
www.allitebooks.com

http://www.allitebooks.org

WordPress Web Application
Development
Second Edition

Build rapid web applications with cutting-edge
technologies using WordPress

Rakhitha Nimesh Ratnayake

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

WordPress Web Application Development
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Second edition: May 2015

Production reference: 1250515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-439-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Rakhitha Nimesh Ratnayake

Reviewers
Alex Bachuk

Baljeet Singh

Doug Sparling

Commissioning Editor
Deepika Gaonkar

Acquisition Editor
Reshma Raman

Content Development Editor
Rohit Singh

Technical Editor
Dhiraj Chandanshive

Copy Editor
Janbal Dharmaraj

Project Coordinator
Mary Alex

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rakhitha Nimesh Ratnayake is a freelance web developer, writer, and an open
source enthusiast. He develops premium WordPress plugins for individual clients and
the CodeCanyon marketplace. Rakhitha is the creator of www.innovativephp.com,
where he writes tutorials on the latest web development and design technologies. He
is also a regular contributor to a number of popular websites, such as 1stwebdesigner,
the Tuts+ network, and the SitePoint network. Building Impressive Presentations with
impress.js was his first book, which was published by Packt Publishing. In his spare
time, he likes to watch cricket and spend time with his family. You can visit him online
at www.innovativephp.com and follow him on ODesk at http://goo.gl/ykDLnk.

www.allitebooks.com

www.innovativephp.com
www.innovativephp.com
http://goo.gl/ykDLnk
http://www.allitebooks.org

About the Reviewers

Alex Bachuk is a web developer with over 7 years of experience, specializing in
custom JavaScript and WordPress web applications. Alex has been working with
WordPress since Version 2.5 and has worked on projects ranging from a single-page
website to interactive web applications and social platforms.

These days, Alex mostly works on single-page web applications powered by Angular.
js and full stack Javascript applications using Meteor. His current projects include
http://classmate.io, a web application for education, and www.timebooklet.com,
a timesheet-focused reporting application.

Alex also organizes and talks at WordPress meetups throughout New England.
He writes about technology on his blog, www.alexbachuk.com.

In his free time, Alex likes to travel the world with his wife Oksana, and when there
is even more time, he practices Judo and Brazilian Jiu Jitsu.

Baljeet Singh is a web programmer, mobile application developer, consultant,
and trainer. He is the creator of Cinnabar WordPress Framework (a WordPress
theme framework based on Bootstrap 3). A github repo link for this is available
at http://goo.gl/7z2Zom. He is very passionate about web technologies. In his
free time, he likes to write about WordPress and various emerging technologies
at http://baljeetsingh.in/blog/.

His objective is to make a positive impact on clients, co-workers, and the Internet,
using his skills and experience to design and develop compelling and attractive
websites, web applications, and mobile applications. He enjoys working on
projects that involve a mix of web design, web development, and mobile
application development.

www.allitebooks.com

http://classmate.io
www.timebooklet.com
www.alexbachuk.com
http://www.allitebooks.org

Doug Sparling works as a technical architect and software developer for Andrews
McMeel Universal, a publishing and syndication company in Kansas City, MO. At
AMU, he uses Go for web services and backend processing, Ruby on Rails for web
development, and Objective-C, Swift, and Java for iOS and Android development.
The sites include www.gocomics.com, www.uexpress.com, www.puzzlesociety.com,
and www.dilbert.com.

He is also the director of technology for a small web development firm called
New Age Graphics (www.newage-graphics.com). After creating a custom CMS
using C# and ASP.NET, all his work has moved to WordPress since the time
WordPress 3.0 was released.

He is a passionate advocate for WordPress and has written several WordPress
plugins. He can occasionally be found on the WordPress (https://wordpress.
org) forums answering questions (and writing sample code) under the username
scriptrunner.

He was also the co-author of a Perl book, Instant Perl Modules, for McGraw-Hill
and is a reviewer for other Packt Publishing books, including jQuery 2.0 Animation
Techniques: Beginner's Guide, and its first edition. He was also a reviewer for
The Well-Grounded Rubyist, Second Edition, Manning Publications, and a technical
proofer for Programming for Musicians and Digital Artists.

He is currently the technical directing editor for Programming in Haskell and
reviewer for Go In Action, among others.

www.allitebooks.com

www.gocomics.com
www.uexpress.com
www.puzzlesociety.com
www.dilbert.com
www.newage-graphics.com
https://wordpress.org
https://wordpress.org
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 xi
Chapter 1: WordPress as a Web Application Framework	 1

WordPress as a CMS	 2
WordPress as a web application framework	 3

The MVC versus event-driven architecture	 4
Simplifying development with built-in features	 4

User management	 5
Media management	 5
Template management	 5
Database management	 5
Routing	 5
XMR-RPC API	 6
Caching	 6
Scheduling	 6
Plugins and widgets	 6
Themes	 6
Actions and filters	 7
The admin dashboard	 7

Identifying the components of WordPress	 7
The role of WordPress themes	 8
Structure of a WordPress page layout	 8
Customizing the application layout	 9
The role of the admin dashboard	 9

The admin dashboard	 9
Posts and pages	 10
Users	 10
Appearance	 10
Settings	 10

The role of plugins	 10

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The role of widgets	 11
A development plan for the portfolio management application	 13

Application goals and target audience	 13
Planning the application	 14
User roles of the application	 15
Planning application features and functions	 15

Understanding limitations and sticking to guidelines	 17
Building a question-answer interface	 18

Prerequisites for building a question-answer interface	 18
Creating questions	 19
Customizing the comments template	 22
Changing the status of answers	 23
Saving the status of answers	 28
Generating a question list	 30

Enhancing features of the questions plugin	 32
Customizing the design of questions	 32
Categorizing questions	 33
Approving and rejecting questions	 33
Adding star rating to answers	 33

Summary	 34
Chapter 2: Implementing Membership Roles, Permissions,
and Features	 35

Introduction to user management	 36
Preparing the plugin	 36

Getting started with user roles	 37
Creating application user roles	 38

The best action for adding user roles	 38
Knowing the default roles of Wordpress	 40

Choosing among default and custom roles	 40
Removing existing user roles	 41

Understanding user capabilities	 41
Creating your first capability	 42
Understanding default capabilities	 42

Registering application users	 43
Implementing frontend registration	 44

Shortcode implementation	 44
Pros and cons of using shortcodes	 45

Page template implementation	 45
Pros and cons of page templates	 45

Custom template implementation	 46
Building a simple router for a user module	 46

Table of Contents

[iii]

Creating the routing rules	 47
Adding query variables	 47
Flushing the rewriting rules	 48

Controlling access to your functions	 50
The advantages of using the do_action function	 51

Creating custom templates	 52
Designing the registration form	 52
Planning the registration process	 54
Handling registration form submission	 55

Exploring the registration success path	 58
Automatically log in the user after registration	 60
Activating system users	 61

Creating a login form in the frontend	 62
Displaying the login form	 64

Checking whether we implemented the process properly	 66
Time to practice	 67
Summary	 68

Chapter 3: Planning and Customizing the Core Database	 69
Understanding the WordPress database	 70
Exploring the role of existing tables	 70

User-related tables	 71
Post-related tables	 72
Term-related tables	 73
Other tables	 74

Adapting existing tables into web applications	 75
User-related tables	 76
Post-related tables	 76

Scenario 1 – An online shopping cart	 77
Scenario 2 – A hotel reservation system	 77
Scenario 3 – The project management application	 77

Term-related tables	 77
Other tables	 78

Extending the database with custom tables	 79
Planning the portfolio application tables	 80

Types of tables in web applications	 80
Creating custom tables	 81

Querying the database	 84
Querying the existing tables	 84

Inserting records	 84
Updating records	 84
Deleting records	 85
Selecting records	 85

Querying the custom tables	 85

Table of Contents

[iv]

Working with posts	 86
Extending the WP_Query class for applications	 87
Introduction to WordPress query classes	 88

The WP_User_Query class	 89
The WP_Comment_Query class	 89
Other query classes	 90

Limitations and considerations	 90
Transaction support	 91
Post revisions	 91

How to know whether to enable or disable revisions?	 91
Auto saving	 92
Using meta tables	 92

Summary	 92
Chapter 4: Building Blocks of Web Applications	 95

Introduction to custom content types	 96
The role of custom post types in web applications	 96

Planning custom post types for application	 97
Projects	 97
Services	 98
Articles	 99
Books	 99

Implementing custom post types for a portfolio application	 100
Implementing the custom post type settings	 103
Creating the project class	 104

Assigning permissions to projects	 107
Creating custom taxonomies for technologies and project types	 108

Assigning permissions to the project type	 111
Introduction to custom fields with meta boxes	 113

What is a template engine?	 115
Building a simple custom template loader	 116
Creating your first template	 118
Comparing the template loader and template engine	 122

Persisting custom field data	 123
Customizing custom post type messages	 127

Introducing custom post type relationships	 129
Pods framework for custom content types	 132

Should you choose Pods for web development?	 135
Time to practice	 136
Summary	 137

Table of Contents

[v]

Chapter 5: Developing Pluggable Modules	 139
A brief introduction to WordPress plugins	 140

Understanding the WordPress plugin architecture	 140
WordPress plugins for web development	 141

Creating reusable libraries with plugins	 142
Planning the template loader plugin	 142
Using the template loader plugin	 144
Handling plugin dependencies	 145

Extensible plugins	 148
Extend plugins with WordPress core actions and filters	 149
Extend plugins with custom actions and filters	 159

Pluggable plugins	 161
Tips for using pluggable functions	 164

Time to practice	 165
Summary	 165

Chapter 6: Customizing the Dashboard for Powerful Backends	 167
Understanding the admin dashboard	 168
Customizing the admin toolbar	 168

Removing the admin toolbar	 169
Managing the admin toolbar items	 170

Customizing the main navigation menu	 173
Creating new menu items	 174

Adding features with custom pages	 175
Building options pages	 175

Creating a custom layout for options pages	 176
Building an application options panel	 178
Using the WordPress options API	 181

Using feature-packed admin list tables	 183
Working with default admin list tables	 183

The post list	 184
The user list	 191
The comments list	 192

Building extended lists	 193
Using the admin list table for the following developers	 194

Step 1 – defining the custom class	 194
Step 2 – defining the instance variables	 194
Step 3 – creating the initial configurations	 195
Step 4 – implementing the custom column handlers	 195
Step 5 – implementing the column default handlers	 196
Step 6 – displaying the checkbox for records	 197
Step 7 – listing the available custom columns	 197
Step 8 – defining the sortable columns of list	 198

Table of Contents

[vi]

Step 9 – creating a list of bulk actions	 198
Step 10 – retrieving list data	 198
Step 11 – adding a custom list as a menu page	 199
Step 12 – displaying the generated list	 199

An awesome visual presentation for admin screens	 202
Using existing themes	 203
Using plugin-based third-party admin themes	 203
Creating your own admin theme	 205

The responsive nature of the admin dashboard	 209
Time for action	 210
Summary	 211

Chapter 7: Adjusting Theme for Amazing Frontends	 213
An introduction to the WordPress application frontend	 214

A basic file structure of the WordPress theme	 214
Understanding the template execution hierarchy	 215
The template execution process of web application frameworks	 217

Web application layout creation techniques	 218
Shortcodes and page templates	 219
Custom templates with custom routing	 219

Using pure PHP templates	 220
The WordPress way of using templates	 220
Direct template inclusion	 221
Theme versus plugin-based templates	 222

Building the portfolio application home page	 223
What is a widget?	 223

Widgetizing application layouts	 224
Creating widgets	 225

Designing a home page template	 231
Generating the application frontend menu	 233

Creating a navigation menu	 233
Displaying user-specific menus on the frontend	 236

Managing options and widgets with customizer	 237
Adding custom options to the theme customizer	 238
Handling widgets in the theme customizer	 240

Creating pluggable templates	 242
Pluggable templates in WordPress	 242

Extending the home page template with action hooks	 244
Customize widgets to enable extendable locations	 245

Planning action hooks for layouts	 247
Time for action	 249
Summary	 249

Table of Contents

[vii]

Chapter 8: Enhancing the Power of Open Source Libraries
and Plugins	 251

Why choose open source libraries?	 252
Open source libraries inside the WordPress core	 252
Open source JavaScript libraries in the WordPress core	 253

What is Backbone.js?	 254
Understanding the importance of code structuring	 255
Integrating Backbone.js and Underscore.js	 256
Creating a developer profile page with Backbone.js	 257

Structuring with Backbone.js and Underscore.js	 260
Displaying the projects list on page load	 262
Creating new projects from the frontend	 266
Integrating events to Backbone.js views	 268
Validating and creating new models for the server	 269
Creating new models in the server	 270

Using PHPMailer for custom e-mail sending	 273
Usage of PHPMailer within the WordPress core	 273

Creating a custom version of a pluggable wp_mail function	 274
Loading PHPMailer inside plugins and creating custom functions	 274

Implementing user authentication with OpenAuth	 277
Configuring login strategies	 279

Implementing LinkedIn account authentication	 281
Verifying LinkedIn account and generating response	 283

Building a LinkedIn app	 285
The process of requesting the strategies	 287
Initializing the library	 287
Authenticating users to our application	 289

Using third- party libraries and plugins	 292
Time for action	 293
Summary	 293

Chapter 9: Listening to Third-party Applications	 295
Introduction to APIs	 296

The advantages of having an API	 296
The WordPress XML-RPC API for web applications	 297
Building the API client	 298
Creating a custom API	 302
Integrating API user authentication	 303
Integrating API access tokens	 306
Providing the API documentation	 311
Time for action	 312
Summary	 313

Table of Contents

[viii]

Chapter 10: Integrating and Finalizing the Portfolio
Management Application	 315

Integrating and structuring the portfolio application	 316
Adding the template loader dependencies	 317
Integrating the template loader into a user manager	 318
Working with a restructured application	 320

Building the developer model	 321
Designing the developer list template	 322
Enabling AJAX-based filtering	 323

Updating a user profile with additional fields	 326
Updating the values of the profile fields	 328

Scheduling subscriber notifications	 331
Notifying subscribers through e-mails	 333

Time for action	 336
Final thoughts	 337
Summary	 337

Chapter 11: Supplementary Modules for Web Development 	 339
Internationalization	 340

Introduction to WordPress translation support	 340
The translation functions in WordPress	 341

Creating plugin translations	 341
Creating the POT file using PoEdit	 342
Loading language files	 345
Changing the WordPress language	 345

Working with media grid and image editor	 346
Introduction to the post editor	 347

Using the WordPress editor	 348
Video embedding	 349

Lesser-known WordPress features	 349
Caching	 350
Transients	 351
Testing	 351
Security	 352

Introduction to multisite	 353
Time for action	 354
Summary	 355

Table of Contents

[ix]

Appendix: Configurations, Tools, and Resources	 357
Configure and set up WordPress	 357

Step 1 – downloading WordPress	 357
Step 2 – creating the application folder	 358
Step 3 – configuring the application URL	 358

Creating a virtual host	 358
Using a localhost	 359

Step 4 – installing WordPress	 359
Step 5 – setting up permalinks	 362
Step 6 – downloading the Responsive theme	 363
Step 7 – activating the Responsive theme	 363
Step 8 – activating the plugin	 363
Step 9 – using the application	 364

Open source libraries and plugins	 364
Online resources and tutorials	 364

Index	 367

[xi]

Preface
Developing WordPress-powered websites is one of the standout trends in the
modern web development world. The flexibility and power of the built-in features
offered by WordPress has made developers use this framework for advanced web
development. This book will act as a comprehensive resource for building web
applications with this amazing framework.

WordPress Web Application Development, is a comprehensive guide focused on
incorporating the existing features of WordPress into typical web development.
This book is structured towards building a complete web application from
scratch. With this book, you will build a portfolio management application
with a modularized structure supported by the latest trending technologies.

This book provides a comprehensive, practical, and example-based approach
for pushing the limits of WordPress to create web applications beyond your
imagination.

It begins by exploring the role of existing WordPress components and discussing the
reasons for choosing WordPress for web application development. As we proceed,
more focus will be put onto adapting WordPress features into web applications with
the help of an informal use-case-based model for discussing the most prominent
built-in features. While striving for web development with WordPress, you will also
learn about the integration of popular client-side technologies, such as Backbone.js,
Underscore.js, jQuery, and server-side technologies and techniques, such as template
engines and OpenAuth integration.

This book differentiates from the norm by creating a website that is dedicated
to providing tutorials, articles, and source code to continue and enhance the
web application development techniques discussed throughout this book.
You can access the website for this book at http://www.innovativephp.com/
wordpress-web-applications.

http://www.innovativephp.com/wordpress-web-applications
http://www.innovativephp.com/wordpress-web-applications

Preface

[xii]

After reading this book, you will possess the ability to develop powerful web
applications rapidly within limited time frames with the crucial advantage of
benefitting low-budget and time-critical projects.

What this book covers
Chapter 1, WordPress as a Web Application Framework, walks you through the
existing modules and techniques to identify their usage in web applications.
The identification of the WordPress features beyond the conventional CMS and
planning portfolio management application are the highlights of this chapter.

Chapter 2, Implementing Membership Roles, Permissions, and Features, begins the
implementation of a portfolio management application by exploring the features
of the built-in user management module. Working with various user roles and
permissions, as well as an introduction to the MVC process through routing, are
the highlights of this chapter.

Chapter 3, Planning and Customizing the Core Database, serves as an extensive guide
for understanding the core database structure and the role of database tables in
web applications. Database querying techniques using WordPress query classes
and coverage of the planning portfolio management application database are the
highlights of this chapter.

Chapter 4, Building Blocks of Web Applications, explores the possibilities of extending
WordPress posts beyond their conventional usage to suit complex applications.
Advanced use of custom post types and an introduction to managing template
loaders are the highlights of this chapter.

Chapter 5, Developing Pluggable Modules, introduces the techniques of creating highly
reusable and extensible plugins to enhance the flexibility of web applications.
Implementing various plugins for explaining these techniques with the use of
WordPress action and filter hooks is the highlight of this chapter.

Chapter 6, Customizing the Dashboard for Powerful Backends, walks you through the
process of customizing the WordPress admin panel for adding new features, as well
as changing existing features and design. Building reusable grids and designing an
admin panel with various different techniques are the highlights of this chapter.

Chapter 7, Adjusting Theme for Amazing Frontends, dives into the techniques of designing
amazing layouts, thereby opening them up for future extension. Widgetizing layouts
and building reusable templates are the highlights of this chapter.

Preface

[xiii]

Chapter 8, Enhancing the Power of Open Source Libraries and Plugins, explores the
use of the latest trending open source technologies and libraries. Integrating open
authentication into your web application and structuring the application on the
client side are the highlights of this chapter.

Chapter 9, Listening to Third-party Applications, demonstrates how to use the
WordPress XML-RPC API to create a custom API for your web application. Building
a simple yet complete API with all the main features is the highlight of this chapter.

Chapter 10, Integrating and Finalizing the Portfolio Management Application, guides you
through the integration of modules and refactoring the code developed throughout
this book. Improving the consistency of the application's code and completing the
features developed throughout the previous chapters are the highlights of this chapter.

Chapter 11, Supplementary Modules for Web Development, introduces you to the
supplementary WordPress features, such as Internationalization, video embedding,
media grid, and multisite. An introduction to important concepts in application
development, such as caching, security, and testing are the highlight of this chapter.

Appendix, Configurations, Tools, and Resources, provides an application setup
guide with necessary links to download the plugins and libraries used
throughout the book.

What you need for this book
Technically, you need a computer, browser, and an Internet connection with the
following working environment:

•	 The Apache web server
•	 PHP Version 5.2 or higher
•	 WordPress Version 4.0 or higher.
•	 MySQL Version 5.0 or higher

Once you have the preceding environment, you can download the Responsive
theme from http://wordpress.org/themes/responsive and activate it from
the Themes section. Finally, you can activate the plugin developed for this book
to get things started.

Please refer to Appendix, Configurations, Tools, and Resources, for the application setup
guide, required software, and plugins.

http://wordpress.org/themes/responsive

Preface

[xiv]

Who this book is for
This book is intended for WordPress developers or designers, who know how
to create a basic CMS site and are looking for ways to learn the complex web
application development in a reusable, maintainable, and modular way. Basic
knowledge of WordPress themes and plugin development is expected, although
this is not a must for experienced PHP developers to go through this book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text are shown as follows: "WordPress passes existing MIME types as
the parameter to this function. Here, we have modified the $mimes array to restrict
the image types to JPG."

A block of code is set as follows:

function filter_mime_types($mimes) {
 $mimes = array(
 'jpg|jpeg|jpe' => 'image/jpeg',
);
 return $mimes;
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

function filter_mime_types($mimes) {
 $mimes = array(
 'jpg|jpeg|jpe' => 'image/jpeg',
);
 do_action_ref_array('wpwa_custom_mimes', array(&$mimes));
 return $mimes;
}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Once
the Publish button is clicked, we validate the form and save the error messages
as transients."

Preface

[xv]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: http://www.packtpub.
com/sites/default/files/downloads/4082OS_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/4082OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4082OS_ColorImages.pdf

Preface

[xvi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

WordPress as a Web
Application Framework

In recent years, WordPress has matured from the most popular blogging platform to
the most popular content management system. Thousands of developers around the
world are making a living from WordPress design and development. As more and
more people are interested in using WordPress, there are discussions and arguments
about exploring the possibilities of using this amazing framework for web
application development.

The future seems bright as WordPress has already got dozens of built-in features,
which can be easily adapted to web application development using slight
modifications. Since you are already reading this book, you have to be someone
who is really excited to see how WordPress fits into web application development.
Throughout this book, we will learn how we can inject the best practices of web
development into WordPress framework to build web applications in rapid process.

Basically, this book will be important for developers from two different perspectives.
On one hand, beginner- to intermediate-level WordPress developers can get
knowledge of cutting-edge web development technologies and techniques to build
complex applications. On the other hand, web development experts who are already
familiar with popular PHP frameworks can learn WordPress for rapid application
development. So, let's get started!

In this chapter, we will cover the following topics:

•	 WordPress as a CMS
•	 WordPress as a web application framework
•	 Simplifying development with built-in features

WordPress as a Web Application Framework

[2]

•	 Identifying the components of WordPress
•	 Making a development plan for portfolio management application
•	 Understanding limitations and sticking with guidelines
•	 Building a question-answer interface

In order to work with this book, you should be familiar with WordPress themes,
plugins, and its overall process. Developers who are experienced in PHP frameworks
can work with this book while using the reference sources to learn WordPress. By
the end of this chapter, you will have the ability to make the decision to choose
WordPress for web development.

WordPress as a CMS
Way back in 2003, WordPress released its first version as a simple blogging platform
and continued to improve until it became the most popular blogging tool. Later, it
continued to improve as a CMS and now has a reputation for being the most popular
CMS. These days everyone sees WordPress as a CMS rather than just a blogging tool.

Now the question is, where will it go next?

Recent versions of WordPress have included popular web development libraries
such as Backbone.js and Underscore.js and developers are building different types
of applications with WordPress. So, we can assume that it's moving in the direction
of building applications. It's important to keep an eye on the next few versions to
see what WordPress offers for web applications.

Before we consider the application development aspects of WordPress, it's ideal
to figure out the reasons for it being such a popular framework. The following are
some of the reasons behind the success of WordPress as a CMS:

•	 Plugin-based architecture for adding independent features and the
existence of over 20,000 open source plugins

•	 A super simple and easy-to-access administration interface
•	 A fast learning curve and comprehensive documentation for beginners
•	 A rapid development process involving themes and plugins
•	 An active development community with awesome support
•	 Flexibility in building websites with its themes, plugins, widgets, and hooks

Chapter 1

[3]

These reasons prove why WordPress is the top CMS for website development.
However, experienced developers who work with full stack web applications don't
believe that WordPress has a future in web application development. While it's up
for debate, we'll see what WordPress has to offer for web development.

Once you complete reading this book, you will be able to decide whether WordPress
has a future in web applications. I have been working with full stack frameworks for
several years, and I certainly believe the future of WordPress for web development.

WordPress as a web application
framework
In practice, the decision to choose a development framework depends on the
complexity of your application. Developers will tend to go for frameworks in
most scenarios. It's important to figure out why we go with frameworks for web
development. Here's a list of possible reasons why frameworks become a priority
in web application development:

•	 Frameworks provide stable foundations for building custom functionalities
•	 Usually, stable frameworks have a large development community with an

active support
•	 They have built-in features to address the common aspects of application

development, such as routing, language support, form validation, user
management, and more

•	 They have a large amount of utility functions to address repetitive tasks

Full stack development frameworks such as Zend, CodeIgniter, and CakePHP
adhere to the points mentioned in the preceding section, which in turn becomes
the framework of choice for most developers. However, we have to keep in mind
that WordPress is an application where we built applications on top of existing
features. On the other hand, traditional frameworks are foundations used for
building applications such as WordPress. Now, let's take a look at how WordPress
fits into the boots of web application framework.

WordPress as a Web Application Framework

[4]

The MVC versus event-driven architecture
A vast majority of web development frameworks are built to work with MVC
architecture, where an application is separated into independent layers called
models, views, and controllers. In MVC, we have a clear understanding of what goes
where and when each of the layers will be integrated in the process.

So, the first thing most developers will look at is the availability of MVC in
WordPress. Unfortunately, WordPress is not built on top of the MVC architecture.
This is one of the main reasons why developers refuse to choose it as a development
framework. Even though it is not MVC, we can create custom execution process to
make it work like a MVC application. Also, we can find frameworks such as WP
MVC, which can be used to take advantage of both WordPress's native functionality
and a vast plugin library and all of the many advantages of an MVC framework.
Unlike other frameworks, it won't have the full capabilities of MVC. However,
unavailability of the MVC architecture doesn't mean that we cannot develop quality
applications with WordPress. There are many other ways to separate concerns in
WordPress applications.

WordPress on the other hand, relies on a procedural event-driven architecture with
its action hooks and filters system. Once a user makes a request, these actions will
get executed in a certain order to provide the response to the user. You can find the
complete execution procedure at http://codex.wordpress.org/Plugin_API/
Action_Reference.

In the event-driven architecture, both model and controller code gets scattered
throughout the theme and plugin files. In the upcoming chapters, we will look at
how we can separate these concerns with the event-driven architecture, in order to
develop maintainable applications.

Simplifying development with built-in
features
As we discussed in the previous section, the quality of framework depends on its
core features. The better the quality of the core, the better it will be for developing
quality and maintainable applications. It's surprising to see the availability of
number of WordPress features directly related to web development, even though it
is meant to create websites.

Let's get a brief introduction about the WordPress core features to see how it fits into
web application development.

http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference

Chapter 1

[5]

User management
Built-in user management features are quite advanced in order to cater to the most
common requirements of any web application. Its user roles and capability handling
makes it much easier to control the access to specific areas of your application. We
can separate users into multiple levels using roles and then use capabilities to define
the permitted functionality for each user level. Most full stack frameworks don't
have a built-in user management features, and hence, this can be considered as
an advantage of using WordPress.

Media management
File uploading and managing is a common and time consuming task in web
applications. Media uploader, which comes built-in with WordPress, can be
effectively used to automate the file-related tasks without writing much source
code. A super-simple interface makes it so easy for application users to handle
file-related tasks.

Template management
WordPress offers a simple template management system for its themes. It is not
as complex or fully featured as a typical template engine. However, it offers a wide
range of capabilities in CMS development perspective, which we can extend to suit
web applications.

Database management
In most scenarios, we will be using the existing database table structure for our
application development. WordPress database management functionalities offer a
quick and easy way of working with existing tables with its own style of functions.
Unlike other frameworks, WordPress provides a built-in database structure, and
hence most of the functionalities can be used to directly work with these tables
without writing custom SQL queries.

Routing
Comprehensive support for routing is provided through permalinks. WordPress
makes it simple to change the default routing and choose your own routing,
in order to built search engine friendly URLs.

www.allitebooks.com

http://www.allitebooks.org

WordPress as a Web Application Framework

[6]

XMR-RPC API
Building an API is essential for allowing third-party access to our application.
WordPress provides built-in API for accessing CMS-related functionality through
its XML-RPC interface. Also, developers are allowed to create custom API functions
through plugins, making it highly flexible for complex applications.

Caching
Caching in WordPress can be categorized into two sections called persistent and
nonpersistent cache. Nonpersistent caching is provided by WordPress cache object
while persistent caching is provided through its Transient API. Caching techniques
in WordPress is a simple compared to other frameworks, but it's powerful enough to
cater to complex web applications.

Scheduling
As developers, you might have worked with cron jobs for executing certain tasks at
specified intervals. WordPress offers same scheduling functionality through built-
in functions, similar to a cron job. However, WordPress cron execution is slightly
different from normal cron jobs. In WordPress, cron won't be executed unless
someone visits the site. Typically, it's used for scheduling future posts. However, it
can be extended to cater complex scheduling functionality.

Plugins and widgets
The power of WordPress comes from its plugin mechanism, which allows us to
dynamically add or remove functionality without interrupting other parts of the
application. Widgets can be considered as a part of the plugin architecture and will
be discussed in detail further in this chapter.

Themes
The design of a WordPress site comes through the theme. This site offers many built-
in template files to cater to the default functionality. Themes can be easily extended
for custom functionality. Also, the design of the site can be changed instantly by
switching compatible theme.

