Example
This script blinks an LED placed with the negative lead on pin 6 (GND)

and the pin 7 connected to a 220 resistor, which is connected to the

#
#
#
#
#
#
#
positive lead on the LED.
#
#

Created by Dr. Charles Bell

93

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

#

import RPi.GPIO as GPIO # Raspberry Pi GPIO library

import sys # System library

import time # Used for timing (sleep)

ledPin = 7 Set LED positive pin to pin 7 on GPIO

#
GPIO.setmode(GPIO.BOARD) # Setup the GPIO numbering mode
GPIO.setup(ledPin, GPIO0.OUT) # Set LED pin as output
GPIO.output(ledPin, GPIO.LOW) # Turn off the LED pin

print("Let blinking commence!")

for i in range(1,20):
GPIO.output(ledPin, GPIO.HIGH) # Turn on the LED pin
time.sleep(0.25)
sys.stdout.write(".")
sys.stdout.flush()
GPIO.output(ledPin, GPIO.LOW) # Turn off the LED pin
time.sleep(0.25)

GPI0.cleanup() # Shutdown GPIO

print("\nThanks for blinking!")

Tip Indentation is important in Python. Indented statements form a code block. For example, to execute
multiple statements for an if statement, indent all the lines that you want to execute when the conditions are
evaluated as true.

What you see here is a series of comment lines (again, the ones that start with #) followed by some
import statements that tell Python which modules you want to use. In this case, you use the GPIO, sys
(system), and time modules. Following that, you see code to identify the GPIO pin (7) and set up the GPIO
code module to initiate pin 7 as an output pin.

On the next line, you print a greeting message and place statements inside a loop that turn on the GPIO
pin for the LED (set to high) for a period of time using a delay (in seconds), and then turn off the GPIO pin
for the LED (set to low). You loop through 20 times, printing a dot to the screen using the system stdout
class mechanism. You do this so that you can write the character directly to the screen without buffering
(buffering can delay the display output). Finally, you display a message that the process is complete so that
you know that it finished.

Asyou can see, the code is really easy to read. And even if you've never written Python before, you can
understand what it is doing. Double-check your code and then save the file (Ctrl+X) and reply Y. You are
now ready to run the code!

Running the Script

Once you've entered the script as written, you are ready to run it. To run the Python script, launch it as
follows:

pi@raspberrypi:~/source/python $ python ./blink me.py

94

CHAPTER 3 * INTRODUCING THE RASPBERRY PI

You should see the following in the command-line terminal.

pi@raspberrypi:~/source/python $ python ./blink_me.py
Let blinking commence!

Thanks for blinking!

Figure 3-9 shows a photo of the program running. Now, did the LED blink? If so, congratulations—
you're a Raspberry Pi Python GPIO programmer!

—

IELER]
Lo
smmmm
TR

Figure 3-9. Running the blink_me.py Python script

If something went wrong, it is likely it’s just staring back at you with that one dark LED—almost
mockingly. If the LED did not illuminate, shut down the Raspberry Pi (sudo shutdown -h now) and check
your connections against Figure 3-7. Be sure the wires are connected to the correct pins and the LED is
oriented correctly with the longer pin connected to the resistor and the resistor connected to GPIO pin 7.
Also make sure that you are using the same rows on the breadboard (it is easy to get off by one row or pin).
The other pin on the LED should be wired to GPIO pin 6. Once you've corrected any wiring issues, reboot
your Raspberry Pi and try the project again.

Once it is working, try the project a few times by running the python ./blink me.py command until
the elation passes. If you're an old hand at the Raspberry Pi or electronics, that may be a very short period. If
this is all new to you, go ahead and run it again and again, basking in the glory of having built your very first
Python script and hardware project!

95

CHAPTER 3 ' INTRODUCING THE RASPBERRY PI

Summary

There can be little argument that the Raspberry Pi has contributed greatly to the world of embedded
hardware and the IoT. With its low-cost, GPIO headers, and robust peripheral support, the Raspberry Pi is an
excellent choice for building your IoT solutions. Due to its increasing popularity, there is tons of information
available for those who want to learn how to work with hardware.

In this chapter, you explored the origins of the Raspberry Pi, including a tour of the hardware and a
short primer on how to use its native operating system. You also explored how easy it is to write programs to
control hardware on the Raspberry Pi using a Python script.

You learned these things about the Raspberry Pi to help with learning more about the origins of the
Raspberry Pi and its native environment so that, once you learn how to write applications in Windows 10
and deploy them to the Raspberry Pi, you can leverage the host of examples written for Linux to implement
them in Windows 10. I hope that you have found this chapter aligned toward this goal.

The next chapter returns to Windows 10. You learn how to write the example program in Visual Studio.
As you will see, the hardware connections will be similar, but the code and the way you work with the
Raspberry Pi will be much more familiar, and in my opinion, easier.

96

CHAPTER 4

Developing loT Solutions with
Windows 10

Microsoft has produced one of the most advanced integrated development environments (IDE) that easily
rivals all competition. Indeed, IDEs on other platforms are often compared to Visual Studio for their depth of
features, refinement of tools, and breadth of languages supported.

The feature set in Visual Studio is so vast in fact that it would require a book several times the
size of the one you’re holding to cover the basics of every feature. Moreover, each language supported
(over 7 and counting) would require its own book of similar size. Clearly, mastering all of the features
of Visual Studio would require a dedication that few would endure outside of a vocation or research
requirement.

Fortunately, most IoT hobbyists and enthusiasts never need to learn every nuance of Visual Studio to
develop IoT applications. As you will see, you need only to learn a few of the features, including writing the
code, building (compiling), deploying, and debugging.! Do not let the sheer size of the features in Visual
Studio intimidate you. You're likely to find mastery of the basics is all that you’ll ever need. Should you ever
need to use the advanced features, you can always learn them when you need them. I find it nice to know
that there are advanced tools that can help me develop solutions more easily.

In this chapter, you'll see a demonstration of how to get started using Visual Studio 2015. You will also
learn the layout of the GPIO headers for the three compatible boards and even see how to build, deploy, and
test your first Windows 10 IoT Core application. Let’s begin with a look at the GPIO headers from all three
boards.

Working with GPIO Headers

The general-purpose input/output (GPIO) headers permit you to connect hardware, such as electronic
circuits, devices, and more, to your board, which you then access via special libraries from your applications.
However, you must know what pins are available and what features they support. As you will see, not all pins
can be programmed in the same way.

Once you've identified the pins you want to use, you can use those pin numbers or nomenclature
to write the code that you need to set up and access the pin and read (or write) to the pin. That is,
you can turn pins on or off (applying power or no power), read analog values, write analog values,
and more. This allows you to work with both analog and digital sensors. You will discover more about
sensors in Chapter 7.

"Much like most people will never need or use more than 20% of the features of Microsoft Word.

© Charles Bell 2016 97
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_4

http://dx.doi.org/10.1007/978-1-4842-2108-2_7

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

Caution Whenever you want to connect sensors or circuits to the GPIO header—either directly (not
recommended) or via a breakout board (recommended)—you should first shut down your board. This may
sound inconvenient when you’re working through a project, but it is the best method for ensuring that you do
not accidentally short some pins or make the wrong connections.

It is common to use the word “pins” when talking about the header, but you should refrain from use
“GPIO pins” when referring to the header itself. As you will see, the pins in the header may be mapped to
one of several interfaces (also called a bus) and the GPIO is just one type of interface available. Although
you can use the interface pins in your code, the pins that you use to connect to devices (save those that use
one of the supported interfaces) are named GPIO pins. However, the physical pin numbering and order may
differ among the various boards.

Furthermore, when you use one of the pins in your Visual Studio application, you specify the GPIO
number. For example, GPIO 13 on the Raspberry Pi is physically pin number 33. The Visual Studio libraries
are designed to use the pin nomenclature rather than the header pin number. Thus, when you refer to GPIO
13, you use 13 as shown in the following code snippet.

const int LED PIN = 13; // GPIO13
auto gpio = GpioController::GetDefault();

pin_ = gpio->OpenPin(LED_PIN);
pin_->Write(pinValue);
pin_->SetDriveMode(GpioPinDriveMode: :Output);

I discuss each of the three boards supported by Windows 10 IoT Core in the following sections. As you
will see, each board has a different GPIO header layout, including some very important power differences.

Raspberry Pi

The GPIO headers on the Raspberry Pi 2 and 3 have the same layout. The header is located in the upper left
and consists of a double row of 20 pins, making a 40-pin header. They are numbered sequentially in pairs
starting with the leftmost set of pins.

Figure 4-1 shows the Raspberry Pi next to the header layout. I have oriented the photo to make it easier
to see the GPIO pins. Pin 1 is the leftmost pin at the left side of the header (top side shown in the photo).
Notice that the GPIO named pins are arranged in a non-sequential pattern.

98

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

33V 1|2 |sv
12c150A| 3 | 4 sv
i2c1scl s | 6 jonp
GPIO 4] 7 | B [UARTOTX
GND| 9 | 10uART RX

GPi01711]12}ePio 18
GpPI0 27113/ 14JeND
GPI0 22| 15|16 jGPIO 23
3.3v| 17/ 18)GPI0 24
sPI0 Mos|| 19|20 jeND
spio miso| 21|22 |epio 25
spio cik| 23| 24 }spio cso
GND| 25 | 26 [spiO cs1
reserved| 27 | 28 [reserved
GPI0 529 30)GND
GPIO 631]32GPIO 12
GPI01333]34}eND
P10 19| 3536 jGPIO 16
GPI0 26{37/386PIO 20
GND|39]40)GPI0 21

Figure 4-1. GPIO header (Raspberry Pi 2 and 3)

The Raspberry Pi GPIO header supports a number of interfaces including an I2C bus, SPIO bus, and
Serial UART with pins devoted accordingly. You can see these in Figure 4-1. You also see two reserved pins
(consider them unusable), eight ground pins, two 3.3V power and two 5V power pins. This leaves a total of
17 pins that you can use in your applications.

You must take care when using the GPIO pins for reading voltage. On the Raspberry Pj, all pins are
limited to 3.3V. Attempting to send more than 3.3V will likely damage your Raspberry Pi. Always test your
circuit for maximum voltage before connecting to your Raspberry Pi. You should also limit current to no
more than 5mA.

MinnowBoard Turbot

The GPIO headers on the MinnowBoard Max-compatible boards (I use the Turbot in this section) is located
on the bottom-left side of the board. The GPIO consists of a double row of 13 pins making a 26-pin header.
They are physically numbered sequentially in pairs starting with the left-post pin.

Figure 4-2 shows the MinnowBoard Turbot next to the header layout. Pin 1 is the leftmost pin at the left
side of the header (top side shown in the photo). I have oriented the photo to make it easier to see the GPIO
pins. Notice that the GPIO named pins are arranged in a sequential pattern unlike the Raspberry Pi. That is,
the GPIO pins are grouped together.

99

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

GND| 1 | 2 IGND
3|4
SPIOCSO| 5 | 6 IUART1TX
SPIO MISO[7 | 8 |UART1RX
SPIO MOSI| 9 |10 JUART1 CTS

SPIO SCLK| 11 | 12 JUART1 RTS
12C5 SCL{ 13| 14 |GPIO 3
12C5 SDA{ 15 16 |GPIO 4

UART2 TX| 17 | 18 |GPIO 5

UART2 RX] 19| 20 IGPIO 6

GPIO 0] 21 | 22 |[GPIO 7
GPIO 1] 23|24 IGPIO B
GPIO 2{ 25| 26 |GPIO 9

Figure 4-2. GPIO header (MinnowBoard Turbot)

The MinnowBoard Turbot GPIO header supports a number of interfaces including an I2C bus, SPIO
bus, and Serial UART with pins devoted accordingly. You can see these in the Figure 4-2. You also see two
ground pins, one 3.3V power, and one 5V power pin. This leaves a total of 10 pins that you can use in your
applications.

DragonBoard 410C

The GPIO headers on the DragonBoard 410C are located on the top-left side of the board. The GPIO consists
of a double row of 20 pins making a 40-pin header. They are physically numbered sequentially in pairs
starting with the left-post pin. Unlike the Raspberry Pi and MinnowBoard Max-compatible boards, the
DragonBoard 410C uses female header pins.

Figure 4-3 shows the DragonBoard 410C next to the header layout. Pin 1 is the leftmost pin at the left
side of the header (top side shown in the photo). I have oriented the photo to make it easier to see the GPIO
pins. The GPIO named pins are arranged in a non-sequential pattern like the Raspberry Pi.

The DragonBoard 410C GPIO header supports a number of interfaces including an 12C bus, SPIO
bus, and two serial UART with pins devoted accordingly. You can see these in Figure 4-3. You also see four
ground pins, one 1.8V power, and one 5V power pin. This leaves a total of 11 pins that you can use in your
applications. GPIO 24 can be used for input only. Also, the pins marked SYS DC in can be used to power
the board.

100

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

GND| 1 | 2 [GND
UARTOCTS| 3 | 4 |reserved
UARTO TX| 5 | 6 |reserved
UARTO FD(l 7 | 8 |SPIO CLK
UARTO RTS| 9 | 10|SPID MISO

UART1TX|11]/12|SPIOCS N
UART1 Rxl 13| 14 |SPI0 MOSI
12C0 SCL 15 16 [reserved
12C0 SDA| 17 | 18 [reserved
12C1 SCL| 19| 20 |reserved
12c1 SDA{ 21| 22 [reserved
GPIO 36{23 | 24 |GPIO 12
GPIO 13{25| 26|GPIO 69
GPIO 115{27 | 28 [reserved
GPIO 24*(29|30|GPIO 25
GPIO 35{31 |32 |GPIO 34
GPIO 28{33 | 34|GPIO 33
1.8V|35|36|SYSDCIN

5V|37|3B|SYSDCIN
GND| 39| 40|GND

Figure 4-3. GPIO header (DragonBoard 410C)

Now that you know more about the GPIO headers on your boards, you can learn how to get started
using Visual Studio 2015.

Visual Studio 2015 Primer

The Visual Studio product line is very long lived. In fact, it has been around since the early days of Windows.
Asyou can imagine, the product has undergone a great deal of changes—with new languages, frameworks,
platforms, and more added every few years. As I mentioned earlier, Visual Studio 2015 offers a huge array of
features for developing applications for Windows using a variety of languages. Visual Studio also supports
several platforms.?

With all of these features and the many languages, it can be quite intimidating getting started with
Visual Studio. In fact, books devoted to Visual Studio (just the features, not languages) can easily exceed
hundreds of pages in length. However, you can accomplish quite a lot with a small amount of knowledge.

Tip If you want to know more about Visual Studio 2015, check out Professional Visual Studio 2015 by
Bruce Johnson (Wrox, 2015). The book contains over 1,000 pages of detailed explanations about every feature
of Visual Studio.

*There’s even support for Android if you’re into that kind of thing.

101

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

This section gives you a brief introduction to how to get around in Visual Studio for the purposes of
developing applications for Windows 10 IoT Core. Don't feel like you have to learn everything about Visual
Studio to enjoy working with Windows 10 IoT Core. This section and the next chapters provide you a guide to
getting started writing Windows 10 IoT Core applications by example. But first, let’s explore the major features,
interface features, and project templates that you will use to write your Windows 10 IoT Core applications.

Note The following provides a high-level overview of the features that you need to know to write Windows
10 loT Core applications. As such, it is not a complete tutorial of Visual Studio. If you need more information
about Visual Studio, refer to the help system inside the application and the Microsoft Developer Network (VISDN)
library of documentation.

Major Features

Visual Studio 2015 is truly the do everything tool for Windows software development. In that respect,
Microsoft has established the bar for which all others are measured. Visual Studio is an IDE that places all
the tools that you need to develop applications in one interface, making Visual Studio the only tool that you
need to develop applications for Windows.

Another aspect to its superiority has to do with the languages supported. For example, there are a
variety of programming languages, including C, C#, C++, Visual Basic, Python, and more. Each of these
languages can be used to build a host of different applications in one of several frameworks.

Note Most of the examples for building Windows 10 loT Core applications are written in either C#, C++,
or Python. Once you master these languages and mechanisms for building projects, learning to do the same in
other languages requires only learning the syntax and semantic nuances of the language.

For example, you can build desktop applications (GUI or command line) in several frameworks,
including Windows 32 and .NET, create web applications, dynamic libraries for reuse, and more. Of course,
you can also build applications for Windows 10 as a Universal Windows Platform or one of several special
project templates (prebuilt collections of files and specific settings).® Project templates create a special file
called a solution (with a filename of <project_name>.sln) that contains several types of files.

To create an application, you select a project template and name the solution, write your code, compile the
application into an executable, test and debug the application (optional), and finally, deploy the application.

I guide you through selecting the right project template later in this section. Writing the source code
(developing the functionality) requires modifying one or more of the files in the solution. I discuss the major
types of Windows 10 IoT Core projects later in this section.

The compilation step is easy to initiate but can be an iterative process. This is because the compiler
performs intensive syntax and semantic checks on the code flagging anything that isn’t quite up to the language
or framework rules as warnings or errors. Fortunately, you can click each warning or error to zoom to the line
of code. But don’t worry; compiler errors are normal and are not a sign of inexperience or lack of knowledge—
they’re just a part of the learning experience. That said, as you learn the language and frameworks, you should
encounter fewer issues and errors. Also, do not disregard warnings. While they may not prohibit your code from
compiling, it is always a good practice to remove the cause of the warning before completing your solution.

3Project templates are quite extensive and specific to a particular language, framework, and platforms. Indeed, you will
find project templates are organized in that order.

102

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

I think it is the interactive debugger where Visual Studio shines the most. In fact, I find the interactive
debugger the most useful of all features in Visual Studio. Not only can you run your applications stepping
through code one line at a time, you can do so while inspecting variables, memory, the stack (the order of
method calls), and more. This helps you test your application and improve quality while finding logic or data
errors. You can even remotely debug your Windows 10 IoT Core applications.

Finally, when you are satisfied with the quality of your code, you can use Visual Studio to deploy your
application to your Windows 10 IoT device.

The Interface

At first glance, the Visual Studio 2015 interface appears with several smaller windows arranged inside a
larger window. The layout of the windows can change depending on settings you used when installing Visual
Studio and can vary slightly from one project template to another. Figure 4-4 shows the layout of the IDE
using C++ environment settings. I have placed numbers next to the major components of the IDE. I explain
each in more detail.

D4 HelloWorldIOT - Microsoft Visual Studio H X & | Quick Launch (Ctrl+Q P = O Xx
File Edit View Project Build Debug Team Vis Tools Test Analyze Window Help Dr. Charles Bell ~ [l
i@m-0 | B-28 u‘| - -| Debug = ARM = P Remote Windows Debugger ~ || A= l =
Arduino 1.6 = Arduino Yun - | P = : x g = : | AHC v
Solution Explorer L Co Application.cp > ochepp W X =
@] o8 ¢ @@ "R Heowoddor ~|_(Global Scope) ~|® mainfint arge char ** arg) #
-|// ConsoleApplicationl.cpp : Defines the entry point for the console application.#
Explorer (Ctrl+ -
Search Sclution Explorer (Ctrl el I -
2] Solution ‘HelloWorldIOT' (1 project) L
4] HelloWorldioT ot (oL
P =® References , P
b = External Dependencies Hint BERI(int argc, char **argy)
5 a e
= onsoeppllcatlon.cpp std::cout << "Hello, World!"™ << std::endl;
main(int, char **) }
*+ pch.epp
B pehh

- o

100% =~ 4 ¥
Output v Q3
Show output from: | Source Control - Team Foundation - | | - | & | fa

The mappings for the solution could not be found. "

The active solution has been temporarily disconnected from scurce control because the server is

ECTUEMY Class Vi.. Propert.. Team Ex. 4 s L4

Ready Ln 1 Col1 Ch1 INS

Figure 4-4. The Visual Studio 2015 interface (C++ settings)

103

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

The IDE components shown include the following.

1. Menus: This area contains the system of menus for all the standard features. The
features are categorized into several areas, including operations on the project,
building, debugging, and more.

2. Toolbars: In this area you see a variety of toolbars that have buttons and other
controls for commonly used functions for particular features. In this image, you
see toolbars for debugging and Arduino. You can add and remove (show and hide)
using the Tools menu.

3. Solution Explorer: This window lists the various files included in the solution.
You can double-click any of the files to open the appropriate window to work
with that file. You can also use the tree control to drill down into the specifics for
each file type. For example, I opened the ConsoleApplication.cpp node and
double-clicked the main() method, which opened the code editor window and
zoomed (placed the cursor) to the method.

4. Code Editor: This window is where you enter all the code for your source code.
You can use this area to edit all manner of files and the IDE will change its
behavior based on context. That is, it performs operations such as language-
specific automatic code completion.

5. Output Window: This window is used to communicate messages to you from
the compiler and other features. For example, look here when you compile your
application for warnings and errors.

6. Information Bar: The bar down at the bottom of the IDE is also used to provide
contextual information. Since the focus of the IDE is on the source code editor,
data such as cursor location (position on line), code line number, and more, is
shown.

7. Dock: To the right (in this layout) are additional windows that are docked or
minimized. You can click any of the tabs to open the windows.

Windows

The windows in the IDE can be repositioned and resized. There are a number of states each window can
become, including the following. When you expand a window by clicking the window title bar to expand the
window, you see three small icons on each window title bar. The first one, a small down arrow, when clicked,
opens a context menu with options for the disposition of the window. I describe how the other two icons are
used in the descriptions of window states.

e Float: The window is free to be moved around and floats above (outside) the confines
of the IDE. This is also called unpinning.

e Dock: The window is restricted to the confines of the IDE but can be repositioned
inside the IDE itself. The window remains the size you set. Click the thumbtack (or pin)
icon to dock the window. This is also called pinning. You can move the window around
in the IDE, and when it hovers near a docking area, an overlay allows you to dock the
window in that area. Much like the side-by-side feature of Windows.

e Dock as Tabbed Document: The window is reduced to a tab on the tab bar associated
with its function. There are multiple tab areas throughout the IDE.

104

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

e Auto Hide: The window opens when you hover over its tab. The window stays open
as long as the mouse pointer is within its borders. When you move the mouse away
from the window, it reverts to a tab on the tab bar. To auto hide, click the small
thumbtack (sometimes called the pin).

e Hide: The window closes and is removed from the tab bar. You have to use the menu
options to reopen it. Click the X icon to hide the window.

Environment Settings

Recall that during the installation of Visual Studio in Chapter 2, you chose the C++ option for the
environment settings. This is another great feature of Visual Studio. Environment settings configure the
layout of the IDE for a specific language or framework. There are generic (general) environment settings
for language-agnostic layout as well as environment settings for languages such as C# and C++. Figure 4-5
shows the environment settings that are available.

Iimport and Export Settings Wizard ? X

K
s Choose a Default Collection of Settings

Which collection of settings do you want to reset to?

£} General Description:

¥ JavaScript Equips the environment with the tools
£} Visual Basic necessary to develop native and

£+ Visual C# managed C++ applications. This

£} Visual C++ collection of settings also contains Visual
£ Web Development C++ 6 style keyboard shortcuts, among
'E} Web Development (Code Only) other customizations.

< Previous Cancel

Figure 4-5. Visual Studio 2015 environment settings

You can change the environment settings any time you want. Use the Tools » Import and Export
Settings... menu to open the settings management dialog. You can use this dialog to save the settings
(export) or restore settings you've saved (import) by selecting the appropriate radio button.

105

http://dx.doi.org/10.1007/978-1-4842-2108-2_2

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

To change the default environment settings, choose the Reset all settings radio button and then click
Next. The dialog gives you another chance to save your settings. If you do not want to save them, or once
you have saved the settings, choose the No radio button and then click Next. On the next screen, choose the
environment settings (see Figure 4-5) that you want and then click Finish.

Common Menu Items

While there are a number of menus in the interface, each with dozens of subitems and submenus, there are a
few that you use quite often. The following is a brief overview of the commonly used menu items categorized
by the entries on the main menu bar. I add the keyboard shortcut in parenthesis where available. Note that
<project> changes to the name of the currently opened or selected project.

e File: File and project operations
e New » Project (Ctrl+Shift+N): Start a new project
e Save Selected Items (Ctrl+S): Save the file(s) selected
e Save All (Ctrl+Shift+S): Save all files
e Project: Operations on the current project
e <project> Properties (Alt+F7): Open the properties dialog for the project

e Build: Compilation and deployment with two sections: one for the entire solution,
and one for the current project (a solution can have multiple projects)

e Build Solution (F7): Build (compile) all projects in the solution
e Rebuild Solution (Ctrl+Alt+F7): Rebuild (compile) all files in the solution

e Deploy Solution: Deploy the compiled solution to the destination specified in
the debug settings

e Clean Solution: Remove all compiled files and headers and generated files in
the solution

e Build <project>: Build (compile) the currently selected project
e Rebuild <project>: Rebuild (compile) all files in the project

e Deploy Selection: Deploy the compiled project to the destination specified in the
debug settings

e Clean <project>: Remove all compiled files and headers and generated files in
the project

e Compile (Ctrl+F7): Compile the currently selected file/project
e Debug: Interactive debugger
e Start Debugging (F5): Start the interactive debugger

e Start Without Debugging (Ctrl+F5): Run the project without the debugger (adds
a pause at the end of execution for console applications)

e Step Into (F11): While debugging, enter any method calls one line at a time

e Step Over (F10): While debugging, execute current line (do not step into
methods)

e Toggle Breakpoint (F9): Turn a breakpoint on/off
106

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

Now that you know a bit more about the interface, let’s look at the templates you will use for your
Windows 10 IoT Core projects.

Windows 10 IoT Core Project Templates

A project template is a special set of files and settings that are configured for a specific language, framework,
or application target. Project templates are arranged by programming language and by project type. The
following are some of the more common project types available in the standard Visual Studio installation.

e Windows: A very broad category that covers any application type for Windows
e Web: Applications built using ASP.NET

e Office/SharePoint: Applications for add-ins for the Microsoft productivity tools
e Android: Builds C# applications for Android devices

e jOS: Builds C# applications for some iOS devices

e Cloud: Builds applications for Windows Azure

e Windows IoT Core: Builds applications for deployment to Windows 10 IoT Core
devices

Note Some project template categories are only available for certain languages. Similarly, some languages
may list fewer project template categories.

See the Visual Studio online documentation for a complete list of project types available. Check the
online help for more information about the project types from the following resources.

e Microsoft Developer Network (MSDN) (https://msdn.microsoft.com/library/
dd831853%28v=vs.140%29.aspx)

e Visual Studio Getting Started (https://www.visualstudio.com/get-started/get-
started-vs)

To start a new project, click the File » New » Project... menu item. The New Project dialog is
displayed, as shown in Figure 4-6.

You can see the programming languages installed in the tree view on the left. You can use this view to
drill down to the specific language and framework/platform you want. If you click the language itself, you
see all the project templates for that language. You can see this in Figure 4-6.

107

https://msdn.microsoft.com/library/dd831853(v=vs.140).aspx
https://msdn.microsoft.com/library/dd831853(v=vs.140).aspx
https://www.visualstudio.com/get-started/get-started-vs
https://www.visualstudio.com/get-started/get-started-vs

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

Mew Project ? o
b Recent NET Framework 452 = Sort by: Default B = Search Installed Templates (Ctrl+E P~
4 |nstalled LA - . Vi
ok &_'I Empty Project Visual C++ Type: Visual C++
4 Templates i A project for Win<‘|0\‘\.l'5 Universal loT
b Visual C++ I] Directx 11 and XAML App (Universal Windows) Visual C++ Background Application
Cur
4 Other Languages 4
Build Accelerator rJ Unit Test App (Universal Windows) Visual C++
<ur
Game 4
Vicual F# EQH! DLL (Universal Windows) Visual C++
b Visual C# 4
b Vieual Basic EE | Static Library (Universal Windows) Visual C++
b JavaScript +4
b Python ?h! Windows Runtime Component (Universal Windows) Visual C++
b TypeScript e e -
4 Other Project Types E,J Background Application (loT) Visual C++
Visual Studio Solutions
¢ ; A SO S0MEIrS @‘0 Install Windows XP support for C++ Visual C++ '
amples [I
F"."‘ n
b Online jJ Makefile Project Visual C++
++
rJ Arduino Wiring Application for Windows loT Core Visual C++
<wr
Click here to go online and find templates.
Name: MyApp
Location: chusers\chuck\documents\visual studio 2015\Projects - Browse...
Solution name: MyApp [V Create directory for solution

[Add to source control

e

Figure 4-6. Selecting a Visual Studio project template

Once you select the project template you want, you can name the project in the area at the bottom,
including placing the project and all of its files in a specific location. By default, the name of the application
and the solution name are the same but you can change them. Once you are ready to create the project, click
OK. The IDE opens the project (a project’s settings are saved in a file called a solution) and creates the basic
source files for you.

Tip You may see a Windows for loT category once you have installed the Arduino feature. This is only for
projects that work with the Arduino. It is not the same as the Windows loT Core project template category.

There are three basic project templates that you use in this book to create applications for Windows 10
IoT Core. They aren’t the only ones you can use, but they are the templates you should use to get started. If
you want to build more complicated applications, you may want to consider some of the other project types.
The three project templates include the following ordered by complexity. I explain each in the following
sections.

e Blank Windows IoT Core Console Application
e Background Application (IoT)
e Blank App (Universal Windows)

108

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

Again, there are other project templates that you may want to use, but these three are the ones that you
use in this book.

Blank Windows loT Core Console Application

This project template is the most basic and simplistic of all project templates for Windows 10 IoT Core.

It permits you to create a simple text-only console application. If you want to experiment with writing
applications or want to create a solution that provides data or produces a report for a headed device, choose
this project template. You will use this template in the walkthrough of building your first application.

The code for this project template is very simple. The template creates a source file named
ConsoleApplication.cpp, which you can use to write your application. Use this source file to write your
application. You can create additional source files if you want, need, or desire to do so. For example, if you
are modeling concepts or creating abstractions for hardware, you may want to add additional source files to
contain these models (e.g., classes).

Listing 4-1 shows this file. The project template fills in the main() function with a simple, Hello, World!
print statement. You can find this project template under the Windows » Windows IoT Core category.

Listing 4-1. Blank Windows IoT Core Console Application

// ConsoleApplicationi.cpp : Defines the entry point for the console application.
//

#include "pch.h"

int main(int argc, char **argv)

{
}

std::cout << "Hello, World!" << std::endl;

Background Application (loT)

This project template is used to create an application that runs in the background (or headless) on your
device. Typically, you'd use this project template to create an application that communicates to other
devices, interacts with hardware (and then communicates with other devices), or drives hardware to display
or report sensor data to the user.

The project files for this project template are quite different and there are a few extra files. The one
source file that you work with most is named StartupTask.cpp, which is where you place the code you want
to run when the application starts. There is also a corresponding header file named StartupTask.h where
you can place function and class primitives for your design.

Listing 4-2 shows the StartupTask.cpp file as created by the new project dialog. You can find this
project template under the Windows » Windows IoT Core category.

Listing 4-2. Background Application (IoT)

#include "pch.h"
#include "StartupTask.h"

using namespace BackgroundApplication6;

using namespace Platform;
using namespace Windows::ApplicationModel::Background;

109

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

// The Background Application template is documented at http://go.microsoft.com/fwlink/?Link
1D=5338848&c1cid=0x409

void StartupTask::Run(IBackgroundTaskInstance® taskInstance)

{
//
// TODO: Insert code to perform background work
//
// If you start any asynchronous methods here, prevent the task
// from closing prematurely by using BackgroundTaskDeferral as
// described in http://aka.ms/backgroundtaskdeferral
//
}

There is a link in the code for more information about the project template. Also, there are hints in the
code comments (designated by //) to help you get started.

Blank App (Universal Windows)

This project template is the most sophisticated of the three project templates that you will use. This project
template allows you to create simple user interfaces using Microsoft’s Extensible Application Markup
Language (XAML). XAML is similar to XML except you use a special declarative language to create a

user interface. It is a very expressive and powerful language that permits you to create sophisticated user
interfaces without the need for high overhead graphical libraries.

Tip To learn more about XAML, see https://msdn.microsoft.com/en-us/windows/uwp/xaml-
platform/xaml-overview?f=2558MSPPErT0r=-2147217396.

There are several files for this project template. The main files that you will be working with are the
XAML files (MainPage.xaml, MainPage.xaml.h, and MainPage.xaml.cpp), which include the XAML code.
You also see files named App . xaml, App.xaml.h, and App.xaml.cpp, which are the entry or starting point
for the application. There is no specific XAML code here; rather, it contains the code for the OnLaunched
and OnSuspending events. You can use these events to initialize your application or cleanup when it is shut
down or suspended. There are a number of other files, but these are explored in later chapters when you see
examples of each project template.

Listing 4-3 shows the main page for the XAML source files. You can find this project template under the
Windows » Universal category.

Listing 4-3. Blank App (Universal Windows)

/7

// MainPage.xaml.cpp

// Implementation of the MainPage class.
//

#include "pch.h"
#include "MainPage.xaml.h"

using namespace AppS8;

using namespace Platform;
110

https://msdn.microsoft.com/en-us/windows/uwp/xaml-platform/xaml-overview?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/windows/uwp/xaml-platform/xaml-overview?f=255&MSPPError=-2147217396

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

using namespace Windows::Foundation;

using namespace Windows::Foundation::Collections;

using namespace Windows::UI::Xaml;

using namespace Windows::UI::Xaml::Controls;

using namespace Windows::UI::Xaml::Controls::Primitives;
using namespace Windows::UI::Xaml::Data;

using namespace Windows::UI::Xaml::Input;

using namespace Windows::UI::Xaml::Media;

using namespace Windows::UI::Xaml::Navigation;

MainPage: :MainPage()

{
}

InitializeComponent();

Now that you've had a brief overview of Visual Studio, let’s see these features in action by writing your
very first Windows 10 IoT Core application.

Example Project: Hello, World

Now let’s get our hands into some code and see how to write a basic application for your Windows 10 IoT
Core device. I know you've been itching to get started, so grab a stockpile of your favorite diet crushing
snacks, kid-approved beverages of choice, recline your chair! and let’s write some code!

The project is an adaptation of a classic computer science homework assignment: converting
temperature from Celsius to Fahrenheit. But you're going to mix it up a bit and make the application a bit
more interactive. That is, you ask the user which scale she wants to use as the base temperature, prompt for
the temperature, and finally, convert and print the result.

In case you've forgotten or perhaps never gave it another thought after the mid-term and final exam, the
formulas that you use include converting Celsius to Fahrenheit and Fahrenheit to Celsius as follows. You use
these in the code that you write for the application.

Celsius = (5/9) X (fahrenheit - 32)
Fahrenheit = ((9/5) X Celsius) + 32.0

To keep things as simple as possible, you'll write a Windows IoT Core console application that you
can deploy to your Windows 10 device and run from a remote login (SSH). This keeps the code simple and
allows you to focus on the mechanics of building and deploying the application.

Note In this example and in future projects | use the Raspberry Pi as my Windows 10 loT Device
(or simply device) and often use those terms interchangeably. You can perform all of these steps with the other
boards. The only difference in the steps that follow concerns the architecture selection. For Raspberry Pi and
DragonBoard 410C, choose ARM, for the MinnowBoard Max—compatible boards, choose x86 in the Solutions
Platform drop-down box. That is the only difference.

Now that you know what you want to build, let’s get started!

4A common pose that is very bad for your posture but some insist it exudes the proper attitude of a serious coder. Recline
at your own risk.

111

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

Create the Project

You need to create a new project in Visual Studio to contain your code. If you're following along, go ahead
and launch Visual Studio and create a new project. You can use the File » New » Project... menu option
or you can click the New Project... link in the welcome dialog or press Ctrl+Shift+N. Figure 4-7 shows the
location of the link. I highlighted it so you can find it easier.

D start Page - Microsaft Visusl Studio ¥ £ o rhQ Pl= O X
File Edt View Debug Team VisualMico Tooks Test Analyze Window Help Dv. Chanles Bell ~ .
o B-LEP|2-Q - P Attach_. ~ | =,
Sohution Explorer -
> @ | L y - : g B
: ; Discover Visual Studio Community 2015
Visual Studio T - ik
Start
New Project
bt
Open from Source Contro Ready to Cloud-power your experience?
Connect to Azure @ A

Figure 4-7. Visual Studio: Create new project

When the new project dialog appears, you need to select the language, platform, and project type. For
this project, you want to choose Visual C++ as the language, Windows as the platform, and Windows IoT
Core as the framework (category) in the tree view on the left. Then, choose the Blank Windows IoT Core
Console Application entry from the list, as shown in Figure 4-8.

New Project ? ®
b Recent NET Framework 452 = Sort by: | Default - = earch Installed Template . P -

4 Installed ™*] ek Aookcation (o] Ll Type: Visual C++

4 Templates A project for creating a Wind2 console

4 Visual Co 4 @ Blank Windows 10T Core Console Application Visual C+ 4 applcation for Windows loT Core

4 Windows
Universal ,_] Asduine Wiring Application for Windows loT Core WVisual C++
b Windows 8
Windows loT Core

CLR
General
MFC
Test
Win32
Cross Platform
Extensibility
Visual Micro
Windows for loT
¥ Other Languages
b Other Project Types

b Online Click here 10 go online and find templtes

Narme: temperature

Location: chusers\chuck\documentsivisual studio 201 5\Projects =

Solution name: temperature [# Create directory for solution
[[] Add to source control

o]

Figure 4-8. New Project dialog

112

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

At the bottom of the dialog you can choose the name of the application (temperature) and optionally a
directory of where to store the solution (all the source code and related files). If you type temperature in the
Name box, the dialog will fill in the same name for the solution name. Once you are satisfied with the name
and location, click OK to create the project. You may also be asked for the target and minimum platform
versions. You should choose the latest version of each. Once you click OK, the project creation process may
take a moment to run. Once complete, you see the blank files for the solution, as shown in Figure 4-9.

B temperature - Microsoft Visual Studio ¥ & | Quick Launch (Ctrl+Q -
File Edt View Project Build Debug Team Visual Mo Tools Test Analyze Window Help Dr. Charles Bell = .
| B-2 @ - & | Debug - ARM - P Remote Windows Debugger = Auto - |-, no
Solution Explorer -} X 7
e = -1 (Gl cope) =1 mainfint arge, char ** argv)
@lo-sce® - obal s | b
P - /f ConsoleApplicationl.cpp : Defines the entry point for the console application.

1] Solution ‘temperature’ {1 project)
; #include “pch.h*

b 8 Ref
erences =int main(int argc, char **argv)
3 2 External Dependencies {
4 %+ ConsoleApphication.cpp std::cout << “Hello, World!™ << std::endl;

@ mainfint, char **)
*+ pchupp

Show output from: | Source Control - Team Foundation -

The mappings for the solution could not be found.
The active solution has been temporarily disconnected from scurce control because the server is unavailab

Propert_ Team Ex

Figure 4-9. Blank console application project

Write the Code

Now it is time to write the code! In this project, you place all the source code in themain(int, char**)
method inside the ConsoleApplication.cpp source file. To open this file (if it is not already open in the code
editor), select the project in the Solution Explorer and navigate to the ConsoleApplication.cpp file. Then,
open that branch and double-click the main(int, char**) method. Visual Studio opens and refocuses the
code editor window to the method, as shown in Figure 4-9.

