
www.allitebooks.com

http://www.allitebooks.org

WordPress Plugin Development
Beginner's Guide

Build powerful, interactive plugins for your blog and to
share online

Vladimir Prelovac

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

WordPress Plugin Development
Beginner's Guide

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, Packt Publishing, nor its dealers or
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: February 2009

Production Reference: 2200209

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-59-9

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Vladimir Prelovac

Reviewer

Junal Rahman

Senior Acquisition Editor

David Barnes

Development Editor

Nikhil Bangera

Technical Editor

Mehul Shetty

Copy Editor

Sumathi Sridhar

Indexer

Monica Ajmera

Production Editorial Manager

Abhijeet Deobhakta

Editorial Team Leader

Akshara Aware

Project Team Leader

Lata Basantani

Project Coordinator

Neelkanth Mehta

Proofreader

Lesley Harrison

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vladimir Prelovac is the author of many popular WordPress plugins and articles about
WordPress optimization, security and maintenance. He actively uses WordPress platform as a
base for Internet development strategy for small & mid-sized businesses.

For Vladimir, WordPress development is a full time job about which he happily blogs on his
web site www.prelovac.com/vladimir.

I'd like to thank my editor Mr. Barnes, for leading me through the book
writer's path. Dave, Ervin, and guys at Wordcast, for the professional
support they showed in such a lovely way. My family for understanding
the long, sleepless nights of writing. Finally, I wish to dedicate this book
to my mother, Vera Prelovac (1949-2008), who was and will always be my
beacon of light.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Junal Rahman is a Computer Science graduate from the Independent University of
Bangladesh. His areas of expertise include programming with the PHP framework and
creating Facebook applications. He has worked for several software companies as a Web
Application Developer. During his undergraduate studies Junal fell in love with .NET
programming, but as soon as he started his internship, he fell in love with PHP. He
currently works as a Development Engineer at Trippert Labs. At Trippert, Junal
collaboratively works to create Facebook applications. He also maintains a blog
that can be found at http://junal.wordpress.com.

I would like to acknowledge my sister Shiuly, follow your dreams

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Preparing for WordPress Development 7
How will you benefit? 7

WordPress features 7
More sites means more opportunities 8
Big players use it 8
Urgent response to security issues 8
Flexibility 8
Search engines friendly 9
Easy to use 9
Social aspect 9

Plugins as tool for promotion 9
Dogfooding WordPress plugins 10

Challenges involved 10
Development 10
Security 11
Work after development 11

Localization 11
Documentation 11
Support 11
Promotion 12

Plugins developed in this book 12
Digg This 12
Live Blogroll 13
The Wall 14
Snazzy Archives 14
Insights 15
Post Types 15
Development Goodies 16

Tools for the job 16

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

WordPress 16
Text editor 17
FTP client 17
Web browser 17

Firebug 17
Ubiquity 19
Screengrab 20
IE tab 21

Final notes 21
Installing and managing plugins 22
Searching documentation 23

Summary 25

Chapter 2: Social Bookmarking 27
Plugging in your first plugin 28

Time for action – Create your first plugin 28

The plugin information header 30
Checking WordPress versions 30
Checking the plugin 31

Time for Action – Testing the version check 31

Displaying a Digg button 32
Time for Action – Implement a Digg link 32

Using the Digg API 35
Acquiring post information 37

Post permalink URL 37

Editing the theme files 37
WordPress plugin hooks 39

Time for Action – Use a filter hook 40

WordPress hooks 41
Filter hooks 41
Action hooks 42
Practical filters and actions examples 44

Adding a Digg button using JavaScript code 46
Time for Action – Implement a Digg button 47

Conditional Tags 49
Styling the output 50

Time for Action – Use CSS to position the button 50

Summary 52

Chapter 3: Live Blogroll 55
Starting up with the blogroll 57

Time for action – Roll into the blogroll 58

RSS Feed Processing 62
jQuery JavaScript library 63

Implementing a mouse hover event in jQuery 63

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Time for action – Creating a hover event with jQuery 63

JavaScript and WordPress 67
Initializing jQuery 68
Expanding jQuery knowledge 68

Creating the pop-up with CSS 70
Time for action – Apply CSS to the popup 70

Demystifying Ajax 73
Simple example of using Ajax 73

Time for action – Use Ajax to dynamically retrieve feed posts 73

Using JavaScript with WordPress 79
Parsing parameters using wp_localize_script 79
Ajax and WordPress 80

Ajax in admin panel 80

jQuery.ajax method 81
Time for action – Use advanced Ajax call 81

Ajax script security using nonces 82
Time for action – Add a security nonce 82

Summary 84

Chapter 4: The Wall 85
The main concepts behind the Wall plugin 87
Creating a widget 89

Time for action – Create a 'Hello World!' widget 89

Register widgets with description 93
Widget controls 94

Time for action – Expanding the widget with controls 94

WordPress options 97
Display widget control 97
Handling widget input 98
Handling widget output 98

Create a WordPress page from the code 100
Time for action – Insert a page 100

Handling user input 104
Time for action – Create the wall comment form 104

Managing Ajax comment submit 108
Time for action – Save the comments 109

Using Ajax to submit forms 113
Saving comments in WordPress post 115

Dynamically load comments 117
Time for action – Display the comments 118

WordPress database query 120
Comment output 121
Displaying the comments 122

Ajax security 123

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Time for action – Display the comments 123

Summary 124

Chapter 5: Snazzy Archives 125
Using a class for plugin 126

Time for action – Create a new plugin class 126

Showing template output with shortcodes 130
Time for action – Use a shortcode 130

Shortcode API 132
Enclosing shortcodes 133

Custom templates 134
Time for action – Create a custom template 134

Prepare archives 136
Time for action – Show archives of posts 137

Get all posts from database 142
Using a regular expression 142
Retrieve comment count for a post 142
Using output buffers 143

Apply styling and jQuery to archives 143
Time for action – Style the archive view 143
Time for action – Use jQuery to allow user interaction 147

Creating plugin options page 149
Time for action – Create an options page 151

Managing plugin options 155
Handling options form 156
Adding administration pages 158

Use plugin options 159
Time for action – Apply the plugin options 160

Caching the plugin output 163
Time for action – Create archives cache 163

Summary 166

Chapter 6: Insights for WordPress 167
Creating custom panels in the editor screen 169

Time for action – Create a new plugin outline 169

Custom edit panels in WordPress 172
Searching the posts 174

Time for action – Display a list of matching posts 174

Interacting with tinyMCE 181
Time for action – Insert the link into tinyMCE 181

Using Flickr API 184
Time for action – Display Flickr photos 185

Using third-party solutions—phpFlickr 191
Creating a tinyMCE plugin 192

Time for action – Adding a button to tinyMCE 192

Table of Contents

[v]

Create a functional tinyMCE plugin window 197
Time for action – Open a tinyMCE window 197

Summary 200

Chapter 7: Post Types 201
Handling localization 202

Time for action – Create plugin and add localization 203

Optimizing localization usage 206
How does localization work? 207

Adding a post template 208
Time for action – Create 'add photo' post template 208

Backend CSS classes 212
Handling file and image uploads 213

Time for action – Handle uploaded image 213

Using custom fields 223
Adding custom fields 223
Retrieving custom fields 224

Quick post a link 224
Time for action – Add link template 224

Tinkering with WordPress backend menus 228
Time for action - Remove 'Link' from the Write page 228

Programming the Manage panel 230
Time for action – Add post type column in the Manage panel 231

Modifying an existing column 233
Manage screen search filter 234

Time for action – Add a search filter box 235

Handling error messages 237
Time for action – Adding support for errors 237

User roles and capabilities 239
Time for action – Add user capability checks 240

Summary 241

Chapter 8: Development Goodies 243
Creating Localization files 243

Time for action - Create a POT file 244
Updating POT file 247
Time for action – Perform translation 248
Updating translation 249

Documentation and support 250
Plugin readme file 250

Time for action – Create a sample plugin readme.txt file 251

Sections of readme.txt 253
General information 254
Special codes 254
Screenshots 254
Installation instructions 255

Table of Contents

[vi]

Plugin homepage 255
Providing support 257

Code management and plugin repository 258
Requesting repository access 258
Using SVN 259

Time for action - Manage a local repository using SVN 260
Tagging a new version 261

Using WordPress development SVN 262
Local copy of plugin repository 262

Promotion 263
Plugin promotion checklist 264

General plugin development guidelines 264
Security 265
Performance 265
Re-using resources 265
Keeping API up-to-date 266

WordPress MU development 266
WordPress and GPL 268
Online resources 269

WordPress documentation (WordPress Codex) 269
WordPress development news 269

WordPress blog 269
WordPress development updates 269
WordPress Trac 269
WordPress dev IRC channel 269

Debugging and testing 270
Unit testing 270
Automated tests 270

Mailing Lists 270
WP hackers 270
WP professionals 270
Other mailing lists 270

Podcasts 271
WordCast 271
WordPress Weekly 271

Author's (Vladimir Prelovac's) web site 271
Summary 271

Index 273

Preface
If you can write WordPress plugins, you can make WordPress do just about anything. From
making the site easier to administer, to adding the odd tweak or new feature, to completely
changing the way your blog works; plugins are the method WordPress offers to customize
and extend its functionality. This book will show you how to build all sorts of WordPress
plugins: admin plugins, Widgets, plugins that alter your post output, present custom "views"
of your blog, and more.

This book focuses on teaching you all aspects of modern WordPress development and usage.
The book uses real and published WordPress plugins and follows their creation from the
idea to the finishing touches, in a series of carefully picked, easy-to-follow tutorials. You will
discover how to use the WordPress API in all typical situations, from displaying output on
the site in the beginning to turning WordPress into a CMS in the last chapter. In Chapters
2 to 7, you will develop six concrete plugins and conquer all aspects of WordPress
plugin development.

Each new chapter and each new plugin introduces different features of WordPress and how
to put them to good use, allowing you to gradually advance your knowledge. This book is
written as a guide to take your WordPress skills from the very beginning to the level where
you are able to completely understand how WordPress works and how you can use it to
your advantage.

This is a Packt Beginners Guide, which means it focuses on practical examples and has a
fast-paced but friendly approach, with the opportunity to learn by experimentation and play.
Each chapter builds a practical plugin from the ground up using step-by-step instructions.
Individual sections show you how to code some functionality into your plugin and follow up
with a discussion of concepts.

Preface

[�]

What This Book Covers
Chapter 1 teaches the advantages of WordPress development, and what WordPress has to
offer to plugin authors.

Chapter 2 creates a working, useful, and attractive WordPress plugin from scratch. It shows
how to extract information using the WordPress API and how to use CSS to improve the look
of our plugin.

Chapter 3 explores more cool things we can do with WordPress by livening up the default
WordPress blogroll. The purpose of the plugin is to display the most recent posts from the
sites listed in the blogroll using a nice pop-up window.

Chapter 4 uses the mixed approach, by taking advantage of creative WordPress and
JavaScript techniques, in order to create an Ajax powered 'Wall’ for your blog’s sidebar.
It introduces quite a few interesting techniques such as Widgets, interacting with the
WordPress Database, and Ajax form submission.

Chapter 5 covers the creation of a very sleek and stylish looking WordPress enhancement.
The purpose of the Snazzy Archives plugin will be to present your site archives in a unique
visual way. It shows how to manipulate the layout of the template using shortcodes and
custom templates.

Chapter 6 is all about digging a little deeper into WordPress and hacking the Write Post
screen. It shows how to create custom panels in the various sections of the Write Post
screen. It teaches how to access the current WordPress rich text editor, tinyMCE, and
create a button on its toolbar.

Chapter 7 explores the possibilities of turning WordPress into a Content Management
System (CMS), using methods provided to us by WordPress. It shows how to modify the
Manage Posts panel to display the information we want. It also covers managing who can
use your plugin by looking at the logged in user capabilities.

Chapter 8 covers the additional steps involved in localizing, documenting, publishing,
and promoting your plugin. It also covers useful tips and ideas to improve your general
WordPress knowledge further.

Who is This Book For
This book is for programmers working with WordPress, who want to develop custom
plugins and to hack the code base. You need to be familiar with the basics of WordPress
and PHP programming and believe that code is poetry; this book will handle the rest.

Preface

[�]

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: "Edit the insights.js file and add the functionality to
insert the HTML directly into tinyMCE."

A block of code will be set as follows:

/* Add Digg link to the end of the post */
function WPDiggThis_ContentFilter($content)
{
 return $content.WPDiggThis_Link();

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items will be made bold:

<?php the_content('<p class="serif">Read the rest of this entry
»</p>’); ?>

<?php if (function_exists(WPDiggThis_Link)) echo WPDiggThis_Link(); ?>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:

"Go to your WordPress Plugins admin panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[�]

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this book,
what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, making
sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/3599_Code.zip to directly download
the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in text or code—we
would be grateful if you would report this to us. By doing this you can save other readers
from frustration, and help to improve subsequent versions of this book. If you find any
errata, report them by visiting http://www.packtpub.com/support, selecting your
book, clicking on the let us know link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata are added to the
list of existing errata. The existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works in any form on the Internet, please provide the location address
or website name immediately so we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with some
aspect of the book, and we will do our best to address it.

Preparing for WordPress
Development

If you are holding this book in your hands now, you are probably aware—in one way or the
other—of the tremendous success WordPress platform has seen over the past few years. It
has become the most widespread blogging and publishing platform in the world today.

When I first installed WordPress, I was still looking around for a platform to start my personal
site and also for an opportunity to do more online development work.

After seeing the simple installation procedure (which takes just a few minutes), I realized that
the guys behind WordPress are on to something big. It has indeed proven to be so, and
as the days passed by, I have enjoyed every aspect of WordPress—publishing, social,
and development.

And I am thrilled to share these nits and bits of WordPress development information with
you, showing you the power and flexibility that allowed WordPress to become so popular.

How will you benefit?
Thanks to its open source architecture, ease of use, and customization possibilities,
WordPress has succeeded in differentiating itself from other weblog publishing platforms weblog publishing platformsweblog publishing platforms
and even other open source solutions.

WordPress features
The main WordPress features of interest to developers are: of interest to developers are:of interest to developers are:

Its a huge community of users and developers

The millions of WordPress blogs blogsblogs

Major sites using it, including a number of US government agencies

1

Preparing for WordPress Development

[�]

Security issues treated almost instantly issues treated almost instantlyissues treated almost instantly

Unmatched flexibility with thousands of available plugins flexibility with thousands of available pluginsflexibility with thousands of available plugins

High level of customizability with thousands of available themes of available themesavailable themes

Search engine friendly functionalities

Ease of use, maintenance, and upgrade maintenance, and upgrademaintenance, and upgrade and upgradeand upgrade

A great way to meet new people!

With such a list, it is no wonder that—every day—more and more private users andnder that—every day—more and more private users and
companies are turning to WordPress for their publishing needs. This of course presents
a fertile ground for WordPress developers to show off their skills.

More sites means more opportunities
The opportunity for a WordPress developer in these circumstances becomes obvious.

With such a huge number of sites running it, the market is hungry for WordPress experts,
and not just development experts. If you are proficient in the installation and setup of
WordPress, you may easily have your hands full of work.

Big players use it
The fact that a number of major sites use WordPress means that there is also an opportunity
for high profile work.

This also means that you can be fairly certain about the future of WordPress. Your
investment in time and efforts, first in reading this book, and then in enhancing your
development skills, is likely to pay off with WordPress.

Urgent response to security issues
With online security becoming a bigger issue each day, it is a relief to see the WordPress
development team reacting promptly to newly discovered security issues.

This makes everyone even more comfortable and confident in using WordPress.

Flexibility
With WordPress, the plugin author is allowed total control over every aspect of the site.
You are able to completely customize the way the site looks and behaves.

The opportunity is there for everyone—from beginners (developing useful plugins)
to professionals (creating total WordPress makeovers such as e-commerce, marketing,
or job portal sites—where you can hardly recognize that the site is running a
WordPress installation).

Chapter 1

[�]

Search engines friendly
Search Engine Optimization (SEO) is an important aspect of today's Internet presence. Just
creating a site is not enough anymore, as there are now hundreds of millions of competing
websites out there.

Using a platform such as WordPress will be really valuable, especially in the long term. a platform such as WordPress will be really valuable, especially in the long term.a platform such as WordPress will be really valuable, especially in the long term.
WordPress has significant built-in SEO features and also most of the other aspects of modern
SEO technologies available through custom plugins (and you can always write one to match technologies available through custom plugins (and you can always write one to matchtechnologies available through custom plugins (and you can always write one to match
your needs!)

Becoming proficient in SEO concepts can help you a lot as a WordPress you a lot as a WordPressyou a lot as a WordPress
developer, as the need for both WordPress and SEO skills is growing fast. is growing fast.is growing fast.

Easy to use
WordPress is meant for beginners and used by professionals. This mix is rarely seen in anybeginners and used by professionals. This mix is rarely seen in any
other open source platforms.

After the five minute installation, most users immediately feel comfortable in the WordPress
administration panels. Writing a post and organizing categories is as simple as it should be.

The whole WordPress installation consists of putting the files on the server and setting the
assigned database, and it is very easy to back up or move it to another server.

WordPress and its plugins can be upgraded with a click of a button; all this makes the job of
maintaining a WordPress website (or even several at the same time), a breeze.or even several at the same time), a breeze.

Social aspect
If you are a WordPress developer, the chances are that you will have your own hosted
WordPress blog. Having a personal blog creates a great opportunity to create many new blog. Having a personal blog creates a great opportunity to create many newblog. Having a personal blog creates a great opportunity to create many new
contacts—both business and friends.

When you release a WordPress plugin, you will meet hundreds of people who are going you will meet hundreds of people who are goingyou will meet hundreds of people who are going
to use it on their own sites. You will also have people visit you for support, or just to say
Thank you!

Plugins as tool for promotion
With such a huge user base, a well written plugin will probably be downloaded tens of probably be downloaded tens ofprobably be downloaded tens of tens oftens of
thousands of times.

This will create awareness about you as a plugin author and your site as a probable source
for some cool stuff. Having in mind how difficult it is to get noticed on the Internet today, this
becomes a very important aspect of plugin development that you get for free.

Preparing for WordPress Development

[10]

Creating fresh, new, and usable plugins can help you go a long way. It has really helped me fresh, new, and usable plugins can help you go a long way. It has really helped mefresh, new, and usable plugins can help you go a long way. It has really helped me
a lot in my field of work and has created a lot of opportunities–one certainly being, the and has created a lot of opportunities–one certainly being, theand has created a lot of opportunities–one certainly being, the
pleasure of writing this book. book.book.

Dogfooding WordPress plugins
You may sometimes wish to create a plugin just for yourself, to fulfil a specific need that can
arise at a given moment. This is how I started writing plugins initially, as I needed certain
functionalities that were not available in WordPress at the time.

The term dogfooding describes a dog food company that is ready to eat its own dog food.
It means the company is confident about its own product and uses it for the purpose it was
produced for.

In WordPress' terms, it means that you should always strive to create a plugin that satisfies terms, it means that you should always strive to create a plugin that satisfiesterms, it means that you should always strive to create a plugin that satisfies means that you should always strive to create a plugin that satisfiesmeans that you should always strive to create a plugin that satisfies
your needs. On my personal site, I still use almost all of the plugins I created, and I only On my personal site, I still use almost all of the plugins I created, and I onlyOn my personal site, I still use almost all of the plugins I created, and I only
update them over time, as and when WordPress is updated, or my needs change.

This has a positive side effect of ensuring that your plugins will probably be attractive to a positive side effect of ensuring that your plugins will probably be attractive toa positive side effect of ensuring that your plugins will probably be attractive to positive side effect of ensuring that your plugins will probably be attractive topositive side effect of ensuring that your plugins will probably be attractive to
many other users as well. Assuming that you are critical about your own work, and your
confidence in using your own plugins sends out a clear message on how good they are. are.are.

Challenges involved
Developing WordPress plugins is not always an easy job. It brings a number of challenges plugins is not always an easy job. It brings a number of challengesplugins is not always an easy job. It brings a number of challenges not always an easy job. It brings a number of challengesnot always an easy job. It brings a number of challenges
that you will need to overcome. you will need to overcome.you will need to overcome.

Development
WordPress uses PHP and provides an API with its own functions. The API has grown over uses PHP and provides an API with its own functions. The API has grown overuses PHP and provides an API with its own functions. The API has grown over provides an API with its own functions. The API has grown overprovides an API with its own functions. The API has grown over
time, and now covers all possible methods of communication between WordPress and
the plugin.

This book will cover all the aspects of the API with practical examples, and the development will cover all the aspects of the API with practical examples, and the developmentwill cover all the aspects of the API with practical examples, and the development
of six concrete plugins (chapters 2-7). Through step-by-step guides to creating these plugins, Through step-by-step guides to creating these plugins,Through step-by-step guides to creating these plugins, step-by-step guides to creating these plugins,step-by-step guides to creating these plugins,
you will discover how to use API in typical situations, from displaying output on the site in how to use API in typical situations, from displaying output on the site inhow to use API in typical situations, from displaying output on the site in �n�n
the beginning, to turning WordPress into a CMS at the end. to turning WordPress into a CMS at the end.to turning WordPress into a CMS at the end. WordPress into a CMS at the end.WordPress into a CMS at the end.

Each new chapter and each new plugin will introduce different features of WordPress, and new chapter and each new plugin will introduce different features of WordPress, andnew chapter and each new plugin will introduce different features of WordPress, and new plugin will introduce different features of WordPress, andnew plugin will introduce different features of WordPress, and plugin will introduce different features of WordPress, andplugin will introduce different features of WordPress, and
how to put them to good use, thereby allowing you to gradually advance your knowledge. put them to good use, thereby allowing you to gradually advance your knowledge.put them to good use, thereby allowing you to gradually advance your knowledge.

Chapter 1

[11]

Security
As much as WordPress team takes care of the WordPress core, you need to take care of WordPress team takes care of the WordPress core, you need to take care ofWordPress team takes care of the WordPress core, you need to take care of takes care of the WordPress core, you need to take care oftakes care of the WordPress core, you need to take care of the WordPress core, you need to take care ofthe WordPress core, you need to take care of you need to take care ofyou need to take care of
security in your plugins. Always remember that your plugin is given the ultimate authority on your plugins. Always remember that your plugin is given the ultimate authority onyour plugins. Always remember that your plugin is given the ultimate authority on plugins. Always remember that your plugin is given the ultimate authority onplugins. Always remember that your plugin is given the ultimate authority on Always remember that your plugin is given the ultimate authority onAlways remember that your plugin is given the ultimate authority on remember that your plugin is given the ultimate authority onremember that your plugin is given the ultimate authority on your plugin is given the ultimate authority onyour plugin is given the ultimate authority on
the user's site. This is a great feature that allowed WordPress to become popular; but with feature that allowed WordPress to become popular; but withfeature that allowed WordPress to become popular; but with that allowed WordPress to become popular; but withthat allowed WordPress to become popular; but with WordPress to become popular; but withWordPress to become popular; but with
that it also carries a great deal of responsibility. deal of responsibility.responsibility.

This book will show the methods and functions best suited to the given situations, and book will show the methods and functions best suited to the given situations, andbook will show the methods and functions best suited to the given situations, and will show the methods and functions best suited to the given situations, andwill show the methods and functions best suited to the given situations, and
underline the security implications. There are not too many issues to worry about, so make There are not too many issues to worry about, so makeThere are not too many issues to worry about, so make
sure you remember the implications and best practices and apply them to your plugins. them to your plugins.them to your plugins.

Work after development
Once the development work is done and the plugin is finished, a lot of authors face the work is done and the plugin is finished, a lot of authors face the
question: What now? If you plan to release the plugin to the public, there are a few extra
steps you need to take care of.

This book will give you practical tips in this area—refer to Chapter 8. will give you practical tips in this area—refer to Chapter 8.will give you practical tips in this area—refer to Chapter 8.you practical tips in this area—refer to Chapter 8..

It will cover the process that takes you from the end of the development phase to the will cover the process that takes you from the end of the development phase to thewill cover the process that takes you from the end of the development phase to thethat takes you from the end of the development phase to the
first users coming back to you with feedback and questions. I have learned much from my
own plugin development experience, and I will also be referencing some of the resources some of the resources
available online .

Localization
At the moment, WordPress is translated into more than 50 languages worldwide. The into more than 50 languages worldwide. Theto more than 50 languages worldwide. The
number of users using WordPress in their native language is growing each day, and they using WordPress in their native language is growing each day, and theyusing WordPress in their native language is growing each day, and they
usually prefer using plugins that support their own language. using plugins that support their own language.using plugins that support their own language.

Localization in WordPress is easy, and the best thing is that you will not have to do any easy, and the best thing is that you will not have to do anyeasy, and the best thing is that you will not have to do any
translation. There will always be users interested in translating your plugin to their own
language and sending you the file back. This is the way it works, and it is mutually beneficial. beneficial.beneficial.

Documentation
Writing documentation is often boring work but I will show you templates which will help you templates which will helpyou templates which will help
you to do it more efficiently and also point out the benefits of writing good documentation. documentation.documentation.

I will also cover the necessary steps to manage your plugin using cover the necessary steps to manage your plugin usingcover the necessary steps to manage your plugin using SVN (Subversion), and
submit it to the WordPress Plugin Repository—the central repository of all WordPresscentral repository of all WordPressrepository of all WordPress
plugins which currently hosts thousands of plugins and has served millions of downloads.

Support
Good documentation goes a long way when it comes to support.

Preparing for WordPress Development

[12]

You can expect hundreds of user questions pouring in after you release a plugin. So, making
sure that you have a well written documentation will save you a lot of time in answering
those questions.

I will also give some practical tips on how to organize your plugin page.

Promotion
Writing a good plugin that nobody knows about is a fruitless effort.

I will give you tips on how to promote your plugin once it is published. If you have created
a really useful plugin, you can expect a snowball effect when users start to write about it on
their blogs and tell their friends about it.

Plugins developed in this book
This introduction chapter is followed by seven chapters; six of which describe the creation offollowed by seven chapters; six of which describe the creation of
WordPress plugins and a final chapter dealing with post-development issues: dealing with post-development issues:

Digg This

Live Blogroll

The Wall

Snazzy Archives

Insights

Post Types

Development Goodies

Various development topics and WordPress specific functions are introduced throughout thedevelopment topics and WordPress specific functions are introduced throughout the
development of these plugins, using concrete, step-by-step practical examples. using concrete, step-by-step practical examples.

Digg This

Chapter 1

[13]

This is the first plugin we will be developing. This plugin will show a Digg button in your
blog posts.

The purpose of this plugin will also be to introduce you to the basic concepts of WordPress plugin will also be to introduce you to the basic concepts of WordPressplugin will also be to introduce you to the basic concepts of WordPress
plugin development.

We will access some of the basic WordPress API functions, and talk about filters and actions and talk about filters and actionsand talk about filters and actions
which are the WordPress mechanisms for controlling the workflow of the site. mechanisms for controlling the workflow of the site.mechanisms for controlling the workflow of the site.

Live Blogroll

The second plugin comes from the idea of making the default blogroll look a little bit
more exciting.

We will expand our knowledge of WordPress API, but also introduce two very important
allies in WordPress plugin development, namely jQuery and Ajax.

jQuery and Ajax technologies help our plugins become more engaging, and we will learn the
basic concepts of using them through a series of practical examples.

Preparing for WordPress Development

[14]

The Wall

This chapter is all about WP Wall; a plugin that creates a shoutbox on your blog's sidebar,
where users can leave comments and shouts.

The chapter teaches important lessons, including how to create a widget and interact withchapter teaches important lessons, including how to create a widget and interact witheaches important lessons, including how to create a widget and interact with
the WordPress database. It also expands the usage of Ajax to include dynamic interactionWordPress database. It also expands the usage of Ajax to include dynamic interaction. It also expands the usage of Ajax to include dynamic interaction
with the user. user.user.

I will also try to engage you to think about WordPress plugin development in a slightlyalso try to engage you to think about WordPress plugin development in a slightly to engage you to think about WordPress plugin development in a slightly
different way.

Snazzy Archives

Chapter 1

[15]

If plugins can be classified by beauty, this would be the most beautiful plugin in the book. Itplugins can be classified by beauty, this would be the most beautiful plugin in the book. It
will display your blog archives in a way you probably have not seen before. display your blog archives in a way you probably have not seen before.

Dur�ng the creation of the plugin, we will explore how to interact with posts, create pluginof the plugin, we will explore how to interact with posts, create plugin
options, and manage them through a settings page in the administration. We will then use all
that knowledge to produce a beautiful representation of your blog's archives. a beautiful representation of your blog's archives.

Insights

Insights plugin will add to the productivity of the blog owner by offering quick access to
common information in the Write Post screen.

In this chapter, we will learn how to change the WordPress Write Post screen and interact
with the built-in TinyMCE editor. We will use Ajax to get information delivered directly into
our post while we write it! while we write it!while we write it!

Post Types

Preparing for WordPress Development

[16]

The final plugin of the book will see us working more closely with the WordPressgin of the book will see us working more closely with the WordPress
backend, and explore ways to transform WordPress into a versatile WordPress into a versatile Content
Management System (CMS).

We wilw�ll learn how to customize the administration menus and pages, use custom fields to
store additional information, explore user capabilities system, and use localization..

Development Goodies
After all the hard work in developing those plugins, comes a chapter dedicated to all the
post-development work (after-hour party!). party!).party!).

The purpose of this chapter will be to explain localization, documentation, code of this chapter will be to explain localization, documentation, code
management, and plugin promotion. It will also give you some information regarding
WordPress MU development. Wordpress MU is a multi user version of WordPress that is that is isis
becoming more popular each day.

Tools for the job
Before we get started, we need to have some tools set up, so let's go through a short
check list.

Whatever way you decide to set up your development environment, make sure you are
comfortable using it. Plugin development can be a full-time job, so make sure you enjoy it as development can be a full-time job, so make sure you enjoy it asdevelopment can be a full-time job, so make sure you enjoy it as
much as you can! you can!you can!

WordPress
Obviously, we will need WordPress installed. It is advisable to have a separate version of
WordPress for development purposes (that is, do not use your blog as a testing ground; your (that is, do not use your blog as a testing ground; your(that is, do not use your blog as a testing ground; your
visitors will not like it very much).not like it very much).ike it very much).

To pre �r��r�pare your local version, you can always download the latest version of WordPress from
http://wordpress.org/download/.

Then you need to decide if you are going to host it on the Internet or locally. I prefer to have
it on Internet as I can easily show it to other people if necessary, no matter where I am at
that moment. The advantage of local installation is that it works much faster. You can of
course combine both. both.

If you are going to set it up on your local computer, and you are using Windows, using going to set it up on your local computer, and you are using Windows, usinggoing to set it up on your local computer, and you are using Windows, using
packages such as EasyPHP (EasyPHP ((http://www.easyphp.org) will make your job much easier. make your job much easier.make your job much easier.
This is a software package that incorporates PHP and MySQL for Windows systems, and isa software package that incorporates PHP and MySQL for Windows systems, and is package that incorporates PHP and MySQL for Windows systems, and is
free to use.

Chapter 1

[17]

Installing WordPress is a simple matter. I recommend going to is a simple matter. I recommend going tois a simple matter. I recommend going to going togoing to http://codex.wordpress.
org/Installing_WordPress for the latest guide to the installation process.for the latest guide to the installation process.

If you would like to set up the latest development version, I suggest you read the section
Using SVN �n Chapter 8.

Text editor
Obviously, you are going to need a text editor. Any editor will do, and you probably have a
preference by now. by now.by now.

You do not need your text editor to do anything fancy. Indentation support and syntax need your text editor to do anything fancy. Indentation support and syntaxneed your text editor to do anything fancy. Indentation support and syntax
highlighting for PHP, HTML and JavaScript is almost all you need from an editor at this point. JavaScript is almost all you need from an editor at this point.JavaScript is almost all you need from an editor at this point.

I have been using UltraEdit for years, and it has been always my weapon of choice for a
quick, small, and powerful editor. There also are other text editors that are available for free,
such as, Netbeans IDE for PHP, Zend Studio, and so on.Netbeans IDE for PHP, Zend Studio, and so on.

FTP client
The second thing you will need to have is an FTP client. Uploading plugins can be a boring
job if you do it from the FTP command line; so visual FTP client is advisable.

For this matter, I've been using Total Commander as a proven tool. Again, you might have
your own preference.

Web browser
F�nally, since we are developing web based software, we will need a web browser. You will be
spending a lot of time in the browser window; so make sure you are comfortable with it.

I do not want to instigate browser wars at this moment, but there is one browser that is verywant to instigate browser wars at this moment, but there is one browser that is very
flexible and has tons of add-ons, much like WordPress in that respect, and that is Firefox. of add-ons, much like WordPress in that respect, and that is Firefox. much like WordPress in that respect, and that is Firefox.much like WordPress in that respect, and that is Firefox.

There are some pretty cool add-ons for Firefox that can really increase productivity to theadd-ons for Firefox that can really increase productivity to the
level of rapid web development. This step is optional if you do not use Firefox, but I would
nevertheless recommend giving it a try. it a try.

Firebug
The most important Firefox add-on we want to install is called Firebug (you can download it
from http://getfirebug.com).

www.allitebooks.com

http://www.allitebooks.org

Preparing for WordPress Development

[1�]

Firebug allows you to preview, edit and debug CSS, HTML, JavaScript and Ajax requests
in real time. This is really a great time saver. For example, when it comes to debugging,
JavaScript or misaligned CSS can be really troublesome, without the use of features
provided by Firebug.

In the next picture, you can see an example of Firebug in action, debugging JavaScript with a
breakpoint in the execution of the script.

Chapter 1

[1�]

Ubiquity
This is an add-on produced by Mozilla Labs and it can do a lot of fancy stuff. But for
our purposes, we are going to use it for two simple things—fast search of PHP and purposes, we are going to use it for two simple things—fast search of PHP andpurposes, we are going to use it for two simple things—fast search of PHP and
WordPress documentation. documentation.documentation.

You will need to install Ubiquity from https://wiki.mozilla.org/Labs/Ubiquity and
also install these two plugins:

PHP Search: http://npattison.com/ubiquity/ubiq_php.html

WP Codex Search: http://www.prelovac.com/vladimir/ubiquity-
plugins/wp-codex-search

The way these two Ubiquity commands work is that when you pressUbiquity commands work is that when you press work is that when you press Ctrl and Space �n
the browser (this opens Ubiquity window) and then typebiquity window) and then typey window) and then type php search_phrase or wp
search_phrase, it takes you immediately to the PHP or WordPress documentation
for the given phrase.

The amount of time this can save is huge, especially if you need to take a peek at the
documentation every minute or so like I do (I can't keep everything in my head!).

1.

2.

Preparing for WordPress Development

[20]

Screengrab
You can grab Screengrab from http://www.screengrab.org, and this plugin allows youand this plugin allows you
to take screenshots from your browser window easily. It can capture an entire page, a visible your browser window easily. It can capture an entire page, a visibleyour browser window easily. It can capture an entire page, a visible browser window easily. It can capture an entire page, a visiblebrowser window easily. It can capture an entire page, a visible
portion, or a user selection on the page.

Once you get used it, you will use it extensively for creating images for your plugin
documentation. I have used it for almost all the images in this book.

Chapter 1

[21]

IE tab
This Firefox add-on allows you to quickly change the rendering engine between Firefox and
the installed version of the Internet Explorer. It allows you to quickly check if your plugin version of the Internet Explorer. It allows you to quickly check if your pluginversion of the Internet Explorer. It allows you to quickly check if your pluginExplorer. It allows you to quickly check if your plugin
behaves well in this browser.browser.

You can get it from get it fromget it from http://ietab.mozdev.org/http://ietab.mozdev.org/.

Quick reference

WordPress: http://www.wordpress.org/download

Installing WordPress: http://codex.wordpress.org/Installing_
WordPress

EasyPHP: http://www.easyphp.org

UltraEdit: http://www.ultraedit.com

Total Commander: http://www.ghisler.com

FireFox: http://getfirefox.com

FireBug: http://getfirebug.com

Ubiquity: https://wiki.mozilla.org/Labs/Ubiquity

PHP Search for Ubiquity: http://npattison.com/ubiquity/ubiq_
php.html

WP Codex Search for Ubiquity: http://www.prelovac.com/vladimir/
ubiquity-plugins/wp-codex-search

ScreenGrab: http://www.screengrab.org

IETab: http://ietab.mozdev.org/

Final notes
Before we start with development, let's have a quick reminder on how to install and manage
WordPress plugins. Also I'll mention a handy tip for quickly accessing code examples.

Preparing for WordPress Development

[22]

Installing and managing plugins
When you want to install a plugin, you need to follow these simple steps:

Upload the plugin folder (for example wp-wall) to your server's
wp-content/plugins/ folder.

1.

Chapter 1

[23]

2. Go to your WordPress administration section, and select Plugins from the menu. This
will give you a list of all the installed plugins. Scroll down the list until you find yours,
and click Activate.

If you intend to manually update the plugin files on a live site, it is advisable to deactivate the
plugin first using the Plugins menu.

Strictly speaking, on a development blog where you are the only user, this can be skipped to
save time..

If something goes wrong with the plugin, and you are unable to accesswrong with the plugin, and you are unable to access
your WordPress site anymore, deleting the plugin folder from the server
will deactivate the plugin automatically, and will instantly get your site get your site
working again.

If you need more information regarding plugin management, you can refer to the latest
WordPress manual found at http://codex.wordpress.org/Managing_Plugins.

Searching documentation
During the plugin development, you will more or less need to refer to documentation.

Luckily, you will have this book on your hand either in paper or in a PDF form, so you canwill have this book on your hand either in paper or in a PDF form, so you can
take a quick look. Then, you also have the WordPress online documentation found at, you also have the WordPress online documentation found at
http://codex.wordpress.org/Main_Page.

Due to the rapid speed at which WordPress has been developing, not all the functions have
been documented.

So, I keep a copy of the latest version of WordPress locally. This way, I am able to find the
reference to the function in the WordPress core quickly, and figure out how it is used.

Preparing for WordPress Development

[24]

I also tend to keep a local copy of the entire plugin repository on my computer (you can find
more details on how to do that in Chapter 8) so that I can search through the entire plugin
repository and find instances of this function used by other plugin authors (and you can
always find new and creative uses as well). and creative uses as well).

Chapter 1

[25]

Using other plugins for this purpose can really save a lot of time, and it is often the easiestpurpose can really save a lot of time, and it is often the easiest
way to learn how to perform certain functionalities..

Summary
We learned about the advantages of WordPress development, and what WordPress has to
offer to plugin authors. We have also seen that there are certain challenges along the way,
which we will address in this book.

The six plugins that we will create in the following chapters will show you exactly how to
create a WordPress plugin from scratch and have it perform the concrete functionality you
need, whether it's on the front page or in the administration backend.

Having armed ourselves with useful development tools, we are ready to start developing
some cool WordPress plugins!

2
Social Bookmarking

I hope the first chapter got you warmed up and prepared for WordPress plugin development,
and that you are as eager to start as I am.

 In this chapter, we will create our first functional WordPress plugin and learn how to interact
with the WordPress API (this is the WordPress interface to PHP) on the way. The knowledge
you will gain in this chapter alone will allow you to write a lot of similar plugins.

Let's get moving! In this chapter, you will learn:

Creating a new plugin and having it displayed in the plugins admin panel

Checking the WordPress version and control activation of the plugin

Accessing API features—for example the title and permalink URL of each post

Using WordPress hooks to execute your plugin code when it's needed

Using conditional tags to control the flow of your plugins

You will learn these by:

Creating a 'social bookmarking' type of plugin that adds a Digg button to each post
on your blog

As you probably know, Digg is a very popular service for promoting interesting content on
the Internet. The purpose of a Digg button on your blog is to make it easier for Digg users to
vote for your article and also to bring in more visitors to your blog.

Social Bookmarking

[2�]

The plugin we'll create in this chapter will automatically insert the necessary code to each of
your posts. So let's get started with WordPress plugin development!