Chapter 1

[7]

Actions and filters
Actions and filters are part of the WordPress hook system. Actions are events
that occur during a request. We can use WordPress actions to execute certain
functionalities after a specific event is completed. On the other hand, filters are
functions that are used to filter, modify, and return the data. Flexibility is one of
the key reasons for the higher popularity of WordPress, compared to other CMS.
WordPress has its own way of extending functionality of custom features as well
as core features through actions and filters. These actions and filters allow the
developers to build advanced applications and plugins, which can be easily extended
with minor code changes. As a WordPress developer, it's a must to know the perfect
use of these actions and filters in order to build highly flexible systems.

The admin dashboard
WordPress offers a fully featured backend for administrators as well as normal
users. These interfaces can be easily customized to adapt to custom applications.
All the application-related lists, settings, and data can be handled through the
admin section.

The overall collection of features provided by WordPress can be effectively used to
match the core functionalities provided by full stack PHP frameworks.

Identifying the components of WordPress
WordPress comes up with a set of prebuilt components, which are intended to
provide different features and functionality for an application. A flexible theme and
powerful admin features act as the core of WordPress websites, while plugins and
widgets extend the core with application-specific features. As a CMS, we all have a
pretty good understanding of how these components fit into a WordPress website.

Here our goal is to develop web applications with WordPress, and hence it is
important to identify the functionality of these components in the perspective of
web applications. So, we will look at each of the following components, how they
fit into web applications, and how we can take advantage of them to create flexible
applications through a rapid development process:

•	 The role of WordPress themes
•	 The role of admin dashboard
•	 The role of plugins
•	 The role of widgets

WordPress as a Web Application Framework

[8]

The role of WordPress themes
Most of us are used to seeing WordPress as a CMS. In its default view, a theme is a
collection of files used to skin your web application layouts. In web applications, it's
recommended to separate different components into layers such as models, views,
and controllers. WordPress doesn't adhere to the MVC architecture. However, we
can easily visualize themes or templates as the presentation layer of WordPress.

In simple terms, views should contain the HTML needed to generate the layout
and all the data it needs, should be passed to the views. WordPress is built to create
content management systems, and hence, it doesn't focus on separating views from
its business logic. Themes contain views, also known as template files, as a mix of
both HTML code and PHP logic. As web application developers, we need to alter
the behavior of existing themes, in order to limit the logic inside templates and use
plugins to parse the necessary model data to views.

Structure of a WordPress page layout
Typically, posts or pages created in WordPress consist of five common sections.
Most of these components will be common across all the pages in the website. In web
applications, we also separate the common layout content into separate views to be
included inside other views. It's important for us to focus on how we can adapt the
layout into web application-specific structure. Let's visualize the common layout of
WordPress using the following screen:

Chapter 1

[9]

Having looked at the structure, it's obvious that header, footer, and the content
area are mandatory even for web applications. However, the footer and comments
section will play a less important role in web applications, compared to web pages.
Sidebar is important in web applications, even though it won't be used with the same
meaning. It can be quite useful as a dynamic widget area.

Customizing the application layout
Web applications can be categorized as projects and products. A project is something
we develop targeting specific requirements of a client. On the other hand, a product
is an application created based on the common set of requirements for wide range of
users. Therefore, customizations will be required on layouts of your product based
on different clients.

WordPress themes make it simple to customize the layout and features using child
themes. We can make the necessary modifications in the child theme while keeping
the core layout in the parent theme. This will prevent any code duplications in
customizing layouts. Also, the ability to switch themes is a powerful feature that
eases the layout customization.

The role of the admin dashboard
The administration interface of an application plays one of the most important roles
behind the scenes. WordPress offers one of the most powerful and easy-to-access
admin areas amongst other competitive frameworks. Most of you should be familiar
with using admin area for CMS functionalities. However, we will have to understand
how each component in the admin area suits the development of web applications.

The admin dashboard
Dashboard is the location where all the users get redirected, once logged into admin
area. Usually, it contains dynamic widget areas with the most important data of
your application. Dashboard can play a major role in web applications, compared to
blogging or CMS functionality. The dashboard contains a set of default widgets that
are mainly focused on main WordPress features such as posts, pages, and comments.
In web applications, we can remove the existing widgets related to CMS and add
application-specific widgets to create a powerful dashboard. WordPress offers a
well-defined API to create a custom admin dashboard widgets and hence we can
create a very powerful dashboard using custom widgets for custom requirements
in web applications.

WordPress as a Web Application Framework

[10]

Posts and pages
Posts in WordPress are built for creating content such as articles and tutorials. In
web applications, posts will be the most important section to create different types of
data. Often, we will choose custom post types instead of normal posts for building
advanced data creation sections. On the other hand, pages are typically used to
provide static content of the site. Usually, we have static pages such as About Us,
Contact Us, Services, and so on.

Users
User management is a must use section for any kind of web application. User roles,
capabilities and profiles will be managed in this section by the authorized users.

Appearance
Themes and application configurations will be managed in this section. Widgets and
theme options will be the important sections related to web applications. Generally,
widgets are used in sidebars of WordPress sites to display information such as recent
members, comments, posts, and so on. However, in web applications, widgets can
play a much bigger role as we can use widgets to split main template into multiple
sections. Also, these types of widgetized areas become handy in applications where
majority of features are implemented with AJAX.

The theme options panel can be used as the general settings panel of web
applications where we define the settings related to templates and generic site-
specific configurations.

Settings
This section involves general application settings. Most of the prebuilt items in this
section are suited for blogs and websites. We can customize this section to add new
configuration areas related to our plugins, used in web application development.

There are some other sections such as links, pages, and comments, which will not be
used frequently in complex web application development. The ability to add new
sections is one of the key reasons for its flexibility.

The role of plugins
In normal circumstances, WordPress developers use functions that involve
application logic scattered across theme files and plugins. Even some of the
developers change the core files of WordPress, which is considered a very bad
practice. In web applications, we need to be much more organized.

Chapter 1

[11]

In the Role of WordPress theme section, we discussed the purpose of having a theme
for web applications. Plugins will be and should be used to provide the main logic
and content of your application. The plugins architecture is a powerful way to add
or remove features without affecting the core. Also, we have the ability to separate
independent modules into their own plugins, making it easier to maintain. On top
of this, plugins have the ability to extend other plugins.

The role of widgets
The official documentation of WordPress refers to widgets as a component that
adds content and features to your sidebar. In a typical blogging or CMS user's
perspective, it's a completely valid statement. Actually, the widgets offer more
in web applications by going beyond the content that populates sidebars. The
following screenshot shows a typical widgetized sidebar of a website:

WordPress as a Web Application Framework

[12]

We can use dynamic widgetized areas to include complex components as widgets,
making it easy to add or remove features without changing source code. The
following screenshot shows a sample dynamic widgetized area. We can use the
same technique for developing applications with WordPress.

Throughout these sections, we covered the main components of WordPress and
how they fit into the actual web application development. Now, we have a good
understanding of the components in order to plan our application developed
throughout this book.

Chapter 1

[13]

A development plan for the portfolio
management application
Typically, a WordPress book consists of several chapters, each of them containing
different practical examples to suit each section. In this book, our main goal is
to learn how we can build full stack web applications using built-in WordPress
features. Therefore, I thought of building a complete application, explaining each
and every aspect of web development.

Throughout this book, we will develop an online portfolio management system for
web development-related professionals. This application can be considered as a
mini version of a basic social network. We will be starting the development of this
application from Chapter 2, Implementing Membership Roles, Permissions, and Features.

Planning is a crucial task in web development, in which we will save a lot of time
and avoid potential risks in the long run. First, we need to get a basic idea about the
goal of this application, features and functionalities, and the structure of components
to see how it fits into WordPress.

Application goals and target audience
Developers and designers who work online as freelancers know the importance
of a personal profile to show your skills for improved reputation. However, most
people, including experts who work full-time jobs don't maintain such profiles, and
hence get unnoticed among co-developers. The application developed throughout
this book is intended to provide the opportunity for web professionals to create
their public profiles and connect with the experts in the field.

This application will be targeted towards all the people who are involved in web
development and design. I believe that both output of this application and the
contents of the book will be ideal for the PHP developers who want to jump into
WordPress application development.

WordPress as a Web Application Framework

[14]

Planning the application
Basically, our application consists of both frontend and backend, which is common
to most web applications. In the frontend, both registered and unregistered users
will have different functionalities based on their user roles. The following diagram
shows the structure of our application home page:

The backend will be developed by customizing the built-in admin features of
WordPress. Existing and new functionalities of the admin area will be customized
based on the user role permissions.

Chapter 1

[15]

User roles of the application
Application consists of four user roles, including the built-in admin role. User roles
and their respective functionalities are explained in the following section:

•	 Admin: This manages the application configurations, settings, and
capabilities of the users.

•	 Developer: This is the user role common to all web professionals who want
to make profiles. All the developers will be able to create complete profile
details to enhance their reputation.

•	 Members: These are normal users who want to use the things created
by developers and designers. They will be able to access and download
the work made public by developers. Basically, members will have more
permission to directly interact with developers, compared to subscribers.
Also, we can implement premium content section in future for paid
members.

•	 Subscribers: These are also normal users who want to follow the activities
of their preferred developers. These users will be notified whenever their
preferred developers create a new activity within application.

Registration is required for all the four user roles in the portfolio
management application.

Planning application features and functions
Our main intention of building this application is to learn how WordPress can
be adapted to advanced web application development. Therefore, we will be
considering various small requirements, rather than covering all aspects of a similar
system. Each of the functionalities will be focused on explaining various modules in
web applications and the approach of WordPress in building similar functionality.

WordPress as a Web Application Framework

[16]

Let's consider the following list of functions, which we will be developing
throughout this book:

•	 Developer profile management: Users who register as developers will
be given the opportunity to construct their profile by completing content
divided into various sections such as services, portfolio, articles, and books.

•	 Frontend login and registration: Typically, web applications contain the
login and registration in the frontend, whereas WordPress provides it on the
admin area. Therefore, custom implementation of login and registration will
be implemented in the application frontend.

•	 Settings panel: Comprehensive settings panel will be developed for
administrators to configure general application settings from the backend.

•	 XML API: A large number of popular web applications come up with a fully
functional API to allow access to third-party applications. In this application,
we will be developing simple API to access the developer details and
activities from external sources.

•	 Notification service: A simple notification service will be developed to
manage subscriptions as well as manage updates about the application
activities.

•	 Responsive design: With the increase of mobile devices in Internet browsing,
more and more applications are converting their apps to suit various devices.
So, we will be targeting different devices for fully responsive design from the
beginning of the development process.

•	 Third-party libraries: Throughout the book, we will be creating
functionalities such as OpenAuth login, RSS feed generation, and template
management to understand the use of third-party libraries in WordPress.

While these are our main functionalities, we will also develop small features and
components on top of them to explain the major aspects of web development.

If you are still not convinced, you can take a look at the various types of WordPress
powered web applications at http://www.innovativephp.com/demo/packt/
wordpress_applications.

http://www.innovativephp.com/demo/packt/wordpress_applications
http://www.innovativephp.com/demo/packt/wordpress_applications

Chapter 1

[17]

Understanding limitations and sticking
to guidelines
As with every framework, WordPress has its limitations in developing web
applications. Developers need to understand the limitations before deciding to
choose the framework for application development.

In this section, we will learn the limitations while building simple guidelines for
choosing WordPress for web development. Let's get started!

•	 Lack of support for MVC: We talked about the architecture of WordPress
and its support for MVC in one of the earlier sections. As a developer,
you need to figure out ways to work with WordPress in order to suit web
applications. If you are someone who cannot work without MVC, WordPress
may not be the best solution for your application.

•	 Database migration: If you are well experienced in web development, you
will have a pretty good idea about the importance of choosing databases
considering the possibilities of migrating to another one in later stages. This
can be a limitation in WordPress as it's built in to work with MySql database.
Using it with another database will be quite difficult, if not impossible. So,
if you need the database to be migrated to some other database, WordPress
will not be the best solution.

•	 Performance: Performance of your application is something we get to
experience in later stages of the project when we go into a live environment.
It's important to plan ahead on the performance considerations as it can come
through internal and external reasons. WordPress has a built-in database
structure and we will use it in most of the projects. It's designed to suit CMS
functionality and sticking with the same tables for different types of projects
will not provide the optimized table structure. Therefore, performance might
be a limitation for critical applications interacting with millions of records
each day, unless you optimize your caching, indexing, and other database
optimization strategies.

•	 Architecture: WordPress runs on an event-driven architecture, packed
with features. Often developers misuse the hooks without proper planning,
affecting the performance of the application. So, you have to be responsible
in planning the database and necessary hooks in order to avoid performance
overheads.

WordPress as a Web Application Framework

[18]

•	 Regular Updates: WordPress has a very active community involving its
development for new features and fixing the issues in existing features.
Once a new version of core is released, plugin developers will also update
their plugins to be compatible with the latest version. Hence, you need to
perform additional tasks to update core, themes, and plugins, which can be a
limitation when you don't have a proper maintenance team.

•	 Object Oriented Development: Experienced web developers will always
look for object-oriented frameworks for development. WordPress started its
coding with procedural architecture and now moving rapidly towards object
oriented architecture. So, there will be a mix of both procedural and object-
oriented code. WordPress also uses a hook-based architecture to provide
functionality for both procedural and object-oriented codes. Developers
who are familiar with other PHP frameworks might find it difficult to come
to terms with the mix of procedural and object-oriented code as well as the
hook-based architecture. So, you have to decide whether you are comfortable
with its existing coding styles.

If you are a developer or designer who thinks these limitations, can cause major
concerns for your projects, WordPress may not be the right solution for you.

Building a question-answer interface
Throughout the previous sections, we learned the basics of web application
frameworks while looking at how WordPress fits into web development. By
now, you should be able to visualize the potential of WordPress for application
development and how it can change your career as developers. Being human, we
always prefer practical approach to learn new things over the more conventional
theoretical approach.

So, I will complete this chapter by converting default WordPress functionality into
a simple question-answer interface such as Stack Overflow, to give you a glimpse of
what we will develop throughout this book.

Prerequisites for building a question-answer
interface
We will be using version 4.2.2 as the latest stable version; this is available at the time
of writing this book. I suggest that you set up a fresh WordPress installation for this
book, if you haven't already done so.

Chapter 1

[19]

Also, we will be using the Twenty Fourteen theme, which is available
with default WordPress installation. Make sure that you activate the
Twenty Fourteen theme in your WordPress installation.

First, we have to create an outline containing the list of tasks to be implemented for
this scenario:

1.	 Create questions using the admin section of WordPress.
2.	 Allow users to answer questions using comments.
3.	 Allow question creators to mark each answer as correct or incorrect.
4.	 Highlight the correct answers of each question.
5.	 Customize the question list to include a number of answers and number of

correct answers.

Now, it's time to get things started.

Creating questions
The goal of this application is to let people submit questions and get answers from
various experts in the same field. First off, we need to create a method to add
questions and answers. By default, WordPress allows us to create posts and submit
comments to the posts. In this scenario, a post can be considered as the question and
comments can be considered as the answers. Therefore, we have the capability of
directly using normal post creation for building this interface.

However, I would like to choose a slightly different approach by using custom
post types plugin, which you can find at http://codex.wordpress.org/Post_
Types#Custom_Post_Types, in order to keep the default functionality of posts and
let the new functionality be implemented separately without affecting the existing
ones. We will create a plugin to implement the necessary tasks for our application:

1.	 First off, create a folder called wpwa-questions inside the /wp-content/
plugins folder and add a new file called wpwa-questions.php.

2.	 Next, we need to add the block comment to define our file as a plugin:
/*
Plugin Name: WPWA Questions
Plugin URI: -
Description: Question and Answer interface for developers

http://codex.wordpress.org/Post_Types#Custom_Post_Types
http://codex.wordpress.org/Post_Types#Custom_Post_Types

WordPress as a Web Application Framework

[20]

Version: 1.0
Author: Rakhitha Nimesh
Author URI: http://www.innovativephp.com/
License: GPLv2 or later
Text Domain: wpwa-questions
*/

3.	 Having created the main plugin file, we can move into creating a custom post
type called wpwa-question using the following code snippet.

4.	 Include this code snippet in your wpwa-questions.php file of the plugin:
add_action('init', 'register_wp_questions');
function register_wp_questions() {
 $labels = array(
 'name' => __('Questions', 'wpwa_questions'),
 'singular_name' => __('Question',
'wpwa_questions'),
 'add_new' => __('Add New', 'wpwa_questions'),
 'add_new_item' => __('Add New Question',
'wpwa_questions'),
 'edit_item' => __('Edit Questions',
'wpwa_questions'),
 'new_item' => __('New Question',
'wpwa_questions'),
 'view_item' => __('View Question',
'wpwa_questions'),
 'search_items' => __('Search Questions',
'wpwa_questions'),
 'not_found' => __('No Questions found',
'wpwa_questions'),
 'not_found_in_trash' => __('No Questions found in
Trash', 'wpwa_questions'),
 'parent_item_colon' => __('Parent Question:',
'wpwa_questions'),
 'menu_name' => __('Questions', 'wpwa_questions'),
);
 $args = array(
 'labels' => $labels,
 'hierarchical' => true,
 'description' => __('Questions and Answers',
'wpwa_questions'),

Chapter 1

[21]

 'supports' => array('title', 'editor',
'comments'),
 'public' => true,
 'show_ui' => true,
 'show_in_menu' => true,
 'show_in_nav_menus' => true,
 'publicly_queryable' => true,
 'exclude_from_search' => false,
 'has_archive' => true,
 'query_var' => true,
 'can_export' => true,
 'rewrite' => true,
 'capability_type' => 'post'
);
register_post_type('wpwa_question', $args);
}

This is the most basic and default code for custom post type creation, and I
assume that you are familiar with the syntax. We have enabled title, editor,
and comments in the support section of the configuration. These fields
will act the role of question title, question description, and answers. Other
configurations contain the default values and hence explanations will be
omitted. If you are not familiar, make sure to have a look at documentation
on custom post creation at http://codex.wordpress.org/Function_
Reference/register_post_type.

Beginner- to intermediate-level developers and designers tend to
include the logic inside the functions.php file in the theme. This is
considered a bad practice as it becomes extremely difficult to maintain
because your application becomes larger. So, we will be using plugins
to add functionality throughout this book and drawbacks of the
functions.php technique will be discussed in later chapters.

5.	 Once the code is included, you will get a new section on the admin area for
creating questions. This section will be similar to the posts section inside
the WordPress admin. Add few questions and insert some comments using
different users before we move into the next stage.

http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type

WordPress as a Web Application Framework

[22]

Before we go into the development of questions and answers, we need to make
some configurations so that our plugin works without any issues. Let's look at the
configuration process:

1.	 First, we have to look at the comment-related settings inside Discussion
Settings the WordPress Settings section. Here, you can find a setting called
Before a comment appears.

2.	 Disable both checkboxes so that users can answer and get their answers
displayed without approval process. Depending on the complexity of
application, you can decide whether to enable these checkboxes and change
the implementation.

3.	 The second setting we have to change is the Permalinks. Once we create a
new custom post type and view it on browser, it will redirect you to a 404
page not found page. Therefore, we have to go to the Permalinks section
of WordPress Settings and update the Permalinks using the Save Changes
button. This won't change the Permalinks. However, this will flush the rewrite
rules so that we can use the new custom post type without 404 errors.

Now, we can start working with the answer-related features.

Customizing the comments template
Usually, the comments section is designed to show comments of a normal post.

While using comments for custom features such as answers, we need to customize
the existing template and use our own designs.

1.	 So, open the comments.php file inside the Twenty Fourteen theme.
2.	 Navigate through the code and you will find a code section similar to the

following one:
wp_list_comments(array(
 'style' => 'ol',
 'short_ping' => true,
 'avatar_size' => 34,
));

Chapter 1

[23]

3.	 First, we need to customize the existing comments list to suit the
requirements of the answers list. By default, WordPress will use the
wp_list_comments function inside the comments.php file to show the
list of answers for each question. We need to modify the answers list in
order to include the answer status button. So, we will change the previous
implementation as following:
if(get_post_type($post) == "wpwa_question"){
 wp_list_comments('avatar_size=60&type=comment&callback=wpwa
_comment_list&style=ol');
}else{
 wp_list_comments(array(
 'style' => 'ol',
 'short_ping' => true,
 'avatar_size' => 34,
));
}

4.	 Here, we will include a conditional check for the post type in order to
choose the correct answer list generation function. When the post type is
wpwa_question, we call the wp_list_comments function with the callback
parameter defined as wpwa_comment_list, which will be the custom
function for generating answers list.

Arguments of the wp_list_comments function can be either an
array or string. Here, we have preferred array-based arguments
over string-based arguments.

In the next section, we will be completing the customization of comments template
by adding answer statuses and allowing users to change the statuses.

Changing the status of answers
Once the users provide their answers, the creator of the question should be able to
mark them as correct or incorrect answers. So, we will implement a button for each
answer to mark the status. Only the creator of the questions will be able to mark the
answers. Once the button is clicked, an AJAX request will be made to store the status
of the answer in the database.

WordPress as a Web Application Framework

[24]

Implementation of the wpwa_comment_list function goes inside the wpwa-
questions.php file of our plugin. This function contains lengthy code, which is not
necessary for our explanations. Hence, I'll be explaining the important sections of the
code. It's ideal to work with the full code for the wpwa_comment_list function from
the source code folder:

function wpwa_comment_list($comment, $args, $depth) {
 global $post;
 $GLOBALS['comment'] = $comment;
 // Get current logged in user and author of question
 $current_user = wp_get_current_user();
 $author_id = $post->post_author;
 $show_answer_status = false;
 // Set the button status for authors of the question
 if (is_user_logged_in() && $current_user->ID == $author_id)
 {
 $show_answer_status = true;
 }
 // Get the correct/incorrect status of the answer
 $comment_id = get_comment_ID();
 $answer_status = get_comment_meta($comment_id,
"_wpwa_answer_status", true);
 // Rest of the Code
}

The wpwa_comment_list function is used as the callback function of the comments
list, and hence, it will contain three parameters by default. Remember that the button
for marking the answer status should be only visible to the creator of the question.

In order to change the status of answers, follow these steps:

1.	 First, we will get the current logged-in user from the wp_get_current_user
function. Also, we can get the creator of the question using the global
$post object.

2.	 Next, we will check whether the logged-in user created the question. If so, we
will set show_answer_status to true. Also, we have to retrieve the status of
the current answer by passing the comment_id and _wpwa_answer_status
keys to the get_comment_meta function.

3.	 Then, we will have to include the common code for generating comments list
with necessary condition checks.

Chapter 1

[25]

4.	 Open the wpwa-questions.php file of the plugin and go through the rest of
wpwa_comment_list function to get an idea of how comments loop works.

5.	 Next, we have to highlight correct answers of each question and I'll be using
an image as the highlighter. In the source code, we use following code after
the header tag to show the correct answer highlighter:
<?php
 // Display image of a tick for correct answers
 if ($answer_status) {
 echo "<div class='tick'><img src='".plugins_url(
'img/tick.png', __FILE__)."' alt='Answer Status'
/></div>";
 }
?>

6.	 In the source code, you will see a <div> element with the class reply for
creating the comment reply link. We will need to insert our answer button
status code right after this, as shown in the following code:
<div>
 <?php
 // Display the button for authors to make the answer as correct
or incorrect
 if ($show_answer_status) {
 $question_status = '';
 $question_status_text = '';
 if ($answer_status) {
 $question_status = 'invalid';
 question_status_text = __('Mark as
Incorrect','wpwa_questions');
 } else {
 $question_status = 'valid';
 $question_status_text = __('Mark as
Correct','wpwa_questions');
 }
?>
 <input type="button" value="<?php echo
$question_status_text; ?>" class="answer-status
answer_status-<?php echo $comment_id; ?>"
 data-ques-status="<?php echo $question_status; ?>" />

www.allitebooks.com

http://www.allitebooks.org

WordPress as a Web Application Framework

[26]

 <input type="hidden" value="<?php echo $comment_id; ?>"
class="hcomment" />
 <?php
 }
 ?>
</div>

7.	 If the show_answer_status variable is set to true, we get the comment ID,
which will be our answer ID, using the get_comment_ID function. Then, we
will get the status of answer as true or false using the _wpwa_answer_status
key from the wp_commentmeta table.

8.	 Based on the returned value, we will define buttons for either Mark as
Incorrect or Mark as Correct. Also, we will specify some CSS classes and
HTML5 data attribute to be used later with jQuery.

9.	 Finally, we keep the comment_id in a hidden variable called hcomment.
10.	 Once you include the code, the button will be displayed for the author of the

question, as shown in the following screen:

11.	 Next, we need to implement the AJAX request for marking the status of the
answer as true or false.

Chapter 1

[27]

Before this, we need to see how we can include our scripts and styles into WordPress
plugins. Here is the code for including custom scripts and styles for our plugin. Copy
the following code into the wpwa-questions.php file of your plugin:

function wpwa_frontend_scripts() {
 wp_enqueue_script('jquery');
 wp_register_script('wpwa-questions', plugins_url(
'js/questions.js', __FILE__), array('jquery'), '1.0', TRUE);
 wp_enqueue_script('wpwa-questions');
 wp_register_style('wpwa-questions-css', plugins_url(
'css/questions.css', __FILE__));
 wp_enqueue_style('wpwa-questions-css');
 $config_array = array(
 'ajaxURL' => admin_url('admin-ajax.php'),
 'ajaxNonce' => wp_create_nonce('ques-nonce')
);
 wp_localize_script('wpwa-questions', 'wpwaconf', $config_array
);
}
add_action('wp_ajax_mark_answer_status',
'wpwa_mark_answer_status');

WordPress comes in-built with an action hook called wp_enqueue_scripts, for
adding JavaScript and CSS files. The wp_enqueue_script action is used to include
script files into the page while the wp_register_script action is used to add
custom files. Since jQuery is built-in to WordPress, we can just use the wp_enqueue_
script action to include jQuery into the page. We also have a custom JavaScript file
called questions.js, which will contain the functions for our application.

Inside JavaScript files, we cannot access the PHP variables directly. WordPress
provides a function called wp_localize_script to pass PHP variables into script
files. The first parameter contains the handle of the script for binding data, which
will be wp_questions in this scenario. The second parameter is the variable name to
be used inside JavaScript files to access these values. The third and final parameters
will be the configuration array with the values.

Then, we can include our questions.css file using the wp_register_style and
wp_enqueue_style functions, which will be similar to JavaScript, file inclusion
syntax, we discussed previously. Now, everything is set up properly to create the
AJAX request.

WordPress as a Web Application Framework

[28]

Saving the status of answers
Once the author clicks the button, the status has to be saved to the database as true or
false depending on the current status of the answer. Let's go through the jQuery code
located inside the questions.js file for making the AJAX request to the server:

jQuery(document).ready(function($) {
 $(".answer-status").click(function() {
 $(body).on("click", ".answer-status" , function() {
 // Get the button object and current status of the answer
 var answer_button = $(this);
 var answer_status = $(this).attr("data-ques-status");
 // Get the ID of the clicked answer using hidden field
 var comment_id = $(this).parent().find(".hcomment").val();
 var data = {
 "comment_id":comment_id,
 "status": answer_status
 };
 // Create the AJAX request to save the status to database
 $.post(wpwaconf.ajaxURL, {
 action:"mark_answer_status",
 nonce:wpwaconf.ajaxNonce,
 data : data,
 }, function(data) {
 if("success" == data.status){
 if("valid" == answer_status){
 answer_buttonval("Mark as Incorrect");
 answer_button.attr("
data-ques-status","invalid");
 }else{
 answer_button.val("Mark as Correct");
 answer_button.attr("
data-ques-status","valid");
 }
 }
 }, "json");
 });
});

The preceding code creates a basic AJAX request to the mark_answer_status action.
Most of the code is self-explanatory and code comments will help you to understand
the process.

Chapter 1

[29]

The important thing to note here is that we have used the
configuration settings assigned in the previous section, using
the wpwaconf variable. Once a server returns the response with
success status, the button will be updated to contain new status
and display text.

The next step of this process is to implement the server-side code for handling
AJAX request. First, we need to define AJAX handler functions using the WordPress
add_action function. Since logged-in users are permitted to mark the status, we
don't need to implement the add_action function for wp_ajax_nopriv_{action}:

add_action('wp_ajax_mark_answer_status',
'wpwa_mark_answer_status');

Implementation of the wpwa_mark_answer_status function is given in the
following code:

function wpwa_mark_answer_status() {
 $data = isset($_POST['data']) ? $_POST['data'] : array();
 $comment_id = isset($data["comment_id"]) ?
absint($data["comment_id"]) : 0;
 $answer_status = isset($data["status"]) ? $data["status"] :
0;
 // Mark answers in correct status to incorrect
 // or incorrect status to correct
 if ("valid" == $answer_status) {
 update_comment_meta($comment_id, "_wpwa_answer_status", 1);
 } else {
 update_comment_meta($comment_id, "_wpwa_answer_status", 0);
 }
 echo json_encode(array("status" => "success"));
 exit;
}

We can get the necessary data from the $_POST array and use to mark the status of
the answer using the update_comment_meta function. This example contains the
most basic implementation of data saving process. In real applications, we need to
implement necessary validations and error handling.

Now, the author who asked the question has the ability to mark answers as correct
or incorrect. So, we have implemented a nice and simple interface for creating
a question-answer site with WordPress. The final task of the process will be the
implementation of questions list.