Did you notice something interesting in the source code? Yep, Microsoft has populated the main(int,
char**) method with the ubiquitous “Hello, World” code. In this case, it is statement that sends the
character string to the standard out (std: : cout) or console. Thus, if you were to run this code without
modification, the application will simply print that string and exit. You want to do something similar since
you are only working with the console, but with a bit more sophistication than that simple output statement.

Don’t worry too much about whether you've written C++ code before. I provide all the statements that
you need in this chapter. I present a brief tutorial of the C++ language in the next chapter. For now, just enter
the code as shown in Listing 4-4. I'll walk you through what the code does in a moment.

113

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

Listing 4-4. Temperature Example Code

//

// Windows 10 for the IoT

//

// Example C++ console application to demonstrate how to build
// Windows 10 IoT Core applications.

//

// Created by Dr. Charles Bell

//

#include "pch.h"

using namespace std;

int main(int argc, char **argv)

{

double fahrenheit = 0.0;

double celsius = 0.0;

double temperature = -.0;

char scale{ 'c' };

cout << "Welcome to the temperature conversion application.\n";

cout << "Please choose a starting scale (F) or (C): ";

cin »>> scale;

if ((scale == 'c') || (scale == 'C")) {
cout << "Converting value from Celsius to Fahrenheit.\n";
cout << "Please enter a temperature: ";
cin »> celsius;
fahrenheit = ((9.0 / 5.0) * celsius) + 32.0;
cout << celsius << " degrees Celsius = " << fahrenheit <«

" degrees Fahrenheit.\n";

}

else if ((scale == 'f') || (scale == 'F")) {
cout << "Converting value from Fahrenheit to Celsius.\n";
cout << "Please enter a temperature: ";
cin »> fahrenheit;
celsius = (5.0 / 9.0) * (fahrenheit - 32.0);
cout << fahrenheit << " degrees Fahrenheit = " << celsius <«

" degrees Celsius.\n";

}

else {
cout << "\nERROR: I'm sorry, I don't understand '" << scale << "'.";
return -1;

}

}

The code begins with a number of comment lines. These are designated with the // symbol at the start

of the line. In fact, you can place the // anywhere on the line making everything to the right a comment.

The compiler ignores these statements so you can write whatever you like. The very first thing that you

may notice is the following line of code. This is part of the preamble of the code. The first line is an include
directive that tells the compiler to include the pch.h (precompiled header file), which Visual Studio supplies.

114

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

#include "pch.h"

Next is a shorthand notation I like to use. It allows you to avoid typing the namespace over and over
again. In this case, you're using the namespace std: : a lot. The following line of code permits you to omit
that—provided that what you are referencing (cout, cin) can be found unambiguously in the namespace.
That is, if there were multiple namespaces used, cout and cin would have to be unique to one of them
otherwise, you'd still have to provide the namespace std: :.

using namespace std;

Those two lines are the only code outside of the main() method. The main() method is the entry point
for a C++ application. When the application is run, code inside this method is executed first. The code you
want for this method is shown in Listing 4-1.

You begin by asking the user what scale she wants to use. You prompt the user to enter a C for Celsius
or an F for Fahrenheit. Take a look at the code again. If the user specifies either a C or ¢, you calculate the
conversion using Celsius as the base. If the user specifies either an F or f, you calculate the conversion using
Fahrenheit as the base. If something else was entered, you exit with an error. You include additional prompts
to ask the user for the base temperature. Following that, you use the formulas to perform the calculations.

You may be wondering what all of those cout and cin and << and >> thingys do. Essentially, the cout <<
string phrase tells the compiler you want to take a string and print it to the screen (standard out or stdout).
The cin >> variable phrase tells the compiler to read information entered by the user and store it in the
variable named. Go through the code again and read it until you understand how this works. Again, I explain
C++ coding in more detail in the next chapter.

Once you've entered all the code, go ahead and save the project using either the save on the toolbar or
the File » Save Solution menu item. Next, let’s build and test the code!

Build and Test Your Code

To build the code, you first must choose build type and the architecture. Figure 4-10 shows where these
options are on the toolbar. Go ahead and choose Debug as the build type and x86 or x64 as the architecture
to match your PC. You choose x86 or x64 here because you will first build and test the application on your PC
before deploying it to the Raspberry Pi. This shows the true power of UWP—the ability to run the same code
on different architectures.

Once selected, press Ctrl+Shift+B or choose Build » Build Solution from the menu. This compiles
your application and opens the Output window to show you the results of the build. As you can see in
Figure 4-10, the solution built without errors. If you encounter errors, check the code against Listing 4-4 and
correct any lines that do not compile.

115

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

D temperature - Microsoft Visual Studio X & | Quick Launch (CilsQ P - O x
File Edit View Project Build Debug Jesm ViualMico Took _Jest Anslyze Window Help Dr. Chartes Bell = [
-0 8- M
Solution Explorer

Glo-5 @ v \lompem!ure | (Global Scope)
- -// ConsoleApplicationl.cpp : Defines the entry point for tne console application.

Local Windows Debugger = Auto

B Solution temperature’ {1 project)
4 % temperature
b »® References

#include “pch.h"

using namespace std;

3 External Dependencies
REiie Consclepplcation<pp int main(int argc, char *®argv)
*+ pchopp {
pchh double fahrenheit = 0.9;
double celsius = 0.8;
double temperature = -.8; v
100 % 4 b
Output » 0 x
Show output from: | Build - | Elm™
1pecenns Build started: Project: temperature, Configuration: Debug x64 ------ -

1> cConsoleapplication.cpp
1> temperature.vexproj -» c:lusers\chuck\documents\visual studio 2BlS\Pro]ects\le-perature\xb-l\oebog\teu
= == Build: 1 succeeded, © failed, @ up-to-date, @ skipped ===s=zs=

Team Ex

Figure 4-10. Build and test your code

To test the application, you can simply run it with the debugger (but without any breakpoints) by
pressing Ctrl+F5 or choosing Debug » Start without Debugging. This opens a console and runs the
application on your PC, and waits to close the console. Note that if you changed your code since the last
build, you may be asked to rebuild the solution/project. If you choose the F5 option, the console would close
when the application terminates. Figure 4-11 shows what the application should look like.

B C\WINDOWS\system32\cmd.exe - O X

elcome to the temperature conversion application. o)
Please choose a starting scale (F) or (C):

onverting value from Celsius to Fahrenheit.

Please enter a temperature: 15

15 degrees Celsius = 59 degrees Fahrenheit.

Press any key to continue

Figure 4-11. Testing the temperature application

You see what you expected: the application prompts you for some information and depending on your
selection, converts the temperature entered. Go ahead and run the application several times until the joy
has passed or you are convinced it is working correctly. When you're done, congratulate yourself on having
written your first Windows 10 application! You are now ready to set up your Windows 10 IoT Device and
deploy the application.

Set up your Windows 10 IoT Device

You're ready to power on your device and get it ready for deployment. All you need to do is set up the device
as described in Chapter 2 and power it on.

116

http://dx.doi.org/10.1007/978-1-4842-2108-2_2

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

COOL GADGET: MICRO-USB TO USB ADAPTER

If you’re like me and have very few micro-USB cables and most of those devoted to specific devices,
chances are that you have to borrow a cable to get your Raspberry Pi powered up. Rather than buying

a whole new cable, you can buy a brilliant little adapter that lets you convert your normal USB type A
cable to a micro-USB cable. The adapter (known by a variety of names) fits inside the male end of a USB
cable converting it to a micro-USB plug. The following shows this adapter.

You can find it on most online auction sites. Just search for micro-USB adapter and you should find it
among the more normal adapters. | like this adapter because it is small and removes the need for yet
another cable to junk up my store of USB cables.

Once powered on, take note of the IP address. You need this to deploy your application in the next step.

Deploy and Test to your Windows 10 IoT Device

This is the step that most people have issues, especially when deploying a Windows IoT Core application for
the first-time. This is mostly due to the fact that you must configure the project settings correctly or else the
deployment will fail. Once you know what to change (and it isn’t so obvious), deployment is really easy.

The first thing you should understand is the build configuration. You can choose to build an application
for debugging (debug) or for releasing (release). Remember that you also need to choose the architecture. If
you are working with the Raspberry Pi or DragonBoard 410C, you choose ARM; otherwise, you choose x86
for the MinnowBoard Max-compatible boards.

However, the project properties for these combinations of build and architecture are different! Thus,
setting the values for debug won’t change those for release and so on. This is perhaps the most difficult thing
to remember. But do not despair, I will demonstrate the settings you need for both a debug and release build.

In fact, I will demonstrate one of the most powerful features of Visual Studio: the interactive debugger.
But not just that, I'll also demonstrate how to debug your application running on your Windows 10 IoT
device directly from your PC. How cool is that?

Using the Interactive Debugger

The interactive debugger allows you to step through your code one line at a time, view the state of variables,
see the stack, and much more. You must set the build type to debug in order to use debugging.

117

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

The key concepts involved are the use of breakpoints or places in the code where you want the
debugger to stop at when executing. You can set breakpoints on most lines of code. To do so, click in the
leftmost portion of the code editor next to the line you want a breakpoint. You can also position the cursor
on the line and press F9 to set (turn on) the breakpoint. A small red circle appears, which indicates that a
breakpoint has been set. To clear a breakpoint, just click the red circle again or position the cursor on the line
and press F9. Figure 4-12 shows the code editor window with a breakpoint set on the first print statement.

! temperature 'I (Global Scope) - iﬂ'ﬂ main(int arge, char ** argv) -

=
=int main(int argc, char **argv) =
{
double fahrenheit = @.8;
double celsius = 0.9; o
double temperature = -.8;

char scale{ 'c' };

@ cout << "Welcome to the temperature conversion application.\n";
cout << "Please choose a starting scale (F) or (C): ";
cin »>> scale;
- if ((scale == 'c') || (scale == 'C')) { 4
100% ~ 4 3

Figure 4-12. Interactive debugger: setting breakpoints in the code editor

To start the debugging session, press F5 or choose the Debug » Start Debugger menu. This causes the
application to start a new console window so that you can interact with the application. The debugger stops
on the first line of code (where the breakpoint is set). You can then step through the code one line at a time
by pressing F10 or by choosing the Debug » Step Into menu.

When the debugger is running, several new windows open, including diagnostic tools that show
memory and CPU usage, a tabbed window that allows you to watch variables (and more), and another
tabbed window that allows you to see the call stack, breakpoints, and more. Figure 4-13 shows an excerpt of
running the debugger with our sample project.

ConsoleApplicationcpp & X

%] temperature -] (Global Scope) - @ mainint arge. char ** ~ [0 £ Satact Tooks™ | & Zoom in @ Zoom Out 2, Reset View 7
Char SCale] € f r 3 : ;
Diagnostics session: 4 seconds (4.229 s selected)
® cout << "Welcome to the temperature conversion aj £ | s
cout << "Please choose a starting scale (F) or (i L T L
cin »> scale; .
& ~| if ((scale == ‘c') || (scale == ‘C")) { v
cout << "Converting valus from Celsius to Fal n n
cout << "Please enter a temperature: "; Events Memory Usage CPU Usage
cin >» celsius; . x
fahrenheit = ((9.0 / 5.8) * celsius) + 32.8; _ 2
T cout << celsius << " desrees Celsius = " ;.-’1 [Time | Diration | Theead

Name
¥ @ std-operator> > <c | Cheount=0) st-bask

2 temperature.exelmain(int argc. char * * argv) Line 18 C++
@ scale 9'c b e

LIEEY [ocals Threads Modules Watch 1 R freakpoints |

Figure 4-13. Interactive debugger: inspection

118

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

Go ahead and step through the application. Take some time to tour the various windows. Pay
attention to the watch window and note how the variables change values. Clearly, there is far more that
you can do with debugging Windows applications than what I have described here. Indeed, I consider
the interactive debugger the most important feature of Visual Studio: one that requires some time and
experience using to be able to fully utilize it. However, what I've shown here is the bare essentials for
getting started.

Tip To learn more about the interactive debugger, see https://msdn.microsoft.com/en-us/library/
dn986851.aspx.

It is also possible to remotely debug an application running on your Windows 10 IoT device. I will
demonstrate how to do this in a later chapter. Remote debugging allows you to run the application on
the Windows 10 IoT device and monitor its progress with the interactive debugger on your PC. Due to
the nature of console applications, if you were to try remote debugging this project, you would not get
far. This is because the application prompts the user for input and there is no way to connect to the
application to interact with it. Thus, remote debugging is best used for cases where you want to see
how the code works on the device—checking variables, logic, and so forth, much like the interactive
debugger.

Deploying a Debug Build

Now you're ready to deploy the application to your Raspberry Pi and start using it. In this section, I describe
how to set up your project for deploying a debug build. Let’s begin with the setting the project properties. Be
sure to choose the build type (Debug) and platform (ARM) before opening the project properties.

Open the project properties by right-clicking the project and choose Properties. You see a dialog open
that has a host of settings you can change. You want the debugging section. Click that label to open the
debug settings panel. Figure 4-14 shows the completed dialog.

119

https://msdn.microsoft.com/en-us/library/dn986851.aspx
https://msdn.microsoft.com/en-us/library/dn986851.aspx

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

temperature Property Pages ? x
Configuration: | Debug ¥ Platform: Active(ARM) ¥ Configuration Manager..
4 Configuration Properties Debugger to launch:
e Remote Windows Debugger v
Debugging
VC++ Directories
b C/C++ Remote Command e\deploy\temperature.exe ‘-——
b Linker Remote Command Arguments
b Manifest Tool Working Directory c\deploy\ G
b ML Document Generator Remote Server Name 10.0.1.89:8116
: - Connection R with no auth icati
P Browse Information =
b Build Events Debugger Type Native Only L ——e
Cust Build St Environment
frelia il B o e
ERC s SQL Debugging No
Deployment Directory chdeploy\, ‘—-—

Additional Files to Deploy
Deploy Visual C++ Debug Runtime Librari Yes
Amp Default Accelerator WARP software accelerator

Remote Command
The debug command to execute.

Figure 4-14. Project properties (debug builds)

The current configuration is at the top of the dialog. Make sure that everything corresponds to the
debug build and ARM platform. There are seven settings you must change. I describe each next.

e Remote Command: Set this to the path and executable of your application. Use the
working directory set below.

e Working Directory: Enter a working directory to deploy your application. The
directory is created for you. Remember to add the trailing slash or else you may get a
warning when you deploy the application.

e Remote Server Name: Set this to the IP address or hostname of your device along with
port 8116 with .8116. For example, my Raspberry Pi was on 10.0.1.89 so I entered
10.0.1.89:8116. This is the most commonly misunderstood setting.

e Connection: Set this to Remote with no authentication.

e Debugger Type: Choose Native Only. You only want to deploy the native ARM
application.

e Attach: Choose No. For a debug build deployment, you do not want to attach to the
process once deployed.

e Deployment Directory: Set this to be the same as the working directory. You can
choose a different directory, but if you do, make sure that the remote command
reflects the difference in path.

120

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

Once these settings are entered, click Apply and then close the dialog. You are almost ready to deploy.
But first, you must ensure that the remote debugger on the Raspberry Pi is turned on. Use your browser to
browse to your device at port 8080 (e.g., 10.0.1.89:8080) or use the Device Portal from the Windows IoT Core
dashboard. Click the Debug label and then click the Start button at the top of the page. This starts the remote
debugger and readies the device for deployment. Figure 4-15 shows the result of start in the device portal.
Note the port that the pop-up dialog presents. This is where you got the value for the debug settings.

This site says...

Successfully started Visual Studio Remote Debugger. Please
use 10.0.1.89:8116 as Remote Machine name from Visual
Studio 2015 to connect to the device.

Figure 4-15. Starting the Remote Debugger: Device Portal

Now return to Visual Studio and choose Build » Deploy temperature from the menu or click the
Remote Debugger button on the toolbar. This initiates a build (if needed) and deploys the application to the
Raspberry Pi. Once the deployment is complete, you see a message the output window.

Note The remote debugger is no longer installed by default in the 10586 release of Windows 10 loT
Core. This is because the deployment of the remote debugger was added in Visual Studio 2015 Update 1. If
you try to deploy your debug build to your device and you get a message about MSVSMON.EXE missing or you
get an error in the Device Portal when you try to start the remote debugger, you can try deploying a blank C#
application to your device. This should install the remote debugger and allow you to deploy your application
without errors. You can also try closing the MSVSMON.EXE application on your device. Sometimes the debugger
can hang resulting in errors when deploying. Shutting down the remote debugger and restarting it can help
solve deployment issues.

To test your application, use PuTTY to open a SSH session to log into your device. Once connected,
you can change into the directory that you specified in the project properties. Figure 4-16 shows an example
deployment. Notice the files that are deployed. Among those is the temperature.exe file, which you can use
to run the application.

121

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

&2 10.0.1.89 - PuTTY - a X

Microsoft Windows [Version 10.0.10586] ~
Copyright (c) Microsoft Corporation. All rights reserved.

C:\Data\Users\Administrator>cd \deploy

C:\deploy>dir
Volume in drive C is MainOS
Volume Serial Number is AOF6-8EEl

Directory of C:\deploy
03/26/2016 08:58 PM <DIR> ¥

03/26/2016 08:58 PM <DIR> i
11/05/2015 10:34 BM 670,200 concrtl40d.dll

11/05/2015 10:34 PM 806,384 msvcpldOd.dll

03/27/2016 04:00 BPM 71,680 temperature.exe

11/05/2015 10:34 PM 1,145,328 vcampl4d0d.dll

11/05/2015 10:34 BM 879,616 vccorlibl40d.dll

11/05/2015 10:34 BPM 168,432 vcompld0d.dll

11/05/2015 10:34 BM 103, 944 vcruntimeld0d.dll
7 File(s) 3,845,584 bytes

2 Dir(s) 3,384,778,752 bytes free

C:\deploy>f} v

Figure 4-16. Checking the debug deployment

Now go ahead and run the application by entering temperature.exe. You can now interact with the
application as I did in Figure 4-17.

& 10.0.1.89 - PuTTY = O X
Volume Serial Number is AOF6&-8EE1 ~

Directory of C:\deploy

03/26/2016 08:58 PM <DIR>
03/26/2016 08:58 PM <DIR>

11/05/2015 10:34 PM 670,200 concrtl40d.dll
11/05/2015 10:34 PM 806,384 msvcpldOd.dll
03/26/2016 06:46 PM 71,680 temperature.exe
11/05/2015 10:34 PM 1,145,328 vcampl40d.dll
11/05/2015 10:34 PM 879,616 vccorlibld0d.dll
11/05/2015 10:34 PM 168,432 vcompld0d.dll
11/05/2015 10:34 PM 103,944 vcruntimel40d.dll
7 File(s) 3,845,584 bytes

2 Dir(s) 3,389,087,744 bytes free

C:\deploy>temperature.exe

Welcome to the temperature conversion application.
Please choose a starting scale (F) or (C): ¢
Converting value from Celsius to Fahrenheit.
Please enter a temperature: 5

5 degrees Celsius = 41 degrees Fahrenheit.

C:\deploy>l v

Figure 4-17. Testing the application

That’s it! You've just deployed your first Windows 10 IoT Core application to your device and ran it.
Very nice.

Tip If you encountered problems during deployment, be sure the project settings are correct and that the
build type and platform are set correctly. You can access the configuration management dialog to check these.

122

Deploying a Release Build

Deploying a release build is very similar to deploying a debug build. That is, you must set the project
properties correctly. This may seem a bit strange, but you will use the same dialog that you did for deploying

the debug build but with slightly different settings.

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

Like the debug build, you must set the build type to release and the platform to ARM. Then open the
project properties and set the values, as shown in Figure 4-18.

temperature Property Pages

Configuration: Release

4 Configuration Properties

General
Debugging
VC++ Directories

b C/CH+

b Linker

b Manifest Tool

b XML Document Generator

b Browse Information

b Build Events

b Custom Build Step

b Code Analysis

~ Platform: Active{ARM)
Debugger to launch:

Remote Windows Debugger

Remote Command
Remote Command Arguments
Working Directory
Remote Server Name
Connection

Debugger Type
Environment

Attach

SOL Debugging
Deployment Directory
Additional Files to Deploy

Deploy Visual C++ Debug Runtime Librari Yes

Amp Default Accelerator

Remote Command
The debug command to execute.

Figure 4-18. Project properties (release builds)

? X

b Configuration Manager...

e\deploy_rel P exe

e\deploy rel\
10.0.1.89:8116
R with no
Native Only

No
No
c\deploy_rel\

WARP software accelerator

o | S

There are six settings that need to be set as described next. If this is your first time visiting the dialog
after setting the project settings for the debug build, you may notice the values are back to the defaults. This
is because each build type has its own settings and you must set them for each build you want to work with.

e Remote Command: Set this to the path and executable of your application. Use the
working directory set below.

e Working Directory: Enter a working directory to deploy your application. The
directory is created for you. Remember to add the trailing slash or else you may get a
warning when you deploy the application.

e Remote Server Name: Set this to the IP address or hostname of your device along with
port 8116 with :8116. For example, my Raspberry Pi was on 10.0.1.89, so I entered
10.0.1.89:8116. This is the most commonly misunderstood setting. Even though this
is arelease build, you still use the remote debugger to do the deployment.

° Connection: Set this to Remote with no authentication.

123

CHAPTER 4 © DEVELOPING 10T SOLUTIONS WITH WINDOWS 10

e Debugger Type: Choose Native Only. You only want to deploy the native ARM
application. “Native” means that the code is compiled for the ARM platform; it does
not include managed code.

e Deployment Directory: Set this to be the same as the working directory. You can
choose a different directory but if you do make sure that the remote command
reflects the difference in path.

I set the deployment directory to deploy_rel so thatI can tell the difference. Once you've completed
the settings, apply them, and close the dialog. Then, choose the Build » Deploy temperature to deploy the
application. You can check the deployment once it is complete. Figure 4-19 shows the results of deploying
the release build to the Raspberry Pi.

&2 10.0.1.89 - PuTTY . H N
03/26/2016 :
03/27/2016

<DIR>

10/30/2015 ‘DI

10/30/2015 07:46 AM <JUNCTION> EFIESP [\??\Volume{27e19475-7f04-11e5-80d
c-e41d2d000610}\]

10/30/2015 07:46 AM <DIR> Program Files

10/30/2015 07:46 AM <DIR> Program Files (x86)

10/30/2015
10/30/2015 07:46 AM
10/30/2015 07:46 AM

07:46 AM

PROGRAMS

12/31/2015 04:26 PM Windows
0 File(s) 0 bytes
12 Dir{s) 3,373,899,776 bytes free

C:\>cd deploy_rel

C:\deploy_rel>temperature

Welcome to the temperature conversion application.
Please choose a starting scale (F) or (C): £
Converting value from Fahr
se enter a temperatu
55 degrees Fahrenheit = 1

eit to Celsius.

C:\deploy_rel>f} v

Figure 4-19. Checking the release deployment

If you have followed along and succeeded in deploying both the debug and release builds, you're ready to
learn more about the power and level of sophistication available for writing IoT solutions with Windows 10.

Summary

Developing applications for Windows 10 IoT Core requires the use of Visual Studio and the choice of several
programming languages. Visual Studio is loaded with advanced features that meet the needs of even the
most serious developers for the most complex solutions.

Fortunately for you, you do not need to master every nuance of the IDE. Indeed, you need only learn
the most basics of getting around in the IDE, including starting new projects, coding, compiling, testing and
debugging, and deploying your applications to your Windows 10 IoT Core devices.

In this chapter, you explored the Visual Studio 2015 interface, which included learning how the
windows are laid out in the IDE and the sample project templates used in this book to write applications for
your Windows 10 IoT Core devices. You learned the basic features that you will use for most of the book’s
projects. You also had a detailed overview of a basic Windows 10 IoT Core application using C++.

In the next chapter, you'll take a closer look at developing Windows 10 IoT Core applications by using

C++. I present a short tutorial on the major language constructs and walk you through an application that
blinks an LED.

124

CHAPTER 5

Windows 10 loT Development
with C++

Now that you have a basic understanding of how to use Visual Studio 2015, you can learn more about

some of the languages you may encounter when developing your IoT solutions. One of those languages is
C++—avery robust and powerful language that you can use to write very powerful applications. Mastering
C++ is not a trivial task and indeed could take someone several years to be fully knowledgeable of all of its
features.! However, you do not need to achieve a Zen-like harmony with C++ to be able to write applications
for Windows 10 IoT Core. You saw this in action in the last chapter. In fact, if you are just getting started
programming or know little about C++, all you need to get going is knowledge of the fundamentals of the
language and how to use it in Visual Studio.

This chapter presents a crash course on the basics of C++ programming in Visual Studio-including an
explanation about some of the most commonly used language features. As such, this chapter provides you
with the skills you need to understand the growing number of IoT project examples available on the Internet.
The chapter concludes with a walk-through of another C++ example project that shows you how to interact
with hardware. Specifically, you will implement the LED project you saw in Chapter 3. Only this time, you'll
be writing it as a Windows 10 IoT Core application. So let’s get started!

Tip If you are not interested in using C++ in your loT solutions, or you already know the basics of C++
programming, feel free to skim through this chapter. | recommend working through the example project at the
end of the chapter, especially if you’ve not written loT applications.

Getting Started

Microsoft’s implementation of C++ is named Visual C++ and is often referred to as VC++ or MSVC. Visual
C++ conforms to the latest standards, including C++11 and C++14.2 Early versions of Visual C++ were sold

as a separate product. Visual C++ today is integrated in the Visual Studio product. As you saw in Chapter 2,
you must explicitly select Visual C++ during installation of Visual Studio because it is not installed by default.
However, as you saw, it is very easy to add optional features in Visual Studio.

'But who has the time?
2For more about compatibility with C++ standards, see https://msdn.microsoft.com/en-us/1library/hh567368.aspx.

© Charles Bell 2016 125
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_5

http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://dx.doi.org/10.1007/978-1-4842-2108-2_2
https://msdn.microsoft.com/en-us/library/hh567368.aspx

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

While the formal product name is Visual C++, and it is designed to work with the Microsoft Windows
operating system, learning the basics of the Visual C++ language is no different than learning C++ that is
offered for other platforms. Thus, in this section and throughout the rest of the book, I use C++ as shorthand
for Visual C++. Most of the material in the next section applies to C++ in general and is not specific to Visual
C++. Indeed, except for the Microsoft frameworks and the components of Visual Studio, the basics of the
C++ language apply universally. Let’s learn more about the origins and merits of C++.

The C++ programming language has been around for over 35 years and is one of the most widely used
programming languages among all platforms. There are many reasons for this. C++ was designed to permit
programmers to express hardware, machine, and programming concepts as close to the hardware level as
possible. The C++ language therefore is designed to be both very expressive with concepts close to actual
hardware. Indeed, well-designed and well written C++ applications are typically faster and more efficient
than those written in other languages.® Part of this is due to the fact that C++ can be used to program a wide
array of solutions—from computer games to highly sophisticated scientific analysis applications to device
drivers and even entire frameworks. The longevity of C++ is a testament to the resiliency of the language.

However, there has been some misunderstanding in the history of C++ for which Visual C++ was not
immune. Early releases of the C++ language specification occurred during a time when the C language was
popular. While it is true C++ was based on C and to this day you can use a number of C features (but not
nearly as many now that C++ has evolved from those early days), C++ has become a completely different
language.

The evolution included the addition of static type safety (every object, name, value, etc. must have a
type known at compile time), full object-oriented programming features (classes, inheritance, etc.), and
a host of improvements designed to make programming easier and faster (e.g., the standard template
library). What started out as “C with classes” (circa 1979), which included the beginnings of object-oriented
programming, the language was renamed C++ (circa 1983) to distinguish it from C.

Finally, C++ programs are compiled into executable files. More specifically, the code you write
is translated into binary code for the platform chosen. This is another reason C++ is potentially faster
than other languages because there is not interpreter involved. For example, the Python language is an
interpreted language that, while there is a building stage, the code is turned into an intermediate form that is
platform agnostic, which is then executed by the interpreter. The power of compiling the code directly into
binary code with the gains in speed and efficiency are why many people choose C++ over other languages.

Should you require more in-depth knowledge of C++ (Visual C++), there are a number of excellent
books on the topic. The following is a list of a few of my favorites.

e Beginning C++ by Ivor Horton (Apress, 2014)

e The C++ Programming Language by Bjarne Stroustrup (Addison-Wesley
Professional, 2013)*

e C++ Recipes: A Problem-Solution Approach by Bruce Sutherland (Apress, 2015)

Another excellent resource is Microsoft’s documentation on MSDN. The following are some excellent
resources for learning Visual C++.

e Visual C++ in Visual Studio 2015 (https://msdn.microsoft.com/en-us/
library/60k1461a.aspx)

e C++ Language Reference (https://msdn.microsoft.com/en-us/
library/3bstk3k5.aspx)

*However, I have seen the opposite happen for poorly written code. Language features can never overcome poor
programming.
Creator of the C++ language.

126

https://msdn.microsoft.com/en-us/library/60k1461a.aspx
https://msdn.microsoft.com/en-us/library/60k1461a.aspx
https://msdn.microsoft.com/en-us/library/3bstk3k5.aspx
https://msdn.microsoft.com/en-us/library/3bstk3k5.aspx

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

C++ Crash Course

Now let’s learn some of the basic concepts of C++ programming. You begin with the building blocks of the
language, such as comments, variables, and basic control structures, and then move into the more complex
concepts of data structures and libraries.

While the material may seem to come at you in a rush (hence, the crash part), this crash course on
C++ covers only the most fundamental knowledge of the language and how to use it in Visual Studio. It is
intended to get you started writing C++ Windows 10 IoT Core applications. If you find you want to write
more complex applications than the examples in this book, I encourage you to acquire one or more of the
resources listed earlier to learn more about the intriguing power of C++ programming.

The following sections present many of the basic features of C++ programming that you need to know
in order to understand example projects for Windows 10 IoT Core and vital to successfully implementing the
C++ projects in this book.

The Basics

There are a number of basic concepts about the C++ programming language that you need to know in order
to get started. In this section, I describe some of the fundamental concepts used in C++, including how the
code is organized, how libraries are used, namespaces, and how to document your code. Before you begin,
let’s take a look at a slightly different version of the temperature application you saw in Chapter 4. Listing 5-1
shows the code rewritten slightly to use functions.

Listing 5-1. Temperature Code Example Rewrite

//

// Windows 10 for the IoT

//

// Example C++ console application rewrite.
//

// Created by Dr. Charles Bell

//

#include pch.h

using namespace std;

double convert temp(char scale, double base temp) {
if ((scale == 'c') || (scale == 'C")) {
return ((9.0 / 5.0) * base_temp) + 32.0;
} else if ((scale == 'f') || (scale == 'F")) {
return (5.0 / 9.0) * (base temp - 32.0);
}

return 0.0;

}

int main(int argc, char **argv) {
double temp_read = 0.0;
char scale{'c'};

127

http://dx.doi.org/10.1007/978-1-4842-2108-2_4

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

cout << "Welcome to the temperature conversion application.\n";
cout << "Please choose a starting scale (F) or (C): ";
cin »> scale;
cout << "Please enter a temperature: ";
cin >> temp_read;
if ((scale == 'c') || (scale == 'C")) {
cout << "Converting value from Celsius to Fahrenheit.\n";
cout << temp_read << " degrees Celsius = " <<
convert_temp(scale, temp_read) << " degrees Fahrenheit.\n";
} else if ((scale == 'f') || (scale == 'F')) {
cout << "Converting value from Fahrenheit to Celsius.\n";
cout << temp_read << " degrees Fahrenheit = " <«
convert_temp(scale, temp read) << " degrees Celsius.\n";

} else {
cout << "\nERROR: I'm sorry, I don't understand '" << scale << "'.";
return -1;

}

return 0;

Wow, that’s quite a change! While the functionality is exactly the same, the code looks very different.
The following describe the C++ concepts I have implemented in this example.

Functions

Notice that I've added a new function named convert_temp() that converts the temperature based on the
scale chosen. This effectively moves that logic out of the main() function thereby simplifying the code. This
technique is a key technique you use when writing C++ applications. More specifically, in C++, applications
are always built using functions.

Recall that the main() function is the starting or initial execution for the C++ console project.
Traditional C++ applications (such as the console application) must have a main function.

Notice the main function again. Here you see the function name is preceded by a type (integer).
This tells the C++ compiler that this method returns an integer value. On Windows GUI applications (not
command-line interface applications), it is common practice to not return a value from main() but to be
pedantic; you should do so as I have in the preceding example.

int main(int argc, char **argv)

Next, you see the name, main, followed by a list of parameters enclosed in parenthesis. For the main()
function, the parameters are fixed and are used to store any command line arguments provided by the user.
In this case, you have the number of arguments stored in argc and a list (array) of the arguments stored in
argv (which is actually a double pointer—more on pointers later).

A function in C++ is used as an organizational mechanism to group functionality and make your
programs easier to maintain (functions with hundreds of lines of code are very difficult to maintain),
improves comprehensibility, and localize specialized operations in a single location thereby reducing
duplication.

Functions are used in code to express the concepts of the functionality that they provide. Notice how
Iused the convert_temp() function. Here I declared it as a function that returned a double and takes a
character and a double as input. As you can see, the body of the function (defined inside the curly braces)
uses the character as the scale in the same was as you do in main and uses the double parameter as the
target (or base) temperature to convert.

128

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

Tip Function parameters and values passed must match on type and order when called.

Notice also that I placed it in the line of code that prints the value to the screen. This is a very common
practice in C++ (and other programming languages). That is, you use the function to perform some
operation and rather than store the result in a variable, you use it directly in the statements (code).

Curly Braces

Notice that both methods are implemented with a pair of curly braces that define the body of the function.
Curly braces in C++ are used to define a block of code or simply to express grouping of code. Curly braces
are used to define the body of functions, structures, classes, and more. Notice that you use them everywhere,
even in the conditional statements (see the if statements).

Tip Some C++ programmers prefer to place the starting curly brace on the same line as the line of code
to which it belongs like I did in the example. However, others prefer the open curly brace placed on the next
line. Neither preference matters to the compiler; rather, this is an example of code style. You should choose the
style you like best.

Including Libraries

If you recall from earlier examples, there were some lines of code at the top of the source code that indicated
something was to be included. These are called preprocessor directives and often look like the following.
They are called preprocessor directives because they signal the compilation process to perform some tasks
before the code is compiled.

#include "pch.h"

The directive does what it sounds like: it tells the compiler to include that file along with your source
code. When the compiler encounters this directive, it “includes” that source file with your source code and
compiles it.

The #include directive is one of the fundamental mechanisms that support modularity in C++. That is,
you can create a library of source code that provides some functionality that resides in one or more separate
source code files. Even if you do not create a new library, you can use modularity to split your source
code into separate parts that form some high-level abstraction. More specifically, you would place like
functionality together making the code easier to maintain or allow more than yourself to work on it at the
same time. However, you would not use modularity to separate random sections of code—that would gain
you nothing except confusion as to where the bits of code reside.

The file that the preceding example includes is called a header file. A header file is named .h and
contains only the declaration of the code. You can think of it as a blueprint or pattern for the code. A header
file often contains only the primitives of the code that you will use, hence making it possible for the compiler
to resolve any references to the features in the header file. A separate companion file called the source file is
named .cpp (you can also use . cc, but most prefer . cpp) and contains the actual code for the features. In the
preceding example, there are two files: one named pch.h and the other pch. cpp.

129

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

Using Namespaces

Notice the line of code that begins with using in the example. This is another preprocessor directive.

The using directive tells the compiler that you are using the namespace std. A namespace is a special
organizational feature that allows you to group identifiers (names of variables, constants, etc.) under a group
that is localized to the namespace. Using the namespace tells the compiler to look in the namespace for any
identifier you've used in your code that is not found.

using namespace std;

For example, the following cout statement is included in the std namespace. Had I not added the using
directive, the compiler would not know what cout was. Notice in the second line that I could have included
the namespace std followed by two colons. This tells the compile to look in the std namespace for cout or
more correctly use the cout in the std namespace.

cout << "Hello, World!\n";
std::cout << "Right back at you!";

Namespaces can also help you avoid duplication of identifiers. Had I wanted to, I could have created a
new module (library, source file) that contains a new namespace and reused the cout identifier. However,
care must be taken when reusing identifiers among namespaces because the compiler may not know which
namespace [want to use. Creating namespaces is a bit advanced for a crash course, but I encourage you to
consider using them for applications that grow beyond a single source code and header file.

Finally, namespaces associated with libraries of classes often form hierarchies that you can chain
together. For example, if you wanted to use the namespace inside the Windows Foundations library named
Collections, you would refer to it as follows. This is a very common occurrence in Windows C++ applications.
In fact, you use several namespaces in our example project.

using namespace Windows::Foundation::Collections;

Comments

One of the most fundamental concepts in any programming language is the ability to annotate your source
code with text that not only allows you to make notes among the lines of code does but also forms a way to
document your source code.®

To add comments to your source code, use two slashes, // (no spaces between the slashes). Place them
at the start of the line to create a comment for that line repeating the slashes for each subsequent line. This
creates what is known as a block comment, as shown. Notice that I used a comment without any text to
create whitespace. This helps with readability and is a common practice for block comments.

//

// Windows 10 for the IoT

//

// Example C++ console application rewrite.
//

// Created by Dr. Charles Bell

//

’If you ever hear someone claim, “My code is self-documenting,” be cautious when using his or her code. There is no
such thing. Sure, plenty of good programmers can write code that is easy to understand (read), but all fall short of that
lofty claim.

130

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

You can also use the double slash to add a comment at the end of a line of code. That is, the compiler
ignores whatever is written after the double slash to the end of the line. You see an example of this next.
Notice that I used the comment symbol (double slash) to comment out a section of code. This can be
really handy when testing and debugging, but generally discouraged for final code. That is, don’t leave any
commented out code in your deliverable (completed) source code. If it's commented out, it’s not needed!

if (size < max_size) {
size++;

} //else {

// return -1;

//}

Writing good comments and indeed documenting your code well is a bit of an art form; one that
I encourage you to practice regularly. Since it is an art rather than a science, keep in mind that your
comments should be written to teach others what your code does or is intended to do. As such, you should
use comments to describe any preconditions (or constraints) of using the code, limitations of use, errors
handled, and a description of how the parameters are used and what data is altered or returned from the
code (should it be a function or class member).

Variables and Types

No program would be very interesting if you did not use variables to store values for calculations. Variables
are declared with a type and once defined with a specific type cannot be changed. Since C++ is strongly
typed, the compiler ensures that anywhere you use the variable that it obeys its type. For example, that the
operation on the variable is valid for the type. Thus, every variable must have a type assigned.

There are a number of simple types that the C++ language supports (often called built-in types). They
are the basic building blocks for more complex types. Each type consumes a small segment of memory
which defines not only how much space you have to store a value, but also the range of values possible.®

For example, an integer consumes 4 bytes and you can store values in the range -2,147,483,648 to
2,147,483,647. In this case, the integer variable is signed (the highest bit is used to indicate positive or
negative values). An unsigned integer can store values in the range 0 to 4,294,967,295.