Plugging in your first plugin
Usually, the first step in plugin creation is coming up with a plugin name. We usually want to
use a name that is associated with what the plugin does, so we will call this plugin, WP Digg
This. WP is a common prefix used to name WordPress plugins.

To introduce the plugin to WordPress, we need to create a standard plugin header. This
will always be the first piece of code in the plugin file and it is used to identify the plugin
to WordPress.

Time for action – Create your first plugin
In this example, we're going to write the code to register the plugin with WordPress ,
describe what the plugin does for the user, check whether it works on the currently installed
version of WordPress, and to activate it.

Create a file called wp-digg-this.php in your favourite text editor. It is common
practice to use the plugin name as the name for the plugin file, with dashes '-'
instead of spaces.

Next, add a plugin information header. The format of the header is always the same
and you only need to change the relevant information for every plugin:

 <?php

 /*
 Plugin Name: WP Digg This
 Version: 0.1
 Description: Automatically adds Digg This button to your posts.
 Author: Vladimir Prelovac
 Author URI: http://www.prelovac.com/vladimir
 Plugin URI: http://www.prelovac.com/vladimir/wordpress-plugins/
 wp-digg-this
 */

 ?>

3. Now add the code to check the WordPress version:

 /* Version check */
 global $wp_version;

 $exit_msg='WP Digg This requires WordPress 2.5 or newer.
 Please
 update!';

1.

2.

Chapter 2

[2�]

 if (version_compare($wp_version,"2.5","<"))
 {
 exit ($exit_msg);
 }

 ?>

4. Upload your plugin file to the wp-content/plugins folder on your server using
your FTP client.

5.	 Go to your WordPress Plugins admin panel. You should now see your plugin listedpanel. You should now see your plugin listed
among other plugins:

6. This means we have just completed the necessary steps to display our plugin in
WordPress. Our plugin can be even activated now—although it does not do
anything useful (yet).

Social Bookmarking

[30]

What just happened?
We created a working plugin template by using a plugin information header and the
version check code. The plugin header allows the plugin to be identified and displayed
properly in the plugins admin panel. The version check code will warn users of our plugin
who have older WordPress versions to upgrade their WordPress installation and prevent
compatibility problems.

The plugin information header
To identify the plugin to WordPress, we need to include a plugin information header with
each plugin.

The header is written as a PHP comment and contains several fields with
important information.

This code alone is enough for the plugin to be registered, displayed in the admin panel and
readied for activation.

If your future plugin has more than one PHP file, the plugin information
should be placed only in your main file, the one which will include() or
require() the other plugin PHP files.

Checking WordPress versions
To ensure that our plugin is not activated on incompatible WordPress versions, we will
perform a simple WordPress version check at the very beginning of our code.

WordPress provides the global variable $wp_version that provides the current WordPress
version in standard format. We can then use PHP function version_compare() to
compare this and our required version for the plugin, using the following code:

if (version_compare($wp_version,"2.6","<"))
{
 // do something if WordPress version is lower then 2.6
}

If we want to stop the execution of the plugin upon activation, we can use the exit()
function with the error message we want to show.

In our case, we want to show the required version information and display the link to the
WordPress upgrade site.

$exit_msg='WP Digg This requires WordPress 2.6 or newer. Please
update!';

Chapter 2

[31]

if (version_compare($wp_version,"2.6","<"))
{
 exit ($exit_msg);
}

While being simple, this piece of code is also very effective. With the constant development
of WordPress, and newer versions evolving relatively often, you can use version checking to
prevent potential incompatibility problems.

The version number of your current WordPress installation can be found in the footer text
of the admin menu. To begin with, you can use that version in your plugin version check
(for example 2.6).

Later, when you learn about WordPress versions and their differences, you'll be able to
lower the version requirement to the minimal your plugin will be compatible with. This will
allow your plugin to be used on more blogs, as not all blogs always use the latest version of
WordPress.

Checking the plugin
You can go ahead and activate the plugin. The plugin will be activated but will do nothing at
this moment.

Time for Action – Testing the version check
Let's just make sure that the version check works, by requiring a fictional version of
WordPress that does not exist yet:

Deactivate the plugin and change the version check code to a higher version. For
example, replace 2.6 with 5.0.

 if (version_compare($wp_version,"5.0","<"))

2. Re-upload the plugin and try to activate it again. You will see a WordPress error and
a message from the plugin:

1.

Social Bookmarking

[32]

What just happened?
The version check fails and the plugin exits with our predefined error message. The same
thing will happen to a user trying to use your plugin with outdated WordPress installation,
requiring them to update to a newer version.

Have a go Hero
We created a basic plugin that you can now customize.

Change the plugin description to include HTML formatting (add bold or links to
the description).

Test your plugin to see what happens if you have two plugins with the same name
(upload a copy of the file under a different name).

Displaying a Digg button
Now it's time to expand our plugin with concrete functionality and add a Digg link to every
post on our blog.

In order to create a link we will need to extract post's permalink URL, title, and description.
Luckily, WordPress provides us with a variety of ways to do this.

Time for Action – Implement a Digg link
Let's create a function to display a Digg submit link using information from the post.

Then we will implement this function into our theme, to show the link just after the
post content.

1. Add a function to our plugin to display a Digg link:

 /* Show a Digg This link */
 function WPDiggThis_Link()
 {
 global $post;

 // get the URL to the post
 $link=urlencode(get_permalink($post->ID));

 // get the post title
 $title=urlencode($post->post_title);

 // get first 350 characters of post and strip it off
 // HTML tags

Chapter 2

[33]

 $text=urlencode(substr(strip_tags($post->post_content),
 0, 350));

 // create a Digg link and return it
 return '<a href="http://digg.com/submit?url='.$link.'&
 title='.$title.'&bodytext='.$text.'">Digg This';

 }

2. Open your theme's single.php file and add a call to our function just below the
line with the_content(). If you are not sure how to do this, see the forthcoming
section on "Editing the theme files".

 <?php if (function_exists(WPDiggThis_Link)) echo WPDiggThis_
 Link(); ?>

3. With the default WordPress theme, this change will look something like this (you can
also refer to the following image):

Social Bookmarking

[34]

4. After you save the theme file, your blog posts will now automatically have the Digg
This link shown after the content:

5. Clicking the link will take the user directly to the Digg site, with all the required
information already filled in:

Well done! You have created your first working WordPress plugin!

What just happened?
When WordPress loads a post, the single.php template file from the currently active
WordPress theme is ran. We added a line to this file that calls our plugin function
WPDiggThis_Link() just after the content of the post is displayed:

<?php the_content('<p class="serif">Read the rest of this entry
»</p>'); ?>

<?php if (function_exists(WPDiggThis_Link)) echo WPDiggThis_
Link(); ?>

We use function_exists()to check our function because it exists only if our plugin is
installed and activated. PHP will generate an error if we try to run a nonexistent function. But
if we deactivate the plugin later, we don't want to cause errors with our theme. So, we make
sure that the function exists before we attempt to run it.

Chapter 2

[35]

Assuming that the plugin is present and activated, the WPDiggThis_Link() function from
our plugin is ran. The first part of the following function gets information about our post and
assigns it to variables:

/* Show a Digg This link */
function WPDiggThis_Link()
{
 global $post;

 // get the URL to the post
 $link=urlencode(get_permalink($post->ID));

 // get the post title
 $title=urlencode($post->post_title);

 // get first 350 characters of post and strip it off HTML tags
 $text=urlencode(substr(strip_tags($post->post_content),
 0, 350));

We use the urlencode() PHP function for all the parameters that we will pass to the final
link. This will ensure that all the values are formatted properly.

The second part uses this information to construct a Digg submit link:

 // create a Digg link and return it
 return '<a href="http://digg.com/submit?url='.$link.'&
 title='.$amp;title.'&bodytext='.$text.'">Digg This';

}

It returns this HTML text so that it gets added to the WordPress output at the point where
the function is called – just after the post is displayed. Therefore, the link appears right after
each post—which is convenient for the user who has just finished reading the post.

Using the Digg API
Usually, when using the functionalities of third-party sites, as we are doing in our example
with Digg, we would search for the API documentation first. Almost all the major sites have
extensive documentation available to help developers use their services in an effective way.

Digg is no exception, and if you search the Internet for the digg button api you will find a
page at http://digg.com/tools/integrate that will have all the details we need in
order to implement our Digg functionality.

Social Bookmarking

[36]

Digg allows us to use several different ways of using their service.

For the start, we will display just a Digg link. Later, we will expand it and also display a
normal button.

Here is what the Digg documentation says about formatting a submit link.

Submit URL:
http://digg.com/submit?url=example.com&title=TITLE&bodytext=DESCRIPTI
ON&media=MEDIA&topic=TOPIC

Submit URL Details:
url=example.com

Maximum length is 255 characters

Story URL should be unique and devoid of session or user-specific data

Please URL-encode all strings as appropriate. For example:
http%3A%2F%2Fyourwebsite%2Fyourstoryurl%2Fstorypagedetails.html

title=TITLE

Maximum length is 75 characters

Please also URL-encode the story title

bodytext=DESCRIPTION

Maximum length is 350 characters

Please also URL-encode the body text

Chapter 2

[37]

Using this information, we are able to create a valid link for the Digg service from the
information available in our post.

Acquiring post information
WordPress provides a number of ways to get information about the current post.

One of them involves using the global variable $post, which stores all the relevant
information for the current post. We have used it in our example to extract the post title and
content, but it can also be used to get other information such as post category, status and
so on.

WordPress also offers an array of functions we could have used to access post information
such as get_the_title() and get_the_content().

The main difference between using these functions and accessing post data directly
using $post variable is in the end information we get. The $post variable contains raw
information about the post, just as the user wrote it. The functions mentioned above take
the same raw information as a starting point, but could have the final output modified by
external factors such as other active plugins.

You can browse through the wp-includes/post-template.php file of
your WordPress installation to get a better understanding of the differences
between using the $post variable and the WordPress provided functions.

Post permalink URL
In order to obtain post URL we used the get_permalink() WordPress function. This
function accepts the post ID as a parameter, and as a result, returns post's actual URL on the
blog. It will always return a valid URL to your post no matter what permalink structure your
blog is using.

Editing the theme files
In our example, we had to edit our theme in order to place the Digg link under the post
content. WordPress allows for easy theme editing through the built-in Theme Editor panel.

After selecting the theme you want to edit, you will be presented with a number of
options. Every theme consists of various PHP template files, each covering different
blog functionalities.

www.allitebooks.com

http://www.allitebooks.org

Social Bookmarking

[3�]

Here is a reference table detailing the most commonly used template files.

File Page Description

index.php Main index file This is the main theme file; it is used to
render any page as a replacement if the
'specialised' file listed below is missing

home.php Home page Used to display the contents of the home
page of the blog, which usually includes a
list of recent posts.

single.php Single post Called when you click on a single post to
display post comments; usually includes
comments template at the end.

page.php Page Template Same as single post, but is used for
displaying pages

archive.php Archives Displays blog archives, such as earlier posts,
posts by month or categories.

comments.php Comments Template responsible for showing user
comments and the comment area for new
comments

header.php Header Outputs the header for every page, usually
containing information such as title and
navigation, and includes theme style sheets
and so on

footer.php Foot�r The footer of every page, usually containing
copyright information and useful links

search.php Search results This template is used to show search results
for your blog; It is usually
similar to archive.php but also
includes information about the
searched-for phrase

sidebar.php Sidebar Shows the blog sidebar; if the theme
supports widgets, it will also include widget
support functions

404.php 404 file not found page Default page for showing missing (404)
pages on your blog

Always be careful when editing the theme files as any kind of mistake in your syntax can
cause an error in displaying the page. It is therefore good practice to first backup theme files,
so you can safely revert to them afterwards.

Chapter 2

[3�]

Quick reference

$post: A global WordPress variable containing information about the currently
processed post.

get_permalink($post_id): Returns the full URL to the post given by its
ID (for example $post->ID).

function_exists($function): Helps the PHP function to check if
the given function exists. It is useful in themes when we want to include
our function.

urlencode($string): Helps the PHP function to properly format the
parameters to be used in a URL query.

Have a go Hero
Our plugin already has useful functionality. Try to customize it by:

Calling our Digg link function from different places in the theme template, for
example, before the content or after the tags are displayed (look for the_tags()
line in the template).

Adding the function to other theme templates such as the main index file and
archive pages to display the Digg links on the home page and blog archives as well.

Using the get_the_title() and get_the_content() functions to obtain post
title and content instead of using the $post variable.

WordPress plugin hooks
Our plugin now works fine, but there is a problem. In order to use it, we also have to edit the
theme. This can be a real pain for all sorts of reasons:

If you want to change to a different theme, the plugin will stop working until you
edit the new theme.

If you want to distribute your plugin to other people, they can't just install it and
activate it; they have to change their theme files too.

If you change the function name, you need to alter the theme files again

We need some way to make the plugin work on its own, without the users having to change
their themes or anything else.

Hooks come to the rescue, making it possible to display our Digg This button in our
posts—without ever modifying our theme.

Social Bookmarking

[40]

Time for Action – Use a filter hook
We will use the the_content filter hook to automatically add our Digg This link to the end
of the post content. This will avoid the need for the users to edit their theme files if they
want to use our plugin.

Create a function that we will use to hook to the content filter:

 // create a Digg link and return it
 return '<a href="http://digg.com/submit?url='.$link.'&
 title='.$title.'&bodytext='.$text.'">Digg This';
}

/* Add Digg link to the end of the post */
function WPDiggThis_ContentFilter($content)
{
 return $content.WPDiggThis_Link();

}

2. Use the post content hook to automatically call our new function:

 add_filter('the_content', 'WPDiggThis_ContentFilter');

3. Remove the references to our function from the theme template as we no longer
need them. Leaving them would have the effect of showing the link twice.

The end result is now the same, but we now control the appearance of the link directly
from our plugin.

What just happened?
When we activate our plugin now, WordPress comes across and runs this line:

add_filter('the_content', 'WPDiggThis_ContentFilter');

This tells WordPress that every time it's going to display the content of a post or page, it
should run it through our WPDiggThis_ContentFilter() function. We don't need to
modify the theme file anymore – WordPress will make sure that the function runs at the
required time.

When we load a post now, WordPress will automatically call our function:

/* Add Digg link to the end of the post */
function WPDiggThis_ContentFilter($content)
{
 return $content.WPDiggThis_Link();
}

1.

Chapter 2

[41]

This function receives the post's content as a parameter, and returns the filtered content. In
this case, our Digg link gets automatically appended to the end of the content.

WordPress hooks
WordPress provides a powerful mechanism for plugin functions to be called at the exact time
when we need them. This functionality is accomplished by using the so called hooks.

Every time you call a page from your browser, the WordPress engine goes through every
possible function it needs to render the requested page. Somewhere along the way, you can
"hook" up your function and use it to affect the end result.

You do this by simply registering your function with a specified hook, allowing it to be called
by WordPress at the right moment.

There are two types of WordPress hooks:

Action hooks: These are triggered by WordPress events, for example, when
someone creates a post or writes a comment.

Filter hooks: These are used to modify WordPress content on the fly, like title or
content of the post as it is being served to the user.

Filter hooks
We learned that filter hooks (also referred to as simply 'filters') are functions that process
WordPress content, whether it is about to be saved in the database or displayed in the user's
browser. WordPress expects these functions to modify the content they get and return it.

In our case, we used the_content filter hook to modify the post content by appending a
Digg link to it. We could also have placed the Digg link at the beginning of the post, or broken
up the post and put it in the middle.

To set up a filter, we need to use the add_filter function:

add_filter ('filter_hook', 'filter_function_name' , [priority],
[accepted_args]);

filter_hook: One of the filter hooks provided by WordPress.ne of the filter hooks provided by WordPress.

filter_function_name: A function used to process the content provided by the
filter_hook.

priority: An optional parameter, which specifies the execution order of functions.
The default value is 10 if several functions apply to the same filter hook, functions
with a lower priority number execute first, while the functions with the same
priority will execute in the order in which they were added to the filter.

Social Bookmarking

[42]

accepted_args: An optional parameter, which specifies how many arguments
your function can accept. The default value is 1. The accepted_args parameter is
used for hooks that pass more than one argument.

Here is an example list of filter hooks, which will help you to get a better understanding of
what you can achieve using them.

Filter Description

the_content Applied to the post content retrieved from the database prior to
printing on the screen

the_content_rss Applied to the post content prior to including in an RSS feed

the_title Applied to the post title retrieved from the database prior to printing
on the screen

wp_title Applied to the blog page title before sending to the browser in the
wp_title function

comment_text Applied to the comment text before display on the screen by the
comment_text function and in the admin menus

get_categories Applied to the category list generated by the get_categories
function

the_permalink Applied to the permalink URL for a post prior to printing by
the_permalink function

autosave_interval Applied to the interval for auto-saving posts

theme_root_uri Applied to the theme root directory URI returned by the
get_theme_root_uri function

Filter hooks can be removed using the remove_filter() function. It accepts the same
arguments as add_filter(), and is useful if you want to replace some of the existing
WordPress filters with your functions.

If you want to take a closer look at the default WordPress filters, you can find them in the
wp-includes\default-filters.php file of your WordPress installation.

It is important to remember that the filter function always receives some data and
is responsible for returning the data, whether it modifies the data or not. Only if
you want to disregard this data completely, can you return an empty value.

Action hooks
We use action hooks when we need to include specific functionalities every time a
WordPress event triggers, for example when the user publishes a post or changes the theme.

Chapter 2

[43]

WordPress does not ask for any information back from the action function, it simply
notifies it that a certain event has happened, and that a function should respond to it
in a desired way.

Action hooks are used in a way similar to the filter hooks. The syntax for setting up an action
hooks is:

add_action ('action_hook', 'action_function_name', [priority],
[accepted_args]);

action_hook: The name of the hook provided by WordPress.he name of the hook provided by WordPress.

action_function_name: The name of the function you want to use to handle
the event.

priority: An optional parameter, which specifies the execution order of functions.
The default value is 10. If several functions apply to the same filter hook, then
functions with lower priority numbers will execute first, while the functions with the
same priority will execute in the order in which they were added.

accepted_args: It is optional and specifies how many arguments your function
can accept. The default value is 1 and is used for hooks that pass more than
one argument.

The following table presents example action hooks provided by WordPress.

Action Description

create_category Runs when a new category is created

publish_post Runs when a post is published, or if it is edited and its
status is published

wp_blacklist_check Runs to check whether a comment should be blacklisted

switch_theme Runs when the blog's theme is changed

activate_(plugin_file_name) Runs when the plugin is first activated

admin_head Runs in the HTML <head> section of the
admin panel

wp_head Runs when the template calls the wp_head function.
This hook is generally placed near the top of a page
template between <head> and </head>

init Runs after WordPress has finished loading but before any
headers are sent; it is useful for intercepting $_GET or
$_POST triggers

user_register Runs when a user's profile is first created

Social Bookmarking

[44]

Just as with filters, you can use the remove_action() function to remove currently
registered actions.

Practical filters and actions examples
Since understanding the power of filters and actions is very important for conquering
WordPress plugin development, we will now examine a few more simple examples of
their usage.

Upper case titles
The hook function can be any registered function. In this case, we will pass the title of the
post to strtoupper making all titles appear in upper case.

add_filter('the_title', strtoupper);

Mailing list
Actions provide a very powerful mechanism for automating tasks. Here is how to send a
notification to a mailing list whenever there is an update on your blog.

function mailing_list($post_ID)
{
 $list = 'john@somesite.com,becky@somesite.com';
 mail($list, 'My Blog Update',
 'My blog has just been updated: '.get_settings('home'));
}

// Send notification with every new post and comment
add_action('publish_post', 'mailing_list');
add_action('comment_post', 'mailing_list');

Changing core WordPress functionality
Sometimes you may not be satisfied with the default WordPress functionalities. You may be
tempted to modify the WordPress source code, but you should never do that. One of the
main reason is that when you upgrade to a new version of WordPress the upgrade process
could overwrite your changes.

Instead, try whenever possible to write a plugin and use actions and filters to change the
desired functionality.

Let's say we want to change WordPress post excerpt handling. WordPress uses the
wp_trim_excerpt() function with the get_the_excerpt filter responsible for
processing the post excerpt. No problem, let's replace it with our own function, using
the WordPress function as a starting point.

Chapter 2

[45]

/* Create excerpt with 70 words and preserved HTML tags */
function my_wp_trim_excerpt($text)
{
 if ('' == $text)
 {
 $text = get_the_content('');
 $text = apply_filters('the_content', $text);
 $text = str_replace(']]>', ']]>', $text);
 $excerpt_length = 70;
 $words = explode(' ', $text, $excerpt_length + 1);
 if (count($words) > $excerpt_length)
 {
 array_pop($words);
 array_push($words, '[...]');
 $text = implode(' ', $words);
 }
 }
 return $text;
}

// remove WordPress default excerpt filter
remove_filter('get_the_excerpt', 'wp_trim_excerpt');

// Add our custom filter with low priority

add_filter('get_the_excerpt', my_wp_trim_excerpt, 20);

These were just a few practical examples. You can do almost anything that crosses your mind
using action and filter hooks in WordPress.

Sometimes, you can achieve the same result by using either the action or the
filter hook.

For example, if you want to change the text of the post you can use publish_
post action hook to change the post as it is being saved to the database.

Alternatively, you can use the_content filter to change the text of the post as
it is displayed in the browser window.

Although the result is the same, we accomplish the goal in different ways. In the
first case, when using the action hook, the post itself will remain permanently
changed, whereas using the filter hook will change the text every time it is
displayed. You will want to use the functionality more suitable for your needs.

Social Bookmarking

[46]

Quick reference

add_filter ('filter_hook', 'filter_function_name',
[priority], [accepted_args]): This is used to hook our function to
the given filter

add_action ('action_hook', 'action_function_name',
[priority], [accepted_args]): This is used to hook our function to the
given action

remove_filter() and remove_action(): This is used to remove already
assigned filters and actions

the_content : This is a popular filter for the post content. (do not confuse
with the_content() function, which is a template tag to display the content
of a post in the theme)

WordPress Filter Reference: http://codex.wordpress.org/Plugin_
API/Filter_Reference

WordPress Action Reference: http://codex.wordpress.org/Plugin_
API/Action_Reference

Have a go Hero
Our filter function now controls the behaviour of a Digg link. Try these exercises:

Place a Digg link before the post content by prepending the output of our function
to the content

Add the current date to your page title in the browser window by using the
wp_title filter and the date() PHP function

Capitalize the first letter of the users' comments in case they forgot to do so. Use the
comment_text filter and the ucfirst() PHP function

Adding a Digg button using JavaScript code
Our Digg link works fine for submitting the content, but isn't very pretty, and does not show
the number of Diggs we received. That is why we need to use a standard Digg button.

This is accomplished by using a simple piece of JavaScript code provided by Digg, and passing
it the necessary information.

Chapter 2

[47]

Time for Action – Implement a Digg button
Let us implement a Digg button, using information from the Digg API. We will use the newly
created button on single posts, and keep the simple Digg link for all the other pages.

Create a new function for displaying a nice Digg button using JavaScript code.

 /* Return a Digg button */
 function WPDiggThis_Button()
 {
 global $post;

 // get the URL to the post
 $link=js_escape(get_permalink($post->ID));

 // get the post title
 $title=js_escape($post->post_title);

 // get the content
 $text=js_escape(substr(strip_tags($post->post_content),
 0, 350));

 // create a Digg button and return it
 $button="
 <script type='text/javascript'>
 digg_url = '$link';
 digg_title = '$title';
 digg_bodytext = '$text';
 </script>
 <script src='http://digg.com/tools/diggthis.js'
 type='text/javascript'></script>"

 return ($button);

 }

2. Modify our filter function to include the Digg button for single posts and pages, and
a Digg link for all the other pages:

 /* Add Digg This to the post */
 function WPDiggThis_ContentFilter($content)
 {
 // if on single post or page display the button
 if (is_single() || is_page())
 return WPDiggThis_Button().$content;
 else
 return $content.WPDiggThis_Link();
 }

1.

Social Bookmarking

[4�]

3. Digg button now shows at the beginning of the single post page.

What just happened?
WordPress will parse our content filter function according to the conditional statement we
have added:

function WPDiggThis_ContentFilter($content)
{

// if on single post or page display the button
if (is_single() || is_page())

 return WPDiggThis_Button().$content;

This means that if the current viewed page is a single post or page, we will append our Digg
button at the beginning of that post.

If we are viewing all the other pages on the blog (like for example the home page or archives)
we will show the Digg This link instead.

 if (is_single() || is_page())
 return WPDiggThis_Button().$content;

 else
 return $content.WPDiggThis_Link();

}

The reason for doing so is that we do not want to clutter the home page of the blog with a
lot of big yellow Digg buttons. So we just place a subtle link below the post instead. On single
pages, we show the normal button using our new WPDiggThis_Button() function.

Chapter 2

[4�]

The first part is similar to our previous WPDiggThis_Link() function, and it acquires the
necessary post information.

/* Return a Digg button */
function WPDiggThis_Button()
{
 global $post;

 // get the URL to the post
 $link=js_escape(get_permalink($post->ID));

 // get the post title
 $title=js_escape($post->post_title);

 // get the content

 $text=js_escape(substr(strip_tags($post->post_content), 0, 350));

However in this case, we are treating all the information through the js_escape()
WordPress function, which handles formatting of content for usage in JavaScript code. This
includes handling of quotes, double quotes and line endings, and is necessary to make sure
that our JavaScript code will work properly.

We then create a code using Digg API documentation for a JavaScript button:

// create a Digg button and return it
 $button="
 <script type='text/javascript'>
 digg_url = '$link';
 digg_title = '$title';
 digg_bodytext = '$text';
 </script>
 <script src='http://digg.com/tools/diggthis.js'
 type='text/javascript'></script>";

Conditional Tags
We have used two functions in our example, is_single() and is_page(). These are
WordPress conditional tags and are useful for determining the currently viewed page on the
blog. We used them to determine if we want to display a button or just a link.

WordPress provides a number of conditional tags that can be used to control execution of
your code depending on what the user is currently viewing.

Social Bookmarking

[50]

Here is the reference table for some of the most popular conditional tags.

Tag Returns True If User is Viewing

is_home Blog home page

is_admin Administration interface

is_single Single post page

is_page Blog page

is_category Archives by category

is_tag Archives by tag

is_date Archives by date

is_search Search results

Conditional tags are used in a variety of ways. For example, is_single('15') checks
whether the current page is a single post with ID 15. You can also check by title.
is_page('About') checks if we are on the page with the title 'About'.

Quick reference

is_single(),is_page(): These are conditional tags to determine the
nature of the currently viewed content

js_escape(): A WordPress function to properly escape the strings to be used
in JavaScript code

WordPress Conditional Tags: http://codex.wordpress.org/
Conditional_Tags

Styling the output
Our Digg button looks like it could use a better positioning, as the default one spoils the look
of the theme. So, we will use CSS to reposition the button.

Cascading Style Sheets or CSS for short (http://www.w3.org/Style/CSS/) are a simple
but powerful tool that allows web developers to add different styles to web presentations.
They allow full control over the layout, size and colour of elements on a given page.

Time for Action – Use CSS to position the button
Using CSS styles, we will move the button to the right of the post.

We will accomplish this by first encapsulating the button in a <div> element. Then
we will add a CSS style to this element stating that the button should appear on the
right, with a left margin towards the text of 10 pixels.

1.

Chapter 2

[51]

 // create a Digg button and return it
 $button="
 <script type='text/javascript'>
 digg_url = '$link';
 digg_title = '$title';
 digg_bodytext = '$text';
 </script>
 <script src='http://digg.com/tools/diggthis.js' type='text/
 javascript'></script>";

 // encapsulate the button in a div
 $button='
 <div style="float: right; margin-left:

 10px; margin-bottom: 4px;">
 '.$button.'
 </div>';

 return $button;

2. The result of applying this simple CSS code is that Digg Button now shows to the
right of the post.

What just happened?
We used CSS to move the button to a desired position. CSS is extremely useful for
these kinds of tasks and is commonly used in WordPress development to enhance the
user experience.

// encapsulate the button in a div
$button='
 <div style="float: right; margin-left: 10px; margin-bottom:
4px;">
'.$button.'

</div>';

We have basically encapsulated our button in a <div> element and forced it to the right
edge by using float: right CSS command inside a style tag.

Social Bookmarking

[52]

We could further experiment with the placement of the button until we find the most
satisfying solution.

For example, if we hook to the_title filter instead of the_content, and moved the
button to the left, we would get the following result:

Certainly, having good CSS skills is a very valuable asset in WordPress plugin development.

Have a go Hero
Now that our button is finished, there are a lot of possible customizations you can make to
the look or position of your button, using both built-in Digg options and CSS.

You can use the digg_bgcolor, digg_skin, digg_window parameters of Digg
JavaScript to control the appearance of the button (refer to http://digg.com/
tools/integrate)

Use CSS to play with the layout of the button

Create similar plugins that will allow the user to submit content to sites such as
Stumble Upon or Reddit

Summary
In this chapter, we created a working, useful, and attractive WordPress plugin from scratch.
Our plugin now displays a fully functional Digg button.

We learned how to extract information using WordPress API and how to use CSS to improve
the appearance of our plugin. We also investigated some more advanced WordPress
functionalities such as hooks.

Specifically, we covered:

Creating a plugin: How to fill in the information header and create a simple
plugin template

Checking WordPress version: How to check that our plugin is compatible with the
user’s version of WordPress

Modifying theme files: How to safely add functions to the theme files when we
n��d to

Chapter 2

[53]

Accessing post information: Different ways of obtaining data from the post such as
title, permalink and content

Using WordPress hooks: How to use actions and filters to get things done from
within our plugin (and not modifying the theme for instance)

Now that we've learned about WordPress hooks, we are ready to expand our knowledge and
learn about Widgets. In the next chapter we will create a cool Wall widget for users to write
comments directly on our blog sidebar.

3
Live Blogroll

We learned how to set up a fully functional WordPress plugin, and use WordPress hooks to
insert our code exactly when we want it.

In this chapter, we will move on and explore more cool things we can do with WordPress by
livening up the default WordPress Blogroll.

The purpose of the plugin will be to display the most recent posts from the sites listed in the
blogroll using a nice pop-up window. We also want to do that dynamically, using Ajax and
jQuery technologies.

Do not worry if you know little about them right now. They integrate naturally with
WordPress, and soon you'll consider them as being part of WordPress!

In this chapter, you will:

Use more hooks, more API features

Deal with RSS, an important aspect of blogging

Get familiar with jQuery and Ajax, and load the 'recent posts' dynamically

Learn how to make the plugin secure by using nonces

You will learn this by:

Creating a live Blogroll plugin that adds a 'recent posts' pop up for each blog in
your blogroll

Live Blogroll

[56]

The integrated WordPress Blogroll is very rudimentary one; it just displays a list of links that
stay exactly the same over time. Here is what it normally looks like:

What if it could give us an insight into what is happening on the site by showing the most
recent posts?

Our plugin makes this functionality possible, is attractive to use, and will not slow down the
loading time of the main page. We will call the plugin 'Live Blogroll' as this is what it will
actually do—breathe life into our blogroll!

Chapter 3

[57]

Starting up with the blogroll
The WordPress Blogroll is a collection of links to other sites. You can manage these links
in the WordPress administration menu where you can add, modify, and delete them. The
changes are represented instantaneously on your Blogroll and are visible to the visitors of
your site.

WordPress allow us to hook up into the process of preparing the blogroll links just before
they are displayed on the site. We will use this as a first step in our plugin, to demonstrate
how to fetch the RSS feed from the link and display the title of the first post as a link.

This will make the blogroll look livelier as it will constantly change with the posting of new
articles on those sites.

Live Blogroll

[5�]

Time for action – Roll into the blogroll
We want to hook up into the blogroll filter and modify the links on the fly, fetching the latest
post from the RSS feed and replacing it into the blogroll.

Create a new folder for the plugin, called live-blogroll. We will have more than
one file in our final plugin, so that we can keep everything neatly in one folder.

Create a new file called wp-live-blogroll.php. This will be our main file and
should contain the plugin information. We can also re-use our version check code:

 <?php

 /*
 Plugin Name: Live Blogroll
 Version: 0.1
 Description: Shows a number of 'recent posts' for each link in
 your Blogroll using Ajax.
 Author: Vladimir Prelovac
 Author URI: http://www.prelovac.com/vladimir
 Plugin URI: http://www.prelovac.com/vladimir/wordpress-plugins/
 live-blogroll
 */

 /* Version check */
 global $wp_version;

 $exit_msg='Live BlogRoll requires WordPress 2.3 or newer.
 Please
 update!';

 if (version_compare($wp_version,"2.3","<"))
 {
 exit ($exit_msg);
 }

 ?>

3. We will also define a plugin path that we will use later:

 $wp_live_blogroll_plugin_url = trailingslashit
 WP_PLUGIN_DIR.'/'. dirname
 (plugin_basename(__FILE__));

4. Include the rss.php file, which contains functions, which are needed for parsing
RSS feeds:

 require_once(ABSPATH . WPINC . '/rss.php');

5. Next, we want to hook to get_bookmarks in order to change the blogroll display:

 add_filter('get_bookmarks', WPLiveRoll_GetBookmarksFilter);

1.

2.

Chapter 3

[5�]

6. Now, let's add the filter function:

 function WPLiveRoll_GetBookmarksFilter($items)
 {
 // do nothing if in the admin menu
 if (is_admin())
 {
 return $items;
 }

 // parse all blogroll items
 foreach($items as $item)
 {
 // check if the link is public
 if ($item->link_visible=='Y')
 {
 $link_url=trailingslashit($item->link_url);

 // simple feed guessing
 if (strstr($link_url,"blogspot"))
 {
 // blogspot blog
 $feed_url=$link_url."feeds/posts/default/";
 }
 else if (strstr($link_url,"typepad"))
 {
 // typepad blog
 $feed_url=$link_url."atom.xml";
 }
 else
 {
 // own domain or wordpress blog
 $feed_url=$link_url."feed/";
 }

 // use WordPress to fetch the RSS feed
 $feedfile = fetch_rss($feed_url);

 // check if we got valid response
 if (is_array($feedfile->items)
 && !empty($feedfile->items))
 {
 // this is the last post
 $feeditem=$feedfile->items[0];
 // replace name and url with post link and title
 $item->link_url=$feeditem['link'];
 $item->link_name=$feeditem['title'];
 }

Live Blogroll

[60]

 }
 }
 // return the items back
 return $items;
 }

7. Upload your whole plugin folder live-blogroll to the wp-content/plugins
folder on your server.

8. Activate the plugin and check your blogroll. The new blogroll is shown with a fresh
new look which displays all the latest posts.

What just happened?
When the page is loaded, the get_bookmarks filter is executed:

add_filter('get_bookmarks', WPLiveRoll_GetBookmarksFilter);

At this point, our filter function WPLiveRoll_GetBookmarksFilter() takes care of the
blogroll processing:

function WPLiveRoll_GetBookmarksFilter($items)
{
 // do nothing if in the admin menu
 if (is_admin())
 {
 return $items;
 }

Since the get_bookmarks filter is activated on the administration pages (where we do not
want to do anything), we are making a check by using the conditional tag is_admin. It will
return true if the user is currently viewing the admin panel pages, in which case, we simply
return the unprocessed items.

Next, we loop through all the links in the blogroll, and check to see if they are enabled:

 // parse all blogroll items
 foreach($items as $item)
 {
 // check if the link is public
 if ($item->link_visible=='Y')
 {

Now, when we have a published link we need to find the RSS feed from the site.

A detailed approach would involve loading the content of the page and processing it for the
<link> tags and searching for one of the possible RSS formats.

Chapter 3

[61]

For the purpose of this example, we will keep it simple by guessing the feed based on the
site name, which will work for most blogs (you can develop a more comprehensive RSS
discovery function as an exercise):

 $link_url=trailingslashit($item->link_url);

 // simple feed guessing
 if (strstr($link_url,"blogspot.com"))
 {
 // blogspot blog
 $feed_url=$link_url."feeds/posts/default/";
 }
 else
 if (strstr($link_url,"typepad.com"))
 {
 // typepad blog
 $feed_url=$link_url."atom.xml";
 }
 else
 {
 // own domain or wordpress blog
 $feed_url=$link_url."feed/";
 }

Now that we have the feed URL, we can fetch the contents of the feed using the WordPress
function fetch_rss():

 // use WordPress to fetch the RSS feed

 $feedfile = fetch_rss($feed_url);

The result should be an array of objects; each one representing information about a single
post sorted by date.

First, we check to see if we get a valid response,

 // check if we got valid response
 if (is_array($feedfile->items)
 && !empty($feedfile->items))
 {

And then replace the blogroll URL and name with latest post's URL and title:

 // this is the last post
 $feeditem=$feedfile->items[0];
 // replace name and url with post link
 and title
 $item->link_url=$feeditem['link'];

Live Blogroll

[62]

 $item->link_name=$feeditem['title'];
 }
 }
 }
 // return the items back
 return $items;
}

In the end we return the items. Note that if we do not get a valid response, the original link
will stay intact. It is a very simple automatic fallback in case we cannot parse the feed for
some reason.

Our code needs RSS functionality, which comes through the rss.php file of the
WordPress installation:

require_once(ABSPATH . WPINC . '/rss.php');

We included it using two WordPress defines, ABSPATH and WPINC, which contain the
absolute path to the WordPress installation and the path to the WordPress includes folder.

Quick reference
fetch_rss(): Parses RSS feed, and requires rss.php file to be included.
is_admin(): Checks to see if the current page is an administration page.
ABSPATH: A variable which contains the absolute path to WordPress installation.
WPINC: A variable which contains the name of the includes folder.
get_bookmarks: A filter used to parse blogroll items.
WP_PLUGIN_URL: Contains the URL to the WordPress plugin folder

RSS Feed Processing
WordPress provides a very easy to use function, fetch_rss(), to process the RSS feeds.
The function relies internally on RSS feed library that comes included with WordPress, and
takes care of the all the related work.

The function returns an array of feed items, which you can easily loop through to extract the
information you need:

$feedfile = fetch_rss($feed_url);

foreach($feedfile->items as $item)
{

You may have noticed a pause when loading the blogroll for the first time. This is caused by
the fetching of the feeds and is especially noticeable if you have many links in your blogroll.

Chapter 3

[63]

This delay exists only for the first time when new feeds are parsed. The RSS library has a
built-in mechanism for caching the feeds. That means that for the next request, the feed will
be served from the local cache if it has not been updated in the meantime.

The method we use is simple and effective, but now we want more interactivity. We do not
want any delay in loading; we want to show more recent posts, and show them in a pop-up
window. In order to achieve all this, we need to use a language specifically written to handle
events on a web page—JavaScript.

jQuery JavaScript library
There are a number of libraries available which simplify the usage of JavaScript by providing
ready-made functions for the most common tasks. The most popular today are jQuery,
Scriptaculous and MooTools. WordPress comes with the first two pre-installed, and we will
be using jQuery for our plugins.

Implementing a mouse hover event in jQuery
Although our plugin is fine, we would like it to interact with the user and show them the
information when they want it, and where they want it. Responding to the user hovering the
mouse over the link on the blogroll sounds like a good place to start.

Let's create a jQuery JavaScript that will show additional information in the blogroll, using
the hover event as a trigger.

Time for action – Creating a hover event with jQuery
We will create an external file to store our JavaScript and use it to display a message directly
in the blogroll, when the user hovers the mouse over one of the links.

Create a new file called wp-live-blogroll.js.

Initialize jQuery when our page loads:

 // setup everything when document is ready
 jQuery(document).ready(function($)
 {

3. Assign a hover event to our links.

 // connect to hover event of <a> in .livelinks
 $('.livelinks a').hover(function(e)
 {

1.
2.