WordPress as a Web Application Framework

[30]

Generating a question list
Usually, WordPress uses the archive.php file of the theme, for generating post
lists of any type. We can use a file called archive-{post type}.php for creating
different layouts for different post types:

1.	 Here, we will create a customized layout for our questions.
2.	 Make a copy of the existing archive.php file of the TwentyFourteen theme

and rename it as archive-wpwa_question.php. Here, you will find the
following code section:
get_template_part('content', get_post_format());

3.	 The TwentyFourteen theme uses a separate template for generating the
content of each post type. We cannot modify the existing content.php file
as it affects all kinds of posts. So, create a custom template called content-
questions.php by duplicating the content.php file and change the
preceding code to the following:
get_template_part('content-wpwa_question',
get_post_format());

4.	 Finally, we need to consider the implementation of content-wpwa_
question.php file. In the questions list, only the question title will be
displayed, and therefore, we don't need the content of the post. So, we have
to either remove or comment the the_excerpt and the_content functions
of the template. We can comment the following line within this template:
the_content(__('Continue reading <span
class="meta-nav">→', 'twentyfourteen'));

5.	 Then, we will create our own metadata by adding the following code to the
<div> element with the entry-content class:
<div class="answer_controls"><?php
comments_popup_link(__('No Answers ↓', 'responsive'),
__('1 Answer ↓', 'responsive'), __('% Answers ↓',
'responsive')); ?>
</div>
<div class="answer_controls">
<?php wpwa_get_correct_answers(get_the_ID()); ?>
</div>
<div class="answer_controls">
<?php echo get_the_date(); ?>
</div>
<div style="clear: both"></div>

The first container will make use of the existing comments_popup_link
function to get the number of answers given for the questions.

Chapter 1

[31]

6.	 Then, we need to display the number of correct answers of each question.
The custom function called wpwa_get_correct_answers is created to get
the correct answers. The following code contains the implementation of the
wpwa_get_correct_answers function inside the plugin:

function wpwa_get_correct_answers($post_id) {
 $args = array(
 'post_id' => $post_id,
 'status' => 'approve',
 'meta_key' => '_wpwa_answer_status',
 'meta_value'=> 1,
);
 // Get number of correct answers for given question
 $comments = get_comments($args);
 printf(__('<cite class="fn">%s</cite> correct answers'),
count($comments));
}

We can set the array of arguments to include the conditions to retrieve
the approved answers of each post, which contains the correct answers.
The number of results generated from the get_comments function will be
returned as correct answers. Now, you should have a question list similar to
following image:

WordPress as a Web Application Framework

[32]

Throughout this section, we looked at how we can convert the existing
functionalities of WordPress for building a simple question-answer interface.
We took the quick and dirty path for this implementation by mixing HTML and PHP
code inside both, themes and plugins.

I suggest that you go through the Chapter01 source code
folder and try this implementation on your own test server. This
demonstration was created to show the flexibility of WordPress.
Some of you might not understand the whole implementation. Don't
worry as we will develop a web application from scratch using
detailed explanation in the following chapters.

Enhancing features of the questions
plugin
In the previous sections, we illustrated how to quickly adapt WordPress into
different kind of implementations by customizing its core features. However, I
had to limit the functionality to the most basic level in order to keep this chapter
short and interesting for the beginners. If you are willing to improve it, you can
try other new features of such an application. Here, we will be looking at some of
the enhancements to this plugin and how we can use core WordPress features to
implement them.

Customizing the design of questions
This is one of the major requirements in such an application. Here, we have a very
basic layout and it's difficult to know whether this is a question or just a normal post.
Consider the following screenshot for a well-designed question interface:

Chapter 1

[33]

Remember that we customized the comments list for adding new options. Similarly,
we can customize the design of questions to create an interface such as the previous
screenshot by using a separate template file for the questions custom post type. We
have to create a file called single-wpwa_question.php and change the design and
functionality as we want.

Categorizing questions
Categories allow us to filter the results and limit it to a certain extent. It's an essential
feature in the question-answer application so that users can directly view questions
related to their topic instead of browsing all the questions. WordPress provides
categories by default. However, these categories are mainly intended for posts.
Therefore, we have to use custom taxonomies to create categories for custom post
types such as questions. More details about taxonomies will be discussed in the
following chapters.

Approving and rejecting questions
Currently, our application can post questions without any approval process.
However, this is not the ideal implementation as it can create a lot of spam questions.
In a well-built application, there should be a feature to approve/reject questions when
needed. This feature can be easily built with WordPress admin lists. We have a list of
questions in the backend, and we can use the Bulk Actions dropdown on top to add
custom actions and implement this feature.

Adding star rating to answers
The author who asked the question can mark the answers as correct or incorrect.
However, there can be scenarios where answers are not marked as correct are more
suitable than answers marked as correct. Therefore, we can introduce star rating
features to answers so that public can rate the answers. The person who looks for
the answer can consider the rating before choosing answers. Implementation of this
requirement is similar to the functionality of the Mark as Correct button. We have
to get a js plugin for star rating and integrate to the interface through the wpwa_
comment_list function. Then we can use AJAX to mark the status of answers.

We have looked at some of the possible enhancements to such an application.
You can think of many more such functionalities and implement them in your
own version.

In the following chapters, we'll see the limitations in this approach in complex
web applications and how we can organize things better to write quality and
maintainable code.

WordPress as a Web Application Framework

[34]

Summary
Our main goal was to find how WordPress fits into web application development.
We started this chapter by identifying the CMS functionalities of WordPress. We
explored the features and functionalities of popular full stack frameworks and
compared them with the existing functionalities of WordPress.

Then, we looked at the existing components and features of WordPress and how
each of those components fit into a real-world web application. We also planned the
portfolio management application requirements and identified the limitations in
using WordPress for web applications.

Finally, we converted the default interface into a question-answer interface in a rapid
process using existing functionalities.

By now, you should be able to decide whether to choose WordPress for your web
application, visualize how your requirements fits into components of WordPress,
and identify and minimize the limitations.

In the next chapter, we will start developing the portfolio management application
with the user management. Before we go there, I suggest that you research user
management features of other frameworks and look at your previous projects to
identify the functionalities.

[35]

Implementing Membership
Roles, Permissions, and

Features
The success of any web application or website depends heavily on its user base.
There are plenty of great web applications that go unnoticed by many people due
to the lack of user interaction. As developers, it's our responsibility to build a simple
and interactive user management process, as visitors decide whether to stay on or
leave a website by looking at the complexity of initial tasks such as registration
and login.

In this chapter, we will be mainly concentrating on adapting existing user
management functionalities into typical web applications. In order to accomplish
our goal, we will execute some tasks outside the box to bring user management
features from WordPress core to WordPress themes.

While striving to build a better user experience, we will also take a look at some
advanced aspects of web application development such as routing, controlling,
and custom templating.

In this chapter, we will cover the following topics:

•	 Introducing user management
•	 Understanding user roles and capabilities
•	 Creating a simple MVC-like process
•	 Implementing registration on the frontend
•	 Implementing login on the frontend
•	 Time to practice with exercises

Implementing Membership Roles, Permissions, and Features

[36]

Before we get started, I suggest that you skip ahead to Appendix, Configurations, Tools
and Resources and configure the WordPress environment and setup required for this
book. I assume that you are familiar with the default user management features and
necessary coding techniques in WordPress. So, let's get started!

Introduction to user management
Usually, popular PHP development frameworks such as Zend, CakePHP, CodeIgniter,
and Laravel don't provide a built-in user module. Developers tend to build their own
user management modules and use it across many projects of the same framework.
WordPress offers a built-in user management system to cater to common user
management tasks found in web applications. Such things include the following:

•	 Managing user roles and capabilities
•	 A built-in user registration functionality
•	 A built-in user login functionality
•	 A built-in forgot password functionality

Developers are likely to encounter these tasks in almost all web applications. In
most cases, these features and functions can be effectively used without significant
changes in the code. However, web applications are much more advanced and hence,
we might need various customizations on these existing features. It's important to
explore the possibility of extending these functions in order to be compatible with
advanced application requirements. In the following sections, we will learn how
to extend these common functionalities to suite various scenarios.

Preparing the plugin
As developers, we have the option to build a complete application with standalone
plugins or use various independent plugins to cater to specific modules. Generally,
many developers tend to use a bunch of existing plugins without developing their
own. The main reason behind using other plugins is that developers want to save
time and cost when developing WordPress websites. However, in most scenarios,
this process is not ideal for complex web application development. I recommend
that you select fewer plugins and improve them with additional functionality or
develop everything from scratch.

Throughout this book, we will be integrating all the independent modules into a
standalone plugin. We will create a specific plugin for our portfolio management
application. So, let's get started by creating a new folder called wpwa-portfolio-
manager, inside the /wp-content/plugins folder.

Chapter 2

[37]

Then, create a PHP file inside the folder and save it as wpwa-portfolio-manager.
php. Now, it's time to add the plugin definition as shown in the following code:

<?php
/*
 Plugin Name: WPWA Portfolio Manager
 Plugin URI:
 Description: User management functionality for the portfolio
management application.
 Author: Rakhitha Nimesh
 Version: 1.0
 Author URI: http://www.innovativephp.com/
*/

In the previous chapter, we created a plugin with procedural functions calls. Now,
we will take this one step further by building an object-oriented plugin. Basically,
this plugin consists of one main class that handles the plugin initialization. The
following code shows the implementation of the plugin class inside the wpwa-
portfolio-manager.php file:

class WPWA_Portfolio_Manager{
 public function __construct() {
 // Initialization code
 }
}
$wpwa_portfolio_manager = new WPWA_Portfolio_Manager();

Once the class is defined, we can make an object to initialize the plugin within the
same file. All the initialization code resides in the plugin constructor.

Getting started with user roles
In simple terms, user roles define the types of users in a system. WordPress offers
built-in functions for working with every aspect of user roles. In this section, we
will look at how we can manage these tasks by implementing the user roles for
our application. We can create a new user role by calling the add_role function.
The following code illustrates the basic form of user role creation:

$result = add_role('role_name', 'Display Name', array(
 'read' => true,
 'edit_posts' => true,
 'delete_posts' => false
));

Implementing Membership Roles, Permissions, and Features

[38]

The first parameter takes the role name, which is a unique key to identify the role.
The second parameter will be the display name, which will be shown in the admin
area. The final parameter will take the necessary capabilities of the user role. You
can find out more about existing user roles at http://codex.wordpress.org/Roles_
and_Capabilities. In this scenario, read, edit_posts, and delete_posts will be
the capabilities while true and false is used to enable and disable status.

Creating application user roles
As planned earlier, we will need three types of user roles for our application to
handle subscribers, developers, and members. So, we can update our plugin by
adding a specific function to create the user roles, as shown in the following code:

public function add_application_user_roles() {
 add_role('follower', 'Follower', array('read' => true));
 add_role('developer','Developer', array('read' => true));
 add_role('member', 'Member', array('read' => true));
}

Application user roles are created with the default capability of read, used by all
the user roles in WordPress. Initialization of this function should be done inside
the constructor of our plugin.

The best action for adding user roles
The user roles discussed in the previous section will be saved in the database as
settings. Therefore, only a single call to this function is required throughout the life
cycle of an application. We have two options for implementing this functionality.
Application installation and plugin activation are the most suitable places to call
these kinds of functions to eliminate duplicate executions.

•	 Application installation: WordPress provides a well-defined step-by-step
installation process. Similarly, every application or plugin needs an installation
process. Once installation is completed, these files are not accessible again.
Therefore, plugin installation is the ideal place to create user roles.

•	 Plugin activation: WordPress plugin activation hooks let us execute certain
functionality on plugin activation. This is also a one-time process in a plugin.
However, we can deactivate and reactivate the plugin multiple times. So,
this functionality gets executed multiple times and hence, we have to check
whether it's already been executed. If this is not checked, all the changes
made after the activation will be reset to default values. So, plugin activation
is the second best option for this type of functionality.

http://codex.wordpress.org/Roles_and_Capabilities
http://codex.wordpress.org/Roles_and_Capabilities

Chapter 2

[39]

Here, we will be using plugin activation to add and remove application user
roles. Later, we will be moving this functionality into installation, after defining
the necessary functionality for setup. So, we need to include the call to the add_
application_users function inside the constructor, as shown in the following code:

register_activation_hook(__FILE__ , array($this,
'add_application_user_roles'));

The register_activation_hook function will be called when the plugin is
activated and hence, avoids duplicate calls to database.

A good rule of thumb is to prevent the inclusion of such settings
inside the init action as it will get executed in each request,
making unnecessary performance overhead.

You might have noticed that all three user roles of the application are created with
the read capability. WordPress is built to create websites and hence, most of the
default capabilities will be related to CMS features. In web applications, we need
custom capabilities more often than not. Therefore, we can keep the basic read
capability and add new custom capabilities as we move on. All the users will get
a very basic admin area containing a dashboard and profile information, as shown
in the following screenshot:

Implementing Membership Roles, Permissions, and Features

[40]

Knowing the default roles of WordPress
WordPress comes with six built-in user roles, including superadmin, which will not
be displayed on the user creation screen by default. As a developer, it's important
to know the functionality of each of these types of roles in order to use them in web
applications. First, we'll take a look at the default user roles and their functionality:

•	 Superadmin: A superadmin has administration permission in WordPress
multisite implementation

•	 Admin: An admin has permission to all administration activities inside
a single site

•	 Editor: An editor can create, publish, and manage posts, including
the posts of other users

•	 Author: An author can create and publish their own posts
•	 Contributor: A contributor can create posts, but cannot publish on

their own
•	 Subscriber: A subscriber can read posts and manage their profile

As you can see, most of the existing user types are used for blogging and content
management functionality. Therefore, we might need to create our own user roles
for web applications, apart from the default superadmin and admin user roles.

Choosing among default and custom roles
This is an interesting question that doesn't have a correct answer. Choosing between
these two types of roles naturally comes with experience. First, you need to figure
out how these built-in roles relate to your application. Let's consider two scenarios
to help demonstrate the practical usage of these user roles.

Scenario 1
Usually, the roles such an editor, author, and contributor are mainly focused
on publishing and managing blog posts. If you are developing an online shopping
cart, these roles will not have any relation to the roles of such applications.

Scenario 2
Now, think of a scenario where we have a job posting site with three access levels
called admin, companies, and individuals. Here, individuals can create job posts,
while approvals are given by admin. So, they are similar to contributors. Companies
can create and publish their own job posts, similar to authors. An admin can play
the role of an editor or admin in the default system.

Chapter 2

[41]

Even though we can match certain aspects of our portfolio application roles with the
existing roles, we will work with custom roles to keep things simple and clear. All
application users will be created as custom roles with read capability by default and
the necessary capabilities will be added as we move on.

It doesn't matter whether you choose existing ones or new ones as long as you are
comfortable and the roles have a specific meaning within your application. Since
we choose custom roles, it's not necessary to keep the unused default roles. Let's
see how we can remove roles when necessary.

Removing existing user roles
We should have the ability to remove existing or custom user roles when necessary.
WordPress offers the remove_role function for deleting both custom and existing
user roles. In this case, we want to get rid of existing user roles. Also, there can be
situations where you use a plugin with specific user roles and suddenly you want
to disable the functionality of the plugin. In both cases, we need to remove the user
roles from the database. Let's create a function that removes the unnecessary user
roles from the system, as illustrated in the following code:

public function remove_application_user_roles(){
 remove_role('author');
 remove_role('editor');
 remove_role('contributor');
 remove_role('subscriber');
}

As mentioned earlier, the remove_role function involves database operations and
hence, it's wise to use it with the register_activation_hook function, as shown
in the following code:

register_activation_hook(__FILE__, array($this,
'remove_application_user_roles'));

In this section, we looked at how user roles work in WordPress. Now, we need to
see how we can associate capabilities with these user roles.

Understanding user capabilities
Capabilities can be considered as tasks, which users are permitted to perform
inside the application. A single user role can perform many capabilities, while
a single capability can be performed by many user roles. Typically, we use the
term access control for handling capabilities in web applications. Let's see how
capabilities work inside WordPress.

Implementing Membership Roles, Permissions, and Features

[42]

Creating your first capability
Capabilities are always associated with user roles and hence, we cannot create
new capabilities without providing a user role. Let's look at the following code for
associating custom capability with a follower user role, created in the earlier section,
Creating application user roles:

public function add_application_user_capabilities(){
 $role = get_role('follower');
 $role->add_cap('follow_developer_activities');
}

First, we need to retrieve the user role as an object using the get_role function.
Then, we can associate new or existing capability using the add_cap function. We
need to continue this process for each user role until we assign all the capabilities
to necessary user levels. Also, make sure to call this function on activation with the
register_activation_hook function.

Understanding default capabilities
You can find over fifty built-in capabilities in the WordPress default database. Most
of these capabilities are focused on providing permissions related to website or blog
creation. Therefore, it's a must to create our own capabilities in developing web
applications. If you are curious to learn, you can look at the wp_user_roles option
inside the wp_options table for all the available user roles and their capabilities:

select option_value from wp_users where
option_name='wp_user_roles'

You should see a serialized array like the following one:

a:10:{s:13:"administrator";a:2:{s:4:"name";s:13:"Administrator";s:
12:"capabilities";a:67:{s:13:"switch_themes";b:1;s:11:"edit_theme"
;b:1;s:16:"activate_plugins";b:1;s:12:"edit_plugins";b:1;s:10:"edi
t_users";b:1;s:10:"edit_files";b:1;s:14:"manage_options";b:1;s:17:
"moderate_comments";b:1;s:17:"manage_categories";b:1;s:12:"manage_
links";b:1;s:12

A part of the value contained in the wp_user_roles row is displayed in the
preceding code. It's quite confusing and not practical to understand the capabilities
of each user role by looking at this serialized array. Therefore, we can take advantage
of an existing WordPress plugin to view and manage user roles and capabilities.

Chapter 2

[43]

There are plenty of great and free plugins for managing user roles and permissions.
My favorite is the Members plugin by Justin Tadlock, as it's quite clean and simple.
You can grab a copy of this plugin at http://wordpress.org/plugins/members/.

Let's see how capabilities are displayed for the follower role in our application using
the following screenshot of the plugin:

All the capabilities, which are assigned to a specific user role, will be ticked by
default. As expected, the follow_developer_activities capability added in the
previous section is successfully assigned to the follower role.

Up to now, we learned how to use WordPress roles and capabilities in the context
of web applications. We will be updating the capabilities while creating new
functionalities in the following chapters. Next, we will see how user registration
works in WordPress.

Registering application users
An administration panel is built into the WordPress framework, allowing us to log
in through the admin screen. Therefore, we have a registration area, which can be
used to add new users by providing a username and e-mail. In web applications,
registration can become complex, compared to the simple registration process in
WordPress. Let's consider some typical requirements of web application registration
process in comparison with WordPress:

•	 User-friendly interface: An application can have different types of user roles.
Until registration is completed, everyone is treated as a normal application
user with the ability to view public content. Typically, users are used to
seeing fancy registration forms inside the main site rather than a completely
different login area such as with WordPress. Therefore, we need to explore
the possibilities of adding WordPress registration to the frontend.

http://wordpress.org/plugins/members/

Implementing Membership Roles, Permissions, and Features

[44]

•	 Requesting detailed information: Most web applications will have at least
4-5 fields in the user registration form for grabbing detailed information
about the user. Therefore, we need to look for the possibility of adding new
fields to the existing WordPress registration form.

•	 Activating user accounts: In some applications, you will be asked to
verify and activate your account after successful registration. WordPress
doesn't offer this feature by default. Hence, we need to see how we can
extend the current process to include user activation.

These are the most common requirements of registration process in web applications.
Complex applications may come with more requirements in this process. Therefore,
we need to extend the WordPress registration process, in order to cater to various
requirements. In the next section, we will address the issues mentioned here by
creating a WordPress registration from the frontend.

Implementing frontend registration
Fortunately, we can make use of the existing functionalities to implement registration
from the frontend. We can use a regular HTTP request or AJAX-based technique
to implement this feature. In this book, I will focus on a normal process instead of
using AJAX. Our first task is to create the registration form in the frontend.

There are various ways to implement such forms in the frontend. Let's look at some
of the possibilities as described in the following section:

•	 Shortcode implementation
•	 Page template implementation
•	 Custom template implementation

Now, let's look at the implementation of each of these techniques.

Shortcode implementation
Shortcodes are the quickest way to add dynamic content to your pages. In this
situation, we need to create a page for registration. Therefore, we need to create a
shortcode that generates the registration form, as shown in the following code:

add_shortcode("register_form", "display_register_form");
function display_register_form(){
 $html = "HTML for registration form";
 return $html;
}

Chapter 2

[45]

Then, you can add the shortcode inside the created page using the following code
snippet to display the registration form:

[register_form]

Pros and cons of using shortcodes
Following are the pros and cons of using shortcodes:

•	 Shortcodes are easy to implement in any part of your application
•	 Its hard to manage the template code assigned using the PHP variables
•	 There is a possibility of the shortcode getting deleted from the page

by mistake

Page template implementation
Page templates are a widely used technique in modern WordPress themes. We can
create a page template to embed the registration form. Consider the following code
for a sample page template:

/*
* Template Name : Registration
*/
HTML code for registration form

Next, we have to copy the template inside the theme folder. Finally, we can create
a page and assign the page template to display the registration form. Now, let's look
at the pros and cons of this technique.

Pros and cons of page templates
Following are the pros and cons of page templates:

•	 A page template is more stable than shortcode.
•	 Generally, page templates are associated with the look of the website rather

than providing dynamic forms. The full width page, two-column page, and
left sidebar page are some common implementations of page templates.

•	 A template is managed separately from logic, without using PHP variables.
•	 The page templates depend on the theme and need to be updated on

theme switching.

Implementing Membership Roles, Permissions, and Features

[46]

Custom template implementation
Experienced web application developers will always look to separate business
logic from view templates. This will be the perfect technique for such people.
In this technique, we will create our own independent templates by intercepting
the WordPress default routing process. An implementation of this technique starts
from the next section on routing.

Building a simple router for a user module
Routing is one of the important aspects in advanced application development.
We need to figure out ways of building custom routes for specific functionalities.
In this scenario, we will create a custom router to handle all the user-related
functionalities of our application.

Let's list the requirements for building a router:

•	 All the user-related functionalities should go through a custom URL,
such as http://www.example.com/user

•	 Registration should be implemented at http://www.example.com/user/
register

•	 Login should be implemented at http://www.example.com/user/login

•	 Activation should be implemented at http://www.example.com/user/
activate

Make sure to set up your permalinks structure to post name for the
examples in this book. If you prefer a different permalinks structure,
you will have to update the URLs and routing rules accordingly.

As you can see, the user section is common for all the functionalities. The second
URL segment changes dynamically based on the functionality. In MVC terms,
user acts as the controller and the next URL segment (register, login, and
activate) acts as the action. Now, let's see how we can implement a custom
router for the given requirements.

Chapter 2

[47]

Creating the routing rules
There are various ways and action hooks used to create custom rewrite rules.
We will choose the init action to define our custom routes for the user section,
as shown in the following code:

public function manage_user_routes() {
 add_rewrite_rule('^user/([^/]+)/?',
'index.php?control_action=$matches[1]', 'top');
}

Based on the discussed requirements, all the URLs for the user section will follow
the /user/custom action pattern. Therefore, we will define the regular expression
for matching all the routes in the user section. Redirection is made to the index.php
file with a query variable called control_action. This variable will contain the URL
segment after the /user segment. The third parameter of the add_rewrite_rule
function will decide whether to check this rewrite rule before the existing rules or
after them. The value of top will give a higher precedence, while the value of bottom
will give a lower precedence.

We need to complete two other tasks to get these rewriting rules to take effect:

1.	 Add query variables to the WordPress query_vars
2.	 Flush the rewriting rules

Adding query variables
WordPress doesn't allow you to use any type of variable in the query string. It
will check for query variables within the existing list and all other variables will
be ignored. Whenever we want to use a new query variable, make sure to add it
to the existing list. First, we need to update our constructor with the following
filter to customize query variables:

add_filter('query_vars', array($this,
'manage_user_routes_query_vars'));

This filter on query_vars will allow us to customize the list of existing variables
by adding or removing entries from an array. Now, consider the implementation
to add a new query variable:

public function manage_user_routes_query_vars($query_vars) {
 $query_vars[] = 'control_action';
 return $query_vars;
}

Implementing Membership Roles, Permissions, and Features

[48]

As this is a filter, the existing query_vars variable will be passed as an array. We
will modify the array by adding a new query variable called control_action and
return the list. Now, we have the ability to access this variable from the URL.

Flushing the rewriting rules
Once rewrite rules are modified, it's a must to flush the rules in order to prevent 404
page generation. Flushing existing rules is a time consuming task, which impacts the
performance of the application and hence should be avoided in repetitive actions
such as init. It's recommended that you perform such tasks in plugin activation or
installation as we did earlier in user roles and capabilities. So, let's implement the
function for flushing rewrite rules on plugin activation:

public function flush_application_rewrite_rules() {
 flush_rewrite_rules();
}

As usual, we need to update the constructor to include the following action to
call the flush_application_rewrite_rules function:

register_activation_hook(__FILE__, array($this,
'flush_application_rewrite_rules'));

Now, go to the admin panel, deactivate the plugin, and activate the plugin again.
Then, go to the URL http://www.example.com/user/login and check whether
it works. Unfortunately, you will still get the 404 error for the request.

You might be wondering what went wrong. Let's go back and think about the
process in order to understand the issue. We flushed the rules on plugin activation.
So, the new rules should persist successfully. However, we will define the rules on
the init action, which is only executed after the plugin is activated. Therefore, new
rules will not be available at the time of flushing.

Consider the updated version of the flush_application_rewrite_rules function
for a quick fix to our problem:

public function flush_application_rewrite_rules() {
 $this->manage_user_routes();
 flush_rewrite_rules();
}

Chapter 2

[49]

We call the manage_user_routes function on plugin activation, followed by the
call to flush_rewrite_rules. So, the new rules are generated before flushing is
executed. Now, follow the previous process once again; you won't get a 404 page
since all the rules have taken effect.

You can get 404 errors due to the modification in rewriting rules and
not flushing it properly. In such situations, go to the Permalinks section
on the Settings page and click on the Save Changes button to flush the
rewrite rules manually.

Now, we are ready with our routing rules for user functionalities. It's important
to know the existing routing rules of your application. Even though we can have
a look at the routing rules from the database, it's difficult to decode the serialized
array, as we encountered in the previous section.

So, I recommend that you use the free plugin called Rewrite Rules Inspector. You
can grab a copy at http://wordpress.org/plugins/rewrite-rules-inspector/.
Once installed, this plugin allows you to view all the existing routing rules as well
as offers a button to flush the rules, as shown in the following screen:

http://wordpress.org/plugins/rewrite-rules-inspector/

Implementing Membership Roles, Permissions, and Features

[50]

Controlling access to your functions
We have a custom router, which handles the URLs of the user section of our
application. Next, we need a controller to handle the requests and generate the
template for the user. This works similar to the controllers in the MVC pattern.
Even though we have changed the default routing, WordPress will look for an
existing template to be sent back to the user. Therefore, we need to intercept this
process and create our own templates. WordPress offers an action hook called
template_redirect for intercepting requests. So, let's implement our frontend
controller based on template_redirect. First, we need to update the constructor
with the template_redirect action, as shown in the following code:

add_action('template_redirect', array($this, 'front_controller'
));

Now, let's take a look at the implementation of the front_controller function
using the following code:

public function front_controller() {
 global $wp_query;
 $control_action = isset ($wp_query-
>query_vars['control_action']) ? $wp_query-
>query_vars['control_action'] : ''; ;
 switch ($control_action) {
 case 'register':
 do_action('wpwa_register_user');
 break;
 }
}

We will be handling custom routes based on the value of the control_action query
variable assigned in the previous section. The value of this variable can be grabbed
through the global query_vars array of the $wp_query object. Then, we can use a
simple switch statement to handle the controlling based on the action.

The first action to consider will be to register as we are in the registration process.
Once the control_action query variable is matched with registration, we will
call a handler function using do_action. You might be confused why we use
do_action in this scenario. So, let's consider the same implementation in a normal
PHP application, where we don't have the do_action hook:

switch ($control_action) {
 case 'register':

Chapter 2

[51]

 $this->register_user();
 break;
}

This is the typical scenario where we call a function within the class or in an external
class to implement the registration. In the previous code, we called a function within
the class, but with the do_action hook instead of the usual function call.

The advantages of using the do_action function
WordPress action hooks define specific points in the execution process, where we
can develop custom functions to modify existing behavior. In this scenario, we are
calling the wpwa_register_user function within the class using do_action.

Unlike websites or blogs, web applications need to be extendable with future
requirements. Think of a situation where we only allow Gmail addresses for user
registration. This Gmail validation is not implemented in the original code. Therefore,
we need to change the existing code to implement the necessary validations. Changing
a working component is considered bad practice in application development. Let's see
why it's considered as a bad practice by looking at the definition of the open/closed
principle on Wikipedia.

"Open/closed principle states "software entities (classes, modules, functions, and
so on) should be open for extension, but closed for modification"; that is, such an
entity can allow its behavior to be modified without altering its source code. This is
especially valuable in a production environment, where changes to the source code
may necessitate code reviews, unit tests, and other such procedures to qualify it for
use in a product: the code obeying the principle doesn't change when it is extended,
and therefore, needs no such effort."