You can declare a variable by specifying its type first and then an identifier. The following shows a
number of variables using a variety of types.

int num_fish = 0; // number of fish caught
double max_length {0.0}; // length of the longest fish in feet
char fisherman[25]; // name of the fisherman

char rod used[40]; // name or type of rod used

Notice also that I have demonstrated how to assign a value to the variable in the declaration. I
demonstrate two widely used techniques: using a simple assignment and using the initialization mechanism
available in C++11 (meaning it is the C++ standard adopted in 2011) and newer.

The assignment operator is the equal sign. All assignments must obey the type rules. That is, I cannot
assign a floating-point number (e.g., 17.55) to an integer value. The C++ initialization mechanism uses curly
braces (called an initializer list) that contain the value you want to assign. The following shows an example.

int x {14};

SFor a complete list, see https://msdn.microsoft.com/en-us/library/s3f49ktz.aspx.

131

https://msdn.microsoft.com/en-us/library/s3f49ktz.aspx

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

Note that you can include the assignment operator with the curly braces (the compile will not
complain) but that is considered sloppy and discouraged. For example, the following code will compile, but
itis considered bad form.
int y = {15};

Table 5-1 shows a list of the commonly used built-in types that you use in your applications.

Table 5-1. Commonly Used Types in C++

Symbol Size in Bytes Range

bool 1 false or true

char 1 -128 to 127 by default

signed char 1 -128to0 127

unsigned char 1 0to 255

short 2 -32,768 to 32,767

unsigned short 2 0to 65,535

int 4 -2,147,483,648 to 2,147,483,647
unsigned int 4 0to 4,294,967,295

long 4 -2,147,483,648 to 2,147,483,647
unsigned long 4 0 to 4,294,967,295

float 4 3.4E +/- 38 (7 digits)

long long 8 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
unsigned long long 8 0to 18,446,744,073,709,551,615
double 8 1.7E +/- 308 (15 digits)

It is always a good practice to initialize your variables when you declare them. It can save you from some
nasty surprises if you use the variable before it is given a value (although the compiler will complain about
this). For example, it is possible for code to work correctly in debug mode (since variables may be initialized
by the debugger) but fail in release mode.

There is also a convenient automatic type keyword (auto) that you can use to permit the compiler to
choose the correct type. This is helpful for things like loops as follows but also helps with maintainability as
well as permitting advanced reuse through templates.

auto j {3}; // integer is used here
for (auto i=0; i < 10; ++i) {
cout << 1+ j << "\n";

}

Here you see you create the variable j with the auto keyword, which given the initialization is an integer
results in j being an integer. Similarly, you use the auto keyword in the for loop counting variable. Since it
was assigned an integer, the variable i will be an integer.

132

Arithmetic

You can perform a number of mathematical operations in C++, including the usual primitives but also
logical operations and operations used to compare values. Rather than discuss these in detail, I provide a

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

quick reference in Table 5-2 that shows the operation and example of how to use the operation.

Table 5-2. Arithmetic, Logical, and Comparison Operators in C++

Type Operator Description Example
Arithmetic + Addition int_var + 1

- Subtraction int var-1

* Multiplication int_var *2

/ Division int_var/3

% Modulus int_var % 4

- Unary subtraction -int_var

+ Unary addition +int_var
Logical & Bitwise and varl&var2

| Bitwise or varl|var2

A Bitwise exclusive varl/var2

~ Bitwise compliment ~varl

&& Logical and varl&&var2

I Logical or varl|[var2
Comparison == Equal exprl==expr2

1= Not equal exprl!=expr2

< Less than exprl<expr2

> Greater than exprl>expr2

<= Less than or equal exprl<=expr2

>= Greater than or equal exprl>=expr2

Bitwise operations produce a result on the values performed on each bit. Logical operators (and, or)

produce a value that is either true or false and are often used with expressions or conditions.

Finally, C++ has a concept called constants, where a value is set at compile time. There are two types
of constants. One, signified by using the const keyword, creates a value (think variable) that will never
be changed. The other, signified by using the constexpr keyword, creates a function whose body or

functionality is evaluated at compile time. The following are examples of constants in C++.

const int fish catch_limit {7};
constexpr double square(double z) { return z*z; } // A constant expression

// Creates a constant variable whose value cannot change

Now that you understand variables and types, the operations permitted on them, and expressions, let’s
look at how you can use them in flow control statements.

133

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

Flow Control Statements

Flow control statements change the execution of the program. They can be conditionals that define gates
using expressions that restrict execution to only those cases where the expression evaluates true (or
negated), special constructs that allow you to repeat a block of code (loops), and the use of functions to
switch context to perform some special operations. You've already seen how functions work so let’s look at
conditional and loop statements.

Conditionals

Conditional statements allow you to direct execution of your programs to sections (blocks) of code based
on the evaluation of one or more expressions. There are two types of conditional statements in C++—the if
statement and the switch statement.

You have seen the if statement in action in our example code. Notice in the example that you can have
one or more (optional) else phrases that you execute once the expression for the if conditions evaluate
to false. You can chain if/else statements to encompass multiple conditions where the code executed
depends on the evaluation of several conditions. The following shows the general structure of the if
statement.

if (expri) {

// execute only if expr1l is true
} else if ((expr2) || (expr3)) {

// execute only if expri is false *and* either expr2 or expr3 is true
} else {

// execute if both sets of if conditions evaluate to false

}

Although you can chain the statement as much as you want, use some care here because the more
else/if sections you have, the harder it becomes to understand, maintain, and avoid logic errors in your
expressions.

If you have a situation where you want to execute code based on one of several values for a variable or
expression that returns a value (such as a function or calculation), you can use the switch statement. The
following shows the structure of the switch statement.

switch (eval) {

case <value1l> :
// do this if eval == valuel
break;

case <value2> :
// do this if eval == value2
break;

default :
// do this if eval != any case value
break; // Not needed, but good form

The case values must match the type of the thing you are evaluating. That is, case values must be same
type as eval. Notice the break statement. This is used to halt evaluation of the code once the case value is
found. Otherwise, each successive case value will be compared. Finally, there is a default section for code
that you want to execute, should eval fail to match any of the values.

134

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

Tip Code style varies greatly in how to space/separate these statements. For example, some indent the
case statements, some do not.

Loops

Loops are used to control the repetitive execution of a block of code. There are three forms of loops that have
slightly different behavior. All loops use conditional statements to determine whether to repeat execution
or not. That is, they repeat as long as the condition is true. The three types of loops are while, do, and for. I
explain each with an example.

The while loop has its condition at the “top” or start of the block of code. Thus, while loops only execute
the body if and only if the condition evaluates to true on the first pass. The following illustrates the syntax
for awhile loop. This form of loop is best used when you need to execute code only if some expression(s)
evaluate to true. For example, iterating through a collection of things those number of elements is unknown
(loop until you run out of things in the collection).

while (expression) {
// do something here
}

The do loop places the condition at the “bottom” of the statement, which permits the body of the loop
to execute at least once. The following illustrates the do loop. This form of loop is handy for cases where you
want to execute code that, depending on the results of that execution, may require repetition. For example,
repeatedly asking the user for input that matches one or more known values repeating the question if the
answer doesn’t match.

do {
// do something here - always done once
} while (expression);

for loops are sometimes called counting loops because of their unique form. The for loop allows you to
define a counting variable, a condition to evaluate, and an operation on the counting variable. More specifically,
for loops allow you to define stepping code for a precise number of operations. The following illustrates the
structure of the for loop. This form of loop is best used for a number of iterations for a known number (either at
run time or as a constant) and commonly used to step through memory, count things, and so forth.

for (<init> ; <expression> ; <increment>) {
// do someting

}

The <init> section or counting variable declaration is executed once and only once. The <expression>
is evaluated on every pass. The <increment> code is executed every pass except the last. The following is an
example for loop.
for (int i; i < 10; i++) {

// do something here
}

Now let’s look at some commonly used data structures.

135

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

Basic Data Structures

What you have learned so far about C++ allows you to create applications that do simple to moderately
complex operations. However, when you start needing to operate on data (either from the user or from
sensors and similar sources), you need a way to organize and store data and operations on the data in
memory. The following introduces three data structures in order of complexity: arrays, structures, and
classes.

Arrays allocate a contiguous area of memory for multiple storage of a specific type. That is, you can store
several integers, characters, and so forth, set aside in memory. Arrays also provide an integer index that you
can use to quickly access a specific element. The following illustrates how to create an array of integers and
iterate through them with a for loop. Array indexes start at 0.

int num_array[10] {o,1,2,3,4,5,6,7,8,9}; // an array of 10 integers
for (int i; i < 10; ++i) {
cout << "num array[" << i << "] =" << num_array[i] << "\n";

}

Notice the ++i in the for loop. This is a shorthand fori = i + 1 and is very common in C++. You can
also define multiple dimensional arrays (arrays of arrays). Arrays can be used with any type or data structure.

If you have a number of data items that you want to group together, you can use a special data structure
called, amazingly, struct. A struct is formed as follows.

struct <name> {
// one or more declarations go here

};

You can add whatever declarations you want inside the struct body (defined by the curly braces). The
following shows a crude example. Notice that you can use the structure in an array.

struct address {
char first name[30];
char last_name[30];
int street_num;
char street name[40];
char city[40];
char state[2];
char zip code[12];

};
address address_book[100];

Arrays and structures can increase the power of your programs by allowing you to work with more
complex data types. However, there is one data structure that is even more powerful: the class.

A class is more than a simple data structure. You use classes to create abstract data types and to model
concepts that include data and operations on data. Like structures, you can name the class and use that
name to allocate (instantiate) a variable of that type. Indeed, structs and classes are closely related.

You use classes to break your programs down into modules. More specifically, you place the definition
of a class in a header file and the implementation in a source file. The following shows the header file
(myclass.h) for a simple and yet trivial class to store an integer and provide operations on the integer.

136

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

class MyClass {
public:
MyClass();
int get num();
void inc();
void dec();
private:
int num;

};

Notice several things here. First, the class has a name (MyClass), a public section where anything in
this area is visible (and usable) outside of the class. In this case, there are three functions. The function with
the same name as the class is called a constructor, which is called whenever you instantiate a variable of the
class (type). The private section is only usable from functions defined in the class (private or public).

The source code file (myclass.cpp) is where you implement the methods for the class as follows.

#include "myclass.h"
MyClass::MyClass() {

num = 0;

}

int MyClass::get num() {
return num;

}

void MyClass::inc() {
+Hnum;

}

void MyClass::dec() {
--num;

}

Notice that you define the methods in this file prefixed with the name of the class and two colons
(MyClass: :). While missing in this example, you can also provide a destructor (noted as “MyClass) that is
executed when the class instantiation is deallocated. Finally, notice at the top is the #include preprocessor
directive to include the header file so that the compiler knows how to compile this code (using the class
header or declaration). You can then use the class in the program, as follows.

#include <iostream>
#include "myclass.h"

using namespace std;

int main(int argc, char **argv) {
MyClass c = MyClass();
c.inc();
c.inc();
cout << "contents of myclass:

<< c.get_num() << "\n";

137

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

Notice how you use the class. This is actually allocating memory for the class—both data and
operations. Thus, you can use classes to operate on things or provide functionality when you need it saving
you time and making your programs more sophisticated. Classes are used to form libraries of functionality
that can be reused. Indeed, you have entire suites of libraries built using classes.

As you may have surmised, classes are the building block for object-oriented programming and as you
learn more about using classes, you can build complex libraries of your own.

Pointers

Pointers are one of the most difficult things for new programmers to understand. However, the following
attempts to explain the basics of using pointers. There is a lot more that you can do with pointers, but this is
the fundamental concept of simple pointers.

A pointer (also called a pointer variable) stores the memory address of variable or data. Thus, a pointer
“points to” a section of memory. You declare by type and the * symbol. All pointers must be typed and any
operation on what the pointer points to must obey the condition of that type. When you access the thing
the pointer “points to’, you call that dereferencing and use the * symbol to tell the compiler you want the
value of the thing the pointer is “pointing to.”” The following shows how you can declare a pointer and then
dereference it. Note that you expect int_ptr to be assigned a value; otherwise, the code may not compile or
exhibit side effects.

int *int_ptr; // pointer to an integer
int i = *int_ptr; // Store what int ptr is pointing to

To store an address in a pointer variable, you use the & symbol (also called the address of operator). The
following shows an example.

int *int_ptr = &i; // Store address of i in int_ptr

You can perform arithmetic and comparison on pointers. You can add or subtract an integer to change
the address of the pointer (the actual value of the pointer variable, not the thing the pointer points to)
by multiples of the size of the type. For example, adding 1 to an integer pointer advances (increases) the
memory value by 4 bytes.

You can also compare pointers to determine equality and subtract one pointer from another to find
distance (in bytes) between the pointers. This could be handy for calculating distance for contiguous
memory segments. When performing arithmetic on pointers, you should use parenthesis to avoid nasty
mistakes with operator precedence. For example, the following code is not equivalent. The second line
increments the thing that the pointer points to, but the third line increments the value of the pointer variable
(memory address). Be careful when performing math on pointers, because you could unexpectedly end up
dereferencing portions of memory.

*int_ptr = 10; // set the thing that the pointer points to = 10

i = *int_ptr + 1; // add one to the thing that the pointer points to

i = *(int_ptr + 1); // add 4 bytes to the pointer variable (size of integer) - ERROR?
points to nowhere!

Finally, always use nullptr to initialize a pointer variable when the address is not known, as follows.

int *int_ptr {nullptr};

'I think you get the point.

138

CHAPTER 5 ° WINDOWS 10 I0T DEVELOPMENT WITH C++

Now that you know how to declare pointers, dereference them to retrieve the value of the thing the
pointer points to and to find the address to store in a pointer variable, let’s see pointers in action. The
following demonstrates how pointers are used. What follows is an overly simplified example where the
memory locations use fictitious values but it illustrates the concept of pointers as memory addresses. You
will follow several code statements as they execute.

; ” Memory

int i {17}: ;

1 3 . Ox100 Ox101 0x102 o103)

int *int ptrl {&i}: i — —~ e
LU] D00 Ox00 ()

int *int_ptr2 {pullptr}; uu u

ink.3:

Ox104
// What happens?
j = *int_ptrl + 1;

Ox105 0x106 0x107 i
‘ e I . I | |
*int_ptrl++;

int_ptr2 = &j;
*int_ptr2--;

Figure 5-1. Pointer Illustration: initial state

Note The values shown are in hexadecimal and shown using only two bytes for integers and pointers to
integers. You also show data saved with the low byte first.

Take a few moments to study the drawing until you are confident you see how each value is stored. Here
you see you have two integer variables and two pointers to integer variables. The drawing shows how each is
allocated in memory. Notice that you see the variable i is stored in memory (at address 0x100) with the value
17, the first integer pointer stored with a value of i (stored in memory location 0x102), the second integer
pointer stored with the value of nullptr (stored in memory location 0x104), and the integer variable j (at
address 0x106) stored without an initial value.

Now let’s see what happens when the first line of code is executed. Figure 5-2 shows the results in our
fictional memory space.

int i (17});
int *int_ptrl {&i};
int *int_ptr2 {nullptr};
ok 3¢
// What happens?
‘.j - int ptrl + 1;
int_ptr2 = &j;
*int_ptrl++;
*int_ptr2--;

Figure 5-2. Pointer illustration: step 1

139

CHAPTER 5 WINDOWS 10 IOT DEVELOPMENT WITH C++

Here you see that the variable j was assigned the value dereferenced from int_ptri plus one. To
execute this statement, the compiler dereferenced int_ptr1 by using its value (memory address 0x100) to
get the value from that memory location (0x11) and then adding 1 (0x12) and storing it in memory.

Now let’s see what happens when you execute the next statement. Figure 5-3 shows the results in our
fictional memory space.

Memory

int i {17);
5 2 0x100 4 | Ox101 _ 102 -

0x103
int *int_ptrl {&i}; - — S | F—
\nt e pbed (GullpEE): mumu
w106

int 3;

// What happens?

ji = Aint pErd #1;
'int_ptrz = &3j;

*int ptrl++;

*int ptr2--;

0x107

Figure 5-3. Pointer illustration: step 2

Here you see the address of the variable j (0x104) is stored in the pointer variable int_ptr2 (located at
memory address 0x014).

If you are following along and the change to the drawing makes sense, you are seeing and
comprehending how pointers work. If you are not entirely certain the drawing is correct, take a few moments
and work through the figures and code again until you are convinced it is working correctly. If you are in this
frame of mind, do not be disappointed (or frustrated) as learning how pointers work takes some time to get
your mind around. These figures are designed to help you understand how they work. Just make sure you
see how the values are changing before proceeding.

Tip There are entire books written about pointers! If you want a more in-depth look at pointers or want to
dive into the details of how to use pointers, see the book Understanding and Using C Pointers by Richard Reese
(O'Reilly, 2013). The book was written for C programmers, and although some of the data is outdated, it is an
excellent study on pointers.

Now let’s see what happens when you execute the next statement. Figure 5-4 shows the results in our
fictional memory space.

Memory
int i {17}
. . . 0x100 l- 0x101 0x102 0x103
int *int_ptrl {&i}; [i : i
Ox12 Ox00 Ox00 Ox0:
int *int_ptr2 {nullptr}; “’ uw
ANt J i —

0x105 0x106 w107
// What happens? - : : ;

J = #*int ptrl + 1;

int ptr2 = &j;
*int_ptrl++; // *(int_ptri++)
*int_ptr2--;

Figure 5-4. Pointer illustration: step 3
140

CHAPTER 5 ° WINDOWS 10 I0T DEVELOPMENT WITH C++

Here you see the statement executed increments the value that int_ptr1 points to by 1 (the ++
operator). In the drawing, you see the compiler dereferences int_ptr1 (which contains the memory address
of 0x100) and added 1 to it. Thus, the value 17 (0x11) becomes 18 (0x12).

Tip There is one more pointer-related concept that you will encounter—the hat or caret symbol (*). Visual
C++ as a special pointer handler that automatically destroys the allocated memory when it is no longer in use
uses this symbol. For more information about the caret symbol and objects, see https://msdn.microsoft.
com/en-us/library/yk97tc08.aspx.

Now let’s see what happens when you execute the last statement. Figure 5-5 shows the results in our
fictional memory space.

Memory

int. i {17}
int *int ptrl {&i};
int. *int_ptr2 {nullptx}: M_H*u
int 3;
// What happens?

J = *int ptrl +1;

Ox100 ¢ Ox101 x102 Ox103

Ox104 0x105 Ox106 0107

int_ptr2 = &j;
*int ptrl++;
‘ *int ptr2--;

Figure 5-5. Pointer illustration: step 4

Here you see a very similar operation take place as the last statement only this time you decrement the
value. You see the statement executed decrements the value that int_ptr2 points to by 1 (the -- operator).

In the drawing, you see the compiler dereferences int_ptr2 (which contains the memory address of 0x106)
and subtracted 1 from it. Thus, the value 18 (0x12) becomes 17 (0x11).

Wow! That was a wild ride, wasn'’t it? I hope that this short crash course in C++ has explained enough
about the sample programs shown so far that you now know how they work. This crash course also forms the
basis for understanding the other C++ examples in this book.

OK, now it’s time to see some of these fundamental elements of C++ in action. Let’s look at the blink an
LED application you saw in Chapter 3 only this time you're going to write it for Windows 10 IoT Core!

Blink an LED, C++ Style

OK, let’s write some C++ code! This project is the same concept as the project from Chapter 3 where you
used Python to blink an LED on your Raspberry Pi. Rather than simply duplicate that project, you'll mix it
up a bit and make this example a headed application (recall that a headed application has a user interface).
The user interface presents the user with a greeting, a symbol that changes color in time with the LED, and a
button to start and stop the blink timer.

Rather than build the entire application at once by presenting you a bunch of code, you will walk
through this example in two phases. The first phase builds the basic user interface. The second phase adds
the code for the GPIO. By using this approach, you can test the user interface on your PC, which is really
convenient.

141

https://msdn.microsoft.com/en-us/library/yk97tc08.aspx
https://msdn.microsoft.com/en-us/library/yk97tc08.aspx
http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://dx.doi.org/10.1007/978-1-4842-2108-2_3

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

Recall that the PC does not support the GPIO libraries (there is no GPIO!) so if you built the entire
application, you would have to test it on the device, which can be problematic if there are serious logic errors
in your code. This way, you can ensure that the user interface is working correctly and therefore eliminate
any possible issues in that code before you deploy it.

Before you get into the code for the user interface, let’s see what components you will use and then set
up the hardware.

Required Components

The following lists the components that you need. All of these are available in the Microsoft Internet of
Things Pack for the Raspberry Pi from Adafruit. If you do not have that kit, you can find these components
separately on the Adafruit web site (adafruit.com), from SparkFun (sparkfun.com), or any electronics store
that carries electronic components.

e 560 ohm 5% 1/4W resistor (green, blue, brown stripes®)
e Diffused 10mm red LED (or similar)
e Breadboard (mini, half, or full sized)

¢ (2) male-to-female jumper wiresYou may notice that this is the same set of
components you used in Chapter 3.

Set up the Hardware

Begin by placing the breadboard next to your Raspberry Pi. Power off the Raspberry Pi, orienting it with the
label facing you (GPIO pins in the upper left). Next, take one of the jumper wires and connect the female
connector to pin 6 on the GPIO. The pins are numbered left-to-right starting with the lower-left pin. Thus,
the left two pins are 1 and 2 with pin 1 below pin 2. Connect the other wire to pin 7 on the GPIO.

Tip The only component that is polarized is the LED. The longer side is the positive side.

Next, plug the resistor into the breadboard with each pin on one side of the center groove. You can
choose whichever area you want on the breadboard. Next, connect the LED so that the long leg is plugged
into the same row as the resistor and the other pin on another row. Finally, connect the wire from pin 6 to
the same row as the negative side of the LED and the wire from pin 7 to the row with the resistor. Figure 5-6
shows how all of the components are wired together. Be sure to study this drawing and double-check your
connections prior to powering on your Raspberry Pi. Once you're satisfied that everything is connected
correctly, you're ready to power on the Raspberry Pi and write the code.

Shttps://en.wikipedia.org/wiki/Electronic_color_code

142

http://dx.doi.org/10.1007/978-1-4842-2108-2_3
https://en.wikipedia.org/wiki/Electronic_color_code

CHAPTER 5 ° WINDOWS 10 I0T DEVELOPMENT WITH C++

;

Raspberry Pi
Model B

)
I I R I)
sseesssssssnsgene

R]
R R R A A A
R R R A A
I A A B A

R
R R A A
R R A T A R Y

Figure 5-6. Wiring the LED to a Raspberry Pi

Since you are building a headed application, you'll also need a keyboard, mouse, and monitor
connected to the Raspberry Pi.
OK, now that you have your hardware set up, it’s time to start writing the code.

Write the Code: User Interface

Begin by opening a new project template. Choose C++ » Windows » Universal in the tree and the

Blank Application template in the list. This template creates a new solution with all of the source files and
resources you need for a UWP headed application. Figure 5-7 shows the project template that you need. Use
BlinkCPPStyle for the project name.

143

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

Rcent NET Framework 452 = Sort by: | Default - nt = t . P -

4 Irstalled e
o "] Blank App (Universal Windows) Visual C++
L
Templates
YA
DirectX 11 App (Universal Windkows) Visual C++
% L'] pp (Universal .’ "
4 Windows o
Universal FJ DirectX 12 App (Universal Windows, Visual C+
LA .4
- 1..J Dérect 11 and XAML App (Universal Windows) Visual C+ s
-
: Unilt Test App (Universal Windows Visual C++
General R
0 DL (Universal Windows Wisual C++
MEC ,\‘“ DLL (Universal Windows| Visual
Test st
| Static Library [Universal Windows) Visual C++
Win32 L[]
Cross Platform nq‘ W " . Wind " .
Windows Runtime Component (Universal Windows) fisual C+ +
k> ! 5 Co ersal o ual
b Other Langu 2]
b Other Project Types
b Online
Narme BlinkCPPStyle
Location: Ausers\chudddocumentsivisual studio 2015\Projects -
Sobution name: [] Create directory for sakution

[] Add to source control

Figure 5-7. New Project dialog: blank application

A number of files have been created. First, add the XAML code in the MainPage.xaml file. Listing 5-2
shows the bare XAML code placed in the file by default. I've added a note that shows where add new code.

Listing 5-2. Bare XAML code (MainPage.xaml)

<Page
x:Class="BlinkCPPStyle.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:BlinkCPPStyle"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
--> Our code goes here.
</Grid>

</Page>

Recall that the XAML file is used to define a user interface in a platform independent way using an
XML-like language. In this project, I demonstrate some the more basic controls: a text box, a button, and an
ellipse (circle) placed inside a special control called a stacked panel. The stacked panel allows you to arrange
the controls in a vertical “stack,” making it easier to position them. As you can see in the listing, you want to
place your XAML user interface items in the <Grid></Grid> section.

In this example, you want a text box at the top, a circle (ellipse) to represent the LED that you use to turn
on (change to green) and off (change to gray) to correspond with the hardware on/off code that you will add
later. You also need a button to toggle the blink operation on and off. Finally, you'll add another text box to
allow you to communicate with the user about the state of the GPIO code (that you'll add later).

144

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

Now let’s add the code. Since the stacked panel is a container, all of the controls are placed inside it.
Listing 5-3 shows the code that you want to add (shown in bold).

Listing 5-3. Adding XAML Code for the User Interface: MainPage.xaml

<Page
x:Class="BlinkCPPStyle.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:BlinkCPPStyle"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<StackPanel Width="400" Height="400">
<TextBlock x:Name="title" Height="60" TextWrapping="Nolrap"
Text="Hello, Blinky C++ Style!" FontSize="28" Foreground="Blue"
Maxrgin="10" HorizontalAlignment="Center"/»
<Ellipse x:Name="led_indicator" Fill="LightGray" Stroke="Gray" Width="75"
Height="75" Margin="10" HorizontalAlignment="Center"/»
<Button x:Name="start_stop_button" Content="Start" Width="75" ClickMode="Press"
Click="start_stop_button_Click" Height="50" FontSize="24"
Maxgin="10" HorizontalAlignment="Center"/>
<TextBlock x:Name="status" Height="60" Texthirapping="NolWrap"
Text="Status" FontSize="28" Foreground="Blue"
Maxgin="10" HorizontalAlignment="Center"/>
</StackPanel>
</Grid>
</Page>

Notice the button control. Here you have an event that you want to associate with the button named
start_stop_button_Click, which you assigned via the Click attribute. That is, when the user clicks it, a
method named start_stop button Click() is called.

XAML provides a great way to define a simple, easy user interface with the XML-like syntax. However,
it also provides a mechanism to associate code with the controls. The code is placed in another file called
a source-behind file, including a header and source file named MainPage.xaml.h and MainPage.xaml.cpp.
Recall that you place declarations in the header file and the body of the code in the source file.

If you were typing this code in by hand, you notice a nifty feature of Visual Studio—context-sensitive
help called IntelliSense that automatically completes the code you're typing and provides drop-down lists of
choices. For example, when you type in the button control and then type Click=, a drop-down box appears,
allowing you to create the event handler (a part of the code that connects to the XML). In fact, it creates the
code in the MainPage.xaml.cpp (and MainPage.xaml.h) file for you. If you copy and pasted the code, you
would not get this option and would have to type in the code manually. However, I will show you the code so
that you can complete it yourself.

Let’s see the code for the button control starting with the header file (MainPage.xaml.h). Listing 5-4
shows the code you need to add in bold. Notice that you place everything in the private section because it is
only used by the BLinkCPPStyle (application) class.

145

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

Listing 5-4. Adding the Declarations: MainPage.xaml.h

//

// MainPage.xaml.h

// Declaration of the MainPage class.
//

#pragma once
#include "MainPage.g.h"

namespace BlinkCPPStyle

{
/// <summary>
/// An empty page that can be used on its own or navigated to within a Frame.
/// </summary>

public ref class MainPage sealed
{
public:
MainPage();
private:
// Add references for color brushes to paint the led_indicator control
Windows: :UI: :Xaml: :Media::SolidColoxrBrush “greenFill_ =
ref new Windows::UI::Xaml::Media::SolidColoxBrush(Windows: :UI::Colors::Green);
Windows: :UI::Xaml::Media::SolidColorBrush “grayFill_ =
ref new Windows::UI::Xaml::Media::SolidColoxBrush(Windows::UI::Colorxs::LightGray);

// Add the start and stop button click event header
void start_stop_button_Click(Platform::0bject" sender,
Windows: :UI: :Xaml: :RoutedEventArgs” e);

// Variables for blinking
bool blinking{ false };

b

OK, there are a few extra bits here that may not be very obvious why they’re here. Recall that you want
to paint the LED control green and gray for on and off. To do that, you need a reference to the green and gray
brush resources. Thus, I create a new object (using the caret for cleanup) from the Windows user interface
colors namespace. This is a common way to express brushes for painting controls (but not the only way).

You also add the header for the button click event—start_stop button Click() as well as a boolean
member variable that you use to trigger the LED timer.

Let’s see the source code file (MainPage.xaml.cpp) where you use these variables and fill in the code for
the event. Again, only the code in bold is new. The project template provided the rest of the code.

Listing 5-5. Adding Code for the Event: MainPage.xaml.cpp

//

// MainPage.xaml.cpp

// Implementation of the MainPage class.
//

146

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

#include "pch.h"
#include "MainPage.xaml.h"

using namespace BlinkCPPStyle;

using namespace Platform;

using namespace Windows::Foundation;

using namespace Windows::Foundation::Collections;
using namespace Windows::UI::Xaml;

using namespace Windows::UI::Xaml::Controls;
using namespace Windows::UI::Xaml::Controls::Primitives;
using namespace Windows::UI::Xaml::Data;

using namespace Windows::UI::Xaml::Input;

using namespace Windows::UI::Xaml::Media;

using namespace Windows::UI::Xaml::Navigation;

// The Blank Page item template is documented at http://go.microsoft.com/fwlink/?LinkId=402
3528clcid=0x409

MainPage: :MainPage()
{

}
void BlinkCPPStyle::MainPage: :start_stop_button_Click(Platform::0bject" sender,

Windows: :UI: :Xaml: :RoutedEventArgs” e)

InitializeComponent();

{
blinking = !blinking;
if (blinking) {
led_indicator->Fill = greenFill_;
start_stop_button-»Content = "Stop";
}
else {
led_indicator-»>Fill = grayFill ;
start_stop_button->Content = "Start";
}
}

Notice that you added code that inverts the blinking variable (toggles between false and true) and
depending on the value, you turn the led indicator control green (meaning the LED is on) or gray (meaning
the LED is off). You also change the label of the button to correspond with the operation. That is, if the
button is labeled Start, the LED indicator is off and when clicked, the label changes to Stop and the LED
indicator is turned on.

That’s it! You've finished the user interface. Go ahead and build the solution, correcting any errors that
may appear. Once compiled, you're ready to test it.

Test and Execute: User Interface Only

That was easy, wasn't it? Better still, since this is a Universal app, you can run this code on your PC. To do
s0, choose debug and x86 (or x64 for 64-bit machines) from the platform box and press Ctrl+F5. Figure 5-8
shows an excerpt of the output (just the controls itself).

147

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

Hello, Blinky C++ Style!

Start

Status

Figure 5-8. The user interface: timer off

Figure 5-8 shows what happens when you click the button. Cool, eh?

Hello, Blinky C++ Style!

Stop

Status

Figure 5-9. The user interface: timer on

You may be wondering where the blink part is. Well, you haven’t implemented it yet. You will do that in
the next phase.

Add the GPIO Code

Now, let’s add the code to work with the GPIO header. For this phase, you cannot run the code on your PC
because the GPIO header doesn’t exist, but you can add code to check the GPIO header status—hence, the
extra text box in the interface.

Note The following is a bit more complicated and requires changes to the header and source files. Thus, |
will walk through the code changes one part at a time.

Let’s start with adding the resource you need to access the GPIO header. Right-click the References in
the project and choose Add Reference.... When dialog opens, choose Universal Windows » Extensions
from the tree view and Windows IoT Extensions for the UWP from the list. This allows you to include
additional namespaces for the GPIO. Figure 5-10 shows the resources dialog with the item selected.

148

CHAPTER 5 ° WINDOWS 10 I0T DEVELOPMENT WITH C++

4 Universal Windaws Filtered to: SDKs applicable to BinkCPPStyle W P -

Extensions.

Recent

Browse

Projects

Shared Projects

Yesktop Extensions for the LIWP
) Windbows loT Extensions for the UWP 10.0.105.
g i i :

[(Bowse. |[ok |[concel

Figure 5-10. Adding a new resource

Notice on my system there are two entries: one for each version of the libraries I have loaded. You may
only see the one entry. Click OK once you have the item selected.

Tip Henceforth, for brevity, | present excerpts of the files that you will be editing.

Now, let’s add the headers you need in the header file (MainPage.xaml.h). The following shows the
code you need to add. Here you add a new method to initialize the GPIO: InitGPIO(), a new event named
OnTick(), which you use with the timer object, a reference to the timer object, a variable to store the pin
value, and finally, a constant set to GPIO 4 (hardware pin #7) and a pointer handler to a pin variable. Notice
that the use of underscore for class member names. This is an optional but normal practice.

// Add a constructor for the InitGPIO class
void InitGPIO();

// Add an event for the timer object
void OnTick(Platform::0Object “sender, Platform::Object “args);

// Add references for the timer and a variable to store the GPIO pin value
Windows::UI::Xaml::DispatcherTimer “timer_;
Windows: :Devices: :Gpio: :GpioPinValue pinValue = Windows::Devices::Gpio::GpioPinValue: :High;

// Variables for blinking

bool blinking{ false };

const int LED PIN = 4; // physical pin#7
Windows: :Devices: :Gpio: :GpioPin” pin_;

Now let’s see the code for the new event (in MainPage.xaml.cpp). You begin by adding some

namespaces, as shown follows. The new ones are in bold. Here you added namespaces for enumeration, the
GPIO, and concurrency (for the timer).

149

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

using namespace Windows::UI::Xaml::Media;

using namespace Windows::UI::Xaml::Navigation;

using namespace Windows::Devices::Enumeration; // Add this
using namespace Windows::Devices::Gpio; // Add this
using namespace concurrency; // Add this

Next, you need to add some code to the constructor for the MainPage class as follows. I show the lines
you add in bold. Notice that you have a new syntax, namely the use of ref new, which creates a new instance

of the DispatcherTimer class.

MainPage: :MainPage()

{
InitializeComponent();
InitGPIO();
if (pin_ != nullptr) {
timer_ = ref new DispatcherTimer();
TimeSpan interval;
interval.Duration = 500 * 1000 * 20;
timer_-»>Interval = interval;
timer_-»>Tick += ref new EventHandler<Object ~»>(this, &MainPage::OnTick);
}
}

You have added a bit of code here to set up the GPIO header calling the new method (you'll add
that shortly), and code that checks to see if the pin variable is allocated (has a value), you instantiate the
DispatcherTimer class, set an interval, and add the event handler named OnTick.

Next, let’s add the new InitGPIO() method. You can place this after the constructor or at the end of the
file as follows. You use a new syntax, -> (arrow), that dereferences a pointer to access a method or attribute.

void MainPage::InitGPIO()

{
auto gpio = GpioController::GetDefault();
if (gpio == nullptr) {
pin_ = nullptr;
status->Text = "No GPIO Controller!";
return;
}
pin_ = gpio->OpenPin(LED_PIN);
pin_->Write(pinValue);
pin_->SetDriveMode(GpioPinDriveMode: :Output);
status->Text = "You're good to go!";
}

OK, there’s some stuff going on here. Like the constructor, you check the status of the GPIO but this time
if the GPIO is null (nullptr), you set the text of the status text box with an error. This shows how easy it is to
add code to affect the XAML controls. You also see code to open the GPIO pin, set a value (in this case, high
or positive voltage), set the mode, and then update the status text box with a success message.

150

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

Next, you need to complete the OnTick() method code as follows.

void MainPage::0nTick(Object “sender, Object “args)
{
if (pinValue == Windows::Devices::Gpio::GpioPinValue::High) {
pinValue_ = Windows::Devices::Gpio::GpioPinValue::Low;
pin_->Write(pinvalue_);
led_indicator->Fill = grayFill ;
} else {
pinValue = Windows::Devices::Gpio::GpioPinValue::High;
pin_->Write(pinvalue_);
led_indicator->Fill = greenFill ;

Here is where the real operation of the code happens. In this code, if the pin is set to high (on), you set
it to low (off), and paint the LED control gray. Otherwise, you set the pin to high (on) and paint the LED
control green.

Note You could change this color to match the color of your LED if you wanted. Just remember to change
the brush accordingly in the header file.

Finally, you need to add code to the start_stop_button Click() method to start and stop the timer.
The changes are in bold.

void BlinkCPPStyle::MainPage::start stop button Click(Platform::0Object” sender, Windows::UI:
:Xaml::RoutedEventArgs” e)

{
blinking = !blinking;
if (blinking) {
timer_-»Start();
led indicator->Fill = greenFill ;
start_stop_button->Content = "Stop";
} else {
timer_-»Stop();
led_indicator->Fill = grayFill ;
start_stop button->Content = "Start";
}
}

That’s it! Now, let’s build the solution and check for errors. You should see something like the following
in the output window.

1>------ Build started: Project: BlinkCPPStyle, Configuration: Debug Win32 ------
1> pch.cpp

1> App.xaml.cpp

1> MainPage.xaml.cpp

1> XamlTypeInfo.Impl.g.cpp

1> XamlTypeInfo.g.cpp

151

CHAPTER 5 © WINDOWS 10 10T DEVELOPMENT WITH C++

1> Creating library c:\users\chuck\documents\visual studio 2015\Projects\BlinkCPPStyle\
Debug\BlinkCPPStyle\BlinkCPPStyle.lib and object c:\users\chuck\documents\visual studio
2015\Projects\BlinkCPPStyle\Debug\BlinkCPPStyle\BlinkCPPStyle.exp

1> BlinkCPPStyle.vcxproj -> c:\users\chuck\documents\visual studio 2015\Projects\
B1inkCPPStyle\Debug\BlinkCPPStyle\BlinkCPPStyle.exe

1> BlinkCPPStyle.vcxproj -> c:\users\chuck\documents\visual studio 2015\Projects\
BlinkCPPStyle\Debug\BlinkCPPStyle\BlinkCPPStyle.pdb (Partial PDB)

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

OK, now you're ready to deploy the application to your device. Go ahead—set up everything and power
on your device.

Deploy and Execute: Completed Application

Once you're code compiles, you're ready to deploy the application to your Raspberry Pi (or other device).
Recall from Chapter 4, you have to set up the debug settings to specify the IP address of your Raspberry Pi.
Fortunately, unlike the console application, you only have to change two items as indicated in Figure 5-11.
Remember to choose ARM for the platform. Click Apply and then OK to close the dialog.