Live Blogroll

[64]

4.	 Insert a new element (<div>) on the mouse hover event. It will display a simple
message for now (Recent posts will be displayed here) :

 // set the text we want to display
 this.tip="Recent posts from " + this.href + "
 will be displayed here...";
 // create a new div and display a tip inside
 $(this).append('<div id="lb_popup">' + this.tip +
 '</div>');
 },

5. And remove it when the user moves the mouse:

 // when the mouse hovers out
 function()
 {
 // remove it
 $(this).children().remove();
 });
 });

6. Using jQuery we have just assigned hover event to class 'livelinks'.

That means that blogroll needs to be embedded within this class. Open up our
plugin file wp-live-blogroll.php and add the following filter function to the
end. It will embed our blogroll into the livelinks class.

 add_filter('wp_list_bookmarks',
 WPLiveRoll_ListBookmarksFilter);

 function WPLiveRoll_ListBookmarksFilter($content)
 {
 return ''.$content.'';
 }

7. Finally, we want to have WordPress load our script when the page loads.

We use the wp_print_scripts action to accomplish that and the
wp_enqueue_script function to include our JavaScript:

 add_action('wp_print_scripts', 'WPLiveRoll_ScriptsAction');

 function WPLiveRoll_ScriptsAction()
 {
 global $wp_live_blogroll_plugin_url;

 if (!is_admin())
 {

Chapter 3

[65]

 wp_enqueue_script('jquery');
 wp_enqueue_script('wp_live_roll_script',
 $wp_live_blogroll_plugin_url.'/wp-live-blogroll.js',
 array('jquery'));
 }

 }

8. We do not want to use the get_bookmarks filter anymore. We will simply comment
out the filter assignment:

 add_filter('get_bookmarks', WPLiveRoll_GetBookmarksFilter);

9. Update the plugin on the server. Try to hover the mouse over one of the links and
you should get our message.

What just happened?
Our script is loaded in the <head> section of the page with the wp_print_scripts action,
which is used to print out scripts our plugin will use.

add_action('wp_print_scripts', 'WPLiveRoll_ScriptsAction');

To actually add the scripts, we use the wp_enqueue_script() WordPress function, which
will be covered in detail later. This function allows us to add preinstalled scripts like jQuery,
or our custom scripts:

function WPLiveRoll_ScriptsAction()
{
 global $wp_live_blogroll_plugin_url;

 if (!is_admin())
 {
 wp_enqueue_script('jquery');
 wp_enqueue_script('wp_live_roll_script',
 $wp_live_blogroll_plugin_url.'/wp-live-blogroll.js',
 array('jquery'));
 }
}

Live Blogroll

[66]

Next, Blogroll is embedded in the livelinks class, so our jQuery code can properly assign
the hover event. We used the wp_list_bookmarks hook, which executes just before the
blogroll shows on the page.

add_filter('wp_list_bookmarks', WPLiveRoll_ListBookmarksFilter);

The filter function receives the full HTML code of the prepared blogroll, so we only need to
embed its content into our livelinks class and return it:

function WPLiveRoll_ListBookmarksFilter($content)
{
 return ''.$content.'';
}

To work with jQuery when the page is ready, we need to initialize it at the beginning of the
JavaScript code. jQuery provides the ready method which executes when the page is loaded
(more accurately when the page code is loaded; the images may still be loading):

// set up everything when document is ready
jQuery(document).ready(function($)
{

Next, we set up a hover jQuery event for links inside the livelinks class using a jQuery
selector (more on that later).

 // connect to hover event of <a> in .livelinks
 $('.livelinks a').hover(function(e)
 {

Now, we want to add a text and a <div> to display it in. We used the internal variable this,
which represents the object that triggered the hover event (which will be one of the links in
the Blogroll).

To store the temporary value of the text, we will create a new variable tip and use the URL
of the link found in the link's this.href property:

 // set the text we want to display
 this.tip="Recent posts from " + this.href + "
 will be displayed here...";

We then dynamically append code to our link by using the jQuery append() method:

 // create a new div and display a tip inside
 $(this).append('<div id="lb_popup">' + this.tip +
 '</div>');

Chapter 3

[67]

The hover event allows us to declare the function for handling the hover out event and we
use it to remove the <div> when the user moves the mouse away from the link.

To do that, we can use the children() method, which references elements under our link,
in this case, the appended div:

 // when the mouse hovers out
 function()
 {
 // remove it
 $(this).children().remove();
 }
 });

JavaScript and WordPress
WordPress provides a way to add external scripts in an elegant way, by using the
wp_enqueue_script function.

The wp_enqueue_script function is usually used in conjunction with the
wp_print_scripts action and accepts up to four parameters: handle, src,
dependencies, and version.

handle: This is the name of the script, it should be a lowercase string.

src (Optional): This is the path to the script from the root directory of WordPress,
example: /wp-includes/js/scriptaculous/scriptaculous.js. This
parameter is required only when WordPress does not already know about this
script. It defaults to false.

dependencies (Optional): This is an array of the handles of any scripts that this
script depends on; which means, that the scripts that must be loaded before this
script. Set it to false if there are no dependencies. This parameter is required only
when WordPress does not already know about this script. It defaults to false.

version (Optional): This is the string specifying a script version number, if it has
one. It defaults to false. This parameter is used to ensure that the correct version is
sent to the client regardless of caching, and should therefore be included if a version
number is available and makes sense for the script.

In our example, we declared that we are using jQuery and then our own script by specifying
the full path to it:

wp_enqueue_script('jquery');
wp_enqueue_script('wp_live_roll_script',
$wp_live_blogroll_plugin_url.'/wp-live-blogroll.js',
array('jquery'));

Live Blogroll

[6�]

As mentioned before, WordPress comes preinstalled with a variety of scripts. To use them,
you need to specify the handle to wp_enqueue_script(), as we did with jQuery. Some of
the popular scripts included are dbx (Docking Boxes), colorpicker, wp_tiny_mce (WordPress
Tiny MCE), autosave, scriptaculous, prototype, thickbox and others.

Quick reference

wp_enqueue_script(): This is used to queue an external script used by our
plugin. Additional information is available at http://codex.wordpress.
org/Function_Reference/wp_enqueue_script

bloginfo(): This is the function used to retrieve relevant blog information
like the homepage URL and print it out. get_bloginfo also does the same
thing; it only returns the information instead of printing it. More information
is available at: http://codex.wordpress.org/Template_Tags/
bloginfo

wp_print_scripts: Filter which runs inside the <head> tag of the
document, usually used to declare scripts

Initializing jQuery
We have initialized jQuery with this code:

// set up everything when document is ready
jQuery(document).ready(function($)
{

Notice the '$' parameter to the function? All jQuery variables and functions are constrained
within the jQuery namespace. You can usually access them using jQuery() and also $().
The only problem is that sometimes other libraries also use $ as their namespace reference,
which leads to conflicts.

The most elegant way to avoid this is to declare the ready function as we did, which allows
us to use the shorter $ reference inside the ready() function while avoiding conflict with
other libraries.

Expanding jQuery knowledge
One of the advantages of jQuery is the ability to access every single element in our
document with ease. Let's try a few examples:

$("h1"): gets all the <h1> tags

$("#sidebar"): gets the element with id="sidebar"

$(".navigation"): gets all the elements with class="navigation"

Chapter 3

[6�]

$("div.post #image"): gets the element with id="image" nested in the <div
class="post">

$("#sidebar ul li"): gets all the elements nested in all , under the
element with id="sidebar"

More control is given with the commands such as first, last, contains, visible, for example:

$("li:first"): selects the first instance

$("li:contains(blog)"): selects all the elements in that contain the
text "blog"

$("li:gt(n)"): selects all the elements in with an index gr�at�r than (n)

Responding to user events is a breeze in jQuery. There are custom defined events that we
can use such as: click, mouseover, hover, keydown, focus, and so on.

This code will add an alert pop-up whenever you click on any link on the page:

$(document).ready(function()
{
 $("a").click(function()
 {
 alert("Thanks for visiting!");
 });
});

jQuery allows us to modify the document by adding classes to the elements (addclass) or
binding events to them easily.

$(document).ready(function()
{
 $('#button').bind('click', function(e)
 {
 alert('The mouse is now at ' + e.pageX + ', ' + e.pageY);
 });
});

jQuery also supports plugins, and there are literally hundreds of them which allows for
almost any kind of effect or functionality that you may imagine.

A good resource to start browsing for jQuery examples and documentation is the
official web site at http://www.jquery.com and Learning jQuery web site
at http://www.learningjquery.com.

Live Blogroll

[70]

Creating the pop-up with CSS
Let's move on with our plugin and create a pop-up window for our message. To do this, we
will include CSS code and make a couple of changes to the plugin.

Time for action – Apply CSS to the popup
In this example, we are going to style our pop up using the CSS. The contents of the CSS will
be located in the external file for easy editing. We will use another WordPress action to load
this stylesheet from the <head> tag of the document.

Create a new file named wp-live-blogroll.css.

Add this code to style the lb_popup element:

 #lb_popup
 {
 color:#3366FF;
 width:250px;
 border:2px solid #0088CC;
 background:#fdfdfd;
 padding:4px 4px;
 display:none;
 position:absolute;
 }

3. Edit our JavaScript wp-live-blogroll.js to position the pop up at
mouse coordinates:

 // create a new div and display a tip inside
 $(this).append('<div id="lb_popup">' +
 this.tip + '</div>');
 // get coordinates
 var mouseX = e.pageX || (e.clientX ? e.clientX
 + document.body.scrollLeft: 0);
 var mouseY = e.pageY || (e.clientY ? e.clientY
 + document.body.scrollTop: 0);

 // move the top left corner to the left and down
 mouseX -= 260;
 mouseY += 5;

 // position our div
 $('#lb_popup').
 css({
 left: mouseX + "px",
 top: mouseY + "px"
 });

 // show it using a fadeIn function
 $('#lb_popup').fadeIn(300);

1.
2.

Chapter 3

[71]

4.	 Finally, load the CSS style by using the wp_head action. Edit the wp-live-
blogroll.php file and add this code to the end:

 add_action('wp_head', 'WPLiveRoll_HeadAction');

 function WPLiveRoll_HeadAction()
 {
 global $wp_live_blogroll_plugin_url;

 echo '<link rel="stylesheet"
 href="'.$wp_live_blogroll_plugin_url.'/wp-live-blogroll.css"
 type="text/css" />';
 }

5. Be sure to upload all new files to the server. Once you reload the page you should
get a newly created pop-up window just below the mouse pointer, that looks
like this:

What just happened?
We created a pop-up window by applying CSS styling to it and placed it according to the
current mouse position.

Our stylesheet is loaded using the wp_head (for admin pages wp_admin_head) action
executed inside the <head> tag of the page:

add_action('wp_head', 'WPLiveRoll_HeadAction');

function WPLiveRoll_HeadAction()
{
 global $wp_live_blogroll_plugin_url;

 echo '<link rel="stylesheet"
 href="'.$wp_live_blogroll_plugin_url.'/wp-live-blogroll.css"
 type="text/css" />';
}

Live Blogroll

[72]

In the CSS file we use '#' to reference our identifier (<div id='lb_popup'>). If we were
referencing a class (possibly multiple elements) we would use a '.' instead):

#lb_popup
{
 color:#3366FF;
 width:250px;
 border:2px solid #0088CC;
 background:#fdfdfd;
 padding:4px 4px;
 display:none;
 position:absolute;
}

The style specifies several attributes including the width, font color and background color.
We set the position to absolute as we will tell it exactly where to appear with the JavaScript.
We also want to show the pop up using jQuery fade-in effect, so we set display to none as a
default value.

The next snippet of code calculates the position of the mouse on our page:

// get coordinates
var mouseX = e.pageX || (e.clientX ? e.clientX
+ document.body.scrollLeft: 0);
var mouseY = e.pageY || (e.clientY ? e.clientY
+ document.body.scrollTop: 0);

We then offset the coordinates by a predefined amount to get the final desired position:

// move the top left corner to the left and down
mouseX -= 260;
mouseY += 5;

jQuery offers various functions for displaying hidden elements such as show, slide, animate
and fadeIn.

In our example, we use the fadeIn effect with the optional parameter of fade-in speed
in milliseconds:

// show it using a fadeIn function
$('#lb_popup).fadeIn(300);

Having solved the pop up, it's finally time to use Ajax. Lots of people still avoid using Ajax as
the technology is still new. But we will show how to use it in a very simple manner.

Chapter 3

[73]

Demystifying Ajax
Ajax is a technology that allows web pages to dynamically perform actions or updates. This
allows for a higher level of user interactivity that we can see in popular applications such as
Google Maps or Gmail.

Since its introduction in 2005, Ajax has stood out as an excellent addition to the web
developer's arsenal, but several developers have been reluctant to use it due to certain initial
problems and cross-browser compatibility issues.

Fortunately, today these issues are gone thanks to high-level libraries such as jQuery that
take care of all Ajax calls internally and give us a simple to use API.

Simple example of using Ajax
Now that we have a pop up in place, we need to fill it with data from the RSS feeds. We have
already learned how to parse RSS so all we have to do is create a function to display several
posts from a feed at once, and fill our pop up with this information using Ajax.

Time for action – Use Ajax to dynamically retrieve feed posts
In order to work, Ajax usually needs to call a file on our server. This file is responsible for
providing the response, and it is best that we put this Ajax functionality into a separate file.

Create a file called wp-live-blogroll-ajax.php, implying that we want to use it
for handling Ajax requests.

Add the code to include the necessary files, read the URL parameter passed to the
script and call our function to deal with the URL:

 <?php

 /*
 WP Live Blogroll Ajax script
 Part of a WP Live Blog Roll plugin
 */

 require_once("../../../wp-config.php");
 require_once(ABSPATH . WPINC . '/rss.php');

 // fetch information from GET method
 $link_url = $_GET['link_url'];

 // return the result
 WPLiveRoll_Handle ajax($link_url);

1.

2.

Live Blogroll

[74]

3. We will also need a utility function to get an excerpt from the text. We will use it to
show only the first 20 words from the post:

 function WPLiveRoll_GetExcerpt($text, $length = 20)
 {
 $text = strip_tags($text);
 $words = explode(' ', $text, $length + 1);
 if (count($words) > $length)
 {
 array_pop($words);
 array_push($words, '[...]');
 $text = implode(' ', $words);
 }
 return $text;
 }

4.	 We are going to add a function to parse the feed now. The function is similar to the
first function we used at the beginning of the chapter, but it parses a number of
posts and returns them in a formatted HTML. This function will return the result of
our Ajax request.

 function WPLiveRoll_HandleAjax($link_url)
 {

 // we will return final HTML code in this variable
 $result='';

 // number of posts we are showing
 $number = 5;

 $link_url=trailingslashit($link_url);

 // pick the rss feed based on the site
 if (strstr($link_url,"blogspot"))
 {

 // blogspot blog
 $feed_url=$link_url."feeds/posts/default/";
 }
 else if (strstr($link_url,"typepad"))
 {
 // typepad blog
 $feed_url=$link_url."atom.xml";
 }
 else
 {
 // own domain or wordpress blog

Chapter 3

[75]

 $feed_url=$link_url."feed/";
 }

 // use WordPress to fetch the RSS feed
 $feedfile = fetch_rss($feed_url);

 // check if we got valid response
 if (is_array($feedfile->items) && !empty(
 $feedfile->items))
 {

 // slice the number of items we need
 $feedfile->items = array_slice($feedfile->items,
 0, $number);

 // create HTML out of posts
 $result.= '';
 foreach($feedfile->items as $item)
 {

 // fetch the information
 $item_title = $item['title'];
 $item_link = $item['link'];
 $item_description =
 WPLiveRoll_GetExcerpt($item['description']);

 // form result
 $result.= '<a class="lb_link"
 target="'.$link_target.'" href="'.$item_link.'"
 >'.$item_title.'<p class="lb_desc">'
 .$item_description.'</p>';
 }
 $result.= '';
 }
 else
 {
 // in case we were unable to parse the feed
 $result.= "No posts available.";
 }

 // return the HTML code
 die($result);
 }

 ?>

Live Blogroll

[76]

5. In order to use Ajax we need to pass the url to our plugin to JavaScript. We will use
wp_localize_script function to do that:

 function WPLiveRoll_ScriptsAction()
 {
 global $wp_live_blogroll_plugin_url;

 if (!is_admin())
 {
 wp_enqueue_script('jquery');
 wp_enqueue_script('wp_live_roll_script',
 $wp_live_blogroll_plugin_url.'/wp-live-blogroll.js',
 array('jquery'));

 // pass parameters to JavaScript
 wp_localize_script('wp_live_roll_script', 'LiverollSettings',
 array('plugin_url' => $wp_live_blogroll_plugin_url));
 }
 }

6. The moment has come. We will use simple Ajax request (load) to get a response
from the script we have made. The response will be automatically loaded into our
element as HTML content:

 $('#lb_popup').css
 ({
 left: mouseX + "px",
 top: mouseY + "px"
 });

 // use load() method to make an Ajax request
 $('#lb_popup).load(LiverollSettings.plugin_url +
 '/wp-live-blogroll-ajax.php?link_url=' + this.href);

 // show it using a fadeIn function
 $('#lb_popup').fadeIn(300);

7. We will comment out the text from the previous examples, and remove it from
the <div>:

 // set the text we want to display
 // this.tip="Recent posts from " + this.href + "
 // will be displayed here...";

 // create a new div and append it to the link
 $(this).append('<div id="lb_popup"></div>');

Chapter 3

[77]

8. We are ready to see the plugin in action. Let us upload all the files and test it. You
should get a pop-up window showing five latest posts from the site:

Congratulations! You have created a Live Blogroll plugin using jQuery and Ajax!

What just happened?
The main difference here over our previous examples is in the use of Ajax in our JavaScript.

We have used the jQuery load() function, which is the simplest way to call an external
script and load the data into our page:

// use load() method to make an Ajax request
$('#lb_popup).load(LiverollSettings.plugin_url +
'/wp-live-blogroll-ajax.php?link_url=' + this.href);

Notice how we reference lb_popup when using the load() function. This will load any
output of our script into the lb_popup element automatically.

Let's see now how our Ajax response script works.

Live Blogroll

[7�]

First, we have created a new file wp-live-blogroll-ajax.php to handle our Ajax
requests. At the beginning of the file we referenced these includes:

require_once("../../../wp-config.php");
require_once(ABSPATH . WPINC . '/rss.php');

Notice how we included wp-config.php. This is required because when our JavaScript
calls the file, it will not be a part of WordPress code anymore, so we need to load all the
WordPress functions and variables in order to use them. The easiest way is by including
wp-config.php, which in turn includes all the other necessary WordPress files.

Locating wp-config.php like we did in our example is only a best guess at
where the file is located and will work in most cases.

Since WordPress version 2.6, this file can be relocated anywhere in regards to
plugin folder, so there is no certain way to tell its location. You are advised to
check WordPress Codex for updated information on the topic.

Additionally, we included rss.php for fetch_rss() functionality.

Next, we read the link URL parameter that was passed to our file on the call from JavaScript.
We use the GET method as the Ajax request was using that.

// fetch information from GET method
$link_url = $_GET['link_url'];

Next, we call the function for handling the feed:

// return the result
WPLiveRoll_HandleAjax($link_url);

This function uses an approach similar to the one we have already described. The difference
begins with the feed processing part.

We want to process a number of posts (five by default); so we slice that number from the
array of feed items:

 // slice the number of items we need
 $feedfile->items = array_slice($feedfile->items, 0, $number);

Next, we process each feed item and extract the title, link and description:

 // create HTML out of posts
 $result.= '<div>';
 foreach($feedfile->items as $item)
 {

Chapter 3

[7�]

 // fetch the information
 $item_title = $item['title'];
 $item_link = $item['link'];
 $item_description =
 WPLiveRoll_GetExcerpt($item['description']);

We prepare the code using a HTML list with this information:

 // form result
 $result.= '<a target="'.$link_target.'"
 href="'.$item_link.'"
 >'.$item_title.'<p>'.$item_description.'</p>';

In case we had a problem processing the feed, we will return a message:

 $result.= '</div>';
 }
 else
 {
 // in case we were unable to parse the feed
 $result.= "No posts available";
 }

Finally, we return the result using the die() function to end our Ajax response script:

 // return the HTML code
 die($result);
}

Using JavaScript with WordPress
The main difference between JavaScript and PHP is that JavaScript is client based (it executes
in the user's browser) whereas PHP is server based (it executes on the remote server).
This means JavaScript is good at handling user actions (clicking, moving the mouse, and
so on) while PHP is good at dealing with server variables, database and other things
happening remotely.

This also means that we need to find a way to connect the two. Most of the time, we need a
way to pass variables from PHP to JavaScript and user actions from JavaScript to PHP.

Parsing parameters using wp_localize_script
WordPress provides wp_localize_script function which is an elegant way to pass the
parameters to your JavaScript.

wp_localize_script('wp_live_roll_script', 'LiverollSettings',
array('plugin_url' => $wp_live_blogroll_plugin_url));

Live Blogroll

[�0]

First parameter is our script's name followed by the name of JavaScript object that will hold
the settings. Next you can specify the array of parameters.

These parameters will be available in JavaScript and can be accessed as
LiverollSettings.plugin_url

Ajax and WordPress
As we have seen, integrating Ajax functionality with WordPress is relatively easy. The basic
Ajax flow chart looks generally like this:

The user does something on the page (like clicking or moving the mouse) and the
JavaScript code is triggered. It then creates and calls another file on the server
(Ajax response script).

Ajax response script will process the request based on our input parameters and
return the output back to the browser.

The returned information is then processed and displayed by the JavaScript in
the browser.

Ajax in admin panel
You can see examples of Ajax in the administration panel such as auto-saving of posts,
moderating of comments or managing of your blogroll and categories.

For handling Ajax calls happening in the administration panel, there is another
simple alternative.

The way this works is that we create a function for handling the Ajax request and assign it to
the wp_ajax hook by extending it with the desired name, as shown here:

add_action('wp_ajax_my_function', 'my_function');

Step two, we make an Ajax call to admin-ajax.php and send the name as a parameter. The
jQuery call would look something like this:

$('#info').load('admin-ajax.php?action=my_function');

1.

2.

3.

Chapter 3

[�1]

The most obvious benefit of this approach is that the Ajax handling function can freely be a
part of your main script, and you can easily change it by assigning another function to the
wp_Ajax action.

jQuery.ajax method
When we want more control, especially error handling, we will use the more advanced
Ajax() function.

This function accepts several parameters of interest:

type: The type of request to make ('POST' or 'GET'); the default is GET.

url: The URL to be requested

timeout: A set of local timeouts in miliseconds (ms) for the request

success: A function to be called if the request succeeds

error: A function to be called if the request fails

async: By default, all requests are sent asynchronously. If you need synchronous
requests, set this option to false. Synchronous requests may temporarily lock the
browser, until the request is finished

Let's use this more advanced function in our JavaScript now.

Time for action – Use advanced Ajax call
In this example, we will replace the simple Ajax call with a more advanced one that offers us
more options and controls.

Open the wp-live-blogroll.js.php file and replace the load() function with the
ajax() function:

$.ajax
({
 type: "GET",
 url: LiverollSettings.plugin_url + '/wp-live-blogroll-ajax.php',
 timeout: 3000,
 data:
 {
 link_url: this.href
 },
 success: function(msg)
 {

Live Blogroll

[�2]

 jQuery('#lb_popup').html(msg);
 jQuery('#lb_popup').fadeIn(300);

 },
 error: function(msg)
 {
 jQuery('#lb_popup').html('Error: ' + msg.responseText);
 }
})

What just happened?
We have used an advanced jQuery function for handling the Ajax request, which obviously
offers us more parameters.

The function allows us to specify the request type ('POST' or 'GET'), maximum script timeout
and handlers for success and error results. This gives us full control over the events.

Full reference of the Ajax() function and available parameters are available at
http://docs.jquery.com/Ajax/jQuery.Ajax

Ajax script security using nonces
WordPress provides a simple to use, but powerful security mechanism to protect your scripts
from unauthorised execution by using the so called nonces.

Nonce means number used once and represents a unique number much like a password
generated each time the script runs. The idea is to use nonces in order to verify whether our
request was authentic.

Time for action – Add a security nonce
1.	 Open the wp-live-blogroll.js.php file and add create a nonce at the

beginning of the script:

 function WPLiveRoll_ScriptsAction()
 {
 global $wp_live_blogroll_plugin_url;
 if (!is_admin())
 {
 // create a nonce

Chapter 3

[�3]

 $nonce = wp_create_nonce('wp-live-blogroll');

 wp_enqueue_script('jquery');
 wp_enqueue_script('wp_live_roll_script',
 $wp_live_blogroll_plugin_url.'/wp-live-blogroll.js',
 array('jquery'));

 }
 }

2. Modify the Ajax call to include the generated nonce as an additional parameter:

 $.ajax
 ({
 type: "GET",
 url: LiverollSettings.plugin_url + '/wp-live-blogroll-ajax.php',
 timeout: 3000,
 data:
 {
 link_url: this.href,
 _ajax_nonce: '<?php echo $nonce; ?>'
 },
 success: function(msg)
 {

3. Modify wp-live-blogroll-ajax.php and add this check at the beginning of Ajax
handler function:

 function WPLiveRoll_Handle ajax($link_url)
 {
 // check security
 check_ajax_referer("wp-live-blogroll");

With this simple modification, we have made sure that our Ajax handling script is used only
when our plugin calls it.

What just happened?
When our script is run the next time, a unique nonce is created using the
wp_create_nonce() function. We use a nonce identifier as a parameter:

 $nonce = wp_create_nonce('wp-live-blogroll');

Live Blogroll

[�4]

We then pass this nonce as the Ajax_nonce parameter. WordPress checks this
parameter automatically in the check_ajax_referer function, which also uses the
nonce identifier parameter:

 check_ajax_referer("wp-live-blogroll");

If the check fails, the script will simply exit at that point (internally, die(-1) happens).

Quick reference

wp_create_nonce(nonce_id): It creates a unique nonce using the
identifier.

check_ajax_referer(nonce_id): It is used to check Ajax nonces;
passed as the ajax_nonce parameter, using the nonce identifier.

To read more about possible security implication and Cross-Site Request
Forgery (CSRF), visit http://en.wikipedia.org/wiki/Cross-site_
request_forgery.

Summary
We have come a long way from the initial concept to the final plugin. We have learned that
using jQuery and Ajax with WordPress does not have to be hard.

The Live Blogroll plugin we created made our blogroll more attractive and interactive. When
the user hovers the mouse over the links, a list of recent posts is displayed using Ajax to
retrieve the information. We learned how to use Ajax with high-level jQuery functions and
easily process the retrieved data.

Specifically, we covered:

Blogroll: Accessing and modifying information using WordPress filters hook

Fetching RSS feeds: Using built-in WordPress functionality with caching

Use scripts and other code in <head> section: Including JavaScript and CSS files
using WordPress action hooks

Using jQuery: Setting up a jQuery file, with its powerful set of functions, and using it
later with Ajax support

Ajax: Integrating Ajax with our scripts, and using it to generate content dynamically

Using nonces: Securing your WordPress plugins using nonces

Both jQuery and Ajax offer huge possibilities for plugin development. Making your plugins
interact more with the users is definitely a trend to follow in the future.

The next step in our journey through WordPress plugin development will be a cool, Ajax-
powered, Wall widget allowing users to leave comments much like a shoutbox.

4
The Wall

As you may have noticeed, this chapter carries the name of a famous album, which rocked
the music world back in 1982. The artists used an unusual mix of music and film to produce
an exceptional piece of art.

In this chapter, we will be using the same mixed approach, by taking advantage of creative
WordPress and JavaScript techniques, in order to create an Ajax powered 'Wall' for your
blog's sidebar.

We will be relying on what we have learned so far—WordPress hooks, API calls, and jQuery.
We will also introduce a way to use built-in WordPress functionalities to achieve our project
goals—saving both effort and time.

This chapter will introduce quite a few interesting techniques such as:

Creating a special type of plugin—the Widget

Storing the wall comments in the database—working with WordPress database

Enter data in the form and updating the wall dynamically—Ajax form submit

You will learn these techniques by:

Creating the Wall widget that appears in your blog's side bar. Users can add a quick
comment and it will appear in the sidebar immediately (without reloading the page).

The Wall

[�6]

The wall will increase the usability of any blog by presenting a global meeting place for all
users to communicate.

Chapter 4

[�7]

The main concepts behind the Wall plugin
Before we start with our plugin, let's take a moment and create a design outline covering the
main areas of the plugin.

Widget: Obviously, the first thing on our list is to create a sidebar area for the wall.
We will use WordPress widget API to do that.

Wall Comments: We will store the user comments in the WordPress database.

Comment Management: The administrator needs to be able to access comments,
and approve, disapprove, or delete them.

Security and Spam protection: Being on the front page and on most other pages of
our site, the wall is exposed to various threats. We need to think of a way to protect
our blog from unwanted spam.

Options and Styling: Last but not least, we want to be able to customize the
look of the widget. Since the wall will be constrained within a relatively small area
(the sidebar), we need to carefully plan the look and the functionality of the widget.

The main development concerns here are the management of comments, and
spam protection.

A typical PHP approach to address these concerns would be:

Create a database to store the comments in.

Create an administrative backend with comment management functionality.

Implement a set of rules for combating spam, such as black lists, user IP bans,
and so on.

It is obvious that this approach needs a long development time. On the other hand, this is
a book about WordPress, which is arguably the best blogging platform in the world today.
Blogging includes a lot of commenting, and WordPress already features one of the most
advanced commenting engines available. So why just not take advantage of it?

The main principle behind our idea is to dedicate a WordPress page as a place holder for
all user comments. This allows us to use the WordPress commenting engine to take care of
most of the hard work, such as adding the comments, administrative management and best
of all—spam protection.

1.

2.

3.

www.allitebooks.com

http://www.allitebooks.org

The Wall

[��]

WordPress already comes with built-in comment spam and flood protection.

There are also a number of popular anti-spam plugins such as Akismet that deal with the
problem of spam in the comments. So instead of reinventing the wheel, we will leave these
dedicated plugins to do the job.

By using built-in WordPress functionalities whenever we can, we also provide the opportunity
for the plugin to develop itself automatically with the development of WordPress. For
example, if the next version of WordPress brings comment editing in a super cool 3D way,
all comments for our widget will become editable in the same way automatically.

This will allow us to spend more time focusing on other areas of the widget—like deciding
which jQuery effects we can use to make it more attractive.

Chapter 4

[��]

Use built-in WordPress functionalities whenever you can. Try to think outside
of the box and find features of WordPress that can help you with your plugin.
Always try to find fresh ways to re-use the code that a large community of
WordPress developers has already contributed. It saves time and gets you
free upgrades.

Creating a widget
Creating widgets is a simple three step process.

Create a function that will display the widget content.

Register that function as a widget using WordPress API.

Done! To enable the widget you need to activate it now in the administration panel.

Let's start our widget by displaying the 'Hello World!' text in the sidebar.

Time for action – Create a 'Hello World!' widget
As usual, we will start building our plugin with the necessary plugin information.

Later, we will create a function to display Hello World text and then register that function as
a widget.

Cr�at� a n�w fold�r call�d wp-wall.

Cr�at� a n�w wp-wall.php file. Insert the following plugin information:
 /*
 Plugin Name: WP Wall
 Version: 0.1
 Description: "Wall" widget that appears in your blog's side bar
 Users can add a quick comment and it will appear in the
 sidebar immediately (without reloading the page).
 Author: Vladimir Prelovac
 Author URI: http://www.prelovac.com/vladimir
 Plugin URI: http://www.prelovac.com/vladimir/
 wordpress-plugins/wp-wall
 */

 global $wp_version;

 $exit_msg='WP Wall requires WordPress 2.6 or newer.
 Please
 update!';

1.

2.

3.

1.
2.

The Wall

[�0]

 if (version_compare($wp_version,"2.3","<"))
 {
 exit ($exit_msg);
 }

3. Add a variable that will hold the path to our plugin. We will use it later.

 $wp_wall_plugin_url = trailingslashit(WP_PLUGIN_URL.'/'.
 dirname(plugin_basename(__FILE__));

4. Add the function for displaying the text:

 function WPWall_Widget()
 {

 echo "Hello World!";

 }

5. Register our function as a widget. We do this by hooking to init action and using
register_sidebar_widget call:

 function WPWall_Init()
 {
 // register widget
 register_sidebar_widget('WP Wall', 'WPWall_Widget');
 }

 add_action('init', 'WPWall_Init');

 ?>

6. Now upload and enable our plugin. Our widget will appear on the widgets page of
the administrative panel. In order to make it active, you need to drag and drop it
onto the sidebar.

Chapter 4

[�1]

The Wall

[�2]

7. Visit your site and you will notice the Hello World! text printed on your sidebar.
I know it is not pretty yet, but we just wanted to get it out there for now.

What just happened?
The action hook init executes just after WordPress has finished loading. It is a good choice
for inserting general plugin initialization code such as registering widgets. We use it to insert
our init function:

add_action('init', 'WPWall_Init');

The widget is registered in WordPress with register_sidebar_widget() taking the
widget name and the callback function responsible for drawing the widget.

function WPWall_Init()
{
 // register widget
 register_sidebar_widget('WP Wall', 'WPWall_Widget');
}

In our case, the callback function simply prints out the Hello World! text on the screen.

function WPWall_Widget()
{

 echo "Hello World!";

}

Chapter 4

[�3]

Register widgets with description
The official WordPress documentation encourages the use of the register_sidebar_
widget() function for compatibility reasons, instead of the more powerful wp_register_
sidebar_widget().

The latter function allows us to enter the widget description, shown on the widgets screen.

Alternatively, you can use this code to register widget:

$widget_optionss = array('classname' => 'WPWall_Widget',
'description' => "A comments 'Wall' for your sidebar.");

wp_register_sidebar_widget('WPWall_Widget', 'WP Wall',
'WPWall_Widget', $widget_options);

Which shows a description for the widget:

Quick reference

Init: Action best used for initializing plugin data ad registering widgets.

register_sidebar_widget($name, $callback): Registers a widget
with a name and a callback function parameter. More information is available at:
http://automattic.com/code/widgets/plugins/

wp_register_sidebar_widget($id, $name, $callback,
$options): A more powerful way to register widgets allowing us to specify
the description in the options.

The Wall

[�4]

Widget controls
Widgets have a control panel that can be changed, for example, to add options for the widget.

WordPress also provides a mechanism to make your widget compatible with various
themes. It does this by passing several parameters to your widget's callback function. These
parameters include the necessary tags and CSS classes which we need to include in order not
to 'break' the theme.

Time for action – Expanding the widget with controls
In this example, we will expand our widget by adding additional widget features available
to us through WordPress.

We will also learn how to read and save plugin options using WordPress.

Add the function to handle our widget control panel. It will parse the submitted
data, save the title and print out the form:

 function WPWall_WidgetControl()
 {

 // get saved options
 $options = get_option('wp_wall');

 // handle user input
 if ($_POST["wall_submit"])
 {
 $options['wall_title'] = strip_tags(stripslashes(
 $_POST["wall_title"]));
 update_option('wp_wall', $options);
 }

 $title = $options['wall_title'];

 // print out the widget control
 include('wp-wall-widget-control.php');
 }

1.

Chapter 4

[�5]

2. Change our init function to register the widget control panel:

 function WPWall_Init()
 {

 // register widget
 register_sidebar_widget('WP Wall', 'WPWall_Widget');

 // register widget control
 register_widget_control('WP Wall', 'WPWall_WidgetControl');

 }

3. Create the file, wp-wall-widget-control.php. This file will contain the HTML
code of the control panel, and we can then simply include() it in our code. It is
easier to edit and maintain the files this way. Here are the contents of our form:

 <p>
 <label for="wall_title">Title: <input name="wall_title"
 type="text" value="<?php echo $title; ?>" /></label>

 <input type="hidden" id="wall_submit" name="wall_submit"
 value="1" />
 </p>

4. Edit the WPWall_Widget() function to output the title and theme
compatibility code:

 function WPWall_Widget($args = array())
 {

 // extract the parameters
 extract($args);

 // get our options
 $options=get_option('wp_wall');
 $title=$options['wall_title'];

 // print the theme compatibility code
 echo $before_widget;
 echo $before_title . $title. $after_title;

 // include our widget
 include('wp-wall-widget.php');

 echo $after_widget;

 }

5. Similarly, create wp-wall-widget.php and move the Hello World! there.

 <p>Hello World!</p>

The Wall

[�6]

6. Upload all the new files and visit the Widgets panel.

You can see that our widget has gained an input form where you can type in the title
and then click on the Save Changes button, to save the changes.

7. The changes are also immediately visible on our sidebar:

Chapter 4

[�7]

What just happened?
By registering the widget control panel, we gained the ability to show and save the settings
relevant to our widget.

To register a widget control, simply call register_widget_control() with the name of
the callback function that will handle the control panel:

// register widget control
register_widget_control('WP Wall', 'WPWall_WidgetControl');

The function can also accept two additional optional parameters–the desired width and
height of the control. But you can safely leave them at the default settings.

WordPress options
Let's see how we use WordPress to store our plugin options.

WordPress provides two easy-to-use functions to handle plugin and widget options:
get_option() to retrieve the options and update_option() to save them into
the database.

Both accept the option name parameter—a unique identifier used to identify your option
in the WordPress database. It is important to use a unique option name so that your option
does not conflict with other plugins.

Use get_option() to retrieve the options:

$options = get_option('wp_wall');

Use update_option() to save the options. The $options variable is very flexible; for
example, it can be either an object or an array:

// $options can be a string – or an array
update_option('wp_wall', $options);

We will cover options again in more detail when we cover the creation of your plugin options
page later in the book.

Display widget control
We creat�d wp-wall-widget-control.php, an external file to store our widget panel. It
contains the title input field:

<label for="wall_title">Title: <input name="wall_title"
type="text"
 value="<?php echo $title; ?>" /></label>

<input type="hidden" id="wall_submit" name="wall_submit" value="1"
/>

The Wall

[��]

Our WPWall_WidgetControl() function retrieves the saved title and prints the form:

function WPWall_WidgetControl()
{

 // get saved options
 $options = get_option('wp_wall');

 $title = $options['wall_title'];

 // print out the widget control
 include('wp-wall-widget-control.php');
}

Handling widget input
When the user submits the form, the widget control function is called again, and we can use
it to parse the submitted data.

We can check for submit action by inspecting the $_POST["wall_submit"], and then proceed
to extract the title from wall_title field to store it in the database:

function WPWall_WidgetControl()
{

 // get saved options
 $options = get_option('wp_wall');

 // handle user input
 if ($_POST["wall_submit"])
 {
 $options['wall_title'] = strip_tags(stripslashes
 ($_POST["wall_title"]));

 update_option('wp_wall', $options);
 }

 $title = $options['wall_title'];

 // print out the widget control
 include('wp-wall-widget-control.php');
}

We use strip_tags and stripslashes to remove HTML and any other malformed code
the user may enter.

Handling widget output
Now we need to show the widget on the sidebar. In order to achieve theme compatibility, we
will display special parameters sent to our widget.

Chapter 4

[��]

So first, we will extract the parameters:

function WPWall_Widget($args = array())
{
 // extract the parameters
 extract($args);

The most important ones are before_widget, before_title, after_title, and
after_widget which contains the code we need to print out.

function WPWall_Widget($args)
{
 // extract the parameters
 extract($args);

 // get our options
 $options=get_option('wp_wall');
 $title=$options['wall_title'];

 // print the theme compatibility code
 echo $before_widget;
 echo $before_title . $title. $after_title;

 // include our widget
 include('wp-wall-widget.php');

 echo $after_widget;
}

The widget file currently just displays our Hello World!message.

<p>Hello World!</p>

For users of non-widgetized themes

For those users of your widget who do not have widget-enabled themes, it is
advisable to provide instructions in your readme.txt file on how to use
the plugin.

This usually includes instructions to call the widget output function (in our
case WPWall_Widget()) directly from somewhere within the user's theme
sidebar template.

The Wall

[100]

Quick reference

get_option($key): Retrieves the option specified by the key name. If
the option does not exist, it returns FALSE. More information can be found at:
http://codex.wordpress.org/Function_Reference/
get_option

update_option($key, $value): Saves the option value associated with
a key. More information can be found at: http://codex.wordpress.
org/Function_Reference/update_option

register_widget_control($name, $callback, $width,
$height): Registers a widget control in the administration panel. The function
accepts the name of the control, the callback function to process information
and optional width and height parameters. More information can be found at:
http://automattic.com/code/widgets/plugins/

Create a WordPress page from the code
Now that we have covered everything we need regarding the widget, the next thing on our
list is creating a WordPress page, which will be a placeholder for our wall comments.