WordPress action hooks come to our rescue in this scenario. We can define an action
for registration using the add_action function, as shown in the following code:

add_action('wpwa_register_user', array($this, 'register_user')
);

Now, you can implement this action multiple times using different functions. In
this scenario, register_user will be our primary registration handler. For Gmail
validation, we can define another function using the following code:

add_action('wpwa_register_user', array($this,
'validate_gmail_registration'));

Implementing Membership Roles, Permissions, and Features

[52]

Inside this function, we can make the necessary validations, as shown in the
following code:

public function validate_user(){
 // Code to validate user
 // remove registration function if validation fails
 remove_action('wpwa_register_user', array($this,
'register_user'));
}

Now, the validate_user function is executed before the primary function. So, we
can remove the primary registration function if something goes wrong in validation.
With this technique, we have the capability of adding new functionalities as well as
changing existing functionalities without affecting the already written code.

We have implemented a simple controller, which can be quite effective in developing
web application functionalities. In the following sections, we will continue the
process of implementing registration on the frontend with custom templates.

Creating custom templates
Themes provide a default set of templates to cater to the existing behavior of
WordPress. Here, we are trying to implement a custom template system to suit
web applications. So, our first option is to include the template files directly inside
the theme. Personally, I don't like this option due to two possible reasons:

•	 Whenever we switch the theme, we have to move the custom template
files to a new theme. So, our templates become theme dependent.

•	 In general, all existing templates are related to CMS functionality.
Mixing custom templates with the existing ones becomes hard to manage.

As a solution to these concerns, we will implement the custom templates inside
the plugin. First, create a folder inside the current plugin folder and name it as
templates to get things started.

Designing the registration form
We need to design a custom form for frontend registration containing the default
header and footer. The whole content area will be used for the registration and the
default sidebar will be omitted for this screen. Create a PHP file called register-
template.php inside the templates folder with the following code:

<?php get_header(); ?>
<div id="wpwa_custom_panel">

Chapter 2

[53]

<?php
if(isset($errors) && count($errors) > 0) {
 foreach($errors as $error){
 echo '<p class="wpwa_frm_error">'. $error .'</p>';
 }
}
?>
HTML Code for Form
</div>
<?php get_footer(); ?>

We can include the default header and footer using the get_header and get_footer
functions, respectively. After the header, we will include a display area for the error
messages generated in registration. Then, we have the HTML form, as shown in the
following code:

<form id='registration-form' method='post' action='<?php echo
get_site_url() . '/user/register'; ?>'>

 <label class='wpwa_frm_label'><?php echo
__('Username','wpwa'); ?></label>
 <input class='wpwa_frm_field' type='text'
id='wpwa_user' name='wpwa_user' value='' />

 <label class='wpwa_frm_label'><?php echo __('E-
mail','wpwa'); ?></label>
 <input class='wpwa_frm_field' type='text'
id='wpwa_email' name='wpwa_email' value='' />

 <label class='wpwa_frm_label'><?php echo __('User
Type','wpwa'); ?></label>
 <select class='wpwa_frm_field' name='wpwa_user_type'>
 <option <?php echo __('Follower','wpwa');
?></option>
 <option <?php echo __('Developer','wpwa');
?></option>
 <option <?php echo __('Member','wpwa');
?></option>
 </select>

 <label class='wpwa_frm_label' for=''> </label>

Implementing Membership Roles, Permissions, and Features

[54]

 <input type='submit' value='<?php echo
__('Register','wpwa'); ?>' />

</form>

As you can see, the form action is set to a custom route called user/register to be
handled through the front controller. Also, we have added an extra field called user
type to choose the preferred user type on registration.

You might have noticed that we used wpwa as the prefix for form
element names, element IDs, as well as CSS classes. Even though it's
not a must to use a prefix, it can be highly effective when working
with multiple third-party plugins. A unique plugin-specific prefix
avoids or limits conflicts with other plugins and themes.

We will get a screen similar to the following one, once we access the /user/
register link in the browser:

Once the form is submitted, we have to create the user based on the
application requirements.

Planning the registration process
In this application, we have opted to build a complex registration process in order
to understand the typical requirements of web applications. So, it's better to plan it
upfront before moving into the implementation. Let's build a list of requirements
for registration:

•	 The user should be able to register as any of the given user roles
•	 The activation code needs to be generated and sent to the user

Chapter 2

[55]

•	 The default notification on successful registration needs to be customized
to include the activation link

•	 Users should activate their account by clicking the link

So, let's begin the task of registering users by displaying the registration form
as given in the following code:

public function register_user() {
 if (!is_user_logged_in()) {
 include dirname(__FILE__) . '/templates/register-
template.php';
 exit;
 }
}

Once user requests /user/register, our controller will call the register_user
function using the do_action call. In the initial request, we need to check whether
a user is already logged in using the is_user_logged_in function. If not, we can
directly include the registration template located inside the templates folder to
display the registration form.

WordPress templates can be included using the get_template_part function.
However, it doesn't work like a typical template library, as we cannot pass data
to the template. In this technique, we are including the template directly inside
the function. Therefore, we have access to the data inside this function.

Handling registration form submission
Once the user fills the data and clicks the submit button, we have to execute quite
a few tasks in order to register a user in WordPress database. Let's figure out the
main tasks for registering a user:

•	 Validating form data
•	 Registering the user details
•	 Creating and saving activation code
•	 Sending e-mail notifications with an activate link

In the registration form, we specified the action as /user/register, and hence the
same register_user function will be used to handle form submission. Validating
user data is one of the main tasks in form submission handling. So, let's take a look
at the register_user function with the updated code:

public function register_user() {
 if ($_POST) {

Implementing Membership Roles, Permissions, and Features

[56]

 $errors = array();
 $user_login = (isset ($_POST['wpwa_user']) ?
$_POST['wpwa_user'] : '');
 $user_email = (isset ($_POST['wpwa_email']) ?
$_POST['wpwa_email'] : '');
 $user_type = (isset ($_POST['wpwa_user_type']) ?
$_POST['wpwa_user_type'] : '');
 // Validating user data
 if (empty($user_login))
 array_push($errors, __('Please enter a username.','wpwa'));
 if (empty($user_email))
 array_push($errors, __('Please enter e-mail.','wpwa'));
 if (empty($user_type))
 array_push($errors, __('Please enter user type.','wpwa'));
 }
 // Including the template
}

The following steps are to be performed:

1.	 First, we will check whether the request is made as POST.
2.	 Then, we get the form data from the POST array.
3.	 Finally, we will check the passed values for empty conditions and push

the error messages to the $errors variable created at the beginning of
this function.

Now, we can move into more advanced validations inside the register_user
function, as shown in the following code:

$sanitized_user_login = sanitize_user($user_login);
if (!empty($user_email) && !is_email($user_email))
 array_push($errors, __('Please enter valid email.','wpwa'));
elseif (email_exists($user_email))
 array_push($errors, __('User with this email already
registered.','wpwa'));
if (empty($sanitized_user_login) || !validate_username(
$user_login))
 array_push($errors, __('Invalid username.','wpwa'));
elseif (username_exists($sanitized_user_login))
 array_push($errors, __('Username already exists.','wpwa'));

Chapter 2

[57]

The steps to perform are as follows:

1.	 First, we will use the existing sanitize_user function and remove
unsafe characters from the username.

2.	 Then, we will make validations on the e-mail to check whether it's
valid and its existence status in the system. Both the email_exists
and username_exists functions checks for the existence of an e-mail
and username from the database. Once all the validations are completed,
the errors array will be either empty or filled with error messages.

In this scenario, we choose to go with the most essential validations for
the registration form. You can add more advanced validation in your
implementations in order to minimize potential security threats.

In case we get validation errors in the form, we can directly print the contents of
the error array on top of the form as it's visible to the registration template. Here
is a preview of our registration screen with generated error messages:

Also, it's important to repopulate the form values once errors are generated.
We are using the same function for loading the registration form and handling
form submission. Therefore, we can directly access the POST variables inside
the template to echo the values, as shown in the updated registration form:

<form id='registration-form' method='post' action='<?php echo
get_site_url() . '/user/register'; ?>'>

Implementing Membership Roles, Permissions, and Features

[58]

 <label class='wpwa_frm_label'><?php echo
__('Username','wpwa'); ?></label>
 <input class='wpwa_frm_field' type='text'
id='wpwa_user' name='wpwa_user' value='<?php echo isset(
$user_login) ? $user_login : ''; ?>' />

 <label class='wpwa_frm_label'><?php echo __('E-
mail','wpwa'); ?></label>
 <input class='wpwa_frm_field' type='text'
id='wpwa_email' name='wpwa_email' value='<?php echo isset(
$user_email) ? $user_email : ''; ?>' />

 <label class='wpwa_frm_label'><?php echo __('User
"Type','wpwa'); ?></label>
 <select class='wpwa_frm_field' name='wpwa_user_type'>
 <option <?php echo (isset($user_type) &&
$user_type == 'follower') ? 'selected' : ''; ?> value='follower'><?php
echo __('Follower','wpwa'); ?></option>
 <option <?php echo (isset($user_type) &&
$user_type == 'developer') ? 'selected' : ''; ?>
value='developer'><?php echo __('Developer','wpwa'); ?></option>
 <option <?php echo (isset($user_type) && $user_type ==
'member') ? 'selected' : ''; ?> value='member'><?php
echo __('Member','wpwa'); ?></option>
 </select>

 <label class='wpwa_frm_label' for=''> </label>
 <input type='submit' value='<?php echo
__('Register','wpwa'); ?>' />

</form>

Exploring the registration success path
Now, let's look at the success path, where we don't have any errors by looking at
the remaining sections of the register_user function:

if (empty($errors)) {
 $user_pass = wp_generate_password();
 $user_id = wp_insert_user(array('user_login' =>
$sanitized_user_login,

Chapter 2

[59]

 'user_email' => $user_email,
 'role' => $user_type,
 'user_pass' => $user_pass)
);
 if (!$user_id) {
 array_push($errors, __('Registration failed.','wpwa'));
 } else {
 $activation_code = $this->random_string();
 update_user_meta($user_id, 'wpwa_activation_code',
$activation_code);
 update_user_meta($user_id, 'wpwa_activation_status', 'inactive'
);
 wp_new_user_notification($user_id, $user_pass, $activation_code
);
 $success_message = __('Registration completed successfully.
Please check your email for activation link.','wpwa');
 }
 if (!is_user_logged_in()) {
 include dirname(__FILE__) . '/templates/login-template.php';
 exit;
 }
}

We can generate the default password using the wp_generate_password function.
Then, we can use the wp_insert_user function with respective parameters
generated from the form to save the user in the database.

The wp_insert_user function will be used to update the current user
or add new users to the application. Make sure you are not logged in
while executing this function; otherwise, your admin will suddenly
change into another user type after using this function.

If the system fails to save the user, we can create a registration fail message and
assign it to the $errors variable as we did earlier. Once the registration is successful,
we will generate a random string as the activation code. You can use any function
here to generate a random string.

Then, we update the user with activation code and set the activation status as inactive
for the moment. Finally, we will use the wp_new_user_notification function to send
an e-mail containing the registration details. By default, this function takes the user ID
and password and sends the login details. In this scenario, we have a problem as we
need to send an activation link with the e-mail.

Implementing Membership Roles, Permissions, and Features

[60]

This is a pluggable function and hence we can create our own implementation of this
function to override the default behavior. Since this is a built-in WordPress function,
we cannot declare it inside our plugin class. So, we will implement it as a standalone
function inside our main plugin file. The full source code for this function will not be
included here as it is quite extensive. I'll explain the modified code from the original
function and you can have a look at the source code for the complete code:

$activate_link = site_url() .
"/user/activate/?wpwa_activation_code=$activate_code";
$message = __('Hi there,') . '\r\n\r\n';
$message .= sprintf(__('Welcome to %s! Please activate your
account using the link:','wpwa'), get_option('blogname')) .
'\r\n\r\n';
$message .= sprintf(__('%s','wpwa'),
$activate_link, $activate_link) . '\r\n';
$message .= sprintf(__('Username: %s','wpwa'), $user_login) .
'\r\n';
$message .= sprintf(__('Password: %s','wpwa'), $plaintext_pass) .
'\r\n\r\n';

We create a custom activation link using the third parameter passed to this function.
Then, we modify the existing message to include the activation link. That's about all
we need to change from the original function. Finally, we set the success message to
be passed into the login screen.

Now, let's move back to the register_user function. Once the notification is sent,
the registration process is completed and the user will be redirected to the login
screen. Once the user has the e-mail in their inbox, they can use the activation link
to activate the account.

Automatically log in the user after registration
In general, most web applications uses e-mail confirmations before allowing users
to log in to the system. However, there can be certain scenarios where we need to
automatically authenticate the user into the application. A social network sign in is
a great example for such a scenario. When using social network logins, the system
checks whether the user is already registered. If not, the application automatically
registers the user and authenticates them. We can easily modify our code to
implement an automatic login after registration. Consider the following code:

if (!is_user_logged_in()) {
 wp_set_auth_cookie($user_id, false, is_ssl());
 include dirname(__FILE__) . '/templates/login-template.php';
 exit;
}

Chapter 2

[61]

The registration code is updated to use the wp_set_auth_cookie function. Once
it's used, the user authentication cookie will be created and hence the user will be
considered as automatically signed in. Then, we will redirect to the login page as
usual. Since the user is already logged in using the authentication cookie, they will
be redirected back to the home page with access to the backend. This is an easy way
of automatically authenticating users into WordPress.

Activating system users
Once the user clicks on the activate link, redirection will be made to the /user/
activate URL of the application. So, we need to modify our controller with a
new case for activation, as shown in the following code:

case 'activate':
do_action('wpwa_activate_user');

As usual, the definition of add_action goes in the constructor, as shown in the
following code:

add_action('wpwa_activate_user', array($this,'activate_user'));

Next, we can have a look at the actual implementation of the activate_user
function:

public function activate_user() {
 $activation_code = isset($_GET['wpwa_activation_code']) ?
$_GET['wpwa_activation_code'] : '';
 $message = '';
 // Get activation record for the user
 $user_query = new WP_User_Query(
 array(
 'meta_key' => ' wpwa_activation_code',
 'meta_value' => $activation_code
)
);
 $users = $user_query->get_results();
 // Check and update activation status
 if (!empty($users)) {
 $user_id = $users[0]->ID;
 update_user_meta($user_id, ' wpwa_activation_status',
'active');
 $message = __('Account activated successfully.','wpwa');
 } else {
 $message = __('Invalid Activation Code','wpwa');
 }

Implementing Membership Roles, Permissions, and Features

[62]

 include dirname(__FILE__) . '/templates/info-template.php';
 exit;
}

We will get the activation code from the link and query the database for finding a
matching entry. If no records are found, we set the message as activation failed or
else, we can update the activation status of the matching user to activate the account.
Upon activation, the user will be given a message using the info-template.php
template, which consists of a very basic template like the following one:

<?php get_header(); ?>
<div id='wpwa_info_message'>
<?php echo $message; ?>
</div>
<?php get_footer(); ?>

Once the user visits the activation page on the /user/activation URL, information
will be given to the user, as illustrated in the following screen:

We successfully created and activated a new user. The final task of this process is
to authenticate and log the user into the system. Let's see how we can create the
login functionality.

Creating a login form in the frontend
The frontend login can be found in many WordPress websites, including small blogs.
Usually, we place the login form in the sidebar of the website. In web applications,
user interfaces are complex and different, compared to normal websites. Hence, we
will implement a full page login screen as we did with registration. First, we need to
update our controller with another case for login, as shown in the following code:

switch ($control_action) {
 // Other cases
 case 'login':

Chapter 2

[63]

 do_action('wpwa_login_user');
 break;
}

This action will be executed once the user enters /user/login in the browser
URL to display the login form. The design form for login will be located in the
templates directory as a separate template called login-template.php. Here is
the implementation of the login form design with the necessary error messages:

<?php get_header(); ?>
<div id=' wpwa_custom_panel'>
 <?php
 if (isset($errors) && count($errors) > 0) {
 foreach ($errors as $error) {
 echo '<p class="wpwa_frm_error">' .$error. '</p>';
 }
 }
 if(isset($success_message) && $success_message != ""){
 echo '<p class="wpwa_frm_success">' .$success_message.
'</p>';
 }
 ?>
 <form method='post' action='<?php echo site_url();
?>/user/login' id='wpwa_login_form' name='wpwa_login_form'>

 <label class='wpwa_frm_label' for='username'><?php
echo __('Username','wpwa'); ?></label>
 <input class='wpwa_frm_field' type='text'
name='wpwa_username' value='<?php echo isset($username) ?
$username : ''; ?>' />

 <label class='wpwa_frm_label' for='password'><?php
echo __('Password','wpwa'); ?></label>
 <input class='wpwa_frm_field' type='password'
name='wpwa_password' value="" />

 <label class='wpwa_frm_label' > </label>
 <input type='submit' name='submit' value='<?php echo
__('Login','wpwa'); ?>' />

 </form>
</div>
<?php get_footer(); ?>

Implementing Membership Roles, Permissions, and Features

[64]

Similar to the registration template, we have a header, error messages, the HTML
form, and the footer in this template. We have to point the action of this form to /
user/login. The remaining code is self-explanatory and hence I am not going to
make detailed explanations. You can take a look at the preview of our login screen
in the following screenshot:

Next, we need to implement the form submission handler for the login functionality.
Before this, we need to update our plugin constructor with the following code to
define another custom action for login:

add_action('wpwa_login_user', array($this, 'login_user'));

Once the user requests /user/login from the browser, the controller will execute the
do_action('wpwa_login_user') function to load the login form in the frontend.

Displaying the login form
We will use the same function to handle both template inclusion and form
submission for login, as we did earlier with registration. So, let's look at the
initial code of the login_user function for including the template:

public function login_user() {
 if (!is_user_logged_in()) {
 include dirname(__FILE__) . '/templates/login-template.php';
 } else {
 wp_redirect(home_url());
 }
 exit;
}

Chapter 2

[65]

First, we need to check whether the user has already logged in to the system. Based
on the result, we will redirect the user to the login template or home page for the
moment. Once the whole system is implemented, we will be redirecting the logged
in users to their own admin area.

Now, we can take a look at the implementation of the login to finalize our process.
Let's take a look at the form submission handling part of the login_user function:

if ($_POST) {
 $errors = array();
 $username = isset ($_POST['wpwa_username']) ?
$_POST['wpwa_username'] : '';
 $password = isset ($_POST['wpwa_password']) ?
$_POST['wpwa_password'] : '';
 if (empty($username))
 array_push($errors, __('Please enter a username.','wpwa'));
 if (empty($password))
 array_push($errors, __('Please enter password.','wpwa'));
 if(count($errors) > 0){
 include dirname(__FILE__) . '/templates/login-template.php';
 exit;
 }
 $credentials = array();
 $credentials['user_login'] = $username;
 $credentials['user_login'] = sanitize_user(
$credentials['user_login']);
 $credentials['user_password'] = $password;
 $credentials['remember'] = false;
 // Rest of the code
}

As usual, we need to validate the post data and generate the necessary errors to be
shown in the frontend. Once validations are successfully completed, we assign all
the form data to an array after sanitizing the values. The username and password
are contained in the credentials array with the user_login and user_password
keys. The remember key defines whether to remember the password or not. Since we
don't have a remember checkbox in our form, it will be set to false. Next, we need
to execute the WordPress login function in order to log the user into the system, as
shown in the following code:

$user = wp_signon($credentials, false);
if (is_wp_error($user))
 array_push($errors, $user->get_error_message());
else
wp_redirect(home_url());

Implementing Membership Roles, Permissions, and Features

[66]

WordPress handles user authentication through the wp_signon function. We have
to pass all the credentials generated in the previous code with an additional second
parameter of true or false to define whether to use a secure cookie. We can set it to
false for this example. The wp_signon function will return an object of the WP_User
or the WP_Error class based on the result.

Internally, this function sets an authentication cookie. Users will
not be logged in if it is not set. If you are using any other process
for authenticating users, you have to set this authentication
cookie manually.

Once a user is successfully authenticated, a redirection will be made to the home
page of the site. Now, we should have the ability to authenticate users from the login
form in the frontend.

Checking whether we implemented the process
properly
Take a moment to think carefully about our requirements and try to figure out what
we have missed.

Actually, we didn't check the activation status on log in. Therefore, any user will
be able to log in to the system without activating their account. Now, let's fix this
issue by intercepting the authentication process with another built-in action called
authenticate, as shown in the following code:

public function authenticate_user($user, $username, $password) {
 if(! empty($username) && !is_wp_error($user)){
 $user = get_user_by('login', $username);
 if (!in_array('administrator', (array) $user->roles)) {
 $active_status = '';
 $active_status = get_user_meta($user->data->ID, 'wpwa_
activation_status', true);
 if ('inactive' == $active_status) {
 $user = new WP_Error('denied', __('ERROR:
Please activate your account.','wpwa'
));
 }
 }
 }
 return $user;
}

Chapter 2

[67]

This function will be called in the authentication action by passing the user,
username, and password variables as default parameters. All the user types of our
application need to be activated, except for the administrator accounts. Therefore,
we check the roles of the authenticated user to figure out whether they are admin.
Then, we can check the activation status of other user types before authenticating.
If an authenticated user is in inactive status, we can return the WP_Error object and
prevent authentication from being successful.

Last but not least, we have to include the authenticate action in the controller, to
make it work as shown in the following code:

add_filter('authenticate', array($this, 'authenticate_user'),
30, 3);

This filter is also executed when the user logs out of the application.
Therefore, we need to consider the following validation to prevent
any errors in the logout process:
if(! empty($username) && !is_wp_error($user))

Now, we have a simple and useful user registration and login system, ready to be
implemented in the frontend of web applications. Make sure to check login- and
registration-related plugins from the official repository to gain knowledge of complex
requirements in real-world scenarios.

Time to practice
In this chapter, we implemented a simple registration and login functionality from
the frontend. Before we have a complete user creation and authentication system,
there are plenty of other tasks to be completed. So, I would recommend you to
try out the following tasks in order to be comfortable with implementing such
functionalities for web applications:

•	 Create a frontend functionality for the lost password
•	 Block the default WordPress login page and redirect it to our custom page
•	 Include extra fields in the registration form

Make sure to try out these exercises and validate your answers against the
implementations provided on the website for this book.

Implementing Membership Roles, Permissions, and Features

[68]

Summary
In this chapter, we explored the basics of user roles and capabilities related to web
application development. We were able to choose the user roles for our application
considering the various possibilities provided by WordPress.

Next, we learned how to create custom routes in order to achieve an MVC-like process
using the frontend controller and custom template system.

Finally, we looked at how we can customize the built-in registration and login process
in the frontend to cater to advanced requirements in web application development.

By now, you should be capable of defining user roles and capabilities to match
your application, create custom routers for common modules, implement custom
controllers with custom template systems, and customize the existing user
registration and authentication process.

In the next chapter, we will look at how we can adapt the existing database of
WordPress into web applications, while planning the database for a portfolio
management application. Stay tuned for another exciting chapter.

[69]

Planning and Customizing
the Core Database

Generally, a database acts as the primary location to keep your web application data
to be accessible from frontend interfaces or any third-party systems. Planning and
designing the database should be one of the highest priority tasks in the initial
stages of a project.

As developers, we have the chance to design the database from scratch in many web
applications. WordPress comes with a prestructured database, and hence, the task
of planning the table structure and adapting to existing tables becomes much more
complex than everyone thinks. Throughout this chapter, we will focus on the basics
of planning and accessing database for web applications. This chapter is important
for the rest of the book and can appear theoretical compared to other chapters.

In this chapter, we will cover the following topics:

•	 Understanding the WordPress database
•	 Exploring the role of existing tables
•	 Adapting existing tables into web applications
•	 Extending the database with custom tables
•	 Planning the portfolio application tables
•	 Querying the database
•	 Limitations and considerations

Planning and Customizing the Core Database

[70]

Understanding the WordPress database
Typical full stack web development frameworks don't come with a predefined
database structure. Instead, these frameworks focus on the core foundation of an
application while allowing the developers to focus on the application-specific features.
On the other hand, WordPress provides a preplanned database structure with a fixed
set of tables. WordPress is built to function as a content management system, and
hence, it can be classified as a product rather than a pure development framework.
The WordPress core database is designed to power the generic functionalities of
a CMS. Therefore, it's our responsibility to use our skills to make it work as an
application development framework.

The WordPress database is intended to work with MySQL, and hence, we need
to have a MySQL database set up before installing WordPress. On successful
installation, WordPress will create eleven database tables to cater core functionality
with the default MySQL table engine.

MyISAM was used as the default MySQL table engine prior to version
5.5.5 and this has been changed to InnoDB from version 5.5 onwards.

WordPress core features will always be limited to these eleven tables and it's quite
surprising to see the flexibility of building a wide range of applications with such a
limited number of tables. Both WordPress and framework developers need to have
a thorough understanding about the existing tables in order to associate them in
web applications.

Exploring the role of existing tables
Assuming that most of you are existing WordPress developers, you will have a
solid understanding of an existing database table structure. However, I suggest that
you continue with this section as web applications can have a different perspective
on using these tables. Based on the functionality, we will categorize the existing
tables into four sections as follows:

•	 User-related tables
•	 Post-related tables
•	 Term-related tables
•	 Other tables

Let's look at how each table fits into these categories and their roles in
web applications.

Chapter 3

[71]

User-related tables
This section consists of two tables for keeping the user-related information of your
application. Let's take a look at the relationship between user-related tables before
moving onto the explanations.

The two tables shown in the preceding diagram are as follows:

•	 wp_users: All the registered users will be stored in this table with their
basic details such as name, e-mail, username, password, and so on.

•	 wp_usermeta: This table is used to store additional information about the
users as key-value pairs. User roles and capabilities can be considered as
the most important user-specific data of this table. Also, we have the
freedom to add any user-related information as new key-value pairs.

Throughout this chapter, we'll be referring to WordPress tables
with the default prefix of wp_. You can change the prefix through
the installation process or by manually changing the wp-config.
php file in the root directory.

Planning and Customizing the Core Database

[72]

Post-related tables
This section consists of two tables to keep website posts- and page-related
information. Let's take a look at the relationship between post-related tables
before moving onto the explanations.

The tables shown in the diagram are as follows:

•	 wp_posts: This table is used to keep all the posts and pages of your website
with the details such as post name, author, content, status, post type, and
so on.

•	 wp_postmeta: This table is used to keep all the additional details for each
post as key-value pairs. By default, it will contain details such as page
template, attachments, edit locks, and so on. Also, we can store any
post-related information as new key-value pairs.

Chapter 3

[73]

Term-related tables
WordPress terms can be simply described as categories and tags. This section
consists of three tables for post category and tag related information. Let's
take a look at the relationship between term-related tables:

The three tables shown in the diagram are as follows:

•	 wp_terms: This table contains master data for all new categories and tags,
including custom taxonomies.

•	 wp_term_taxonomy: This table is used to define the type of terms and the
number of posts or pages available for each term. Basically, all the terms
will be categorized as category, post-tags, or any other custom terms
created through plugins.

•	 wp_term_relationships: This table is used to associate all the terms
with their respective posts.

Planning and Customizing the Core Database

[74]

Other tables
I have categorized the remaining four tables in this section as they play a less
important or independent role in web applications:

•	 wp_comments: This table is used to keep the user feedback for posts and
pages. Comments-specific details such as author, e-mail, content, and status
are saved in this table.

•	 wp_commentmeta: This table is used to keep additional details about each
comment. By default, this table will not contain much data as we are not
associating advanced comment types in typical situations.

The following screen previews the relationship between comment-related tables:

Chapter 3

[75]

The tables shown in the diagram are as follows:

•	 wp_links: This table is used to keep the necessary internal or external links.
This feature is rarely used in content management systems.

•	 wp_options: This table acts as the one and only independent table in the
database. In general, this is used to save application-specific settings that
don't change often.

You can take a look at the complete entity relationship diagram of
WordPress at http://codex.wordpress.org/images/9/97/
WP3.8-ERD.png.

Now, you should have a clear idea of the role of existing tables and the reasons
for their existence from a CMS perspective. Most importantly, our goal is to figure
out how these tables work in advanced web applications and the next section will
completely focus on the web application perspective.

Adapting existing tables into web
applications
Unlike content management systems, web applications have the possibility of
scaling infinitely as it becomes popular and stable. Such systems can contain hundreds
of database tables to cater to various aspects. Here, we are trying to build such
applications using this popular CMS framework. Therefore, we need to figure out
the features we can build using existing tables and the features that need their
own table structures.

We should be trying to maximize the use of existing tables in every possible
scenario to get the most out of WordPress. Built-in database access functions are
optimized to work directly with existing tables, allowing us to minimize the time for
implementation. On the other hand, we need to write custom queries from scratch
to work with newly created tables. Let's find out the possible ways of adapting the
existing tables using the four categories we discussed in the previous section.

www.allitebooks.com

http://codex.wordpress.org/images/9/97/WP3.8-ERD.png
http://codex.wordpress.org/images/9/97/WP3.8-ERD.png
http://www.allitebooks.org

Planning and Customizing the Core Database

[76]

User-related tables
In web applications, the user table plays the same role as in a normal CMS.
Therefore, we don't have to worry about changing the default functionality. Any
other user-related functionalities should be associated with the wp_usermeta table.
Let's recall the user activation feature we implemented in Chapter 2, Implementing
Membership Roles, Permissions, and Features. We had an additional requirement for
activating users before login. We made use of the new wp_usermeta field called
wpwa_activate_status to build this functionality. Now, open your database
explorer and take a look at the fields of the wp_users table. You will find a column
called user_activation_key with an empty value. This field could have been easily
used for the activation functionality. Table columns such as user_activation_key
and user_status are used by WordPress for providing core functionality. There
is every chance that other plugin developers are using these fields with a different
meaning and thus creating the possibility of lost data and conflicts.