BlinkCPPStyle Property Pages 7 x
Configuration: Debug ~ | Platform: ARM . Configuration Manager...
4 Configuration Properties Debugger to launch:
(;:;E‘al . Remote Machine ~
ugging
VC++ Directories
b C/C++ Launch Application Yes
b Linker Allow Local Network Loopback Yes
b Manifest Tool Debugger Type Native Only
b XML Docurment Generator Machine Name 10.0.1.89:8116
3 e Authentication Type Mo Authentication
! o Deploy Visual C++ Debug Runtime Librari Yes

b Browse Information
G Amp Default Accelerator WARP software accelerator
P Build Events

b Custom Build Step
b Code Analysis

Launch Application
Specifies whether to launch my application immediately or wait to debug my application when it starts running.

o | S

Figure 5-11. Setting Debug Settings for Deployment

Next, you should also name your application so that you can recognize it on the device. Double-click
the Package.appxmanifest file. You see a new tabbed window open in the IDE. Click the Packaging tab and
change the name of the application, as shown in Figure 5-12. You do this so that the application shows up in
the application list on the device. Otherwise, you would get a strange name that is not readily recognizable.

152

http://dx.doi.org/10.1007/978-1-4842-2108-2_4

CHAPTER 5 © WINDOWS 10 I0T DEVELOPMENT WITH C++

The properties of the deployment package for your app are contained in the app manifest file. You can use the Manifest Designer to set or modify one or more of the properties
Application Visual Assets Capabilities Declarations Content URls Packaging
Package name: BlinkCPPStyle

Package display name: | BlinkCPPStyle

Thaor Thnor: Huna
Version: 1 0 0 More information
Publisher: Choose Certificate...
Publisher display name: | Chuck

Package family name:

Figure 5-12. Setting Package Name

Once you have these set, you can power on your Raspberry Pi, and once it is booted, go to the Windows
Device Portal and turn on the remote debugger, as shown in Figure 5-13.

B pebug x = o x
o O 100189 | = @ O
o) O =) 200 PM
Debug Shutdown Restart Feedback Help 47372016

[start visual Studio Remote Debugger

Start

Figure 5-13. Turning on the Remote Debugger

Now you can deploy the application from the Build menu. When complete, you'll get messages like the
following from the Output window.

1>------ Deploy started: Project: BlinkCPPStyle, Configuration: Debug ARM ------
1>Creating a new clean layout...

1>Copying files: Total 2 mb to layout...

1>Checking whether required frameworks are installed...

1>Registering the application to run from layout...

1>Deployment complete (25198ms). Full package name: "BlinkCPPStyle 1.0.0.0_
arm__2v0q544fdcgac”

Notice the name that you were shown. This is the name that appears on your device. Go back to the
Device Portal, click Apps, and then choose the application in the drop-down list and click Run. Figure 5-14
shows the settings.

153

CHAPTER 5 WINDOWS 10 10T DEVELOPMENT WITH C++

B App Manager * 4 — 5 "
< O 100.1.89 & S
O O B8 ? 822 PM
App Manager IE TN (I e e sam
i< Installed apps

i Apps

- BlinkCPPStyle_1.0.0.0_arm__2vigS4didegdc Remove Start Set Default

Figure 5-14. Starting an application on the device

Note If the app deployed successfully but doesn’t show in the drop-down list, try disconnecting and
reconnecting. If that doesn’t work, try rebooting your device.

You should soon see the application start on your device. Go ahead—click the start/stop button
and observe the application running. The LED on the breadboard should blink in unison with the LED
represented in the user interface. Play with it until the thrill dissipates.

If the LED is not blinking, double-check your wiring and ensure that you chose pin 4 in the code and
pin 7 on the pin header (recall that the pin is named GPIO 4, but it is pin #7 on the header).

You can stop the application in the Device Portal by clicking the Remove button, as shown in the
Figure 5-14. And that’s it! Congratulations, you've just written your first C++ application that uses the GPIO
header to power some electronics!

Tip As a challenge, you can modify this project to add a Close or an Exit button to stop the application.

Summary

If you are learning how to work with Windows 10 IoT Core and don’t know how to program with C++,
learning C++ can be a daunting challenge. While there are many examples on the Internet you can use, very
few are documented in such a way as to provide enough information for someone new to C++ to understand
or much less get started or even compile and deploy the sample!

This chapter has provided a crash course in Visual C++ that covers the basics of the things you
encounter when examining most of the smaller example projects. You discovered the basic syntax and
constructs of a Visual C++ application, including a walk-through of building a real C++ application that
blinks an LED. Through the course of that example, you learned a little about XAML, including how to wire
events to controls, and even a little about how to use the dispatcher timer.

In the next chapter, you discover another programming language called C#. You implement the same
example project you saw in this chapter, so if you want to see how to do it in C#—read on!

154

CHAPTER 6

Windows 10 loT Development
with C#

Now that you have a basic understanding of how to use Visual Studio 2015, you can learn more about

some of the languages you may encounter when developing your IoT solutions. One of those languages is
C# (pronounced “see sharp”')—a very robust and powerful object-oriented language that you can use to
write managed Windows .NET and UWP applications. Mastering C# is not a trivial task, but it is not quite as
challenging as other programming languages.

WHAT IS .NET?

In short, the .NET Framework is a huge library designed to provide a layer above the operating system
for building Windows applications. The .NET Framework supports a number of languages, including C#
as well as a number of platforms. As you will see when you deploy your loT application to your device,
Visual Studio includes a subset of the framework for use on Windows 10 loT Core. Some of the classes
within the namespaces that we will use derive from the .NET Framework.

If you are used to using C++ or Java, you may find C# to be familiar, but a bit more verbose. That is, it may
seem like you're typing a lot more or adding more lines of code. Both are true to some extent. The libraries we
will use have more verbose naming conventions (names or identifiers are longer) and we will use a few more
lines of code in the process. However, as you will see, C# source code reads easier than some other languages
making it easier to understand and modify in the future. It also helps when debugging your code. You don’t
have to guess what a library class and method may do because the name is more descriptive (in general).

Some find learning C# easier than other programming languages because, if you are familiar with C++
or especially Java, some of what you will learn is similar. Essentially, C# is an improvement on languages like
C++ and Java. In fact, you may only need a little knowledge of the fundamentals of the language and how to
use it in Visual Studio to become proficient in creating Windows 10 IoT Core applications.

This chapter presents a crash course on the basics of C# programming in Visual Studio including an
explanation about some of the most commonly used language features. As such, this chapter provides you
with the skills you need to understand the growing number of IoT project examples available on the Internet.
The chapter concludes with a walk-through of a C# example project that shows you how to interact with
hardware. Specifically, you will implement the LED project you saw in Chapter 3. Only this time, you'll be
writing it as a C# Windows 10 IoT Core application. So let’s get started!

'Not “see-hash” or worse, “see-hashtag”—both of which may show ignorance, so don’t do that.

© Charles Bell 2016 155
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_6

http://dx.doi.org/10.1007/978-1-4842-2108-2_3

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

Tip If you are not interested in using C# in your loT solutions, or you already know the basics of C#
programming, feel free to skim through this chapter. | recommend working through the example project at the
end of the chapter, especially if you’ve not written loT applications.

Getting Started

The C# language has been around since the first introduction of the .NET Framework (pronounced “dot
net”). In fact, C# was specifically designed to be the object-oriented programming language of choice for
writing .NET applications. C# was released in 2000 with the release of the NET Framework. The latest
version of C# is version 6.0 and is sometimes called Visual C# (but Microsoft seems to prefer C#).

You may be thinking that C# and .NET may restrict the types of applications you can write, but that also is
not true. You can use C# to write a host of applications from Windows 10 IoT Core to desktop to web applications
and beyond. As you will see, you can also write C# console applications like you did in Chapter 3 with C++.

C# was heavily influenced by Java and C++. Indeed, if you have programmed in Java or C++, C# will
seem familiar to you. What sets C# apart is it is a purely object-oriented language. That is, you must write all
of your programs as an object using a class. In fact, with an easy to understand class syntax,? which makes
developing your object-oriented programming easier. This gives C# a powerful advantage over C++ and
other languages that have more complex syntax where objects are largely optional.

While some may be tempted to think C# is another flavor of C++, there are some serious differences.
The most important is the use of an execution manager to keep the C# applications in a protected area
(called a managed application). This protected area ensures that the C# code has access only to portions that
the execution manager permits—those defined in the code. One of the great side effects of this arrangement
is automatic garbage collection—freeing of allocated memory that is no longer used (or in scope). While you
can choose to make a C# application an unmanaged application, the practice is discouraged (and largely
unnecessary for the vast majority of use cases).

Tip For more information about the differences between C++ and C#, see www.differencebetween.
info/difference-between-cplusplus-and-csharp.

Another very important difference between C# and C++ is how they are made into an executable
(compiled). C++ is compiled and linked to form an executable program with object code native to the
platform, but C# is compiled in two steps: the first is a platform-independent intermediate object code
called the common intermediate language (CIL) and the second when that is converted to native object code
by the just-in-time compiler (JIT). The JIT compiler operates in the background and as the name implies
prepares the code for execution when needed. In fact, you cannot tell the JIT compiler is running.

When a CIL is built, the compiler includes all of the references needed to execute the application.

This may include framework files, dynamic libraries, and metadata needed by the system. This is called an
assembly. You need not think of this other than an executable but technically it is a small repository (hence,
assembly).

This mechanism allows C# applications to execute within a cordoned off area of memory (called a
managed application) that the .NET common language runtime (CLR) can monitor and protect other
applications from harm. A side effect allows C# applications to have garbage collection (by the CLR)
freeing memory automatically based on scope and use. Figure 6-1 shows a pictorial example of the way C#
applications are compiled and executed in phases.

2As opposed to other languages like C++ with differing notation based on how an object is instantiated.

156

http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://www.differencebetween.info/difference-between-cplusplus-and-csharp
http://www.differencebetween.info/difference-between-cplusplus-and-csharp

CHAPTER 6 © WINDOWS 10 IOT DEVELOPMENT WITH C#

Compile Phase 1 Compile Phase 2

\ A

—
\—l_‘
—

C#
Code Assembly L
CLR
Other Other

executable Executable

Figure 6-1. How C# applications are compiled and executed

Here you see the two phases of compilation. Phase one occurs when you compile the application in
Visual Studio. Phase two occurs when you execute the application placing the executable in the CLR for
execution. Notice that I depict other applications running in the same CLR, each protected from the other by
the CLR’s managed features.

Note While C# is technically compiled in two phases, the rest of the chapter focuses on compilation as
executed from Visual Studio.

Should you require more in-depth knowledge of C#, there are a number of excellent books on the topic.
Here is a list of a few of my favorites.

e Beginning C# 6.0 Programming with Visual Studio 2015 by Benjamin Perkins and
Jacob Vibe Hammer (Wrox, 2015)

e The C# Player's Guide by R. B. Whitaker (Starbound Software, 2015)

e Microsoft Visual C# Step by Step (Developer Reference) by John Sharp (Microsoft
Press, 2015)

Another excellent resource is Microsoft’s documentation on MSDN. The following are some excellent
resources for learning C#.

e Getting Started with C# (https://msdn.microsoft.com/en-us/library/a72418yk.
aspx)

e C#Programming Guide (https://msdn.microsoft.com/en-us/library/67ef8sbd.
aspx)

Now that you know some of the origins and unique features of C# and the .NET CLR, let’s learn about
the syntax and basic language features for creating applications.

157

https://msdn.microsoft.com/en-us/library/a72418yk.aspx
https://msdn.microsoft.com/en-us/library/a72418yk.aspx
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

C# Crash Course

Now let’s learn some of the basic concepts of C# programming. Let’s begin with the building blocks of the
language, such as classes, methods, variables, and basic control structures, and then move into the more
complex concepts of data structures and libraries.

While the material may seem to come at you in a rush (hence the crash part), this crash course on
C# covers only the most fundamental knowledge of the language and how to use it in Visual Studio. It is
intended to get you started writing C# Windows 10 IoT Core applications. If you find you want to write
more complex applications than the examples in this book, I encourage you to acquire one or more of the
resources listed earlier to learn more about the intriguing power of C# programming.

C# Fundamentals

There are a number of basic concepts about the C# programming language that you need to know in order to
get started. In this section, I describe some of the fundamental concepts used in C#, including how the code
is organized, how libraries are used, namespaces, and how to document your code.

C# is a case sensitive language so you must take care when typing the names of methods or classes in
libraries. Fortunately, Visual Studio’s IntelliSense feature recognizes mistyped case letters, which allows
you to choose the correct spelling from a drop-down list as you write your code. Once you get used to this
feature, it is very hard to live without it.

Namespaces

The first thing you may notice is that C# is an object-oriented language and that every program you write is
written as a class. Applications are implemented with a namespace that has the same name. A namespace
is a special organizational feature that allows you to group identifiers (names of variables, constants, etc.)
under a group that is localized to the namespace. Using the namespace tells the compiler to look in the
namespace for any identifier you've used in your code that is not found.

You can also create namespaces yourself, as you see in the upcoming example source code.
Namespaces may contain any number of classes and may extend to other source files. That is, you can define
a namespace so that it spans several source files.

Tip Source files in C# have a file extension of . cs.

Classes

The next thing you may notice is a class definition. A class is more than a simple data structure. You use
classes to model concepts that include data and operations on the data. A class can contain private and
public definitions (called members) and any number of operations (called methods) that operate on the data
and give the class meaning.

You can use classes to break your programs down into more manageable chunks. That is, you can
place a class you've implemented in its own . cs file and refer to it in any of the code provided there aren’t
namespace issues and even then you simply use the namespace you want.

Let’s look at a simple class named Vector implemented in C#. This class manages a list of double variables
hiding the data from the caller while providing rudimentary operations for using the class. Listing 6-1 shows
how such a class could be constructed.

158

CHAPTER 6 © WINDOWS 10 IOT DEVELOPMENT WITH C#

Listing 6-1. Vector Class in C#

class Vector

{
private double[] elem;
private int sz;

public Vector(int s)

{
elem = new double[s];
sz = s;

}
public ~Vector() { /* destructor body */ }
public int size() { return sz; }

public double this[int i]

{
get { return elem[i]; }
set { elem[i] = value; }

This is a basic class that is declared with the keyword class followed by a name. The name can be any
identifier you want to use but convention is to use an initial capital letter for the name. All classes are defined
with a set of curly braces that define the body or structure of the class.

By convention, you list the member variables (also called attributes) indented from the outer curly
braces. In this example, you see two member variables that are declared as private. You make them private to
hide information from the caller. That is, only member methods inside the class itself can access and modify
private member variables. Note that derivatives (classes built from other classes—sometimes called a child
class—can also access protected member variables.

Next, you see a special method that has the same name as the class. This is called the constructor. The
constructor is a method that is called when the class is instantiated (used). You call the code that defines the
attributes and methods a class and when executed, you call the resulting object an instance of the class.

In this case, the constructor takes a single integer parameter that is used to define the size of the private
member variable that stores the array of double values. Notice how this code is used to dynamically define
that array. More specifically, you use the new command to allocate memory for the array.

Following the constructor is another special method called the destructor. This method is called when
the object is destroyed. Thus, you can place any cleanup code that you want to occur when the object is
destroyed. For example, you can add code to close files or remove temporary storage. However, since C#
runs on .NET with a garbage collector (a special feature that automatically frees allocated memory when no
longer in scope), you do not have to worry about freeing (deleting) any memory you've allocated.

Next are two public methods, which users (or callers of the instance) can call. The first method, size(),
looks as you would expect and in this case simply returns the value of the private member variable sz. The
next method is a special form of method called an operator (or get/set) method. Notice that there are two
sections or cases: get and set.

The method allows you to use the class instance (object) as if it were an array. The method is best
understood by way of an example. The following shows how this operator method is used. Notice the lines
in bold.

159

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

Vector v = new Vector(10);
for (int i=0; i < v.size(); ++i)

v[i] = (i * 3);

Console.Write("Values of v: ");
for (int j=0; j < v.size(); ++j)

Console.Write(v[j]);
Console.Write(" ");

}

Console.WriteLine();

The code instantiates an instance of the Vector class requesting storage for 10 double values. Next, you
iterate over the values in the instance using the operator to set the value of each of the 10 elements. This
results in the set portion of the operator method executing. Next, the code iterates over the values again this
time requesting (getting) the value for each. This results in the get portion of the operator method executing.
Neat, eh?

Note Some programming language books on C# use the term function and method interchangeably while
other books make a distinction between the two.? However, Microsoft uses the term method.

I built this example as a single code file but had I wanted to use modularization, I would have placed
the code for the Vector class in its own source (.cs) file. The name of the source file is not required to be
the same as the class it contains. Indeed, a source file may contain multiple classes. Still, you would likely
choose a meaningful name. To add a new source file to a Visual Studio C# solution, simply right-click the
project name in Solution Explorer, and then choose Add » Add new item and choose C# in the tree view
and finally C# Code file. At the bottom of the dialog you can name the file. When ready, click the Add button.
You can then create any classes you want (or move classes) in the file. You can also use the same namespace
to keep all of your classes in the same namespace. However, if you create a new namespace, you must use
the using command to use the new namespace.

As you may have surmised, classes are the building block for object-oriented programming and as you
learn more about using classes, you can build complex libraries of your own.

Tip Visual Studio provides a tool called the Class View window that you can use to explore the libraries and
classes used in your application.

Curly Braces

Notice that both methods are implemented with a pair of curly braces {} that define the body of the method.
Curly braces in C# are used to define a block of code or simply to express grouping of code. Curly braces are
used to define the body of methods, structures, classes, and more. Notice that they are used everywhere,
even in the conditional statements (see the if statements).

3A function returns a value, whereas a method does not.

160

CHAPTER 6 © WINDOWS 10 IOT DEVELOPMENT WITH C#

Tip Some C# programmers prefer to place the starting curly brace on the same line as the line of code to
which it belongs like | did in the example. However, others prefer the open curly brace placed on the next line.
You should choose the style you like best.

Comments

One of the most fundamental concepts in any programming language is the ability to annotate your source
code with text that not only allows you to make notes among the lines of code but also forms a way to
document your source code.*

To add comments to your source code, use two slashes, // (no spaces between the slashes). Place them
at the start of the line to create a comment for that line repeating the slashes for each subsequent line. This
creates what is known as a block comment, as shown. Notice that I used a comment without any text to
create whitespace. This helps with readability and is a common practice for block comments.

//

// Windows 10 for the IoT

//

// Example C# console application rewrite.
//

// Created by Dr. Charles Bell

//

You can also use the double slash to add a comment at the end of a line of code. That is, the compiler
ignores whatever is written after the double slash to the end of the line. You see an example of this next.
Notice that [used the comment symbol (double slash) to comment out a section of code. This can be
really handy when testing and debugging, but generally discouraged for final code. That is, don’t leave any
commented out code in your deliverable (completed) source code. If it's commented out, it’s not needed!

if (size < max_size) {
size++; /* increment the size */
} //else {
// return -1;
/1}

Notice that you also see the use of /* */, which is an alternative C-like mechanism for writing
comments. Anything that is included between the symbols becomes a comment and can include multiple
lines of code. However, convention seems to favor the // symbol but as you can see you can mix and match
however you like. I recommend choosing one or the other with consistency over variety.

Writing good comments and indeed documenting your code well is a bit of an art form; one that
I encourage you to practice regularly. Since it is an art rather than a science, keep in mind that your
comments should be written to teach others what your code does or is intended to do. As such, you should
use comments to describe any preconditions (or constraints) of using the code, limitations of use, errors
handled, and a description of how the parameters are used and what data is altered or returned from the
code (should it be a method or class member).

“If you ever hear someone claim, “My code is self-documenting,” be cautious when using his or her code. There is no
such thing. Sure, plenty of good programmers can write code that is easy to understand (read), but all fall short of that
lofty claim.

161

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

How C# Programs Are Structured

Now let’s look at how C# programs are structured by examining a slightly different version of the temperature
application you saw in Chapter 4. Listing 6-2 shows the code rewritten for C#.

Listing 6-2. Temperature Code Example Rewrite

//

// Windows 10 for the IoT

//

// Example C# console application rewrite
//

// Created by Dr. Charles Bell
//

using System;

using System.Collections.Generic;
using System.Lling;

using System.Text;

using System.Threading.Tasks;

namespace temperature_csharp

{

class Program

{
static double convert temp(char scale, double base temp)
{
if ((scale == 'c') || (scale == 'C"))
{
return ((9.0/5.0) * base temp) + 32.0;
else
{
return (5.0 / 9.0) * (base_temp - 32.0);
}
}

static void Main(string[] args)
{
double temp read = 0.0;
char scale = 'c';

Console.WriteLine("Welcome to the temperature conversion application.");
Console.Write("Please choose a starting scale (F) or (C): ");

scale = Console.ReadKey().KeyChar;

Console.WriteLine();

Console.Write("Please enter a temperature: ");

temp_read = Convert.ToDouble(Console.ReadlLine());

162

http://dx.doi.org/10.1007/978-1-4842-2108-2_4

CHAPTER 6 © WINDOWS 10 IOT DEVELOPMENT WITH C#

if ((scale == 'c') || (scale == 'C"))

{
Console.WriteLine("Converting value from Celsius to Fahrenheit.");
Console.Write(temp read);
Console.Write(" degrees Celsius = ");
Console.Write(convert temp(scale, temp read));
Console.WriteLine(" degrees Fahrenheit.");

}

else if ((scale == 'f') || (scale == 'F"))

{
Console.WriteLine("Converting value from Fahrenheit to Celsius.");
Console.Write(temp_read);
Console.Write(" degrees Fahrenheit = ");
Console.Write(convert temp(scale, temp read));
Console.WriteLine(" degrees Celsius.");

}

else

{
Console.Write("ERROR: I'm sorry, I don't understand '");
Console.Write(scale);
Console.WritelLine("'.");

}

In the example, the only methods created are convert_temp() and MainPage() but this is because you
are implementing a very simple solution. Had you wanted to model (create a separate class for) temperature,
you would still have the one class named Program with the MainPage() method (which is the starting
method for the application), but would have added a new class named Temperature, which would contain
its own methods for working with temperature. Indeed, this is how one should think when writing C# code—
model each distinct concept as a class. Here you see the sample application named temperature_csharp was
implemented with a class with the name Program.

Wow, that’s quite a change from the code in the last chapter! While the functionality is exactly the
same, the code looks very different from the C++ version. The following describe the C# concepts I have
implemented in this example.

The using Keyword

First, you notice a number of lines that begin with using. These are pre-processor directives that tell the
compiler you want to “use” a classes or a class hierarchy that exists in a particular namespace. The using
directive tells the compiler that you are using the namespace System.

using System;

In the other lines I have included additional namespaces with multiple names separated by a period.
This is how you tell the compiler to use a specific namespace located in libraries of classes often form
hierarchies that you can chain together. For example, if you wanted to use the namespace inside the

Windows Foundations library named Collections, you would refer to it as follows.

using System.Threading.Tasks;

163

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

This is a very common occurrence in Windows C# applications. In fact, you will use several namespaces
in our example project. The following is an example of using the Tasks namespace located in the Threading
sub-class namespace of the System namespace.

The MainPage() Method

The method named MainPage(). The MainPage() method is the starting or initial execution for the C#
console project. Here you see the name is preceded by the keyword static (which means its value with not
change and indeed cannot change during runtime) followed by a type (in this case void). This tells the C#
compiler that this method will not return any value (but you can make methods that return a value).

static void Main(string[] args)

Next, you see the name, main, followed by a list of parameters enclosed in parenthesis. For the
MainPage() method, the parameters are fixed and are used to store any command line arguments provided
by the user. In this case, you have the arguments stored in args, which is an array of strings.

A method in C# is used as an organizational mechanism to group functionality and make your
programs easier to maintain (methods with hundreds of lines of code are very difficult to maintain),
improves comprehensibility, and localize specialized operations in a single location thereby reducing
duplication.

Methods therefore are used in your code to express the concepts of the functionality they provide.
Notice how I used the convert temp() method. Here I declared it as a method that returned a double and
takes a character and a double as input. As you can see, the body of the method (defined inside the curly
braces) uses the character as the scale in the same was as you do in main and uses the double parameter
as the target (or base) temperature to convert. Since I made the parameters generic, I can use only the one
variable.

Tip Method parameters and values passed must match on type and order when called.

Notice also that I placed it in the line of code that prints the value to the screen. This is a very common
practice in C# (and other programming languages). That is, you use the method to perform some operation
and rather than store the result in a variable, you use it directly in the statements (code) .

Variables and Types

No program would be very interesting if you did not use variables to store values for calculations. As you saw
earlier, variables are declared with a type and once defined with a specific type cannot be changed. Since C#
is strongly typed, the compiler ensures that anywhere you use the variable that it obeys its type. For example,
that the operation on the variable is valid for the type. Thus, every variable must have a type assigned.

There are a number of simple types that the C# language supports. They are the basic building blocks
for more complex types. Each type consumes a small segment of memory which defines not only how much
space you have to store a value, but also the range of values possible.’

For example, an integer consumes 4 bytes and you can store values in the range -2,147,483,648 to
2,147,483,647. In this case, the integer variable is signed (the highest bit is used to indicate positive or
negative values). An unsigned integer can store values in the range 0 to 4,294,967,295.

SFor a complete list, see https://msdn.microsoft.com/en-us/library/s3f49ktz.aspx.

164

https://msdn.microsoft.com/en-us/library/s3f49ktz.aspx

CHAPTER 6 © WINDOWS 10 IOT DEVELOPMENT WITH C#

You can declare a variable by specifying its type first and then an identifier. The following shows a
number of variables using a variety of types.

int num_fish = 0; // number of fish caught
double max_length = 0.0; // length of the longest fish in feet
char[] fisherman = new char[25]; // name of the fisherman

Notice also that I have demonstrated how to assign a value to the variable in the declaration. The
assignment operator is the equal sign. All assignments must obey the type rules. That is, I cannot assign a
floating-point number (e.g., 17.55) to an integer value. Table 6-1 shows a list of the commonly used built-in
types you will use in your applications.

Table 6-1. Commonly Used Types in C#

Symbol Size in bytes Range

bool 1 false or true

char 1 -128to 127

string User-defined -128 to 127 per character

sbyte 1 -128to0 127

byte 1 0-255

short 2 -32,768 to 32,767

ushort 2 0to 65,535

int 4 -2,147,483,648 to 2,147,483,647
uint 4 0to 4,294,967,295

long 4 -2,147,483,648 to 2,147,483,647
ulong 4 0 to 4,294,967,295

float 4 3.4E +/- 38 (7 digits)

decimal 8 (-7.9x1028 to 7.9x 1028) / (100 to 28)
double 8 1.7E +/- 308 (15 digits)

It is always a good practice to initialize your variables when you declare them. It can save you from
some nasty surprises if you use the variable before it is given a value (although the compiler will complain
about this).

Arithmetic

You can perform a number of mathematical operations in C#, including the usual primitives but also logical
operations and operations used to compare values. Rather than discuss these in detail, I provide a quick
reference in Table 6-2 that shows the operation and example of how to use the operation.

165

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

Table 6-2. Arithmetic, Logical, and Comparison Operators in C#

Type Operator Description Example
Arithmetic + Addition int_var + 1

- Subtraction int_var-1

* Multiplication int_var * 2

/ Division int var/3

% Modulus int_var % 4

- Unary subtraction -int_var

+ Unary addition +int_var
Logical & Bitwise and varl&var2

| Bitwise or varl|var2

A Bitwise exclusive varlAvar2

~ Bitwise compliment ~varl

&& Logical and var1&&var2

I Logical or varl||var2
Comparison == Equal exprl==expr2

1= Not equal exprll=expr2

< Less than exprl<expr2

> Greater than exprl>expr2

<= Less than or equal exprl<=expr2

>= Greater than or equal exprl>=expr2

Bitwise operations produce a result on the values performed on each bit. Logical operators (and, or)
produce a value that is either true or false and are often used with expressions or conditions.

Now that you understand variables and types, the operations permitted on them, and expressions, let’s
look at how you can use them in flow control statements.

Flow Control Statements

Flow control statements change the execution of the program. They can be conditionals that use expressions
that restrict execution to only those cases where the expression evaluates true (or negated), special
constructs that allow you to repeat a block of code (loops), and the use of methods to switch context to
perform some special operations. You've already seen how methods work so let’s look at conditional and
loop statements.

Conditionals

Conditional statements allow you to direct execution of your programs to sections (blocks) of code based
on the evaluation of one or more expressions. There are two types of conditional statements in C#—the if
statement and the switch statement.

166

CHAPTER 6 © WINDOWS 10 IOT DEVELOPMENT WITH C#

You have seen the if statement in action in our example code. In the example, you can have one or
more (optional) else phrases that you execute once the expression for the if conditions evaluate to false.
You can chain if/else statements to encompass multiple conditions where the code executed depends on
the evaluation of several conditions. The following shows the general structure of the if statement.

if (expr1) {

// execute only if expri is true
} else if ((expr2) || (expr3)) {

// execute only if expri is false *and* either expr2 or expr3 is true
} else {

// execute if both sets of if conditions evaluate to false

}

While you can chain the statement as much as you want, use some care here because the more else/if
sections you have, the harder it becomes to understand, maintain, and avoid logic errors in your expressions.

If you have a situation where you want to execute code based on one of several values for a variable or
expression that returns a value (such as a method or calculation), you can use the switch statement. The
following shows the structure of the switch statement.

switch (eval) {

case <valuel> :
// do this if eval == valuel
break;

case <value2> :
// do this if eval == value2
break;

default :
// do this if eval != any case value
break; // Not needed, but good form

The case values must match the type of the thing you are evaluating. That is, case values must be same
type as eval. Notice the break statement. This is used to halt evaluation of the code once the case value is
found. Otherwise, each successive case value will be compared. Finally, there is a default section for code
you want to execute should eval fail to match any of the values.

Tip Code style varies greatly in how to space/separate these statements. For example, some indent the
case statements, some do not.

Loops

Loops are used to control the repetitive execution of a block of code. There are three forms of loops that
have slightly different behavior. All loops use conditional statements to determine whether to repeat
execution or not. That is, they repeat as long as the condition is true. The three types of loops are while,
do, and for. I explain each with an example.

The while loop has its condition at the “top” or start of the block of code. Thus, while loops only execute
the body if and only if the condition evaluates to true on the first pass. The following illustrates the syntax
for awhile loop. This form of loop is best used when you need to execute code only if some expression(s)

167

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

evaluate to true. For example, iterating through a collection of things those number of elements is unknown
(loop until you run out of things in the collection).

while (expression) {
// do something here
}

The do loop places the condition at the “bottom” of the statement which permits the body of the loop
to execute at least once. The following illustrates the do loop. This form of loop is handy for cases where you
want to execute code that, depending on the results of that execution, may require repetition. For example,
repeatedly asking the user for input that matches one or more known values repeating the question if the
answer doesn’t match.

do {
// do something here - always done once
} while (expression);

for loops are sometimes called counting loops because of their unique form. for loops allow you
to define a counting variable, a condition to evaluate, and an operation on the counting variable. More
specifically, for loops allow you to define stepping code for a precise number of operations. The following
illustrates the structure of the for loop. This form of loop is best used for a number of iterations for a known
number (either at run time or as a constant) and commonly used to step through memory, count, and so
forth.

for (<init> ; <expression> ; <increment>) {
// do someting

}

The <init> section or counting variable declaration is executed once and only once. The <expression>
is evaluated on every pass. The <increment> code is executed every pass except the last. The following is an
example for loop.

for (int i; 1 < 10; i++) {
// do something here
}

Now let’s look at some commonly used data structures.

Basic Data Structures

What you have learned so far about C# will allow you to create applications that do simple to moderately
complex operations. However, when you start needing to operate on data—either from the user or from
sensors and similar sources—you need a way to organize and store data and operations on the data in
memory. The following introduces three data structures in order of complexity: arrays, structures, and
classes.

Arrays allocate a contiguous area of memory for multiple storage of a type. That is, you can store several
integers, characters, and so forth, set aside in memory. Arrays also provide an integer index that you can use
to quickly access a specific element. The following illustrates how to create an array of integers and iterate
through them with a for loop. Array indexes start at 0.

168

CHAPTER 6 © WINDOWS 10 IOT DEVELOPMENT WITH C#

Int[] num_array = {o0,1,2,3,4,5,6,7,8,9}; // an array of 10 integers
for (int i=0; i < 10; ++i) {

Console.Write(num array[i]);

Console.Write(" ");

}

Console.Writeline();

You can also define multiple dimensional arrays (arrays of arrays). Arrays can be used with any type or
data structure.

If you have a number of data items that you want to group together, you can use a special data structure
called, amazingly, struct. A struct is formed as follows.

struct <name> {
// one or more declarations go here

};

You can add whatever declarations you want inside the struct body (defined by the curly braces). The
following shows a crude example. Notice that you can use the structure in an array.

struct address {
int street_num;
string street_name;
string city;
string state;
string zip;

};
address[] address book = new address[100];

Arrays and structures can increase the power of your programs by allowing you to work with more
complex data types.

Wow! That was a wild ride, wasn’t it? I hope that this short crash course in C# has explained enough
about the sample programs shown so far that you now know how they work. This crash course also forms the
basis for understanding the other C# examples in this book.

OK, now it’s time to see some of these fundamental elements of C# in action. Let’s look at the blink an
LED application you saw in Chapter 3 only this time you're going to write it for Windows 10 IoT Core!

Blink an LED, C# Style

OK, let’s write some C# code! This project is the same concept as the project from Chapter 3 where you used
Python to blink an LED on your Raspberry Pi. Rather than simply duplicate that project, you'll mix it up a

bit and make this example a headed application (recall a headed application has a user interface). The user
interface presents the user with a greeting, a symbol that changes color in time with the LED, and a button to
start and stop the blink timer.

Rather than build the entire application at once by presenting you a bunch of code, we walk through
this example in two phases. The first phase builds the basic user interface built. The code for the GPIO is
added in the second phase. By using this approach, you can test the user interface on your PC, which is
really convenient.

169

http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://dx.doi.org/10.1007/978-1-4842-2108-2_3

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

Recall that the PC does not support the GPIO libraries (there is no GPIO!) so if you built the entire
application, you would have to test it on the device, which can be problematic if there are serious logic errors
in your code. This way, you can ensure that the user interface is working correctly and therefore eliminate
any possible issues in that code before you deploy it.

Before you get into the code for the user interface, let’s look at the components that you will use, and
then set up the hardware.

Required Components

The following lists the components that you need. All of these are available in the Microsoft Internet of
Things Pack for the Raspberry Pi from Adafruit. If you do not have that kit, you can find these components
separately on the Adafruit web site (www.adafruit.com), from SparkFun (www.sparkfun.com), or any
electronics store that carries electronic components.

e 560 ohm 5% 1/4W resistor (green, blue, brown stripes®)
e Diffused 10mm red LED (or similar)
e Breadboard (mini, half, or full sized)

¢ (2) male-to-female jumper wiresYou may notice that this is the same set of
components you used in Chapter 3.

Set up the Hardware

Begin by placing the breadboard next to your Raspberry Pi and power the Raspberry Pi off orienting the
Raspberry Pi with the label facing you (GPIO pins in the upper-left). Next, take one of the jumper wires and
connect the female connector to pin 6 on the GPIO. The pins are numbered left-to-right starting with the
lower left pin. Thus, the left two pins are 1 and 2 with pin 1 below pin 2. Connect the other wire to pin 7 on
the GPIO.

Tip The only component that is polarized is the LED. This longer side is the positive side.

Next, plug the resistor into the breadboard with each pin on one side of the center groove. You can
choose whichever area you want on the breadboard. Next, connect the LED so that the long leg is plugged
into the same row as the resistor and the other pin on another row. Finally, connect the wire from pin 6 to
the same row as the negative side of the LED and the wire from pin 7 to the row with the resistor. Figure 6-2
shows how all of the components are wired together. Be sure to study this drawing and double-check your
connections prior to powering on your Raspberry Pi. Once you're satisfied everything is connected correctly,
you're ready to power on the Raspberry Pi and write the code.

Shttps://en.wikipedia.org/wiki/Electronic_color_code

170

http://www.adafruit.com/
http://www.sparkfun.com/
http://dx.doi.org/10.1007/978-1-4842-2108-2_3
https://en.wikipedia.org/wiki/Electronic_color_code

CHAPTER 6 © WINDOWS 10 IOT DEVELOPMENT WITH C#

AUDIO

Raspberry Pi
Hodel B

POWER

Figure 6-2. Wiring the LED to a Raspberry Pi

Since you are building a headed application, you’ll also need a keyboard, mouse, and monitor
connected to the Raspberry Pi.
OK, now that the hardware is set up, it’s time to start writing the code.

Write the Code: User Interface

Begin by opening a new project template. Choose C# » Windows » Universal in the tree and the Blank
App (Universal Windows) template in the list. This template creates a new solution with all of the source files
and resources you need for a UWP headed application. Figure 6-3 shows the project template you need. Use
the project name BlinkCSharpStyle.

New Project ? x

P Recent NET Framework 452 = | Sort by: Default -| B E h Instalied Temglat A o

e | S} Blank App (Universal Windows) Visual C# Type: Visual C#

4 Templates A project for a single-page Universal

13
b Visual C+ + | Windows Forms Application Visual C# Windows Platform app that has no
predefined controls of layout

4 Other Languages = i
ki j WPF Application Visual C# [Show telematry in the Windows Dev
Build Accelerator 1N F . Center
= ﬁ. [« Applicat Visual C# Installs the Apphcation Insights SDK to
onsole Application sy
Visual Fo St g oy send usage telemetry to the Windows
4 Visual C# o Dev Center
« R ;{J Shared Project Visual C#
Universal co
S Vo B @! Class Library (Portable for I0S, Android and Windows) Visual C#
Classic Desktop nﬁ“ it ia
Class Library sual C#
Windows loT Core i
Android e
Q&! Class Library (Portable) Visual C#
Cloud b
Extensibiit L T -
¥ n&! Class Library [Universal Windows) Visual C#
0 =
e co
Siiveright %! Windows Runtime Component (Universal Windaws) Visual C#
Test o
b Online lick hete to go online and find templates
Marme: BlinkCSharpStyle
Location: chusers\chudddocumentsivisual studio 201 5\Projects =
Sobution name: [Create directory for solution

[Add to source control

Figure 6-3. New Project dialog: blank application
171

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

Notice that there are a number of files created. You first add the XAML code in the MainPage.xaml file.

Listing 6-3 shows the bare XAML code placed in the file by default. I've added a note that shows where to
add new code.

Listing 6-3. Bare XAML code (MainPage.xaml)

<Page

x:Class="BlinkCSharpStyle.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:local="using:BlinkCSharpStyle"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
--> Our code goes here.

</Grid>

</Page>

Recall that the XAML file is used to define a user interface in a platform independent way using an

XML-like language. In this project, I demonstrate the more basic controls: a text box, a button, and an ellipse
(circle) placed inside a special controlled called a stacked panel. The stacked panel allows you to arrange the
controls in a vertical “stack,” making it easier to position them. As you can see in the listing, you want to place
your XAML user interface items in the <Grid></Grid> section.

In this example, you want a text box at the top, a circle (ellipse) to represent the LED that you will use to

turn on (change to green) and off (change to gray) to correspond with the hardware on/off code that you will
add later. You also need a button to toggle the blink operation on and off. Finally, you'll add another text box
to allow you to communicate with the user about the state of the GPIO code (that you'll add later).

Now let’s add the code. Since the stacked panel is a container, all of the controls are placed inside it.

Listing 6-4 shows the code you want to add (shown in bold).