WordPress comments do not specifically need to be assigned to a post or page; they can
exist on their own. However, having them assigned to a page makes it easier to follow them.
Moreover, should you decide to remove all the comments at once, you would only need to
delete that page.

Time for action – Insert a page
We want to create the page at WordPress initialization. So we will use the init action just as
we used it earlier.

We also want to be able to check if the page has already been created, so we will save the
page ID in the options.

Let's start with modifying the init function to include page check and create code:

 function WPWall_Init()
 {

 // register widget
 register_sidebar_widget('WP Wall', 'WPWall_Widget');

 // register widget control
 register_widget_control('WP Wall', 'WPWall_WidgetControl');

 $options = get_option('wp_wall');

 // get our wall pageId

1.

Chapter 4

[101]

 $pageId=$options['pageId'];

 // check if the actual post exists
 $actual_post=get_post($pageId);

 // check if the page is already created
 if (!$pageId || !$actual_post ||
 ($pageId!=$actual_post->ID))
 {
 // create the page and save it's ID
 $options['pageId'] = WPWall_CreatePage();

 update_option('wp_wall', $options);
 }
 }

2. Next, we want to create a function for inserting a page into the WordPress database

 function WPWall_CreatePage()
 {

 // create post object
 class mypost
 {
 var $post_title;
 var $post_content;
 var $post_status;
 var $post_type; // can be 'page' or 'post'
 var $comment_status; // open or closed for commenting
 }

 // initialize the post object
 $mypost = new mypost();

 // fill it with data
 $mypost->post_title = 'WP Wall Guestbook';
 $mypost->post_content = 'Welcome to my WP Wall Guestbook!';
 $mypost->post_status = 'draft';
 $mypost->post_type = 'page';
 $mypost->comment_status = 'open';

 // insert the post and return it's ID
 return wp_insert_post($mypost);
 }

The Wall

[102]

3. The next time WordPress loads, a new page will be created:

We've got a placeholder page for our Wall!

What just happened?
The code that we inserted into the init, so that the function executes with the next
WordPress reload, does a couple of things. First, it checks if there is an already created page
by retrieving the saved page ID from the options.

$options = get_option('wp_wall');

// get our wall pageId
$pageId=$options['pageId'];

Next, it tries to get a WordPress post associated with this ID. This way, we can check if the
page still exists (the user could have accidently deleted it).

We are using the get_post() function, which returns a post object taking an ID as
a parameter:

// check if the actual post exists
$actual_post=get_post($pageId);

If the page does not exist, we will create it and save the ID in the options:

// check if the page is already created
if (!$pageId || !$actual_post || ($pageId!=$actual_post->ID))
{
 // create the page and save it's ID
 $options['pageId']= WPWall_CreatePage();
 update_option('wp_wall', $options);
}

Chapter 4

[103]

Let's take a look now at WPWall_CreatePage() which handles page creation.

In order to insert a post into the WordPress database, we need to specify relevant post
information. An elegant way to do this is to create a post object:

function WPWall_CreatePage()
{

 // create post object
 class mypost
 {
 var $post_title;
 var $post_content;
 var $post_status; // draft, published
 var $post_type; // can be 'page' or 'post'
 var $comment_status; // open or closed for commenting
 }

 // initialize the post object
 $mypost = new mypost();

Next, we fill the variables. We will give our post a distinguishable title so that users can find
it easily.

We also want to set the status of the page to Draft instead of Published– as we do not want
this page to appear on the site at this moment:

// fill it with data
 $mypost->post_title = 'WP Wall';
 $mypost->post_content = "This is a placeholder page for your
 WP Wall. Do not delete or publish this page.";
 $mypost->post_status = 'draft';
 $mypost->post_type = 'page';
 $mypost->comment_status = 'open';

Finally, we want to insert the post into the WordPress database by using
wp_insert_post(). It will return an ID of the post, which we will save for later use.

 // insert the post and return it's ID
 return wp_insert_post($mypost);
}

This completes the process of inserting a post into the database.

The Wall

[104]

Quick reference

get_post($id, $output): Takes the post ID and returns the database
record for that post. Data can be in any of the various formats specified by
the optional output parameter, and defaults to object. If the post does not
exist, it returns null. More information can be found at: http://codex.
wordpress.org/Function_Reference/get_post

wp_insert_post($post): Function to insert posts and pages to WordPress
database. Post can be an object or array containing information about the post
such as post_title, post_content, post_type, and so on. Returns the
ID of the post on success; otherwise returns 0. More information can be found
at: http://codex.wordpress.org/Function_Reference/
wp_insert_post

Handling user input
We have sorted out where to keep the user comments, so now we can move onto the
comment form and user input.

Since we already have our widget set up, the next step will just involve editing the
wp-wall-widget.php file and inserting the HTML for the form.

We want the form to have two fields: one for the name and the other for the comment text.
Users who are logged-in will be recognized, and their name will be filled-in automatically.

Time for action – Create the wall comment form
To create our form, we will simply edit the HTML of our widget file.

Edit the wp-wall-widget.php file and replace the 'Hello World!' code with the
following code:

 <div id="wp_wall">

 <div id="wall_post">
 <form action="#" method="post" id="wallform">

 <?php if ($user_ID) : ?>

 <p>Logged in as <a href="<?php echo
 get_bloginfo('wpurl'); ?>/wp-admin/profile.php">
 <?php echo $user_identity; ?>.</p>

 <?php else : ?>

 <p>
 <label for="author"><small>Name</small></label>

1.

Chapter 4

[105]

 <input type="text" name="author" id="author" value=""
 tabindex="1" />
 </p>

 <?php endif; ?>

 <p>
 <label for="comment"><small>Comment</small></label>

 <textarea name="comment" id="comment" rows="3"
 tabindex="2"></textarea>
 </p>

 <p><input name="submit_wall_post" type="submit"
 id="submit_wall_post" tabindex="3" value="Submit" /></p>
 </form>
 </div>

 </div>

2. The form we created uses the global variables $user_ID and
$user_identity to check if the user is logged in. We will reference
them in the WPWall_Widget() function:

 function WPWall_Widget($args)
 {

 global $user_ID, $user_identity;

 // extract the parameters
 extract($args);

3. Let's also add CSS to our form to spice it up. Create the file, wp-wall.css:

 #wp_wall p
 {
 margin-top:4px;
 margin-bottom:4px;
 }

 #wallcomments p
 {
 margin-top:5px;
 margin-bottom:5px;
 }

 #wall_post input
 {
 border: 1px solid #cccccc;
 }

The Wall

[106]

4. We need to make sure our CSS loads by adding the code for the wp_head action at
the end of the wp-wall.php file:

 add_action('wp_head', 'WPWall_HeadAction');

 function WPWall_HeadAction()
 {
 global $wp_wall_plugin_url;

 echo '<link rel="stylesheet" href="'.$wp_wall_plugin_url.'
 /wp-wall.css" type="text/css" />';
 }

5. And the final result will look like this:

6. When the admin user is logged in, it will look like this:

Soon, we will be able to actually process the submitted content and display it.

Chapter 4

[107]

What just happened?
Our widget now shows an HTML form with the name and comment area.

<div id="wall_post">
 <form action="#" method="post" id="wallform">

 <p>
 <label for="author"><small>Name</small></label>

 <input type="text" name="author" id="author" value=""
 tabindex="1" />
 </p>

 <p>
 <label for="comment"><small>Comment</small></label>

 <textarea name="comment" id="comment" rows="3"
 tabindex="2"></textarea>
 </p>

 <p>
 <input name="submit_wall_post" type="submit"
 id="submit_wall_post" tabindex="3" value="Submit" />
 </p>

 </form>
</div>

We also added a check to see if the current user is logged in.

In order to do that, we referenced the global variables $user_ID and $user_identity.
Those variables provided by WordPress hold the ID of the currently logged in user with a
matching user name:

global $user_ID, $user_identity;

If the user_ID variable contains a valid ID, it means the user is logged in. In that case, we
can print the logged-in user's details.

<form action="#" method="post" id="wallform">

 <?php if ($user_ID) : ?>

 <p>Logged in as <a href="<?php echo
 get_bloginfo('wpurl'); ?>/wp-admin/profile.php">
 <?php echo $user_identity; ?>.</p>

Otherwise, just print the input field for the name:

 <?php else : ?>

 <p>
 <label for="author"><small>Name</small></label>

 <input type="text" name="author" id="author" value=""
 tabindex="1" />

The Wall

[10�]

 </p>

 <?php endif; ?>

 <p>
 <label for="comment"><small>Comment</small></label>

 <textarea name="comment" id="comment" rows="3"
 tabindex="2"></textarea>
 </p>

We load the CSS file using the wp_head action, which we also used in the previous chapter. It
allows us to insert scripts and CSS style references directly into the <head> of the document:

add_action('wp_head', 'WPWall_HeadAction');

function WPWall_HeadAction()
{
 global $wp_wall_plugin_url;

 echo '<link rel="stylesheet" href="'.$wp_wall_plugin_url.'/
 wp-wall.css" type="text/css" />';
}

We have prepared for the actual handling of the comments. We have the widget and the
form ready, so we are ready for our next task—handling submitted comments.

Managing Ajax comment submit
We will now expand our Ajax knowledge with Ajax submit form technique.

The principle remains the same. jQuery will respond to an event (in this case, a user
submitting the form) and instead of reloading the page, it will call an external script and
display the results.

Our script on the other end will receive form information, and after validation, insert the
comment into the WordPress database.

Finally, we will show a status message to the user, letting them know that the comment has
been accepted:

Chapter 4

[10�]

Time for action – Save the comments
In this example, we will learn how to handle submit forms using Ajax.

We will also learn how to save the comments in the WordPress database.

Create the wp-wall-ajax.php file which will handle submitted form through a
series of simple checks:

 <?php

 require_once("../../../wp-config.php");

 if ($_POST['submit_wall_post'])
 {

 $options = get_option('wp_wall');

 $comment_post_ID=$options['pageId'];
 $actual_post=get_post($comment_post_ID);

 // sanity check to see if our page exists
 if (!$comment_post_ID || !$actual_post ||
 ($comment_post_ID!=$actual_post->ID))
 {
 wp_die('Sorry, there was a problem posting your comment.
 Please try again.');
 }

 // extract data we need
 $comment_author = trim(strip_tags($_POST['author']));
 $comment_content = trim($_POST['comment']);

 // If the user is logged in get his name
 $user = wp_get_current_user();
 if ($user->ID)
 $comment_author = $user->display_name;

 // check if the fields are filled
 if ('' == $comment_author)
 wp_die('Error: please type a name.');

 if ('' == $comment_content)
 wp_die('Error: please type a comment.');

 // insert the comment
 $commentdata = compact('comment_post_ID', 'comment_author',
 'comment_content', 'user_ID');

 $comment_id = wp_new_comment($commentdata);

 // check if the comment is approved
 $comment = get_comment($comment_id);

1.

The Wall

[110]

 if ($comment->comment_approved==0)
 wp_die('Your comment is awaiting moderation.');

 // return status
 die ('OK');

 }

 ?>

2. Now, create the wp-wall.js file to handle our jQuery and Ajax stuff:

 // setup everything when document is ready
 jQuery(document).ready(function($) {

 $('#wallform').ajaxForm({

 // handler function for success event
 success: function(responseText, statusText)
 {

 $('#wallresponse').html('
 '+'Thank you for your comment!'+'');
 },

 // handler function for errors
 error: function(request) {

 // parse it for WordPress error
 if (request.responseText.search(/<title>WordPress
 › Error<\/title>/) != -1)
 {

 var data = request.responseText.match(/<p>(.*)<\/p>/);
 $('#wallresponse').html(''+
 data[1] +'');
 }
 else
 {

 $('#wallresponse').html('An
 error occurred, please notify the
 administrator.');
 }
 } ,
 beforeSubmit: function(formData, jqForm, options) {

 // clear response div
 $('#wallresponse').empty();
 }
 });
 });

3. We now need to load our script, jQuery and jQuery-Form libraries. The latter is used
for handling Ajax form submits.

Chapter 4

[111]

Add this code at the end of wp-wall.php:

 add_action('wp_print_scripts', 'WPWall_ScriptsAction');

 function WPWall_ScriptsAction()
 {
 global $wp_wall_plugin_url;

 wp_enqueue_script('jquery');
 wp_enqueue_script('jquery-form');
 wp_enqueue_script('wp_wall_script',$wp_wall_plugin_url.
 '/wp-wall.js', array('jquery', 'jquery-form')); }

4. Add the URL to our Ajax handler script to the form's action field in wp-wall-
widget.php. This is the script that will be called when the user clicks on Submit.

 <div id="wall_post">

 <form action="<?php echo $wp_wall_plugin_url.'/
 wp-wall-ajax.php'; ?>" method="post" id="wallform">

 <?php if ($user_ID) : ?>

5. Add a <div> for script responses at the end of the form. We will use it to show
status messages:

 <p><input name="submit_wall_post" type="submit"
 id="submit_wall_post" tabindex="3" value="Submit" /></p>

 </form>
 </div>

 <div id="wallresponse"></div>

 </div>

6. Update all the files. You are now ready to post comments:

The Wall

[112]

7. And if you go to the Manage Comments administration panel you can see our
comments listed:

Congratulations! An important part of the plugin functionality has been achieved.

We can now add as many comments as we want and manage them through our WordPress
administration panel.

What just happened?
When the user submits a form, normally the URL given in the form's action is called:

<form action="<?php echo $wp_wall_plugin_url.
 '/wp-wall-ajax.php'; ?>" method="post" id="wallform">

If we do not use jQuery Ajax to handle submissions, our browser will load wp-wall-ajax.
php as a new page and show the output of the script.

However, jQuery form library allows us to assign form submissions to Ajax calls easily.

Chapter 4

[113]

So we have loaded all the necessary libraries using the wp_print_scripts action hook:

add_action('wp_print_scripts', 'WPWall_ScriptsAction');

function WPWall_ScriptsAction()
{
 global $wp_wall_plugin_url;

 wp_enqueue_script('jquery');
 wp_enqueue_script('jquery-form');
 wp_enqueue_script('wp_wall_script', $wp_wall_plugin_url.'/
 wp-wall.js', array('jquery', 'jquery-form'));
}

Using Ajax to submit forms
The jQuery form module provides the ajaxForm() method, which can automatically handle
form submits using Ajax. It hooks to necessary events (like the user pressing the Submit
button), submits the form dynamically using an Ajax call and displays the results.

We use the ajaxForm method with #wallform, which is the ID of our form:

// setup everything when document is ready
jQuery(document).ready(function($)
{
 $('#wallform').ajaxForm
 ({

The ajaxForm() function provides three useful events we can use for extra configuration.

The first is beforeSubmit, which executes just before the form is submitted. It is usually
used to process the fields or do some kind of form validation.

In our case, we will clear the response <div>.

 $('#wallform').ajaxForm
 ({

 beforeSubmit: function(formData, jqForm, options)
 {

 // clear response div
 $('#wallresponse').empty();
 }
 });
});

Next, we will hook up to the error event, which executes in the event of a script failure.

The Wall

[114]

Since we are using wp_die() to exit our comment handling script, we need to parse
the response:

// setup everything when document is ready
jQuery(document).ready(function($)
{

 $('#wallform').ajaxForm
 ({

 // handler function for errors
 error: function(request)
 {

 // parse it for WordPress error
 if (request.responseText.search(/<title>WordPress
 › Error<\/title>/) != -1) {

If the response is valid, we extract the error message and print it out in our
wallresponse div:

 // parse it for WordPress error
 if (request.responseText.search(/<title>WordPress
 › Error<\/title>/) != -1)
 {

 var data = request.responseText.match(/<p>(.*)<\/p>/);
 $('#wallresponse').html(''+
 data[1] +'');

Since we are using WordPress comment handling, we can expect errors ranging from
duplicate comments, comment flooding, protection, and so on. We get all this comment
checking functionality for free.

Chapter 4

[115]

In case of wrong or malformed error response, we will print out a default error message:

}
else
{

 $('#wallresponse').html('
 An error occurred, please notify the
 administrator.'); }
},
beforeSubmit: function(formData, jqForm, options)
{

 // clear response div
 $('#wallresponse').empty();
}

Finally, we will hook up to the success event, which will run when our comment is submitted
successfully. If everything goes fine, we will print out a simple 'Thank you' message:

// setup everything when document is ready
jQuery(document).ready(function($)
{

 $('#wallform').ajaxForm({

 // handler function for success event
 success: function(responseText, statusText)
 {

 $('#wallresponse').html(''+'Thank
 you for your comment!'+'');
 },

 // handler function for errors
 error: function(request)
 {

Saving comments in WordPress post
Let's see how the submitted comments are parsed and saved by WordPress.

We check the $_POST variable first to confirm that a comment is being posted:

 if ($_POST['submit_wall_post'])
 {

The Wall

[116]

Next, a sanity check is performed to see if everything is all right with our wall page that is
used for saving the comments:

 $options = get_option('wp_wall');

 $comment_post_ID=$options['pageId'];
 $actual_post=get_post($comment_post_ID);

 // sanity check to see if our page exists
 if (!$comment_post_ID || !$actual_post ||
 ($comment_post_ID!=$actual_post->ID))
 {
 wp_die('Sorry, there was a problem posting your comment.
 Please try again.');
 }

We use wp_die() to exit from our script in case of an error, passing it the error message.
This will also automatically cause the Ajax call to return an error status.

Next, we extract the comment fields from the $_POST variable:

 // extract data we need
 $comment_author = trim(strip_tags($_POST['author']));
 $comment_content = trim($_POST['comment']);

If the user is logged in, we want to use his display name as the comment author's name.

To do this, we use wp_get_current_user(). It returns an object containing user
information such as user ID and name.

 // If the user is logged in get his name
 $user = wp_get_current_user();
 if ($user->ID)
 $comment_author = $user->display_name;

Now, we can proceed to insert the comment. First, we use compact() to fill the comment
data into an array, passing it the variables we need. We insert the comment using the
wp_new_comment function.

 // insert the comment
 $commentdata = compact('comment_post_ID', 'comment_author',
 'comment_content', 'user_ID');

 $comment_id = wp_new_comment($commentdata);

Chapter 4

[117]

After the comment is inserted, we check to see if it was approved or not. Some blog
administrators like to keep all the comments for approval, in which case the comment will
not show up immediately:

 // check if the comment is approved
 $comment = get_comment($comment_id);

 if ($comment->comment_approved==0)
 wp_die('Your comment is awaiting moderation.');

Finally, if everything is ok, we use die() method to just exit the script. The parameter is
optional in this case, as we are not showing it anywhere:

 // return status
 die ('OK');

}

Quick reference

ajaxForm(options) (jQuery): Used to submit forms with Ajax. The options
object has among others are the success, error and the beforeSubmit
callback events. More information can be found at: http://www.malsup.
com/jquery/form/

wp_get_current_user(): Returns information about the current user in an
object including ID, display_name, email, and so on. More information can
be found at: http://codex.wordpress.org/Function_Reference/
get_currentuserinfo

wp_new_comment($commentdata): Inserts a comment into the database
accepting the comment data array; returns a comment ID.

get_comment($id): Takes a comment ID and returns comment
information in an object. We used it to check the comment_approved field.
More information can be found at: http://codex.wordpress.org/
Function_Reference/get_comment

wp_die($message): Exits the script returning Internal server error 500 HTTP
header and the specified error message.

Dynamically load comments
We are now ready to display the comments we entered on our wall. They are already saved
in the WordPress database, so just we need to extract and show them on our widget.

We will also create a mechanism to reload the comments automatically when the user
submits the form.

The Wall

[11�]

Time for action – Display the comments
Add a new function, WPWall_ShowComments() at the end of wp-wall.php:

 function WPWall_ShowComments()
 {
 global $wpdb;

 // get our page id
 $options = get_option('wp_wall');
 $pageId=$options['pageId'];

 // number of comments to display
 $number=5;

 $result='';

 // get comments from WordPress database
 $comments = $wpdb->get_results
 ("SELECT *
 FROM $wpdb->comments
 WHERE comment_approved = '1' AND comment_post_ID=$pageId
 AND NOT (comment_type = 'pingback' OR comment_type =
 'trackback')
 ORDER BY comment_date_gmt DESC LIMIT $number
 ");
 if ($comments)
 {
 // display comments one by one
 foreach ($comments as $comment)
 {
 $result.= '<p>' .
 $comment->comment_author.':
 '.$comment->comment_content.'</p>';
 }
 }
 return $result;
 }

2. Add the code to display comments to our widget. Edit the wp-wall-widget.php file
and add a 'wallcomments' div, inside which we will display our comments:

 <div id="wp_wall">

 <div id="wallcomments">
 <?php echo WPWall_ShowComments (); ?>
 </div>

 <div id="wall_post">

1.

Chapter 4

[11�]

3. Add this CSS to the end of wp-wall.css to style our comments:

 #wallcomments
 {
 margin-bottom: 5px;
 /* uncomment this for fixed height and a scrollbar
 height: 200px;
 overflow: auto; */
 }
 .wallauthor
 {
 font-weight:bold;
 }
 .wallcomment
 {
 font-weight:normal;
 }

Reload the page, and you can see the comments:

4. Let's also reload the comments when the user posts a new one.

We will use an ajaxForm target property to display the results from our script:

 jQuery(document).ready(function($)
 {
 $('#wallform').ajaxForm({
 // target identifies the element(s) to update with the server
 response
 target: '#wallcomments',
 // handler function for success event
 success: function(responseText, statusText)
 {

The Wall

[120]

5. Modify wp-wall-ajax.php script so it returns the comments:

 if ($comment->comment_approved==0)
 wp_die('Your comment is awaiting moderation.');
 // return status
 die (WPWall_ShowComments());
 }
 }

 ?>

6. Our plugin is fully working now. The new comments now appear without the
page reload.

Good job!

We got the plugin working exactly as we wanted.

What just happened?
Our n�w WPWall_ShowComments() function is responsible for showing the user comments.
It does this by executing a WordPress database query to get the recent comments.

WordPress database query
The WordPress database queries are easy thanks to the wpdb WordPress class. It
provides the interface for handling database manipulations. In this case, we will use
the get_results() method to retrieve the rows from the database quickly.

Chapter 4

[121]

First, we prepare the information for the query, such as pageId and the number
of comments:

function WPWall_ShowComments()
{
 global $wpdb;

 // get our page id
 $options = get_option('wp_wall');
 $pageId=$options['pageId'];

 // number of comments to display
 $number=5;

 $result='';

Next, we need to prepare the query. Let's analyze it for a moment.

We want to SELECT all comments FROM the comments table referenced by
$wpdb->comments. This is the comments table of WordPress.

Our function WHERE states that we need comments posted under our Wall page, and not of
the pingback or trackback types, which are special types of comments.

At the end, we want to sort the comments by comment date in descending order
(DESC ORDER), and LIMIT them to the last five.

Here is the actual query:

 // get comments from WordPress database
 $comments = $wpdb->get_results
 ("SELECT *
 FROM $wpdb->comments
 WHERE comment_approved = '1' AND comment_post_ID=$pageId
 AND NOT (comment_type = 'pingback' OR comment_type =
 'trackback')
 ORDER BY comment_date_gmt DESC
 LIMIT $number
 ");

Comment output
By dividing the author name and the actual comment into separate CSS classes, later, the
user can control the display though the CSS file.

 if ($comments)
 {
 // display comments one by one

The Wall

[122]

 foreach ($comments as $comment)
 {
 $result.= '<p>' . $comment-
 >comment_author.':
 '.$comment->comment_content.'</p>';
 }
 }
 return $result;
}

Displaying the comments
We use our new function to show the comments within a wallcomments <div> �n
our widget:

 <div id="wallcomments">
 <?php echo WPWall_ShowComments (); ?>
 </div>

Next, by using the target parameter of the ajaxForm() function, we can specify
where we want the Ajax script response to be directed to. This allows us to fill in the
wallcomments <div> with new information.

$('#wallform').ajaxForm
({
 // target identifies the element(s) to update with the
 server response

 target: '#wallcomments',

Finally, we needed to make sure that our script returns comments instead of just 'OK'.

 // return status
 die (WPWall_ShowComments());

We have now achieved our desired functionality. The comments are submitted with Ajax,
and added to the database, while the last few are retrieved and shown on the page.

Quick function reference

$wpdb: WordPress database interface class. Use $wpdb->get_results()
to get rows for a given query quickly. More information can be found at:
http://codex.wordpress.org/Function_Reference/
wpdb_Class

Chapter 4

[123]

Ajax security
F�nally, we want to add a layer of security to our plugin. We will use nonces similar to those
in the Live Blogroll plugin.

Time for action – Display the comments
Edit the wp-wall-widget.php file and add a nonce to the form using
wp_nonce_field:

 <form action="<?php echo $wp_wall_plugin_url.'/wp-wall-ajax.php';
 ?>" method="post" id="wallform">

 <?php wp_nonce_field('wp-wall'); ?>
 <?php if ($user_ID) : ?>

2. Add the check for nonce in the wp-wall-ajax.php file:

 if ($_POST['submit_wall_post'])
 {
 // security check
 check_ajax_referer('wp-wall');
 $options = get_option('wp_wall');

What just happened?
Adding nonces is a sure way to secure our plugins against CSRF attacks.

We can use the wp_nonce_field() function to automatically generate a nonce in forms.
You can then use check_ajax_referer() to check for nonce in the Ajax response script.
The function will automatically abort the execution of the script if there is a security threat.

Have a go Hero
The plugin has a lot of potential for feature upgrades. Why don't you try adding a few?

Add an RSS feed to the wall comments. WordPress already has RSS feeds for all the
post comments; you only need to get the link (hint: use the get_post_comments_
feed_link function).

Implement more options for the widget such as the number of comments to be
shown, and a checkbox to disable the addition of new comments.

Use jQuery to add effects to the form such as fading in the comments.

1.

The Wall

[124]

Add a Refresh option so that the wall updates itself automatically after a specified
time period (you can use the setInterval function).

Provide a link to display all the comments by showing the comments page (user has
to publish it previously).

Summary
In this chapter, we have learned an important lesson, which is that by utilizing built-in
WordPress functionalities whenever we can, we are able to save both time and effort. And
our shared plugin functionality will automatically follow the development of WordPress.

The Ajax Wall widget allows you to post quick comments. The comments will of course need
to pass all internal verifications of WordPress before they can appear on our page. And we
can easily manage comments from the WordPress administration interface.

We have covered important areas of WordPress development:

Widgets: Creating and managing widgets on our blog

Options: Using WordPress to manage our plugin options easily

Database: Working with WordPress database to insert and retrieve information

Ajax forms: Submitting forms and get the results without reloading the page

In the next chapter, we are going to look over more WordPress features and development
techniques by developing a super cool Snazzy Archives plugin.

5
Snazzy Archives

This chapter covers the creation of a very sleek and stylish looking WordPress enhancement.
The purpose of the Snazzy Archives plugin will be to present your site archives in a unique
visual way.

In order to achieve this visual output, we will read all posts from the WordPress database
and display them using a combination of HTML, CSS, and jQuery.

We will incorporate our plugin into a PHP class to make it easier to use and maintain. We
will also learn a few template tricks and how to integrate the plugin output to WordPress
pages easily.

Snazzy Archives

[126]

Finally, we will create an options page so that users can control various aspects of the plugin.

In summary, this chapter will teach you how to:

Use a PHP class to describe your plugin

Use shortcode API to display output on your pages, and use custom templates
when you want more control

Manage options for your plugin

Create options page and add administration menus

Create simple caching mechanism to speed up the output of your plugins

And you will learn this by creating a stylish archive view for your WordPress site.

Using a class for plugin
Let's start with learning a new way to code your plugins. We will use a PHP class, and add
properties (variables) and methods (functions) to it.

Time for action – Create a new plugin class
Let's start building our plugin by creating our first class:

Cr�at� a n�w fold�r call�d snazzy-archives.

Create a new file, snazzy-archives.php:

 <?php
 /*
 Plugin Name: Snazzy Archives
 Version: 0.1
 Plugin URI: http://www.prelovac.com/vladimir/wordpress-plugins/
 snazzy-archives
 Author: Vladimir Prelovac
 Author URI: http://www.prelovac.com/vladimir
 Description: Express your blog through a unique representation
 of your post archives.
 */

 global $wp_version;

 $exit_msg = 'Snazzy Archives require WordPress 2.6 or newer.
 <a href="http://codex.wordpress.org/
 Upgrading_WordPress">Please update!';

 if (version_compare($wp_version, "2.6", "<"))
 {
 exit($exit_msg);

1.
2.

Chapter 5

[127]

3. Then add declaration for our class as follows:

 // Avoid name collisions.
 if (!class_exists('SnazzyArchives')) :

 class SnazzyArchives
 {

 // this variable will hold url to the plugin
 var $plugin_url;

 // Initialize the plugin
 function SnazzyArchives()
 {

 $this->plugin_url = trailingslashit(WP_PLUGIN_URL.'/'.
 dirname(plugin_basename(__FILE__));
 }

 // function to call after plugin activation
 function install()
 {

 }

 }

 else :

 exit ("Class SnazzyArchives already declared!");
 endif;

4. Create an instance of our class:

 // create new instance of the class
 $SnazzyArchives = new SnazzyArchives();

5. And finally register the function we want to run when the plugin is activated:

 if (isset($SnazzyArchives))
 {

 // register the activation function by passing the reference
 to our instance
 register_activation_hook(__FILE__, array(&$SnazzyArchives,
 'install'));
 }
 ?>

That's it! We have incorporated our plugin into an effective class in just a few steps.

Snazzy Archives

[12�]

What just happened?
Our plugin is now represented with a PHP class. The only name we need to worry about is
the class name. So we want to use a unique name; same as the plugin name is probably a
good idea.

Before the class is declared, we check its name using the PHP class_exists() function:

// Avoid name collisions.
if (!class_exists('SnazzyArchives')) :

In case of a name collision, we display an error message:

else :
 exit ("Class SnazzyArchives already declared!");
endif;

We can now declare variables and functions freely inside the class, without having to use
long and unique prefixes to distinguish them.

First, we declare a variable that will hold our plugin URL:

class SnazzyArchives
{
 // this variable will hold url to the plugin
 var $plugin_url;

The class constructor function has the same name as the class, and executes whenever a
new instance of the class is created.

We will use it to store initialization functions. For now, we will only fill the plugin URL into
a variable:

class SnazzyArchives
{
 // this variable will hold url to the plugin
 var $plugin_url;
 // Initialize the plugin
 function SnazzyArchives()
 {
 $this->plugin_url=trailingslashit(get_bloginfo('wpurl'))
 .PLUGINDIR.'/'. dirname(plugin_basename(__FILE__));
 }

Chapter 5

[12�]

Finally, we declare an empty function which we will use later to set the default options for
the plugin.

 function SnazzyArchives()
 {
 $this->plugin_url=trailingslashit(get_bloginfo('wpurl'))
 .PLUGINDIR.'/'. dirname(plugin_basename(__FILE__));
 }
 // function to call after plugin activation
 function install()
 {

 }
}

Initializing the plugin is performed by creating a new instance of our class. This creates a
$SnazzyArchives object:

// create new instance of the class
$SnazzyArchives = new SnazzyArchives();

We also want to execute a function when our plugin is activated, so we will use the
register_activation_hook() API function. We need to specify the callback function
using a reference to our newly created object. This is because the install() function is a
member of our class.

// create new instance of the class
$SnazzyArchives = new SnazzyArchives();

if (isset($SnazzyArchives))
{
 // register the activation function by passing the reference to
 your instance
 register_activation_hook(__FILE__, array(&$SnazzyArchives,
 'install'));
}

We have the basics covered, and we can now move on to show our archives. First, we will
cover how to display output on WordPress pages.

Quick reference

class_exists(): Useful PHP function to check if the class exists before
doing anything with it. For the functions we have the function_exists()
PHP functions.

register_activation_hook(file, callback): Registers a plugin
function to be run when the plugin is activated.

Snazzy Archives

[130]

Showing template output with shortcodes
There are basically three ways to show output on a page in WordPress.

We have already covered the first one, using a content filter to insert the content into a page.
This is what we have used in Chapter 2 with Digg This plugin.

The second method involves using shortcodes. Shortcode API was first introduced in
WordPress 2.5. It basically behaves like the content filter internally, but allows you more
options with less effort. An example shortcode is [gallery], inserted into the post editor.

The third method involves calling our output function directly from the theme template.

Let's cover shortcodes first, as they provide an easy and powerful way to display
dynamic content.

Time for action – Use a shortcode
Add a display()function to our class:

 function display()
 {
 return "Hello World!";
 }

2. Add the shortcode function handler:

 function SnazzyArchives()
 {

 $this->plugin_url = trailingslashit(WP_PLUGIN_URL.'/'.
 dirname(plugin_basename(__FILE__));

 // add shortcode handler
 add_shortcode('snazzy-archive', array(&$this, 'display'));
 }

1.

Chapter 5

[131]

3. That's all! Using shortcodes is very easy.

Type in the shortcode [snazzy-archive] on any page:

4. WordPress will replace the shortcode with the output of our shortcode function
right away:

Snazzy Archives

[132]

What just happened?
We used a shortcode to display an example output on a WordPress page. Shortcodes are
simple tags that you enter in the post editor. The shortcode API then automatically replaces
the shortcode with the output of the functions associated with the shortcode.

To register a shortcode, you need to use the add_shortcode() function:

add_shortcode('snazzy-archive', array(&$this, 'display'));

The first parameter is a shortcode identifier (this is what you will use in post within brackets)
and the second one specifies the handler function. In our case, it is the display() function
in our class.

The handler function is always responsible for returning the content, which will replace the
shortcode in post.

Shortcode API
We have just seen how shortcode API provides a powerful mechanism for displaying content
in posts and pages. Although it works internally, very much like the content filter, it provides
useful built-in functionalities that make it easier to use.

For example, a shortcode can accept parameters like this:

[gallery id="55" size="small" mode="1"]

The parameters are sent to the shortcode handling function as an associative array.

function display($params)
{
 // $params is array('id' => '55', 'size' => 'small',
 'mode'=>'1')
}

Although you could parse the parameters manually, shortcode API also provides a function
to do this, including setting default values. The function is shortcode_atts($defaults_
array, $params).

It parses the incoming parameters and assigns default values to any missing parameter. It will
also filter out all unwanted parameters.

Let 's see an example:

function display($params)
{
 $values = shortcode_atts(array
 (

Chapter 5

[133]

 'id' => '1',
 'size' => 'medium',
 'effect'=> '1'
), $params);
}

If we use the [gallery id="55" size="small" mode="1"] shortcode, the
$values variable would contain array ('id' => '55', 'size' => 'small',
'effect'=>'1') after parsing and the mode parameter will be disregarded, as it is not
provided in the default array.

Enclosing shortcodes
Shortcodes can also enclose content, and are written in the following format:

[gallery] content [/gallery]

The function content is treated as a part of shortcode, and will be replaced, along with the
entire shortcode, with the output of the handling function. The enclosed content is passed
as a second argument:

function display($params, $content = null)
{
 if (!is_null($content))
 return $content ;
 else
 return 'Hello World !';
}

You can of course mix the shortcode parameters with the enclosed content:

[gallery id="55"] content [/gallery]

Quick reference

add_shortcode(string, handler): Assigns a handler function for
the shortcode identified by a string

shortcode_atts(defaults_array, params): Parses the
shortcode parameters using a default array

More up to date information on the Shortcode API is available at:
http://codex.wordpress.org/Shortcode_API.

Snazzy Archives

[134]

Custom templates
The main advantage of shortcodes is their ease of implementation and use.

But sometimes, in order to achieve a desired output, we need more control over the output
page. In the case of shortcodes and content filters, we are bound by the theme template.

We can overcome this limitation by creating a custom template page.

Time for action – Create a custom template
Cr�at� a snazzy-template.php file.

 <?php
 /*
 Template Name: Snazzy Archives
 */

 ?>

 <?php get_header(); ?>

 <div id="content">
 <p align="center">
 <?php if (isset($SnazzyArchives)) echo
 $SnazzyArchives->display(); ?>
 </p>
 </div>

 <?php get_footer(); ?>

2. Upload this file to your current theme folder.

3. When you create a page, you are now enable to select our template for the page:

1.

Chapter 5

[135]

4. The page will now show how to use our template (without sidebar, page title):

What just happened?
We have just created a custom template for our theme. It allows us full control of the
output page.

In order to declare a new template, you need to specify only the template name, and it will
appear in the menu.

<?php
/*
Template Name: Snazzy Archives
*/
?>

The rest of the template is normal HTML code. Normally, you would include the header and
the footer of the theme, and WordPress provides the get_header() and get_footer()
functions to display them.

Usually, using shortcodes will get the job done, but it is always useful to know other
possibilities when we need broader control of the layout.

Quick function reference

get_header(), get_footer(), get_sidebar(): These are WordPress
include tags and can be used within a template file to include other portions of
the theme template such as header and footer.

You can also include any file from the current theme folder using:

<?php include (TEMPLATEPATH . '/custom.php'); ?>

More information on template include files: http://codex.wordpress.
org/Include_Tags

Snazzy Archives

[136]

Prepare archives
Now that we have the page set up, we can begin with modifying our display() function to
show all the posts.

The function will get the posts from the database, sorted by date (newest to oldest), and
then print them using a predefined layout.

We want to name all our archive elements appropriately in the layout, so we can use CSS and
jQuery later.

Every column will represent one whole month of post archives. Each month will have
different days when postings occurred, and each day may have several posts for that day.
Each post will have a title, image (if available) and excerpt text.

Below is a diagram of the archive structure with CSS div elements used.

HTML Table

sz_date_yr

sz_cont

sz_date_mon

sz_month

sz_date_day

sz_day

sz_cont

sz_title

sz_image

sz_excerpt

Chapter 5

[137]

The structure we have in mind looks something like this:

Time for action – Show archives of posts
Let's modify our display() function to retrieve all the posts from the database.

Modify the existing display() function to print the general elements of the page:

 function display()
 {
 global $wpdb;

 // these variables store the current year, month and date
 processed
 $curyear='';
 $curmonth='';
 $curday='';

1.