It's a good rule of thumb to use metatables or custom tables for
advanced functionalities with your own unique keys by using a
prefix, instead of relying on the existing columns of core tables.

Therefore, we choose the wp_usermeta table to keep the activation status of all users.
Other plugin developers can also implement similar functionalities with unique
keys inside the wp_usermeta table. In short, the wp_usermata table can be used
effectively to create advanced user-related functionalities in web applications as long
as it doesn't involve one-to-many relationship. It's possible to use multiple metafields
with the same name. However, most developers will prefer the use of custom tables
for features that require multiple data rows to be associated with a single user,
allowing additional flexibility in data filtering.

Post-related tables
Usually, the wp_posts and wp_postmeta tables will act as the main data storage
tables for any web application. With the introduction of custom posts, we have
the ability to match most of our application data in these two tables. In web
applications, we can go beyond normal posts by creating various custom post
types. Let's take a look at a few practical scenarios for identifying the role of
wp_posts and wp_postmeta tables.

Chapter 3

[77]

Scenario 1 – An online shopping cart
Assume that we are building an online shopping cart application to sell books. In this
scenario, books can be matched to a custom post type to be saved in the wp_posts
table. We can match the post title as book title, post content as book description, and
post type as book. Then, all the other book-related information such as price, author,
pages, and dimensions can be stored in the wp_postmeta table with the associated
book from the wp_posts table.

Scenario 2 – A hotel reservation system
In this scenario, we need to provide the ability to book hotel rooms through the
system. We can use a custom post type called rooms to keep the details of various
types of rooms inside the wp_posts table. All the additional room-specific data
such as room type, check in and check out dates, and number of people, can be
created using additional fields in the wp_postmeta table.

Scenario 3 – The project management application
Let's consider a much more advanced scenario in creating a relationship between post
types. Assume that we have been assigned to build a project management application
with WordPress. We can match projects as a custom post type. Project-specific details
such as project manager, duration, and cost will be stored in the wp_postmeta table.
It's not ideal to use the wp_postmeta table to store project tasks since each project
contains multiple tasks, and a single project task can contain its own attributes and
values. Therefore, we create another custom post type to store project tasks, and all
the task-related data is stored inside the wp_postmeta table. Finally, we can associate
projects with tasks using taxonomies or a separate custom table.

Till now, we discussed three completely different scenarios in real-world applications,
and we were able to match all the requirements with custom post types. Now, you
should be able to understand the importance of these two tables in web application
development. In the next chapter, we will be continuing our exploration of custom
post types and the use of the wp_posts and wp_postmeta tables.

Term-related tables
Even though they're not as important as posts, terms will play a vital part in
supporting post functionalities. Let's see how we can effectively use terms in the
previous three scenarios:

•	 Scenario 1: In the book store, we can use terms to store book categories or
book types such as ebooks, kindle editions, and printed books

Planning and Customizing the Core Database

[78]

•	 Scenario 2: In the hotel reservation system, we can use terms to select
services and facilities required for rooms

•	 Scenario 3: In the project management system, we can associate terms
for defining the complexity of a given task

It's important to keep in mind that multiple terms can be associated with a single
post. Therefore, it's not a wise thing to use terms for a feature such as project status.

Other tables
In this section, we will discuss the practical usage of wp_comments, wp_comment_
meta and wp_options tables. The wp_links table is skipped on purpose as we
don't generally require it on web application development.

The link manager is hidden by default for new WordPress installations
since version 3.5, proving that links are not considered a major aspect
in WordPress.

Comments might not indicate a significant value with their default usage. However,
we can certainly think of many ways of incorporating comments into actual web
applications. In the previous section, we talked about custom post types. So, what
about custom comment types? Definitely, we can implement custom comment types
in web applications. The only difference is that custom post types are defined in
the posts table, while custom comment types will have to be handled manually, as
they're not currently supported in WordPress.

Let's recall the example in Chapter 1, WordPress as a Web Application Framework, where
we created the question and answer interface using posts and comments. Answers
were considered as a custom comment type. Similarly, we can match things such as
bids in auctions, reviews in books, and ratings for movies as custom comment types
to be stored in the wp_comment_meta table. Since the column called comment_type is
not available, we have to use a meta key called wpwa_comment_type to filter different
comments from each other.

Finally, we will take a look at the wp_options table for system wide configurations.
By default, this table is populated with the settings to run the website. WordPress
theme settings will also be stored in this table. In web applications we will definitely
have a considerable amount of plugins, so we can use this table to store the settings
of all our plugins.

Chapter 3

[79]

Most of the existing WordPress plugins use a single field to store all
the settings as a serialized array. It's considered a good practice, which
increases the performance due to a limited number of table records.

Up until this point, we explored the role of existing tables and how we can adapt
them in real-world web applications. A complex web application will always come
up with requirements for pushing the boundaries of these tables. In such cases, we
have no option other than going with custom tables, so we will be looking at the
importance of custom tables and their usage in the following section.

Extending the database with custom
tables
A default WordPress database can be extended by any number of custom tables to
suit our project requirements. The only thing we have to consider is the creation of
custom tables over existing ones. We can think of two major reasons for creating
custom tables.

•	 Difficulty of matching data to existing tables: In the previous section,
we considered real application requirements and matched the data to
existing tables. Unfortunately, it's not practical in all the scenarios. Consider
a system where the user purchases books from a shopping cart. We need
to keep all the payment and order details for tracking purposes, and these
records act as the transactions in the system. There is no way that we can
find a compatible table for these kinds of requirements. Such requirements
will be implemented using a collection of custom tables.

•	 Increased data volume: As I mentioned earlier, the posts table plays a major
role in web applications. When it comes to large-scale applications with a
sizeable amount of data, it's not recommended to keep all the data in a posts
table. Let's assume that we are building a product catalog that creates millions
of orders. Storing order details in the posts table as a custom post type is not
the ideal implementation. In such circumstances, the posts table will go out
of control due to the large dataset. The same theory applies for the existing
metatables as well. In such cases, it's wise to separate different datasets into
their own tables to improve performance and keep things manageable.

Planning and Customizing the Core Database

[80]

Planning the portfolio application tables
The portfolio management system developed throughout this book will make use
of existing tables in every possible scenario. However, it's hard to imagine even
an average web application without using custom tables, so here we will identify
the possible custom tables for our system. You might need to revert back to the
planning section in the Development plan for portfolio management application section
of Chapter 1, WordPress as a Web Application Framework, in order to remind the system
requirements. We planned to create a functionality to allow subscribers to follow
developers in the system. Let's discuss the requirement in detail to identify the
potential tables.

Developers can build their portfolios with personal info, services,
projects, articles, or any other necessary things to demonstrate
their skills. Each user will have their own RSS feed containing
all the activities within the system. Followers will be allowed to
subscribe to multiple developers.

This is a very simple and practical scenario for identifying the use of custom
tables. We can easily scale this up to be compatible with complex systems.
Developers are stored as users of the system. Therefore, we only have a choice
of the wp_usermeta table for additional features. It's highly impractical to keep
user activities in the wp_usermeta table, so we need to create our first custom
table called user_activities to implement this feature.

Types of tables in web applications
Database tables of web applications can be roughly categorized into three sections
as follows:

•	 Master tables: These tables contain predefined or configuration data for the
application, which rarely gets changed. The options table can be considered
as the perfect example of this type of table in the WordPress context.

•	 Application data tables: These tables contain the highly dynamic core
application data. Posts and users can be considered as good examples
of these types of tables in the WordPress context.

•	 Transaction tables: These tables contain the highest volume of data in
any application. Records in these tables rarely get changed, but new records
will be added at an increasing speed. It's difficult to find good examples of
these types of tables in the WordPress context.

Chapter 3

[81]

Based on these categories, we can clearly see that the user_activities table falls into
the transaction table category. Next, we need to allow the followers to subscribe to
developers, so we need another transaction table called subscribed_developers. We
can assume that most of the transaction tables will need their own custom tables. For
now, we will stick with these two tables and additional custom tables will be added in
later chapters when needed.

Creating custom tables
In typical circumstances, we create the database tables manually before moving
into the implementation. With the WordPress plugin-based architecture, it's certain
that we might need to create custom tables using plugins in the later stages of
the projects. Creating custom tables through plugins involves certain predefined
procedures recommended by WordPress. Since table creation is a one-time task,
we can implement the process on plugin activation or installation. This process is
similar to the user role creation process in Chapter 2, Implementing Membership Roles,
Permissions, and Features.

We will be using activation-based table creation in this book. However, you can try
the installation-based table creation to cater to advanced scenarios. We will add the
database table creation functionality into the wpwa-portfolio-manager plugin we
created in Chapter 2, Implementing Membership Roles, Permissions, and Features. So,
let's get started by creating a new function called create_custom_tables inside
the class-wpwa-portfolio-manager.php file:

<?php
 public function create_custom_tables() {
 // Creating Database Tables
 }
?>

Now we can implement the create_custom_tables function to create necessary
tables for our application. Basically, we can execute direct SQL queries using the
$wpdb->query function to create all the tables we need. WordPress recommends using
a built-in function called dbDelta for creating custom tables. This function is located
in a file outside the default process, and hence, we need to load it manually within our
plugins. Let's create the two tables for our application using the dbDelta function:

public function create_custom_tables() {
 global $wpdb;
 require_once(ABSPATH . 'wp-admin/includes/upgrade.php');
 $user_activities_table = $wpdb->prefix.'user_activities';

Planning and Customizing the Core Database

[82]

 if($wpdb->get_var("show tables like '$user_activities_table'")
!= $user_activities_table) {
 $sql = "CREATE TABLE $user_activities_table (
 id mediumint(9) NOT NULL AUTO_INCREMENT,
 time datetime DEFAULT '0000-00-00 00:00:00' NOT NULL,
 user_id mediumint(9) NOT NULL,
 activity text NOT NULL,
 url VARCHAR(255) DEFAULT '' NOT NULL,
 UNIQUE KEY id (id)
);";
 dbDelta($sql);
 }
// subscribed_developers will be created in a similar manner
}

Firstly, we have to include the upgrade.php file to make use of the dbDelta function.
The next most important thing is to use the prefix for database tables. By default,
WordPress creates a prefix called wp_ for all the tables. It's important to use the existing
prefix to keep the consistency and avoid issues in multi-site scenarios. Next, we have to
check the existence of a database table using the show tables query. Finally, you can
define your table creation query and use the dBDelta function to implement it on
the database.

Check out the guidelines at http://codex.wordpress.org/
Creating_Tables_with_Plugins for creating the table creation
query as the dbDelta function can be tricky in certain scenarios.

We have the function for creating custom tables for our application. This function
needs to be executed through the plugin activation hook. In Chapter 2, Implementing
Membership Roles, Permissions, and Features, we executed multiple functions through
multiple calls to register_activation_hook. However, it's more efficient to use a
single call to register_activation_hook to handle multiple functions. Therefore,
we will change the implementation of activation initialization function as follows:

register_activation_hook(__FILE__ , array($this,
'activate_portfolio_manager'));

Now we can execute all the activation-related functions inside the activate_
portfolio_manager function as follows:

public function activate_portfolio_manager(){
 // Creates all the user types
 $this->add_application_user_roles();

http://codex.wordpress.org/Creating_Tables_with_Plugins
http://codex.wordpress.org/Creating_Tables_with_Plugins

Chapter 3

[83]

 // Remove unused user roles
 $this->remove_application_user_roles();
 // Create custom capabilities for user roles
 $this->add_application_user_capabilities();
 // Flush rewrite rules
 $this->flush_application_rewrite_rules();
 // Create custom tables
 $this->create_custom_tables();
}

We created the custom tables using the dbDelta function inside the plugin
activation. WordPress recommends the dbDelta function over direct SQL queries
for table creation since it examines the current table structure, compares it to the
desired table structure, and makes the necessary modifications without breaking
the existing database tables. Apart from the table creation, we can execute quite a
few database-related tasks on plugin activation such as altering tables, populating
initial data to custom tables, and upgrading the plugin tables.

We looked at the necessity of custom tables for web applications. Even though custom
tables offer you more flexibility within WordPress, there will be a considerable number
of limitations, as listed here:

•	 Custom tables are hard to manage in WordPress upgrades.
•	 WordPress default backups will not include custom tables.
•	 No built-in functions for accessing database. All the queries,

filtering, and validation need to be done from scratch, using the
existing $wpdb variable.

•	 User interfaces for displaying these table data needs to be created
from scratch.

Therefore, you should avoid creating custom tables in all possible circumstances,
unless you have a distinct advantage from the perspective of your application.

The WordPress PODS framework works very well in managing
custom post types with custom tables. You can have look at the
source code at http://wordpress.org/plugins/pods/ for
learning the use of custom tables.

A detailed exploration about the PODS framework will be provided in the next
chapter, Chapter 4, Building Blocks of Web Applications.

http://wordpress.org/plugins/pods/

Planning and Customizing the Core Database

[84]

Querying the database
As with most frameworks, WordPress provides a built-in interface for interacting
with the database. Most of the database operations will be handled by the wpdb
class located inside the wp-includes directory. The wpdb class will be available
inside your plugins and themes as a global variable and provides access to all the
tables inside the WordPress database, including custom tables.

Using the wpdb class for CRUD operations is straightforward
with its built-in methods. A complete guide for using the wpdb
class can be found at http://codex.wordpress.org/
Class_Reference/wpdb.

Querying the existing tables
WordPress provides well-optimized built-in methods for accessing the existing
database tables. Therefore, accessing these tables becomes straightforward. Let's
see how basic CRUD (Create, Read, Update, Delete) operations are executed on
existing tables.

Inserting records
All the existing tables contain a prebuilt insert method for creating new records.
The following list illustrates a few of the built-in insert functions:

•	 wp_insert_post: This creates a new post or page in the wp_posts table.
If this is used on an existing post, it will update the existing record

•	 add_option: This creates a new option on the wp_options table, if it
doesn't already exist

•	 wp_insert_comment: This creates a new comment on the wp_comments table

Updating records
All the existing tables contain a prebuilt update method for updating existing
records. The following list illustrates a few of the built-in update functions:

•	 update_post_meta: This creates or updates additional details about posts
in the wp_postmeta table

•	 wp_update_term: This updates existing terms in the wp_terms table
•	 update_user_meta: This updates user meta details in the wp_usermeta

table based on the user ID

http://codex.wordpress.org/Class_Reference/wpdb
http://codex.wordpress.org/Class_Reference/wpdb

Chapter 3

[85]

Deleting records
We have similar methods for deleting records in each of the existing tables as
we have for updating records. The following list illustrates a few of the built-in
delete functions:

•	 delete_post_meta: This deletes custom fields using the specified key in
the wp_postmeta table

•	 wp_delete_post: This removes existing posts, pages, or attachments from
the wp_posts table

•	 delete_user_meta: This removes the metadata matching criteria from a
user from the wp_usermeta table

Selecting records
As usual, there is a set of built-in functions for selecting records from the existing
tables. The following list contains a few of the data selecting functions:

•	 get_posts: This retrieves the posts as an array from the wp_posts table
based on the passed arguments. Also, we can use the WP_Query class
with necessary arguments to get the post list from the OOP method.

•	 get_option: This retrieves the option value of the given key from the
wp_options table.

•	 get_users: This retrieves a list of users as an array from the wp_user table.

Most of the database operations on exiting tables can be executed using these built-in
functions. Therefore, use of the $wpdb class is not necessary in most occasions unless
queries become complex and difficult to handle using direct functions.

Querying the custom tables
Basically, there are no built-in methods for accessing custom tables using direct
functions, so it's a must to use the wpdb class for handling custom tables. Let's
take a look at some of the functions provided by the wpdb class:

•	 $wpdb->get_results("select query"): This can be used to select a
set of records from any database table.

•	 $wpdb->query('query'): This can be used to execute any custom query.
This is typically used to update and delete statements instead of select
statements, as it only provides the affected rows count as the result.

Planning and Customizing the Core Database

[86]

•	 $wpdb->get_row('query'): This can be used to retrieve a single row
from the database as an object, an associative array, or as a numerically
indexed array.

A complete list of the wpdb class functions can be accessed at http://codex.
wordpress.org/Class_Reference/wpdb. When executing these functions, we
have to make sure that we include the necessary filtering and validations, as these
are not built to directly work with existing tables. For example, consider the
following query for proper usage of these functions with necessary filtering:

$wpdb->query(
 $wpdb->prepare("SELECT FROM $wpdb->postmeta
 WHERE post_id = %d AND meta_key = %s",
 1, 'book_title'
)
);

Here, we are filtering the user input values through the prepare function for illegal
operations and illegal characters. Similarly, you have to use the functions such as
escape and escape_by_ref to secure direct SQL queries.

Data validation is an important aspect of keeping the consistency of the database.
WordPress offers the prepare function for formatting SQL queries from possible
threats. Usually, developers use the prepare function with direct queries, including
variables, instead of using placeholders and value parameters. It's a must to use
placeholders and value parameters to get the intended outcome of the prepare
function. Therefore, WordPress version 3.5 and higher enforces a minimum of two
arguments to prevent developers from misusing the prepare function.

Working with posts
WordPress posts act as the main module in web application development as well as
content management systems. Therefore, WordPress comes up with a separate class
called WP_Query for interacting with posts and pages. You can look at more details
about the use of WP_Query at http://codex.wordpress.org/Class_Reference/
WP_Query.

Up to now, we've looked at procedural database access functions using global
objects. Web application developers are much more familiar with object-oriented
coding. The WP_Query class is a good choice for such developers in querying the
database. Let's find out the default usage of WP_Query using the following code:

$args = array(

http://codex.wordpress.org/Class_Reference/wpdb
http://codex.wordpress.org/Class_Reference/wpdb
http://codex.wordpress.org/Class_Reference/WP_Query
http://codex.wordpress.org/Class_Reference/WP_Query

Chapter 3

[87]

 'post_type' => 'projects',
 'meta_query' => array(
 array(
 'language' => '',
 'value' => 'PHP'
)
)
);
$query = new WP_Query($args);

First, we need to add all the filtering conditions to an array. The WP_Query class allows
us to include conditions on multiple tables such as categories, tags, and postmeta. This
technique allows us to create highly complex queries without worrying about the SQL
code. The advantage of WP_Query comes with its ability to create subclasses to cater to
project-specific requirements. In the next section, we will learn how to extend the
WP_Query class to create custom database access interfaces.

Extending the WP_Query class for
applications
The default WP_Query class works similarly for all the types of custom post types.
In web applications, we can have different custom post types with different meanings.
For example, developers can create services inside our portfolio application. Each
service will have a price and process associated with it. There is no point retrieving
those services without those additional details. Now, let's look at the default way
of retrieving services with WP_Query using the following code:

$args = array(
 'post_type' => 'services',
 'meta_query' => array(
 array(
 'key' => 'price'
),
 array(
 'key' => 'process'
)
)
);
$query = new WP_Query($args);

Planning and Customizing the Core Database

[88]

This query works perfectly in retrieving services from the database. However,
each time we have to pass the price and process keys in order to join them when
retrieving services. Since this is a services-specific requirement, we can create a
custom class to extend WP_Query and avoid repetitive argument passing as it's
common to all the services-related queries. Let's implement the extended
WP_Query class:

class WPWA_Services_Query extends WP_Query {
 function __construct($args = array()) {
 $args = wp_parse_args($args, array(
 'post_type' => 'services',
 'meta_query' => array(
 array(
 'key' => 'price'
),
 array(
 'key' => 'process'
)
)
));
 parent::__construct($args);
 }
}

Now all the common conditions are abstracted inside the WPWA_Services_Query
class, so we don't have to pass the conditions every time we want services. The
preceding example illustrates a basic form of object inheritance. Additionally, we
can use post filters to combine custom tables with services. Now, we can access
services using the following code without passing any arguments:

$query = new WPWA_Services_Query();

The WP_Query class will play a vital part in our portfolio application development.
In the following chapters, we will explore how it can be extended in several ways
using advanced post filters provided by WordPress. Until then, you can check out
the available post filters at http://codex.wordpress.org/Plugin_API/Filter_
Reference#WP_Query_Filters.

Introduction to WordPress query classes
WordPress provides a set of classes for querying the database in an object-oriented
manner. These classes make it easier to access and understand the queries, compared
to procedural functions. In the earlier section, we discussed more details about one of
the query classes called WP_Query. This class is the most frequently used one among
all the query classes. In this section, we will explore the functionality of the remaining
query classes.

http://codex.wordpress.org/Plugin_API/Filter_Reference#WP_Query_Filters
http://codex.wordpress.org/Plugin_API/Filter_Reference#WP_Query_Filters

Chapter 3

[89]

The WP_User_Query class
The WP_User_Query class is used to query user-related data from WordPress
database. Basically, this class uses the wp_users and the wp_usermeta tables for
its queries. This is the second-most used class after WP_Query. Let's take a look at
the basic usage of this class using the following code:

$user_query = new WP_User_Query(array('role' => 'Administrator'
);
if (! empty($user_query->results)) {
 foreach ($user_query->results as $user) {
 // display user details
 }
}

The WP_User_Query class takes an array of arguments for filtering users based
on various criteria. In this scenario, we have filtered users with an administrator
role. The following are some of the filtering methods that we can use on the
WP_User_Query class:

•	 Get users by role
•	 Get users from a certain blog in multisite scenarios
•	 Get users based on a keyword search
•	 Get users with specific custom field and field value from the

wp_usermeta table

More details about the use of the WP_User_Query
class is provided at http://codex.wordpress.
org/Class_Reference/WP_User_Query.

The WP_Comment_Query class
The WP_Comment_Query class works with the wp_comments and wp_commentmeta
tables for retrieving WordPress post comments-related data. This class is used in
some of the themes for providing custom comments-related features. However,
this is less frequently used compared to the WP_Query and the WP_User_Query
classes. The following code shows the default usage of this class:

$comments_query = new WP_Comment_Query;
$comments = $comments_query->query($args);
if ($comments) {

http://codex.wordpress.org/Class_Reference/WP_User_Query
http://codex.wordpress.org/Class_Reference/WP_User_Query

Planning and Customizing the Core Database

[90]

 foreach ($comments as $comment) {
 // display commnets
 }
}

You can use this class to retrieve comments of a specific user, specific post, comments
with certain status, and many other parameters.

A complete guide to using this class can be accessed at http://
codex.wordpress.org/Class_Reference/WP_Comment_Query.

Other query classes
Apart from these main query classes, there are several other query classes in
WordPress. Most of these classes are not needed or used frequently by developers.
However, these classes are widely used within the WordPress core and work with
the main query classes. The following are some of the other query classes available
in WordPress:

•	 WP_Meta_Query: This class is used to generate the necessary SQL for
meta-related queries

•	 WP_Tax_Query: This is a container class for multiple taxonomy queries
•	 WP_Date_Query: This class is used to generate the MySQL WHERE clause

for the specified date-based parameters

We discussed the query classes in WordPress and their usage in brief. As a
developer, you should be looking for opportunities to use these classes in custom
plugin and theme development to understand the various parameters.

Limitations and considerations
We have less flexibility with the WordPress built-in database compared to designing
a database from scratch. Limitations and features unique to WordPress need to
be understood clearly to make full use of the framework and avoid potential
bottlenecks. Let's find out some of the WordPress-specific features and their
usage in web applications.

http://codex.wordpress.org/Class_Reference/WP_Comment_Query
http://codex.wordpress.org/Class_Reference/WP_Comment_Query

Chapter 3

[91]

Transaction support
In advanced applications, we can have multiple database queries, which need to be
executed inside a single process. We have to make sure that either all queries get
executed successfully or none of them gets executed, to keep the consistency of the
data. This process is known as transaction management in application development.
In simple website development, we rarely get such requirements for handling
transactions. As mentioned earlier, MySQL version 5.5 upwards uses InnoDB as the
table engine, and hence, we have the possibility of implementing transaction support.
However, WordPress doesn't offer any library or functions for handling transactions,
and hence, all transaction handling should be implemented manually.

Post revisions
WordPress provides an important feature for keeping revisions of your posts in the
wp_posts table. On every update, a new revision of the post will be created in the
database. If you have experience working with software versioning and revision
control systems, you should probably know the importance of revisions. However,
it could create unnecessary performance overheads in executing queries in large
databases. In web applications, you should disable this feature or limit the revisions
to a certain number, unless it provides potential benefits within your system.

How to know whether to enable or disable
revisions?
Ideally, you should disable this feature in all forms of web application development.
Later, you can consider enabling this feature based on your application requirements.

It's important to keep in mind that we don't get revisions of the post
meta fields. Therefore, the importance of post revisions is restricted
to the fields such as post title, content, author, and excerpt.

Let's consider a practical scenario for identifying the importance of post revisions.
Assume that we have an event management system with a custom post type called
events. Each event will span across multiple days, so you can create an event and
use the post content to include the activities of the first day. Then, from the next day
onwards, you can completely replace the content with the activity of each day and
update the event. Finally, we can get all the post revisions with a link to each day
for filtering the activities conducted in each day. Therefore, the decision of keeping
post revisions purely depends on your requirements.

Planning and Customizing the Core Database

[92]

Consider disabling post revisions by placing the following code inside the wp-config.
php file:

define('WP_POST_REVISIONS', false);

Auto saving
Auto saving is another feature that goes in combination with post revisions. Auto
saving will create a different type of post revision at predefined time intervals.
In most occasions, this feature will expand the size of your database rather than
providing something useful. Unfortunately, we cannot switch off auto saving
without editing the core files. Therefore, we need to extend the interval of auto
saving by defining a large value for AUTOSAVE_INTERVAL constant inside the wp-
config.php file:

define('AUTOSAVE_INTERVAL', 600);

The value of AUTOSAVE_INTERVAL constant needs to be configured in seconds.
Here we have used 600 seconds (10 minutes) as the auto save interval.

Using meta tables
The WordPress table structure gives higher priority to meta tables for keeping
additional data as key-value pairs. Although meta tables work well in most
scenarios, this can become a considerable factor in situations where you need to
implement complex select queries and search functionality. Searching for n number
of fields means that you create n number of SQL table joins on the metatable. As
the number of joins increases, your queries will get slower and slower. In such
situations, it's ideal to go with custom tables instead of relying on existing tables.

We had a brief introduction to the WordPress database and possible ways of using
it in web applications. Covering all possible database design and access techniques
was beyond the scope of this chapter. So, I recommend that you follow the resource
section for this chapter in the official book website at http://www.innovativephp.
com/wordpress-web-applications for more resources and tutorials updates.

Summary
Understanding the WordPress database is the key to building successful web
applications. Throughout this chapter, we looked at the role of existing tables
and the need for custom database tables through practical scenarios.

http://www.innovativephp.com/wordpress-web-applications
http://www.innovativephp.com/wordpress-web-applications

Chapter 3

[93]

Database querying techniques and limitations were introduced with the necessary
examples. By now, you should have a clear understanding of choosing the right type
of tables for your next project. We had to go with a theoretical approach with practical
scenarios to learn the basics of database design and implementation inside WordPress.

The real excitement begins in the next chapter where we start the development of
our main modules in web applications using the building blocks of WordPress.
So stay tuned!

[95]

Building Blocks of Web
Applications

The majority of WordPress-powered systems are either simple websites or blogs.
Adapting WordPress for building complex web applications can be a complex task
for beginner developers, who are used to working with simple websites every day.
Understanding the process of handling web application-specific functions becomes
vital in such scenarios.

Managing data is one of the most important tasks in web applications. WordPress
offers a concept called custom post types for modeling application data and backend
interfaces. I believe this is the foundation of most web applications, and hence,
named this chapter as Building Blocks of Web Applications.

While exploring the advanced use cases of custom post type implementations,
we will get used to popular web development techniques such as modularizing,
template management, data validations, and rapid application development in a
practical process.

In this chapter, we will cover the following topics:

•	 Introduction to custom content types
•	 Planning custom post types for application
•	 Implementing the custom post type settings
•	 Validating post creation
•	 Building a simple template loader
•	 Introduction to custom post type relationships
•	 Pods framework for custom content types
•	 Tasks for practicing custom post types

Let's get started!

Building Blocks of Web Applications

[96]

Introduction to custom content types
In WordPress terms, custom content types are referred to as custom post types. The
term "custom post type" misleads some people to think of them as different types
of normal posts. In reality, these post types can model almost anything in real web
applications. This is similar to collections in other web frameworks such as Ruby on
Rails or Meteor.js. These post types are stored in the normal posts table and it could
well be the reason behind its conflicting naming convention.

Prior to the introduction of custom post types, we only had the ability to use normal
posts with custom fields to cater to advanced requirements. The process of handling
multiple post types was a complex task. The inability to manage different post types
in their own lists and the inability to add different fields to different posts are some
of the limitations with the old process. With the introduction of custom post types,
we now have the ability to separate each different type of the post type to act as a
model to cater to complex requirements. The demand for using these custom post
types to build complex applications is increasing every day. The features provided
out of the box to cater to common tasks might be one of the reasons behind its
popularity in website development.

The role of custom post types in web
applications
Even the simplest of web applications will contain a considerable number of models
compared to normal websites. Therefore, organizing model data becomes one of
the critical tasks in application development. Unless you want complete control
over your data processing, it is preferable to make use of custom post types without
developing everything from scratch.

Once a custom post type is registered, you will automatically have the ability to
execute create, read, update, and delete operations. Default fields enabled in the
post creation and custom category types will be saved automatically upon hitting
the Publish button. Generally, this is all we need to build simple applications. For
web applications, we do need the ability to handle a large amount of data with various
types of fields. This is where web applications differ from simple websites with the
use of custom fields within meta boxes. The rest of this chapter will mainly focus on
handling these custom data in different ways to suit complex applications.