Listing 6-4. Adding XAML Code for the User Interface: MainPage.xaml

<Page

172

x:Class="BlinkCSharpStyle.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:BlinkCSharpStyle"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<StackPanel Width="400" Height="400">
<TextBlock x:Name="title" Height="60" TextWrapping="NoWrap"
Text="Hello, Blinky C# Style!" FontSize="28" Foreground="Blue"
Maxgin="10" HorizontalAlignment="Center"/>
<Ellipse x:Name="led_indicator" Fill="LightGray" Stroke="Gray" Width="75"
Height="75" Margin="10" HorizontalAlignment="Center"/>
<Button x:Name="start_stop_button" Content="Start" Width="75" ClickMode="Press"
Click="start_stop_button_Click" Height="50" FontSize="24"
Maxgin="10" HorizontalAlignment="Center"/>

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

<TextBlock x:Name="status" Height="60" TextWrapping="Nolrap"
Text="Status" FontSize="28" Foreground="Blue"
Maxrgin="10" HorizontalAlignment="Center"/»
</StackPanel>
</Grid>
</Page>

Notice the button control. Here you have an event that you want to associate with the button named
start_stop button_Click, which you assigned via the Click attribute. That is, when the user clicks it, a
method named start_stop button Click() will be called.

XAML provides a great way to define a simple, easy user interface with the XML-like syntax. However,
it also provides a mechanism to associate code with the controls. The code is placed in another file called a
source-behind filenamed MainPage.xaml. cs. You will place all of the source code for the application in this file.

If you were typing this code in by hand, you will notice a nifty feature of Visual Studio—a context-
sensitive help called IntelliSense that automatically completes the code you're typing and provides drop-
down lists of choices. For example, when you type in the button control and type Click=. A drop-down box
will appear, allowing you to create the event handler (a part of the code that connects to the XML). In fact,
it creates the code in the MainPage.xaml. cs file for you. If you copy and pasted the code, you would not get
this option and would have to type in the code manually.

Let’s look at the code for the button control implemented in the class that you created in the source
code file (MainPage.xaml.cs). Listing 6-5 shows the code you need to add in bold. You place everything in
the class named B1inkCPPStyle (the application).

Listing 6-5. Adding the Code: MainPage.xaml.cs

using System;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;
// Add using clause for GPIO
using Windows.Devices.Gpio;

namespace BlinkCSharpStyle
{

public sealed partial class MainPage : Page

{

// Cxeate brushes for painting contols
private SolidColorBrush greenBrush = new SolidColorBrush(Windows.UI.Colors.Green);
private SolidColorBrush grayBrush = new SolidColorBrush(Windows.UI.Colors.Gray);

// Add a variable to control button
private Boolean blinking = false;

public MainPage()

{
this.InitializeComponent();
// Add code to initialize the controls
this.led_indicator.Fill = grayBrush;

}

173

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

private void start_stop_button_Click(object sender, RoutedEventArgs e)

{
this.blinking = !this.blinking;
if (this.blinking)
{
this.start_stop_button.Content = "Stop";
this.led_indicator.Fill = greenBrush;
}
else
{
this.start_stop_button.Content = "Start";
this.led_indicator.Fill = grayBrush;
}
}

OK, there are a few extra bits here that may not be very obvious why they’re here. You want to paint
the LED control green and gray for on and off. To do that, you need a reference to the green and gray brush
resources. Thus, I create a new object from the Windows user interface colors namespace.

You also add the code for the button click event, start_stop button_Click(), as well as a boolean
member variable that you use to trigger the LED timer. You add code that inverts the blinking variable
(toggles between false and true) and depending on the value, you turn the led indicator control green
(meaning the LED is on) or gray (meaning the LED is off). You also change the label of the button to
correspond with the operation. That is, if the button is labeled Start, the LED indicator is off, and when
clicked, the label changes to Stop and the LED indicator is turned on.

That’s it! You've finished the user interface. Go ahead and build the solution correcting any errors that
may appear. Once compiled, you're ready to test it. The following shows an example of what you should see
in the output window.

Restoring NuGet packages...

To prevent NuGet from restoring packages during build, open the Visual Studio Options
dialog, click on the Package Manager node and uncheck 'Allow NuGet to download missing
packages during build.'

1>------ Rebuild All started: Project: BlinkCSharpStyle, Configuration: Debug ARM ------
1> BlinkCSharpStyle -> C:\Users\Chuck\Documents\Visual Studio 2015\Projects\
BlinkCSharpStyle\bin\ARM\Debug\BlinkCSharpStyle.exe

========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

Test and Execute: User Interface Only

That was easy, wasn’t it? Better still, since this is a Universal app, you can run this code on your PC. To do so,
choose debug and x86 (or x64) from the platform box and press Ctrl+F5. Figure 6-4 shows an excerpt of the
output (just the controls itself).

174

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

Hello, Blinky C# Style!

Start

Status

Figure 6-4. The user interface: timer off

Figure 6-5 shows what happens when you click the button. Cool, eh?

Hello, Blinky C# Style!

Stop

Status

Figure 6-5. The user interface: timer on

You may be wondering where the blink part is. Well, you haven’t implemented it yet. You will do that in
the next phase.

Add the GPIO Code

Now, let’s add the code to work with the GPIO header. For this phase, you cannot run the code on your PC
because the GPIO header doesn’t exist, but you can add code to check the GPIO header status—hence the
extra text box in the interface.

Note The following is a bit more complicated and requires additional objects. Thus, | walk through the
code changes one part at a time.

175

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

Let’s start with adding the resource you need to access the GPIO header. Right-click References in the
project and choose Add Reference.... When dialog opens, choose Universal Windows » Extensions from
the tree view and Windows IoT Extensions for the UWP from the list. This allows you to include additional
namespaces for the GPIO. Figure 6-6 shows the resources dialog with the item selected.

Reference Manager - BlinkCSharpStyle
b Assemblies Filtered to: S0Ks applicable to BlinkCSharpStyle P -
b Projects Narme
b Shared Projects

4 Universal Windows

Bowse. |[ok [concel

Figure 6-6. Adding a new resource

Notice on my system there are two entries—one for each version of the libraries I have loaded. You may
only see the one entry. Click OK once you have the item selected.

Tip Henceforth, for brevity, | present excerpts of the files that we will be editing.

Now, let’s add the variables you need for the timer in the source file (MainPage.xaml. cs). The following
shows the code you need to add. Here you add an instance of the DispatchTimer as well as several private
variables for working with the pin in the GPIO library. I show the changes in context with the new lines in bold.

private SolidColorBrush greenBrush = new SolidColorBrush(Windows.UI.Colors.Green);
private SolidColorBrush grayBrush = new SolidColorBrush(Windows.UI.Colors.Gray);

// Add a Dispatch Timer
private DispatcherTimer blinkTimer;

// Add a variable to control button
private Boolean blinking = false;

// Add variables for the GPIO
private const int LED_PIN = 4;
private GpioPin pin;

private GpioPinValue pinValue;

176

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

The private variables store the pin value, a constant set to GPIO 4 (hardware pin #7), and a variable o
store the pin variable result.

Next, you need a new method to initialize the GPIO—InitGPIO(). You add a new private method to the
class and complete it with code to control the GPIO. As you can see, there is a lot going on here.

private void InitGPIO()

{

var gpio_ctrl = GpioController.GetDefault();

// Check GPIO state

if (gpio_ctrl == null)

{
this.pin = null;
this.status.Text = "ERROR: No GPIO controller found!";
return;

}

// Setup the GPIO pin

this.pin = gpio ctrl.OpenPin(LED_PIN);

// Check to see that pin is Ok

if (pin == null)
this.status.Text = "ERROR: Can't get pin!";
return;

}

this.pin.SetDriveMode(GpioPinDriveMode.Output);

this.pinValue = GpioPinValue.low; // turn off

this.pin.Write(this.pinvalue);

this.status.Text = "Good to go!";

}

The code first creates an instance of the default GPIO controller class. Next, you check to see if that
instance is null, which indicates the GPIO header cannot be initiated and if so you change the label of the
status text and return. Otherwise, you open the GPIO pin defined earlier. If that value is null, you print the
message that you cannot get the pin. Otherwise, you set up the pin for output mode, and then turn off the
bin and state all is well in the status label text.

Next, you add a new method to handle the event fired from the DispatchTimer. The timer fires (or call)
this method on the interval you specify (see the following changes to the MainPage() method).

private void BlinkTimer Tick(object sender, object e)

{
// If pin is on, turn it off

if (this.pinvalue == GpioPinValue.High)
{
this.led_indicator.Fill = grayBrush;
this.pinValue = GpioPinValue.Low;

}

// else turn it on

177

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

else

this.led_indicator.Fill = greenBrush;
this.pinValue = GpioPinValue.High;
}

this.pin.Write(this.pinVvalue);

In this method, you check the value of the pin. Here is where the real operation of the code happens. In
this code, if the pin is set to high (on), you set it to low (off), and paint the LED control gray. Otherwise, you
set the pin to high (on) and paint the LED control green. Cool, eh?

Note You could change this color to match the color of your LED if you wanted. Just remember to change
the brush accordingly in the source file.

Next, you need to add code to the start_stop button Click() method to start and stop the timer. The
changes are in bold.

private void start stop button Click(object sender, RoutedEventArgs e)

{
this.blinking = !this.blinking;
if (this.blinking)

{
this.start_stop_button.Content = "Stop";
this.led_indicator.Fill = greenBrush;
this.blinkTimer.Start();

}

else

{
this.start_stop_button.Content = "Start";
this.led_indicator.Fill = grayBrush;
this.blinkTimer.Stop();
this.pinValue = GpioPinValue.Low;
this.pin.Write(this.pinValue);

}

You see here a few things going on. First, notice that you invert the blinking variable to toggle blinking
on and off. You then add a call to the blinkTimer instance of the DispatchTimer to start the timer if the user
presses the button when it is labeled Start. Notice you also set the label of the button to Stop so that, when
clicked again, the code turns off the timer and set the pin value to low (off). This is an extra measure to
ensure that if the button is clicked when the timer is between tick events, the LED is turned off. Try removing
itand you'll see.

Finally, you must add a few lines of code to the MainPage() method to get everything started when you
launch the application. The following shows the code with changes in bold.

178

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

public MainPage()

{
this.InitializeComponent();
// Add code to initialize the controls
this.led_indicator.Fill = grayBrush;
// Add code to setup timer
this.blinkTimer = new DispatchexTimex();
this.blinkTimer.Interval = TimeSpan.FromMilliseconds(1000);
this.blinkTimer.Tick += BlinkTimer_Tick;
this.blinkTimex.Stop();
// Initalize GPIO
InitGPIO();

Notice you add code to create a new instance of the DispatchTimer class, set the interval for the tick
event to 1 second (1000 milliseconds), add the BlinkTimer Tick() method to the new instance (this is how
you assign a method reference to an existing event handle). Next, you stop the timer and finally call the
method that you wrote to initialize the GPIO.

That’s it! Now, let’s build the solution and check for errors. You should see something like the following
in the output window.

Restoring NuGet packages...

To prevent NuGet from restoring packages during build, open the Visual Studio Options
dialog, click on the Package Manager node and uncheck 'Allow NuGet to download missing
packages during build.'

1>-=-=--- Build started: Project: BlinkCSharpStyle, Configuration: Debug x86 ------

1> BlinkCSharpStyle -> c:\users\chuck\documents\visual studio 2015\Projects\
BlinkCSharpStyle\bin\x86\Debug\BlinkCSharpStyle.exe

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

OK, now you're ready to deploy the application to your device. Go ahead and set up everything and
power on your device.

Deploy and Execute: Completed Application

Once your code compiles, you're ready to deploy the application to your Raspberry Pi (or other device).
Recall from Chapter 4, you have to set up the debug settings to specify the IP address of your Raspberry Pi.
Fortunately, you only have to change three things: IP address, authentication, and uninstall/install check
box, as indicated in Figure 6-7. Remember to choose ARM for the platform. Click Apply and then OK to close
the dialog.

179

http://dx.doi.org/10.1007/978-1-4842-2108-2_4

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

Application

Configuration: Active (Debug) ~ Platform: Active (ARM) v
Build
Build Events
Debug* Start action
Reference Paths [] Do not launch, but debug my code when it starts
Signing —
] Allow local network loopback
Code Analysis
Start options
Target device: Remote Machine >
Remote machine: 192.168.1.134:8116 Find...
Authentication Mode: None =

[] Uninstall and then re-install my package. All information about the application state is deleted I

Debugger type

Application process: Managed Only ~

Figure 6-7. Debug Settings for Deployment

Next, you should also name your application so that you can recognize it on the device. Double-click
the Package.appxmanifest file. You see a new tabbed window open in the IDE. Click the Packaging tab and
change the name of the application, as shown in Figure 6-8. You do this so that the application shows up in
the application list on the device. Otherwise, you would get a strange name that is not readily recognizable.

Application Visual Assets Capabilities Declarations Content URls Packaging

Package name: BhnkCSharpStyld

Package display name: | BlinkCSharpStyle

Major: Minor: Build:
Version: 1 0 0 More information

Publisher: .Choose Certificate..|
Publisher display name: |Chuck

Package family name:

Figure 6-8. Setting Package Name

Once you have these set, you can power on your Raspberry Pi, and once it is booted, go to the Device
Portal and turn on the remote debugger, as shown in Figure 6-9.

3 Debug X - (] "
&« » () 10.0.1.89 ¥ =@ 0

O O B ’) 809 PM

Debug Shuidown Restat Feedback Help 4732016

[start visual Studio Remote Debugger

Start

Figure 6-9. Turning on the remote debugger

180

CHAPTER 6 © WINDOWS 10 IOT DEVELOPMENT WITH C#

Now you can deploy the application from the Build menu. When complete, you'll get messages like the
following from the Output window.

1>------ Build started: Project: BlinkCSharpStyle, Configuration: Debug ARM ------
1> BlinkCSharpStyle -> c:\users\chuck\documents\visual studio 2015\Projects\
BlinkCSharpStyle\bin\ARM\Debug\BlinkCSharpStyle.exe

2>------ Deploy started: Project: BlinkCSharpStyle, Configuration: Debug ARM ------
2>Creating a new clean layout...

2>Copying files: Total 16 mb to layout...

2>Checking whether required frameworks are installed...

2>Framework: Microsoft.NET.CoreRuntime.1.0/ARM, app package version 1.0.23430.0 is not
currently installed.

2>Installing missing frameworks...

2>Registering the application to run from layout...

2>Deployment complete (54476ms). Full package name: "BlinkCSharpStyle 1.0.0.0
arm__2v0q544fdcgac”

Notice the name that you were shown. This is the name that appears on your device. Go back to the
Device Portal and click Apps, and then choose the application in the drop-down list and click Run. Figure 6-10
shows the settings.

[App Manager < [Start |+ - o X
&« O 192.168.1.134 b4 = 14 O
0] O B 7 7:28 PM
App Manager Shutdown Restat Feedback Help 4/4/2016
i Installed apps

| Apps
- BInkCPPStyle_10.0.0_arm_2v0q544idegic a star Set Defauit

Figure 6-10. Starting an application on the device

Note If the app deployed successfully but doesn’t show in the drop-down list, try disconnecting and
reconnecting. If that doesn’t work, try rebooting your device.

You should soon see the application start on your device. Go ahead and click the start/stop button
and observe the application running. The LED on the breadboard should blink in unison with the LED
represented in the user interface. Play with it until the thrill dissipates.

If the LED is not blinking, double-check your wiring and ensure that you chose pin 4 in the code and
pin 7 on the pin header (recall that the pin is named GPIO 4 but it is pin #7 on the header).

You can stop the application in the Device Portal by clicking the Remove button, as shown in Figure 6-10.
And that’s it! Congratulations, you've just written your first C# application that uses the GPIO header to power
some electronics!

Tip As achallenge, you can modify this project to add a Close or an Exit button to stop the application.

181

CHAPTER 6 © WINDOWS 10 I0T DEVELOPMENT WITH C#

Summary

If you are learning how to work with Windows 10 IoT Core and don’t know how to program with C#, learning
C# can be a challenge. While there are many examples on the Internet you can use, very few are documented
in such a way as to provide enough information for someone new to C# to understand or much less get
started or even compile and deploy the sample!

This chapter has provided a crash course in C# that covers the basics of the things that you encounter
when examining most of the smaller example projects. You discovered the basic syntax and constructs
of a Visual C# application, including a walk-through of building a real C# application that blinks an LED.
Through the course of that example, you learned a little about XAML, including how to wire events to
controls, and even a little about how to use the dispatcher timer.

In the next chapter, you'll discover another programming language named Python. You implement the
same example project you saw in this chapter but without the user interface. If you want to see how to work
with the GPIO in Python, read on!

182

CHAPTER 7

Windows 10 loT Development
with Python

Now that you have a basic understanding of how to use Visual Studio 2015, you can learn more about

some of the languages you may encounter when developing your IoT solutions. One of those languages

is Python—a very robust and powerful language that you can use to write very powerful applications.
Mastering is very easy and some may suggest it doesn’t require any formal training to use. This is largely true
and thus you should be able to write applications for Windows 10 IoT Core with only a little bit of knowledge
about Python.

Thus, this chapter presents a crash course on the basics of Python programming in Visual Studio,
including an explanation about some of the most commonly used language features. As such, this chapter
provides you with the skills you need to understand the growing number of IoT project examples available
on the Internet. The chapter concludes with a walk-through of an example project that shows you how to
interact with hardware. Specifically, you will implement the LED project you saw in Chapter 3. Only this
time, you'll be writing it as a Windows 10 IoT Core application in Python. So let’s get started!

Tip If you are not interested in using Python in your loT solutions, or you already know the basics of Python
programming, feel free to skim through this chapter. | recommend working through the example project at the
end of the chapter, especially if you’ve not written loT applications.

I briefly discussed Python in Chapter 3, but you will see much more of the language in the following
sections. That is, I explain the code that you will see in the sample application at the end of the chapter.

Getting Started

Python is a high-level, interpreted, object-oriented scripting language. One of the biggest tenants of Python
is to have a clear, easy to understand syntax that reads as close to English as possible. That is, you should

be able to read a Python script and understand it even if you haven’t learned Python. Python also has less
punctuation (special symbols) and fewer syntactical machinations than other languages.

Tip Although you can terminate a statement with the semicolon (;), it is not needed and considered bad
form.

© Charles Bell 2016 183
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_7

http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://dx.doi.org/10.1007/978-1-4842-2108-2_3

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

Here are a few of the key features of Python.
e Aninterpreter processes python at runtime. No compiler is used.
e Python supports object-oriented programming constructs by way of a class.

e Python is a great language for the beginner-level programmers and supports the
development of a wide range of applications.

e Python is a scripting language but can be used for a wide range of applications.
e Python is very popular and used throughout the world giving it a huge support base.

e Python has few keywords, simple structure, and a clearly defined syntax. This allows
the student to pick up the language quickly.

e Python code is easy to read and understand.

Python was developed by Guido van Rossum from the late 1980s to early 1990s at the National Research
Institute for Mathematics and Computer Science in the Netherlands and maintained by a core development
team at the institute. It was derived from and influenced by many languages, including Modula-3, C, C++,
and even Unix shell scripting languages.

A fascinating fact about Python is it was named after the BBC show Monty Python’s Flying Circus and
has nothing to do with the reptile by the same name.' Quoting Monty Python in source code documentation
(and even a humorous diversion for error messages) is very common and while some professional
developers may cringe at the insinuation, it’s considered by Pythonistas? as showing your Python street cred.

Python is available for download (www. python.org/downloads) for just about every platform that you may
encounter or use—even Windows! However, the Python additions to Visual Studio and especially Windows 10
IoT are limited. In fact, you can only create background (headless) applications in Python for Windows 10 IoT
Core.* While this may seem very limited, there is a very good reason why I've included Python in this book.

Why Do I Need to Learn Python?

Recall that I stated that the volume of Python examples for the Raspberry Pi and other low-cost computing
boards is vast. So much so that you can find Python code snippets to do just about anything you want when
learning to work with the GPIO.

It would be very sad if Windows 10 IoT enthusiasts could not take advantage of the wealth of
information available for programming the Raspberry Pi with Python. Fortunately, this is not the case!
Indeed, many of the Python examples can be adapted for use on Windows 10 IoT Core. You may need to
change the modules included (I'll explain this later), and you may be limited to working with GPIO, but
by and large you can reuse that Python code in your own solutions! Thus, learning Python is a powerful
resource for developing applications for Windows 10 IoT Core.

Furthermore, you can often develop your Python scripts using the interpreter on the Raspberry Pi prior
to building your Windows 10 solution. This is why I covered the topic in Chapter 3. Using the interpreter
with a basic script on the Raspberry Pi is faster and less error-prone than developing it in Visual Studio
and deploying it. This is because since Python is interpreted, the Visual Studio tools cannot catch all of the
problems or errors in your code before you deploy and run it. Using the interpreter (either on Windows or
Raspberry Pi if you're using GPIO) allows you to correct any syntax errors before wasting effort in remote
debugging (which can fail for simple syntax errors).

'Monty Python refers to a group of comedians and not a single individual. However, their comedy is undeniably brilliant.
https://en.wikipedia.org/wiki/Monty_Python

2Pythonistas are expert Python developers and advocates for all things Python.

3Currently. Hopefully, more project types will be available in the future.

184

http://www.python.org/downloads
http://dx.doi.org/10.1007/978-1-4842-2108-2_3
https://en.wikipedia.org/wiki/Monty_Python

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

Tip You can use the Windows Python interpreter to debug basic, non-GPIO code outside of Visual Studio.

Installing Python on Windows 10

How can you use it to write Windows 10 IoT applications? Fortunately, a Python interpreter is available for
Windows 10 and indeed for the Windows 10 IoT Core. In fact, in order to use Python for your IoT projects,
you need to download and install the following tools and components (if you haven'’t already).

e Python 3.5 for Windows: http://www.python.org/downloads

e Python Tools for Visual Studio (PTVS): https://github.com/microsoft/ptvs/
releases

e Python UWP SDK (pyuwpsdk.vsix): https://github.com/ms-iot/python/releases

e Python Windows Devices (pywindevices.zip) modules: https://github.com/ms-
iot/python/releases

First and foremost, you must install Python 3.5 on your PC. If you have an older version, such as 2.6,
2.7, or even 3.4, you should uninstall them (if you don’t need them). This is because the PTVS requires
Python 3.5 and ignore the older versions. If you attempt to work with Python solutions with an older version
of Python, you may get some strange build or deployment errors or your solution will fail to run on the IoT
device. Follow the instructions on the link to download and install Python 3.5.

Next, you need the Python Tools for Visual Studio. This is a third-party component that you can
download and install but must do so in order to see the Python projects in the new project dialog tree.
Follow the instructions on the web site to download and install PTVS. Note that this installation could take a
while depending on your Internet connection and processor speed.

Next, you need to install the SDK for Python UWP applications. This is a Visual Studio plugin that you
can install by double-clicking the file or by installing it via Visual Studio 2015.

Finally, you need the Python modules for the GPIO and other libraries. These are found in the
pywindevices.zip file. Simply download this file and extract the files in a common place that you can find
when building your solutions. For example, I placed mine in a folder (pywindevices) in the root of the Visual
Studio project directory.

OK, once these prerequisites are complete, you're ready to start wiring Python Windows 10 IoT
solutions!

Note You may encounter blogs that claim Python does not work on Windows 10 or that the projects cannot
load or run. This is largely due to improper setup of the PC or project. If you follow the example in this chapter,
your projects will work correctly.

Should you require more in-depth knowledge of Python, there are a number of excellent books on the
topic. The following lists a few of my favorites. A great resource is the documentation on the Python site
(www. python.org/doc/).

e Pro Python, 2nd Edition, by J. Burton Browning and Marty Alchin (Apress, 2014)

e Learning Python, 5th Edition, by Mark Lutz (O’Reilly Media, 2013)

e Automate the Boring Stuff with Python: Practical Programming for Total Beginners by
Al Sweigart (No Starch Press, 2015)

185

http://www.python.org/downloads
https://github.com/microsoft/ptvs/releases
https://github.com/microsoft/ptvs/releases
https://github.com/ms-iot/python/releases
https://github.com/ms-iot/python/releases
https://github.com/ms-iot/python/releases
http://www.python.org/doc/

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

Python Crash Course

Now let’s learn some of the basic concepts of Python programming. Let’s begin with the building blocks
of the language, such as variables, modules, and basic statements, and then move into the more complex
concepts of flow control and data structures.

While the material may seem to come at you in a rush (hence the crash part), this crash course on
Python covers only the most fundamental knowledge of the language and how to use it in Visual Studio. It
is intended to get you started writing Python Windows 10 IoT Core applications. If you find that you want to
write more complex applications than the examples in this book, I encourage you to acquire one or more of
the resources listed earlier to learn more about Python programming.

The following sections present many of the basic features of Python programming that you need
to know in order to understand example projects for Windows 10 IoT Core and vital to successfully
implementing the Python projects in this book.

The Basics

Python is a very easy language to learn with very few constructs that are even mildly difficult to learn. Rather than
toss out a sample application, let’s approach learning the basics of Python in a Python-like way: one step at a time.
The first thing you should learn is that Python does not use a code block demarcated with symbols like
other languages. More specifically, code that is local to a construct, such as a function or conditional or loop
is designated using indentation. Thus, the lines below that are indented (by spaces or, gag, tabs*) so that the
starting characters align for the code body of the construct. The following shows this concept in action.

if (expri):
print("inside expri")
print("still inside expri")
else:
print("inside else")
print("still inside else")

print("in outer level")

Here you see a conditional, or if, statement. Notice that the function call print() (a common way to
display output to the console) is indented. This signals the interpreter that the lines belong to the construct
above it. For example, the two print statements that mention expr1 form the code block for the if condition
(expression evaluates to true). Similarly, the next two print statements form the code block for the else
condition. Finally, the non-indented lines are not part of the conditional and thus are executed after either
the if or else depending on the expression evaluation.

Asyou can see, indentation is a key concept to learn when writing Python. Even though it is very simple,
making mistakes in indentation can result in code executing that you did not expect or worse errors from the
interpreter.

Note | use program and application interchangeably with script when discussing Python. While technically,
Python code is a script, you often use it in contexts where program or application is more appropriate.

“In my experience and travels through geekdom, few programmers prefer tabs over spaces. Indeed, many coding
guidelines prohibit the use of tabs because they can interfere with certain offline code analysis tools. Plus, they can
scramble the format of the code if your editor is set differently than others or if tabs are used inconsistently.

186

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

There is one special symbol that you will encounter frequently. Notice the use of the colon (:) in the
preceding code. This symbol is used to terminate a construct and signals the interpreter that the declaration
is complete and the body of the code block follows.

Now let’s look at how you can use variables in your programs (scripts).

Variables

Python does not have a formal type specification mechanism like other languages. However, you can still
define variables to store anything you want. In fact, Python permits you to create and use variables based on
context. However, you can use initialization to “set” the data type for the variable. The following show several
examples.

Numbers

float _value = 9.75

integer value = 5

Strings

my_string = "He says, he's already got one."

print("Floating number: {0}".format(float_value))
print("Integer number: {0}".format(integer value))
print(my_string)

For situations where you need to convert types or want to be sure values are typed a certain way, there

are many functions for converting data. Table 7-1 shows a few of the more commonly used type conversion
functions. I discuss some of the data structures in a later section.

Table 7-1. Type Conversion in Python

Function Description

int(x [,base]) Converts x to an integer. Base is optional (e.g., 16 for hex).
long(x [,base]) Converts x to a long integer.

float(x) Converts x to a floating-point.

str(x) Converts object x to a string.

tuple(t) Converts tto a tuple.

list(1) Converts [to a list.

set(s) Converts s to a set.

dict(d) Creates a dictionary.

chr(x) Converts an integer to a character.

hex(x) Converts an integer to a hexadecimal string.
oct(x) Converts an integer to an octal string.

However, you should use these conversion functions with care to avoid data loss or rounding. For
example, converting a float to an integer can result in truncation.

187

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

Including Modules

Python applications can be built from reusable libraries that are provided by the Python environment. They
can also be built from custom modules or libraries that you create yourself or download from a third party.
When you want to use a library (function, class, etc.) that is part of a module, you use the import keyword
and list the name of the module. The following shows some examples.

import os

import sys

import mysql.utilities.common.server
import _wingpio as gpio

The first two lines demonstrate how to import a base or common module provided by Python. In this
case, you are using or importing modules for the os and sys modules (operating system and Python system
functions).

Next, you see a special dotted notation in use. The dotted notation is realized by using folders. In this
case, you're using a module from MySQL Utilities (a set of MySQL scripts and library written in Python; see
http://dev.mysql.com/doc/mysql-utilities/1.6/en/). Specifically, you're using the module located in
the utilities/common folder named server. Indeed, if you were to locate that module, you would find a file
named server.py. The starting point of the module dotted notation reference is any path in the PYTHONPATH
environment variable.

Finally, the last example shows how you can use the as keyword to rename the module (give it a
different name or namespace label) to simplify your code by allowing you to use shorter names or names
that make more sense in context.

Tip Itis customary (but not required) to list your imports in alphabetical order, with built-in modules first,
and then third-party modules, and finally, your own modules.

Comments

One of the most fundamental concepts in any programming language is the ability to annotate your source
code with text that not only allows you to make notes among the lines of code, but also forms a way to
document your source code.

To add comments to your source code, use the pound sign (#).° Place it at the start of the line to create
a comment for that line; repeat the # symbol for each subsequent line. This creates what is known as a block
comment, as shown next. Notice that I used a comment without any text to create white space. This helps
with readability and is common practice with block comments.

#

Windows 10 for the IoT

#

Example Python application.
#

Created by Dr. Charles Bell
#

SSometimes called “hash” but I personally think that term is over used, especially by those that want to sound intelligent
when speaking about social media.

188

http://dev.mysql.com/doc/mysql-utilities/1.6/en/

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

You can also place comments on the same line as the source code. The compiler will ignore anything

from the pound sign to the end of the line. For example, the following shows a common method for
documenting variables.

zip = 35012

address1= "123 Main St."

Arithmetic

You can perform a number of mathematical operations in Python, including the usual primitives but also
logical operations and operations used to compare values. Rather than discuss these in detail, I provide a

Zip or postal code

Store the street address

quick reference in Table 7-2 that shows the operation and example of how to use the operation.

Table 7-2. Arithmetic, Logical, and Comparison Operators in Python

Type Operator Description Example
Arithmetic + Addition int_var + 1

- Subtraction int_ var-1

* Multiplication int_var*2

/ Division int var/3

% Modulus int_var % 4

- Unary subtraction -int_var

+ Unary addition +int_var
Logical & Bitwise and varl&var2

| Bitwise or varl|var2

A Bitwise exclusive varl/var2

~ Bitwise compliment ~varl

&& Logical and varl&&var2

I Logical or varl|[var2
Comparison == Equal exprl==expr2

1= Not equal exprl!=expr2

< Less than exprl<expr2

> Greater than exprl>expr2

<= Less than or equal exprl<=expr2

>= Greater than or equal exprl>=expr2

Bitwise operations produce a result on the values performed on each bit. Logical operators (and, or)

produce a value that is either true or false and are often used with expressions or conditions.
Now that you understand variables and types, the operations permitted on them, and expressions, let’s
look at how to use them in flow control statements.

189

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

Flow Control Statements

Flow control statements change the execution of the program. They can be conditionals that use expressions
that restrict execution to only those cases where the expression evaluates true (or negated), special
constructs that allow you to repeat a block of code (loops), and the use of functions to switch context to
perform some special operations. You've already seen how functions work so let’s look at conditional and
loop statements.

Conditionals

Conditional statements allow us to direct execution of your programs to sections (blocks) of code based on
the evaluation of one or more expressions. There are two types of conditional statements in Python—the if
statement and the switch statement.

You have seen the if statement in action in our example code. Notice in the example, you can have one
or more (optional) else phrases that you execute once the expression for the if conditions evaluate to false.
You can chain if / else statements to encompass multiple conditions, where the code executed depends on
the evaluation of several conditions. The following shows the general structure of the if statement.

if (expri):

execute only if expri is true
elif ((expr2) || (expr3)):

execute only if expr1l is false *and* either expr2 or expr3 is true
else:

execute if both sets of if conditions evaluate to false

While you can chain the statement as much as you want, use some care here because the more elif
sections you have, the harder it becomes to understand, maintain, and avoid logic errors in your expressions.

Loops

Loops are used to control the repetitive execution of a block of code. There are three forms of loops that have
slightly different behavior. All loops use conditional statements to determine whether to repeat execution

or not. That is, they repeat as long as the condition is true. The three types of loops are while, do, and for. I
explain each with an example.

The while loop has its condition at the “top” or start of the block of code. Thus, while loops only execute
the body if and only if the condition evaluates to true on the first pass. The following illustrates the syntax
for a while loop. This form of loop is best used when you need to execute code only if some expression(s)
evaluate to true. For example, iterating through a collection of things those number of elements is unknown
(loop until you run out of things in the collection).

while (expression):
do something here

For loops are sometimes called counting loops because of their unique form. For loops allow you to
define a counting variable and a range or list to iterate over. The following illustrates the structure of the
for loop. This form of loop is best used for performing an operation in a collection. In this case, Python
automatically places each item in the collection in the variable for each pass of the loop until no more items
are available.

190

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

for variable name in list:
do something here

You can also do range loops or counting loops. This uses a special function called range() that takes up
to three parameters, range([start], stop[, step]), where startis the starting number (an integer), stop
is the last number in the series, and step is the increment. So you can count by 1, 2, 3, and so forth through a
range of numbers. The following shows a simple example.

for i in range(2,9):
do something here

There are other uses for range() that you may encounter. See the documentation on this function and
other built-in functions at https://docs.python.org/3/1library/functions.html for more information.

Python also provides a mechanism for controlling the flow of the loop (e.g., duration or termination)
using a few special keywords as follows.

e break: Exit the loop body immediately
e continue: Skip to next iteration of the loop
e else: Execute code when loop ends

There are some uses for these keywords, particularly break, but it is not the preferred method of
terminating and controlling loops. That is, professionals believe the conditional expression or error handling
code should behave well enough to not need these options.

Functions

Python allows you to use modularization in your code. While it supports object-oriented programming by
way of classes (a more advanced feature that you are unlikely to encounter for most Python GPIO examples),
on a more fundamental level you can break your code into smaller chunks using functions.

Functions use a special keyword construct (rare in Python) to define a function. You simply use def
followed by a name and a parameter list in parenthesis. The colon is used to terminate the declaration. The
following shows an example.

def print dictionary(the dictionary):
for key, value in the dictionary.items():
print("'{o}': {1}".format(key, value))

You may be wondering what this strange code does. Note that the loop is assigning two values from
the result of the items () function. This is a special function available from the dictionary object. (Yes,
dictionaries are objects! So are tuples, lists, and many other data structures.) The items() function returns
the key, value pairs; hence, the names of the variables.

The next line prints out the values. The use of formatting strings where the curly braces define the
parameter number starting at 0 is common for Python 3.x applications. See the Python documentation for
more information about formatting strings.

Here the body of the function is indented. All statements indented under this function declaration
belong to the function and are executed when the function is called. You can call functions by name
providing any parameters as follows.

print_dictionary(my dictionary)

191

https://docs.python.org/3/library/functions.html

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

This example, when executed, generates the following output as shown in Figure 7-1. I generated this
by writing the function in the Python interpreter on my PC and executing it. To run the interpreter, search for
Python and select the Python command window. Thus, this demonstrates how to use the Python interpreter
to execute Python code on the fly (as you type each line and press Enter).

B ' Python 3.5 (32-bit) = O X

Python 3.5.0 (v3.5.0:374f501f4567, Sep 13 2015, ©2:16:59) [MSC v.190@ 32 bit (In~
tel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> def print_dictionary(the_dictionary):
for key, value in the_dictionary.items():
print("'{e}':{1}".format(key, value))

>>> my_dictionary = {
'name': "Chuck",
‘age': 36,
e
>>> print_dictionary(my_dictionary)
"name’ : Chuck
'age':36
>>>

Figure 7-1. Using the Python interpreter

Tip Functions (methods) provided by objects (classes) can be called using the syntax object name.
method_name().

Now let’s look at some commonly used data structures, including this strange thing called a dictionary.

Basic Data Structures

What you have learned so far about Python is enough to write the most basic programs and indeed more
than enough to tackle the example project later in this chapter. However, when you start needing to operate
on data (either from the user or from sensors and similar sources), you need a way to organize and store
data and operations on the data in memory. The following introduces three data structures in order of
complexity: lists, tuples, and so forth. Next, I demonstrate the three that you encounter most frequently.

Lists

Lists are a way to organize data in Python. It is a free-form way to build a collection. That is, the items (or
elements) need not be the same data type. Lists also allow you to do some interesting operations, such as
adding things at the end, beginning, or at a special index. The following demonstrates how to create a list.

192

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

List
my list = ["abacab", 575, "rex, the wonder dog", 24, 5, 6]
my list.append("end")
my list.insert(o,"begin")
for item in my_list:
print("{0}".format(item))

Here you see I created the list using square brackets ([]). The items in the list definition are separated
by commas. Note that you can create an empty list simply be setting a variable equal to []. Since lists, like
other data structures, are objects, there are a number of operations available for lists, such as the following.

append(x): Add x to the end of the list

e extend(l): Add all items to the end of the list

e insert(pos,item): Insert item at a position pos

e remove(value): Remove the first item that matches (==) the value
e pop([i]): Remove the item at position i or end of list

e index(value): Return index of first item that matches

e count(value): Count occurrences of value

e sort(): Sort the list (ascending)

e reverse(): Reverse sort the list

Lists are like arrays in other languages and very useful for building dynamic collections of data.

Tuples

Tuples on the other hand, are a more restrictive type of collection. That is, they are built from a specific set of
data and do not allow manipulation like a list. The following shows an example of a tuple and how to use it.

Tuple
my_tuple = (0,1,2,3,4,5,6,7,8, "nine"
for item in my_tuple:
print("{o}".format(item))
if 7 in my_tuple:
print("7 is in the list")

Here you see I created the tuple using parenthesis (). The items in the tuple definition are separated
by commas. Note that you can create an empty tuple simply be setting a variable equal to (). Since tuples,
like other data structures, are objects, there are a number of operations available, such as the following,
including operations for sequences such as inclusion, location, and so forth.

e xint: Determine if t contains x
e xnotint: Determine if does not contain x

e s+t Concatenate tuples

s[i]: Get element i

193

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

e len(t): Length of t (number of elements)
e min(t): Minimal (smallest value)
e max(t): Maximal (largest value)

If you want even more structure with storing data in memory, you can use a special construct (object)
called a dictionary.

Dictionaries

A dictionary is a data structure that allows you to store key/value pairs where the data is assessed via the
keys. Dictionaries are a very structured way of working with data and they are the most logical form you want
to use when collecting complex data. The following shows an example of a dictionary.

Dictionary
my_dictionary = {
"first_name': vChuck",
‘last_name': "Bell",
'age': 36,
'my ip': (192,168,1,225),
42: "What is the meaning of life?",
}
Access the keys:
print(my dictionary.keys())
Access the items (key, value) pairs
print(my dictionary.items())
Access the values
print(my_dictionary.values())
Create a list of dictionaries
my addresses = [my dictionary]

There is a lot going on here! You see a basic dictionary declaration that uses curly braces to create a
dictionary. Inside that, you can create as many key/value pairs you want separated by commas. Keys are
defined using strings (I use single quotes by convention but double quotes will work) or integers, values can
be any data type you want. For themy_1ip attribute, you are also storing a tuple.