Snazzy Archives

[13�]

 // the beginning of our output
 $result='
 <div class="snazzy">
 <table cellspacing="15" cellpadding="0" border="0">
 <tbody>
 <tr>'

2. Next, extract all the posts from the database using the $wpdb variable we covered in
the previous chapter:

 // query to get all published posts
 $query="SELECT * FROM $wpdb->posts WHERE post_status =
 'publish' AND post_password='' ORDER BY post_date_gmt DESC ";
 $posts = $wpdb->get_results($query);

3. Then for each post we will retrieve title, excerpt, URL, and date:

 foreach ($posts as $post)
 {
 // retrieve post information we need
 $title = $post->post_title;
 $excerpt= $this->get_excerpt($post-
 >post_content);
 $url=get_permalink($post->ID);
 $date = strtotime($post->post_date);

 // format the date
 $day = date('d', $date);
 $month = date('M', $date);
 $year = date('Y', $date);

4. We will use a regular expression to search for an image in the post and store the URL
in the $imageurl variable:

 // look for image in the post content
 $imageurl="";
 preg_match('/<\s*img [^\>]*src\s*=\s*[\""\']?([^\""\'>]*)
 /i' , $post->post_content, $matches);
 $imageurl=$matches[1];

5. We are also interested in getting the number of comments for the particular post:

 // get comments for this post
 $comcount = $wpdb->get_var("
 SELECT COUNT(*)
 FROM $wpdb->comments
 WHERE comment_approved = '1'

Chapter 5

[13�]

 AND comment_post_ID=$post->ID
 AND NOT (comment_type = 'pingback'
 OR comment_type = 'trackback')
 ");
 ");

6. Next comes the HTML formatting to create all our HTML elements:

 // additional formatiing
 if ($year!=$curyear)
 {
 // close the previous day/month
 if ($curday)
 $result.="</div></div></td>";

 $curday='';
 $curmonth='';

 // year start in a new column (<td>)
 $result.= '<td valign="top"><div class="sz_date_yr">'
 .$year.'</div><div class="sz_cont">';

 $result.= '</div></td>';
 $curyear=$year;
 }

 if ($month!=$curmonth)
 {
 // close the previous day/month
 if ($curday)
 $result.="</div></div></td>";

 $curday='';
 // month starts in a new column (<td>)
 $result.= '<td valign="top"><div class="sz_date_mon">'
 .$month.'</div><div class="sz_month">';

 $curmonth=$month;
 }

 if ($day!=$curday)
 {
 // close previous day
 if ($curday)
 $result.="</div>";

 $result.= '<div class="sz_date_day">'.$day.'
 </div><div class="sz_day">';
 $curday=$day;
 }

Snazzy Archives

[140]

7. To print out the details of the post, we will use an external template:

 // retrieve the archive entry representation
 ob_start();
 include('snazzy-layout-1.php');
 $output = ob_get_contents();
 ob_end_clean();

 $result.=$output;
 }

8. And finally, we close the page elements and return the result:

 // close the previous day/month
 if ($curday)
 $result.="</div></div></td>";

 // close the main page elements
 $result.="</tr></tbody></table></div>";

 // return the result
 return $result;
 }

9. We referenced a function to get the post excerpt, so we need to write it too:

 function get_excerpt($text, $length = 15)
 {
 if (!$length)
 return $text;

 $text = strip_tags($text);
 $words = explode(' ', $text, $length + 1);
 if (count($words) > $length)
 {
 array_pop($words);
 array_push($words, '...');
 $text = implode(' ', $words);
 }
 return $text;
 }

10. And finally, let's create a layout file, snazzy-layout-1.php. Our template will
output necessary classes (for example page or post), include the image if it exists,
and output the content:

 <div class="sz_cont sz_img <?php echo (($post->post_type=='page')
 ? "sz_page" : "sz_post") ?>" <?php echo $imageurl ?
 'style="background: transparent url('.$imageurl.') no-repeat

Chapter 5

[141]

 center;"' : '' ?> >
 <a href="<?php echo $url ?>" title="<?php echo ($comcount ?
 "$comcount comments" : "") ?>" class="<?php echo $imageurl ?
 "sz_titleon" : "sz_title" ?>"><?php echo $title ?>
 <?php if ($excerpt && !$imageurl) : ?>
 <div class="sz_excerpt">“<?php echo $excerpt
 ?>”</div>
 <?php endif;?>
 </div>

11. The end result of this somewhat lengthy code is the archives page that starts to look
like our desired output.

What just happened?
The display() function is now capable of extracting and showing all posts using our layout.

The whole archive view is encapsulated into a div and a table:

// the beginning of our output
$result='
 <div class="snazzy">
 <table cellspacing="15" cellpadding="0" border="0">
 <tbody>
 <tr>';

// MAIN ARCHIVE CONTENT

 // close the main page elements
 $result.="</tr></tbody></table></div>";

Snazzy Archives

[142]

Get all posts from database
We can get a list of all previous posts with a WordPress database query. We want published
posts, without a password, and sorted by date:

// query to get all published posts
 $query="SELECT * FROM $wpdb->posts WHERE post_status =
 'publish' AND post_password='' ORDER BY post_date_gmt DESC ";

 $posts = $wpdb->get_results($query);

We then retrieve the relevant post information. Notice that whenever we call a function in
our class, we use $this reference, for example, $this->get_excerpt():

// retrieve post information we need
 $title = $post->post_title;
 $excerpt= $this->get_excerpt($post->post_content);
 $url=get_permalink($post->ID);
 $date = strtotime($post->post_date);

Using a regular expression
In order to find an image in the post content, we use a regular expression, (regexp).

Regular expressions are very powerful tools for searching patterns in content,
although you do not need to know everything about them. The snippets of code
like the ones we used are available throughout the Internet, and you just need to
search for them (for example, you can find regexp for searching links on a page
or checking if the email address is valid).

This regexp basically searches for the tag in the content and returns the URL of
the image, which we will use to display the picture:

// look for image in the post content
 $imageurl="";
 preg_match('/<\s*img [^\>]*src\s*=\s*[\""\']?([^\""\'>]*)/i',
 $post->post_content, $matches);
 $imageurl=$matches[1];

Retrieve comment count for a post
Here we have a snippet of code to get the comment count for a certain post. We are making
sure that the comments are approved, and we do not want to count trackbacks or pingbacks.

// get comments for this post
 $comcount = $wpdb->get_var("
 SELECT COUNT(*)

Chapter 5

[143]

 FROM $wpdb->comments
 WHERE comment_approved = '1'
 AND comment_post_ID=$post->ID
 AND NOT (comment_type = 'pingback'
 OR comment_type = 'trackback')
 ");

$wpdb->get_var is useful when we are retrieving only one variable from the database, in
this case, COUNT() of the comments.

Using output buffers
The external file, snazzy-layout-1.php, contains the HTML representation of our
archive entry.

In this case, we need to catch the output of the file and add it to our $result variable,
because we are returning it at the end of the function.

That is why we use the output buffering PHP ob_ functions:

// retrieve the archive entry representation
 ob_start();
 include('snazzy-layout-1.php');
 $output = ob_get_contents();
 ob_end_clean();

The ob_start() function will turn on output buffering, and while it is active, no content from
the script will be sent to the output. Instead, it is stored in the internal buffer. The contents of
this internal buffer may be retrieved by calling the ob_get_contents()function, and when
we don't need it anymore, we can call the ob_end_clean() function to discard the buffer.

Apply styling and jQuery to archives
When we have all the data we need structured in HTML elements, it is quite easy to create
the desired look with CSS. Here is an example:

Time for action – Style the archive view
Let's create a styling sheet for our archive.

Cr�at� a snazzy-archives.css file.

 .snazzy
 {
 text-align:left;

1.

Snazzy Archives

[144]

 overflow:auto;
 }

 .snazzy_img
 {
 margin:0;
 padding:0;
 }

 .sz_cont
 {
 width:100px;
 display:block;
 overflow:hidden;
 margin:0px 0px 10px;
 }

 .sz_page
 {
 bacground-color: #ffffef;
 }

 .sz_img
 {
 height:110px;
 }

 .sz_year
 {
 font-size:22px;
 color:#444;
 font-family:georgia, verdana;
 font-style:italic;
 }

 .sz_date_yr
 {
 height:42px;
 font-size:34px;
 }

 .sz_date_mon
 {
 height:29px;
 font-size:22px;
 cursor:pointer;
 }

 .sz_date_day
 {
 background: #efefea;

Chapter 5

[145]

 margin-bottom:1px;
 height:20px;
 font-size:14px;
 font-weight:bold;
 cursor:pointer;
 }

 .sz_title
 {
 padding:5px 0px;
 font-weight:bold;
 color:#444;
 }

 .sz_titleon
 {
 line-height:14px;
 color:#eee;
 background-color:#333;
 }

 .sz_excerpt
 {
 font-size:9px;
 padding-bottom:5px;
 color:#999;
 }

2. Add an action for the wp_print_scripts event inside the class constructor to load
our style sheet:

 // Initialize the plugin
 function SnazzyArchives()
 {

 $this->plugin_url=trailingslashit(get_bloginfo('wpurl')
).PLUGINDIR.'/'. dirname(plugin_basename(__FILE__));

 // add shortcode handler
 add_shortcode('snazzy', array(&$this, 'display'));

 // print scripts action
 add_action('wp_print_scripts', array(&$this,
 'scripts_action'));
 }

Snazzy Archives

[146]

3. The action will print out the reference to our style sheet:

 function scripts_action()
 {
 echo '<link rel="stylesheet" href="'.$this->plugin_url =
 trailingslashit(WP_PLUGIN_URL.'/'.
 dirname(plugin_basename(__FILE__));
 }

4. Once everything is prepared, we are ready to upload the files and take a look at a
new archive page, freshly styled with CSS:

Chapter 5

[147]

What just happened?
We used CSS to style our archive elements, such as the year, month and day headers, and
the entire post layout.

We control the width of the entire column with only the width property of the post
conta�n�r, sz_cont, so it is easy to change.

.sz_cont
{
 width:100px;
 display:block;
 overflow:hidden;
 margin:0px 0px 10px;
}

Styling leaves endless possibilities for the user to play with. Let's also add interactivity
using jQuery.

Time for action – Use jQuery to allow user interaction
As always, jQuery allows us to add powerful effects to our plugin with ease.

In this case, we want the ability to fold up months and days when we click on the date
header. This way, we can hide the information we do not wish to read, for example,
entire months.

Create the snazzy-archives.js file.

 jQuery(document).ready(function($)
 {
 $('.sz_date_mon').click(function()
 {
 $(this).next('.sz_month').children('.sz_day').toggle();
 });

 $('.sz_date_day').click(function()
 {
 $(this).next('.sz_day').slideToggle();
 });
 });

2. Add our script to the scripts_action() function

 function scripts_action()
 {
 wp_enqueue_script('jquery');
 wp_enqueue_script('snazzy', $this->plugin_url.'/

1.

Snazzy Archives

[14�]

 snazzy-archives.js', array('jquery'));

 echo '<link rel="stylesheet" href="'.$this->plugin_url.
 '/snazzy-archives.css" type="text/css" />';
 }

3. And that's all. We can now fold up the segments of the archive by simply clicking on
months and days, and our jQuery code takes care of the rest:

What just happened?
We used the power of jQuery to add interactivity to our archive page, using only a few lines
of code.

The first snippet uses jQuery next and children selectors to toggle all the days (children of
month div) inone of the following months, when the user clicks the month header:

 $('.sz_date_mon').click(function()
 {
 $(this).next('.sz_month').children('.sz_day').toggle();
 });

The next snippet slides the day up and down when a certain day is clicked, using the jQuery
slideToggle effect:

 $('.sz_date_day').click(function()
 {
 $(this).next('.sz_day').slideToggle();
 });

Chapter 5

[14�]

These simple additions greatly increase the usability of the plugin with little effort from our
side. But the requirement was structuring the plugin output properly and planning ahead.

Have a go Hero
When you have all the page elements you can now try to:

Style the entire archive view to have fixed width and height (you could add width
and height to snazzy div).

Create a different layout file for displaying the post information in different ways.
For example, you could make all the days the same height and write text above
the pictures:

Change the template to include buttons that would toggle the display all posts or
pages when clicked (hint: using $('.sz_post').toggle() will do).

Creating plugin options page
It �s always useful if the plugin allows you to customize it to your liking. Using external CSS
and layout files makes it easier, but what about variables and functions we use in the code?

That is where the plugin options page comes to play. It can be loaded with settings that we
can change, and is easily accessible from the WordPress administration panel.

Snazzy Archives

[150]

Let's create a few options for our plugin:

Allow the user to choose whether they want to display posts, pages, or both

Start the archive view in mini mode

Allow the user to provide descriptions for each year

The options page may look like this:

Chapter 5

[151]

In order to have an options page, we need to cover several key functionalities:

Manage our options

Set up the options page

Show the options

Save them after user input

It is actually easier than it may appear to be, and there is no excuse not to have an options
page in our plugins anymore!

Time for action – Create an options page
First, we will declare the names for our options in the WordPress database:

 class SnazzyArchives
 {
 // this variable will hold url to the plugin
 var $plugin_url;

 // name for our options in the DB
 var $db_option = 'SnazzyArchives_Options';

2. We want to have a function for retrieving the plugin options. This function will also
be able to set default values:

 // handle plugin options
 function get_options()
 {

 // default values
 $options = array
 (
 'years' => '2008#So far so good!',
 'mini' => '',
 'posts' => 'on',
 'pages' => ''
);

 // get saved options
 $saved = get_option($this->db_option);

 // assign them
 if (!empty($saved))
 {
 foreach ($saved as $key => $option)
 $options[$key] = $option;
 }

1.

Snazzy Archives

[152]

 // update the options if necessary
 if ($saved != $options)
 update_option($this->db_option, $options);

 //return the options
 return $options;
 }

3. We will set the default options when the plugin is activated. Use the install()
function that we created earlier:

 // Set up everything
 function install()
 {
 // set default options
 $this->get_options();
 }

4. Next, let's create a function for handling our options page. It will parse and save the
options when the user submits them, and is also responsible for showing the options
using a layout saved in an external file:

 // handle the options page
 function handle_options()
 {
 $options = $this->get_options();

 if (isset($_POST['submitted']))
 {

 //check security
 check_admin_referer('snazzy-nonce');

 $options = array();

 $options['years']=htmlspecialchars($_POST['years']);
 $options['layout']=(int) $_POST['layout'];
 $options['mini']= $_POST['mini'];
 $options['posts']= $_POST['posts'];
 $options['pages']= $_POST['pages'];

 update_option($this->db_option, $options);

 echo '<div class="updated fade"><p>
 Plugin settings saved.</p></div>';
 }

 $layout=$options['layout'];
 $years=stripslashes($options['years']);
 $mini=$options['mini']=='on'?'checked':'';

Chapter 5

[153]

 $posts=$options['posts']=='on'?'checked':'';
 $pages=$options['pages']=='on'?'checked':'';

 // URL for form submit, equals our current page
 $action_url = $_SERVER['REQUEST_URI'];

 include('snazzy-archives-options.php');
 }

5. We will edit the options page in an external file, snazzy-archives-options.php:

 <div class="wrap" style="max-width:950px !important;">
 <h2>Snazzy Archives</h2>

 <div id="poststuff" style="margin-top:10px;">

 <div id="mainblock" style="width:710px">

 <div class="dbx-content">
 <form action="<?php echo $action_url ?>" method="post">
 <input type="hidden" name="submitted" value="1" />
 <?php wp_nonce_field('snazzy-nonce'); ?>

 <h3>Usage</h3>
 <p>Create a new page for your snazzy archive, and
 insert the code [snazzy-archive]
 into the post. Additionaly you may use the page
 template provided with the plugin. </p>

 <h3>Options</h3>
 <p>You can choose what pages you want to show in the
 archives.</p>
 <input type="checkbox" name="posts" <?php echo $posts
 ?> /><label for="posts"> Show Posts</label>

 <input type="checkbox" name="pages" <?php echo $pages
 ?> /><label for="pages"> Show Pages</label>

 <h3>Display</h3>
 <p>Mini mode can gain you a lot of space, and the user
 can expand/shrink archives by clicking on the date
 headings.</p>
 <input type="checkbox" name="mini" <?php echo
 $mini ?>
 /><label for="mini"> Start in mini mode (collapsed
 archives)</label>

 <h3>Year book</h3>

Snazzy Archives

[154]

 <p>You can specify unique text to print with any
 year, describing it. Year book shows below the year
 and is useful for sharing your thoughts.</p>
 <p>Use description in the form year#description, one
 per line, HTML allowed. </p>
 <textarea name="years" rows="10" cols="80"><?php echo
 $years ?></textarea>

 <div class="submit"><input type="submit" name="Submit"
 value="Update" /></div>
 </form>
 </div>

 </div>

 </div>

 </div>

This is basically an HTML form that submits data back to the script.

6. In order for our options page to show in the menu, we need to tell WordPress
which function it should call when the menu is displayed. We will do that using the
add_options_page function in the admin_menu filter:

 // Initialize the plugin
 function SnazzyArchives()
 {

 $this->plugin_url = trailingslashit(WP_PLUGIN_URL.'/'.
 dirname(plugin_basename(__FILE__));

 // content filter
 add_filter('the_content', array(&$this, 'content_filter'));

 // add shortcode handler
 add_shortcode('snazzy-archive', array(&$this, 'display'));

 // add options Page
 add_action('admin_menu', array(&$this, 'admin_menu'));

 }

 // hook the options page
 function admin_menu()
 {

 add_options_page('Snazzy Archives Options', 'Snazzy Archives',
 8, basename(__FILE__), array(&$this, 'handle_options'));
 }

Chapter 5

[155]

This makes our options page operational, and can now be seen in the administration menu:

What just happened?
We have used WordPress API functions to create and install our options page in the
administration panel.

In order to do that, we hooked into the admin_menu event and supplied our function:

add_action('admin_menu', array(&$this, 'admin_menu'));

This function registers our options page using the add_options_page() WordPress API
call. This will create a menu item in the Administration panel using the name and file we pass
to it.

// hook the options page
function admin_menu()
{
 add_options_page('Snazzy Archives Options', 'Snazzy Archives', 8,
 basename(__FILE__), array(&$this, 'handle_options'));
}

Managing plugin options
To manage plugin options, we are using a dedicated function, get_options(). Its purpose
is to store default options, provide easy upgradeability (with new options in the future
versions of the plugin) and return the current options.

It contains the default set of options we want to use:

function get_options()
{

 // default values
 $options = array
 (
 'years' => '2008#So far so good!',

Snazzy Archives

[156]

 'mini' => '',
 'posts' => 'on',
 'pages' => ''
);

We then retrieve the saved options from the database and merge them with the default
options. If there are no saved options, the default options will be copied over, and will
become active.

// get saved options
$saved = get_option($this->db_option);
 // assign them
 if (!empty($saved))
 {
 foreach ($saved as $key => $option)
 $options[$key] = $option;
 }

F�nally, we save the merged options and return them:

 // update the options if necessary
 if ($saved != $options)
 {
 update_option($this->db_option, $options);

 //return the options
 return $options;
 }

To install the default options, we make sure that the get_options() is called when the
plugin is activated, and that is what our install() function was created for:

 // Set up everything
 function install()
 {

 // set default options
 $this->get_options();
 }

Handling options form
When you visit the options page, our external template is loaded and shown:

 function handle_options()
 {
 include('snazzy-archives-options.php');
 }

Chapter 5

[157]

To fill the values in the template, we retrieve the options from the database and assign them
to the local variables that are used in the template.

function handle_options()
{
 $options = $this->get_options();

 $layout=$options['layout'];
 $years=stripslashes($options['years']);
 $mini=$options['mini']=='on'?'checked':'';
 $posts=$options['posts']=='on'?'checked':'';
 $pages=$options['pages']=='on'?'checked':'';

 include('snazzy-archives-options.php');
}

To handle submits, we need to provide a path to the script. We can use the
PHP $_SERVER['REQUEST_URI'] variable:

$posts=$options['posts']=='on'?'checked':'';
$pages=$options['pages']=='on'?'checked':'';

// URL for form submit, equals our current page
 $action_url = $_SERVER['REQUEST_URI'];

 include('snazzy-archives-options.php');
}

When the user submits the form, we check the nonce and then save all the fields:

 function handle_options()
 {
 $options = $this->get_options();

 if (isset($_POST['submitted']))
 {
 //check security
 check_admin_referer('snazzy-nonce');

 $options = array();

 $options['years']=htmlspecialchars($_POST['years']);
 $options['mini']= $_POST['mini'];
 $options['posts']= $_POST['posts'];
 $options['pages']= $_POST['pages'];

 update_option($this->db_option, $options);

 echo '<div class="updated fade"><p>Plugin settings
 saved.</p></div>';
 }

 $layout=$options['layout'];

Snazzy Archives

[15�]

The way our page works is by directly connecting variables on the form with variables in
the options.

For example, the $posts variable keeps the value of the option to show posts. The POST
method would pass the value on for the checkbox if it was selected, and that is what we
have saved in the database:

$options['posts']= $_POST['posts'];

When the template is shown, we assign the value checked to it if it had been
selected previously:

$posts=$options['posts']=='on'?'checked':'';

In the template, we then print the value of the variable. If it had been checked earlier, the
checkbox will be selected:

<input type="checkbox" name="posts" <?php echo $posts ?> /><label
for="posts"> Show Posts</label>

Adding administration pages
WordPress administration menus are structured in a hierarchy of main menu pages and
menu subpages.

Some examples of main menu pages are Manage, Settings, Plugins, Write, and Users.
Submenu pages appear below these pages, for example, our plugin options page in the
Plugins menu.

The function for adding main menu pages is:

add_menu_page(page_title, menu_title, access_level/capability,
 file, [function])

page_title: Text that will go into the HTML of the page, as the title for the page
when the menu is active

menu_title: The on-screen name text for the menu

access_level/capability: The minimum user level or the capability required
to display and use this menu page

file: The PHP file that handles the display of the menu page content

function: The function that displays the page content for the menu page

If we want to add submenus, the format is similar:

add_submenu_page(parent, page_title, menu_title,
access_level/capability, file, [function]);

Chapter 5

[15�]

The only difference is in the parent parameter. It is the filename of the core WordPress
admin file that supplies the top-level menu in which you want to insert your submenu
(if this submenu is going into a custom top-level menu for example, index.php, post.
php, edit.php, themes.php, plugins.php, and so on) or your plugin file.

For the most used main menus, WordPress provides functions for easier management
of submenus:

add_management_page: For adding submenus in the Manage menu

 // Add a new submenu under Manage:
 add_management_page('Test Manage', 'Test Manage', 8,
 'testmanage', 'manage_page');

add_options_page: For adding submenus in the Settings menu

 // Add a new submenu under Options:
 add_options_page('Test Options', 'Test Options', 8,
 'testoptions', 'options_page');

add_theme_page: For adding submenus in the Design menu

add_users_page: For adding submenus in the Users menu

A few more examples are:

// Add a new top-level menu
add_menu_page('Test Toplevel', 'Test Toplevel', 8, __FILE__,
'toplevel_page');

// Add a submenu to the custom top-level menu:
add_submenu_page(__FILE__, 'Test Sublevel', 'Test Sublevel', 8,
'sub-page', 'sublevel_page');

Quick reference

add_options_page(page_title, menu_title, access_level/
capability, file): Adds a page in the Settings menu of the WordPress
admin panel.

For the most up-to-date information on adding administration menus visit
http://codex.wordpress.org/Adding_Administration_Menus.

Use plugin options
Now, we have created and stored the following options for our plugin:

Select whether to show posts and/or pages

Start the archive in collapsed mode

Set the year descriptions

Snazzy Archives

[160]

We should now modify the plugin to make a good use of them.

Time for action – Apply the plugin options
To select whether we want to show post or pages, we will modify the display() function.

Let's start by selecting whether to show posts and pages:

 // the beginning of our output
 $result='
 <div class="snazzy">
 <table cellspacing="15" cellpadding="0" border="0">
 <tbody>
 <tr>';

 $options=$this->get_options();

 //parse post options
 $types=array();
 if ($options['posts'])
 array_push($types, "'post'");
 if ($options['pages'])
 array_push($types, "'page'");

 $types=implode(',', $types);

 // query to get all published posts
 $query="SELECT * FROM $wpdb->posts WHERE post_status =
 'publish' AND post_password='' AND post_type IN ($types)
 ORDER BY post_date_gmt DESC ";

 $posts = $wpdb->get_results($query);

2. To get the year's description we need to parse what the user entered in the
text area:

 $options=$this->get_options();

 // parse year descriptions
 if (!empty($options['years']))
 {
 $yrs = array();
 foreach (explode("\n", $options['years']) as $line)
 {
 list($year, $desc) = array_map('trim', explode("#",
 $line, 2));
 if (!empty($year)) $yrs[$year] = stripslashes($desc);
 }

 }

 //parse post options
 $types=array();

1.

Chapter 5

[161]

3. And then we display the year text below the year date in the table:

 $result.= '<td valign="top"><div class=
 "sz_date_yr">'.$year.'</div><div class="sz_cont">';

 if ($yrs[$year])
 $result.='<div class="sz_year">“'.
 $yrs[$year].'”</div>';

 $result.= '</div></td>';

4. Finally, when we want to start the view in mini mode, we need to pass this
parameter to our jQuery script, which will handle this functionality.

 function scripts_action()
 {
 $options = $this->get_options();

 $mini=$options['mini'] ? 1 : 0;

 wp_enqueue_script('jquery');
 wp_enqueue_script('snazzy', $this->plugin_url . '/
 snazzy-archives.js', array('jquery'));

 // JavaScript options
 wp_localize_script('snazzy', 'SnazzySettings',
 array('snazzy_mini' => $mini));

5. Edit the snazzy-archives.js file and add the code to hide all the days if the
snazzy_mini variable is set:

 jQuery(document).ready(function($)
 {
 snazzy_mini=parseInt(SnazzySettings.snazzy_mini);

 if (snazzy_mini)
 $('.sz_day').hide();

 $('.sz_date_mon').click(function()
 {
 $(this).next('.sz_month').children('.sz_day').toggle();
 });

Snazzy Archives

[162]

We are done! Let's try it now. Turn all the options on, as shown:

This will result in a collapsed archive view, showing both posts and pages and the year
description we filled in:

What just happened?
We have included the functionality for the options we stored earlier.

We modify our query for posts based on whether we selected to show posts, pages or both,
by using array manipulation routines:

$types=array();
if ($options['posts'])
 array_push($types, "'post'");

Chapter 5

[163]

if ($options['pages'])
 array_push($types, "'page'");

$types=implode(',', $types);

We also display the description for each year, by parsing the input string. The following
code splits the input string (explode("\n", $options['years']) and then applies
the trim() to the year and the description using array_map().

if (!empty($options['years']))
{
 $yrs = array();
 foreach (explode("\n", $options['years']) as $line)
 {
 list($year, $desc) = array_map('trim', explode("#",
 $line, 2));
 if (!empty($year)) $yrs[$year] = stripslashes($desc);
 }
}

The end result is an array $yrs, where keys are years and values are descriptions for that
year. We can then use it to show the description for the years:

if ($yrs[$year])
 $result.='<div class="sz_year">“'.
 $yrs[$year].'”</div>';

Caching the plugin output
Let's learn how we can implement simple caching for our plugins. Caching is done in order to
lessen the strain on the server and provide faster loading time for the user. This is especially
true for blogs with large archives.

Time for action – Create archives cache
Add the variable to store the cache file path. We will use WordPress wp-content
folder:

 // name for our options in the DB
 var $db_option = 'SnazzyArchives_Options';

 // path to store the cache file
 var $cache_path;

 // Initialize the plugin
 function SnazzyArchives()
 {

1.

Snazzy Archives

[164]

 $this->plugin_url = trailingslashit(WP_PLUGIN_URL.'/'.
 dirname(plugin_basename(__FILE__));
 $this->cache_path = ABSPATH .'wp-content/';

2. Next, we want to check if the cached content is present at the beginning of our
display() function. If it is present, we will simply show that file to the user,
skipping the dynamic creation of archives:

 function display()
 {
 global $wpdb;

 // try to retrieve cache
 $data = @file_get_contents($this-
 >cache_path."snazzy_cache.htm");

 // return the cache data if it exists
 if ($data)
 return $data;

 // these variables store the current year, month and
 date processed
 $curyear = '';

3. If the cache is not present, we will generate the archives as normal. Only this time,
we want to save the cache file once it it's created.

 // close the main page elements
 $result .= "</tr></tbody></table></div>";

 // write cache
 if (is_writeable($this->cache_path))
 @file_put_contents($this->cache_path."snazzy_cache.htm",
 $result);

 // return the result
 return $result;

4. That will serve as the basic cache functionality. In order to delete the cache every
time a change has been made (post has been added or edited), we will add the
following code to our class constructor to initialize the delete_cache function:

 // add options Page
 add_action('admin_menu', array(&$this, 'admin_menu'));

 // delete output cache
 add_action('edit_post', array(&$this,'delete_cache'));
 add_action('save_post', array(&$this,'delete_cache'));
 }

Chapter 5

[165]

5. Finally, we need to code the function. It will simply delete the file from the server:

 function delete_cache()
 {
 @unlink($this->cache_path."snazzy_cache.htm");
 }

What just happened?
We created a simple caching mechanism that is able to retrieve the cached file from the
server, create it if it does not exist, and remove the cache after a post has been changed
or added.

The cached file is retrieved from the disk using the file_get_contents command (@ sign
before the function name will suppress all the warning messages, for example, a message
that the file does not exist):

$data = @file_get_contents($this->cache_path."snazzy_cache.htm");

The file is written in the same way as if the content has been dynamically generated. Here,
we introduce another WordPress function is_writeable, which can check if the given path
is writeable by the server:

if (is_writeable($this->cache_path))
 @file_put_contents($this->cache_path."snazzy_cache.htm", $result);

We also used two new actions edit_post and save_post, which are executed when the
post is edited or saved:

// delete output cache
 add_action('edit_post', array(&$this,'delete_cache'));
 add_action('save_post', array(&$this,'delete_cache'));

Have a go Hero
Once you have the options panel installed, you may add more enhancements to the plugin.

You can try a few:

Option to turn caching ON/OFF

Option to select different layouts (which you will create!) for presenting the archive

Allow the user to select the time period for showing archives

Exclude the specific posts from the archives by their IDs

Snazzy Archives

[166]

Summary
With the Snazzy archives plugin, we created a unique way for users to show their archives.
The plugin output can be customized using CSS, layout files, and the options page.

We have learned how to manipulate the layout of the template using shortcodes and custom
templates. This allows us to show the output the way we want it.

It is a great usability bonus for the plugin when it has an options page. And another
important lesson we learned was how to manage options, and how to create option
pages easily.

Let's sum up what we learned in this chapter:

Classes: We can learned how to use classes, properties and methods to write to wr�t�
our plugins.

Shortcodes: The shortcode API provides a powerful mechanism forshortcode API provides a powerful mechanism for
changing content.

Custom templates: These allow us to fully control the layout of the page.

Manage Options: We learned how to manage our plugin options, including setting
default values.

Administrative menus: We added an administration page, and learned how to insert
our pages into WordPress menus.

File caching: This provides a method to cache the plugin output.

We will continue to create exciting plugins in the next chapter as well. Our next one will
automatically find relevant Flickr images and YouTube videos for your post, and allow you to
insert them into a post with a single click!

6
Insights for WordPress

The previous chapters explored WordPress features visible on the site including modifying
and sending output to the pages and the sidebar. In this chapter, we are going to deal more
with the modification of the administration panel.

How many times, while writing a post, have you needed to refer one of your previous
articles? It is a time consuming job—searching the article on your blog to get a link. The
plugin we are about to create will make finding your old posts take only a couple of seconds.

Everyone knows that a picture is worth a thousand words. So we will also learn how to find
and insert relevant Flickr photos into your articles as well.

This chapter is all about digging a little deeper into the WordPress and hacking the Write
Post screen.

You will learn to create custom panels in the various sections of the Write Post screen. Also,
you will learn how to access the current WordPress rich editor, tinyMCE, and create a button
on its toolbar. You will also learn how to interact with Flickr API that allows you access to the
world's largest images repository.

Let's sum up what awaits us:

Creating custom panels in the Write Post screen

Searching your posts based on keywords

Accessing Flickr and search for relevant photos

Inserting content into the WordPress editor directly

Adding a tinyMCE plugin and a button

Insights for WordPress

[16�]

And you will do all of these by creating the creating the Insights plugin to access your articles and Flickr
images quickly from within the WordPress edit page.

We have a lot to do, so let's get going!

Chapter 6

[16�]

Creating custom panels in the editor screen
The first part of our plugin will cover integration of images into the WordPress Write
Post screen.

We want to add a custom panel, which we will use later to display the search results.

Time for action – Create a new plugin outline
Let's start building our plugin by creating a PHP class, and then adding functionality to create
a custom panel.

Create a new folder called insights.

Create a new file, insights.php.

 <?php

 /*
 Plugin Name: Insights
 Version: 0.1
 Plugin URI:
 http://www.prelovac.com/vladimir/wordpress-plugins/insights
 Author: Vladimir Prelovac
 Author URI: http://www.prelovac.com/vladimir
 Description: Quickly find relevant posts and Flickr images for
 your article

 */

 global $wp_version;

 $exit_msg='Insights for WordPress requires WordPress 2.6 or
 newer. <a href="http://codex.wordpress.org/Upgrading_
 WordPress">Please update!';

 if (version_compare($wp_version,"2.6","<"))
 {
 exit ($exit_msg);
 }

 // Avoid name collisions.
 if (!class_exists('WPInsights')) :

 class WPInsights
 {

 // name for our options in the DB
 var $DB_option = 'WPInsights_options';

 // the plugin URL
 var $plugin_url;
 // Initialize WordPress hooks
 function WPInsights()
 {

1.
2.

Insights for WordPress

[170]

 $this->plugin_url = trailingslashit(WP_PLUGIN_URL.'/'.
 dirname(plugin_basename(__FILE__));

 }

 // Set up everything
 function install()
 {

 }

 }

 endif;

 if (class_exists('WPInsights')) :

 $WPInsights = new WPInsights();
 if (isset($WPInsights))
 {
 register_activation_hook(__FILE__,
 array(&$WPInsights, 'install'));
 }
 endif;

 ?>

We have set up up a framework for our new plugin.

3. Let's add the custom panel to the Write Post screen. First, we need to hook into the
admin menu:

 function WPInsights()
 {

 $this->plugin_url = trailingslashit(WP_PLUGIN_URL.'/'.
 dirname(plugin_basename(__FILE__));

 // admin_menu hook
 add_action('admin_menu', array(&$this, 'admin_menu'));

 }

4. Now, add our custom panels using the WordPress add_meta_box function and
specifying our function responsible for drawing the panel:

 // Hook the admin menu
 function admin_menu()
 {

 // custom panel for edit post
 add_meta_box('WPInsights', 'Insights', array
 (&$this,'draw_panel'), 'post', 'normal', 'high');

 // custom panel for edit page
 add_meta_box('WPInsights', 'Insights', array
 (&$this,'draw_panel'), 'page', 'normal', 'high');

 }

Chapter 6

[171]

5. For now, our draw_panel will just write a simple text:

 // draw the panel
 function draw_panel()
 {

 echo 'Hello World!';

 }

That's all! You can see our new panel in the Write Post (and Page) screens. It's in the box just
below the editor window.

The panel automatically has all the styles of the other core WordPress panels. Also, it inherits
JavaScript, so you can open and close it just like all the other panels. And like most good
things we did it in just a few lines of code!

What just happened?
Just as in the previous chapter, we are using a class to outline our plugin with default
properties such as a name for the plugin option and a variable to hold the plugin URL.

class WPInsights
{

// name for our options in the DB
 var $DB_option = 'WPInsights_options';

 // the plugin URL
 var $plugin_url;
}

To access and add content to WordPress panels, we use the available API function
add_meta_box()():

function admin_menu()
{

 // custom panel for edit post
 add_meta_box('WPInsights', 'Insights', array
 (&$this,'draw_panel'), 'post', 'normal', 'high');

 // custom panel for edit page
 add_meta_box('WPInsights', 'Insights', array
 (&$this,'draw_panel'), 'page', 'normal', 'high');

}

Insights for WordPress

[172]

The function takes the identifier and the title of the panel. Also, you can specify a callback
function to draw the panel—in our case, we named it draw_panel().

function draw_panel()
{

 echo 'Hello World!';

}

For now, we just output a simple text, but we will soon add more functionality to it.now, we just output a simple text, but we will soon add more functionality to it. we just output a simple text, but we will soon add more functionality to it.

Custom edit panels in WordPress
Typically, WordPress allows us to insert a panel in one of the three sections of the editor
screens outlined below:

Chapter 6

[173]

The first one is called Normal, and is just below the post editor. It contains the most
frequently used panels such as post Categories and Tags.

The second section is called Advanced, and is located below the normal section with core
panels such as Excerpts and Custom Fields.

The third section is the Sidebar, where we can add panels below the WordPress
sidebar content.

Using jQuery, we can insert panels almost anywhere. But currently only those three sections jQuery, we can insert panels almost anywhere. But currently only those three sectionsjQuery, we can insert panels almost anywhere. But currently only those three sections
are covered with the API. The WordPress API also allows us to choose the order in which the
panels are shown, by assigning them priority.

Let's take a close look at the add_meta_box() function:

add_meta_box(id, title, callback, page, section, priority)

id: It allows us to refer to the panel in the document later.

title: It is the title of the box.

callback: It is a function that fills the box with the desired content. The function
should echo its output.

page: It is the type of edit page on which to show the box (post, page, link)

section: It is the section within the page where the boxes should show
(for example 'normal' or 'advanced')

priority: It is the priority within the section where the boxes should be shown
('high', 'core', 'default', 'low')

For example, let's create our panel in the advanced section of the post screen, using
default priority:

add_meta_box('WPInsights', 'Insights', array(&$this,'draw_panel'),
'post', 'advanced', 'default');

The add_meta_box() function does not support adding panels to the sidebar yet, but you
can use the submitpost_box action instead:

add_action('submitpost_box', array(&$this, 'my_sidebar'));
function my_sidebar()
{

 echo '<p> Hello World! </p>';

}

Insights for WordPress

[174]

In the upcoming versions of WordPress, we are likely to see a unified function for all the
sections, so keep an eye on WordPress Codex.

Quick function reference

add_meta_box(id, title, callback, page, section,
priority): Add panels to the sections of editor pages (post, page and link).
Codex link: http://codex.wordpress.org/Function_Reference/
add_meta_box

submitpost_box: Action to add panel to the sidebar

Searching the posts
Our next functionality will involve displaying a list of all posts that match a given keyword,
which will involve searching our database.

Time for action – Display a list of matching posts
Modify our draw_panel() function to show an input field:

 // draw the panel
 function draw_panel()
 {

1.

Chapter 6

[175]

 echo '
 <p>Enter keywords you would like to search for and press the
 Search button.</p>

 <input type="text" id="insights-search" name="insights-
 search" size="25" autocomplete="off" />
 <input id="insights-submit" class="button" type="button"
 value="Search" />';

 }

This gives us an input box and a Search button to work with.

2. We will also add a div to display the search results in:

 <input id="insights-submit" class="button" type="button"
 value="Search" />';

 echo '<div id="insights-results"></div>';

 }

3. Let's add input handling functionality and Ajax. Create a file, insights.js.

 First, let's add a function to submit the query using Ajax.

 // Insights for WordPress plugin

 // setup everything when document is ready
 jQuery(document).ready(function($)
 {

 // initialize the variables
 var last_query=undefined;

 // function to submit rhe query and get results
 function submit_me()
 {

 // check if the search string is empty
 if ($('#insights-search').val().length==0)
 {
 $('#insights-results').html('');

Insights for WordPress

[176]

 return;
 }

 // create the query
 var query = InsightsSettings.insights_url + '/insights-
 ajax.php?search=' + escape($('#insights-search').val())+
 '&mode=' + mode + '&_ajax_nonce=' +
 InsightsSettings.nonce;;

 // check if already called
 if (query!=last_query)
 {
 $('#insights-results').html('Please wait...');
 $('#insights-results').load(query);
 last_query=query;
 }
 }
 });

4. Now, let's add responses to the ENTER key and Search button click:

 // search button click event
 $('#insights-submit').click(function()
 {
 submit_me();
 });

 // check for ENTER or ArrowDown keys
 $('#insights-search').keypress(function(e)
 {
 if (e.keyCode == 13 || e.keyCode == 40)
 {
 submit_me();
 return false;
 }

 });

 });

5. We need to declare our script as always. This time, we are using a functionality that
enables us to decide on which admin pages we want the script to be shown on. Edit
the constructor of our class:

 function WPInsights()
 {

 $this->plugin_url = trailingslashit(WP_PLUGIN_URL.'/'.
 dirname(plugin_basename(__FILE__));

 // admin_menu hook

Chapter 6

[177]

 add_action('admin_menu', array(&$this, 'admin_menu'));

 // print scripts action
 add_action('admin_print_scripts-post.php', array(&$this,
 'scripts_action'));
 add_action('admin_print_scripts-page.php', array(&$this,
 'scripts_action'));
 add_action('admin_print_scripts-post-new.php', array(&$this,
 'scripts_action'));
 add_action('admin_print_scripts-page-new.php', array(&$this,
 'scripts_action'));

 }

6. Now, add the function to print our script and the URL parameter we use:

 // prints the scripts
 function scripts_action()
 {

 $nonce=wp_create_nonce('insights-nonce');

 wp_enqueue_script('jquery');
 wp_enqueue_script('insights', $this->plugin_url.
 '/insights.js', array('jquery'));
 wp_localize_script('insights', 'InsightsSettings',
 array('insights_url' => $this->plugin_url, 'nonce' =>
 $nonce));

 }

7. Finally, we need to create the Ajax response. Create a new file, insights-ajax.
php, which will handle all Ajax search queries:

 <?php

 require_once('../../../wp-config.php');

 if ($_GET['search'])
 {

 // check security
 check_ajax_referer('insights-nonce');

 die(search_posts($_GET['search']));
 }
 else
 die('No results found.');

 // search posts
 function search_posts($search)
 {
 global $wpdb, $WPInsights;

Insights for WordPress

[17�]

 // create query
 $search = $wpdb->escape($search);
 $posts = $wpdb->get_results("SELECT ID, post_title,
 post_content FROM $wpdb->posts WHERE post_status = 'publish'
 AND (post_title LIKE '%$search%' OR post_content LIKE
 '%$search%') ORDER BY post_title LIMIT 0,5");

 //
 if ($posts)
 foreach ($posts as $post)
 {
 // display every post link and excerpt
 $output .= '
 <p>
 ID) . '"
 style="cursor:pointer;" >
 ' . $post->post_title . '

 ' . get_excerpt($post->post_content, 25) . '</p>';
 }
 else
 $output .= 'No posts matched "' .
 stripslashes($search) . '"';

 return $output;
 }

 // get the content excerpt
 function get_excerpt($text, $length = 25)
 {
 if (!$length)
 return $text;

 $text = strip_tags($text);
 $words = explode(' ', $text, $length + 1);
 if (count($words) > $length)
 {
 array_pop($words);
 array_push($words, '...');
 $text = implode(' ', $words);
 }
 return $text;
 }
 ?>

Chapter 6

[17�]

Putting all of this together, we will have created a functional Ajax search for the editor page,
which can find posts for us in an instant!