Chapter 4

[97]

Planning custom post types for
application
Having got a brief introduction to custom post types and their roles in web
applications, we will find the necessary custom post types for our portfolio
application. The majority of our application and the data will be based on these
custom post types. So, let's look at the detailed requirements of portfolio application.

The main purpose of this application is to let developers promote their work to
enhance their reputation. Therefore, we will target a few important components,
such as projects developed, services offered, articles, and books written. Now, try to
visualize the subsections for each of these components. It is obvious that we can sort
these components into four custom post types. The following sections illustrate the
detailed subcomponents of each of these models.

Projects
Developers or designers can have a list of projects to build their portfolio.
Project information can vary based on the type of the project. We will limit the
implementation of projects to some common fields in order to cover the different
areas of custom post types. The following screenshot illustrates the fields for the
project creation screen:

Building Blocks of Web Applications

[98]

•	 Project Name: This can be matched as the title field of a custom post type
•	 Description: This can be matched as the editor field of a custom post type
•	 Technologies: This can be matched as custom taxonomies
•	 Project Type: This can be matched as another custom taxonomy
•	 URL: This can be matched to a custom text field
•	 Screenshots: This can be matched as custom fields
•	 Project Duration: This can be matched as a custom text field
•	 Download URL: This can be matched as a custom text field
•	 Project Status: This can be matched as a custom dropdown field

Services
Generally, people who work for someone or a company don't offer services.
However, freelancers actually do have various ways of making money. Most
professional freelancers have a specific page on their website to market their
services. For this application, we will model the services using custom post types.
Now, let's look at the following screenshot for necessary data requirements and
their WordPress specific matches:

Let's have a look at the components in the screenshot:

•	 Service Title: This can be matched as the title field of a custom post type
•	 Description: This can be matched as the editor field of a custom post type

Chapter 4

[99]

•	 Tasks: This can be matched as custom taxonomies
•	 Service Price Type: This can be matched to a custom dropdown field
•	 Price: This can be matched to a custom text field or dropdown field
•	 Service Availability: This can be matched to a custom dropdown field

Articles
The Articles section contains articles, tutorials, and news written for their own
websites, as well as guest post submissions for other websites. An article is
something that we can match exactly to the WordPress normal post type. Since
every website will need a blog at some point in its life cycle, we will skip normal
posts and create separate custom post types for articles.

We will not discuss articles in detail as it contain similar fields
such as Title, Summary, URL, Categories, Screens, and so on.

Books
Compared to other sections, Books will have less impact and fewer data as
most developers and designers are not authors. However, writing books on your
preferred technology is a great way to enhance your reputation and build a name
online. Similar to Articles, Books will have a generic set of fields such as:

•	 Title
•	 Summary
•	 URL
•	 Download
•	 Categories
•	 Screens

I hope you have a clear understanding about the things we will implement in this
chapter. We will start by implementing these custom post types using a plugin.
While implementing these models, we will also take a look at some advanced
techniques for template management, validations, and post relationships.

Building Blocks of Web Applications

[100]

Implementing custom post types for a
portfolio application
In this section, we will extend the plugin developed in Chapter 3, Planning and
Customizing Core Database, and implement the custom post type-related functionality.
First, we have to create a new file called class-wpwa-custom-post-types-manager.
php inside the root directory of the wpwa-portfolio-manager plugin.

Most web applications will be larger in scale compared to the normal websites or
blogs. Implementing all custom post functionalities in one file is not the most ideal
or practical thing to do. So, our plan here is to keep the initialization and generic
configurations in the main file, while separating each of the custom post types into
their own class files. Before we go any further, I would like you to have a look at
the updated folder structure of the plugin using the following screenshot:

Now, let's go through each of the new files and folders to identify their role:

•	 class-wpwa-custom-post-manager.php: This includes the main
initialization and configuration code for models

Chapter 4

[101]

•	 class-wpwa-template-loader.php: This includes a template file loading
and initialization code

•	 models: This folder contains all the custom post type-specific classes
•	 templates: This folder contains all the HTML templates required for

the plugin

All the custom post type-specific classes located inside the models folder need to
be included in the main plugin file prior to their usage. WordPress itself handles
most of the files in a procedural way. Hence, some WordPress developers prefer
the inclusion of files through a bunch of the require or include statements. As
applications grow larger, including each and every file in a manual process can be
a tedious task. Most experienced web developers will look for the concept called
autoloading files for such projects. So, we will implement an autoloader for our
post type classes inside the models folder. Let me explain how PHP autoload works
before moving onto the real implementation. Consider the following code snippet:

spl_autoload_register('wpwa_autoloader');
function wpwa_autoloader($class_name){
 include_once $class_name;
}

PHP provides a function called spl_autoload_register to register a function to
implement the autoloading process. Whenever a class is instantiated, the autoloader
function will be called by passing the class name as the parameter. We can use the
class name to include the files with the same name as class name. However, there
can be two major problems with the default technique:

•	 We cannot have classes inside subfolders
•	 This function will load each and every class inside the application, even

the classes we don't want to be included

Basically, this means we have to look for an alternative implementation of the
autoloader to suit our plugins. We will use a predefined format for our model
classes to solve this issue. All the model classes will be named as WPWA_Model_
{post_type_name}. For example, the projects class will be named as WPWA_Model_
Project, while the filename will be class-wpwa-model-project.php so that we
can look for a project file inside the models folder. Having the solution in mind,
we will implement our autoloader function inside the class-wpwa-portfolio-
manager.php file, as illustrated in the following code:

spl_autoload_register('wpwa_autoloader');
function wpwa_autoloader($class_name) {
 $class_components = explode("_", $class_name);

Building Blocks of Web Applications

[102]

 if (isset($class_components[0]) && $class_components[0] ==
"WPWA" && isset($class_components[1])) {
 $class_directory = $class_components[1];
 unset($class_components[0], $class_components[1]);
 $file_name = implode("_", $class_components);
 $base_path = plugin_dir_path(__FILE__);
 switch ($class_directory) {
 case 'Model':
 $file_path = $base_path . "models/class-wpwa-model-
".lcfirst($file_name) . '.php';
 if (file_exists($file_path) && is_readable($file_path)) {
 include $file_path;
 }
 break;
 }
 }
}

Since we have opted to go with predefined class names, the initial task is to split the
class name into subcomponents using the explode function. Once the class name
is exploded into parts, we will have WPWA as the first component and Model as the
second component. The second component is assigned to the $class_directory
variable to be used as the folder name. Then, we need to rebuild the filename of the
class. So, we unset the first two components and rejoin the remaining components
using the implode function.

Here, we used a manual process for filtering the class names and file
paths. We can simplify the process for advanced applications using a
regular expression; check with the preg_match function.

Then, we need to define the base path to the WordPress plugin directory in order
to get the path to the class file. Next, we come to the most important part where we
switch the $class_directory variable to find out the right folder. Here, we have
used Model in the switch statement since our folder is named models. For each and
every new folder, you can add a new case to the switch statement.

Afterwards, we will define the path to the class file by combining the plugin base path
with the models directory and filename. Finally, we include the file into the plugin by
checking the existence of file and necessary permissions. With this technique, we can
autoload all the classes inside the models folder without manually loading them using
require or include. Now, we can move on to the implementation of the custom post
type manager.

Chapter 4

[103]

Implementing the custom post type settings
As planned, we need to implement configurations and general functions in the main
class for custom post types. Let's create a class called WPWA_Custom_Post_Manager
in the class-wpwa-custom-post-manager.php file and initialize the object as usual
using the following code:

class WPWA_Custom_Post_Manager {
 private $base_path;
 private $template_parser;
 private $projects;
 public function __construct() {
 // Initialization
 }
}
$custom_post_manager = new WPWA_Custom_Post_Manager();

You should be familiar with this plugin initialization technique as we used it in Chapter
2, Implementing Membership Roles, Permissions, and Features. Apart from the basic
initialization, we have used a few instance variables to keep the data across all the
functions of the class. The following section explains the role of each of these variables:

•	 base_path: This keeps the path to the plugin folder from your document
root.

•	 template_parser: In this, we will handle templates using a template loader.
So, this variable will hold an instance of the template loader.

•	 projects: This keeps an object of the projects custom post type to be used
across many functions.

Also, you will have to create instance variables for all your custom post types. Once
the main class is instantiated, we have to define our custom post types inside the
constructor. Remember that we planned to separate each custom post type into
its own class. Therefore, all the post type-specific implementations will be inside
those classes, meaning that the responsibility of constructor will be limited to the
instantiation of those classes. Let's see how a main file constructor looks like:

class WPWA_Custom_Post_Manager {
 // Instance variables
 public function __construct() {
 $this->base_path = plugin_dir_path(__FILE__);
 $this->projects = new WPWA_Model_Project();
 }
}

Building Blocks of Web Applications

[104]

We start the implementation by assigning a plugin directory path to our instance
variable using the WordPress plugin_dir_path function. Next, we need to
initialize all the custom post type classes. In this chapter, we will look at the detailed
implementation of the Project class. Other custom post types are similar, and
hence, you can find them inside the source code folder. Thus we have initialized
the Project class and assigned it to the instance variable. Now that we have set
up everything required for custom post implementation, we can move on to the
implementations of those classes.

Creating the project class
We will choose the Project class as it is the most complex one of the four custom
post types. So, create a file called class-wpwa-model-project.php inside the
models folder and define a blank class called WPWA_Model_Project, as shown in
the following code:

class WPWA_Model_Project {
 private $post_type;
 private $template_parser;
 public function __construct() {
 global $wpwa_template_loader;
 $this->template_parser = $wpwa_template_loader;
 // Initialization code goes here
 }
}

Here, we also have two instance variables for keeping the custom post type name
and template loader object, which will be discussed later. This class constructor is
responsible for handling all the project-related function initializations and definitions.
The first task is to register a custom post type for projects. Let's modify the constructor
to add the necessary actions for post type creation:

class WPWA_Model_Project {
global $wpwa_template_loader;
// Our existing instance variables
 public function __construct() {
 $this->template_parser = $wpwa_template_loader;
 $this->post_type = "wpwa_project";
 add_action('init', array($this, 'create_projects_post_type'));
 }
}

Chapter 4

[105]

First, we will assign the name of the post type to the instance variable so that we
can use it for registering the post type. With many existing plugins, you will find
hardcoded names for the register_post_type function.

It's a good practice to use an instance variable or global variable to
store the custom post type name and use the variables across all the
occurrences of the custom post type name. This will enable you to
change the custom post type name anytime with minimum effort
without breaking the code.

We use the WordPress init action to call the create_projects_post_type
function for registering new custom post types. Let's look at the implementation
of this function:

public function create_projects_post_type() {
 global $wpwa_custom_post_types_manager;
 $params = array();
 $params['post_type'] = $this->post_type;
 $params['singular_post_name'] = __('Project','wpwa');
 $params['plural_post_name'] = __('Projects','wpwa');
 $params['description'] = __('Projects','wpwa');
 $params['supported_fields'] = array('title', 'editor');
 $wpwa_custom_post_types_manager-
>create_post_type($params);
}

You might have noticed that familiar custom post type creation code is missing here.
We have to define the common settings and all the labels for each and every custom
post type. Since we are planning to use multiple custom post types for our project,
we have to prevent code duplication. Therefore, we will be implementing the custom
post creation in a common function and passing the necessary parameters from the
individual models. In this code, we have defined necessary labels and supported
fields to be passed to the common create_post_type function inside the WPWA_
Custom_Post_Types_Manager class. Now, we can look at the implementation of
the create_post_type function for all our models:

public function create_post_type($params) {
 extract($params);
 $labels = array(
 'name' => sprintf(__('%s', 'wpwa'),
$plural_post_name),

Building Blocks of Web Applications

[106]

 'singular_name' => sprintf(__('%s', 'wpwa'),
$singular_post_name),
 'add_new' => __('Add New', 'wpwa'),
 'add_new_item' => sprintf(__('Add New %s ', 'wpwa'
), $singular_post_name),
 'edit_item' => sprintf(__('Edit %s ', 'wpwa'),
$singular_post_name),
 'new_item' => sprintf(__('New %s ', 'wpwa'),
$singular_post_name),
 'all_items' => sprintf(__('All %s ', 'wpwa'),
$plural_post_name),
 'view_item' => sprintf(__('View %s ', 'wpwa'),
$singular_post_name),
 'search_items' => sprintf(__('Search %s ', 'wpwa'
), $plural_post_name),
 'not_found' => sprintf(__('No %s
found', 'wpwa'), $plural_post_name),
 'not_found_in_trash' => sprintf(__('No %s found
in the Trash', 'wpwa'), $plural_post_name),
 'parent_item_colon' => '',
 'menu_name' => sprintf(__('%s', 'wpwa'),
$plural_post_name),
);
$args = array(
 'labels' => $labels,
 'hierarchical' => true,
 'description' => $description,
 'supports' => $supported_fields,
 'public' => true,
 'show_ui' => true,
 'show_in_menu' => true,
 'show_in_nav_menus' => true,
 'publicly_queryable' => true,
 'exclude_from_search' => false,
 'has_archive' => true,
 'query_var' => true,
 'can_export' => true,
 'rewrite' => true,
 'capability_type' => 'post',
);
 register_post_type($post_type, $args);
}

Chapter 4

[107]

There is nothing substantial to explain in the preceding code other than the use of
dynamic variables instead of hardcoding the details. Now, go to the Permalinks
menu under the Settings section in the admin dashboard and save it again to refresh
the rewrite rules. You should see the projects creation screen, as shown in the
following screenshot:

Custom post type for project is created to have the capability of post. So,
users need to have post-specific permissions to use the projects section.
Since we haven't provided permission to developers, you can only view
this screen as an admin who has the post capabilities by default.

Assigning permissions to projects
In general, a developer user role should be able to handle all the post types
created in this application. Therefore, we need to provide post-specific capabilities
to the developer role. In Chapter 2, Implementing Membership Roles, Permissions, and
Features, we implemented the plugin for user management and permissions.
Now, it's time to update the plugin to add the necessary permissions. Open the
class-wpwa-portfolio-manager.php file in the WPWA Portfolio Manager plugin.
Navigate to the add_application_user_capabilities function and change the
existing code as follows:

public function add_application_user_capabilities() {
 $role = get_role('follower');
 $role->add_cap('follow_developer_activities');
 $developer = get_role("developer");

Building Blocks of Web Applications

[108]

 $custom_developer_capabilities = array(
 "edit_posts",
 "edit_private_posts",
 "edit_published_posts",
 "publish_posts",
 "read",
 "delete_posts",
);
 foreach ($custom_developer_capabilities as $capability) {
 $developer->add_cap($capability);
 }
}

Here, we have added most of the post-specific capabilities to the developer user role,
apart from the edit_others_posts capability. This function is executed within the
plugin activation handler, and so you need to deactivate the plugin and activate it
again to apply the new capabilities to the users. Once completed, you will be able to
manage projects as developers.

Now, we have the necessary permissions and basic fields ready for creating a project
title and description. The most important part of a web application comes with
the power of custom fields and custom taxonomies. In the requirements-gathering
section, we planned to create custom taxonomies for project technologies and
project type. So, let's get started on the implementation.

Creating custom taxonomies for technologies
and project types
Generally, we use taxonomies to group things that don't get changed often. Here,
we are in need of two taxonomies for both technologies and project types. Let's
open the class-wpwa-model-project.php file and update the Project class
constructor to implement the actions for taxonomy creation:

class WPWA_Model_Project {
 // Other Instance variables
 private $technology_taxonomy;
 private $project_type_taxonomy;
 public function __construct() {
 global $wpwa_template_loader;
 $this->template_parser = $wpwa_template_loader;
 $this->post_type = "wpwa_project";
 $this->technology_taxonomy = "wpwa_technology";
 $this->project_type_taxonomy = "wpwa_project_type";
 add_action('init', array($this,'create_projects_post_type'));

Chapter 4

[109]

 add_action('init',
array($this,'create_projects_custom_taxonomies'));
 }
}

First, we need two other instance variables to hold the names of custom taxonomies
to be reused across all functions. Initialization of these variables is handled through
the constructor. Next, we will define custom taxonomies on the init action as we
did with custom post types. WordPress offers a function called register_taxonomy
for creating taxonomies. Similar to custom post types, this function creates code
duplication, and so we will be using a common function. First, we will be looking
at the model-specific function for defining necessary data:

public function create_projects_custom_taxonomies() {
 global $wpwa_custom_post_types_manager;
 $params = array();
 $params['category_taxonomy'] = $this->technology_taxonomy;
 $params['post_type'] = $this->post_type;
 $params['singular_name'] = __('Technology','wpwa');
 $params['plural_name'] = __('Technology','wpwa');
 $wpwa_custom_post_types_manager->
create_custom_taxonomies($params);
 $params['category_taxonomy']= $this->project_type_taxonomy;
 $params['post_type'] = $this->post_type;
 $params['singular_name'] = __('Project Type','wpwa');
 $params['plural_name'] = __('Project Type','wpwa');
 $params['capabilities'] = array(
 'manage_terms' => 'manage_project_type',
 'edit_terms' => 'edit_project_type',
 'delete_terms' => 'delete_project_type',
 'assign_terms' => 'assign_project_type'
);
$wpwa_custom_post_types_manager->
create_custom_taxonomies($params);
}

We are creating two custom taxonomies for projects, and so we have called the
common create_custom_taxonomies function twice with the necessary parameters.
The following code previews the common create_custom_taxonomies function:

public function create_custom_taxonomies($params) {
 extract($params);
 $capabilities = isset($capabilities) ? $capabilities : array();
 register_taxonomy(
 $category_taxonomy,
 $post_type,

Building Blocks of Web Applications

[110]

 array(
 'labels' => array(
 'name' => sprintf(__('%s Category',
'wpwa') , $singular_name),
 'singular_name' => sprintf(__('%s Category',
'wpwa') , $singular_name),
 'search_items' => sprintf(__('Search %s
Category', 'wpwa') , $singular_name),
 'all_items' => sprintf(__('All
%s Category', 'wpwa') , $singular_name),
 'parent_item' => sprintf(__(
'Parent %s Category', 'wpwa') , $singular_name),
 'parent_item_colon' => sprintf(__(
'Parent %s Category:', 'wpwa') , $singular_name),
 'edit_item' => sprintf(__('Edit
%s Category', 'wpwa') , $singular_name),
 'update_item' => sprintf(__(
'Update %s Category', 'wpwa') , $singular_name),
 'add_new_item' => sprintf(__('Add
New %s Category', 'wpwa') , $singular_name),
 'new_item_name' => sprintf(__('New
%s Category Name', 'wpwa') , $singular_name),
 'menu_name' => sprintf(__('%s
Category', 'wpwa') , $singular_name),
),
 'hierarchical' => true,
 'capabilities' => $capabilities ,
)
);
}

Before moving into code explanation, I would like you to refresh the projects creation
area to see two blocks added to the right of your screen to define technologies and
types for projects, as shown in the following screenshot:

Chapter 4

[111]

The preceding code illustrates the default structure of custom taxonomy creation
function with all the necessary options. There is nothing new in technology taxonomy
other than the use of instance variables instead of hardcoding. Astute readers might
notice the difference in project type implementation. We have added a section called
capabilities to the project type. In today's world, web-based technologies change
rapidly. So, we need to provide the ability for developers to define any new technology
in our application. On the other hand, project types are fixed and won't get changed
regularly. Therefore, we need to block the project type creation for user roles other
than the admin.

By default, WordPress uses the manage_categories permission for all the
taxonomies, including default categories and tags. Since we didn't define specific
capabilities for technologies, it will use the default manage_categories permission.
So, anyone who has the permission to manage_categories will have the ability to
create new technologies. Now, let's consider the capabilities of the project type:

'capabilities' => array(
 'manage_terms' => 'manage_project_type',
 'edit_terms' => 'edit_project_type',
 'delete_terms' => 'delete_project_type',
 'assign_terms' => 'assign_project_type'
)

The following four permissions called are used to handle default permissions:

•	 manage_terms

•	 edit_terms

•	 delete_terms

•	 assign_terms

Here, we need to handle the permissions of the project type separately from others,
and hence, we have assigned four custom permission types to respective keys. Now,
take a look at the project creation menu on the admin area. You will notice that the
Technology menu is displayed and the Project Type menu is not visible. Since we
have defined custom capabilities, even the administrator does not have permission
until we assign them.

Assigning permissions to the project type
We added custom capabilities in the project type creation process. However,
WordPress has no idea about those capabilities until we assign them to a specific
user role. In Chapter 2, Implementing Membership Roles, Permissions, and Features,
we installed the Members plugin to manage user roles. So, you can go to Users |
Roles | Administrator to see all the available capabilities. You won't see the new
capabilities in this screen.

Building Blocks of Web Applications

[112]

Now, open the class-wpwa-portfolio-manager.php file again in the WPWA
Portfolio Manager plugin with the updated code in the preceding section on project
permissions. Navigate to the add_application_user_capabilities function and
change the existing code as follows:

public function add_application_user_capabilities() {
 $role = get_role('follower');
 $role->add_cap('follow_developer_activities');
 $developer = get_role("developer");
 $custom_developer_capabilities = array(
 "edit_posts",
 "edit_private_posts",
 "edit_published_posts",
 "publish_posts",
 "read",
 "delete_posts",
 "manage_project_type",
 "edit_project_type",
 "delete_project_type",
 "assign_project_type",
);
 foreach ($custom_developer_capabilities as $capability) {
 $developer->add_cap($capability);
 }
 $role = get_role('administrator');
 $custom_admin_capabilities = array("manage_project_type",
 "edit_project_type",
 "delete_project_type",
 "assign_project_type",
);
 foreach ($custom_admin_capabilities as $capability) {
 $role->add_cap($capability);
 }
}

You can get more details about roles and capabilities from
the WordPress codex at http://codex.wordpress.org/
Roles_and_Capabilities.

http://codex.wordpress.org/Roles_and_Capabilities
http://codex.wordpress.org/Roles_and_Capabilities

Chapter 4

[113]

By now, you should know that capabilities cannot be defined without a user role.
Therefore, we get the administrator role as an object. Throughout this application,
we will specify all the custom capabilities into an array called custom_admin_
capabilities. Finally, we add each of the custom capabilities inside the loop
using the add_cap function. Once everything is saved, go to the Plugins section
and deactivate the Packt WPWA User Manager plugin. Then, reactivate the plugin
and go to the Users | Roles | Administrator section to view the capabilities. Now,
you should be able to see the custom capabilities assigned to admin role. Also, you
will have access to the Add New Project Type link in the project creation screen, as
shown in the following screenshot:

So far, we have created the default fields and taxonomies of the project creation
screen. Now, we come to the most important part of creating custom fields for
custom post types. Let's get started.

Introduction to custom fields with meta boxes
Being a WordPress user, you should be familiar with custom fields as it is provided
with default posts as well. We can enable custom fields on posts by clicking the Screen
Options menu on the top of the post creation screen and ticking the checkbox of the
Custom Fields. Once enabled, you will get a screen similar to the following screenshot:

Building Blocks of Web Applications

[114]

The default custom fields section allows us to specify any key-value pair with the post.
So, the user has complete control over the data created through these fields. In web
applications, we need more control over the user input for restricting and validating
data, so the default custom fields screen is not ideal for web applications.

Instead, we can use the same custom fields in different approaches using meta
boxes. As developers, we have the control to decide the necessary fields on meta
boxes rather than allowing users to decide their own key-value pairs. Let's modify
the Project class constructor to add the necessary actions for meta box creation for
projects post type:

add_action('add_meta_boxes', array($this,
'add_projects_meta_boxes'));

We can use the add_meta_boxes action to define meta box creation functions for
WordPress. Now, let's implement the meta boxes inside the add_projects_meta_
boxes function:

public function add_projects_meta_boxes() {
 add_meta_box("wpwa-projects-meta", "Project Details",
array($this, 'display_projects_meta_boxes'), $this->post_type);
}

It's not possible to directly implement the meta box fields without using the
add_meta_box function. This function will decide the information and locations
for creating metafields. They are as follows::

•	 The first parameter defines a unique key to the meta box (the HTML id
attribute of the screen)

•	 The second and third parameters define meta box title and function
respectively

•	 The fourth parameter defines the associated post type; in this case, the
parameter will be Projects

Here, I have mentioned the required parameters. In case you want
more advanced configurations with optional parameters, look at the
documentation at http://codex.wordpress.org/Function_
Reference/add_meta_box.

Finally, we need to implement the display_projects_meta_boxes function defined
in the preceding code to display custom fields. Now, let's look at the most common
implementation of such function using the following code:

public function display_projects_meta_boxes() {

http://codex.wordpress.org/Function_Reference/add_meta_box
http://codex.wordpress.org/Function_Reference/add_meta_box

Chapter 4

[115]

 global $post;
 $html = '<table class="form-table">';
 $html .= '<tr>';
 $html .= '<th><label for="Project URL">Project
URL</label></th>';
 $html .= '<td>';
 $html .= '<input class="widefat" name="txt_url" id="txt_url"
type="text" value="" /></td>';
 $html .= '</tr>';
 $html .= '<tr>';
 $html .= '<th><label for="Project Duration">Project
Duration</label></th>';
 $html .= '<td><input class="widefat" name="txt_duration"
id="txt_duration" type="text" value="" /></td>';
 $html .= '</tr>';
 $html .= '</table>';
 echo $html;
}

Once you save the code and refresh the project creation screen, you will get a
meta box with two text fields as defined in the preceding code. It works perfectly
and most WordPress developers are comfortable with this technique of including
HTML through PHP variables. Most experienced web developers will consider this
technique as a bad practice. There are certain issues in including HTML in variables
as listed here:

•	 Difficulty in maintaining proper quotes in the right places; one invalid quote
can break everything

•	 Template and logic codes are scattered in the same function
•	 Difficulty in debugging the codes

In web applications, we need to separate layers based on their functionality.
Therefore, we have to keep logic away from the presentation so that designers
know exactly what they are dealing with. So, it's preferable to go with a template
engine for complex applications.

What is a template engine?
The template engine is a library or framework that separates logic from template
files. These libraries provide their own syntaxes for passing necessary values to
the template from the controllers or models. Once successfully implemented,
we shouldn't have complex code inside template files other than simple if-else
statements and loops.

Building Blocks of Web Applications

[116]

There are plenty of open source template engines available for PHP. Smarty, Mustache,
and Twig are some of the popular ones among them. However, integrating this type
of template engine in WordPress is a complex task, compared to using it in other
PHP frameworks. The architecture of WordPress is different from any other PHP
framework as it drives on action hooks and filters. Therefore, the integration needs
to be capable of handling WordPress-specific things such as actions, filters, widgets,
template tags, and so on.

The Twig templates engine created by SensioLabs is one of my favorites
as it offers many unique features compared to the other template
engines. If you are not familiar with template engines, I suggest that you
look at the Twig documentation at http://twig.sensiolabs.org/
documentation. As I mentioned, the scope of integrating Twig with
WordPress is beyond the scope of this book, and hence will be discussed
in the official website for this book. We will be using the Timber plugin
for WordPress at https://wordpress.org/plugins/timber-
library/. Until then, you can try out the plugin, which offers the
integration of Twig templates.

Integrating WordPress plugins with the afore mentioned template engines is not
so popular among developers; even the most popular and well-coded plugins use
a simple template loading techniques. Throughout this book, we will be using our
own template loading technique. Keep in mind that this technique is nowhere close
to the features offered by a template engine. Also, this technique partially separates
the presentation layer from logic, compared to template engines, which completely
separate these two concerns. Let's get started with creating a simple template loading
technique used by many developers.

Building a simple custom template loader
As developers, you might be familiar with the WordPress template loading
technique using the get_template_part function. Basically, this function includes
a file behind the scenes. This is similar to executing a require or include function
on a file. However, WordPress recommends using this function instead of manual
require or include function calls. We will use the same technique for building our
template loader. This is the most commonly used technique among many popular
plugins. Let's start by creating a new file called class-wpwa-template-loader.
php inside our plugins/wpwa-portfolio-manager folder with the following class
definition:

class WPWA_Template_Loader{
 // Template loading code
}
$wpwa_template_loader = new WPWA_Template_Loader();

http://twig.sensiolabs.org/documentation
http://twig.sensiolabs.org/documentation
https://wordpress.org/plugins/timber-library/
https://wordpress.org/plugins/timber-library/

Chapter 4

[117]

Now, let's look at the implementation of our get_template_part function similar to
WordPress core function:

public function get_template_part($slug,$name= null,$load= true) {
 do_action('wpwa_get_template_part_' . $slug, $slug, $name);
 // Setup possible parts
 $templates = array();
 if (isset($name))
 $templates[] = $slug . '-' . $name . '-template.php';
 $templates[] = $slug . '-template.php';
 // Allow template parts to be filtered
 $templates = apply_filters('wpwa_get_template_part',
$templates, $slug, $name);
 // Return the part that is found
 return $this->locate_template($templates, $load, false);
}

The WordPress get_template_part function has three parameters with $slug
being the only required parameter. You can define the template name in two ways,
as follows:

•	 Templates without parts: These are standalone templates and so only
a slug will be available for these templates. For example, projects.php
where projects will be the slug without any subtemplate.

•	 Templates with parts: These are partial templates and so both slug and
name will be available in a template name. This is useful when having
multiple subtemplates for a specific section, for example, project-tasks.
php and project-members.php. The project will be the main slug and
tasks and members will be the templates.