Following the dictionary, you see a number of operations performed on the dictionary from printing the
keys, printing all of the values, and printing only the values. The following shows the output of executing this
code snippet from the Python interpreter.

[42, 'first_name', 'last_name', 'age', 'my_ip']

[(42, 'what is the meaning of life?'), ('first name', 'Chuck'), ('last name', 'Bell'),
(‘age', 36), ('my_ip', (192, 168, 1, 225))]

['what is the meaning of life?', 'Chuck', 'Bell', 36, (192, 168, 1, 225)]

'42": what is the meaning of life?

'first _name': Chuck

'last_name': Bell

'age': 36

'my ip': (192, 168, 1, 225)

194

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

As you have seen in this example, there are a number of operations (methods) available for dictionaries,
including the following. Together this list of operations makes dictionaries a very powerful programming tool.

e len(d): Number of items in d

e dfk]: Ttem of d with key k

e d[k]=x: Assign key k with value x

e deld[k]: Delete item with key k

e kind:Determine if d has an item with key k

e d.items(): Return a list of the (key, value) pairs in d
e d.keys(): Return a list of the keys in d

e d.values(): Return a list of the values in d

Best of all, objects can be placed inside other objects. For example, you can create a list of dictionaries
like I did, a dictionary that contains lists and tuples, and any combination you need. Thus, using lists, tuples,
and dictionaries are a powerful way to manage data for your program.

Wow! That was a wild ride, wasn’t it? I hope that this short crash course in Python has explained enough
about the sample programs shown so far that you now know how they work. This crash course also forms the
basis for understanding the other Python examples in this book.

OK, now it’s time to see some of these fundamental elements of Python in action. Let’s look at Let's look at
the blink an LED application you saw in Chapter 3 only this time you're going to write it for Windows 10 IoT Core!

Blink an LED, Python Style

OK, let’s write some Python code! This project is the same concept as the project from Chapter 3 where
you used Python to blink an LED on the Raspberry Pi. Since we are limited to creating only a background
application in Windows 10 IoT Core (recall that a headless application has no user interface), the code will
be less and much simplified from the C++ and C# examples since there is no user interface code. In fact, you
aren’t producing any output other than the blinking LED.

Also, the mechanisms you will use to deploy, start, and stop the application are different from headed
applications. I explain how to do this in detail in the following sections. Before we get into the code, let’s look
at the components that you will be using and set up the hardware.

Required Components

The following lists the components that you need. All of these are available in the Microsoft Internet of
Things Pack for the Raspberry Pi from Adafruit. If you do not have that kit, you can find these components
separately on the Adafruit web site (www.adafruit.com), from SparkFun (www.sparkfun.com), or any
electronics store that carries electronic components.

560 ohm 5% 1/4W resistor (green, blue, brown stripes®)

Diffused 10mm red LED (or similar)

Breadboard (mini, half, or full sized)

(2) male-to-female jumper wires

You may notice that this is the same set of components that you used in Chapter 3.

See https://en.wikipedia.org/wiki/Electronic_color_code.

195

http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://dx.doi.org/10.1007/978-1-4842-2108-2_3
http://www.adafruit.com/
http://www.sparkfun.com/
http://dx.doi.org/10.1007/978-1-4842-2108-2_3
https://en.wikipedia.org/wiki/Electronic_color_code

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

Set up the Hardware

Begin by placing the breadboard next to your Raspberry Pi and power the Raspberry Pi off orienting the
Raspberry Pi with the label facing you (GPIO pins in the upper-left). Next, take one of the jumper wires and
connect the female connector to pin 6 on the GPIO. The pins are numbered left-to-right starting with the
lower left pin. Thus, the left two pins are 1 and 2 with pin 1 below pin 2. Connect the other wire to pin 7 on
the GPIO.

Tip The only component that is polarized is the LED. This longer side is the positive side.

Next, plug the resistor into the breadboard with each pin on one side of the center groove. You can
choose whichever area you want on the breadboard. Next, connect the LED so that the long leg is plugged
into the same row as the resistor and the other pin on another row. Finally, connect the wire from pin 6 to
the same row as the negative side of the LED and the wire from pin 7 to the row with the resistor. Figure 7-2
shows how all of the components are wired together. Be sure to study this drawing and double-check your
connections prior to powering on your Raspberry Pi. Once you're satisfied everything is connected correctly,
you're ready to power on the Raspberry Pi and write the code.

Raspberry Pi
Model B

I R A)

Figure 7-2. Wiring the LED to a Raspberry Pi

Since you are building a headed application, you'll also need a keyboard, mouse, and monitor
connected to the Raspberry Pi.
OK, now you have the hardware set up, so it’s time to start writing the code.

Write the Code

Begin by opening a new project template. Choose Python » Windows IoT Core in the tree and the
Background Application (IoT) template in the list. This template creates a new solution with all of the
source files and resources you need for a UWP headed application. Figure 7-3 shows the project template
that you need. Use BlinkPythonStyle for the project name.

196

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

New Project ? X
b Recent NET Framework 452 = Sort by: Default - Hti= talled Te tes (Ct P~
| A
TiE [m7] Background Application (ioT) Python Type: Python
-
4 Ternplates = A project for creating an Python loT

Background Application

4 Other Languages
Build Accelerator

Game

Visual F#
b Visual C#
b Visual Basic

b JavaScript
4 Python
Wb
Windows laT Care

b TypeScript
b Other Project Types
Samples
b Online
b ac '
Name: [BinkPythanstyie |
Location: chusers\chuck\documents\visual studio 201 5\Projects -
Solution name: [[] Create directory for solution
[[] Add to source control
oK | Cancel

Figure 7-3. New Project dialog—Background Application (IoT)

Tip If you attempt to create this example but do not see Python in the tree view, you may need to install
the Python prerequisites. See the “Getting Started” section of this chapter for information on what you need to
install.

Once the project is open, you see a number of files like any other project. However, Python projects only
have the one source code file named StartupTask.py. You can rename this file by right-clicking it, but it isn’t
necessary for our example. Go ahead and open that file now (just double-click it in the tree). Notice that the
file is empty save for a single comment line (you can overwrite that).

The first thing you need to do is add a reference to the GPIO Python module. Remember that this is
contained in the pywindevices.zip file from CPython UWP SDK. If you haven't already done so, download
the file and extract the files in a directory you can remember.

To add the reference, Right-click the References item in the project and choose Add Reference.... Once
the dialog opens, click Browse and then navigate to the folder where you extracted the files. In that folder are
subfolders for ARM or x86 builds. Choose the folder that matches your board (e.g., ARM for Raspberry Pi).
Once selected, you see all of the available modules.

The module you want is named _wingpio. There are two versions of the reference; one for release builds
(_wingpio.pyd) and one for debug builds (_wingpio_d.pyd). I recommend using the debug version until
your application runs correctly. Figure 7-4 shows the dialog you can use to add the reference.

197

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

I
Projects .NET Browse Web Platform Installer
Look in: ARM v|@F M@~
[Name Date modified Type
1| | _wingpio.pyd 4/19/2016 9:05 PM PYD File
_wingpio_d.pyd 4/19/2016 9:05 PM PYD File
_wini2c.pyd 4/19/2016 9:05 PM PYD File
_wini2c_d.pyd 4/19/2016 9:05 PM PYD File
_winspi.pyd 4/19/2016 9:05 PM PYD File
_winspi_d.pyd 4/19/2016 9:05 PM PYD File
< >
File name: _wingpio.pyd >
Files of type: | Python Extension Modules (* dil.* pyd) v
| (0]4 Cancel

Figure 7-4. Adding the Python module references

Now you can return to the code file and add the modules you want to use. You need two: the GPIO
module and the time module. You can add them as follows.

import _wingpio as gpio # The GPIO library
import time # Time functions

Next, you can write the code to create some variables that you need and to initialize the GPIO module.
The code to do this is as follows.

BLINK_TIME = 30.0
GPIO PIN = 4
pin_val = gpio.HIGH
elapsed_time = 0

blink for 30 seconds

GPIO4 (not pin #4)

Store pin value (high/low)
Store time in seconds

Setup the
gpio.setup(GPIO PIN, gpio.OUT, gpio.PUD OFF, gpio.HIGH)

Here you have a variable to store how long you want to blink the LED, a variable to store the GPIO pin

number (GPIO4), a variable to store the GPIO value (high/low), and a variable to store how much time has
passed.

198

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

As you may have anticipated, you are going to implement the code to turn the LED on and off in a loop.
The following shows the loop that you will use.

Run the blink series for
while (elapsed_time < BLINK TIME):
If LED is on, turn it off
if pin_val == gpio.HICGH:
pin_val = gpio.LOW
gpio.output(led pin, pin_val)
else, turn it on
else:
pin_val = gpio.HIGH
gpio.output(led_pin, pin_val)
Sleep for 1/2 second
time.sleep(1)
elapsed_time = elapsed time + 1

Notice that you simply turn the GPIO pin on (high) if it is off or off (low) if it is on. At the end of the loop,
you sleep (pause) for one second and sum the time. Thus, the loop simply toggles from one state (on) to the
other (off) thereby blinking the LED.

Finally, you clean up the GPIO object when the loop ends.

Close down and cleanup the GPIO
gpio.cleanup()

That's it! You've finished the code. Listing 7-1 shows the complete code.

Listing 7-1. Python Blink LED Script

import _wingpio as gpio # The GPIO library

import time # Time functions

BLINK_TIME = 30.0 # blink for 30 seconds

GPIO PIN = 4 # GPIO4 (not pin #4)
pin_val = gpio.HIGH # Store pin value (high/low)
elapsed time = 0 # Store time in seconds

Setup the GPIO
gpio.setup(GPIO_PIN, gpio.OUT, gpio.PUD OFF, gpio.HIGH)

Run the blink series for
while (elapsed time < BLINK TIME):
If LED is on, turn it off
if pin_val == gpio.HICH:
pin_val = gpio.LOW
gpio.output(GPIO_PIN, pin_val)
else, turn it on
else:
pin_val = gpio.HIGH
gpio.output(GPIO PIN, pin_val)

199

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

Sleep for 1/2 second
time.sleep(1)
elapsed_time = elapsed time + 1

Close down and cleanup the GPIO
gpio.cleanup()

Asyou can see, the code is much smaller than the C++ or C# examples from the previous chapters. You
do not need to build the code (Python is interpreted). Indeed, building the code only performs some very
high-level checks and does not check the validity of the code.

Caution Compiling or building the code performs only the most basic of tests. It does not verify that the
code is correct.

OK, now you're ready to deploy the application to your device. Go ahead and set everything up and
power on your device.

Deploy and Set as Startup

Once the Raspberry Pi has booted, you're ready to deploy the application to it (or other device). Recall

from Chapter 4, that you have to set up the debug settings to specify the IP address of your Raspberry Pi.
Fortunately, you only have to change two items as indicated in Figure 7-5. Note that you may not need to set
the remote port (5678 is the default). Remember to choose ARM for the platform. Click Apply and then OK
to close the dialog.

UWP Project Settings Configuration: Active (Debug) ~ Platform: |Active (ARM) B

Debug Settings

[Remote Devios: [100 189 |

| Remote Port bo7a/ I

Figure 7-5. Setting Debug Settings for deployment

Notice that you use the IP address for the device. You can also use the computer name if you know that.
Also, unlike the C++ example, you do not specify a port here. Instead, you must select port 5678. This is a
special port that the Python debugger responds to when you deploy your application.

Once these are set, you can deploy the application from the Build menu. When complete, you'll get
messages like the following from the Output window.

—————— Deploy started: Project: BlinkPythonStyle, Configuration: Debug ARM ------
Creating a new clean layout...

Copying files: Total 16 mb to layout...

Checking whether required frameworks are installed...

Framework: Microsoft.VCLibs.140.00.Debug/ARM, app package version 14.0.22929.0 is not
currently installed.

200

http://dx.doi.org/10.1007/978-1-4842-2108-2_4

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

Installing missing frameworks...

Registering the application to run from layout...

Deployment complete (33566ms). Full package name: "BlinkPythonStyle 1.0.0.0_
arm__2v0q544fdcgac”

== === Build: 0 succeeded, 0 failed, 1 up-to-date, 0 skipped ==========

If your deployment succeeded, you may expect to see something happen on the Raspberry Pi, but you
won't see anything. That’s normal. A headless application must be set as a startup application in order to
execute. You can set the startup application via the Windows Device Portal, but it is much easier to use a
command-line tool on the device. Plus, while you can set the startup application with the Device Portal, you
cannot start the application. This is an unfortunate limitation of the Device Portal currently. It can only start
headed applications. As a workaround, in the Processes page, you can use Run command to execute this
command to start a background application (by specifying it as one of the startup apps).

Recall that you use Putty (or a similar application) to connect to the device via SSH. The command is
iostartup. Listing 7-2 shows the help output for the command, including all of the options to work with
startup applications. As you can seg, it is very comprehensive.

Listing 7-2. Help Output for iostartup Command

C:\Data\Users\administrator>iotstartup
Usage:

TotStartup [list|add|remove|startup] ([headed|headless]) (std::regex regular expression
with implied * prepended)

TotStartup [help|-?|-h|--help]

Examples:
IotStartup list // list installed applications
IotStartup list headed // 1list installed headed applications
IotStartup list headless // list installed headless applications
IotStartup list MyApp // list installed applications that match pattern MyApp
IotStartup add headed MyApp // add headed application that matches pattern MyApp.

Pattern must match only one application.
IotStartup add headless Task1 // add headless applications that match pattern Taskl
IotStartup remove headless Taski // remove headless applications that match pattern Taski

IotStartup startup // list headed and headless applications registered for
startup
IotStartup startup MyApp // list headed and headless applications registered for

startup that match pattern MyApp

IotStartup startup headed MyApp // list headed applications registered for startup that
match MyApp

IotStartup startup headless Taski // list headless applications registered for startup
that match Task1

You can see what applications are set for startup (they execute when the device is booted) using the
iostartup startup command, as shown next. This command lists all of the applications that start on boot,
grouped by headless or headed applications. Notice that you do not have to use the complete name for the
application. You can just use the first few characters, or to be safer, the base name you used in Visual Studio.

C:\Data\Users\administrator>iotstartup startup

Headed : IoTCoreDefaultApp 1w720vyc4ccym!App
No headless applications registered

201

CHAPTER 7 © WINDOWS 10 10T DEVELOPMENT WITH PYTHON

To add an application that has been deployed to the device as a startup application, simply add the
name of the application to the command, as shown next. Here you add the application and then use the
command again without a name to verify that it has started.

C:\Data\Users\administrator>iotstartup add headless BlinkPythonStyle
Added Headless: BlinkPythonStyle 1.0.0.0_arm_ 2v0q544fdcg4c

C:\Data\Users\administrator>iotstartup startup
Headed : IoTCoreDefaultApp_iw720vyc4ccym!App
Headless : BlinkPythonStyle 1.0.0.0_arm_ 2v0q544fdcgic

Caution This command configures Windows 10 loT Core to ensure that this background application is
always running. If it crashes and you restart the device, the background application is started. If the crash is
severe enough, it can cause Windows 10 to be unavailable, because the app will start and then immediately
crash and force a reboot. The only way to break this cycle (sadly) is to reimage your SD card. Never attempt to
set an untested application as a startup application.

The application should start running at this point. If it doesn’t start, try rebooting the device. You can reboot
the device via the command line with the following command. For information about other command-line
commands, see https://ms-iot.github.io/content/en-US/win10/tools/CommandLineUtils.htm.

shutdown /r /t 0
To remove your application from the startup list, execute the following command.
iotstartup remove headless BlinkPythonStyle

If the LED is still not blinking after the reboot, double-check your wiring and ensure that you chose pin
4 in the code and pin 7 on the pin header (recall that the pin is named GPIO 4 but it is pin #7 on the header).

Once you get it working, you see the LED blink for 30 seconds and then the application stops. If this
happens as expected, congratulations, you've just written your first Python application that uses the GPIO
header to power some electronics!

Summary

If you are learning how to work with Windows 10 IoT Core and don’t know how to program with Python,
learning Python can be fun given its easy to understand syntax. While there are many examples on the
Internet that you can use, very few are documented in such a way as to provide enough information for
someone new to Python to understand—much less get started or compile and deploy the sample!

This chapter has provided a crash course in Python that covers the basics of the things you encounter
when examining most of the smaller example projects. You discovered the basic syntax and constructs of
a Python application, including a walk-through of building a real Python application that blinks an LED.
Through that example, you learned how to work with headless applications, including how to manage a
startup background application.

The next chapter takes a short detour in your exploration of Windows 10 IoT Core projects. You are
introduced to the basics of working with electronics. Like the programming crash course, the chapter
provides a short introduction to working with electronics. A mastery of electronics in general is not required
for the projects you explore, but if you've never worked with electronic components before, the next chapter
will prepare you for the more advanced projects in Chapters 10-15.

202

https://ms-iot.github.io/content/en-US/win10/tools/CommandLineUtils.htm
http://dx.doi.org/10.1007/978-1-4842-2108-2_10
http://dx.doi.org/10.1007/978-1-4842-2108-2_15

CHAPTER 8

Electronics for Beginners

If you're new to the IoT or have never worked with electronics, you may be wondering how you're going
to get your ideas for an IoT solution realized. The projects in this book walk you through how to connect
the various components used and thus you can complete them without a lot of additional information or
specialized skills.

However, if something goes wrong or you want to create projects on your own, you may need a bit
more information than “plug this end in here” More specifically, you need to know enough about how the
components work in order to successfully complete your project—whether that is completing the examples
in this book or examples found elsewhere on the Internet.

Rather than attempt to present a comprehensive tutorial on electronics, which would take several
volumes, this chapter presents an overview of electronics for those who want to work with the types of
electronic components commonly found in IoT projects. I include an overview of some of the basics,
descriptions of common components, and a look at sensors. If you are new to electronics, this chapter gives
you the extra boost you need to understand the components used in the projects in this book.

However, if you have experience with electronics either at the hobbyist or enthusiast level or have
experience or formal training in electronics, you may want to skim this chapter or read the sections with
topics that interest you.

SELF-PACED ELECTRONICS TRAINING

If you find you need or want to learn more about electronics, especially the types of electronics you
need for an loT solution, check out the set of electronics books by Charles Platt. I've found these books
to be very well written opening the door for many to learn electronics without having to spend years
learning the tedious (but no less important) theory and mathematics of electronics. | recommend the
following books for anyone wanting to learn more about electronics.

e Make: Electronics by Charles Platt (O'Reilly, 2015)
e Make: More Electronics by Charles Platt (0'Reilly, 2014)
e Encyclopedia of Electronic Components by Charles Platt (O’Reilly, 2012)

Maker Shed (www.makershed.com/collections/electronics) sells companion kits that contain all of
the parts you need to complete the experiments in the Make: Electronics and Make: More Electronics
books. The books together with the kits make for an excellent self-paced learning experience.

© Charles Bell 2016 203
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_8

http://www.makershed.com/collections/electronics

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Let’s begin with a look at the basics of electronics. Once again, this is in no way a tutorial that covers
all there is to know, but it gets you to the point where the projects make sense in how they connect and use
components.

The Basics

This section presents a short overview of some of the most common tools and techniques you need to

use when working with electronics. As you will see, you only need the most basic of tools and the skills or
techniques are not difficult to learn. However, before you get into those, let’s discuss the most fundamental
concept you must understand when working with electronics—power!

Powering Your Electronics

Electricity® is briefly defined as the flow of electric charge and when used, provides power for your
electronics—a common lightbulb, a ceiling fan, a high-definition television, a tablet. Whether you are
powering your electronics with batteries or a power supply, you are initiating a circuit where electrons flow
in specific patterns. There are two forms (or kinds) of power that you will use. Your home is powered by
alternating current and your electronics are powered by direct current.

The term alternating current (AC) is used to describe the flow of charged particles that changes
direction periodically at a specific rate (or cycle) reversing the voltage along with the current. Thus, AC
systems are designed to work with a specific range of cycles as well as voltage. Typically, AC systems use
higher voltages than direct current systems.

The term direct current (DC) is used to describe the flow of charged particles that do not change
direction and thus always flow in a specific “direction.” Most electronics systems are powered with DC
voltages and are typically at lower voltages than AC systems; for example, IoT projects typically run on lower
direct current (DC) voltages in the range 3.3V-24V.

Tip For more information about AC and DC current and the differences, see https://learn.sparkfun.
com/tutorials/alternating-current-ac-vs-direct-current-dc.

Since DC flows in a single direction, components that operate on DC have a positive side and a negative
side, where current flows from positive to negative. The orientation of these sides—one to positive and one
to negative—is called polarity. Some components, such as resistors, can operate in either “direction” but you
should always be sure to connect your components according to its polarity. Most components are clearly
marked but those that are not have a well-known arrangement. (For example, the positive pole (side) of an
LED is the longer of the two legs; it is called an anode. The negative and shorter leg is called the cathode).

Despite the lower voltages, you mustn'’t think that they are completely harmless or safe. Incorrectly wiring
electronics (reversing polarity) or shorting (connecting positive and negative together) can damage your
electronics and in some cases cause overheating, which, in extreme cases, cause electronics to catch fire.

Caution Don’t be tempted to think working with 3.3 or 5.5 volts is “safe.” Even a small amount of voltage
improperly connected can lead to potentially devastating results. Don’t assume low DC voltage is harmless.

'See https://learn.sparkfun.com/tutorials/what-is-electricity.

204

https://learn.sparkfun.com/tutorials/alternating-current-ac-vs-direct-current-dc
https://learn.sparkfun.com/tutorials/alternating-current-ac-vs-direct-current-dc
https://learn.sparkfun.com/tutorials/what-is-electricity

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

I'had alesson in just how real this scenario can be a couple of years ago. I was changing the batteries in
my smoke detectors. I took the old batteries out and placed them in my pocket. I had forgotten I had a small
penknife in the same pocket. One of the 9V batteries shorted on the knife and within about ten minutes,
the battery heated to an alarming temperature. It wasn’t enough to burn but had I left something like that
unattended, it could have been bad.

That’s a scary thought, isn’t it? Consider it an admonishment as well as a warning; you should never
relax your safe handling practices even for lower voltage projects.

Finally, DC components are often rated for a specific voltage range. Recall from the discussion on the
various low-cost computing boards and GPIO headers, some boards operate at 5V, whereas others operate at
3.3V (or less). Fortunately, there are several ways you can adapt components that work at different voltages—
by using other components!

Note | have deliberately kept the discussion on power simple. There is far more to electrical current—
even DC—than what I've described here. As long as you understand these basics, you'll be able to work with
the projects in this book and more.

Now let’s take a look at some of the tools you need to work on your IoT projects.

Tools

The vast majority of tools you need to construct your IoT projects are common hand tools (screwdrivers,
small wrenches, pliers, etc.). For larger projects or for creating enclosures you may need additional tools,
such as power tools, but I concentrate only on those tools needed for building the projects. The following is a
list of tools that I recommend to get you started.

e Breadboard

e Breadboard wires (also called jumpers)

e Electrostatic discharge (ESD) safe tweezers
e Helping hands or printed circuit board (PCB) holder
e Multimeter

e Needle-nose pliers

e Screw drivers: assorted sizes (micro, small)
e Solder

e Solderingiron

e Solder remover (solder sucker)

e Tool case, roll, or box for storage

e Wire strippers

However, you cannot go wrong if you prefer to buy a complete electronics toolset, such as those from
SparkFun (www.sparkfun.com/categories/47) or Adafruit (www.adafruit.com/categories/83). You can
often find electronics kits at major brand electronics stores and home improvement centers. If you are
fortunate enough to live near a Fry’s Electronics, you can find just about any electronics tool made. Most
electronics kits have all the hand tools that you need. Some even come with a multimeter, but more often
you have to buy it separately.

205

http://www.sparkfun.com/categories/47
http://www.adafruit.com/categories/83

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Most of the tools in the list do not need any explanation except to say you should purchase the best tools
that your budget permits. The following paragraphs describe some of the tools that are used for special tasks,
such as stripping wires, soldering, and measuring voltage and current.

Multimeter

A multimeter is one of those tools that you need when building IoT solutions. You also need it to do
almost any electrical repair on your circuits. There are many different multimeters available with prices
ranging from inexpensive, basic units to complex, feature-rich, incredibly expensive units. For most IoT
projects, including most IoT kits, a basic unit is all that you need. However, if you plan to build more than
one IoT solution or want to assemble your own electronics, you may want to invest a bit more in a more
sophisticated multimeter. Figure 8-1 shows a basic digital multimeter (costing about $10) on the left and a
professional multimeter from BK Precision on the right.

(€

CEN-TECH

Figure 8-1. Digital multimeters

Notice that the better meter has more granular settings and more features. Again, you probably
won’t need more than the basic unit. You need to measure voltage, current, and resistance at a minimum.
Whichever meter you buy, make sure that it has modes for measuring AC and DC voltage, continuity testing
(with an audible alert), and checking resistance. I explain how to use a multimeter in a later section.

Tip Most multimeters including the inexpensive ones come with a small instruction booklet that shows you
how to measure voltage, resistance, and other functions of the unit.

Soldering Iron

A soldering iron is not required for any of the projects in this book because you use a breadboard to lay
out and connect the components. However, if you plan to build a simple IoT solution where you need to
solder wires, or maybe a few connectors, a basic soldering iron from an electronics store such as Radio

206

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Shack is all you need. On the other hand, if you plan to assemble your own electronics, you may want to
consider getting a good, professional soldering iron, such as a Hakko. The professional models include
features that allow you to set the temperature of the wand, have a wider array of tips available, and tend
to last a lot longer. Figure 8-2 shows a well-used entry-level Radio Shack. Figure 8-3 shows a professional
model Hakko soldering iron.

Figure 8-3. Professional soldering iron

207

CHAPTER 8 * ELECTRONICS FOR BEGINNERS

Tip For best results, choose a solder with a low lead content in the 37%—40% range. If you use a
professional soldering iron, adjust the temperature to match the melting point of the solder (listed on the label).

DO | NEED TO LEARN TO SOLDER?

If you do not know how to solder or it has been a while since you’ve used a soldering iron, you may
want to check out the book Learn to Solder by Brian Jepson, Tyler Moskowite, and Gregory Hayes
(O'Reilly Media, 2012) or Google how-to videos on soldering. Or you could buy the Getting Started
Soldering Kit from Maker Shed (www.makershed.com/products/make-getting-started-kit-
soldering), which comes with a soldering iron, wire cutters, supplies, and more—everything you need
to learn how to solder. Cool.

Wire Strippers

There are several types of wire strippers. In fact, there are probably a dozen or more designs out there. But
there really are two kinds: ones that only grip and cut the insulation as you pull it off the wire, and those
that grip, cut, and remove the insulation. The first type is more common and, with some practice, does

just fine for most small jobs (like repairing a broken wire); but the second type makes a larger job—such as
wiring electronics from bare wire (no prefab connectors)—much faster. As you can imagine, the first type is
considerably cheaper. Figure 8-4 shows both types of wire strippers. Either is a good choice.

Figure 8-4. Wire strippers

208

http://www.makershed.com/products/make-getting-started-kit-soldering
http://www.makershed.com/products/make-getting-started-kit-soldering

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Helping Hands

There is one other tool that you may want to get, especially if you need to do any soldering; it’s called
helping hands or a third-hand tool. Most have a pair of alligator clips to hold wires, printed circuit boards,
or components while you solder. Figure 8-5 shows an excellent example from Adafruit (www.adafruit.com/
products/291).

Figure 8-5. Helping hands tool (courtesy of adafruit.com)

Now let’s take a look at some of the skills you are likely to need when working with advanced IoT
projects.

ESD IS THE ENEMY

You should take care to make sure that your body, your workspace, and your project is grounded to
avoid electrostatic discharge (ESD). ESD can damage your electronics—permanently. The best way to
avoid this is to use a grounding strap that loops around your wrist and attaches to an anti-static mat like
those available from https: //ww.uline.com/BL_7403/Anti-Static-Table-Mats.

Using a Multimeter

The electrical skills needed for IoT projects can vary from plugging in wires on a breadboard—as you saw
with the projects so far—to needing to solder components together or to printed circuit boards (PCBs).
Regardless of whether you need to solder the electronics, you need to be able to use a basic multimeter to
measure resistance and check voltage and current.

209

http://www.adafruit.com/products/291
http://www.adafruit.com/products/291
https://www.uline.com/BL_7403/Anti-Static-Table-Mats

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

A multimeter is a very useful and essential tool for any electronics hobbyist and downright required
for any enthusiast of worth. A typical multimeter has a digital display? (typically an LCD or similar numeric
display), a dial, and two or more posts or ports for plugging in test leads with probe ends. Most multimeters
have ports for lower current (that you will use most) and ports for higher current. Test leads use red for positive
and black for negative (ground). The ground port is where you plug in the black test lead and is often marked
either with a dash or COM for common. Which of the other ports you use depends on what you are testing.

One thing to note on the dial is that there are many settings (with some values repeated) or those that look
similar. For example, you see a set of values (sometimes called a scale) for ohms; one or two sets of values for
amperage; and one or two sets of values for volts. The DC voltage is indicated by a V with a solid and dashed line
over it; whereas the AC voltage is indicated by a V with a wavy line over it. Amperage ranges are marked in the
same manner. Figure 8-6 shows a close-up of a multimeter dial labeled with the sets of values that I mentioned.

- TR OY..
TOOL KIT

DC Volts

AC Volts

Continuity

Resistance

Figure 8-6. Multimeter dial (typical)

Tip When not in use, be sure to turn your multimeter dial to off or one of the voltage ranges if it has a
separate off button.

There is a lot you can do with a multimeter. You can check voltage, measure resistance, and even check
continuity. Most basic multimeters do all of these functions; however, some multimeters have a great many
more features, such as testing capacitors, and the ability to test AC and DC.

Let’s see how you can use a multimeter to perform the most common tasks you need for IoT projects:
testing continuity, measuring voltage in a DC circuit, measuring resistance, and measuring current.

Testing Continuity

You test for continuity to determine if there is a path for the charged particles to flow. That is, your wires and
components are connected properly; for example, you may want to check to ensure that a wire has been
spliced correctly.

Older multimeters have an analog gauge. You can still find them if you want a bit of old school feel.

210

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

To test for continuity, turn your multimeter dial to the position marked with an audible symbol, bell, or
triangle with an arrow through it. Plug the black test lead into the COM port and the red test lead in the port
marked with Hz VQ or similar. Now you can touch the probe end of the test leads together to hear an audible
tone or beep. Some multimeters don’t have an audible tone but instead may display “1” or similar to indicate
continuity. Check your manual for how your multimeter indicates continuity. Figure 8-7 shows how to set a
multimeter to check for continuity including which ports to plug in the test leads.

Figure 8-7. Settings for checking continuity

In Figure 8-7, I simply touched the probes together to demonstrate how to check for continuity. I like to
do this just to ensure that my multimeter is turned on and in the correct setting.

Another excellent use for the continuity test is when diagnosing or discovering how cables are wired.
For example, you can use the continuity test to discover which connector is connected on each end of the
cable (sometimes called wire sorting or ringing out, from the old telephone days).

3Yes, a bit of OCD there. Check, double check, check again.

211

CHAPTER 8 * ELECTRONICS FOR BEGINNERS

Measuring Voltage

Our IoT projects use DC. To measure voltage in the circuit, you use the DC range on the multimeter. The DC
range has several stops. This is a scale selection. Choose the scale that closely matches the voltage range you
want to test. For example, for our IoT projects, you often measure 3.3V-12V, so you choose 20 on the dial.
Next, plug the black test lead into the COM port and the red test lead into the port labeled Hz VQ.

Now you need something to measure! Take any battery you have in the house and touch the black probe
to the negative side and the red probe to the positive side. You should see a value appear on the display that
is close to the range for the battery; for example, if you used a 1.5V battery, you should see close to 1.5V. It
may not be exactly 1.5V-1.6V if the battery is depleted. So now you know how to test batteries for freshness!
Figure 8-8 shows how to measure voltage of a battery.

Figure 8-8. Measuring voltage of a battery

The readout displays 1.50, which is the correct voltage for this AA battery. If had reversed the probes—
the red one on negative and the black on positive, the display would have read -1.50. This is OK because it
shows the current is flowing in the opposite direction of how the probes are oriented.

212

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Note If you use the wrong probe when measuring voltage in a DC circuit, most multimeters display the
voltage as a negative number. Try that with your battery. It won't hurt the multimeter (or the battery)!

You can use this technique to measure voltage in your projects. Just be careful to place the probes on
the appropriate positions and try not to cross or short by touching more than one component at a time with
a single probe tip.

Measuring Current

Current is measured as amperage (actually milliamps (mA)). Thus, you use the range marked with an A with
a straight and dashed line (not the wavy one, that’s AC). You measure current in series. That is, you must
place the multimeter in the circuit. This can be a little tricky because you must interrupt the flow of current
and put the meter inline.

Let’s set up an experiment to measure current. Get your breadboard, an LED, a resistor, and two jumper
wires you used in the blink project. Wire everything up the same way except don’t complete the circuit for
the GPIO4 pin. Instead, you use the multimeter to complete the circuit by touching one probe to the positive
5V pin on the GPIO and the other probe on the resistor. Figure 8-9 shows how to set up the circuit with the
multimeter inline.

Red Probe Here

Black Probe Here

VIDEO AUDIO

Raspberry Pi
Hodel B

Figure 8-9. Measuring current

Before powering on your Raspberry Pi, plug the black test lead into the COM port and the other test
leads into the port labeled mA. Some multimeters use the same port for measuring voltage as well as
current. Turn the dial on the multimeter to the 200mA setting. Then power on the Raspberry Pi and touch
the leads to the places indicated. Be careful to touch only the 5V pin on the header. If you want to err on
the side of caution, use the remaining jumper wire and connect it to the 5V pin, and then touch the probe
to the other end of the jumper wire. Once the Raspberry Pi is powered on, you should see a value on the
multimeter. Figure 8-10 shows how to use a multimeter to measure current in a circuit.

213

CHAPTER 8 * ELECTRONICS FOR BEGINNERS

Figure 8-10. Measuring current

In Figure 8-10, I am using a breadboard with a breadboard power supply instead of the Raspberry Pi.
Whereas the value you see on the multimeter may differ, the demonstration accomplishes the same goal. In
this case, I touch the red probe to the positive pole on the power supply and the black probe on the resistor
in the same manner as I described.

There is one other tricky thing about measuring current. If you attempt to measure current that is
greater than the maximum for the port (for example, the meter in the photo has a maximum of 20mA on the
one port. IfI exceeded that by say 5A, I would likely blow a fuse in the multimeter. This is not desirable but at
least there is a fuse that you can replace should you make a mistake and choose the wrong port.

Measuring Resistance

Resistance is measured in ohms (Q). A resistor is the most common component that you use to introduce
resistance in a circuit. You can test the resistance of the charge through the resistor with your multimeter.
To test resistance, choose the ohm scale that is closest to the rating of the resistor. For example, I tested a
resistor that I believed about 200 ohms, but since I was not sure, I chose the 2K setting.

Next, plug the black test lead into the COM port and the red test lead into the port labeled Hz VQ. Now,
touch a probe to one side of a resistor and the other probe to the other side. It doesn’t matter which side you
choose—a resistor works in both directions. Notice the readout. The meter reads one of three things: 0.00, 1,
or the actual resistor value.

214

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

In this case, the meter reads 0.219, meaning this resistor has a value of 220Q2. Recall, I used the 2K scale,
which means a resistor of 1K would read 1.0. Since the value is a decimal, I can move the decimal point to
the left to get a whole number.

If the multimeter displays another value, such as 0 or 1, it indicates the scale is wrong and you should
try a higher scale. This isn’t a problem. It just means you need to choose a larger scale. On the other hand,
if the display shows 0 or a really small number, you need to choose a lower scale. I like to go one tick of the
knob either way when I am testing resistance in an unknown component or circuit.

Figure 8-11 shows an example of measuring resistance for a resistor. The display reads, 219. I am testing
aresistor rated at 220 ohms. The reason it is 219 instead of 220 is because the resistor I am using is rated at
220 +/- 5%. Thus, the acceptable range for this resistor is 209 ohms to 231 ohms.

Figure 8-11. Measuring resistance of a resistor

Now you know how to test a resistor to discover its rating. As you will see, those rings around the body of
the resistor are the primary way you know its rating but you can always test it if you're unsure, someone has
painted over it (hey, it happens), or you're too lazy to look it up.

215

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Electronic Components

Aside from learning how to use a multimeter and possibly learning to solder, you also need to know
something about the electronic components available to build your projects. In this section, I describe
some common components—listed in alphabetical order by name—that you encounter when building
IoT solutions. I also cover breakout boards and logic circuits, which are small circuits built with a set of
components that provide a feature or solve a problem. For example, you can get breakout boards for USB
host connections, Ethernet modules, logic shifters, real time clocks, and more.

Button

A button (sometimes called a momentary button) is a mechanism that makes a connection when pressed.
More specifically, a button connects two or more poles together while it is pressed. A common (and perhaps
over used) example of a button is a home doorbell. When pressed, it completes a circuit that triggers a
chime, bell, tone, or music to play. Some older doorbells continue to sound while the button is pressed.

In IoT projects, you use buttons to trigger events, start and stop actions, and similar operations. A
button is a simple form of a switch but unlike a switch, you must continue to press the button to make the
electrical connections. Most buttons have at least two legs (or pins) that are connected when the button
is pressed. Some have more than two legs connected in pairs and some of those can permit multiple
connections. Figure 8-12 shows a number of buttons.

Figure 8-12. Momentary buttons

There is a special variant of a momentary button called a latching momentary button. This version uses
a notch or detent to keep the poles connected until it is pushed again. If you've seen a button on a stereo or
in your car that remains depressed until pressed again, it is likely a latching momentary button.

There are all kinds of buttons from those that can be used with breadboards (the spacing of the pins
allow it to be plugged into a breadboard), can be mounted in a panel, or those made for soldering to printed
circuit boards.

Capacitor

A capacitor is designed to store charges. As current flows through the capacitor, it accumulates charge

and can discharge after the current is disconnected. In this wayj, it is like a battery but unlike a battery,

a capacitor charges and discharges very fast. You use capacitors for all manner of current storage from
blocking current, reducing noise in power supplies, in audio circuits, and more. Figure 8-13 shows a number
of capacitors.

216

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Figure 8-13. Capacitors

There are several types of capacitors but you most often encounter capacitors when building power
supplies for IoT projects. Most capacitors have two legs (pins) that are polarized. That is, one is positive and
the other negative. Be sure to connect the capacitor with the correct polarity in your circuit.

Diode

A diode is designed to allow current to flow in only one direction. Most are marked with an arrow pointing
to a line, which indicates the direction of flow. A diode is often used as rectifiers in AC-to-DC converters
(devices that convert AC to DC voltage), used in conjunction with other components to suppress voltage
spikes, or protect components from reversed voltage. Often used to protect against current flowing into a
device.