What just happened?
We will add our script to the WordPress admin pages using a method that allows us to
decide which admin pages to print scripts on. To do that, you need to append the admin
page name to the action name, as shown here:

add_action('admin_print_scripts-post.php', array(&$this,
'scripts_action'));
add_action('admin_print_scripts-page.php',
array(&$this, 'scripts_action'));
add_action('admin_print_scripts-post-new.php',
array(&$this, 'scripts_action'));
add_action('admin_print_scripts-page-new.php',
array(&$this, 'scripts_action'));

The page names are page.php or post-new.php or any other WordPress admin page
which you can see in your browser. Using this method, we avoid cluttering other pages with
unnecessary scripts.

As always, we use jQuery to handle JavaScript events. In this case, we want to respond to the
user clicking the search button and pressing the Enter or Down Arrow keys.

// search button click event
$('#insights-submit').click(function()
{
 submit_me();

Insights for WordPress

[1�0]

});

// check for ENTER or ArrowDown keys
$('#insights-search').keypress(function(e)
{
 if (e.keyCode == 13 || e.keyCode == 40)
 {
 submit_me();
 return false;
 }

});

As you may notice, the keypress event returns false if the desired key was
pressed, signaling to the browser that we've handled the event, and it should not
be processed anymore.

If that was not the case, the Enter key would have submitted the entire post for saving,
because our panel is placed within a WordPress edit post form (almost the whole page is).

That is also the reason why we used this method instead of creating our form (we did not
want to create a nested form).

Our submit_me() function is a typical interface to an Ajax call. We added some simple
optimization by testing if the search string was empty:

if ($('#insights-search').val().length==0)
{

And if the current query is different from the previously saved one:

if (query!=last_query)

The results are gathered by using the jQuery load method to call our external script:

$('#insights-results').load(query);

Our Ajax responder, insights-ajax.php, contains a function to search all the posts for a
given keyword and return a list of post titles, links and excerpts.

Our keyword is first escaped and then run through a MySQL query using the LIKE directive
to compare to post titles and content:

$search = $wpdb->escape($search);
$posts = $wpdb->get_results("SELECT ID, post_title, post_content
FROM $wpdb->posts WHERE post_status = 'publish' AND (post_title
LIKE '%$search%' OR post_content LIKE '%$search%') ORDER BY
post_title LIMIT 0,5");

We now have a list of links that we can copy and paste to the WordPress editor.

Chapter 6

[1�1]

It is certainly much faster than before, but we can speed the things up by inserting the links
directly into the WordPress tinyMCE editor.

Quick reference

admin_print_scripts-post.php: By referencing the page in the action
name, the action will be called only on the given page, reducing the server load
in the rest of the admin panel.

Interacting with tinyMCE
tinyMCE is a popular web-based WYSIWYG editor which WordPress uses for rich-text post
editing. tinyMCE has a JavaScript interface which we will use to access common functions
such as inserting the text directly to the editor.

Time for action – Insert the link into tinyMCE
Edit the insights.js file and add the functionality to insert the HTML directly
into tinyMCE:

 // Insights for WordPress plugin

 // send html to the editor
 function send_wp_editor(html)
 {
 var win = window.dialogArguments || opener || parent || top;
 win.send_to_editor(html);

 // alternatively direct tinyMCE command for insert
 // tinyMCE.execCommand("mceInsertContent", false, html);
 }

 function insert_link(html_link)
 {
 if ((typeof tinyMCE != "undefined") && (edt = tinyMCE.
 getInstanceById('content')) && !edt.isHidden())
 {

 var sel = edt.selection.getSel();

 if (sel)
 {
 var link = '' + sel
 + '';

 send_wp_editor(link);
 }
 }

1.

Insights for WordPress

[1�2]

 }

 // setup everything when document is ready
 jQuery(document).ready(function($)
 {

2. Assign the onclick event to the output link in insights-ajax.php:

 <p>
 ID) . '\');
 return false;" style="cursor:pointer;" >
 ' . $post->post_title . '

What just happened?
Because we included the tinyMCE integration, all you have to do now—to create a link—is
to select some text on your blog, search for a matching post, and just click on it. The link
will be automatically created. Something that took few minutes before now only takes a
few seconds.

Chapter 6

[1�3]

The post link is assigned the onclick event that sends the link to the insert_link()
JavaScript function:

<a onclick="insert_link('http://scriptcopy.com/devblog/?p=114');
return false;"> Digg this plugin

This function first checks if the tinyMCE editor is present:

function insert_link(html_link)
{
 if ((typeof tinyMCE != "undefined") && (edt = tinyMCE.
 getInstanceById('content')) && !edt.isHidden())
 {

We then get the selected text, create an HTML link and send it to the
send_wp_editor() function:

 if ((typeof tinyMCE != "undefined") && (edt =
 tinyMCE.getInstanceById('content')) && !edt.isHidden())
 {

 var sel = edt.selection.getSel();

 if (sel)
 {
 var link = ''
 + sel + '';

 send_wp_editor(link);
 }
 }
 }
}

We used the WordPress built in send_to_editor() function (declared in /wp-admin/js/
media_upload.js) to send HTML to the tinyMCE editor.

// send html to the editor
function send_wp_editor(html)
{
 var win = window.dialogArguments || opener || parent || top;
 win.send_to_editor(html);

 // alternatively direct tinyMCE command for insert
 // tinyMCE.execCommand("mceInsertContent", false, html);
}

Alternatively, we could have sent the data directly using tinyMCE's
mceInsertContent command.

tinyMCE is a huge project on its own, and you can find more on tinyMCE commands and
functions available at http://tinymce.moxiecode.com/.

Insights for WordPress

[1�4]

Quick reference

TinyMCE: A standalone web-based HTML editor. Visit the TinyMCE
documentation Wiki at: http://wiki.moxiecode.com/index.php/
TinyMCE:Index.

Using Flickr API
Just as easily as we used the Digg API in our first plugin, we will use the Flickr API to enhance
our Insights plugin further.

In order to use Flickr API, you need to first register for an API key at http://www.flickr.
com/services/api/keys/apply/.

Chapter 6

[1�5]

This in turn allows you to use all of the Flickr services including searching and uploading
of photos.

In order to complete our plugin, we will need to learn how to use the search functionality
of Flickr.

Time for action – Display Flickr photos
Let's introduce the Flickr API to our plugin. This will allow you to display a list of images from
Flickr and insert them into your article with a click of a mouse!

Modify the draw_panel() function to include two radio checkboxes allowing us
to select posts or images:

 function draw_panel()
 {

 echo '
 <p>Enter keywords you would like to search for and press the
 Search button.</p>

 <input name="insights-radio" type="radio" checked=""
 value="1" /><label> Posts </label>
 <input name="insights-radio" type="radio" value="2"/><label>
 Images </label>

 <input type="text" id="insights-search" name="insights-
 search" size="25" autocomplete="off" />

2. The next step is to change theThe next step is to change the submit_me() function to include the preferred
search mode in the query. So, we add another parameter named mode:

 function submit_me()
 {

 // check if the search string is empty
 if ($('#insights-search').val().length==0)
 {
 $('#insights-results').html('');
 return;
 }

 // get active radio checkbox
 var mode = $("input[@name='insights-radio']:checked").val();

 // create the query
 var query = InsightsSettings.insights_url + '/insights-
 ajax.php?search=' + escape($('#insights-search').val()) +
 '&mode=' + mode;

 // check if already called
 if (query!=last_query)

1.

Insights for WordPress

[1�6]

3. We also need to add a function to insert our image to the post, similar to how weWe also need to add a function to insert our image to the post, similar to how we
handled links earlier:

 // insert image to the editor
 function insert_image(link, src, title) {

 var size = document.getElementById('img_size').value;
 var img = '<img src="' + src + size +
 '.jpg" alt="' + title + '" title="' + title + '" hspace="5"
 border="0" />';

 send_wp_editor(img);
 }

4. All that is left now is to make changes to our Ajax responder,All that is left now is to make changes to our Ajax responder, insights-ajax.php,
in order to include Flickr support.

Let's start with parsing the mode parameter. If the mode is 2, we select the
image search:

 if ($_GET['search'])
 {

 // check security
 check_ajax_referer('insights-nonce');

 if ($_GET['mode'] == '2') // mode 2 is image search
 die(search_images($_GET['search']));
 else
 die(search_posts($_GET['search']));
 }
 else
 die('No results found.');

5. Next, let's create a function to handle Flickr photos. Since Flickr allows searchingNext, let's create a function to handle Flickr photos. Since Flickr allows searching
of images by both tag and description, we will include both the methods for
better results:

 // handle Flickr photos
 function search_images($keyword)
 {

 // search by tags
 $tag_images = search_flickr($keyword, 'tags');

 // search by description
 $text_images = search_flickr($keyword, 'text');

Chapter 6

[1�7]

6. Flickr allows us to see photos in several different predefined sizes, so we will add aFlickr allows us to see photos in several different predefined sizes, so we will add a
selection box before the images, to select the size we want to use in our article:

 // if any results
 if ($tag_images || $text_images)
 {
 // output image size selection box
 $output = '
 Image size:
<select id="img_size">
 <option value="_s">Thumbnail (75px)</option>
 <option value="_t">Small (100px)</option>
 <option value="_m" selected="selected">Normal (240px)</option>
 <option value="">Medium (500px)</option>
 <option value="_b">Large (1024px)</option>
 </select>

';

 // output images
 if ($tag_images)
 $output .= $tag_images;

 if ($text_images)
 $output .= $text_images;
 }
 else
 $output = 'No images matched "' . stripslashes($keyword) . '"';

 return $output;
 }

7. FFinally, we need the function to interact with Flickr—send the query, parse the
response and create the output. All that is handled by one function:

 // call the Flickr Api
 function search_flickr($keyword, $mode = 'tags', $count = 16)
 {
 // prepare Flickr query
 $params = array(
 'api_key' => '72c75157d9ef89547c5a7b85748106e4',
 'method' => 'flickr.photos.search',
 'format' => 'php_serial',
 'tag_mode' => 'any',
 'per_page' => $count,
 'license' => '4,6,7',
 'sort' => 'interestingness-desc',
 $mode => $keyword);
 $encoded_params = array();

Insights for WordPress

[1��]

 foreach ($params as $k => $v)
 {
 // encode parameters
 $encoded_params[] = urlencode($k) . '=' . urlencode($v);
 }

 // call the Flickr API
 $url = "http://api.flickr.com/services/rest/?" .
 implode('&', $encoded_params);

 $rsp = wp_remote_fopen($url);

 // decode the response
 $rsp_obj = unserialize($rsp);

 // if we have photos

 if ($rsp_obj && $rsp_obj['photos']['total'] > 0)
 {
 foreach ($rsp_obj['photos']['photo'] as $photo)
 {
 // link to photo page
 $link = 'http://www.flickr.com/photos/' .
 $photo['owner'] . '/' . $photo['id'];

 // img src link
 $src = 'http://farm' . $photo['farm'] .
 '.static.flickr.com/' . $photo['server'] . '/' .
 $photo['id'] . '_' . $photo['secret'];

 // create output
 $output .= '<img hspace="2" vspace="2" src="' . $src .
 '_s.jpg" title="' . $photo['title'] . '" onclick=
 "insert_image(\'' . $link . '\', \'' . $src . '\', \''
 . str_replace("'", "´", $photo['title']) . '\');"
 />';
 }
 }

 return $output;
 }

Chapter 6

[1��]

And the final result is a collection of photos meeting our search criteria:

What just happened?
We used the Flickr API to get a collection of photos matching our search phrase.

Using the API is easy—thanks to the extensive Flickr API documentation and lots
of examples. In our case, we used the flickr.photos.search method with
additional parameters:

 // call the Flickr Api
 function search_flickr($keyword, $mode = 'tags', $count = 16)
 {

 // prepare Flickr query
 $params = array(
 'api_key' => '72c75157d9ef89547c5a7b85748106e4',
 'method' => 'flickr.photos.search',
 'format' => 'php_serial',
 'tag_mode' => 'any',
 'per_page' => $count,
 'license' => '4,6,7',
 'sort' => 'interestingness-desc',
 $mode => $keyword);

Insights for WordPress

[1�0]

We can select how many photos we want (per page), what the format of the response
should be (format), how the images should be sorted (sort), and many other options.

Calling the API is a simple matter of using a URL:

 // call the Flickr API
 $url = "http://api.flickr.com/services/rest/?" . implode('&',
 $encoded_params);

 $rsp = wp_remote_fopen($url);

Since we asked for for php_serial data, we can use the unserialize() function to parse
the Flickr response:

 // decode the response
 $rsp_obj = unserialize($rsp);

F�nally, we create output based on the data we get from Flickr in a predefined form:

 // if we have photos
 if ($rsp_obj && $rsp_obj['photos']['total'] > 0)
 {
 foreach ($rsp_obj['photos']['photo'] as $photo)
 {
 // link to photo page
 $link = 'http://www.flickr.com/photos/' . $photo['owner']
 . '/' . $photo['id'];

 // img src link
 $src = 'http://farm' . $photo['farm'] . '.static.
 flickr.com/' . $photo['server'] . '/' . $photo['id'] .
 '_' . $photo['secret'];

Since we assigned the onclick event to every photo, we can easily add them to our editor
using the same tinyMCE functionality we used earlier.

 // create output
 $output .= '<img hspace="2" vspace="2" src="' . $src . '_s.
 jpg" title="' . $photo['title'] . '" onclick="insert_image
 (\'' . $link . '\', \'' . $src . '\', \'' . str_replace
 ("'", "´", $photo['title']) . '\');" />';
 }

The user can select the size, and we retrieve the value of the selected box.

function insert_image(link, src, title)
{
 var size = document.getElementById('img_size').value;

To retrieve the picture with the given size, we only need to form the URL differently.

Chapter 6

[1�1]

For every photo, we also create a link to the original author's page to attribute their work:

 var img = '<img src="' + src + size +
 '.jpg" alt="' + title + '" title="' + title + '" hspace="5"
 border="0" />';

 send_wp_editor(img);
}

And now with a click of the mouse, we can add a photo to our post.

Quick reference

Wp_remote_fopen($url): Get the contents of a remote page

Flickr API documentation: http://www.flickr.com/services/api/

Using third-party solutions—phpFlickr
Sometimes, there may be a possibility of using a third-party solution for your plugin; in this
case, it was the excellent phpFlickr API. It contains a set of PHP functions that make it easy to
handle Flickr functionalities.

Using an API like phpFlickr allows you to concentrate on top-level functions, while the API
author will worry about any changes Flickr may have on their own API.

However, when using such a package, you also need to consider the following:ackage, you also need to consider the following:you also need to consider the following:

You will still need to keep your plugin updated with the current version of the given
package to preserve compatibility.

The package will add to the size of your own plugin, in some cases considerably
(the current phpFlickr package is almost 400 KB on its own!).

Insights for WordPress

[1�2]

When making a decision on this, it is usually a compromise between speed and ease of
development with the considerations mentioned above.

Creating a tinyMCE plugin
tinyMCE is such a big editor that supports plugins on its own.

We will create a tinyMCE button on the editor toolbar with assigned functionality.

In ord�r to cr�at� a tinyMCE plugin, we need to follow the procedure as stated on the
tinyMCE plugin documentation page (http://wiki.moxiecode.com/index.php/
TinyMCE:Create_plugin/3.x) and also WordPress codex for implementing tinyMCE
plugins within WordPress (http://codex.wordpress.org/TinyMCE_Custom_Buttons).

Time for action – Adding a button to tinyMCE
Let's start by adding WordPress related tinyMCE handling. Edit our class
constructor and add:

 add_action('admin_print_scripts-post-new.php', array(&$this,
 'scripts_action'));
 add_action('admin_print_scripts-page-new.php', array(&$this,
 'scripts_action'));

 // add tinyMCE handlig
 add_action('init', array(&$this, 'add_tinymce'));

 }

2. This function will add the necessary filters to handle the plugin and the button:

 function add_tinymce()
 {
 if (! current_user_can('edit_posts') && ! current_user_can
 ('edit_pages'))
 return;

 if (get_user_option('rich_editing') == 'true')
 {
 add_filter('mce_external_plugins', array(&$this,
 'add_tinymce_plugin'));
 add_filter('mce_buttons', array(&$this,
 'add_tinymce_button'));
 }
 }

1.

Chapter 6

[1�3]

3. WordPress filters, mce_external_plugins and mce_buttons, are used to
register the plugin and the button:

 function add_tinymce_plugin($plugin_array)
 {
 $plugin_array['insights'] = $this->plugin_url. '
 /insights-mceplugin.js';
 return $plugin_array;
 }

 function add_tinymce_button($buttons)
 {
 array_push($buttons, "separator", 'btnInsights');
 return $buttons;
 }

4. You will need to have a 20x20 image for your button. You can call it button.gif and
save it in the i/ folder ('i' for images).

5. The plugin itself is a JavaScript module in which you define commands and buttons.
Let's create a file, insights-mceplugin.js:

 // Insights tinyMCE 3 plugin

 (function()
 {
 tinymce.create('tinymce.plugins.Insights',
 {

 init : function(ed, url)
 {

 // Register the command so that it can be invoked by
 using tinyMCE.activeEditor.execCommand('mceInsights');
 ed.addCommand('mceInsights', function()
 {
 ed.windowManager.open
 ({
 file : url + '/insights-popup.php',
 width : 650,
 height : 520,
 inline : 1
 },
 {
 plugin_url : url, // Plugin absolute URL
 });
 });

 // Register a button

Insights for WordPress

[1�4]

 ed.addButton('btnInsights',
 {
 title : 'Insights',
 cmd : 'mceInsights',
 image : url + '/i/button.gif'
 });

 },

 // Returns information about the plugin as a name/value array.
 getInfo : function()
 {
 return
 {
 longname : 'Insights for WordPress',
 author : 'Vladimir Prelovac',
 authorurl : 'http://www.prelovac.com/vladimir',
 infourl : 'http://www.prelovac.com/vladimir/
 wordpress-plugins/insights',
 version : "0.1"
 };
 }
 });

 // Register plugin
 tinymce.PluginManager.add('insights', tinymce.plugins.Insights);
 })();

6. We will have a pop-up window when the button is pressed, so we also need a
corresponding PHP file. Create the insights-popup.php file with simple content
just for now:

 <html>
 <body>
 Hello World!
 </body>
 </html>

The result is the I button on the tinyMCE toolbar, which opens a specified document
in a new window within our document.

Chapter 6

[1�5]

What just happened?
We have created a tinyMCE plugin which opens a window in our editor.

In order to hook our plugin and button into tinyMCE, we must first use the two WordPress
tinyMCE filters, mce_external_plugins and mce_buttons:

add_filter('mce_external_plugins', array(&$this,
'add_tinymce_plugin'));
add_filter('mce_buttons', array(&$this, 'add_tinymce_button'));

To declare the tinyMCE plugin, we need to provide the URL to the plugin.js file:

function add_tinymce_plugin($plugin_array)
{

 $plugin_array['insights'] = $this->plugin_url. '/
 insights-mceplugin.js';
 return $plugin_array;
}

To add the button, we pass our button identifier to the function (the same as the one we
used in the plugin.js file).

We also pass an extra separator button to separate our button from the rest:

function add_tinymce_button($buttons)
{
 array_push($buttons, "separator", 'btnInsights');
 return $buttons;
}

Insights for WordPress

[1�6]

The tinyMCE plugin JavaScript file is used to initialize the plugin and define its functionality.

We cr�at�d a n�w tinyMCE command, and named it mceInsights. It opens a window with
our insights-popup.php.

ed.addCommand('mceInsights', function()
{
 ed.windowManager.open
 ({
 file : url + '/insights-popup.php',
 width : 650,
 height : 520,
 inline : 1
 },
 {
 plugin_url : url, // Plugin absolute URL
 });
});

You can specify the width and the height of the new window. The inline parameter
specifies if the file will be opened in the current document or in a new browser window.

The command function can be anything you want, and does not have to create a window at
all. For example:

ed.addCommand('mceInsights',do_something);

Where do_something is a JavaScript function that is executed when the command is called.

To register a button, we need to declare a unique identifier, btnInsights, and associate the
command, mceInsights, which will be executed when the button is clicked, on the path to
the button image file, /i/button.gif.

// Register a button
 ed.addButton('btnInsights',
 {
 title : 'Insights',
 cmd : 'mceInsights',
 image : url + '/i/button.gif'
 });

That covers the creation of a tinyMCE button and a plugin. Let's move the functionality of
our WordPress panel to the new window now.

Chapter 6

[1�7]

Create a functional tinyMCE plugin window
Our tinyMCE window will be opened in a new frame or in a new window. This means that it
will be a standalone HTML document.

So we will need to call all the necessary .js files such as jQuery and define all other
elements of a HTML file.

Time for action – Open a tinyMCE window
Let's create an example tinyMCE window.

<?php
require_once('../../../wp-config.php');
?>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Insights</title>

 <script type='text/javascript'>
/* <![CDATA[*/
 var insights_url="<?php echo get_option('siteurl') ?>
 /wp-content/plugins/insights";
/*]]> */
</script>

 <script type='text/javascript' src='<?php echo get_
option('siteurl') ?>/wp-includes/js/jquery/jquery.js'></script>

 <script type="text/javascript" src="<?php echo get_
option('siteurl') ?>/wp-content/plugins/insights/insights.js"></
script>

 <link rel="stylesheet" href="<?php echo get_option('siteurl')
?>/wp-includes/js/tinymce/themes/advanced/skins/wp_theme/dialog.
css?ver=311"/>

</head>

<body>
 <p>Enter keywords you would like to search for and press Search
button.</p>

 <input name="insights-radio" type="radio" checked="" value="1"
/><label> Posts </label>
 <input name="insights-radio" type="radio" value="2"/><label>
Images </label>

 <input type="text" id="insights-search" name="insights-search"
size="25" />

Insights for WordPress

[1��]

 <input id="insights-submit" class="button" type="button"
value="Search" autocomplete="off" />

 <div id="insights-results"></div>

</body>
</html>

The result is a plugin form with a functionality similar to that of our original
WordPress panel. The two can exist together.

What just happened?
We created a new window within the editor, and because the window opens as a new
independent document, we need to specify all the required HTML elements.

Chapter 6

[1��]

That means we also need to manually include the necessary JavaScript files, jQuery and our also need to manually include the necessary JavaScript files, jQuery and our
insights.js file:file:

<script type='text/javascript' src='<?php echo get_option
('siteurl') ?>/wp-includes/js/jquery/jquery.js'></script>

<script type="text/javascript" src="<?php echo get_option
('siteurl') ?>/wp-content/plugins/insights/insights.js"></script>

We can see that this is not as elegant anymore as we are now stepping outside WordPress.
So we lose a part of the functionality as well. Also, every time this window is opened, certain
waiting time is involved as the scripts need to be read and parsed again. You may have
already experienced that in working with the tinyMCE plugins.

On the other hand, you can transform the editor into virtually anything as it allows you to
change almost every one of its aspects.

Quick reference

tinyMCE development links: http://wiki.moxiecode.com/index.
php/TinyMCE:Create_plugin/3.x

http://codex.wordpress.org/TinyMCE_Custom_Buttons

mce_external_plugins , mce_buttons: WordPress filters for registering
tinyMCE plugins and buttons

tinyMCE: A standalone web-based HTML editor. Visit the tinyMCE
documentation Wiki at http://wiki.moxiecode.com/index.php/
TinyMCE:Index

Have a go hero
Another plugin is behind us, and what a powerful one!

But with a plugin like this, it is also easy to find new features you could add.

For example:

Creating the settings page with options to select the number of posts and
images shown

Enhancing the plugin with other search options such as YouTube videos, Wikipedia,
Google Blog Search, and so on

Insights for WordPress

[200]

Summary
Insights is a productivity enhancing plugin. We have seen how to improve the productivity ofproductivity enhancing plugin. We have seen how to improve the productivity of
your post editor by hooking directly to the WordPress edit pages and using Ajax to generate
fast searches.

Our plugin helps us find posts on our blog, so we can link to them quickly.

We discovered Flickr API and the ways to use it in order to show relevant images to decorate
our posts with.

And finally, we learned how to integrate our plugin with the WordPress panels and the
tinyMCE editor.

Let's underline the most important lessons from this chapter: important lessons from this chapter:

WordPress edit page: Adding panels to the various sections of the WordPress
edit page

tinyMCE integration: Adding text to WordPress editor

tinyMCE buttons and plugins: Creating a button directly on the tinyMCE editor
toolbar and assigning it certain functionality

Search Flickr: Flickr is the world's largest photo repository and we now know how to Flickr is the world's largest photo repository and we now know how toFlickr is the world's largest photo repository and we now know how to
use it

WordPress has many uses but do you think can we turn it into a CMS (Content Management
System)? Let's explore that with our final plugin.

7
Post Types

In our next (and final) plugin, we are going to dig even deeper into the WordPress engine and plugin, we are going to dig even deeper into the WordPress engine andplugin, we are going to dig even deeper into the WordPress engine and
discover ways to further modify various aspects of the backend to match our specific needs. ways to further modify various aspects of the backend to match our specific needs.ways to further modify various aspects of the backend to match our specific needs. various aspects of the backend to match our specific needs.various aspects of the backend to match our specific needs.

We will also explore the possibility of turning WordPress into a explore the possibility of turning WordPress into aexplore the possibility of turning WordPress into a Content Management
System (CMS), using methods provided to us by WordPress.

Although WordPress is made primarily for the purpose of handling a blog, this basic of handling a blog, this basicof handling a blog, this basic
functionality can be easily expanded to handle almost anything you want. The WordPress to handle almost anything you want. The WordPressto handle almost anything you want. The WordPress
backend is very flexible, and can be customized to accommodate a lot of different purposes. very flexible, and can be customized to accommodate a lot of different purposes.very flexible, and can be customized to accommodate a lot of different purposes.
For example, you could create a job portal or an e-commerce quite easily with WordPress,
and those are just some of the possibilities.

In this chapter, you will learn how to: you will learn how to:you will learn how to:

Implement localization support for users of other languages

Customize menus and submenus to change the way the WordPress backend looks

Handle file and image uploads

Use custom fields to add custom hidden information to your posts

Customize the manage page out�ut

Use the error message class to handle display of errors

Use built-in WordPress capabilities to handle user permissions

Post Types

[202]

And you will do all of these by developing a developing a Post Types plugin that provide pre-defined post
templates to add a photo or a link quickly to your blog.

The concepts you will learn in this chapter will help you discover the not so obvious
capabilities of the WordPress platform that allows you to transform it into software—capable
of handling much more than just a blog.

Handling localization
Localization is an important part of WordPress development as not everyone using
WordPress speaks English (WordPress comes in different languages too).ordPress speaks English (WordPress comes in different languages too). (WordPress comes in different languages too).WordPress comes in different languages too). in different languages too).different languages too). languages too).

Localization involves just a small amout of the extra work on your side, since the translationsmall amout of the extra work on your side, since the translation
itself is usually done by volunteers (people who like and use your plugin)..

You only need to provide some base files for translation, and don't be surprised when youtranslation, and don't be surprised when you
start getting translated files sent to your inbox..

Chapter 7

[203]

WordPress uses the GNU gettext localization framework, which is a standardized method of
managing translations, and we will make use of it in our plugin.se of it in our plugin.

Time for action – Create plugin and add localization
We will start by defining our plugin as usual, and then add localization support.

Cr�at� a n�w fold�r call�d post-types.

Cr�at� a n�w post-types.php file with the following content:

 <?php

 // pluginname Post Types
 // shortname PostTypes
 // dashname post-types

 /*
 Plugin Name: Post Types
 Version: 0.1
 Plugin URI:
 http://www.prelovac.com/vladimir/wordpress-plugins/post-types
 Author: Vladimir Prelovac
 Author URI: http://www.prelovac.com/vladimir
 Description: Provides pre-defined post templates to quickly add a
 photo or a link to your blog

 */

 // Avoid name collisions.
 if (!class_exists('PostTypes')) :

 class PostTypes
 {

 // localization domain
 var $plugin_domain='PostTypes';

 // Initialize the plugin
 function PostTypes()
 {
 global $wp_version;

 $exit_msg='Post Types requires WordPress 2.5 or newer.

 Please update!';

1.
2.

Post Types

[204]

 if (version_compare($wp_version,"2.5","<"))
 {
 exit ($exit_msg);
 }

 }

 // Set up default values
 function install()
 {
 }
 }
 endif;

 if (class_exists('PostTypes')) :

 $PostTypes = new PostTypes();
 if (isset($PostTypes))
 {
 register_activation_hook(__FILE__, array(&$PostTypes,
 'install'));
 }
 endif;

3. Adding localization is fairly simple. First we need to add a function to our class that
will load the translation file:

 // Localization support
 function handle_load_domain()
 {
 // get current language
 $locale = get_locale();

 // locate translation file
 $mofile = WP_PLUGIN_DIR.'/'.plugin_basename(dirname
 (__FILE__)).'/lang/' . $this->plugin_domain . '-' .
 $locale . '.mo';

 // load translation
 load_textdomain($this->plugin_domain, $mofile);
 }

Chapter 7

[205]

4. Since loading the file takes resources, we will load it only when the translation is
actually needed by checking the current page ($pagenow) and the list of pages
pages where we need translations ($local_pages array):

 // Initialize the plugin
 function PostTypes()
 {
 global $wp_version, $pagenow;

 // pages where our plugin needs translation
 $local_pages=array('plugins.php');

 if (in_array($pagenow, $local_pages))
 $this->handle_load_domain();

 $exit_msg='Post Types requires WordPress 2.5 or newer.

 Please update!';

5. Finally, to use the available translations, we only need to enclose our text in the
__() function:

 $this->handle_load_domain();

 $exit_msg=__('Post Types requires WordPress 2.5 or newer.

 Please update!', $this->plugin_domain);

 if (version_compare($wp_version,"2.5","<"))

What just happened?
We have added localization support to our plugin by using the provided
localization functions provided by WordPress.

Currently, we have only localized the error message for WordPress version checking: we have only localized the error message for WordPress version checking:we have only localized the error message for WordPress version checking:

$exit_msg=__('Post Types requires WordPress 2.5 or newer.

Please update!', $this->plugin_domain);

We have done that by enclosing the text in thedone that by enclosing the text in the __() function, which takes the text as
localized, and enclosing our unique localization domain or context within the WordPress enclosing our unique localization domain or context within the WordPress our unique localization domain or context within the WordPressour unique localization domain or context within the WordPress
localization files.

To load localization, we created a handle_load_domain function..

Post Types

[206]

The way it works is to first get the current language in use by using the works is to first get the current language in use by using theworks is to first get the current language in use by using thecurrent language in use by using the in use by using the
get_locale() function:function:

// Localization support
function handle_load_domain()
{
 // get current language
 $locale = get_locale();

Then it creates the language file name by adding together the plugin dir, plugin folder, and
the lang folder where we will keep the translations. The file name is derived from the
locale, and the *.mo language file extension:

 // locate translation file
 $mofile = WP_PLUGIN_DIR.'/'.plugin_basename
 (dirname(__FILE__)).'/lang/' . $this->plugin_domain .
 '-' . $locale . '.mo';

Finally, the localization file is loaded using the load_textdomain() function, taking our
text domain and .mo file as parameters.

 // load translation
 load_textdomain($this->plugin_domain, $mofile);

Optimizing localization usage
The translation file needs to be loaded as the first thing in the plugin—before you output any
messages. So we have placed it as the first thing in the plugin constructor.first thing in the plugin constructor. in the plugin constructor.

Since loading the translation file occurs at the beginning of the constructor, which is
executed every time, it is a good idea to select only the pages where the translation will bethe pages where the translation will be where the translation will be
needed in order to preserve resources. resources.resources.

WordPress provides the global variable,ess provides the global variable,global variable, $pagenow, which holds the name of the current
page in use.

We can check this variable to find out if we are on a page of interest. In the case of plugincan check this variable to find out if we are on a page of interest. In the case of plugin this variable to find out if we are on a page of interest. In the case of plugin
activation error message, we want to check if we are on the plugins page defined as want to check if we are on the plugins page defined aswant to check if we are on the plugins page defined as
plugins.php in WordPress:

// pages where our plugin needs translation
$local_pages=array('plugins.php');

if (in_array($pagenow, $local_pages))
 $this->handle_load_domain();

Chapter 7

[207]

You can optimize this further by querying the page parameter, if it exists, as this will—in can optimize this further by querying the page parameter, if it exists, as this will—incan optimize this further by querying the page parameter, if it exists, as this will—inquerying the page parameter, if it exists, as this will—in
most cases—point precisely to the usage of your page (of your page (of your page (page (plugins.php?page=photo):

if ($_GET['page']=='photo')

Optimizing the usage of the translation file is not required; it's just a matter of generally
loading only what you need in order to speed up the whole system.

How does localization work?
For localization to work, you need to provide .po and .mo files with your plugins. These files
are created by using external tools such as PoEdit, which we will cover in more detail in the
next chapter.

These tools output the compiled translation file, which can be then loaded by using the tools output the compiled translation file, which can be then loaded by using thetools output the compiled translation file, which can be then loaded by using thecompiled translation file, which can be then loaded by using the
load_textdomain() function. This function accepts a language domain name and a path
to the file.

In order to use translated messages, you can use the __($text, $domain)
and _e($text, $domain) functions. The _e() function is just an equivalent of

echo __();

These functions accept two parameters, the first being the desired text, and the second, the
language domain where the message will be looked for.

If no translation was found, the text is just printed out as it is. This means that you can, the text is just printed out as it is. This means that you canhe text is just printed out as it is. This means that you can
always safely use these functions, even if you do not provide any translation files. This will you do not provide any translation files. This willyou do not provide any translation files. This will
prepare the plugin for future translation.

Quick reference

$pagenow: A global variable holding the name of the currently displayed page
within WordPress.

get_locale(): A function which gets the currently selected language.

load_textdomain(domain, filepath): This function loads the
localization file and adds it to the specified language domain identifier.

_(); _e(): These functions are used to find the output text using a given
language domain.

More information about WordPress localization is available at:
http://codex.wordpress.org/Translating_WordPress.

Post Types

[20�]

Adding a post template
Our next goal is to add a simple post template to the WordPress write page.next goal is to add a simple post template to the WordPress write page. is to add a simple post template to the WordPress write page.add a simple post template to the WordPress write page. post template to the WordPress write page.emplate to the WordPress write page.e to the WordPress write page.the WordPress write page. write page.

The purpose of a custom post template is to handle writing a quick post in case we don'tof a custom post template is to handle writing a quick post in case we don't
need the whole Write Post interface, for reasons of speed or customization. Post interface, for reasons of speed or customization.

The great thing about post templates is that they can be customized to accept any post templates is that they can be customized to accept any
information you want—for example, job portal listings or inventory items.you want—for example, job portal listings or inventory items.

Let's start with a simple with a simple Add Photo template where we want to be able to just set the title,
specify a photo and publish immediately. immediately..

Time for action – Create 'add photo' post template
In order to create the post template, we need a place for it in the menus. We will
use the Write menu and place a submenu there:

 // add admin_menu action
 add_action('admin_menu', array(&$this, 'admin_menu'));
 }

 // Hook the admin menu
 function admin_menu()
 {

 // submenu pages
 add_submenu_page('post-new.php', __('Add Photo',
 $this->plugin_domain) , __('Photo', $this->plugin_domain) , 1 ,
 'add-photo', array(&$this, 'display_form'));
 }

2. Since we have localized text on our new page, we want to make sure that the
localization file is loaded on this page, so we will add it to our $local_pages array:

 function PostTypes()
 {
 global $wp_version, $pagenow;

 // pages where our plugin needs translation
 $local_pages=array('plugins.php', 'post-new.php');

 if (in_array($pagenow, $local_pages))

3. Let's create the template/ folder and call our new write post template,
photo.php.

1.

Chapter 7

[20�]

4. We will start the template with the boxes that display the information :

 <div class="wrap">

 <?php if (!empty($error)) : ?>
 <div id="message" class="error fade">
 <p><?php echo $error; ?></p>
 </div>
 <?php elseif (!empty($published_id)) : ?>
 <div id="message" class="updated fade">
 <p><?php _e('Photo added.',$this->plugin_domain);
 ?> <a href="<?php echo get_permalink(
 $published_id);
 ?>"><?php _e('View post',$this->plugin_domain); ?>
 »</p>
 </div>
 <?php endif; ?>

 <h2><?php _e('Add Photo',$this->plugin_domain); ?></h2>
 <form action="" method="post" enctype="multipart/form-data">
 <?php wp_nonce_field($_GET['page']);

5. Then add the Publish button using the WordPress CSS classes:

 <div id="poststuff">

 <div class="submitbox" id="submitpost">
 <div id="previewview"></div>
 <div class="inside"></div>
 <p class="submit"><input name="publish" type="submit"
 class="button button-highlighted" tabindex="5" value="
 <?php _e('Publish', $this->plugin_domain); ?>" /></p>
 </div>

6. Finally, we add the input fields to the template—title, photo URL or upload field,
and description:

 <div id="post-body">
 <div id="titlediv">
 <h3><?php _e('Title',$this->plugin_domain); ?></h3>
 <div id="titlewrap"><input type="text" name="title" tabindex
 ="1" value="<?php echo $title; ?>" id="title" /></div>
 </div>

Post Types

[210]

 <div class="postbox ">
 <h3><?php _e('Photo',$this->plugin_domain); ?></h3>
 <div class="inside">
 <p>
 <label for="url"><?php _e('Enter URL:
 ',$this->plugin_domain);
 ?></label>

 <input style="width: 415px" tabindex="2" type="text"
 name="url" id="url" value="<?php echo $url; ?>" />
 </p>
 <?php if ($uploadfile) : ?>
 <p>
 <label for="upload"><?php _e('or Upload Photo:',$this-
 >plugin_domain); ?></label>

 <input type="file" tabindex="3" name="upload" id=
 "upload" />
 </p>
 <?php endif; ?>
 </div>
 </div>

 <div class="postbox">
 <h3><?php _e('Description (optional)'
 ,$this->plugin_domain); ?>
 </h3>
 <div class="inside">
 <textarea name="description" id="description" rows="5"
 style="width: 415px" tabindex="4"><?php echo
 $description; ?>
 </textarea>
 </div>
 </div>

 </div>
 </div>
 </form>
 </div>

7. The template is done! To display it, we will create a display_form() function in
our main plugin class.

 // Display the Post form
 function display_form()
 {
 global $wpdb;

Chapter 7

[211]

 $page=$_GET['page'];

 switch ($page) :

 case 'add-photo':

 include('template/photo.php');
 break;

 endswitch;

 }

The function does not process any information yet; it just prints out the template.