We will check the availability of sub or main template with the given filename
and assign it to an array called $templates.

Note that we have an action called wpwa_get_template_part and a
filter called wpwa_get_template_part. These hooks can be used to
change the templates array based on different conditions and execute
custom code when specific templates are loaded.

Finally, we will call the locate_template function for loading the templates inside
the $templates array. Let's take a look at the implementation of the locate_
template function:

public function locate_template($template_names, $load = false,
$require_once = true) {

Building Blocks of Web Applications

[118]

 // No file found yet
 $located = false;
 // Traverse through template files
 foreach ((array) $template_names as $template_name) {
 // Continue if template is empty
 if (empty($template_name))
 continue;
 $template_name = ltrim($template_name, '/');
 // Check templates for frontend section
 if (file_exists(trailingslashit(wpwa_path) . 'templates/'
. $template_name)) {
 $located = trailingslashit(wpwa_path) . 'templates/' .
$template_name;
 break;
 // Check templates for admin section
 }
 }
 if ((true == $load) && ! empty($located))
 load_template($located, $require_once);
 return $located;
}

We traverse all the templates in the $templates array and look for the existence
of a template inside the specified template folders. Here, we are only searching the
templates folder. As the project gets larger, we will have to define multiple sublevels
inside the templates folder or multiple template folders. In such scenarios, we have
to extend this code to include multiple locations for searching templates. Once a
template is found, we break the process and return the template file.

Now, we have a basic template loader. In the next section, we will look at how to
use this template loader to load the necessary templates.

Creating your first template
Template engines allow us to use pure HTML files or any other file type for
templates. However, we are only using a template loader and therefore we need
some PHP code inside the templates. So, let's create the first template file called
project-meta-template.php inside the the templates folder for project
metadata. Here, we have the complete template code for the project meta box:

<?php
 global $template_data;
 extract($template_data);
?>

Chapter 4

[119]

<input type="hidden" name="project_meta_nonce" value="<?php echo
$project_meta_nonce; ?>" />
<table class="form-table">
 <tr>
 <th style=''><label for='<?php echo $project_status_label;
?>'><?php echo $project_status_label; ?> *</label></th>
 <td>
 <select class='widefat' name="sel_project_status"
id="sel_project_status">
 <option <?php selected($project_status, 0); ?>
value="0">Select</option>
 <option <?php selected($project_status, 'planned'
); ?> value="planned">Planned</option>
 <option <?php selected($project_status, 'pending'
); ?> value="pending">Pending</option>
 <option <?php selected($project_status, 'failed'
); ?> value="failed">Failed</option>
 <option <?php selected($project_status,
'completed'); ?> value="completed">Completed</option>
 </select>
 </td>
 </tr>
 <tr>
 <th style=''><label for='<?php echo
$project_duration_label; ?>'><?php echo $project_duration_label;
?> *</label></th>
 <td><input class='widefat' name='txt_duration'
id='txt_duration' type='text' value='<?php echo $project_duration;
?>' /></td>
 </tr>
 <tr>
 <th style=''><label for='<?php echo $project_url_label;
?>'><?php echo $project_url_label; ?></label></th>
 <td>
 <input class='widefat' name='txt_url' id='txt_url'
type='text' value='<?php echo $project_url; ?>' /></td>
 </tr>
 <tr>
 <th style=''><label for='<?php echo
$project_download_url_label; ?>'><?php echo
$project_download_url_label; ?></label></th>
 <td><input class='widefat' name='txt_download_url'
id='txt_download_url' type='text' value='<?php echo
$project_download_url; ?>' /></td>
 </tr>
</table>

Building Blocks of Web Applications

[120]

Let's get started!

1.	 First, we will use a global variable called $template_data to access the data
for templates. We can start the template by defining the nonce value inside
a hidden field for securing form submission. In this technique, we are using
PHP variables to assign data to templates.

2.	 Then, we have a list of fields for Project URL, Download URL, Project
Status, and Project Duration. Each of these fields uses a PHP variable from
the global $template_data variable for displaying data.

In a modern website design, the HTML table is not such a popular
component for creating layouts. We prefer a <div> element-based
structure for more flexibility. In the WordPress context, it's ideal
to use tables for designs to keep the consistency across all admin
screens. Also, you can use a CSS class called widefat on form
fields for a better look and feel.

3.	 The next task will be to assign the created template into a project screen
through meta boxes. So, we have to restructure the display_projects_meta_
boxes function to use templates instead of hardcoded HTML elements.
Here is the implementation with the use of our new template loader:
public function display_projects_meta_boxes() {
 global $post,$template_data;
 $data = array();
 // Get the existing values from database
 $template_data['project_meta_nonce'] =
wp_create_nonce('wpwa-project-meta');
 $template_data['project_url'] =
esc_url(get_post_meta($post->ID, '_wpwa_project_url', true
));
 $template_data['project_duration'] =
esc_attr(get_post_meta($post->ID,
'_wpwa_project_duration', true));
 $template_data['project_download_url'] =
esc_attr(get_post_meta($post->ID,
'_wpwa_project_download_url', true));
 $template_data['project_status'] =
esc_attr(get_post_meta($post->ID, '_wpwa_project_status',
true));
 $template_data['project_status_label'] = __('Project
Status','wpwa');
 $template_data['project_duration_label'] = __('Project
Duration','wpwa');

Chapter 4

[121]

 $template_data['project_url_label'] = __('Project
URL','wpwa');
 $template_data['project_download_url_label'] =
__('Download URL','wpwa');
 ob_start();
 $this->template_parser->get_template_part(
'project','meta');
 $display = ob_get_clean();
 echo $display;
}

First we have to get the existing data from the database and assign them to
the global $template_data variable. The template will only have access to
the data specified in this variable. Most of the variables contain data required
for the project screen. However, project_meta_nonce might be new to some
of you. WordPress uses nonce value generation for securing and validating
form submissions. Therefore, we have assigned the nonce value to the data
array with a key called project_meta_nonce.

Nonce is used for security purposes to protect against unexpected or
duplicate requests that can cause undesired permanent or irreversible
changes to the website and particularly to its database. Specifically,
a nonce is a one-time token generated by a website to identify future
requests to that website. When a request is submitted, the website
verifies if a previously generated nonce expected for this particular kind
of request was sent along and decides whether the request can be safely
processed or a notice of failure should be returned. This could prevent
unwanted repeated, expired, or malicious requests from being processed.

Many developers may not be familiar with this technique, and so let's look at
a detailed explanation of the template loading process. As mentioned earlier,
the template loader will load the templates using the PHP require or include
statements. Therefore, the output of template cannot be assigned to a variable,
and hence, we need to buffer the output. We will use the ob_start function
for output buffering. The following is the definition of the ob_start function
provided by the PHP site:

"This function will turn output buffering on. While output buffer-
ing is active no output is sent from the script (other than headers),
instead the output is stored in an internal buffer."

4.	 Then, we will use the $wpwa_template_loader object assigned in the
constructor to load the template using our new template loader. Therefore,
the content of the template file will be stored in an internal buffer.

Building Blocks of Web Applications

[122]

5.	 Finally, we will execute the ob_get_clean function to get the current buffer
contents and delete the current output buffer. Now, all the contents of the
template file will be assigned to the variable and we can easily output it
with an echo statement.

By now, you will have the complete project creation screen with default fields,
taxonomies, and custom fields as shown in the following screenshot:

We have managed to create a template loader to separate logic from presentation.
However, our template loader is far from completely separating the logic from
presentation. In the next section, we will look at the functionality of our template
loader and how it differentiates from a perfect template engine.

Comparing the template loader and template
engine
We started building a template loader to solve the issue with a mixing template code
inside PHP variables. We managed to partially solve this problem. Now, the templates
are stored as separate files with HTML content and we can reuse these templates
from multiple Model classes. The Model class contains the logic and passes the data to
templates. So, there is no more HTML content inside PHP variables. However, we still
have PHP variables inside the template files to output model data. Let's see how our
template loader differentiates from a proper template engine:

•	 Many template engines compile templates down to plain optimized PHP
code and provide cached versions if necessary

•	 Handles automatic output escaping

Chapter 4

[123]

•	 Uses specific syntax for defining data inside templates so that templates can
be used without PHP

•	 Templates can be reused as blocks using inheritance

Considering the preceding points, it is obvious that our template loader only provides
basic features for separating logic from the presentation layer. We will discuss how to
integrate a proper template engine into WordPress on the official book website.

Persisting custom field data
You already know that default fields and taxonomies are automatically saved to
the database on post publish. In order to complete the project creation process, we
need to save the custom field data to the metatables. As usual, we have to update
the constructor to add the necessary actions to match the following code:

public function __construct($template_parser) {
 // Instance variable initializations
 // Other actions
 add_action('save_post', array($this,
'save_project_meta_data'));
}

WordPress doesn't offer an out-of-the-box solution for form validation as most
websites don't have complex forms. This becomes a considerable limitation in web
applications. So, let's explore the possible workarounds to reduce these limitations.
The action save_post inside the constructor will only be called once the post is saved
to the database with default field data. We can do the necessary validations and
processing for custom fields inside the function defined for the save_post action.
Unfortunately, we cannot prevent the post from saving when the form is not validated
properly. First, let's figure out the data saving process for a custom field using the
following implementation:

public function save_project_meta_data() {
 global $post;
 if (!wp_verify_nonce($_POST['project_meta_nonce'], "project-
meta")) {
 return $post->ID;
 }
 if (defined('DOING_AUTOSAVE') && DOING_AUTOSAVE) {
 return $post->ID;
 }
 if ($this->post_type == $_POST['post_type'] &&
current_user_can('edit_post', $post->ID)) {

Building Blocks of Web Applications

[124]

 //Implement the validations and data saving
 } else {
 return $post->ID;
 }
}

We begin the custom fields saving process by verifying the nonce against the value
we generated in the form using the wp_verify_nonce function. Upon unsuccessful
verification, we return the post ID to discontinue the process. Then, we have to execute
a similar validation for the autosaving process. Finally, we have to verify the post type
and check whether the current user has permission to edit posts of this type.

These validations are common to custom field saving processes of any
post type. Therefore, it's ideal to separate these checks into a common
function to be reused across multiple locations.

Once all the validations are successfully completed, we will implement the data
saving process inside the class-wpwa-model-project.php file, as shown in the
following code:

public function save_project_meta_data() {
 global $post;
 // Common validations
 if ($this->post_type == $_POST['post_type'] &&
current_user_can('edit_post', $post->ID)) {
 // Section 1
$project_url = (isset($_POST['txt_url']) ? (string) esc_url(
trim($_POST['txt_url'])) : '');
 $project_duration = (isset($_POST['txt_duration']) ?
(float) esc_attr(trim($_POST['txt_duration'])) : '');
 $project_download_url = (isset($_POST['txt_download_url']
) ? (string) esc_attr(trim($_POST['txt_download_url'])) : '');
 $project_status = (isset($_POST['sel_project_status']) ?
(string) esc_attr(trim($_POST['sel_project_status'])) : '');
 // Section 2
 if (empty($post->post_title)) {
 $this->error_message .= __('Project name cannot be
empty.
', 'wpwa');
 }
 if ('0' == $project_status) {
 $this->error_message .= __('Project status cannot be
empty.
', 'wpwa');
 }
 if (empty($project_duration)) {

Chapter 4

[125]

 $this->error_message .= __('Project duration cannot be
empty.
', 'wpwa');
 }
 // Section 3
 if (!empty($this->error_message)) {
 remove_action('save_post', array($this,
'save_project_meta_data'));
 $post->post_status = "draft";
 wp_update_post($post);
 add_action('save_post', array($this,
'save_project_meta_data'));
 $this->error_message = __('Project creation
failed.
') . $this->error_message;
 set_transient($this->post_type."_error_message_$post-
>ID", $this->error_message, 60 * 10);
 } else {
 update_post_meta($post->ID, "_wpwa_project_url",
$project_url);
 update_post_meta($post->ID, "_wpwa_project_duration",
$project_duration);
 update_post_meta($post->ID,
"_wpwa_project_download_url", $project_download_url);
 update_post_meta($post->ID, "_wpwa_project_status",
$project_status);
 }
 } else {
 return $post->ID;
 }
}

The data saving process looks quite extensive and complex compared to the code
we discussed up to now. So, let's break the code into three sections, to simplify the
explanation process:

•	 Section 1: The initial code includes the retrieval of form values through the
$_POST array to be stored in variables. Here, we have to validate and filter
the POST data to avoid harmful data. Therefore, we have used trim and
WordPress escape functions to filter the data. Finally, we will cast the data
into proper data type in order to prevent invalid data submissions.

•	 Section 2: In this section, we will implement the form validations for each
and every form field. Once validation fails, we can assign the error to the
error_message instance variable to be used across the other function of this
class. We can implement any type of complex validations in this section.

Building Blocks of Web Applications

[126]

If you have a large number of form fields with complex validations,
integrating a third-party library for validations might become a better
solution than manual time-consuming validations.

•	 Section 3: Here, we come to the tricky part of the validation process. Even
though we execute validations and generate errors in Section 2, it's not
possible to prevent the project creation. Therefore, we have chosen an
alternative and a poor way to handle the process.

First, we remove the save_post action by using the remove_action
function. This action should have the same syntax as the add_action
function used in the constructor for save_post. In web applications, it is
preferable to work with published data unless you are implementing custom
application-specific status. Hence, we will set the post to draft status upon
validation failure. Then, we can update the post to the database and add the
save_post action back. Even though the post is still saved, we won't see it
in application frontend as we are only focusing on published data. Once the
user submits the form without errors, it will revert back to the publish status.
Once a project is successfully updated, WordPress will display the error
as Post draft updated. Definitely, we need much more user-friendly errors
to suit our applications. Therefore, we have to change the existing error
messages generated by WordPress. Before this, we have to set the error to
the error_message variable and save it in the database using the
set_transient function.

Transient is a WordPress-specific technique for storing cached data in
the database for temporary usage. Since WordPress uses hooks and
actions based procedure, it's not possible to get the error message after
submission. Therefore, we temporarily save the error message on the
database to enable access from the post message handling function,
which will be explained in a moment.

When the form is successfully validated without errors, we use the
update_post_meta function on each field for saving or updating the
data to the database. Having understood the code for custom post saving
function, we can revert back to the error message handling process.

Chapter 4

[127]

Customizing custom post type messages
By default, WordPress uses messages of normal posts for the custom post
types. We need to provide our own custom messages to improve the user
experience. Customization of messages can be done with the existing filter
called post_updated_messages. First, we have to update the plugin constructor
with the following filter hook:

add_filter('post_updated_messages',
array($this,'generate_project_messages'));

This filter enables us to add new messages to the existing messages array as well
as alternating the existing messages to suit our requirements. This is another section
with duplicate codes, and hence, we will be using a common function to display
the messages for all post types. First, we have to look at the model-specific messages
function for defining necessary labels and data, as shown in the following code:

public function generate_project_messages($messages) {
 global $wpwa_custom_post_types_manager;
 $params = array();
 $params['post_type'] = $this->post_type;
 $params['singular_name'] = __('Project','wpwa');
 $params['plural_name'] = __('Projects','wpwa');
 $messages = $wpwa_custom_post_types_manager-
>generate_messages($messages,$params);
 return $messages;
}

As usual, we will define the necessary data and execute the common function.
Implementation of generate_messages differs from the commonly used code since
we are handling the form validations manually to improve the process. Let's look at
the implementation of the generate_messages function inside the WPWA_Custom_
Post_Types_Manager class:

public function generate_messages($messages, $params) {
 global $post, $post_ID;
 extract($params);
 // Get the temporary error message from database and WordPress
generated
 // error no
 $this->error_message = get_transient(
$post_type."_error_message_$post->ID");
 $message_no = isset($_GET['message']) ? (int) $_GET['message'] :
'0';
 // Remove the temporary error message from database
 delete_transient($post_type."_error_message_$post->ID");

Building Blocks of Web Applications

[128]

 if (!empty($this->error_message)) {
 //Override the default WordPress generated message
 //with our own custom message
 $messages[$post_type] = array("$message_no" => $this-
>error_message);
 } else {
 // Customize the messages list
 $messages[$post_type] = array(
 0 => '', // Unused. Messages start at index 1.
 1 => sprintf(__('%1$s updated. View
%3$s', 'wpwa'),$singular_name,
esc_url(get_permalink($post_ID)),singular_name),
 2 => __('Custom field updated.', 'wpwa'),
 3 => __('Custom field deleted.', 'wpwa'),
 4 => sprintf(__('%1$s updated.', 'wpwa'),
$singular_name),
 5 => isset($_GET['revision']) ? sprintf(__('%1$s restored
to revision from %2$s', 'wpwa'),$singular_name,
wp_post_revision_title((int) $_GET['revision'], false)) : false,
 6 => sprintf(__('%1$s published. View
%3$s', 'wpwa'),$singular_name,
esc_url(get_permalink($post_ID)),$singular_name),
 7 => sprintf(__('%1$s saved.', 'wpwa'),$singular_name),
 8 => sprintf(__('%1$s submitted. <a target="_blank"
href="%2$s">Preview %3$s', 'wpwa'), $singular_name,
esc_url(add_query_arg('preview', 'true',
get_permalink($post_ID))), $singular_name),
 9 => sprintf(__('%1$s scheduled for: %2$s.
Preview %4$s', 'wpwa'),
 $singular_name,
 date_i18n(__('M j, Y @
G:i'),strtotime($post->post_date)),
 esc_url(get_permalink($post_ID)),
 $singular_name),
 10 => sprintf(__('%1$s draft updated. Preview %3$s', 'wpwa'),
$singular_name, esc_url(add_query_arg('preview', 'true',
get_permalink($post_ID))), $singular_name),
);
 }
return $messages;
}

Chapter 4

[129]

WordPress uses the messages array with ten keys to cater all the messages generated
in the custom post screens. Once the Publish button is clicked, we can validate the
form and save the error messages as transients. However, WordPress will execute
the whole process to generate the common error or message without considering
our validations. You can find a parameter in the URL with message as the key
and specific number as the value.

In order to show the validation errors, we need to intercept the WordPress
generated message and change it according to our preference.

First, we will get the error message using the get_transient function and the
default message number using the $_GET array. After assigning the value to a
variable, we will remove the transient using the delete_transient function
to prevent unnecessary database load.

Next, we will check whether a specific error message exists in the database using
the get_transient function. In case errors are generated, we will update the
existing messages array and set our own message to replace the WordPress
generated message number. In situations where we don't have form errors, we
can use the complete array shown in the else part of the preceding function to
include all the custom messages we need for specific custom post types.

Now, we have completed the basic foundation for implementing our projects post
type. Other post type creations are similar in nature, and so, I will not make things
boring by explaining the implementation of each post type. You can use the source
code of this chapter to play with the implementations of other post types and I
highly recommend that you change the code to understand the various aspects
of custom post types.

Introducing custom post type
relationships
In general, we use relational databases in developing applications, where our models
will be matched to separate database tables. Each model will be related to one or
more other modules. However, in WordPress, we have all the custom post types
stored in the posts table. Hence, it's not possible to create relationships between
different post types with the existing functionality.

Building Blocks of Web Applications

[130]

WordPress developers around the world have been conducting
discussions to get the post relationship capability built into the
core. Even though the response from WordPress core development
seems positive, we still don't have it on the core version as of 4.1.
You can have a look at this interesting discussion at http://make.
wordpress.org/core/2013/07/28/potential-roadmap-for-
taxonomy-meta-and-post-relationships/.

Since this is one of the most important aspects of web application development, we
have no choice but to look for custom solutions built by external developers. There
are a few competitive plugins among the Open Source community for providing post
relationship functionality. The Posts 2 Posts plugin developed by Cristian Burca and
Alex Ciobica seems to be the plugin of choice for many developers.

In our portfolio application, we need to associate projects to services and vice versa.
So, let's see how we can use this cool plugin to implement the necessary features. First,
grab a copy of the plugin from http://wordpress.org/plugins/posts-to-posts/
and get it activated in your WordPress installation. This plugin doesn't offer a GUI for
defining post relationships, and so we will need to implement some source code.

Let's get started by updating our WPWA_Model_Project class constructor with the
following code:

add_action('p2p_init', array($this,
'join_projects_to_services'));

Here, we have the p2p_init action, which comes built-in with the Posts 2 Posts
plugin. All the post relationship definitions and configurations go inside the join_
projects_to_services function, as illustrated in the following code:

public function join_projects_to_services(){
 p2p_register_connection_type(array(
 'name' => 'projects_to_services',
 'from' => $this->post_type,
 'to' => 'wpwa_service'
));
}

The Posts 2 Posts plugin provides a function called p2p_register_connection_
type for defining post type relationships. The first parameter called name defines
a unique identifier for the relationship. Then we can define two post types for the
connection using from and to parameters. This will enable the services selection
section for projects and project the selection section for services. The following
screenshot illustrates the project screen with the Connected Services box:

http://make.wordpress.org/core/2013/07/28/potential-roadmap-for-taxonomy-meta-and-post-relationships/
http://make.wordpress.org/core/2013/07/28/potential-roadmap-for-taxonomy-meta-and-post-relationships/
http://make.wordpress.org/core/2013/07/28/potential-roadmap-for-taxonomy-meta-and-post-relationships/
http://wordpress.org/plugins/posts-to-posts/

Chapter 4

[131]

First, you have to create services from the Services item on the left menu. Then,
you can add any number of services to projects by clicking on the services name.
Once saved, you will have a screen similar to the following one with the associated
services of a given project:

This is the most basic implementation of post relationships with this plugin.

If you are curious to learn about advanced usages, you can have
a look at the plugin documentation at https://github.com/
scribu/wp-posts-to-posts/wiki. In the following chapters,
we will learn how to retrieve and work with the related posts.

We have set up the foundation of our application backend throughout the chapter.
Now, users with the role of a developer can log into the system and create portfolio
data for projects, services, books, and articles. Throughout the previous sections,
we had to work with complicated WordPress functions related to custom post types
and taxonomies. In complex applications, we need better quality in the code to avoid
duplicate code scattering around hundreds of files.

https://github.com/scribu/wp-posts-to-posts/wiki
https://github.com/scribu/wp-posts-to-posts/wiki

Building Blocks of Web Applications

[132]

As a solution, we can develop our own custom post type specific library to simplify
the implementations. Ideally, such a library should abstract the custom post type
functions into a common interface and let users choose to define their configurations
without forcing them to do so. Implementing such a library is a time-consuming
and complex task, which is beyond the scope of this book. Therefore, I suggest that
you look for existing open source libraries or take time to plan your own library. An
alternative solution will be to take advantage of popular existing frameworks such
as Pods, which will be introduced shortly.

Pods framework for custom content types
Up until this point, we explored the advanced usage of WordPress custom post types
by considering the perspective of web applications. Although custom post types
provide immense power and flexibility for web applications, manual implementation
is a time-consuming task with an awful amount of duplicate and complex code. One
of the major reasons for using WordPress for web development is its ability to build
things rapidly. Therefore, we need to look for quicker and more flexible solutions
beyond manual custom post implementations.

Pods is a custom content type management framework, which has been becoming
popular among developers in recent years. Most of the tedious functionalities are
baked into the framework, while providing us with a simpler interface for managing
custom content types. Apart from simplifying the process, Pods does provide
an extensive list of functionalities that are not available with default WordPress
administrative screens.

Let's consider some of the key features of the Pods framework, compared to manual
implementation of custom post types:

•	 Create, extend, and manage custom types and fields, including custom post
types, taxonomies, comments, and users

•	 Use default tables or custom tables for content types
•	 List of built-in form fields and components with necessary validations
•	 Manage form field-level permissions
•	 Create settings pages for plugins and themes

Basically, this framework provides out-of-the-box functionalities for common tasks
in WordPress application development without much hassle. For example, think of
how much effort you need to add a custom field for your comment form. With the
Pods framework, you will be able to implement such tasks within a few clicks under
10 minutes. Pods does have an active community and hence can be recommended
for rapid application development with WordPress.

Chapter 4

[133]

Let's get our hands dirty by implementing something practical with this
awesome framework.

1.	 First, you have to grab a copy of this plugin from http://pods.io and
get it installed on your WordPress folder.

2.	 Once activated, you should see the Pods Admin menu, as shown in the
following screen:

3.	 Earlier, we implemented the projects post type by manually implementing
custom post type code. Here, we will see how the Pods framework simplifies
the same process. Keep in mind that we will create a basic implementation
to show the power of Pods, instead of implementing the whole thing we
have already completed.

4.	 Click on the Create a New Content Type section, to add a new content type
and you will get a screen similar to the following screenshot:

http://pods.io

Building Blocks of Web Applications

[134]

5.	 In the content type creation screen, you can select a custom post type and
add the label as Product, since it's not wise to redefine projects.

6.	 Then, move on to the next step to get the screen shown in the
following screenshot:

Surprisingly, we have the custom post ready in three clicks.

7.	 The next task is to add necessary custom fields and associate them with
products post type. Remember the tasks we did in our manual custom field
creation process. We had to create HTML for fields, use template engines,
implement validations, and so on.

8.	 The Pods framework abstracts all these tasks behind the framework
allowing us to focus on application logic. So, click the Add Field button
to create the first custom field.

Chapter 4

[135]

All the necessary configurations are divided into three tabs at the top of
the screen.

9.	 You can create the field by the defining necessary labels, validations, and
access restrictions. Pods provides over fifteen built-in field types, including
data pickers, color pickers, file fields, and text editors.

10.	 Once all the fields are created, click on the Save Pod button.
11.	 Now, navigate to the product creation screen and you will find all the

custom fields created with Pods, as shown in the following screen:

We were able to create a complete custom post type with the necessary fields
within 10 minutes. This is one of the most basic usages of the Pods framework. You
can find more advanced and different usages on the official site at
http://podsframework.org/.

Should you choose Pods for web
development?
One can definitely go with the Pods framework for applications that requires
a rapid development process or low budgets. It's maturing into an excellent
framework with the support of the open source community. The Pods framework
offers more advantages and fewer limitations compared to similar competitive
plugins and frameworks.

http://podsframework.org/

Building Blocks of Web Applications

[136]

The ability to choose between existing tables and custom tables can become quite
handy in complex web applications. We have to enable the Advanced Content
Types component in order to make use of custom tables. It's recommended that
you use existing tables in every possible scenario. However, there can be scenarios
where custom tables can become a better option to default tables.

•	 Extensive data load: In applications where you have a large number of
records with a number of custom post types, it's wise to separate post
types into custom tables for better performance.

•	 More control: Using existing tables will force us to stick with the
features provided in WordPress by default. In situations where you
need complete control over your data, it's better to choose custom tables
instead of existing ones.

In short, you should be using this framework or similar ones for reducing repetitive
work and focus on application-specific tasks. If you choose not to go with such a
framework, you should definitely have your own common library for interacting
with custom content type-related functions, in order to maintain the quality of code
and build maintainable systems.

There is a popular phrase, which states that " with great power comes great
responsibility". We have used some very powerful plugins throughout this chapter
and will be continuing to do so in the remaining chapters. As developers, we have
a huge responsibility in working with these plugins. It can be dangerous to rely on
third-party plugins to build the core of your application. The following are some
of the risks of using third-party plugins:

•	 Plugins can break due to WordPress version upgrades
•	 Developers might discontinue the development of a plugin
•	 Plugins might not be updated regularly

That said, all plugins used throughout this book are highly popular and stable. So,
it's important to know how these plugins work in order to customize them at later
stages if needed. Also, it's better not to rely heavily on third-party plugins and keep
alternatives whenever possible.

Time to practice
In this chapter, we discussed the advanced usages of custom post types to suit web
application functionalities. Now, I would recommend that you try out the following
tasks in order to evaluate the things you learned in this chapter:

Chapter 4

[137]

•	 Assume that we have to provide access to projects and services for developers,
while blocking the access to Articles and Books. How can we change the
existing implementation to provide the preceding features?

•	 In the post relationships section, we enabled relationships using the
join_projects_to_services function. With the use of this function,
we can generate a new problem considering the possibility of extending.
Find the issue and try to solve it by yourself.

•	 We enabled relationships between custom post types. Research for the
possibilities of including meta data for relationships.

Summary
In this chapter, we tackled the custom post types to learn the advanced usages
within web applications. Generally, custom posts act as the core building blocks
of any type of complex web application. We went through the basic code of custom
post-related functionality, while developing the initial projects post type of the
portfolio management application.

We were able to explore advanced techniques, such as autoloaders, modularizing
custom post types, and template engines to cater to common web application
requirements. Also, we had to go through a tough process for validating form
data due to the limited support offered by WordPress.

We learned the importance of relating custom post types using the Posts 2 Posts
plugin. Finally, we explored the possibilities of improving the custom post type
management process with the use of an amazing framework called Pods.

In the next chapter, we will see how to use the WordPress plugin beyond the
conventional use by implementing pluggable and extendable plugins. Until
then, get your hands dirty by playing with custom post types plugins.

[139]

Developing Pluggable
Modules

Plugins are the heart of WordPress, which makes web applications possible.
WordPress plugins are used to extend its core features as independent modules.
As a developer, it's important to understand the architecture of WordPress plugins
and design patterns in order to be successful in developing large-scale applications.

Anyone who has basic programming knowledge can create plugins to meet
application-specific requirements. However, it takes considerable effort to develop
plugins that are reusable across a wide range of projects. In this chapter, we will
build a few plugins to demonstrate the importance of reusability and extensibility.
WordPress developers who don't have good experience in web application
development shouldn't be skipping this chapter as plugins are the most important
part of web application development.