Most diodes are shaped like a small cylinder, are usually black with silver writing, and have two legs.
They look a little like resistors. You use a special variant called a Zener diode in power supplies to help
regulate voltages. Figure 8-14 shows a number of Zener diodes.

Figure 8-14. Diodes

Fuse

A fuse is designed to protect a device (actually the entire circuit) from current greater than what the
components can safely operate. Fuses are placed inline on the positive pole. When too much current flows
through the fuse, the internal parts trigger a break in the flow of current.

Some fuses use a special wire inside that melts or breaks (thereby rendering it useless but protecting
your equipment) while other fuses use a mechanism that operates like a switch (many of these are
resettable). When this happens, you say the fuse has “blown” or “tripped.” Fuses are rated at a certain
current in amperage, indicating the maximum amps that the fuse permits to flow without tripping.

Fuses come in many shapes and varieties. They work with either AC or DC voltage. The fuses that you
use are of the disposable variety. Figure 8-15 shows an example of two fuses: an automotive-style blade fuse
on the left and a glass cartridge fuse on the right.

217

CHAPTER 8 * ELECTRONICS FOR BEGINNERS

Figure 8-15. Fuses

If you are familiar with your home’s electrical panel that contains the circuit breakers, they are
resettable fuses. So the next time one of them goes "click" and the lights go out, you can say, "Hey, a fuse has
tripped!" Better still, now you know why—you have exceeded the maximum rating of the circuit breaker.

Which is probably fine in situations where you accidentally left that infrared heater on when you
dropped the toast and started the microwave (it happens), but if you are tripping breakers frequently without
any load, you should call an electrician to have the circuit checked.

Light Emitting Diode (LED)

Recall from Chapter 3 that an LED is a special diode that produces light when powered.

Asyoulearned in Chapter 3, an LED has two legs: the longer leg is positive and the shorter is negative.
LEDs also have a flat edge that also indicates the negative leg. They come in a variety of sizes ranging from as
small as 3mm to 10mm. Figure 8-16 shows an example of some smaller LEDs.

Figure 8-16. Light emitting diodes

Recall you also need to use a resistor with an LED. You need this to help reduce the flow of the circuit
to lower the current flowing through the LED. LEDs can be used with lower current (they burn a bit dimmer
than normal) but should not be used with higher current.

To determine what size resistor you need, you need to know several things about the LED. This data
is available from the manufacturer who provides the data in the form of a data sheet or in the case of
commercially packaged products, lists the data on the package. The data you need includes the maximum
voltage, the supply voltage (how many volts are coming to the LED), and the current rating of the LED.

218

http://dx.doi.org/10.1007/978-1-4842-2108-2_3

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

For example, if I have an LED like the one you used in the last chapter, in this case a 5mm red LED, you
find on Adafruit’s web site (www.adafruit.com/products/297) that the LED operates at 1.8V-2.2V and 20mA
of current. Let’s say you want to use this with a 5V supply voltage. You can then take these values and plug
them into this formula:*

R = (Vcc-Vf)/I
Using more descriptive names for the variable, you get the following.

Resistor = (Volts_supply - Volts forward) / Desired current

Plugging in the data, you get this result. Note that you have mA so you must use the correct decimal
value (divide by 1000). In this case, 0.020 and you pick a voltage in the middle.

Resistor = (5 - 2.0) / 0.020
= 3.0 / 0.020
= 150

Thus, you need a resistor of 150 ohms. Cool. Sometimes the formula produces a value that does not match
any existing resistors. In that case, choose one closest to the value but a bit higher. Remember, you want to limit
current and thus err on the side of more restrictive than less restrictive. For example, if you found you need a
resistor of 95 ohms, you can use one rated at 100 ohms, which is safer than using one rated at 90 ohms.

Tip Always err on the side of the more restrictive resistor when the formula produces a value for which
there is no resistor available.

Also, if you use LEDs in serial or parallel, the formula is a little different. See https://learn.adafruit.
com/all-about-1leds for more information about using LEDs in your projects and calculating the size of
resistors to use with LEDs.

Relay

A relay is an interesting component that helps you control higher voltages with lower voltage circuits. For
example, suppose you wanted to control a device that is powered by 12V from your Raspberry Pi, which only
produces a maximum of 5V. A relay can be used with a 5V circuit to turn on (or relay) power from that higher
source. In this example, you would use the Raspberry Pi’s output to trigger the relay to switch on the 12V
power. Thus, relays are a form of switch. Figure 8-17 shows a typical relay and how the pins are arranged.

Figure8-17. Relay

“A variant of Ohm’s law (https://en.wikipedia.org/wiki/Ohm's_law).

219

http://www.adafruit.com/products/297
https://learn.adafruit.com/all-about-leds
https://learn.adafruit.com/all-about-leds
https://en.wikipedia.org/wiki/Ohm's_law

CHAPTER 8 * ELECTRONICS FOR BEGINNERS

Relays can take a lot of different forms and typically have slightly different wiring options, such as where
the supply voltage is attached and where the trigger voltage attaches as well as whether the initial state is
open (no flow) or close (flow) and thus the behavior of how it controls voltage. Some relays come mounted
on a PCB with clearly marked terminals that show where to change the switching feature and where
everything plugs in. If you want to use relays in your projects, always check the datasheet to make sure that
you are wiring it correctly, based on its configuration.

You can also use relays to allow your DC circuit to turn AC appliances on and off like PowerSwitch Tail
from Adafruit (www.adafruit.com/products/268).

Resistor

A resistor is one of the standard building blocks of electronics. Its job is to impede current and impose a
reduction in voltage (which is converted to heat). Its effect, known as resistance, is measured in ohms. A
resistor can be used to reduce voltage to other components, limiting frequency response, or protect sensitive
components from over voltage. Figure 8-18 shows a number of resistors.

Figure 8-18. Resistors

When a resistor is used to pull up voltage (by attaching one end to positive voltage) or pull down voltage
(by attaching one end to ground) (resistors are bidirectional), it eliminates the possibility of the voltage
floating in an indeterminate state. Thus a pull-up resistor ensures that the stable state is positive voltage, and
a pull-down resistor ensures that the stable state is zero voltage (ground).

Switch

A switch is designed to control the flow of current between two or more pins. Switches come in all manner
of shapes, sizes, and packaging. Some are designed as a simple on/off while others can be used to change
current from one set of pins to another. Like buttons, switches come in a variety of mounting options from
PCB (also called a through hole) to panel mount for mounting in enclosures. Figure 8-19 shows a variety of
switches.

220

http://www.adafruit.com/products/268

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Figure 8-19. Various switches

Switches that have only one pole (leg or side) are called single-pole switches. Switches that can divert
current from one set of poles to another set are called fwo-pole switches. Switches where there is only one
secondary connection per pole are called single-throw switches. Switches that disconnect from one set of
poles and connect to another while maintaining a common input are called double-throw switches. These
are often combined together and form the switch type (or kind) as follows.

e SPST: Single pole, single throw

e DPST: Double pole, single throw

e SPDT: Single pole, double throw

e DPDT: Double pole, double throw
e 3PDT: Three pole, double throw

There may be other variants that you could encounter. I like to keep it simple: if have just an on/off
situation, I want a single throw switch. How many poles depends on how many wires or circuits I want to
turn on or off at the same time. I use these for double throw switches when I have an “A” condition and a “B”
condition in which I want A on when B is off, and vice-versa. I sometimes use multiple throw switches when
Iwant A, B, and off situations. I use the center position (throw) as off. You can be very creative with switches!

Transistor

A transistor (a bipolar transistor) is designed to switch current on/off in a cycle or amplify fluctuations in
current. Interestingly, transistors used to amplify current replaced vacuum tubes. If you are an audiophile,
you likely know a great deal about vacuum tubes. When a resistor operates in switching mode, it behaves
similar to a relay but its “off” position still allows a small amount of current to flow. Transistors are used

in audio equipment, signal processing, and switching power supplies. Figure 8-20 shows two varieties of
transistors.

221

CHAPTER 8 * ELECTRONICS FOR BEGINNERS

Figure 8-20. Transistors

Transistors come in all manner of varieties, packaging, and ratings that make it suitable for one solution
or another.

Voltage Regulator

A voltage regulator (linear voltage regulator) is designed to keep the flow of current constant. Voltage
regulators often appear in electronics when you need to condition or lower current from a source. For
example, you want to supply 5V to a circuit but only have a 9V power supply. Voltage regulators accomplish
this (roughly) by taking current in and dissipating the excess current through a heat sink. Thus, voltage
regulators have three legs: positive current in, negative, and positive current out. They are typically shaped
like those shown in figure 8-21 but other varieties exist.

Figure 8-21. Voltage regulators

The small hole in the plate that extends out of the voltage regulator is where the heat sink is mounted.
Voltage regulators are often numbered to match their rating; for example, a LM7805 produces 5V, whereas a
LM7833 produces 3.3V.

An example of using a voltage regulator to supply power to a 3.3V circuit on a breadboard is shown in
Figure 8-22. This circuit was designed with capacitors to help smooth or condition the power. Notice that the
capacitors are rated by uF, which means microfarad.

222

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

783

Figure 8-22. Power supply circuit on a breadboard with voltage regulator

Breakout Boards and Circuits

Breakout boards are your modular building blocks for IoT solutions. They typically combine several
components together to form a function, such as measuring temperature, enabling reading GPS data,
communicating via cellular services, and more. Figure 8-23 shows two breakout boards. On the left is an
Adafruit AC/DC converter (www.adafruit.com/products/1083) and on the right is an Adafruit barometric
pressure sensor breakout board (www.adafruit.com/products/391).

N\12Bit I2C ADC+PGA
ADS1815e - o

EEEEE = -

@

]
Q
= &

Figure 8-23. Breakout boards

Whenever you design a circuit or IoT solution, you should consider using breakout boards as much as
possible because they simplify the use of the components. Take the Barometric Pressure Sensor for example,
Adafruit has designed this board so that all you need to do to use it is attach power and connect it to your
IoT device on its I12C bus. An 12C bus is a fast digital protocol that uses two wires (plus power and ground) to
read data from circuits (or devices).

Thus, there is no need to worry about how to connect the sensor to other components to use it— just connect
itlike any I2C device and start reading data! You use several breakout boards in the projects later in this book.

Using a Breadboard to Build Circuits

If you have been following along with the projects thus far in the book, you have already encountered a
breadboard to make a very simple circuit. Recall from Chapter 3 that a breadboard is a tool you use to plug
components into to form circuits. Technically, you're using a solderless breadboard. A solder breadboard
has the same layout only it has only through-hole solder points on a PCB.

223

http://www.adafruit.com/products/1083
http://www.adafruit.com/products/391
http://dx.doi.org/10.1007/978-1-4842-2108-2_3

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

A breadboard allows you to create prototypes for your circuits or simply temporary circuits without
having to spend the time (and cost) to make the printed circuit board. Prototyping is the process of
experimenting with a circuit by building and testing your ideas. In fact, once you've got your circuit to work

correctly, you can use the breadboard layout to help you design a PCB. Figure 8-24 shows a number of
breadboards.

waaas

-n.- EEEES SEEEE CEEEE sEEes &
GEE YEEERT AERER LEEEs sWEER =

.Fr.ﬂ!iw"

-nuu EE e W
AEARE AREER EEEF

-—‘-ﬁ#-ﬂ“"—

] ..GEEHHHﬂHEHEa

-unnuuunuuu
010 e b B
LT

: i ;u;::ﬁ?:::g'

PEEEEEEEEEEE

" a-ugsg.....uf-
o FiErtEo ges cgbiw
F
Vsl PEBOE GUUUS GoHEE- |
n Bmm AEEEE |

Figure 8-24. Assorted breadboards

WHY ARE THEY CALLED BREADBOARDS?

In the grand old days of microelectronics and discrete components became widely available for
experimentation, when you wanted to prototype a circuit, some would use a piece of wood with nails
driven into it (sometimes in a grid pattern) where connections were made (called runs) by wrapping wire

around the nails. Some actually used a breadboard from the kitchen to build their wire wrap prototypes.
The name has stuck ever since.

Most breadboards (there are several varieties) have a center groove (called a ravine) or a printed line
down the center of the board. This signifies the terminal strips that run perpendicular to the channel are
not connected. That is, the terminal strip on one side is not connected to the other side. This allows you to
plug integrated circuits (IC) or chip that are packaged as two rows of pins. Thus, you can plug the IC into the
breadboard with one set of pins on each side of the breadboard. You see this in the following example.

224

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Most breadboards also have one or more sets of power rails that are connected together parallel to
the ravine. If there are two sets, the sets are not connected together. The power rails may have a colored
reference line but this is only for reference; you can make either one positive with the other negative.
Finally, some breadboards number the terminal strip rows. These are for reference only and have no other
meaning. However, they can be handy for making notes in your engineering notebook. Figure 8-25 shows
the nomenclature of a breadboard and how the terminal strips and power rails are connected together.

Power Rails —> [...

R I I I O I I A

DR I
LR I

Terminal Strips < I e Ravine for ICs

O]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
LR)
RN
LRI
TR
LR

Power Rails ———>

Figure 8-25. Breadboard layout

Note The sets of power rails are not connected together. If you want to have power on both sides of the
breadboard, you must use jumpers to connect them.

Itis sometimes desirable to test a circuit out separately from code. For example, if you want to make
sure that all of your devices are connected together properly, you can use a breadboard power supply to
power the circuit. This way, if something goes horribly wrong, you don’t risk damaging your IoT device. Most
breadboard power supplies are built on a small PCB with a barrel jack for a wall wart power supply, two sets
of pins to plug into the power rails on the breadboard, an off switch (very handy), and some can generate
different voltages. Figure 8-26 shows one of my favorite breadboard power supplies from SparkFun
(www. sparkfun.com/products/13157).

\s=12uge,, .5

Figure 8-26. Breadboard power supply

Should your circuits require more room than what is available on a single breadboard, you can use
multiple breadboards by simply jumping the power rails and continuing the circuit. To facilitate this, some
breadboards can be connected together using small nubs and slots on the side. Finally, most breadboards
also come with an adhesive backing that you can use to mount on a plate or inside an enclosure or similar
workspace. If you decide to use the adhesive backing, be forewarned that they cannot be unstuck easily—
they stay put quite nicely.

225

http://www.sparkfun.com/products/13157

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

FRITZING: A BREADBOARDING SOFTWARE APPLICATION

The drawings of breadboards in this book were made with a program named Fritzing (http://fritzing.
org/home/). This open source application allows you to create a digital representation of a circuit on a
breadboard. It is really quite handy to use. If you find yourself wanting to design a prototype circuit, using
Fritzing can help save you a lot of trial and error. As a bonus, Fritzing allows you to see the same circuit in
an electronic schematic or PCB layout view. | recommend downloading and trying this application out.

Now that you know more about how breadboards work, let’s discuss the component your IoT solutions
employ to collect data: sensors.

What Are Sensors?

A sensor is a device that measures phenomena of the physical world. These phenomena can be things you
see, like light, gases, water vapor, and so on. They can also be things you feel, like temperature, electricity,®
water, wind, and so on. Humans have senses that act like sensors, allowing you to experience the world
around you. However, there are some things your body can’t see or feel, such as radiation, radio waves,
voltage, and amperage. Upon measuring these phenomena, it’s the sensors’ job to convey a measurement in
the form of either a voltage representation or a number.

There are many forms of sensors. They're typically low-cost devices designed for a single purpose and
with a limited capability for processing. Most simple sensors are discrete components; even those that have
more sophisticated parts can be treated as separate components. Sensors are either analog or digital and
are typically designed to measure only one thing. But an increasing number of sensor modules are designed
to measure a set of related phenomena, such as the USB weather board from SparkFun Electronics
(www. sparkfun.com/products/10586).

The following sections examine how sensors measure data, how to store that data, and examples of
some common Sensors.

How Sensors Measure

Sensors are electronic devices that generate a voltage based on the unique properties of their chemical and
mechanical construction. They don’t actually manipulate the phenomena they're designed to measure.
Rather, sensors sample some physical variable and turn it into a proportional electric signal (voltage,
current, digital, and so on).

For example, a humidity sensor measures the concentration of water (moisture) in the air. Humidity
sensors react to these phenomena and generate a voltage that the microcontroller or similar device can then
read and use to calculate a value on a scale. A basic, low-cost humidity sensor is the DHT-22 available from
most electronic stores.

The DHT-22 is designed to measure temperature as well as humidity. It generates a digital signal on
the output (data pin). Although simple to use, it’s a bit slow and should be used to track data at a reasonably
slow rate (no more frequently than about once every 3 or 4 seconds).

When this sensor generates data, that data is transmitted as a series of high (interpreted as a 1) and
low (interpreted as a 0) voltages that the microcontroller can read and use to form a value. In this case, the
microcontroller reads a value that is 40 bits in length (40 pulses of high or low voltage)—that is, 5 bytes—
from the sensor and places it in a program variable. The first two bytes are the value for humidity, the second
two are for temperature, and the fifth byte is the checksum value to ensure an accurate read. Fortunately, all
of this hard work is done for you in the form of a special library designed for the DHT-22 and similar sensors.

*Shocking, isn’t it?

226

http://fritzing.org/home/
http://fritzing.org/home/
http://www.sparkfun.com/products/10586

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

The DHT-22 produces a digital value. Not all sensors do this; some generate a voltage range instead.
These are called analog sensors. Let’s take a moment to understand the differences. This becomes essential
information as you plan and build your sensor nodes.

Analog Sensors

Analog sensors are devices that generate a voltage range, typically between 0 and 5 volts. An analog-to-
digital circuit is needed to convert the voltage to a number. But it isn’t that simple (is it ever?). Analog
sensors work like resistors and, when connected to GPIO pins, often require another resistor to “pull up”
or “pull down” the voltage to avoid spurious changes in voltage known as floating. This is because voltage
flowing through resistors is continuous in both time and amplitude.

Thus, even when the sensor isn’t generating a value or measurement, there is still a flow of voltage
through the sensor that can cause spurious readings. Your projects require a clear distinction between OFF
(zero voltage) or ON (positive voltage). Pull-up and pull-down resistors ensure that you have one of these
two states. It’s the responsibility of the A/D converter to take the voltage read from the sensor and converts it
to a value that can be interpreted as data.

When sampled (when a value is read from a sensor), the voltage read must be interpreted as a value in
the range specified for the given sensor. Remember that a value of, say, 2 volts from one analog sensor may
not mean the same thing as 2 volts from another analog sensor. Each sensor’s data sheet shows you how to
interpret these values.

As you can see, working with analog sensors is a lot more complicated than using the DHT-22 digital
sensor. With a little practice, you find that most analog sensors aren'’t difficult to use once you understand
how to attach them to a microcontroller and how to interpret their voltage on the scale in which the sensor is
calibrated to work.

Digital Sensors

Digital sensors like the DHT-22 are designed to produce a string of bits using serial transmission (one bit at
a time). However, some digital sensors produce data via parallel transmission (one or more bytes® at a time).
As described previously, the bits are represented as voltage, where high voltage (say, 5 volts) or ON is 1 and
low voltage (0 or even -5 volts) or OFF is 0. These sequences of ON and OFF values are called discrete values
because the sensor is producing one or the other in pulses—it’s either ON or OFF.

Digital sensors can be sampled more frequently than analog signals because they generate the data
more quickly and because no additional circuitry is needed to read the values (such as A/D converters and
logic or software to convert the values to a scale). As a result, digital sensors are generally more accurate and
reliable than analog sensors. But the accuracy of a digital sensor is directly proportional to the number of
bits it uses for sampling data.

The most common form of digital sensor is the pushbutton or switch. What, a button is a sensor? Why,
yes, it’s a sensor. Consider for a moment the sensor attached to a window in a home security system. It’s
a simple switch that is closed when the window is closed and open when the window is open. When the
switch is wired into a circuit, the flow of current is constant and unbroken (measuring positive volts using a
pull-up resistor) when the window is closed and the switch is closed, but the current is broken (measuring
zero volts) when the window and switch is open. This is the most basic of ON and OFF sensors.

Most digital sensors are actually small circuits of several components designed to generate digital data.
Unlike analog sensors, reading their data is easy because the values can be used directly without conversion
(except to other scales or units of measure). Some may suggest this is more difficult than using analog
sensors, but that depends on your point of view. An electronics enthusiast would see working with analog
sensors as easier, whereas a programmer would think digital sensors are simpler to use.

This depends on the width of the parallel buffer. An 8-bit buffer can communicate 1 byte at a time; a 16-bit buffer can
communicate 2 bytes at a time, and so on.

227

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Now let’s take a look at some of the sensors available and the types of phenomena they measure.

Examples of Sensors

An IoT solution that observes something may use at least one sensor and a means to read and interpret the
data. You may be thinking of all manner of useful things you can measure in your home or office, or even in
your yard or surroundings. You may want to measure the temperature changes in your new sun room, detect
when the mail carrier has tossed the latest circular in your mailbox, or perhaps keep a log of how many times
your dog uses his doggy door. I hope that by now you can see these are just the tip of the iceberg when it
comes to imagining what you can measure.

What types of sensors are available? The following list describes some of the more popular sensors and
what they measure. This is just a sampling of what is available. Perusing the catalogs of online electronics
vendors like Mouser Electronics (www.mouser . com), SparkFun Electronics (www. sparkfun.com) and Adafruit
Industries (www.adafruit.com) reveal many more examples.

e Accelerometers: These sensors measure motion or movement of the sensor or
whatever it’s attached to. They're designed to sense motion (velocity, inclination,
vibration, and so on) on several axes. Some include gyroscopic features. Most
are digital sensors. A Wii Nunchuck (or WiiChuck) contains a sophisticated
accelerometer for tracking movement. Aha: now you know the secret of those funny
little thingamabobs that came with your Wii.

e Audio sensors: Perhaps this is obvious, but microphones are used to measure sound.
Most are analog, but some of the better security and surveillance sensors have digital
variants for higher compression of transmitted data.

e Barcode readers: These sensors are designed to read barcodes. Most often, barcode
readers generate digital data representing the numeric equivalent of a barcode. Such
sensors are often used in inventory-tracking systems to track equipment through
a plant or during transport. They're plentiful, and many are economically priced,
enabling you to incorporate them into your own projects.

e RFID sensors: Radio frequency identification uses a passive device (sometimes
called an RFID tag) to communicate data using radio frequencies through
electromagnetic induction. For example, an RFID tag can be a credit-card-sized
plastic card, a label, or something similar that contains a special antenna, typically
in the form of a coil, thin wire, or foil layer that is tuned to a specific frequency.
When the tag is placed in close proximity to the reader, the reader emits a radio
signal; the tag can use the electromagnet energy to transmit a nonvolatile message
embedded in the antenna, in the form of radio signals, which is then converted to
an alphanumeric string.”

* Biomelric sensors: A sensor that reads fingerprints, irises, or palm prints contains
a special sensor designed to recognize patterns. Given the uniqueness inherit in
patterns, such as fingerprints and palm prints, they make excellent components for
a secure access system. Most biometric sensors produce a block of digital data that
represents the fingerprint or palm print.

"http://en.wikipedia.org/wiki/Radio-frequency_identification

228

http://www.mouser.com/
http://www.sparkfun.com/
http://www.adafruit.com/
http://en.wikipedia.org/wiki/Radio-frequency_identification

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

e Capacitive sensors: A special application of capacitive sensors, pulse sensors are
designed to measure your pulse rate and typically use a fingertip for the sensing
site. Special devices known as pulse oximeters (called pulse-ox by some medical
professionals) measure pulse rate with a capacitive sensor and determine the oxygen
content of blood with a light sensor. If you own modern electronic devices, you may
have encountered touch-sensitive buttons that use special capacitive sensors to
detect touch and pressure.

e Coin sensors: This is one of the most unusual types of sensors. These devices are
like the coin slots on a typical vending machine. Like their commercial equivalent,
they can be calibrated to sense when a certain size of coin is inserted. Although not
as sophisticated as commercial units that can distinguish fake coins from real ones,
coin sensors can be used to add a new dimension to your projects. Imagine a coin-
operated Wi-Fi station. Now, that should keep the kids from spending too much time
on the Internet!

e Current sensors: These are designed to measure voltage and amperage. Some are
designed to measure change, whereas others measure load.

e Flex/Force sensors: Resistance sensors measure flexes in a piece of material or the
force or impact of pressure on the sensor. Flex sensors may be useful for measuring
torsional effects or as a means to measure finger movements (like in a Nintendo
Power Glove). Flex-sensor resistance increases when the sensor is flexed.

e Gas sensors: There are a great many types of gas sensors. Some measure potentially
harmful gases, such as LPG and methane, and other gases, such as hydrogen,
oxygen, and so on. Other gas sensors are combined with light sensors to sense smoke
or pollutants in the air. The next time you hear that telltale and often annoying
low-battery warning beep® from your smoke detector, think about what that device
contains. Why, it’s a sensor node!

e Light sensors: Sensors that measure the intensity or lack of light are special types
of resistors: light-dependent resistors (LDRs), sometimes called photo resistors or
photocells. Thus, they’re analog by nature. If you own a Mac laptop, chances are
you've seen a photo resistor in action when your illuminated keyboard turns itself on
in low light. Special forms of light sensors can detect other light spectrums, such as
infrared (as in older TV remotes).

e Liquid-flow sensors: These sensors resemble valves and are placed in-line in
plumbing systems. They measure the flow of liquid as it passes through. Basic flow
sensors use a spinning wheel and a magnet to generate a Hall effect (rapid ON/OFF
sequences whose frequency equates to how much water has passed).

e Liquid-level sensors: A special resistive solid-state device can be used to measure the
relative height of a body of water. One example generates low resistance when the
water level is high and higher resistance when the level is low.

e Location sensors: Modern smartphones have GPS sensors for sensing location, and
of course GPS devices use the GPS technology to help you navigate. Fortunately, GPS
sensors are available in low-cost forms, enabling you to add location sensing to your
project. GPS sensors generate digital data in the form of longitude and latitude, but
some can also sense altitude.

Swww . sparkfun.com/products/11719
°I for one can never tell which detector is beeping, so I replace the batteries in all of them.

229

http://www.sparkfun.com/products/11719

CHAPTER 8

ELECTRONICS FOR BEGINNERS

Magnetic-stripe readers: These sensors read data from magnetic stripes (like that on a
credit card) and return the digital form of the alphanumeric data (the actual strings).

Magnetometers: These sensors measure orientation via the strength of magnetic
fields. A compass is a sensor for finding magnetic north. Some magnetometers offer
multiple axes to allow even finer detection of magnetic fields.

Proximity sensors: Often thought of as distance sensors, proximity sensors use
infrared or sound waves to detect distance or the range to/from an object. Made
popular by low-cost robotics kits, the Parallax Ultrasonic Sensor uses sound waves
to measure distance by sensing the amount of time between pulse sent and pulse
received (the echo). For approximate distance measuring,'® it’s a simple math
problem to convert the time to distance. How cool is that?

Radiation sensors: Among the more serious sensors are those that detect radiation.
This can also be electromagnetic radiation (there are sensors for that too), but a
Geiger counter uses radiation sensors to detect harmful ionizing. In fact, it’s possible
to build your very own Geiger counter using a sensor and an Arduino (and a few
electronic components).

Speed sensors: Similar to flow sensors, simple speed sensors like those found

on many bicycles use a magnet and a reed switch to generate a Hall effect. The
frequency combined with the circumference of the wheel can be used to calculate
speed and, over time, distance traveled. The speed sensor on the wheel and fork
provides the data for the monitor on your handlebars.

Switches and pushbuttons: These are the most basic of digital sensors used to detect
if something is set (ON) or reset (OFF).

Tilt switches: These sensors can detect when a device is tilted one way or another.
Although very simple, they can be useful for low-cost motion-detection sensors.
They are digital and are essentially switches.

Touch sensors: The touch-sensitive membranes formed into keypads, keyboards,
pointing devices, and the like are an interesting form of sensor. You can use touch-
sensitive devices like these for collecting data from humans.

Video sensors: As mentioned previously, it’s possible to obtain very small video
sensors that use cameras and circuitry to capture images and transmit them as
digital data.

Weather sensors: Sensors for temperature, barometric pressure, rain fall, humidity,
wind speed, and so on are all classified as weather sensors. Most generate digital
data and can be combined to create comprehensive environmental solutions. Yes,
it’s possible to build your own weather station from about a dozen inexpensive
sensors, an Arduino (or a Raspberry Pi), and a bit of programming to interpret and
combine the data.

®Accuracy may depend on environmental variables, such as elevation, temperature, and so on.

230

CHAPTER 8 © ELECTRONICS FOR BEGINNERS

Summary

Learning how to work with electronics as a hobby or as a means to create an IoT solution does not require a
lifetime of study or a change of vocation. Indeed, learning how to work with electronics is all part of the fun
of experimenting with the IoT!

Asyou've seen in this chapter, knowing about the types of components available, the types of sensors,
and a bit of key knowledge of how to use a multimeter goes a long ways toward becoming proficient with
electronics. You also learned about one of the key components of an IoT solution—sensors. You discovered
two ways they communicate and a bit of what types of sensors are available.

In the next chapter, you take a look at a couple of special kits for experimenting with IoT solutions. As
you will see, the kits provide a set of electronic components as well as several tools and accessories, such as a
breadboard and a power supply.

231

CHAPTER 9

The Adafruit Microsoft loT Pack
for Raspberry Pi

When working with electronics projects like those in this book, it is often the case that you have to acquire
a host of components and tools in order to get started. The projects so far in this book have minimized the
components needed and I have listed what you need for each project. However, if you have little experience
with electronic components, you may not know what to buy. Fortunately, some vendors such as Adafruit are
packaging electronic components, accessories, and even some tools together in a kit making it simple to get
started—you just buy the kit!

Indeed, some kits package together a number of common components, such as resistors, LEDs, and
a breadboard and jumpers—all the things that you need to get started if you already have the basic parts
(low-cost computing board, power supply, etc.). At least one kit goes a bit further providing a more complete
set of components and accessories including a development board (e.g., a Raspberry Pi), power supply, and
more—everything you need to build an IoT solution using the Windows 10 IoT Core.

Tip For a complete list of the components used in this book and sources for purchasing them and related
tools, see the Appendix.

This chapter explores the Adafruit Microsoft IoT Pack for Raspberry Pi 3 and demonstrates a small
project that uses the components in the kit (well, mostly) to read data from a simple sensor. Let’s begin with
alook at what is in the kit.

Overview

The Microsoft IoT Pack for Raspberry Pi 3 (hence kit) is the result of collaboration between Microsoft and
Adafruit to provide a one-stop shopping solution for those who want to explore IoT solutions using Windows
10. In fact, the kit comes with everything you need to run Windows 10 IoT Core including the Raspberry Pi 3,
power supply, and a micro-SD card with the Windows 10 IoT Core image installed. For most, the kit is the
best way to get started using Windows 10 and your Raspberry Pi.

The kit comes in two varieties: one with the Raspberry Pi (www.adafruit.com/products/2733) and
one without the Raspberry Pi (www.adafruit.com/products/2702) for those who already own a Raspberry
Pi2or3.

'While the Raspberry Pi 3 is the latest board, the Raspberry Pi 2 is more than capable for implementing any IOT project.

© Charles Bell 2016 233
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_9

http://www.adafruit.com/products/2733
http://www.adafruit.com/products/2702

CHAPTER 9 * THE ADAFRUIT MICROSOFT IOT PACK FOR RASPBERRY PI

Adafruit has made several updates to the kit including keeping up with the latest releases of the
Windows 10 IoT Core. The kit has been a huge success and sells out regularly. Fortunately, you will not have
to wait more than a few weeks for them to restock.

The kit with the Raspberry Pi costs about $114.95 and the kit without the Raspberry Pi costs about $75.00.
Clearly, if you already have a Raspberry Pi, you can save some money there. In fact, for those who want to use a
different low-cost computer board, you can buy the kit without the Raspberry Pi—except for the micro-SD card
with Windows 10 and possibly the power supply, all the other components work with other boards.

Tip You can also use the kit with Raspbian Linux and Python. Adafruit has a long list of tutorials to explore.

The kit comes with a number of handy components including prototyping tools and a few sensors. It is
even certified for use with Microsoft Azure (Microsoft’s cloud computing platform)! Figure 9-1 shows a photo
of all the components included in the kit. I discuss all the components in the next section.

Figure 9-1. The Adafruit Windows IoT Pack for Raspberry Pi 3 (courtesy of adafruit.com)

Components Included

Asyou can see, there are a lot of pieces in the kit. There are three categories of components: electronic
components, accessories for the Raspberry Pi, and sensors.
The electronic components provided in the kit include the following.

e (2)breadboard trim potentiometer
e (5)10K5% 1/4W resistor

e (5)560 ohm 5% 1/4W resistor

e (2)diffused 10mm blue LED

e (2)diffused 10mm red LED

234

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

(2) diffused 10mm green LED
(1) electrolytic capacitor: 1.0uF

(3) 12mm tactile switches?

The list of accessories in the kit is long. The following includes all the accessories included in the kit.
I describe some of these in more detail.

Adafruit Raspberry Pi B+ case, smoke base/clear top: An excellent case to protect your
Pi from accidents.

Full-size breadboard: Plenty of space to spread out your circuits.

Premium male-to-male jumper wires, 20 x 6 inches (150mm): Used to jump from one
port to another on the breadboard. They're extra long and come molded in a ribbon
so you can peel off only those you need.

Premium female-to-male extension jumper wires, 20 x 6 inches: Used to jumper from
male GPIO pins to the breadboard ports. They also come molded in a ribbon.

Miniature Wi-Fi module: A Raspberry Pi-approved Wi-Fi dongle (not needed for the
Raspberry Pi 3).

5V 2A switching power supply with a 6-foot micro-USB cable: Meets the Raspberry Pi
requirements for power.

MCP3008 - 8-channel 10-bit ADC with SPI interface: A breakout board that you can
use to expand the number of SPI interface channels for larger IoT projects.

Ethernet cable, 5-foot: A nice touch considering the kit has a Wi-Fi dongle—good to
have a backup plan!

8GB class 10 SD/micro-SD memory card: Windows 10 IoT core preloaded!

The sensors included with the kit are an unexpected surprise. They provide what you need to create
some interesting [oT solutions. Best of all, they are packaged as breakout boards making them easy to wire
into our circuits. The following lists the sensors included in the kit.

1 photocell: A simple component used to measure light.

Assembled Adafruit BME280 temperature, pressure, and humidity sensor: Measures
temperature, barometric pressure, and humidity.

Assembled TCS34725 RGB color sensor: Measures color. Comes with an infrared filter
and white LED.

Some of the parts in this kit require a bit more explanation. The following sections describe some of the
more interesting parts in more detail.

Environmental Sensor: BME280

This sensor is great for all sorts of environmental sensor projects. It features both I12C* and SPI* interfaces
making this a very versatile breakout board. Figure 9-2 shows an image of the BME280 sensor breakout board.

*Technically, switches are the simplest of all sensors.
*https://en.wikipedia.org/wiki/I%C2%B2C
‘https://en.wikipedia.org/wiki/Serial Peripheral Interface Bus

235

https://en.wikipedia.org/wiki/I²C
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

CHAPTER 9 * THE ADAFRUIT MICROSOFT IOT PACK FOR RASPBERRY PI

© BME28@
Pressure
Y Tfnpildllu

f*“ ﬁ»n
000

Ve SCK

Figure 9-2. Environmental sensor: BME280 (courtesy of adafruit.com)

Note The photos show the breakout boards without the headers (row of pins) soldered. The components
included in the kit come with the headers soldered in place.

The sensor on the board has a +3% accuracy for measuring humidity, barometric pressure with +1 hPa
absolute accuracy, and temperature within +1.0°C accuracy. In addition, the breakout board includes a 3.3V
regulator and level shifting so you can use it with a 3V or 5V connections. For more information about how to
use the sensor, see the tutorial at https://learn.adafruit.com/adafruit-bme280-humidity-barometric-
pressure-temperature-sensor-breakout.

Color Sensor: TCS34725

If you want to measure light beyond the basic intensity that the photocell sensor provides, such as
determining the color of light, you can use this sensor to add that capability to your IoT projects. Adafruit
combines a highly accurate color sensor, the TCS34725, and bundles it with other components to make a
sensor capable of “seeing” infrared and more. Figure 9-3 shows a photo of the color sensor.

TCSE 4725
RGE Sensor

Figure 9-3. Color sensor: TCS34725 (courtesy of adafruit.com)

236

https://learn.adafruit.com/adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout
https://learn.adafruit.com/adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

Like the environmental sensor, it has a 3.3V regulator with level shifting for the 12C pins so they can
be used with 3.3V or 5V. You can find out more about the color sensor at http://learn.adafruit.com/
adafruit-color-sensors/overview.

8-Channel 10-Bit ADC with SPI Interface: MCP3008

If you need more analog inputs for your IoT project, Adafruit has provided a nifty integrated circuit in the
form of the MCP3008 that you can use to add additional inputs. It uses an SPI interface so you only need to
use 4 pins to connect to the chip. Figure 9-4 shows a photo of the IC.

Figure 9-4. 8 Channel 10-bit ADC with SPI interface (courtesy of adafruit.com)

If you would like to see how to use this IC, see http://learn.adafruit.com/reading-a-analog-in-
and-controlling-audio-volume-with-the-raspberry-pi.

Are There Alternatives?

If you are planning to use a board other than the Raspberry Pi, are on a more limited hobby budget, or want
only the bare essentials, there are alternatives to the Microsoft IoT Pack from Adafruit. In fact, Adafruit sells
another kit that includes almost everything you need for the projects in this book. It doesn’t come with
sensors, but all the basic bits and bobs are in there, and you can always buy the sensors separately.

The Adafruit Parts Pal comes packaged in a small plastic case with a host of electronic components
(www.adafruit.com/products/2975). Figure 9-5 shows the Parts Pal kit.

237

http://learn.adafruit.com/adafruit-color-sensors/overview
http://learn.adafruit.com/adafruit-color-sensors/overview
http://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-volume-with-the-raspberry-pi
http://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-volume-with-the-raspberry-pi
http://www.adafruit.com/products/2975

CHAPTER 9 * THE ADAFRUIT MICROSOFT IOT PACK FOR RASPBERRY PI

Figure 9-5. Adafruit Parts Pal (courtesy of adafruit.com)

The kit includes the following components: prototyping tools, LEDs, capacitors, resistors, some
basic sensors, and more. In fact, there are more components in this kit than the Windows IoT Pack for the
Raspberry Pi 3. Better still, the kit costs only $19.95 making it a good deal (and the case is a great bonus).