The end result is our new post template in the Write menu.

What just happened?
We have just created a quick photo post template. For the sake of simplicity, the form has
been designed to have only three fields.

Post Types

[212]

When creating a backend form, you can design it any way you want, but you can also decide
to use the WordPress CSS classes. If you go for WordPress classes, your forms will blend �nto
the backend and look more professional.

Backend CSS classes
The standard classes of WordPress Backend CSS (up to version 2.6) use wrap for displaying
forms, and use poststuff to create the wrapper.

submitbox is the righthand side column with the Publish button that contains extra classes
such as previewview and inside, and the button itself is of the class, submit:

<div class="submitbox" id="submitpost">
<div id="previewview"></div>
<div class="inside"></div>
 <p class="submit"><input name="publish" type="submit"
 class="button button-highlighted" tabindex="5" value="
 <?php _e('Publish', $this->plugin_domain); ?>" /></p>
</div>

The main form classes are post-body followed by titlediv and titlewrap for handling
post titles:

<div id="titlediv">
 <h3><?php _e('Title',$this->plugin_domain); ?></h3>
<div id="titlewrap"><input type="text" name="title" tabindex=
 "1" value="<?php echo $title; ?>" id="title" /></div>
</div>

Finally, we have postbox and inside for handling fields and groups of information:

<div class="postbox">
 <h3><?php _e('Description (optional)',$this->
 plugin_domain); ?></h3>
 <div class="inside">
 <textarea name="description" id="description" rows="5" style=
 "width: 415px" tabindex="4"><?php echo $description; ?>
 </textarea>
 </div>
</div>

Since the WordPress backend evolves quickly, you should check the styling classes on all the
new versions and adjust your plugin accordingly.

Chapter 7

[213]

Handling file and image uploads
WordPress provides ready functions for handling file uploads and image manipulation.

It is always best practice to use built-in WordPress functions for checking the file, moving itbest practice to use built-in WordPress functions for checking the file, moving it
and setting file permissions. We will use these functions in the following example. file permissions. We will use these functions in the following example. will use these functions in the following example.will use these functions in the following example.

Time for action – Handle uploaded image
Let's add a function to handle images uploaded by the user. The function uses the
built-in wp_handle_upload() function:function:

 function handle_image_upload($upload)
 {
 // check if image
 if (file_is_displayable_image($upload['tmp_name']))
 {
 // handle the uploaded file
 $overrides = array('test_form' => false);
 $file=wp_handle_upload($upload, $overrides);
 }
 return $file;
 }

2. Now, we need to include the image to our post. Let's expand thethe image to our post. Let's expand the display_form()
function to include handling of uploaded images and inserting a new post with
attachment::

 // Display the Post form
 function display_form()
 {

 global $wpdb;

 $page=$_GET['page'];
 $published=isset($_POST['publish']);
 $title=$_POST['title'];
 $description=$_POST['description'];

 if ($published)
 {
 check_admin_referer($page);
 $post_status='publish';
 }

 switch ($page) :

 case 'add-photo':
 // WordPress upload dir (wp-content/uploads)

1.

Post Types

[214]

 $uploads = wp_upload_dir();

 // check permissions
 if (is_writable($uploads['path']))
 {
 $uploadfile=true;
 }
 $url=$_POST['url'];
 $upload=$_FILES['upload'];

 if ($published)
 {
 if (!empty($title) && (!empty($upload['tmp_name']) ||
 !empty($url)))
 {
 // if file uploaded
 if ($upload['tmp_name'])
 {
 // handle uploaded image
 $file=$this->handle_image_upload($upload);

 if ($file)
 {
 $image_url=$file['url'];

 // create a thumbnail
 $size='medium';
 $resized = image_make_intermediate_size($file
 ['file'], get_option("{$size}_size_w"), get_option
 ("{$size}_size_h"), get_option("{$size}_crop"));

 if ($resized)
 $image_src=$uploads['url'] .'/'.$resized['file'];
 else
 $image_src=$image_url;

 $image_uploaded=true;
 }
 else
 $error=__('Please upload a valid image.',$this-
 >plugin_domain);
 }
 else // if file uploaded
 {
 $image_url=$url;
 $image_src=$url;
 }

 if (!$error)
 {

Chapter 7

[215]

 // create post content
 $content='<img src="'.
 $image_src.'"><p>'.$description.'</p>';

 // post information
 $data = array
 (
 'post_title' => $wpdb->escape($title),
 'post_content' => $wpdb->escape($content),
 'post_status' => $post_status
);

 // insert post
 $published_id = wp_insert_post($data);
 // add a custom field
 add_post_meta($published_id, "post-type", __
 ('Photo',$this->plugin_domain)

 if ($image_uploaded)
 {
 $attachment = array
 (
 'post_mime_type' => $file['type'],
 'guid' => $image_url,
 'post_parent' => $published_id,
 'post_title' => $wpdb->escape($title),
 'post_content' => $wpdb->escape($description),
);

 // insert post attachment
 $aid = wp_insert_attachment($attachment, $file
 ['file'], $published_id);

 // update metadata
 if (!is_wp_error($aid))
 {
 wp_update_attachment_metadata
 ($aid, wp_generate_attachment_metadata
 ($aid, $file['file']));
 }

 }

 // clear all fields
 $title=''; $url=''; $description='';
 }
 }
 else

Post Types

[216]

 $error=__('You need to enter a title and add a
 photo.',$this->plugin_domain);
 }

 include('template/photo.php');
 break;

 endswitch;

 }

The above code enables functionality for checking uploads, handling the uploaded file, and
adding it to the post. This means that you can now start creating photo posts:

Chapter 7

[217]

By doing this, the photo post will show up in your blog:the photo post will show up in your blog: up in your blog:

What just happened?
We have added support for uploading the files and also inserted the image to our post.

Let's analyze how this works.

First, we want to check if the upload dir is writeable. The location of the WordPress
upload dir can be obtained by using the wp_upload_dir() function:

switch ($page) :

case 'add-photo':
// WordPress upload dir (wp-content/uploads)
$uploads = wp_upload_dir();

Post Types

[21�]

If the folder is writeable, we will show the file upload field on the form by setting the
$uploadfile variable to true.

// WordPress upload dir (wp-content/uploads)
 $uploads = wp_upload_dir();

// check permissions
if (is_writable($uploads['path']))
{
 $uploadfile=true;
}

Now comes the part when we check if the post was published properly, and if there was an
image uploaded with it.

The information about uploaded file(s) is stored in the global PHP $_FILES variable, and we
are interested in the upload reference as that is the name of our upload file field.

$url=$_POST['url'];
 $upload=$_FILES['upload'];

if ($published)
{
 if (!empty($title) && (!empty($upload['tmp_name']) || !empty($url)))
 {
 // if file uploaded
 if ($upload['tmp_name'])
 {
 // handle uploaded image

 $file=$this->handle_image_upload($upload);

The handle_image_upload() function uses another built-in WordPress function to check
if the uploaded file—file_is_displayable_image()—is really an image.

function handle_image_upload($upload)
{
 // check if image

 if (file_is_displayable_image($upload['tmp_name']))

 {

Further on, we call the wp_handle_upload() function. The purpose of this function is to
check the uploaded file (type, size etc) and move it to the WordPress uploads folder.

Chapter 7

[21�]

You can specify certain overrides; in this case we are overriding the test for form action, as
we are using a custom form.

 if (file_is_displayable_image($upload['tmp_name']))
 {

 // handle the uploaded file

 $overrides = array('test_form' => false);

 $file=wp_handle_upload($upload, $overrides);

 }
 return $file;
}

The wp_handle_upload() function handles everything for our file, including moving it to
the upload directory and setting correct permissions. So, we do not need to worry about it. It
also returns a reference to the newly created file, which contains useful information such as
the new filename and a URL to the file, which we will need for displaying the photo.

In the next piece of code back in the main function, we will create a thumbnail of the
uploaded image to show it in the post and link it to the original picture.

Let's see how this is done:

 if ($file)
 {
 $image_url=$file['url'];

 // create a thumbnail
 $size='medium';

 $resized = image_make_intermediate_size($file['file'],
 get_option("{$size}_size_w"), get_option("{$size}_size_h"),
 get_option("{$size}_crop"));

 if ($resized)
 $image_src=$uploads['url'] .'/'.$resized['file'];
 else
 $image_src=$image_url;

 $image_uploaded=true;
 }
 else
 $error=__('Please upload a valid image.',$this->plugin_domain);
}

We use the WordPress image_make_intermediate_size() function, which accepts
the filename and resizing information as parameters. We chose to use the medium size,
which is already defined in the WordPress backend; height and width are stored in the
medium_size_h and medium_size_w options, respectively.

Post Types

[220]

Settings for the upload folder (Uploading) and Image sizes can be found on the WordPress
Miscellaneous Settings page:

We also need to handle cases where the picture is specified by a URL, in which case we will
just use the provided information:

 else
 $error=__('Please upload a valid image.',$this->plugin_domain);
 }

 else // if file uploaded
 {

 $image_url=$url;

 $image_src=$url;

 }

Chapter 7

[221]

Now, when we have the picture information, we can create the post content and insert a
new post:

// create post content
$content='
<p>'.$description.'</p>';

// post information
$data = array
(
 'post_title' => $wpdb->escape($title),
 'post_content' => $wpdb->escape($content),
 'post_status' => $post_status
);

// insert post
$published_id = wp_insert_post($data);

We will insert a custom field for our post, call it post-type and specify that it is
a Photo.

// add a custom field
add_post_meta($published_id,
"post-type",__('Photo',$this->plugin_domain));

Custom fields allow us to insert any type of information to WordPress posts and pages, and
in fact allow us transform WordPress into a CMS. We will get back to the custom fields in
more detail later.

We have uploaded and processed the image. If we want to follow it up all the
way, we want to add our photo to the WordPress Media Library by using the
wp_insert_attachment function.

if ($image_uploaded)
{
 $attachment = array
 (
 'post_mime_type' => $file['type'],
 'guid' => $image_url,
 'post_parent' => $published_id,
 'post_title' => $wpdb->escape($title),
 'post_content' => $wpdb->escape($description),
);

 // insert post attachment
 $aid = wp_insert_attachment($attachment, $file['file'],
 $published_id);

 // update metadata

Post Types

[222]

 if (!is_wp_error($aid))
 {

 wp_update_attachment_metadata($aid,
 wp_generate_attachment_metadata($aid, $file['file']));

 }

After we have done this, all new photos will turn up in the in the WordPress Media Library
(Manage Media) looking like this:

Quick reference

wp_handle_upload(&$file, $overrides): A function which handles
user uploaded files. Takes information provided by the $_FILES[] variable
and the desired overrides (test_form, test_type, test_size).

file_is_displayable_image($file): It checks if the file is an image
that WordPress can display.

wp_upload_dir(): A function which returns the path to the WordPress
uploads folder.

image_make_intermediate_size($file, $width, $height,
$crop=false): A function which resizes the image and returns the new
file metadata.

add_post_meta($post_id, $meta_key, $meta_value,
$unique): The function used to add a custom field to the specified post. The
field is identified with a key ($meta_key) and its value ($meta_value).

wp_insert_attachment($attachment, $filename, $parent_
post_id): This function inserts an attachment for a post, into the Media
Library. More information can be found at: http://codex.wordpress.
org/Function_Reference/wp_insert_attachment

wp_update_attachment_metadata($post_id, $data): This
function updates attachment metadata, usually used in conjunction with
wp_generate_attachment_metadata.

wp_generate_attachment_metadata($attachment_id, $file):
This function generates the post Image attachment Metadata.

Chapter 7

[223]

Using custom fields
Custom fields are used in WordPress to store additional information about a post. They are
normally available to you in the Write Post screen as Key/Value pairs.

You can use custom fields to display information on the site or for some other kind of special
processing (like storing a post's expiration date).

Adding custom fields
To add a custom field from the code, you can use the add_post_meta() function:

add_post_meta($post_id, $meta_key, $meta_value, $unique)

post_id: This parameter contains the ID of the post where the custom field is
to be added.

meta_key: This parameter contains the key identifier (such as mood, job-type).

meta_value: This parameter contains the value for the key (such as happy,
temporarily, and so on).

unique: This parameter contains is used to decide whether you want this key to be
unique. WordPress supports multiple values for the same key, and if the value set is
unique, only one instance for the given key is allowed.prev_value: This contains
the previous value of the key, which helps us to differentiate the values if the key is
not unique.

To update existing fields, you can use the update_post_meta() function:

update_post_meta($post_id, $meta_key, $meta_value, $prev_value)

Post Types

[224]

Retrieving custom fields
To retrieve custom fields, you can use one of the following functions:

get_post_custom($post_id): This function returns a multidimensional array with all the
custom fields of a particular post or page.

get_post_custom_keys($post_id): This function returns an array containing the keys
of all custom fields of a particular post or page.

get_post_custom_values($key, $post_id): This function gets the list of values for a
particular key on the current post.

get_post_meta($post_id, $key, $single = false): This function gets the value
for the specified key in a given post. If $single is true, then only the first key is returned
(even if there are more).

For example:

get_post_meta(223, 'mood', false);

Quick reference

More on Custom Fields – http://codex.wordpress.org/Using_
Custom_Fields

Quick post a link
Add�ng the link post type is easy when we know how to display the form and handle it. So,
let's quickly add the link template to our plugin:

Time for action – Add link template
Lets create template/link.php file

 <div class="wrap">

 <?php if (!empty($error)) : ?>
 <div id="message" class="error fade">
 <p><?php echo $error; ?></p>
 </div>
 <?php elseif (!empty($published_id)) : ?>
 <div id="message" class="updated fade">
 <p><?php _e('Link added.',$this->plugin_domain);
 ?>

1.

Chapter 7

[225]

 <a href="<?php echo get_permalink(
 $published_id);
 ?>"><?php _e('View post',$this->plugin_domain); ?>
 »</p>
 </div>
 <?php endif; ?>

 <h2><?php _e('Add Link',$this->plugin_domain); ?></h2>
 <form action="" method="post">
 <?php wp_nonce_field($_GET['page']); ?>

 <div id="poststuff">

 <div class="submitbox" id="submitpost">
 <div id="previewview"></div>
 <div class="inside"></div>
 <p class="submit"><input name="publish" type="submit"
 class="button button-highlighted" tabindex="4" value="<?php
 _e\('Publish', $this->plugin_domain); ?>" /></p>
 </div>

 <div id="post-body">

 <div id="titlediv">
 <h3><?php _e('Title (optional)',$this->plugin_domain); ?>
 </h3>
 <div id="titlewrap"><input type="text" name="title" tabindex=
 "1" value="<?php echo $title; ?>" id="title" /></div>
 </div>

 <div class="postbox ">
 <h3><?php _e('URL',$this->plugin_domain); ?></h3>
 <div class="inside">

 <p>
 <input style="width: 415px" type="text" tabindex="2"
 name="url" id="url" value="<?php echo $url ?>" />
 </p>
 </div>
 </div>

 <div class="postbox ">
 <h3><?php _e('Description (optional)',
 $this->plugin_domain); ?></h3>
 <div class="inside">
 <textarea name="description" id="description" rows="5"
 style="width: 415px" tabindex="3"><?php echo $description ?>
 </textarea>

Post Types

[226]

 </div>
 </div>

 </div>
 </div>
 </form>
 </div>

2. Then, add a new submenu page for the Write screen :

 // Hook the admin menu
 function admin_menu()
 {

 // submenu pages
 add_submenu_page('post-new.php', __('Add Photo',$this-
 >plugin_domain) , __('Photo', $this->plugin_domain) , 1
 , 'add-photo', array(&$this, 'display_form'));
 add_submenu_page('post-new.php', __('Add URL', $this-
 >plugin_domain) , __('URL', $this->plugin_domain) , 1 ,
 'add-url', array(&$this, 'display_form'));
 }

3. And finally, add the code to the display_form() switch/case to handle the
rendering of the link form:

 include('template/photo.php');
 break;

 case 'add-url':
 $url=$_POST['url'];

 if ($published)
 {
 if (!empty($url))
 {
 if (empty($title))
 $title=$url;

 $content=''.$title.'
 <p>'.$description.'</p>';
 $data = array
 (
 'post_title' => $wpdb->escape($title),
 'post_content' => $wpdb->escape($content),
 'post_status' => $post_status
);
 // insert post
 $published_id = wp_insert_post($data);

Chapter 7

[227]

 // add a custom field
 add_post_meta($published_id, "post-type", __
 ('Link',$this->plugin_domain));

 // clear all fields
 $title=''; $url=''; $description='';
 }
 else
 $error=__('You need to enter a URL.',$this->plugin_domain);

 }

 include('template/link.php');
 break;

 endswitch;

With that done, we now have a second post-type ready:

Post Types

[22�]

What just happened?
We have added another post template using the previous form as a starting point. The code
is very similar, so we will not go into the details.

The recipe for adding further forms is:

Cr�ate a new form based on a previous one and edit the form fields.

Add the submenu page in the admin_menu() function.

Add the form-specific handling code in the switch/case of display_form().

You can add as many forms as you like, for example to enter simple text, video, a quote,
and so on.

Tinkering with WordPress backend menus
S�nc� we added the URL page under the Write menu, and there is already a Link page there
(for adding links to the blogroll), we would like to remove the Link page from the menus to
prevent confusion.

You can easily do this (in fact, you can totally rearrange WordPress menus in any way you like).

Time for action - Remove 'Link' from the Write page
Removing an item from a menu is a simple matter. Lets add this code to the
admin_menu() function:

 // Hook to admin menu
 function admin_menu()
 {
 global $submenu;

 // remove 'Link' from Write menu
 unset($submenu['post-new.php'][15]);

 // submenu pages
 add_submenu_page('post-new.php', __('Add Photo',$this-
 >plugin_domain) , __('Photo', $this->plugin_domain) , 1 ,
 'add-photo', array(&$this, 'display_form'));

1.

Chapter 7

[22�]

2. That's all! The link page no longer shows in the menu.

What just happened?
We removed the Link page from the menus by unsetting it from the submenu array.

WordPress holds the entire backend menu structure in two globally available variables
$menu and $submenu.

Using these two variables, not only can you read entries, you can also change and delete
entries in the menus, and customize the menu structure to your liking by simply editing
the arrays.

To do that, we must first learn what this structure looks like. The easiest way to do that is to
use the print_r()function to dump the variable in a readable form.

Here is the sample output of print_r($menu):

Array
(
 [0] => Array
 (
 [0] => Dashboard
 [1] => read
 [2] => index.php
)

 [5] => Array
 (
 [0] => Write
 [1] => edit_posts
 [2] => post-new.php
)

 [10] => Array
 (
 [0] => Manage
 [1] => edit_posts
 [2] => edit.php
)

Post Types

[230]

 [15] => Array
 (
 [0] => Design
 [1] => switch_themes
 [2] => themes.php
)

 [20] => Array
 (
 [0] => Comments
 0
 [1] => edit_posts
 [2] => edit-comments.php
)

As you can see, the menus are organized into multidimensional arrays. If you remove
elements of this array, they will not be displayed in the menu anymore.

For example:

unset($menu[10]); // Remove Manage Menu
unset($menu[15]); // Remove Design Menu
unset($menu[20]); // Remove Comments Menu

This piece of code will cause the Manage, Design, and Comments pages to disappear from
the WordPress main menu leaving with only the with Write menu:

Similarly, we remove the Link page from the submenus:

// remove 'Link' from Write menu
unset($submenu['post-new.php'][15]);

Using the menu arrays, you can customize the backend of a WordPress site to show
only relevant information for your purpose. If you are turning WordPress into a CMS,
implementing custom fields and tinkering with menus would be the first things on the list.

We can also hack into the Manage panel, which will allow us to show custom information in
the post listings. Let's learn how to do that!

Programming the Manage panel
The Manage Posts screen can be changed to show extra columns, or remove unwanted
columns in the listing.

Chapter 7

[231]

Let's say that we want to show the post type—Normal, Photo or Link. Remember the
custom field post-type that we added to our posts? We can use it now to differentiate
post types.

Time for action – Add post type column in the Manage panel
We want to add a new column to the Manage �an�l, and w� w�ll call �t Type. The value of
the column will represent the post type—Normal, Photo or Link.

Expand the admin_menu() function to load the function to handle Manage
Page hooks:

 add_submenu_page('post-new.php', __('Add URL',
 $this->plugin_domain) , __('URL', $this->plugin_domain) , 1 ,
 'add-url', array(&$this, 'display_form'));

 // handle Manage page hooks
 add_action('load-edit.php', array(&$this, 'handle_load_edit'));
 }

2. Add the hooks to the columns on the Manage screen:

 // Manage page hooks
 function handle_load_edit()
 {
 // handle Manage screen functions
 add_filter('manage_posts_columns', array(&$this,
 'handle_posts_columns'));
 add_action('manage_posts_custom_column', array(&$this,
 'handle_posts_custom_column'), 10, 2);
 }

3. Then implement the function to add a new Column, remove the author and replace
the date with our date format :

 // Handle Column header
 function handle_posts_columns($columns)
 {
 // add 'type' column
 $columns['type'] = __('Type',$this->plugin_domain);

 return $columns;
 }

4. For date key replacement, we need an extra function:

 function array_change_key_name($orig, $new, &$array)
 {
 foreach ($array as $k => $v)
 $return[($k === $orig) ? $new : $k] = $v;
 return (array) $return;
 }

1.

Post Types

[232]

5. And finally, insert a function to handle the display of information in that column:

 // Handle Type column display
 function handle_posts_custom_column($column_name, $id)
 {
 // 'type' column handling based on post type
 if($column_name == 'type')
 {
 $type=get_post_meta($id, 'post-type', true);
 echo $type ? $type : __('Normal',$this->plugin_domain);
 }

 }

6. Don't forget to add the manage page to the list of localized pages:

 // pages where our plugin needs translation
 $local_pages=array('plugins.php', 'post-new.php', 'edit.php');

 if (in_array($pagenow, $local_pages))

As a result, we now have a new column that displays the post type using information from a
post custom field.

Chapter 7

[233]

What just happened?
We have used the load-edit.php action to specify that we want our hooks to be assigned
only on the Manage Posts page (edit.php). This is similar to the optimization we did when
we loaded the localization files.

The handle_posts_columns is a filter that accepts the columns as a parameter and allows
you to insert a new column:

function handle_posts_columns($columns)
{
 $columns['type'] = __('Type',$this->plugin_domain);
 return $columns;
}

You are also able to remove a column. This example would remove the Author column:

unset($columns['author']);

To handle information display in that column, we use the
handle_posts_custom_column action.

The action is called for each entry (post), whenever an unknown column is encountered.
WordPress passes the name of the column and current post ID as parameters.

That allows us to extract the post type from a custom field:

function handle_posts_custom_column($column_name, $id)
{
 if($column_name == 'type')
 {
 $type=get_post_meta($id, 'post-type', true);

It also allows us to print it out:

 echo $type ? $type : __('Normal',$this->plugin_domain);
 }
}

Modifying an existing column
We can also modify an existing column. Let's say we want to change the way we want to change the waywe want to change the way Date
is displayed.displayed..

Here are the changes we would make to the code: changes we would make to the code:changes we would make to the code:code::

 // Handle Column header
 function handle_posts_columns($columns)
 {

Post Types

[234]

 // add 'type' column
 $columns['type'] = __('Type',$this->plugin_domain);

 // remove 'author' column
 //unset($columns['author']);

 // change 'date' column
 $columns = $this->array_change_key_name('date', 'date_new',
 $columns);

 return $columns;
 }

 // Handle Type column display
 function handle_posts_custom_column($column_name, $id)
 {
 // 'type' column handling based on post type
 if($column_name == 'type')
 {
 $type=get_post_meta($id, 'post-type', true);
 echo $type ? $type : __('Normal',$this->plugin_domain);
 }

 // new date column handling
 if($column_name == 'date_new')
 {

 the_time('Y-m-d <br \> g:i:s a');

 }

 }

 function array_change_key_name($orig, $new, &$array)

 {

 foreach ($array as $k => $v)

 $return[($k === $orig) ? $new : $k] = $v;

 return (array) $return;

 }

The example replaces the date column with our own date_new column and uses it to
display the date with our preferred formatting.

Manage screen search filter
WordPress allows us to show all the posts by date and category, but what if we want to show allows us to show all the posts by date and category, but what if we want to showallows us to show all the posts by date and category, but what if we want to show the posts by date and category, but what if we want to showposts by date and category, but what if we want to show
all the posts depending on post type? depending on post type?depending on post type? type?type?

Chapter 7

[235]

No problem! We can add a new filter select box straight to the can add a new filter select box straight to thecan add a new filter select box straight to the Manage panel.

Time for action – Add a search filter box
Let's start by adding two more hooks to the handle_load_edit() function. The
restrict_manage_posts function draws the search box and the posts_where
alters the database query to select only the posts of the type we want to show.

 // Manage page hooks
 function handle_load_edit()
 {

 // handle Manage screen functions
 add_filter('manage_posts_columns',
 array(&$this, 'handle_posts_columns'));
 add_action('manage_posts_custom_column',
 array(&$this, 'handle_posts_custom_column'), 10, 2);

 // handle search box filter

 add_filter('posts_where',
 array(&$this, 'handle_posts_where'));

 add_action('restrict_manage_posts',
 array(&$this, 'handle_restrict_manage_posts'));

 }

2. Let's write the corresponding function to draw the select box:

 // Handle select box for Manage page
 function handle_restrict_manage_posts()
 {
 ?>
 <select name="post_type" id="post_type" class="postform">
 <option value="0">View all types</option>
 <option value="normal" <?php if($_GET['post_type']=='normal')
 echo 'selected="selected"' ?>><?php _e
 ('Normal',$this->plugin_domain); ?></option>
 <option value="photo" <?php if($_GET['post_type']=='photo')
 echo 'selected="selected"' ?>><?php _e
 ('Photo',$this->plugin_domain); ?></option>

1.

Post Types

[236]

 <option value="link" <?php if($_GET['post_type']=='link')
 echo 'selected="selected"' ?>><?php _e
 ('Link',$this->plugin_domain); ?></option>
 </select>
 <?php
 }

3. And finally, we need a function that will change the query to retrieve only the posts
of the selected type:

 // Handle query for Manage page
 function handle_posts_where($where)
 {
 global $wpdb;
 if($_GET['post_type'] == 'photo')
 {
 $where .= " AND ID IN (SELECT post_id FROM {$wpdb->postmeta}
 WHERE meta_key='post-type' AND meta_value='".__
 ('Photo',$this->plugin_domain)."')";
 }
 else if($_GET['post_type'] == 'link')
 {
 $where .= " AND ID IN (SELECT post_id FROM {$wpdb->postmeta}
 WHERE meta_key='post-type' AND meta_value='".__
 ('Link',$this->plugin_domain)."')";
 }
 else if($_GET['post_type'] == 'normal')
 {
 $where .= " AND ID NOT IN (SELECT post_id FROM
 {$wpdb->postmeta} WHERE meta_key='post-type')";
 }
 return $where;
 }

What just happened?
We have added a new select box to the header of the Manage panel. It allows us to filter the
post types we want to show.

We added the box using the restrict_manage_posts action that is triggered at the end of
the Manage panel header and allows us to insert HTML code, which we used to draw a
select box.

Chapter 7

[237]

To actually perform the filtering, we use the posts_where filter, which is run when a query
is made to fetch the posts from the database.

if($_GET['post_type'] == 'photo')
{
 $where .= " AND ID IN (SELECT post_id FROM {$wpdb->postmeta}
 WHERE meta_key='post-type' AND meta_value='".__
 ('Photo',$this->plugin_domain)."')";

If a photo is selected, we inspect the WordPress database postmeta table and select posts
that have the post-type key with the value, Photo.

At this point, we have a functional plugin. What we can do further to improve it is to add
user permissions checks, so that only those users allowed to write posts and upload files are
allowed to use it.

Quick reference

manage_posts_columns($columns): This acts as a filter for adding/
removing columns in the Manage Posts panel. Simlarly, we use the function,
manage_pages_columns for the Manage Pages panel.

manage_posts_custom_column($column, $post_id): This acts as
an action to display information for the given column and post. Alternatively,
manage_pages_custom_column for Manage Pages panel.

posts_where($where): This acts as a filter for the where clause in the
query that gets the posts.

restrict_manage_posts: This acts as an action that runs at the end of the
Manage panel header and allows you to insert HTML.

Handling error messages
WordPress provides a simple class called WP_Error that allows us to keep all our error
messages tidy and in one place. place.place.

Time for action – Adding support for errors
Change the plugin constructor to add initialization of error class:

 if (version_compare($wp_version,"2.5","<"))
 {
 exit ($exit_msg);
 }

 // initialize the error class

1.

Post Types

[23�]

 $this->error = new WP_Error();

 $this->init_errors();

 // add admin_menu action
 add_action('admin_menu', array(&$this, 'admin_menu'));

2. Initialize all our errors by defining the error code and the message:

 // Init error messages
 function init_errors()
 {
 $this->error->add('e_image', __('Please upload a valid
 image.',$this->plugin_domain));
 $this->error->add('e_title', __('You need to enter a title
 and add a photo.',$this->plugin_domain));
 $this->error->add('e_url', __('You need to enter a
 URL.',$this->plugin_domain));
 }

3. Add a function to retrieve an error:

 // Retrieve an error message
 function my_error($e = '')
 {

 $msg = $this->error->get_error_message($e);

 if ($msg == null)
 {
 return __("Unknown error occured, please contact the
 administrator.", $this->plugin_domain);
 }
 return $msg;
 }

4. Finally replace the old error messages with our new function:

 else
 $error=$this->my_error('e_image');
 }
 else // if file uploaded

 else
 $error=$this->my_error('e_title');
 }

 include('template/photo.php');

 else

Chapter 7

[23�]

 $error=$this->my_error('e_url');
 }

 include('template/link.php');

What just happened?
We used the integrated WordPress error class for displaying error messages.

We initialize the class in the plugin constructor and call the error message
initialization function:

$this->error = new WP_Error();
$this->init_errors();

To add new errors, we use the add method of the error class, and define the message with
code and text:

$this->error->add('e_image', __('Please upload a valid
image.',$this->plugin_domain));

We then created the my_error function that retrieves the error message using the
get_error_message method:

$msg = $this->error->get_error_message($e);

Quick reference

WP_Error: This is the WordPress class for handling error messages. Use the
add and get_error_message methods to store and retrieve messages.

User roles and capabilities
Let's add some checks to our plugin to prevent unauthorized users from publishing posts and
uploading files using our post templates.

This can be done using the WordPress capabilities system, providing us with functions to
check if the user is allowed to perform a certain action.

Post Types

[240]

Time for action – Add user capability checks
Let's add our first check, to see if the user can publish posts. All capability checks are
performed using the current_user_can() function.

We will include a new variable in the display_form() function to hold the new
post's status:

 if ($published)
 {
 check_admin_referer($page);

 $post_status = current_user_can('publish_posts') ?
 'publish' : 'pending';

 }

2. Change the Publish button in both the template files, link.php and photo.php, to
show different text if the user can not publish:

 <div class="submitbox" id="submitpost">
 <div id="previewview"></div>
 <div class="inside"></div>

 <p class="submit"><input name="publish" type="submit"
 class="button button-highlighted" tabindex="4"
 value="<?php if (current_user_can('publish_posts'))
 _e('Publish', $this->plugin_domain); else _e('Submit',
 $this->plugin_domain); ?>" /></p>

 </div>

3. Finally, edit the display_form(to check if the current user is allowed to
upload files:

 // check permissions
 if (is_writable($uploads['path']) &&
 current_user_can('upload_files'))

 {
 $uploadfile=true;
 }

With the capabilities systems in place, we are now able to restrict the actions of users
without enough privileges to publish the post or upload files to the server.

Congratulations! That was the last bit of code needed to finish our last plugin!

1.

Chapter 7

[241]

What just happened?
User capabilities provide a flexible model for checking the permissions of the user.

Roles and capabilities are interconnected, but the capabilities of a role can be changed
dynamically by other plugins. So it is adviseable to always check for capabilities instead
of roles.

User capabilities are checked using the current_user_can($action) function,
which accepts the desired action as a parameter. Actions can be edit_posts,
or upload_plugins, and so on.

Bearing in mind that WordPress sites can be used by multiple users, you should always make
sure to assign the correct capabilities for the features of you plugin.

Quick reference

current_user_can($action): This function is used to check if the
current user is capable of performing a certain action.

A full reference for roles and capabilities is available at http://codex.
wordpress.org/Roles_and_Capabilities.

Have a go Hero
With this plugin, we explored the core of the WordPress backend.

There are a few features you can consider now, that could improve this plugin further:

Include tags and perhaps categories to the post templates

Create more interesting post templates

For the photo template, you can download the image instead of linking to it, if the
image is specified with a URL

Create a mobile phone friendly admin panel by removing all other unnecessary
menus and leaving only the quick post templates

Summary
The purpose of the Post Types plugin was to introduce you to different aspects of WordPress
backend development.

While creating our different post types, we have learned how to customize WordPress menus post types, we have learned how to customize WordPress menuspost types, we have learned how to customize WordPress menus
to our liking. We used custom fields to insert important information to the post which we do w� dow� do
not want to be visible in the post content.

Post Types

[242]

We learned how to modify the to modify theto modify the Manage Posts panel to display the information we want. We
also covered user capabilities, and how using them, we can make sure our plugin is working plugin is workingplugin is working
in multi-user environments.

Finally, we do not want to forget localization, for there are thousands of users who use we do not want to forget localization, for there are thousands of users who usewe do not want to forget localization, for there are thousands of users who use
WordPress in their native language. native language.native language.

Here are the most important lessons from this chapter:

Localization: Not everyone uses WordPress in English

Backend CSS classes: Use them to make your forms prettier

Custom fields: They are the powerhouse behind WordPress CMS capabilities

Customize Menus: Your plugin can choose the menus in the WordPress backendYour plugin can choose the menus in the WordPress backend

Manage Panels: Customize the display of information to your liking, using custom
columns and filters

Manage Errors: Use the WordPress WP_Error class to handle errors in your plugin

User capabilities: Use this to restrict access to functions for users without the
relevant permissions

We have one more exciting chapter to go, with useful advice on how to distribute and exciting chapter to go, with useful advice on how to distribute andt� and
promote your plugin, and other more advanced tips.

�
Development Goodies

Plugin development does not end with a finished plugin—depending on the plugin's purpose
there are several more phases a plugin author needs to consider.

This chapter will cover additional steps involved in localizing, documenting, publishing, and
promoting the plugin. It will also cover useful tips and ideas to further improve your general
WordPress knowledge.

In this chapter, you will learn about:

Handling localization files

Managing documentation and providing support

Managing your plugin using SVN and publishing it to the WordPress
Plugin Repository

Distributing and promoting your plugin

Staying up-to-date by working on the latest development version of WordPress

The final sections of the chapter are devoted to information about WordPress MU
development and other useful online resources.

Creating Localization files
In Chapter 7, we have learned how to use the localization functionalities provided by
WordPress. Using the __() and _e() functions, we can specify localizable text that users
can translate to different languages.

We can split the localization process in two phases.

In the first phase, you need to generate a POT file that will describe all localizable strings
used in the plugin.

Development Goodies

[244]

In the second phase, users generate .po and .mo files in their desired language. A PO file
is the same as a POT file, but includes translated strings in another language. A MO file is
actually a compiled PO file and is loaded by the load_text_domain() function that we
used in the WordPress plugin.

Localization process is usually performed using external tools that are available for Windows,
Mac OS or Linux platforms. Example of one such popular multi-platform tool is Poedit, which
we will use in this chapter.

Time for action - Create a POT file
Here is how to create a .pot file using Poedit:

If you do not have it already, download Poedit from
http://www.poedit.net/download.php

Select the option New catalog… under the File menu. It will open a window where
you can fill in some basic details, including your plugin name. You may also want to
fill in the default plugin language and the file charset:

1.

2.

Chapter 8

[245]

3. In the Paths tab, add ../ for the base path as we will keep the language files inside
the lang/ folder in the plugin.

4. Finally, in the Keywords tab, add __ and _e as our language functions.

Development Goodies

[246]

5. Press OK and then select All files from the Save dialog. Save the file in the lang/
folder of the plugin, manually typing .pot as the extension.

6. After the file is saved, Poedit will scan through your plugin files and display a list of
all the strings that can be translated.

Chapter 8

[247]

What just happened?
You have created basic a POT file that users can use to create translations in their
own language.

Updating POT file
You will need to update the POT file manually with every new release of your plugin. To do
this, you need to do the following:

Open the POT file.

Select the Update from sources option from the Catalog menu.

Save the POT file.

1.

2.

3.

Development Goodies

[24�]

Time for action – Perform translation
Here is how to create a new translation:

Start Poedit, and select New catalog from POT file... from the File menu.

Select the POT file supplied with the plugin. Now, you can enter the project
information relating to the translation.

3. Go through all the strings and translate them. Be careful to leave all the %s and %d
references. These will be replaced with a string or a number by the plugin.

1.
2.

Chapter 8

[24�]

When you are done, you need to save the PO file. The usual practice is to use the POT
filename and a language code. If our POT file was PostTypes.pot, we would name, for
example, the Serbian translation (language code sr_RS) of the file, PostTypes-sr_RS.po.
When you save the PO file, the MO file will be automatically generated.

What just happened?
We have created a language translation file that our plugin can automatically use when it
detects a WordPress blog in that language.

You will notice that we use the language code. This matches the installation language of
WordPress and is retrieved using the get_locale() function in our WordPress plugin.

Some of these codes are:

fr_FR: French

de_DE: German

es_ES: Spanish

zh_CN: Chinese

You can view the list of all the language codes at theWordPress Codex page
http://codex.wordpress.org/WordPress_in_Your_Language.

Updating translation
When a new version of the plugin is released, the translation file needs to be updated. To do
that, you can follow these steps:

Using Poedit, open your translated PO file (for example PostTypes-sr_RS.po).

Select the Update from POT file... option in the Catalog menu. Now select the POT
file that had previously been updated to a new version.

Poedit will show you what is new, and what is not used anymore.

When you are done translating, save the PO file again.

Normally, if you supply the POT file with your plugin, users will start sending you the
translations. It is a good practice to mention and thank these users in your plugin
credits sections.

1.

2.

3.

4.

Development Goodies

[250]

Quick reference

Translating WordPress: http://codex.wordpress.org/
Translating_WordPress

WordPress in your language (and list of all language codes): http://codex.
wordpress.org/WordPress_in_Your_Language

Poedit: http://www.poedit.net

Documentation and support
Creating documentation for your plugin is a crucial step, especially if you are developing a
plugin for public release.

Some plugin authors, in a hurry to release their plugin, may choose to skip this step, resulting
in poor or inadequately prepared 'readme' files. This is bad practice because usually the
success of the plugin greatly depends on the available documentation.

Plugin readme file
To prepare documentation for the public release of a plugin, you need to complete two steps.

Create a plugin readme.txt file.

Prepare a page on your site (if you do not have a site you can use the WordPress
plugin repository instead—we will discuss this later).

 The readme.txt file is a standardized text file describing the plugin functionality,
installation and usage manual.

The contents of a readme.txt file are automatically parsed by the WordPress plugin
repository to display a plugin information page that looks like this one:

1.

2.

Chapter 8

[251]

Time for action – Create a sample plugin readme.txt file
Let's create an example readme.txt file for the Insights plugin.

First comes the general information section. This section contains general
information on the plugin such as the name, author, tags, version information
and a donation link.

 === Insights ===
 Contributors: freediver
 Donate link: https://www.networkforgood.org/donation/MakeDonation.
 aspx?ORGID2=520781390
 Tags: admin, posts, images, links, google, ajax, jquery, youtube,
 video, play, media, Post, posts
 Requires at least: 2.3
 Tested up to: 2.6.2
 Stable tag: trunk

 Insights allows you to quickly access and insert information
 (links, images, videos, maps..) into your blog posts.