238

(1) storage box with latch

(1) half-size breadboard

(20) jumper wires: male-to-male, 3 inches (75mm)
(10) jumper wires: male-to-male, 6 inches (150mm)
(5) 5mm diffused green LEDs

(5) 5mm diffused red LEDs

(1) 10mm diffused common-anode RGB LED

(10) 1.0uF ceramic capacitors

(10) 0.1uF ceramic capacitors

(10) 0.01uF ceramic capacitors

(5) 10uF 50V electrolytic capacitors

(5) 100uF 16V electrolytic capacitors

(10) 560 ohm 5% axial resistors

(10) 1K ohm 5% axial resistors

(10) 10K ohm 5% axial resistors

(10) 47K ohm 5% axial resistors

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

e (5)1N4001 diodes

e (5)1N4148 signal diodes

e (5) NPN transistor PN2222 TO-92

e (5) PNP transistor PN2907 TO-92

e (2)5V 1.5A linear voltage regulator, 7805 TO-220

e (1)3.3V800mA linear voltage regulator, LD1117-3.3 TO-220
e (1) TLC555 wide-voltage range, low-power 555 timer
e (1) photocell

e (1) thermistor (breadboard version)

e (1) vibration sensor switch

e (1) 10K breadboard trim potentiometer

e (1) 1Kbreadboard trim potentiometer

e (1) Piezo buzzer

e (5)6mm tactile switches

e (3)SPDT slide switches

e (1) 40-pin break-away male header strip

e (1) 40-pin female header strip

The only thing that I feel is missing are the male/female jumpers, but you can buy them separately
(www.adafruit.com/product/1954). For only $1.95 more, they're worth adding to your order!

Tip If you want to save some money and don’t need the accessories in the Windows loT Pack for
Raspberry Pi 3, you should consider buying the Adafruit Parts Pal and male/female jumpers. With a cost of about
$22, they’re a great bargain.

Now, let’s put our new kit to work with a simple project that uses a very simple sensor.

Example Project: A Simple Sensor

The projects thus far in the book have not used a sensor or read any input other than interacting with the
user (which is still a form of sensing). In this project, you see how to write an IoT solution that uses a simple
sensor (a pushbutton) and models a real-life solution that uses sensors. No matter which kit you decide to
buy, each contains a pushbutton.

While the pushbutton is easy to use, the code is a bit more complicated than the examples from
previous chapters. This is not due to the complexity of the problem, rather, due to a new concept that you
must consider when writing applications without graphical interfaces that use facilities from the UWP
libraries. That is, you have a problem dealing with scope of the threads. You'll see this in the following code
section.

239

http://www.adafruit.com/product/1954

CHAPTER 9 * THE ADAFRUIT MICROSOFT IOT PACK FOR RASPBERRY PI

The solution you're modeling is a subset of a typical traffic light in an urban setting - a pedestrian
crosswalk pushbutton. More specifically, you implement a single traffic light for a one-way street with only
a single crosswalk button so that you can keep the circuit simple. You can extend the circuit to include two
buttons if you would like and I encourage you to do so once you've mastered the project as written.

So how does this pedestrian crosswalk button work? When a pedestrian presses the crosswalk request
button, the traffic light cycles from green to yellow to red, and then the walk signal cycles from DON’T WALK
to WALK. A yellow LED is used for WALK and a red LED is used for DON’T WALK. After some time, the walk
light flashes, warning the pedestrian that the traffic cycles back to green soon.

Thus, if you watch how the traffic lights work when you signal that you want to cross the street (at least
in some US cities), notice that there are several states that the lights go through. I have simplified the states a
bit as follows. I use cycle to indicate one light is turned off and another is turned on.

1. Inthe default state, the traffic light is green and the walk light is red.

2. When a pedestrian presses the walk button, the traffic light waits a few seconds
and then cycles to yellow.

After a few seconds, the traffic light cycles to red.
After a few seconds, the walk light cycles to yellow.
After a few seconds, the yellow walk light begins to blink.

After a few seconds, the walk light cycles to red.

N o a >~ v

After a few seconds, the traffic light cycles to green—returns to state (1).

You learn how to write code to execute these states in a later section, but first, let’s look at the hardware
that you need to build a circuit for the project.

Required Components

The following lists the components you need. You can find these components in either of the kits mentioned
previously or you can purchase the components separately from Adafruit (www.adafruit.com), SparkFun
(www . sparkfun.com), or any electronics store that carries electronic components.

e (1) pushbutton (breadboard pin spacing)

e (2)red LEDs

e (2)yellow LEDs (or blue is OK)

e (1) green LED

e (5) 150 ohm resistors (see upcoming notes)

e jumper wires

e breadboard (full size recommended but half size is OK)
e RaspberryPi2 or 3

e power supply

Set up the Hardware

This project has many more connections than the projects thus far in the book. In order to set up the
hardware correctly and make all the connections that you need, it is always best to make a plan for how
things should connect.

240

http://www.adafruit.com/
http://www.sparkfun.com/

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

For example, since you are using five LEDs and a pushbutton, as well as at least one connection to ground,
you make seven connections to the GPIO header. Keeping all of those connections straight and planning which
GPIO pins to use could be tricky if you didn’t have a plan. I like to call my wiring plans “maps” because they map
the connections from the GPIO header to the breadboard. Table 9-1 shows the map I designed for this project.
Notice Ileave a space for you to make any notes as you learn more about the connections and code.

Table 9-1. Connection Map for Pedestrian Crossing Project

GPIO Connection Function Notes
4 Resistor for LED Red traffic light
Resistor for LED Yellow traffic light
6 Resistor for LED Green traffic light
16 Button Walk request
20 Resistor for LED Red walk light
21 Resistor for LED Green walk light
GND Breadboard power rail Ground

Recall that you must use a resistor when connecting an LED directly to power (in this case a GPIO pin
set to HIGH) because the LED does not operate at 5V. Furthermore, LEDs are not all rated the same. Their
power requirements can vary from one manufacturer to another as well as one color to another. That is, a
green LED may have different power requirements than a blue LED. Thus, you must check the manufacturer
(or vendor) to get the data sheet for the LED and write down the power requirements. Table 9-2 shows a
number of different LEDs from Adafruit and SparkFun. I used Ohm'’s law (see Chapter 7) to figure out the
right size LED.

Table 9-2. Various LEDs and Resistors for 5V

Source LED Power Requirements Resistor Needed
Adafruit Microsoft 10mm red 1.85-2.5V, 20mA 150 ohms
IoT Pack

10mm blue 3.0-3.4V, 20mA 100 ohms

10mm green 2.2-2.5V, 20mA 150 ohms
SparkFun 3mm red 1.9-2.3V, 20mA 180 ohms

3mm yellow 2.0-2.4V, 20mA 150 ohms

3mm green 2.0-2.5V, 20mA 150 ohms

If you do not have the resistor listed, you can use the next higher resistor value or the one closest to but
greater than the value listed. You can use the next higher value resistor safely because the higher the value of
the resistor, the less current is fed to the LED. You should not use a smaller resistor value because too much
current damages the LED.

Tip There are several online LED resistor calculators. | used the one at http://led.linear1.org/1led.wiz
for this data.

241

http://dx.doi.org/10.1007/978-1-4842-2108-2_7
http://led.linear1.org/1led.wiz

CHAPTER 9 * THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

COOL GADGET: GPIO REFERENCE CARD

There is a very cool gadget that helps you sort out the connections with ease. It is called the
GPI0 Reference Card for Raspberry Pi 2 or 3 and is available from Adafruit (www.adafruit.com/
products/2263). The following shows how handy it is to use when making connections to the GPIO.

P Nede in the UK
_."J i
N ;'ll‘_'_

L IETTTTTITI I
DISPLAY .

To use this gadget, place it over the GPIO pins on your Raspberry Pi. Now, when you make the
connections, you can clearly see which pin to use! How cool is that?

242

http://www.adafruit.com/products/2263
http://www.adafruit.com/products/2263

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

Since you are going to model a traffic light and a walk light, it would be best if you arrange the
components so that the three LEDs for the traffic light are grouped together and likewise the walk light are
grouped together. I arranged the components on my breadboard in this way, as shown in Figure 9-6.

L L - LR L L
LA . . '../. . L L LA

© Raspberry Pi 2014

Figure 9-6. Pedestrian crossing circuit

Notice how I arranged the LEDs. More specifically, notice that I plugged the negative leg of each LED
into the negative side of the power rail on the breadboard. This allows me to make one connection from one
of the ground pins on the GPIO to the breadboard rail, which I can then use to plug in the ground side of
the components. For example, each positive leg of each LED is plugged into the breadboard so that you can
plug the corresponding resistor across the DIP trough and connect those to the appropriate GPIO pin. Recall
there are no connections from one side of the trough to the other.

Also notice that I placed the button in the center spanning the DIP trough. One side is connected
to ground and the other to the appropriate GPIO pin. If you unsure which way to orient the pushbutton,
you can use a multimeter to test continuity among the pins. Use the pins where continuity is found (the
multimeter beeps) when the pushbutton is pressed but no connection when released.

Note If you do not have a yellow LED, the blue LED in the kit can be used in its place. Just be sure to use
the right resistors as described earlier.

If you are following along with this chapter working on the project, go ahead and make the hardware
connections now. Don’t power on the board yet, but do double- and triple-check the connections.

243

CHAPTER 9 * THE ADAFRUIT MICROSOFT IOT PACK FOR RASPBERRY PI

Write the Code

The code for this project is a bit more involved than the previous projects. This is partly because of the extra
LEDs, but more so because you want to use a button and need to write code to determine when the sensor
indicates the event (the button is pressed). You also need to use the DispatcherTimer class to control the
light sequence like you did in the last project.* More importantly, you will not use a user interface, which
simplifies the code a bit (but you can add a user interface if you want).

Just like you planned the GPIO connections, you also need to plan the code so that all goes as well as
possible on the first attempt. It is a rare case that your code works on the first implementation (unless you're
following an example like this one). The following lists the major decisions and features/areas of the code.

I explain each in upcoming sections.

e Which project template do you want to use?
e How should the lights work?
e How do youread the button events?

Perhaps the more important question is which language will you use? I've decided to use C#, but you
could implement this project in C++. If you are a big C++ fan, I encourage you to do just that using the
following as a pattern!

New Project

You may be wondering what project template to use. Since you will not have a user interface, you may be
tempted to use a headless, background application. However, you cannot use such a template because you
want to use the dispatcher timer, which is only available in the headed project types. You can still use a blank
template and can run the application without a user interface, but to get the support for the timer, you need
to use a headed application template.

Thus, open a new project and choose the Blank App (Universal Windows) project choice from the
C# » Windows » Universal selection in the tree on the left in the New Project dialog. Use the name
PedestrianCrossing for the project name. You can save the project wherever you like or use the default.
Figure 9-7 shows an example of the project template you should choose.

SThere are other ways to do this, but this uses a technique you’ve seen previously.

244

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

New Project ? X
b Recent NET Framework 452 = Sort by: | Default - HiE . talled Templates (Cu p -
4 Installed -i /i #
R D] Blank App (Universal Windows) Visual C# Type: Visual C
4 Templates = e A peoject for a single-page Universal
b Visual C++ “.‘ﬁ! Class Library (Universal Windows) Visual C# Windows Platform app that has no
" o predefined controls or layout.
4 Dther Languages on =
nﬁ . ; s : : [Show telemetry in the Windows Dev
A Windows Runtime Component (Universal Windows) Visual C# -
Build Accelerator & ! A po = N " Center
Game o s . e
wtalls the Application Insights SDK to
et Unit Test App (Universal Windows) isual C#
Visual F# ﬁ_] okt Test App (Liniversal Windows) Visusl C send usage telemetry to the Windows
4 Visual C# cn Dev Center
4 Windows EJ Coded Ul Test Project (Windows Phone) Visual C#
Universal o8 Heko me understand Application insight
b Wind 8 EJ Coded Ul Test Project (Windows) Visual C# Privacy statement
indows
Classic Desktop
Windows loT Core
Android
Cloud
Extensibiity
i0s
Sibverlight
Test
b Online Click here to go online and find template
Name: [PedestrianCrossing]
Location: chusers\chuck\documentsivisual studio 2015\Projects. . OWSE...
Solution name: [[] Create directory for solution

[[] Add to source control

Figure 9-7. New Project Template selection

Once the project opens, double-click the MainPage.xaml.cs file. This is where you put all the code for the
project. There are two namespaces that you need to include. Go ahead and add those now, as shown here.

using Windows.Devices.Gpio; // GPIO header
using Windows.UI.Core; // DispatcherTimer

Next, you need to add some variables and constants. Let’s start with constants for the lights. You use this
constant with an array for each of the traffic and walk lights. By using constants instead of integers, you make
the code easier to read.®

// Light constants

private const int RED = 0;
private const int YELLOW = 1;
private const int GREEN = 2;

Next, let’s define the pins for each of our components: the traffic light, button, and the walk lights.

// Traffic light pins
private int[] TRAFFIC PINS = { 4, 5, 6 };

®Which is always a good choice and worth the effort.

245

CHAPTER 9 * THE ADAFRUIT MICROSOFT IOT PACK FOR RASPBERRY PI

// Button pin
private const int BUTTON_PIN = 19;

// Walk light pins
private int[] WALK PINS = { 20, 21 };

Next, you add constants to describe the states or stages that the lights cycle through. In this case,
the values (integers) represent the time sequence in seconds when the lights change. Once again, using
constants makes the code easier to read, as you shall see later.

// State constants

private const int GREEN_TO YELLOW =
private const int YELLOW TO RED = 8;
private const int WALK ON = 12;
private const int WALK_WARNING = 22;
private const int WALK_OFF = 30;

4;

Now you can create the variables to hold the GPIO pin instances for the traffic light, button, and
walk light.

// Traffic light pin variables
private GpioPin[] Traffic_light = new GpioPin[3];

// Walk light pin variables
private GpioPin[] Walk light = new GpioPin[2];

// Button pin variable
private GpioPin Button;

Since you decide to use the DispatcherTimer class, you can create the variable for that too.

// Add a Dispatcher Timer
private DispatcherTimer walkTimer;

Next, you need a variable to use for counting the seconds that have elapsed since the light sequence was
started. This allows us to keep certain LEDs on for a specific time period.

// Variable for counting seconds elapsed
private int secondsElapsed = 0;

Finally, recall from the last project that you need an InitGPIO() method, as well as code, to set up the
GPIO. As you discovered in the last project, you use this method to set up the GPIO pins for all the LEDs and
buttons. Listing 9-1 shows the completed code for this method.

Listing 9-1. GPIO Initialization Code

// Setup the GPIO initial states
private void InitGPIO()

{
var gpio = GpioController.GetDefault();
// Do nothing if there is no GPIO controller

246

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

if (gpio == null)
{

return;
}
// Initialize the GPIO pins
for (int i = 0; 1 < 3; i++)
{
this.Traffic light[i] = gpio.OpenPin(TRAFFIC PINS[i]);
this.Traffic_light[i].SetDriveMode(GpioPinDriveMode.Output);
}
this.Button = gpio.OpenPin(BUTTON PIN);
for (int i = 0; 1 < 2; i++)

this.Walk light[i] = gpio.OpenPin(WALK PINS[i]);
this.Walk light[i].SetDriveMode(GpioPinDriveMode.Output);

this.Traffic_light[RED].Write(GpioPinValue.Low);
this.Traffic_light[YELLOW].Write(GpioPinValue.Low);
this.Traffic_light[GREEN].Write(GpioPinValue.High);
this.Walk light[RED].Write(GpioPinValue.High);
this.Walk light[YELLOW].Write(GpioPinValue.Low);

Notice how I used the arrays to initialize the LEDs. Isn’t the code easier to read with the constants? Take
a moment to ensure that you understand how the LEDs are set up. That is, the green LED in the traffic light
and the red LED in the walk light are on (set to HIGH) at the initial state. This mimics the scenario where the
pedestrian approaches a busy street where traffic is flowing (hence the green traffic light).

Finally, I added code to return from the method if the GPIO library cannot be initialized. Recall you
used a text label on the user interface to communicate an error. Here, the absence of any LEDs illuminating
indicates that something is wrong.

Be sure to add the method call to the MainPage() method right after the InitializeComponent() call.
Also, you set the initial value for secondsElapsed to 0.

public MainPage()

{
this.InitializeComponent();
InitGPIO();
this.secondsElapsed = 0;

}

That may seem like a lot of initialization code and I suppose it is compared to the previous projects, but
you use all of these in the rest of the code. Now that you have the basic project code, let’s add the code for
controlling the LEDs.

Light Sequences

Recall from the description of the project that you want the lights to cycle through several stages based on
time. Thus, you use the DispatcherTimer class to start a timer that you then count as seconds expired to
control the stages. This is done by making a new method to fire whenever the timer event occurs. You named
the DispatcherTimer class walkTimer earlier, so you use WalkTimer Tick() for the event method.

247

CHAPTER 9 * THE ADAFRUIT MICROSOFT IOT PACK FOR RASPBERRY PI

Inside this method, you use the secondsElapsed variable to count the seconds (tick events) and when
the count reaches the number you assigned to the state changes, you change the light. For example, when
the sescondsElapsed reaches 4 (GREEN_TO_YELLOW), you execute state (2) from earlier, where the green traffic
light is turned off and the yellow traffic light is turned on. You do the same for the other states. Listing 9-2
shows the code you need to control the light sequences.

Listing 9-2. Light Sequence Code

// Here you do the lights state change if and only if elapsed_seconds > 0
private void WalkTimer Tick(object sender, object e)
{

// Change green to yellow

if (this.secondsElapsed == GREEN_TO_YELLOW)

{
this.Traffic_light[GREEN].Write(GpioPinValue.Low);
this.Traffic_light[YELLOW].Write(GpioPinValue.High);
}
else if (this.secondsElapsed == YELLOW_TO_RED)
{

this.Traffic_light[YELLOW].Write(GpioPinValue.Low);
this.Traffic_light[RED].Write(GpioPinValue.High);

else if (this.secondsElapsed == WALK ON)
{
this.Walk light[RED].Write(GpioPinValue.Low);
this.Walk light[YELLOW].Write(GpioPinValue.High);
}
else if ((this.secondsElapsed >= WALK WARNING) &&
(this.secondsElapsed < WALK OFF))

{
// Blink the walk warning light
if ((secondsElapsed % 2) == 0)
this.Walk light[YELLOW].Write(GpioPinValue.Low);
}
else
{
this.Walk light[YELLOW].Write(GpioPinValue.High);
}
else if (this.secondsElapsed == WALK OFF)
{

this.Walk light[YELLOW].Write(GpioPinValue.Low);
this.Walk light[RED].Write(GpioPinValue.High);
this.Traffic_light[RED].Write(GpioPinValue.Low);
this.Traffic_light[GREEN].Write(GpioPinValue.High);
this.secondsElapsed = 0;

this.walkTimer.Stop();

248

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

return;
}
// increment the counter
this.secondsElapsed += 1;

Notice you used a return in the state where you turn the walk light off. This terminates the code so that
the seconds elapsed variable is not increments. You also reset the secondsElapsed variable so that the next
pedestrian can initiate the crossing. You also increment the variable each time the event fires otherwise.

Button

The button is a sensor that you read from the GPIO. In order to do so, you need to add some code to the
InitGPIO() method to set up the button. This code is very similar to the LED startup code as shown here.

// Check if input pull-up resistors are supported

if (this.Button.IsDriveModeSupported(GpioPinDriveMode.InputPullUp))
this.Button.SetDriveMode(GpioPinDriveMode. InputPullUp);

else
this.Button.SetDriveMode(GpioPinDriveMode.Input);

// Set a debounce timeout to filter out switch bounce noise from a button press
this.Button.DebounceTimeout = TimeSpan.FromMilliseconds(50);

// Register for the ValueChanged event so our Button_ ValueChanged
// function is called when the button is pressed
this.Button.ValueChanged += Button ValueChanged;

Notice you first check to see if the GPIO header has pull up resistors (it “pulls” the voltage high)” and
if it does, you use the GpioPinDriveMode. InputPullUp mode for the GPIO pin. If it does not have pull
up resistors, you simply set the mode to GpioPinDriveMode. Input. Recall you used the SetDriveMode()
method for the LEDs but set the mode to GpioPinDriveMode.Output.

You also need to create a method to fire when the button is pressed. You'll name that method Button
ValueChanged(). You need to assign the ValueChanged attribute of the button to this method. You see that in
the last line of code.

Now you can write the code to execute when the button is pressed. This may seem like a simple thing,
but there is one aspect you must consider. When a button is pressed, it may not make a connection right
away or it may be the case that there is some hesitation on the user’s part. This creates a condition where
the event could trigger prematurely. This is called bouncing and can be controlled with a bit more code. In
this case, you check the edge attribute of the button to see if the state is on the trailing edge. In other words,
that the button has been pressed for a period of time. The condition you use is (e.Edge == GpioPinEdge.
FallingEdge).

There is one trickier bit. Once the button event fires, you cannot call back to the main code directly.
This is because the button event is running simultaneously with the main code. More specifically, there are
two threads involved. Thus, you need to make a call to the dispatcher to run a task. In this case, you want to
simply turn on the timer. Listing 9-3 shows the method that you use to execute when the button is pressed.

’See https://learn.sparkfun.com/tutorials/pull-up-resistors.

249

https://learn.sparkfun.com/tutorials/pull-up-resistors

CHAPTER 9 * THE ADAFRUIT MICROSOFT IOT PACK FOR RASPBERRY PI

Listing 9-3. Button Event Code

// Detect button press event
private void Button ValueChanged(GpioPin sender, GpioPinValueChangedEventArgs e)
{

// Pedestrian has pushed the button. Start timer for going red.

if (e.Edge == GpioPinEdge.FallingEdge)

{
// Start the timer if and only if not in a cycle
if (this.secondsElapsed == 0)
{
// need to invoke UI updates on the UI thread because this event
// handler gets invoked on a separate thread.
var task = Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
{
if (e.Edge == GpioPinEdge.FallingEdge)
this.walkTimer.Start();
}
1;
}
}

Notice the code to make the call to the asynchronous feature of the dispatcher. The code is formatted
to read like normal code but it is actually a method inside the RunAsync() call. This is an advanced feature
that you may have to use in some of your projects. For more detailed information about this feature, see the
online documentation at https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.core.
coredispatcher.runasync.

Notice one more thing. I use another conditional to only allow turning on the dispatcher if the
secondsElapsed variable is 0. Thus, even if someone pressed the button once the light sequence starts, it is
ignored until the variable returns to 0 at the end of the light sequence code. Cool, eh?

Completing the Code

OK, now you have all the pieces of code that you need, but you may not know where each piece goes. Rather
than relist the entire code, I include the skeleton of the code in Listing 9-4 to help you put things in the right
places. The ellipse is used to represent code omitted.

Listing 9-4. Pedestrian Crossing Code Layout

using System;

using System.Collections.Generic;

using System.IO;

using System.ling;

using System.Runtime.InteropServices.WindowsRuntime;
using Windows.Foundation;

using Windows.Foundation.Collections;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;

250

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.core.coredispatcher.runasync
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.core.coredispatcher.runasync

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

using Windows.UI.Xaml.Data;

using Windows.UI.Xaml.Input;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Navigation;

using Windows.Devices.Gpio; // GPIO header
using Windows.UI.Core; // DispatcherTimer

namespace PedestrianCrossing

{

public sealed partial class MainPage : Page

{
// Light constants
public MainPage()
{
}
// Setup the GPIO initial states
private void InitGPIO()
{
}
// Detect button press event
private void Button ValueChanged(GpioPin sender,

GpioPinValueChangedEventArgs e)

{
}
// Here you do the lights state change iff elapsed_seconds > 0
private void WalkTimer Tick(object sender, object e)
{
}

}

}

Wow, that is a lot of code! Clearly, this project is larger than the examples so far. If you have not written
a project of this size, be sure to check the listing above to ensure that you have all the code in the right place.
Once you have entered all the code, you should now attempt to compile the code. Correct any errors you
find until the code compiles without errors or warnings.

Deploy and Execute

Now it is time to deploy our application! Be sure to fix any compilation errors first. Like you have with other
applications, you want to compile the application in debug first (but you can compile in release mode if
you'd prefer) and you must turn on the debugger on our board. You do this with the device portal.

251

CHAPTER 9 * THE ADAFRUIT MICROSOFT IOT PACK FOR RASPBERRY PI

Go ahead and power on your board, and then connect to the board. Recall you can simply navigate to
the IP address (or name) of the board and append 80 to the address like this: 10.0.1.89/8080. Figure 9-8
shows the debugger panel for the device portal. Click the Start button to turn on the debugger.

[Detug < = el
“— O 0018 w =2 4

2 809 PM

Debug s,.g_,m 59.... F.En Help 47172016

[start Visual Studio Remote Debugger

Figure 9-8. Device Portal: debugger

Next, you must set the project properties to target the device and run with the remote debugger. In
this case, you must modify two settings: the Remote machine name and the Authentication Mode. Set
the Remote machine name to the IP address of your device with the port specified by the remote debugger
when you started it from the device portal. For example, my device gave me the port number 8116 so I use
10.0.1.89:8116. For the Authentication Mode, set it to None. Figure 9-9 shows the location of these options.

PedestrianCrossing # X

Application
Build

Configuration: Active (Debug) ~ Platform: Active (ARM) w

Build Events

Strt action

Hisarcs Palle [7] Do not launch, but debug my code when it starts

Signing —~
] Allow local network loopback
Code Analysis

Start options
Target device: Remote Machine M
Remote machine: 10.0.1.89:8116 Find...
Authentication Mode: None .

[] Uninstall and then re-install my package. All information about the application state is deleted
Debugger type

Application process: Managed Only v
Figure 9-9. Project properties debug

Now you can deploy your application. Go ahead and do that now. Recall you can run the deployment
from the Debug menu. Once the application deploys, you see the application appear in the list on the Apps
pane in the device portal, as shown in Figure 9-10.

252

CHAPTER 9 " THE ADAFRUIT MICROSOFT 10T PACK FOR RASPBERRY PI

i Apps

APP NAME APP TYPE STARTUP

O loTCoreDefaultApp Foreground

> 1oTUAPOOBE Foreground Set as Default App 0]

> Purchase Dialog Foreground Set as Default App 0

P> Work or school account Foreground Set as Default App m
ZWaveHeadlessAdapterApp Background Add to Startup m
PedestrianCrossing Foreground Set as Default App O}

Figure 9-10. Device Portal: Apps pane

Notice there is a small triangle or arrow next to PedestrianCrossing in the list. This indicates you can
click it to start the application. When the application is running, the icon changes to a square box, which,
when clicked, stops the application. Finally, you can also set the app as the default application to start when
the device boots and you can delete the application using the trashcan icon.

Note If you are seeing a slightly different list, it may be because your image is older than the version that
| am using. Older versions had a more primitive set of controls for the Apps pane.

If everything worked correctly, you should see the lights change when the button is pressed. If the lights
don’t change, be sure you have the pushbutton oriented correctly. Once it is working, try it out a few times to
ensure that you see the lights sequence several times. If you like this project, I encourage you to experiment
with it further by either adding another button or adding a second traffic light for an intersection rather than
a one-way street.

Summary

Learning how to build IoT projects requires a number of electronic components. Fortunately, vendors such
as Adafruit sell electronic component kits that have a wide array of common electronic components, such as
LEDs, resistors, jumper wires, breadboards, and more. If you are planning to explore Windows IoT projects
and especially if you want to work on the more advanced projects in the next few chapters, you should
consider buying one (or both) of the kits described in this chapter or a similar kit from another vendor. Just
be sure you get the data sheets for all the components in the kits.

You also explored a project that introduces how to read sensors. If you have been implementing all the
projects in this book so far or have been reading through them in some detail, you now have the skills (or
at least examples of how) to read and write values on GPIO pins. Indeed, you have now seen the basics for
writing any form of IoT project.

The next chapter begins a series of example IoT projects that you can use to learn more about building
IoT solutions. I recommend working through as many of them as you can. Some require additional hardware
that you may or may not want to acquire. Should you decide to not implement some of the projects, you can
read through the projects to learn how to use the components and get ideas for your own designs.

253

CHAPTER 10

Project 1: Building an LED
Power Meter

You've seen a lot of examples of powering LEDs—turning them on and off from our IoT device.' There are a
lot of interesting things you can do with LEDs. For example, have you wondered how a power meter works?
If you have used high end audio equipment, such as a studio sound board, you may have seen a power meter
that has several segments ranging from green to yellow to red where green means the level is low, yellow is
medium, and red is high. You can duplicate this behavior with a set of LEDs and your IoT device. Yes, you're
going to build a fancy LED power meter!

While this seems very simple and in concept it is, this project helps you learn quite a lot. You will see how
to use a potentiometer as a variable input device read from an analog to digital converter (ADC), learn how to
set up and use a serial peripheral interface (SPI), discover a powerful debugging technique, and learn how to
create a class to encapsulate functionality. Clearly, there is a lot to discover, so let’s get started.

Note Although this project is written in C#, other than the syntax and mechanics of building, the concepts
of using a class are the same in C++.

Overview

You will design and implement an LED power meter that allows you to simulate controlling power and
displaying the result as a percentage of a set of LEDs where no LEDs on means minimum and all LEDs on
means maximum. More specifically, you use a component called a potentiometer to read and interpret its
value as a percentage of its maximum range. You will use the potentiometer through the ADC to control
the LEDs.

The potentiometer is a special rotary component that can vary resistance as you turn it. Thus,
potentiometers are rated at their maximum resistance. There are a variety of potentiometers packaged in a
variety of ways, but you will use a simple 10K ohm potentiometer that you can plug into a breadboard.

Although you will use a series of LEDs for the power meter, you can buy components where LEDs
are arranged in a bar. In fact, they're often called bar graph LED:s. If you want to take this project a bit
further, you can find a number of different bar graph LEDs like those from Adafruit (www.adafruit.com/
categories/279).

'And here’s another one!

© Charles Bell 2016 255
C. Bell, Windows 10 for the Internet of Things, DOI 10.1007/978-1-4842-2108-2_10

http://www.adafruit.com/categories/279
http://www.adafruit.com/categories/279

CHAPTER 10 PROJECT 1: BUILDING AN LED POWER METER

You need to use the ADC because you want to read analog values. The Raspberry Pi (and many other
boards) does not have analog-to-digital logic. That is, the GPIO pins are digital only. The ADC acts like
a “bridge” between digital and analog devices. The ADC you will use is the MCP3008 from the Adafruit
Microsoft IoT Pack for Raspberry Pi (see Chapter 9). The ADC is an integrated circuit (or chip) that you will
plug into a breadboard and wire it to your Raspberry Pi. As a side benefit, the MCP3008 has eight analog
input pins but you only need four pins on the GPIO to access it so you're gaining four more pins. This may
not be important for this simple project, but for project with many sensors or devices, saving four pins may
enable you to fully implement your ideas.

The MCP3008 uses the Serial Peripheral Interface (SPI) bus to communicate with the Raspberry Pi.
The SPI bus is an interface developed by Motorola as a synchronous serial clocked, full-duplex master/slave
protocol.? In other words, data is transmitted in a synchronized manner timed to a clock signal. The protocol
supports full duplex (which means both transmit and receive at the same time). The four wires therefore
are one for the clock, one for transmit, one for receive, and one additional wire used to select the chip (the
Raspberry Pi can support two SPI buses but only in master mode).

One interesting thing about the SPI is that in order to receive data (say a byte), you must first send data
(a byte), which sounds really weird but it turns out the first transmission can be thought of as a command to
read data and the response is the return of the command. You'll see how this works in the code.

Let’s look at the components that you need, and then look at how to wire everything together.

Required Components

The following lists the components that you need. You can find these components in either of the kits
mentioned in Chapter 9 or you can purchase the components separately from Adafruit (www.adafruit.com),
SparkFun (www.sparkfun.com), or any electronics store that carries electronic components.

e (1) 10K ohm potentiometer (breadboard pin spacing)

e (2)red LEDs

e (2)yellow LEDs (or blue is OK)

e (1) green LED

e (5) 150 ohm resistors (or appropriate for your LEDs)

e MCP3008 ADC chip

e Jumper wires: (8) male-to-male, (11) male-to-female

e Breadboard (full size recommended but half size is OK)
e RaspberryPi2or3

e Power supply

Set up the Hardware

This project like the project in Chapter 9 has a lot of connections. Thus, you will make a plan for how things
should connect. To connect the components to the Raspberry Pi, you need four pins for the ADC, five for

the LEDs, and one each for power and ground. You will also need to make a number of connections on the
breadboard to configure the ADC chip and connect the potentiometer to the ADC. Table 10-1 shows the map
I designed for this project. I list the physical pin numbers in parenthesis for the named pins. You will use
male-to-female jumper wires to make these connections.

For more information about SPI, see https://en.wikipedia.org/wiki/Serial Peripheral Interface Bus.

256

http://dx.doi.org/10.1007/978-1-4842-2108-2_9
http://dx.doi.org/10.1007/978-1-4842-2108-2_9
http://www.adafruit.com/
http://www.sparkfun.com/
http://dx.doi.org/10.1007/978-1-4842-2108-2_9
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Table 10-1. Connection Map for Power Meter Project

CHAPTER 10 PROJECT 1: BUILDING AN LED POWER METER

GPIO Connection Function Notes
3.3V(1) Breadboard power rail Power

GND (6) Breadboard ground rail GND

MOSI (19) SPI MCP3008 pin 4
MISO (21) SPI MCP3008 pin 4
SCLK (23) SPI MCP3008 pin 3
CCo0 (24) SPI MCP3008 pin 5
17 Red LED #1 Meter 81-100%
18 RED LED #2 Meter 61-80%
19 Yellow LED #1 Meter 41-60%
20 Yellow LED #2 Meter 21-40%
21 Green LED Meter 0-21%

Tip Refer to Chapter 9 for the size of resistors needed for your LEDs.

Next, you need to make a number of connections on the breadboard. For these, you use male-to-male
jumpers. Table 10-2 shows the connections needed on the breadboard.

Table 10-2. Connections on the Breadboard

From Notes
Breadboard power Potentiometer pin #1

Potentiometer pin #2 ADC Channel 0 (pin 1)

Breadboard GND Potentiometer pin #3

Breadboard power ADC VDD (pin 16)

Breadboard power ADC VREF (pin 15)

Breadboard GND ADC AGND (pin 14)

Breadboard GND ADC GND (pin 9)

Breadboard GND rail Breadboard GND rail jump

Clearly, that'’s a lot of wires! Don’t worry too much about neatness when you build this project. Rather,
concentrate on making sure everything is connected correctly. I recommend spending some time to
carefully check your connections. There’s so many that it is easy to get some plugged in the wrong place.

Figure 10-1 shows what my project looked like.

257

http://dx.doi.org/10.1007/978-1-4842-2108-2_9

CHAPTER 10 * PROJECT 1: BUILDING AN LED POWER METER

Figure 10-1. Example power meter connections

As you can see in the photo, I'm cheating a bit by using the Adafruit GPIO Reference Card for Raspberry
Pi2 or 3 (www.adafruit.com/products/2263), which makes locating the SPI pins much easier than counting
pin numbers.

The MCP3008 chip is in the center of the breadboard. You cannot see it in this photo, but chips have
a small semicircular notch on one end. This indicates the side that contains pin 1 so that you can orient
the chip correctly. In this case, you orient the chip on the breadboard with pins 1-8 on the far side of the
breadboard (away from the Raspberry Pi as shown in the photo). This is because the SPI interface pins are
located on the nearer side (pins 9-16). Orienting the pins closest to the Raspberry Pi makes the connections
a bit easier. Figure 10-2 shows the pin layout of the MCP3008. Notice how the pins are numbered. Most are
self-explanatory like the channel pins, but all are documented on the data sheet from Adafruit (https://
cdn-shop.adafruit.com/datasheets/MCP3008.pdf).

cHoO1 ~ 163 Vpp

CH1 2 15[VRer
CH2O03 = 140 AGND
cHa s Q 13pciK
CH4O5 & 120 Doyt
CH5 Qe & 11D

CHe O7 10[J CS/SHDN
CH7 08 91 DGND

Figure 10-2. MCP3008 pinout

Figure 10-3 shows all the connections needed.

258

http://www.adafruit.com/products/2263
https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf
https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf

CHAPTER 10 PROJECT 1: BUILDING AN LED POWER METER

® &N
ERK
3

)

T ¥
1 -]

- N\UN
Figure 10-3. Connections for the power meter project

Notice how I arranged the LEDs. I placed the red LEDs to the left, the yellow in the middle, and
the green to the right. More specifically, I plugged the negative leg of each LED into the GND rail on the
breadboard. This allows me to make one connection from one of the ground pins on the GPIO to the
breadboard rail, which I can then use to plug in the GND leg of the components. For example, each positive
leg of each LED is plugged into the breadboard so that you can plug the corresponding resistor across
the DIP trough and connect those to the appropriate GPIO pin. Also, I placed the MCP3008 in the center
spanning the DIP trough. Make sure that you plug it in so that pins 1-8 are on one side of the breadboard
and that pins 9-16 are on the other side.

If you are following along with this chapter working on the project, make the hardware connections
now. Don’t power on the board yet; but do double- and triple-check the connections.

Write the Code

Now it’s time to write the code for our example. Since you are working with several new components, I
introduce the code for each in turn. The code isn’t overly complicated, but may not be as clear as some of the
code from previous projects. I've decided to use C#, but you could implement this project in C++. If you are a
big C++ fan, I encourage you to do just that using the following as a pattern!

Note Since you have learned all the basics of creating projects in Visual Studio, including how to build and
deploy applications, | omit the details of the common operations for brevity.

259

CHAPTER 10 PROJECT 1: BUILDING AN LED POWER METER

The project uses a potentiometer. You read its value (via the ADC) and convert that to a scale that
you can use to decide how many LEDs to turn on (and consequently those that need to be turned off).
You also use a new technique for debugging the code. Thus, you need to start a new project, set up the SPI
interface, write code to communicate with the ADC, and code to turn the LEDs on and off. You will use the
DispatcherTimer class to periodically check the potentiometer and control the light sequence like you did
in the last project.® Let’s talk about the debugging feature first, and then we will walk through building the
project.

Debug Output

Visual Studio supports an interesting and very powerful feature that permits you to insert print statements
(and more!) in the code to help you debug your code. It is similar in some ways to the old school print
statement trace (a log of statements written to a file), which are written as the code runs. However, in this
case, the statements appear in the Output window of Visual Studio. To use the feature, add the following
namespace to your code.

using System.Diagnostics; // add this for debugging

You use the Debug class from this namespace to write out values so you can see them in the output
window as you run the code in debug. The following code shows some examples of the methods you use to
report data. Some are informational (the proverbial, “I'm here!”), while others show how you can print out
the values of variables.

Debug.Writeline("Sorry, the GPIO cannot be initialized. Drat.");
Debug.Write("Val read = ");
Debug.WritelLine(valRead);

Here I use two methods: Write(), which writes a string without a carriage return/line feed (CRLF)
symbol (sometimes called a newline), and Writeline(), which writes the CRLFE.

The output of this code is shown in the output window. The following shows an excerpt of the output
from this project. It is to see the progress of the code. There is much more to this class, but this gives you a
taste for what is possible with this alternative debugging technique.

GPIO ready.

Setting up GPIO pin 21.
Setting up GPIO pin 20.
Setting up GPIO pin 19.
Setting up GPIO pin 18.
Setting up GPIO pin 17.
Setting up the MCP3008.

Tip For more information about the system diagnostics debug class, see https://msdn.microsoft.com/
en-us/library/system.diagnostics.debug%28v=vs.110%29.aspx.

3There are other ways to do this, but this uses a technique we’ve seen previously.

260

https://msdn.microsoft.com/en-us/library/system.diagnostics.debug(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.debug(v=vs.110).aspx

CHAPTER 10 PROJECT 1: BUILDING AN LED POWER METER

You must compile your code in debug mode and run the debugger to see the output. If you compile in
release mode, the debug code is ignored automatically and not included in the executable code (binary file).

New Project