1.

Development Goodies

[252]

2. Then, we have the plugin description:

 == Description ==

 Insights brings a **powerful** new way to write your blog posts.
 It increases **productivity** and at the same time **quality of
 your posts**.

 Insights perform following functions in **real-time**:

 * Interlink your posts
 * Insert Flickr images
 * Insert Youtube videos
 * Search Wikipedia
 * Search Google
 * Insert a Google Map

 Check the [screenshots](http://wordpress.org/extend/plugins/
 insights/screenshots/) for more examples of usage.

 Insights allows you to do all this using dynamic AJAX interface
 which loads the relevant information to your post in just a
 few seconds.

3. Next, we have the installation and usage instructions:

 == Installation ==

 1. Upload the whole plugin folder to your /wp-content/
 plugins/ folder.
 2. Go to the 'Plugins' page in the menu and activate the plugin.
 3. Use the 'Options' page to change your plugin options.
 4. If you want to use Google Maps module then get your free Google
 Maps key here: http://code.google.com/apis/maps/signup.html
 5. Write a new post. You will notice Insights toolbar. Use it :)

4. The screenshots section describes your screenshots. It makes your plugin
presentation look much better:

 == Screenshots ==

 1. Searching images on Flickr and adding them
 2. Searching Youtube videos, add to post
 3. Adding a Google Map!
 4. Using Wikipedia
 5. Searching my Blog and linking to a post

Chapter 8

[253]

5. These sections can be followed by optional Credits, License and FAQ sections:

 == Credits ==

 The ideas for a quickly accessible Google Maps solution came from
 [Ubiquity](http://labs.mozilla.com/projects/ubiquity/) plugin for
 Firefox, which is just pure coolness.

 Thanks.

 == License ==

 This file is part of Insights.

 Insights is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published
 by the Free Software Foundation, either version 3 of the License,
 or (at your option) any later version.

 Insights is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with Insights. If not, see <http://www.gnu.org/licenses/>.

 == Frequently Asked Questions ==

 = Can I suggest a feature for the plugin? =

 Of course, visit [Insights Home Page](http://www.prelovac.com/
 vladimir/wordpress-plugins/Insights#comments)

What just happened?
We have created a properly formed readme.txt file for the plugin, which not only helps the
users who downloaded your plugin, but is also required if you want to host your plugin at the
WordPress plugin repository.

Sections of readme.txt
The readme file can contain several sections encapsulated in the == characters. These
sections are recognized by the plugin repository and are used for creating sections on the
plugin information page automatically. The sections are:

Plugin name and information

Description

Installation

Credits

Screenshot

Development Goodies

[254]

License

Frequently Asked Questions

Any arbitrary section, these will be displayed after the recognized sections

General information
The first section is used to describe general plugin information. It contains important data
about the plugin:

Contributors: This shows the user names of authors in the repository

Donate link: This can be used used for collecting donations for your work

Tags: It is a list of descriptive tags about your plugin

Requires at least: Displays the minimum WordPress version required

Tested up to: Indicates the latest version of WordPress with which the plugin has
been tested

Stable tag: SVN tag are used for the stable version; use of trunk
(will be explained later)

Special codes
The plugin repository allows you to use several special codes in the readme file text. They are:

For highlighting text, you could place it between wildcards (example 'this is
important') or double wildcards ('this is **very important**')

If you want to create a list, use a wildcard at the beginning of each new line.
Example:

* Item 1
* Item 2

To create links, use the [link text](link URL) format. For example:
[WordPress](http://www.wordpress.org)

Screenshots
The repository also searches for files named screenshot-1.png, screenshot-2.png �n
your plugin root folder and displays them in the Screenshots section.

To add descriptions for the screenshots, simply create a list in the Screenshots sections of
the readme file.

== Screenshots ==

1. Searching images on Flickr and adding them

Chapter 8

[255]

2. Searching Youtube videos, add to post
3. Adding a Google Map!
4. Using Wikipedia
5. Searching my Blog and linking to a post

Installation instructions
The installation section should contain the information necessary to install and run the
plugin. Consider updating your installation section as you become aware of the problems
your users may be experiencing.

Even if the plugin is simple, this section should still have basic installation instructions
such as:

1. Upload the whole plugin folder to your /wp-content/plugins/ folder.
2. Go to the 'Plugins' page in the menu and activate the plugin.
3. Use the 'Options' page to change your plugin options.

Keeping the installation and usage instructions up-to-date will save you a lot of
time in addressing support questions!

Quick reference

readme.txt template: http://wordpress.org/extend/plugins/
about/readme.txt

Readme validator: Use this to validate your readme file before submitting.
http://wordpress.org/extend/plugins/about/validator/

Plugin homepage
The plugin page is an important part of promoting your plugin as well as giving the users
necessary information. This is the page you would usually link from the plugin header. You
should make sure it is descriptive and well written. If you've made good effort to prepare the
readme.txt file, you will find it much easier to create this page.

 You can usually copy over most of the text from the readme file, and you will have all the
screenshots ready for uploading to your post.

Development Goodies

[256]

Useful plugin page tips

Include the large Download link or button, and make it visible immediately.
Many users will come to the plugin page simply to download it.

It would be good if the download link pointed to the file in the
WordPress repository.

If your plugin needs explicit installation and usage instructions, make sure you
include them on the page (and keep them updated).

Includ� a Change log section which lists changes in the plugin through
the versions.

After you publish a new version, it would probably be a good idea to write a blog
post about it and add a comment with version changes to the comments on the
plugin page.

Chapter 8

[257]

Providing support
Thanks to the huge WordPress user base, your plugin will typically be downloaded at least
a few hundred or or perhaps even thousands of times. If your plugin gets popular, you can
expect tens of thousands or even hundreds of thousands of downloads.

When you have thousands of people downloading the plugin, be prepared to have hundreds
coming to your site and asking questions.

Most users will first look for answers in the readme.txt file or your plugin page, before
they send a direct question. So, it is important to have these files prepared well.

Development Goodies

[25�]

Useful support tips

Make sure you create good documentation. This small investment in time will
return itself many times over in the long run.

When you answer a particular support question, consider adding it to the FAQ
part of the readme.txt file if you think that can help other users as well.

Try to engage users to help each other out. Users have a tendency to discover
things by themselves, and they love to share it - make sure you encourage it. This
will save your own time later.

If a user reports an error in the plugin, try to fix it and update the plugin as soon
as possible, especially if it is a security related problem.

No matter how hard you try, there will always be users who have never read
your readme file or the plugin page and have come straight with a question.
Don't get mad at them.

If the plugin becomes very popular and the comment system is not enough to
cover all issues, you may consider opening a support forum. There are several
forum plugins for WordPress (bbPress, SimplePress, and so on) and also stand
alone solutions (SMF, Vanilla, and so on.) that can be integrated with WordPress.

Code management and plugin repository
WordPress provides a free home for any plugin at the WordPress Plugin Directory, found
at http://wordpress.org/extend/plugins/. It simply represents a frontend to the
WordPress SVN repository found at wp-plugins.org.

Subversion (also known as SVN) is software that allows you to easily store and manage your
plugin projects (you can find a SVN FAQ at http://subversion.tigris.org/faq.html).

Once in the WordPress SVN, everyone will be able to check out (download) a copy of your
plugin, but only you, as a plugin author, will have the ability to commit changes to the plugin
in the repository.

Requesting repository access
In order to gain write access to the repository, you need to fill out the Request form found at
http://wordpress.org/extend/plugins/add/.

Chapter 8

[25�]

You will need to provide:

A plugin name

A short description

An URL to the plugin homepage

The access will usually be granted in a couple of days, and the best way to use the time
while you wait is to polish your readme.txt file. Prepare the screenshots, and tweak the
plugin page.

Using SVN
Once your request has been approved, you will get an email with the details for accessing
your repository. For example, it may be: http://svn.wp-plugins.org/wp-wall.

To access it, you need to use SVN. There are various SVN frontends, but no matter which one
you use, the procedure for setting up your plugin for the first time is the same. The following
example uses the TortoiseSVN client for Windows (http://tortoisesvn.tigris.org).

1.

2.

3.

Development Goodies

[260]

Time for action - Manage a local repository using SVN
Create a directory where your local copy of the plugin will be stored, for example,
D:\plugins\wp-wall.

Then perform the action—checkout from the repository (right-click the folder and
select the SVN Checkout). You need to type in the URL that you received when
repository access was granted for your plugin.

3. When you perform a checkout, you will have three empty folders: trunk,
branches, and tags. Copy your plugin files to the trunk folder (for example, you
now have trunk/wp-wall.php).

4. Cr�at� a n�w fold�r �n tags, for example, 0.1 (your initial plugin version), and copy
the plugin files there as well.

5. Commit the changes to the repository (for example, right-click and select
SVN Commit…).

1.

2.

Chapter 8

[261]

What just happened?
First, we created a local copy of the repository using SVN checkout. This copies the necessary
file structure to your disk. Note that you can also use SVN checkout later, if for example, you
lost the files, or you want to update a plugin from a different computer.

Next, we moved our plugin files to the trunk folder. When you download a plugin from
WordPress.org, you will get the archived contents of the trunk folder. We have also copied
our files to the 0.1 folder in the tags folder (we have 'tagged' our versions). This allows us to
revert to a previous version at a later time.

Finally, we commited our plugin to the repository, and soon, it will be publically available for
download at www.WordPress.org!

Tagging a new version
When you create a new version of the plugin, the process is similar.

Make sure you changed the version number in your main PHP file.

Cr�at� a n�w fold�r und�r tags, for example 0.2, and copy your plugin files from
the trunk folder. If you are on Windows, every folder under trunk/ will have .svn
folders. You should not copy them.

Commit the changes for all the files.

1.

2.

3.

Development Goodies

[262]

Using WordPress development SVN
WordPress core is developed using SVN. This means that you can also at anytime checkout
the latest development version. This allows you to see what is going on under the hood, for
example, to test your plugins before a new version of WordPress is officially released.

The fastest way to do this is to have a development version of WordPress running on your
local computer. On Linux and Mac OS, this should not be a big problem, and Windows users
can use packages such as EasyPHP (http://www.easyphp.org) to set up the PHP/MySQL
development environment.

You can even have a development version on a shared web hosting account, as many web
hosting companies allow SSH(Secure Shell) or jailed SSH access to your account (you may
want to inquire with your hosting provider about this).

Once you have a Unix-like shell available, you can check out the latest Wordpress build using
the following commands:

$ mkdir devwp
$ cd devwp
$ svn co http://svn.automattic.com/wordpress/trunk/ .

To check out a specific version, you would use:

$ svn co http://svn.automattic.com/wordpress/tags/2.5.1.

Web based SVN packages such as PHPSVNClient (http://code.google.
com/p/phpsvnclient/) could allow you to check out the latest version of
WordPress to your site, even if you do not have shell access to your server.

Local copy of plugin repository
Just like you can check out WordPress core, you are also free to check out the entire
WordPress plugin repository.

Chapter 8

[263]

Be warned that this may take quite a while.

The advantage of having a local copy of the plugin repository is to easily search through
all plugins when you need a reference to a function or an idea on how to create
certain functionalities.

Quick reference

WordPress Plugin Directory: http://wordpress.org/extend/plugins

Request repository access: http://wordpress.org/extend/
plugins/add

Updating WordPress with SVN: http://codex.wordpress.org/
Installing/Updating_WordPress_with_Subversion

SVN help and tool downloads: http://subversion.tigris.org

Easy PHP: http://www.easyphp.org

PHPSVN Client: http://code.google.com/p/phpsvnclient/

SVN help and tool downloads: http://subversion.tigris.org

Promotion
After your plugin is finished and the documentation is ready, it's time to announce your new
plugin to the world.

Development Goodies

[264]

We have already covered how to host the plugin in the WordPress Plugin Directory, which
is the most important first step in plugin promotion. But there are some other interesting
places to visit as well.

Plugin promotion checklist
Head to the WordPress Plugins and Hacks forums
(http://wordpress.org/support/forum/10).

Create a new topic, for example, [New plugin: Insights].

3. Use a simple but informative template to describe your plugin release.

 Plugin Name: Insights
 Plugin URL: http://www.prelovac.com/vladimir/wordpress-plugins/
 insights

 Description: Insights brings a powerful new way to write your blog
 posts. It increases productivity and at the same time the appeal
 of your posts.

4. Visit the Weblog Tools Collection forum (http://weblogtoolscollection.
com/news/forum/new-wordpress-plugins) and create a topic there as well,
using the same template. After guys from the Weblog Tools Collection site review
the topic, it should be added to their regular plugin news post, which appears on the
dashboard of every WordPress user.

5. Add your plugin to http://wp-plugins.net. This is another place where users
will look for a plugin.

6. Add your plugin to the WordPress Plugin Compatibility list (http://codex.
wordpress.org/Plugins/Plugin_Compatibility). You need to register
before you can add changes to the list.

7. Announce the plugin on your blog.

These steps will almost guarantee that you get enough downloads, feedbacks, reviews, and
support questions.

General plugin development guidelines
WordPress does not enforce any strict rules on plugins, and plugins have complete control
over the WordPress web site. It is important to understand this and underline security and
performance implications if plugins do not follow general good behaviour guidelines.

1.

2.

Chapter 8

[265]

Security
Exploits such as SQL injection or Cross-Site Request Forgery (CSRF) may pose serious security
threat to the users of your plugin, if particular care is not taken.

WordPress provides simple mechanisms to prevent these threats.

$wpdb->prepare(), $wpdb->insert(), $wpdb->update(): These are
database functions that should be used for creating database queries and inserting/
updating the information.
wp_nonce_url(): This function is used for links, and wp_nonce_field() is a
function used for forms in combination with check_admin_referer()/check_
ajax_referer() that will protect your requests against CSRF.

Performance
If you not careful, plugins can sometimes create serious overhead issues and affect the
performance of the entire site. Therefore, it is important to follow general performance
guidelines and these tips:

Take care of the number of your MySQL queries. If you need to use several
complicated queries, you can use built-in WordPress cache (which we covered
in Chapter 4).

To enable caching, add this line to the WordPress wp-config.php file:

 define('WP_CACHE', true);

Loading plugin localization data only when necessary (as shown in Chapter 7) is
another performance improvement.

The same goes for JavaScript usage—load the scripts only on those pages where
your plugin needs them.

In Chapter 7, we also covered how to hook to actions and filters only on those pages
where your plugin needs them. That way, we do not add a burden to the WordPress
engine when they are not needed.

Generally optimization means to use only those resources that are required to do
the job.

Re-using resources
The best WordPress plugins will try to make the most most of the functions provided
by WordPress.

By using WordPress functions for handling uploaded files, storing posts or displaying
information, you are making sure your code works properly in all the future WordPress
versions. The best thing about all this is that you will get a free ride on all future upgrades to
that functionality.

Development Goodies

[266]

An example of this is the way we used WordPress comment system to handle shouts on the
wall for the WP Wall plugin.

In case you need to save simple data in the database, you can re-use the WordPress options
table which is capable of storing almost any kind of information.

Keeping API up-to-date
WordPress is still in rapid development, and API functions change with each
new version.

Make sure you always use the latest API functions.

To help you find any deprecated functions and include the files that you may have
used, WordPress provides two action hooks:

 deprecated_function_run($oldfunction, $newfunction)
 deprecated_file_included($oldfile, $newfile)

In order to use them, you need to set the WP_DEBUG global variable in
wp-config.php:

 define('WP_DEBUG', true);

These two hooks will allow you to discover deprecated code and make your plugin much
more resilient to future WordPress upgrades.

Quick reference

wpdb class: http://codex.wordpress.org/Function_Reference/
wpdb_Class

Deprecated function hooks: http://codex.wordpress.org/
WordPress_Deprecated_Functions_Hook

WordPress cache: http://codex.wordpress.org/Function_
Reference/WP_Cache

SQL injection: http://en.wikipedia.org/wiki/Sql_injection

Cross-site request forgery: http://en.wikipedia.org/wiki/
Cross-site_request_forgery

WordPress MU development
WordPress MU is a multi-user, multi-blog version of WordPress and it is quickly gaining
popularity. It allows you to run many blogs from a single installation of the WordPress
MU software.

Chapter 8

[267]

The WordPress MU homepage is located at http://mu.wordpress.org, and from here,
you can access the latest version.

Although, WordPress MU re-uses 90% of the WordPress code, there are some
differences between the two, mainly due to the fact that MU is meant to host multiple
blogs simultaneously.

For example, if you were creating an XML sitemap plugin for normal WordPress, and created
the file by default in the root of the blog, it would not work on MU, as each blog would be
overwriting the sitemap every time it was generated.

Other differences come from the fact that WordPress MU is not always updated at the same
time with WordPress. So if you use new features and API functions available in the latest
version of WordPress, they may not work in the latest version of WordPress MU; that's
something to keep your eye on.

Development Goodies

[26�]

Finally, WordPress MU supports additional API functions and global variables mainly used
to support the multiple blog MU environment. Find more about them at this address:
http://codex.wordpress.org/WPMU_Functions

If you want to make sure your plugin is compatible with WordPress MU, the best thing to do
is to have a local version of MU installed as a testing ground.

Quick reference

WordPress MU: http://mu.wordpress.org

Codex for WordPress MU: http://codex.wordpress.org/
WordPressMU

Exclusive WPMU functions: http://codex.wordpress.org/WPMU_
Functions

Exclusive WPMU variables: http://codex.wordpress.org/WPMU_
Global_Variables

WordPress and GPL
WordPress is licensed under GNU General Public License (GPL), which has several
implications to your plugins.

The most important one is that plugin code using WordPress functions automatically
becomes GPL as well. This still means you can sell your plugins. But it also means that
anyone who buys it or downloads it from the Internet is free to modify it and even resell it
without asking for your permission.

A commercially oriented approach to plugin development is still possible, as most clients will
be interested in a long-term relationship, with support and plugin updates included.

Technically speaking, there might be a way to license your code differently if you created it in
the following way:

Write most of your code as a library, without any WordPress calls.

Create a WordPress plugin that will call the functions from your library.

This way, only the WordPress plugin becomes GPL, and you can license the library separately.

The GPL license is still subject to many different interpretations, even by its creators; so make
sure you consult the latest GPL FAQ (http://www.gnu.org/licenses/gpl-faq.html)
for all your questions.

1.

2.

Chapter 8

[26�]

Online resources
The following online resources can be the starting point for expanding your knowledge on
WordPress development.

WordPress documentation (WordPress Codex)
The WordPress Codex is a huge library of information to which anyone can contribute. It
contains API information, how to? guides, tutorials, and much more.

http://codex.wordpress.org/Main_Page

WordPress development news
To get information regarding the latest development news, we can visit the following
web sites:

WordPress blog
The official blog for WordPress is www.wordpress.org. It publishes the latest news
regarding the new versions and other current WordPress.org activities.

http://wordpress.org/development/

WordPress development updates
This site has the latest news on WordPress core development, straight from the developers.

http://wpdevel.wordpress.com/

WordPress Trac
If you need more in-depth information about what is going on with WordPress, you can take
a peek at WordPress Trac. All reported bugs and new feature requests are listed here.

http://trac.wordpress.org/

WordPress dev IRC channel
Meet all the developers, and chat about the hottest development topics in this IRC Channel.

irc.freenode.net, channel #wordpress-dev

Development Goodies

[270]

Debugging and testing
The following debugging and testing methods can be carried out to debug and test the code:

Unit testing
Unit testing allows you to set up independent tests for individual blocks of code and control,
to determine if they function properly under various circumstances.

http://simpletest.org/

http://www.phpunit.de/

Automated tests
This website provides extensive testing and fine-tuning capabilities for all aspects of
WordPress execution.

http://codex.wordpress.org/Automated_Testing

Mailing Lists
A mailing list is a forum for discussing all the issues related to WordPress. The following are
some examples of the mailing lists.

WP hackers
This is a mailing list for the discussion of latest development trends in WordPress, advanced
plugin ideas and other serious matters:

http://lists.automattic.com/mailman/listinfo/wp-hackers

WP professionals
There is always a need for good WordPress professionals, and this is the list where they are
found. Make sure you are subscribed here, if you are looking for work.

http://lists.automattic.com/mailman/listinfo/wp-pro

Other mailing lists
There are many other mailing lists of interest such as lists focused on documentation,
testing, support, and so on.

http://codex.wordpress.org/Mailing_Lists

Chapter 8

[271]

Podcasts
These are podcasts I enjoy listening to, related to WordPress development and general
news. You can often find WordPress developers logged-in as guests, discussing new plugins
and techniques.

WordCast
WordCast is an open source project, which enables people to know what their friends are
thinking & doing via an Internet browser or desktop application.

http://wordcastpodcast.com/

WordPress Weekly
WordPress Weekly was a weekly podcast that discussed what happened in the world of
WordPress during the week. Generally, every show was an open round table discussion.
The show is no longer running, but old episodes are still available.

http://www.wptavern.com/wordpress-weekly

Author's (Vladimir Prelovac's) web site
This is my home page, and source of WordPress related information.

http://www.prelovac.com/vladimir

Summary
In this chapter, we have learned about:

Plugin localization

Publishing and maintaining WordPress plugins

Using SVN repository

GPL licensing model

WordPress MU differences

Online WordPress development resources

Obviously, a combination of flexibility and a great user base make WordPress the most
appealing Internet development platform today. In addition, WordPress experts are among
the most wanted Internet professionals.

From the first chapter to this last, we learned how to develop WordPress plugins in a modern
development environment. I hope you can put this knowledge to good use and express your
creativity by using WordPress.

Index
Symbols
$post 39
$wpdb 122

A
ABSPATH 62
action hooks

accepted_args 43
action_function_name 43
action_hook 43
example 43
priority 43
setting up, syntax 43

add_options_page(page_title, menu_title,
access_level/capability, file) 159

add_shortcode(string, handler) 133
Ajax

about 73
and WordPress 80
in admin panel 80, 81
JavaScript, using with WordPress 79
parameters parsing, wp_localize_script used 79
security nonce, adding 83
used, example 73
using, to dynamically retrieve feed posts 73-79

Ajax form
comments, saving 115-117
managing 108
submit form, handling 109-112
used, to submit forms 113-115

ajaxForm(options) 117
Ajax security

nonce, adding 123, 124
archives

preparing 136

styling, CSS used 143-147
styling sheet, creating 143-147
user interaction allowing, jQuery used 147,

148, 149
archives, preparing

archive structure, graphical diagram 136, 137
comment count, retrieving 142
image searching, regular expression used 142
output buffers, using 143
post archives, displaying 137-142
posts, getting from database 142
regular expressions, using 142

B
backend menus

link, removing from write page 228-230
bloginfo() 68
blogroll

starting up 57-62

C
check_Ajax_referer(nonce_id) 84
class_exists() 129
comments

displaying 118-122
loading, dynamically 117
out�ut 121

conditional tags
about 49, 50
is_admin 50
is_category 50
is_date 50
is_home 50
is_page 50
is_search 50

[�7�]

is_single 50
is_tag 50
web site 50

Cross-Site Request Forgery. See CSRF
CSRF 84
CSS

applying, to pop-up 70-72
CSS style used

Digg button, positioning 50, 51
custom edit panels, WordPress insights 173, 174
custom fields

adding 223, 224
retrieving 224
uses 223

custom panels
creating, in editor screens 169-172

D
Digg button

adding, JavaScript code used 46-49
Digg link, displaying 32-35
displaying 32
displaying, Digg API used 35, 37
implementing 47-49
positioning, CSS style used 50, 52

Digg link
Digg API, used 35, 37
displaying 32-35
post information, accessing 37
post permalink URL 37
template files 38
theme files, editing 37

Digg This link
displaying 32-35

Digg This plugin 13
Docking Boxes (dbx) 68
documentation

plugin homepage 255
plugin page, tips 256
support, providing 257
support, tips 258

documentaton, creating
plugin readme file, creating 250
sample plugin readme.txt file, creating 251, 253
sample plugin readme.txt file, sections 253

E
error messages, handling

support, adding for errors 237, 239

F
fetch_rss() 62
filter hooks

accepted_args 42
example 42
filter_function_name 41
filter_hook 41
priority 41

Flickr API
Flickr photos, displaying 185-191
phpFlickr 191, 192
using 184, 185

function_exists($function) 39

G
General Public License. See GPL; See GPL
get_bookmarks 62
get_comment($id) 117
get_footer() 135
get_header() 135
get_option($key) 100
get_permalink($post_id) 39
get_post($id, $output) 104
get_sidebar() 135
GPL

and WordPress 268

H
hooks

about 39
action hooks 42, 44
filter hook 41
filter hooks 40-42
WordPress hooks 41

I
IE tab 21
image uploaded, handling 213-222
Init 93

[�7�]

insights 15
is_admin() 62
is_page() 50
is_single() 50

J
JavaScript

and WordPress 67
parameters parsing, wp_localize_script used 79
using, with WordPress 79

jQuery
CSS, applying to pop-up 70
document, modifying 69
examples 68
initializing 68
JavaScript and WordPress 67
mouse hover event, implementing 63-67
pop-up creating, CSS used 70
web site 69
web site, for examples 69

jQuery.Ajax method
about 81
advanced Ajax call, using 81, 82

jQuery JavaScript library. See jQuery
js_escape() 50

L
link, posting quickly

link template, adding 224-228
Live Blogroll plugin 13
localization

about 202
plugin, creating 203-206
support, adding 203-206
usage, optimizing 206, 207
working 207

localization files, creating
new translation, creating 248, 249
POT file, updating 247
POT file creating, Poedit used 244-246
translation, updating 249

M
mailing lists, online resources

other mailing lists 270

WP hackers 270
WP professionals 270

manage panel, programming
existing column, modifying 233, 234
post type column, adding 231-233
screen search filter, managing 234
search filter box, adding 235, 236

N
nonce

about 82
security nonce, adding 83

O
online resources

about 269
Authors (Vladimir Prelovacs) web site 271
automated tests 270
code, debugging 270
code, testing 270
mailing lists 270
podcasts 271
unit testing 270
WordPress development news 269
WordPress documentation (WordPress Codex)

269

P
plugin

blogroll, starting up 57-62
creating 28-30
describing, PHP class used 126-129
Digg link, displaying 32-35
hooks 39
plugin information header, adding 30
used, in book 12
version check, testing 31, 32
WordPress version, checking 30, 31

plugin, installing
documentation, searching 23, 25
steps 22, 23

plugin, managing 23
plugin class

creating 126-129
creating, PHP class used 126, 128, 129

[�76]

plugin development, guidelines
API, keeping up-to-date 266
performance 265
re-using resources 265
security 265

plugin hooks
action hooks 42, 44
filter hooks 40-42

plugin options
administration pages, adding 158, 159
applying 160-163
managing 155, 156
options form, handling 156-158
page, creating 149-154

plugin options page
creating 149-155

plugin output, caching
archives cache, creating 163, 165

plugin promotion checklist 264
plugin repository

local copy 262, 263
local repository managing, SVN used 259-261
new version, tagging 261
repository access, requesting 258, 259
WordPress development SVN 262

podcasts, online resources
WordCast 271
WordPress Weekly 271

pop-up
creating, CSS used 70

post information, accessing
get_the_content() used 37
get_the_title() used 37

posts
list, displaying 174-181
searching 174

post template, adding
about 208
add photo post template, creating 208-212
Backend CSS classes 212

post types 16

R
readme file sections, documentation 255

general information 254
installation, instructions 255

screenshots 254
special codes 254

register_activation_hook(file, callback) 130
register_sidebar_widget($name, $callback) 93
register_widget_control($name, $callback,

$width, $height) 100
remove_action() 46
remove_filter() 46
RSS feed, processing

fetch_rss() used 62, 63

S
ScreenGrab 20
Search Engine Optimization. See SEO
SEO 9
shortcode_atts(defaults_array, params) 133
shortcode API. See shortcodes
shortcodes

advantages 134, 135
API 132-134
custom template, creating 134, 135
enclosing 133
using, to display template output 130-132

snazzy archives plugin. See archives
Subversion. See SVN
support

providing 257
tips 258

SVN
about 258
local repository, manging 260, 261
using 259

T
template files, Digg link

404.php 38
archive.php 38
comments.php 38
footer.php 38
header.php 38
home.php 38
index.php 38
page.php 38
search.php 38
sidebar.php 38

[�77]

single.php 38
template output, displaying

shortcodes used 130
the_content() 46
theme files, editing

template files 38
tinyMCE

about 181, 199
button, adding to 192-196
link, inserting 181-183
plugin, creating 192
window, creating 197-199

tinyMCE development links 199
tools

Firebug 17
FTP client 17
IE tab 21
ScreenGrab 20
text editor 17
Ubiquity 19
web browser 17
WordPress 16

U
Ubiquity

about 19
installing 19

update_option($key, $value) 100
urlencode($string) 39
user capability checks

adding 240, 241
user input

handling 104-108

V
version, WordPress

checking 30, 31

W
Wall 14, 15
Wall plugin

conc��t 87
widget

control 94
creating, steps 89

widget, creating
Hello World widget, creating 89-93
steps 89
widgets, registering with description 93

widget control
about 94
displaying 97
expanding 94-96
plugin options, handling 97
widget input, handling 98
widget output, handling 98, 99

WordPress
and Ajax 80
and JavaScript 67
archives 126
backend menus 228
blogroll 57-62
conditional tags 49, 50
custom edit panels 172-174
custom fields, using 223
database queries 120
documentation 250
downloading 16
error messages, handling 237, 239
features 7, 8
file uploads, handling 213
function, get_permalink() 37
functionality, changing 44, 45
hooks 41
image uploads, handling 213
installing 17
JavaScript, using 79
link, posting quickly 224
localization, handling 202
localization files, creating 243, 244
manage panel, programming 230
MU development 266-268
online resources 269
page, creating from code 100-103
plugin, creating 28-30
plugin development, guidelines 264
plugin information header 30
plugin promotion 263
plugin repository 258
post infomation, accessing 37
post template, adding 208
RSS feed processing, fetch_rss() used 62, 63

[�78]

support 257
template output, displaying 130
theme files, editing 37
user capabilities 239
user roles 239
version, checking 30, 31
version check, testing 31, 32

WordPress, features
easy to use 9
flexibility 8
high profile work 8
search engines friendly 9
security issues, quick response to 8
social aspect 9

WordPress Action Reference, web site 46
WordPress and GPL 268
WordPress development, advantages 8-10
WordPress development news, online resources

WordPress blog 269
WordPress development updates 269
WordPress dev IRC channel 269
WordPress Trac 269

WordPress development SVN 262
WordPress Filter Reference, web site 46
WordPress hooks

about 41
mailing list 44
practical filters 44
types 41
types, action hooks 41-44
types, filter hooks 41, 42
upper case titles 44
WordPress functionality, changing 44, 45

WordPress insights
custom edit panels 172, 173
custom panels, creating in editor screen

169-172
Flickr API 184, 185
Flickr photos, displaying 185-191
matching post, list displaying 174-181

phpFlickr API 191, 192
posts, searching 174
tinyMCE 181
tinyMCE, button adding to 192-197
tinyMCE, link inserting into 181, 183
tinyMCE plugin, creating 195
tinyMCE plugin window, creating 197-199

WordPress MU development
about 266-268
codex 268

WordPress page
creating, from code 100-103

WordPress plugin
creating 28-30
documentation, searching 23
plugins, installing 22
plugins, managing 23
securing, nonce used 82, 84

WordPress plugins, challenges
development 10
documentation 11
localization 11
promotion 12
security 11
support 11

WordPress plugins, dogfooding 10
WordPress SVN repository

plugin repository 258
WordPress Tiny MCE 68
wp_create_nonce(nonce_id) 84
wp_die($message) 117
wp_enqueue_script() 68
wp_get_current_user() 117
wp_insert_post($post) 104
wp_new_comment($commentdata) 117
wp_print_scripts 68
wp_register_sidebar_widget($id, $name, $call-

back, $options) 93
WPINC 62

Thank you for buying
WordPress Plugin Development
Beginner’s Guide

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing WordPress Plugin Development Beginner's Guide, Packt
will have given some of the money received to the WordPress project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

WordPress for Business Bloggers
ISBN: 978-1-847195-32-6 Paperback: 327 pages

Promote and grow your WordPress blog with
advanced plug-ins, analytics, advertising, and SEO

1. Gain a competitive advantage with a well
polished WordPress business blog

2. Develop and transform your blog with
strategic goals

3. Create your own custom design using the
Sandbox theme

4. Apply SEO (search engine optimization) to
your blog

3. Market and measure the success of your blog

WordPress Theme Design
ISBN: 978-1-847193-09-4 Paperback: 211 pages

A complete guide to creating professional
WordPress themes

1. Take control of the look and feel of your
WordPress site

2. Simple, clear tutorial to creating Unique and
Beautiful themes

3. Expert guidance with practical step-by-step
instructions for theme design

4. Design tips, tricks, and troubleshooting ideas

Please check www.PacktPub.com for information on our titles

Learning Drupal 6 Module
Development
ISBN: 978-1-847194-44-2 Paperback: 310 pages

A practical tutorial for creating your first Drupal 6
modules with PHP

1. Specifically written for Drupal 6
development

2. Program your own Drupal modules
3. No experience of Drupal development

required

4. Know Drupal 5? Learn what’s new
in Drupal 6

5. Integrate AJAX functionality with the
jQuery library

Blogger: Beyond the Basics
ISBN: 978-1-847193-17-9 Paperback: 380 pages

Customize and promote your blog with original
templates, analytics, advertising, and SEO

1. Customize your Blogger templates
2. Grow your blog into a professional,

feature-rich site
3. Add social bookmarks to your blog
4. Optimize your blog with SEO
5. Integrate analytics and advertising with your

Blogger blog
6. Concise, clear, and easy to follow; rich

with examples

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Preparing for WordPress Development
	How will you benefit?
	WordPress features
	More sites means more opportunities
	Big players use it
	Urgent response to security issues
	Flexibility
	Search engines friendly
	Easy to use
	Social aspect

	Plugins as tool for promotion
	Dogfooding WordPress plugins

	Challenges involved
	Development
	Security
	Work after development
	Localization
	Documentation
	Support
	Promotion

	Plugins developed in this book
	Digg This
	Live Blogroll
	The Wall
	Snazzy Archives
	Insights
	Post Types
	Development Goodies

	Tools for the job
	WordPress
	Text Editor
	FTP Client
	Web browser
	Firebug
	Ubiquity
	Screengrab
	IE Tab

	Final notes
	Installing and managing plugins
	Searching documentation

	Summary

	Chapter 2: Social Bookmarking
	Plugging in your first plugin
	Time for action – Create your first plugin
	The Plugin information header
	Checking WordPress versions
	Checking the plugin
	Time for Action – Testing the version check

	Displaying a Digg button
	Time for Action – Implement a Digg link
	Using the Digg API
	Acquiring post information
	Post permalink URL

	Editing the theme files

	WordPress Plugin Hooks
	Time for Action – Use a filter hook
	WordPress Hooks
	Filter Hooks
	Action hooks
	Practical filters and actions examples

	Adding a Digg button using JavaScript code
	Time for Action – Implement a Digg button
	Conditional Tags

	Styling the output
	Time for Action – Use CSS to position the button

	Summary

	Chapter 3: Live Blogroll
	Starting up with the Blogroll
	Time for action – Roll into the blogroll
	RSS Feed Processing

	jQuery JavaScript library
	Implementing a mouse hover event in jQuery
	Time for action – Creating a hover event with jQuery

	JavaScript and WordPress
	Initializing jQuery
	Expanding jQuery knowledge

	Creating the pop-up with CSS
	Time for action – Apply CSS to the popup

	Demystifying Ajax
	Simple example of using Ajax
	Time for action – Use Ajax to dynamically retrieve feed posts

	Using JavaScript with WordPress
	Parsing parameters using wp_localize_script
	Ajax and WordPress
	Ajax in admin panel

	jQuery.Ajax method
	Time for action – Use advanced Ajax call

	Ajax script security using nonces
	Time for action – Add a security nonce

	Summary

	Chapter 4: The Wall
	The main concepts behind the Wall plugin
	Creating a widget
	Time for action – Create a 'Hello World!' widget
	Register widgets with description

	Widget controls
	Time for action – Expanding the widget with controls
	WordPress options
	Display widget control
	Handling widget input
	Handling widget output

	Create a WordPress page from the code
	Time for action – Insert a page

	Handling user input
	Time for action – Create the wall comment form

	Managing Ajax comment submit
	Time for action – Save the comments
	Using Ajax to submit forms
	Saving Comments in WordPress post

	Dynamically load comments
	Time for action – Display the comments
	WordPress database query
	Comment output
	Displaying the comments

	Ajax security
	Time for action – Display the comments

	Summary

	Chapter 5: Snazzy Archives
	Using a class for plugin
	Time for action – Create a new plugin class

	Showing template output with shortcodes
	Time for action – Use a shortcode
	Shortcode API
	Enclosing shortcodes

	Custom templates
	Time for action – Create a custom template

	Prepare archives
	Time for action – Show archives of posts
	Get all posts from database
	Using a regular expression
	Retrieve comment count for a post
	Using output buffers

	Apply styling and jQuery to archives
	Time for action – Style the archive view
	Time for action – Use jQuery to allow user interaction

	Creating plugin options page
	Time for action – Create an options page
	Managing plugin options
	Handling options form
	Adding administration pages

	Use plugin options
	Time for action – Apply the plugin options

	Caching the plugin output
	Time for action – Create archives cache

	Summary

	Chapter 6: Insights for WordPress
	Creating custom panels in the editor screen
	Time for action – Create a new plugin outline
	Custom edit panels in WordPress

	Searching the posts
	Time for action – Display a list of matching posts

	Interacting with tinyMCE
	Time for action – Insert the link into tinyMCE

	Using Flickr API
	Time for action – Display Flickr photos
	Using third-party solutions—phpFlickr

	Creating a tinyMCE plugin
	Time for action – Adding a button to tinyMCE
	Create a functional tinyMCE plugin window
	Time for action – Open a tinyMCE window

	Summary

	Chapter 7: Post Types
	Handling localization
	Time for action – Create plugin and add localization
	Optimizing localization usage
	How does localization work?

	Adding a post template
	Time for action – Create 'add photo' post template
	Backend CSS classes

	Handling file and image uploads
	Time for action – Handle uploaded image

	Using custom fields
	Adding custom fields
	Retrieving custom fields

	Quick post a link
	Time for action – Add link template

	Tinkering with WordPress backend menus
	Time for action - Remove 'Link' from the Write page

	Programming the Manage panel
	Time for action – Add post type column in the Manage panel
	Modifying an existing column
	Manage screen search filter
	Time for action – Add a search filter box

	Handling error messages
	Time for action – Adding support for errors

	User roles and capabilities
	Time for action – Add user capability checks

	Summary

	Chapter 8: Development Goodies
	Creating Localization Files
	Time for action - Create a POT file
	Updating POT file
	Time for action – Perform translation

	Updating translation

	Documentation and support
	Plugin readme file
	Time for action – Create a sample plugin readme.txt file

	Sections of readme.txt
	General information
	Special codes
	Screenshots
	Installation instructions

	Plugin homepage
	Providing support

	Code management and plugin repository
	Requesting repository access
	Using SVN
	Time for action - Manage a local repository using SVN
	Tagging a new version

	Using WordPress development SVN
	Local copy of plugin repository

	Promotion
	Plugin Promotion Checklist

	General plugin development guidelines
	Security
	Performance
	Re-using resources
	Keeping API up-to-date

	WordPress MU development
	WordPress and GPL
	Online resources
	WordPress documentation (WordPress Codex)
	WordPress development news
	WordPress blog
	WordPress development updates
	WordPress Trac
	WordPress dev IRC channel

	Debugging and testing
	Unit testing
	Automated tests

	Mailing Lists
	WP hackers
	WP professionals
	Other mailing lists

	Podcasts
	WordCast
	WordPress Weekly

	Author's (Vladimir Prelovac's) web site

	Summary

	Index