I will assume that you have sound knowledge of basic plugin development using
existing WordPress features in order to be comfortable understanding the
concepts discussed in this chapter.

In this chapter, we will cover the following topics:

•	 A brief introduction to WordPress plugins
•	 WordPress plugins for web development
•	 Understanding different types of plugins for web development
•	 Creating a reusable template loader with plugins
•	 Creating an extensible file uploading plugin

Developing Pluggable Modules

[140]

•	 Integrating a media uploader to custom fields
•	 Exploring the use of pluggable functions
•	 Time to practice

Let's get started.

A brief introduction to WordPress plugins
WordPress offers one of the most flexible plugin architectures, alongside other similar
frameworks such as Joomla and Drupal. The existence of over 35,000 plugins in the
WordPress plugin directory proves the vital role of plugins. In typical websites, we
create simple plugins to tweak the theme's functionalities or application-specific tasks.
The complexity of web applications forces us to modularize the functionalities to
enhance their maintainability. Most applications developer will be familiar with the
concept of the open-closed principle.

The open-closed principle states that the design and writing of the
code should be done in a way that new functionality should be added
with minimum changes in the existing code. The design of the code
should be done in a way to allow the addition of new functionalities
as new classes, keeping as much of the existing code unchanged as
possible. You can find more information at http://www.oodesign.
com/open-close-principle.html.

We can easily achieve the open-closed principle with WordPress plugins. Plugins
can be developed to open for new features through actions, filters, and pluggable
functions while closed for modifications. Additional features will be implemented
using separate plugins, which can be activated or deactivated anytime without
breaking the existing code.

Understanding the WordPress plugin
architecture
WordPress is not the most well-documented framework from the perspective of
architectural diagrams and processes. Hence, you won't find detailed explanations
about how plugins actually work behind the scenes. Plugins need to have a main file
that includes the block comment in the predefined format, in order for WordPress
to identify it as a plugin. The activation and deactivation of plugins can be done
anytime by using the Plugins section of the admin area. WordPress uses a metafield
called active_plugins in the wp_options table to keep the list of existing active
plugins. The following screenshot previews the contents of the active_plugins
field using the phpMyAdmin database browser:

http://www.oodesign.com/open-close-principle.html
http://www.oodesign.com/open-close-principle.html

Chapter 5

[141]

In the initial execution process, WordPress loads each and every active plugin
through its main file. From there onwards, action hooks and filters will be used to
initialize the plugin's functions. We can use built-in hooks as well as custom hooks
inside plugins. As a WordPress plugin developer, it's important to understand
the action hooks run during a typical request to avoid conflicts and improve the
performance and quality of the plugins. You can visit http://codex.wordpress.
org/Plugin_API/Action_Reference to understand the action execution procedure
and see how plugins fit into the execution process.

WordPress plugins for web development
By default, WordPress offers blogging and CMS functionalities to cater to simple
applications. In real web applications, we need to develop most things using the
existing features provided by WordPress. In short, all those web application-related
features will be implemented using plugins. In this book, we have created a main
plugin for portfolio management application. This plugin was intended to provide
project specific tasks in our application and is hence not reusable in different projects.
We need more and more reusable plugins and libraries as developers who are
willing to take long journeys in web application development with WordPress.
In this section, we will discuss the various types of such plugins:

•	 Reusable libraries
•	 Extensible plugins
•	 Pluggable plugins

http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference

Developing Pluggable Modules

[142]

Keep in mind that plugins are categorized into the previously
mentioned types conceptually, for the sake of understanding
various features of plugin development. Don't try to search using
the preceding categories as they are not defined anywhere.

Creating reusable libraries with plugins
These days web developers will rarely go without frameworks and libraries in
application development. The main purpose of choosing such frameworks is to
reduce the amount of time required for common tasks in application development.
In WordPress, we do need similar libraries to abstract the common functionalities
and keep our focus on the core business logic of the application.

In Chapter 4, Building Blocks of Web Applications, we created a template loader
to separate the main templates from its core logic. Loading templates is a
common functionality for most WordPress plugins, and hence template loading is a
"must-use" technique. Our template loader was created inside the WPWA Portofolio
Manager plugin to manage templates for a user account and custom post type-related
functionalities. However, it's not reusable across many plugins as it's located inside
our main application plugin.

Usually, advanced WordPress applications are built using a combination of new and
existing plugins to make different features independent from one another. Template
loaders also fall into the category of independent and reusable modules, and hence,
we need to convert our template loader to a reusable library using a plugin. In the
following sections, we will discuss how to make it reusable and also some tricks to
handle plugin dependencies.

Planning the template loader plugin
The main purpose of building this independent plugin is to separate template
loader functionalities and reuse it across many WordPress applications or plugins.
However, there are other things that need to be considered when planning the
plugin. Let's list down the main steps of building a template loader plugin:

1.	 Build a template loader as an independent standalone plugin.
2.	 Allow the reuse of the template loader from multiple plugins without

modifying code.
3.	 Load the dependent plugins without errors.
4.	 Add extendable features to template loaders.

Chapter 5

[143]

With these requirements in mind, let's build the template loader plugin. As usual,
create a new folder called wpwa-template-loader inside the wp-content/plugins
folder. Create the main plugin file called wpwa-template-loader.php with the
following plugin definition:

<?php
/*
 Plugin Name: WPWA Template Loader
 Plugin URI:
 Description: Reusable template loader for WordPress plugins.
 Author: Rakhitha Nimesh
 Version: 1.0
 Author URI: http://www.innovativephp.com/
*/
define('wpwa_tmpl_url', plugin_dir_url(__FILE__));
define('wpwa_tmpl_path', plugin_dir_path(__FILE__));
?>

We already have a template loader inside the WPWA Portfolio Manager plugin.
So, we will move the files into our new plugin with slight modifications. Consider
the following code for the implementation of a template loader class:

class WPWA_Template_Loader{
 public $plugin_path;
 public function set_plugin_path($path){
 $this->plugin_path = $path;
 }
 public function get_template_part($slug, $name = null, $load =
true) {
 do_action('wpwa_get_template_part_' . $slug, $slug, $name);
 $templates = array();
 if (isset($name))
 $templates[] = $slug . '-' . $name . '-template.php';
 $templates[] = $slug . '-template.php';
 $templates = apply_filters('wpwa_get_template_part',
$templates, $slug, $name);
 return $this->locate_template($templates, $load, false);
 }
 public function locate_template($template_names, $load = false,
$require_once = true) {
 $located = false;
 foreach ((array) $template_names as $template_name) {
 if (empty($template_name))
 continue;

Developing Pluggable Modules

[144]

 $template_name = ltrim($template_name, '/');
 if (file_exists(trailingslashit($this->plugin_path) .
'templates/' . $template_name)) {
 $located = trailingslashit($this->plugin_path) .
'templates/' . $template_name;
 break;
 }
 elseif (file_exists(trailingslashit($this->plugin_path)
. 'admin/templates/' . $template_name)) {
 $located = trailingslashit($this->plugin_path) .
'admin/templates/' . $template_name;
 break;
 }
 }
 if ((true == $load) && ! empty($located))
 load_template($located, $require_once);
 return $located;
 }
}
$wpwa_template_loader = new WPWA_Template_Loader();

You might have noticed that we introduced a new class variable called $plugin_path
and a new function called set_plugin_path. In the previous chapter, we used the
template loader within the plugin, and hence, we were able to hardcode the path to
the plugins folder to locate templates. Since we are planning to reuse it across
multiple plugins, the path to templates should be specified dynamically. We can pass
the plugin path dynamically using the set_plugin_path function and search the
templates inside individual plugins. Now, it's time to use a reusable template loader
inside our main plugin.

Using the template loader plugin
First, we have to remove all the template loader-specific functionalities from our
main WPWA Portfolio Manager plugin. Let's start by executing the following tasks:

1.	 Remove the class-wpwa-template-loader.php file from the main plugin.
2.	 Remove the require_once statement from the class-wpwa-portfolio-

manager.php file.

Once these two tasks are completed, we are ready to use the template loader.
You might have noticed that the only difference between the previous and current
implementation of the template loader is the addition of a dynamic plugin path. So,
the only change required in the main plugin is the template loader initialization.

Chapter 5

[145]

We initialized the template loader inside the constructor of each model class using the
following code:

public function __construct() {
 global $wpwa_template_loader;
 $this->template_parser = $wpwa_template_loader;
}

We can use the global $wpwa_template_loader object and assign it to the class
variable called template_parser to load the templates. Now, we need to pass
the plugin path of our main plugin as a parameter to set up the template loader
locations. Defining the plugin path needs to be done only once, and hence, it's not
ideal to implement it inside the constructor of each model. So, we will use a common
initialization of the template loader inside the constructor of the WPWA_Custom_Post_
Types_Manager class, as shown in the following code:

class WPWA_Custom_Post_Types_Manager {
 public function __construct() {
 global $wpwa_template_loader;
 $wpwa_template_loader->set_plugin_path(wpwa_path);
 }
}

We have set the plugin path in only one location and all the models will have access
to the template loader with new settings, as we are using the global object. After
these modifications, our main plugin should function as usual with the new reusable
template loader. You can use the same technique to access a template loader from
any other plugins.

Handling plugin dependencies
In the previous section, I mentioned that the main plugin should work as usual.
However, it won't work as expected and you will get an error with a blank screen,
as shown in the following screenshot:

You have to enable WP_DEBUG to see the errors. This can be done by
setting WP_DEBUG to true in the wp-config.php file.

Developing Pluggable Modules

[146]

If you have a sound knowledge of WordPress development, you should have an
idea about the cause of this error. I will explain the issue in detail and the solution
for those who are not aware of the reason for this error.

Basically, WordPress loads the plugin in a specific order. Dependent plugins should
be loaded before the main plugin to prevent any dependency issues. In this scenario,
we didn't handle the dependency between the WPWA Portfolio Manager plugin and
the WPWA Template Loader plugin.

If you check the value active_plugins option, you might notice that wpwa-
portfolio-manager/class-wpwa-portfolio-manager.php is stored before the
wpwa-template-loader/class-wpwa-template-loader.php file. Therefore, the
template loader object is not available when the features of WPWA Portfolio Manager
are executed. We need a solution to delay the loading of the main plugin, until the
dependent plugins are fully loaded. Let's update class-wpwa-portfolio-manager.
php to define the necessary dependencies:

/* Validating existence of required plugins */
add_action('plugins_loaded', 'wpwa_plugin_init');
function wpwa_plugin_init(){
 if(!class_exists('WPWA_Template_Loader')){
 add_action('admin_notices', 'wpwa_plugin_admin_notice');
 }else{
 global $wpwa_custom_post_types_manager;
 $wpwa_custom_post_types_manager = new
WPWA_Custom_Post_Types_Manager();
 }
}
function wpwa_plugin_admin_notice() {
 echo '<div class="error"><p>WPWA Portfolio
Manager requires WPWA Template Loader
plugin to function properly.</p></div>';
}

First, we will use the plugins_loaded action to call a custom function called
wpwa_plugin_init. This function is executed after all the plugins are loaded, and
hence, all the plugin files are available for execution. The portfolio manager plugin
is dependent on a template loader plugin, and hence, we check the existence of
the WPWA_Template_Loader class. If the template loader plugin is activated and
fully loaded, we initialize the WPWA_Custom_Post_Types_Manager class for the
functionalities of our models. The initialization code on class-wpwa-custom-post-
types-manager.php needs to be removed as well.

Chapter 5

[147]

If the template loader plugin is not activated, we have to prevent the execution of
dependent functionalities and inform the admin about the reason. Therefore, we
add a notice to the admin section mentioning that you need to activate the template
loader plugin before using our main plugin. The following screen shows the message
displayed to the admin when the template loader plugin is not activated:

We completed our task on creating a reusable plugin using a template loader and
identified how to solve the dependencies between plugins. We checked the existence
of a class to validate whether the dependent plugin is active. There are a few other
techniques for checking the active/inactive status of dependent plugins listed
as follows:

•	 Functions: The existence of a function can be checked similar to the class
existence check, as shown in the following code. However, we can only
check procedural functions with this technique, and hence, this technique
can't be used for functions inside classes (methods). Therefore, it's not
possible to apply this technique to the template loader plugin:
if(! function_exists('function name')) {
 // Plugin is inactive
}

Developing Pluggable Modules

[148]

•	 Constants: We can also check the existence of a constant within the
dependent plugin. Since we do have constants, this technique can be used
for our template loader. We have to use globally available constants such as
the plugin version, plugin path, and so on for this validation, as shown in
following code:
if (! defined(' wpwa_tmpl_path ')) {	
 // Plugin is inactive
}

•	 Directly checking the plugin status: WordPress provides a function for
providing the active/inactive status of a plugin. However, we have to pass
the plugin folder and filename, and hence, it's not a reliable solution, unless
you are confident that plugins or filenames won't change. The following code
shows how to directly check the status of a plugin:

if (is_plugin_active(' wpwa-template-loader/ wpwa-
template-loader.php')) {
 // Plugin is active
}

Now, we have completed the development of a reusable plugin. Next, we have
to make the new plugin extensible using actions and filters. The following section
explains the process of creating extendable plugins, and hence, we will be completing
the template loader functionality in the next section.

Extensible plugins
In the previous section, we created a reusable plugin for template loading. However,
the plugin doesn't allow us to extend the core features, other than providing dynamic
parameter passing. Here, we will be exploring the possibility of creating plugins that
other developers can extend using their own plugins to change the existing behavior
or add new behavior. WordPress uses its actions and filters techniques for extending
the plugins. We can make plugins extendable using two ways:

•	 Extend plugins with WordPress core actions and filters
•	 Extend plugins with custom actions and filters

In the following section, we will look at both these techniques using different
plugin implementations.

Chapter 5

[149]

Extend plugins with WordPress core actions and
filters
In this section, we will look at actions and filters provided by the WordPress core
framework. So, we will create a reusable and extensible plugin for automating the
file upload process for custom metafields. Let's get started.

Planning a file uploader for portfolio application
WordPress offers a built-in media uploader for handling all the file uploading tasks
within applications. The simplicity and adaptability of a media uploader is one of
the keys to its success in CMS development. Web applications require the heavy
usage of custom metafields and there can be a number of file fields within a single
screen. Integrating a media uploader to each and every field can become a tedious
and unnecessary task. So, we need a method to automatically integrate file fields with
the media uploader. In Chapter 4, Building Blocks of Web Applications, we created all
the custom post types and fields for the portfolio management application. However,
we skipped the screen uploading process for projects. Here, we will complete the
implementation while building an extensible plugin. So, let's begin with the planning:

•	 All the metafile fields should be automatically converted to buttons, which
opens the media uploader on a click event

•	 A dynamic container needs to be created to gather multiple images within
a single field

•	 Plugin developers should be able to extend the plugin by customizing the
media uploader interface to limit allowed file types

Before we begin the implementation, it's necessary to modify the WPWA Portfolio
Manager plugin created in the previous chapter, to include the file field for uploading
project screenshots. Open the main plugin and navigate to the templates folder.
Include the following code at the end of the project-meta-template.php file:

<tr>
 <th style=''><label for='<?php echo $project_screens_label;
?>'><?php echo $project_screens_label; ?></label></th>
 <td>
 <input class='widefat wpwa_multi_file' type="file"
id="project_screens" />
 </td>
</tr>

Developing Pluggable Modules

[150]

Here, we have added a file field for uploading project screens using the default
HTML tags used throughout the template files. A CSS class called wpwa_multi_file
is used as the identifier for the file field conversion. Once the file uploading plugin
is implemented, this file field will be converted into a button and a container for
keeping the uploaded images.

Creating the extensible file uploader plugin
As usual, we begin the implementation by creating a new plugin. This time we
will name it WPWA File Uploader. Create a folder called wpwa-file-uploader
inside the wp-content/plugins folder and implement the main plugin file as
class-wpwa-file-uploader.php:

<?php
/*
 Plugin Name: WPWA File Uploader
 Plugin URI:
 Description: Automatically convert file fields into multi file
uploaders.
 Version: 1.0
 Author: Rakhitha Nimesh
 Author URI: http://www.innovativephp.com/
 License: GPLv2 or later
 */
class WPWA_File_Uploader {
 public function __construct() {
 }
}
$file_uploader = new WPWA_File_Uploader();

According to the plan, the initial task is to convert the file fields into a button and
a container that works with the media uploader. Conversions need to be done from
the client side through jQuery or plain JavaScript. Therefore, we have to include the
necessary scripts in the file uploader plugin, as illustrated in the following code:

class WPWA_File_Uploader {
 public function __construct() {
 add_action('admin_enqueue_scripts', array($this,
'include_scripts'));
 }
 public function include_scripts() {
 wp_enqueue_script('jquery');
 if (function_exists('wp_enqueue_media')) {
 wp_enqueue_media();
 } else {

Chapter 5

[151]

 wp_enqueue_style('thickbox');
 wp_enqueue_script('media-upload');
 wp_enqueue_script('thickbox');
 }
 wp_register_script('wpwa_file_upload', plugins_url('js/wpwa-
file-uploader.js', __FILE__), array("jquery"));
 wp_enqueue_script('wpwa_file_upload');
 }
}

The admin_enqueue_scripts action is used for the script inclusion since we
only need the plugin to work on the admin side. Based on your requirements, the
wp_enque_scripts action can also be used to enable the conversion in the frontend.

Create a new folder called js inside the wpwa-file-uploader folder and put in an
empty JavaScript file called wpwa-file-uploader.js. First, we include jQuery into
the plugin since the media uploader and the wpwa-file-uploader.js file depend
on jQuery. The latest version of WordPress uses a modified media uploader, which is
simple and interactive compared to the IFRAME-based uploader provided in earlier
releases. So, we have to check for the availability of the wp_enqueue_media function.
Then, we can load the necessary scripts and styles based on the available WordPress
version. Finally, we register the file_uploader.js file as wpwa_file_upload for
defining the custom code required for the plugin.

Converting file fields with jQuery
Now, we can begin the conversion of file fields into the media uploader-integrated
button and image container. While creating the file field for project screens, we
assigned a special CSS class called wpwa_multi_file. This class is used to identify
the file fields that need to be converted. Let's get started with the implementation
inside the wpwa-file-uploader.js file:

$jq =jQuery.noConflict();
$jq(document).ready(function(){
 $jq(".wpwa_multi_file").each(function(){
 var fieldId = $jq(this).attr("id");
 $jq(this).after("<div id='wpwa_upload_panel_"+ fieldId +"'
></div>");
 $jq("#wpwa_upload_panel_"+ fieldId).html("<input
type='button' value='Add Files' class='wpwa_upload_btn' id='"+
fieldId +"' />");
 $jq("#wpwa_upload_panel_"+ fieldId).append("<div
class='wpwa_preview_box' id='"+ fieldId +"_panel' ></div>");
 $jq(this).remove();
 });
});

Developing Pluggable Modules

[152]

We begin the implementation by introducing the jQuery no conflict variable. In jQuery,
each loop is used to traverse through all the file fields with the CSS class of wpwa_
multi_file. Then, we assign the ID of the file field into the fieldId variable. Then,
we insert a <div> container after the file field to keep the button and image container.
Next, we assign the button to the main container with a class called wpwa_upload_btn.
Then, we can append the image container with a class called wpwa_preview_box. All
the containers are given dynamic ID with a static prefix to be used for media uploader
handling. Finally, we remove the file field using a jQuery remove method.

Make sure to define the wpwa_multi_file class on file fields to avoid
potential conflicts. Otherwise, you need to check the type of the field for
each element with the wpwa_multi_file class.

Now, all the file fields with the CSS class wpwa_multi_file will be converted into a
dynamic button and image container. The image container will not be visible until
the images are uploaded. Hence, your project screens field will look something
similar to the following screenshot:

Having completed the field conversion, we can now move on to the media uploader
integration process.

Integrating the media uploader to buttons
WordPress provides a quick and flexible way of integrating media uploader to any
type of field. The implementation can vary based on the WordPress version. We are
using version 4.2.2 throughout the book, and hence, we can use the following code
snippet for integration:

$jq(".wpwa_upload_btn").click(function(){
 var uploadObject = $jq(this);

Chapter 5

[153]

 var sendAttachmentMeta = wp.media.editor.send.attachment;
 wp.media.editor.send.attachment = function(props, attachment)
{
 $jq(uploadObject).parent().find(".wpwa_preview_box").append("<img
class='wpwa_img_prev' style='with:75px;height:75px' src='"+
attachment.url +"' />");
 $jq(uploadObject).parent().find(".wpwa_preview_box").append("<inpu
t class='wpwa_img_prev_hidden' type='hidden' name='h_"+
$jq(uploadObject).attr("id")
+"[]' value='"+ attachment.url +"' />");
 wp.media.editor.send.attachment = sendAttachmentMeta;
 }
 wp.media.editor.open();
 return false;
});

Earlier in the process, we used a class called wpwa_upload_btn for every button. Here,
we are using the click event of those buttons to load the media uploader. We start
the process by assigning the wp.media.editor.send.attachment function into a
variable. This function takes two parameters called props and attachment by default.
The path of the uploaded file can be retrieved using the attachment.url property.
Then, we assign the image preview using the URL and assign the URL to a hidden
field to be used in the saving process. Finally, we call the wp.media.editor.open
function to load the media uploader on the click of a button. Once completed, click on
the project screen button and you will get the modern media uploader as illustrated in
the following screenshot:

Developing Pluggable Modules

[154]

Upload an image to the project screens field and click the Insert into page button
on the bottom of the page to assign a preview of the image inside the dynamic
image container, under the upload button of the project screens field. You will
have something similar to the following screenshot:

The custom file uploader section created in the preceding sections is fully functional
at this stage. We can add any number of images one by one using the Upload
button. Flexibility adds more value to any type of plugin. Even though we can insert
multiple images at the moment, we don't have a method to remove them. Let's create
some simple jQuery code to remove the assigned images on double-click:

$jq("body").on("dblclick", ".wpwa_img_prev" , function() {
 $jq(this).parent().find(".wpwa_img_prev_hidden").remove();
 $jq(this).remove();
});

In jQuery, dynamically created elements can't be assigned directly to events. We
need to use the on function to attach events to dynamically created elements. Here,
we have specified the on function on the body tag. You can choose any related
element according to your preference. We have assigned the dblclick event to the
wpwa_img_prev class specified inside dynamically created images. Then, we remove
the img tag and the related hidden field from the preview box. Try uploading a few
images and double-click the image in the preview area to see the effect in action.

Chapter 5

[155]

Extending the file uploader plugin
Remember that we created this plugin to illustrate the extending capabilities of
WordPress plugins for web development. So far, we have completed the core
functionality of this plugin to upload images through custom metafields. Now,
we have to think about the extensible features and hook points within the plugin.
Let's think about the possible features required for such plugins:

•	 Customize the allowed types of images
•	 Customize the media uploader features
•	 Validate image sizes and dimensions

These are few of the most important enhancements and there can be more depending
on your project. In this section, we will look at the first requirement for creating
extending capabilities.

Customize the allowed types of images
Usually, we do allow the .jpg, .jpeg, .png, and .gif types in image uploads.
However, there can be occasions where we need more control over the allowed
file types. So, let's see how we can change the allowed file types within WordPress.
Add the following line of code to the constructor of the file uploader plugin:

add_filter('upload_mimes', array($this, 'filter_mime_types'));

Now, let's consider the implementation of the filter_mime_types function for the
image restricting process:

function filter_mime_types($mimes) {
 $mimes = array(
 'jpg|jpeg|jpe' => 'image/jpeg',
);
 return $mimes;
}

WordPress passes existing mime types as the parameter to this function. Here, we
have modified the mimes array to restrict the image types to JPG. This means only
.jpg files will be allowed for each and every post type within WordPress. Ideally,
this filtering should be extensible to allow different file types based on application
requirements. Usually, WordPress developers tend to redefine the upload_mimes
filter with another function to cater to such requirements. It's not the best practice to
redefine the same filter or action in multiple locations, making it almost impossible
to identify the order of execution, unless specific priority values are given.

Developing Pluggable Modules

[156]

Those who are not familiar with priority parameters for actions
and filters can take a look at the official documentation at
http://codex.wordpress.org/Function_Reference/
add_filter.

A better solution is to define the filter in a specific place and allow developers to
extend through custom actions. Let's consider the modified implementation of the
preceding code with the usage of actions:

function filter_mime_types($mimes) {
 $mimes = array(
 'jpg|jpeg|jpe' => 'image/jpeg', 	
);
 do_action_ref_array('wpwa_custom_mimes', array(&$mimes));
 return $mimes;
}

In the modified version, we have a WordPress action called wpwa_custom_mimes.
With the use of action, any developer can extend the function to include their own
requirements. In this code, the mimes array is passed as a reference variable to the
action. Therefore, the original mimes array can be modified through the extended
versions. WordPress uses global variables for most functionalities. Experienced web
developers prefer not to use global variables. Hence, I have used reference passing
instead of using global variables.

The functionality of the WordPress do_action and do_action_
ref_array functions is similar. Usually, most developers will use the
do_action function. Here, we have used do_action_ref_array
since reference variable passing is not supported by do_action.

Now, let's extend the functionality using custom functions on the specified action
hook, as shown in the following code:

function wpwa_custom_mimes(&$mimes) {
 $mimes['png'] = 'image/png';
}
add_action("wpwa_custom_mimes", "wpwa_custom_mimes");

http://codex.wordpress.org/Function_Reference/add_filter
http://codex.wordpress.org/Function_Reference/add_filter

Chapter 5

[157]

This implementation can be defined inside the theme or any other plugin file. First,
we take the mimes array as a reference variable. Then, we can add the required mime
types back to the mimes array. Since we are using reference passing, we don't need to
return the mimes array. Now, upload files to the projects section and you will notice
that only the PNG format will be allowed. For other formats, you will get an error,
as shown in the following screenshot:

So, we have successfully extended the plugin without touching the code of the core
function. In complex application development, make sure to include actions and
filters in the proper places to allow extending at later stages. Now, we have built
an extensible file uploader plugin for the portfolio application. Finally, we need to
take the necessary steps to save the uploaded images to projects.

Saving and loading project screens
Once again we have to modify the custom post manager plugin created in the
previous chapter to handle the saving and loading process of project screens. In
this chapter, we updated the project-meta-template.php template to include
the project screens upload field. Now, we have to save the uploaded plugins to the
database. Consider the following code included after the bunch of update meta
statements in the save_project_meta_data function in the class-wpwa-model-
project.php file:

$project_screens = isset ($_POST['h_project_screens']) ?
$_POST['h_project_screens'] : "";
$project_screens = json_encode($project_screens);
update_post_meta($post->ID, "_wpwa_project_screens",
$project_screens);

Developing Pluggable Modules

[158]

We can retrieve the list of uploaded images using the hidden field inline with every
image. Then, we save all the project screens in a JSON string using a metatable key
called _wpwa_project_screens. Next, we have to retrieve the list of project screens
to be displayed on the project load. Here is the updated version of the function for
loading existing images:

public function display_projects_meta_boxes() {
 global $post,$template_data;
 $data = array();
 // Get the exisitng values from database
 $template_data['project_meta_nonce'] = wp_create_nonce('wpwa-
project-meta');
 $template_data['project_url'] = esc_url(get_post_meta($post-
>ID, '_wpwa_project_url', true));
 $template_data['project_duration']= esc_attr(get_post_meta(
$post->ID, '_wpwa_project_duration', true));
 $template_data['project_download_url']=
esc_attr(get_post_meta($post->ID, '_wpwa_project_download_url',
true));
 $template_data['project_status'] = esc_attr(get_post_meta(
$post->ID, '_wpwa_project_status', true));
 $template_data['project_screens'] = (array)
json_decode(get_post_meta($post->ID, "_wpwa_project_screens",
true));
 $template_data['project_status_label'] = __('Project
Status','wpwa');
 $template_data['project_duration_label'] = __('Project
Duration','wpwa');
 $template_data['project_url_label'] = __('Project
URL','wpwa');
 $template_data['project_download_url_label'] = __('Download
URL','wpwa');
 $template_data['project_screens_label'] = __('Project
Screens','wpwa');
 ob_start();
 $this->template_parser->get_template_part('project','meta');
 $display = ob_get_clean();
 echo $display;
}

The display function is updated to include the retrieval of project screens from the
database using the _wpwa_project_screens key. Then, we assign the screens data
to the template file as we did with other metafields.

Chapter 5

[159]

Finally, we have to modify the template file to display the existing image previews,
as shown in the following code of the project-meta-template.php file:

<tr>
 <th style=''><label for='<?php echo $project_screens_label;
?>'><?php echo $project_screens_label; ?></label></th>
 <td><input class='widefat wpwa_multi_file' type="file"
id="project_screens" />
 <div class='wpwa_preview_box' id='project_screens_panel' >
 <?php foreach($project_screens as $screen){ ?>
 <img class='wpwa_img_prev'
style='with:75px;height:75px' src='<?php echo $screen; ?>' />
 <input class='wpwa_img_prev_hidden' type='hidden'
name='h_project_screens[]' value='<?php echo $screen; ?>' />
 <?php } ?>
 </div>
 </td>
</tr>>

After the file field, we will include the image preview, image hidden field, and
the preview box container in the same format we used in the uploder.js file.
We include the existing images from the database for the project. You can delete
any existing image and add new images to update the project screens anytime.

Now, we have completed the project creation by including the project screens
upload section. You can test the plugin by adding and removing project screens.

Extend plugins with custom actions and filters
In this section, we will be looking at how to use our own custom filters for creating
extensible plugins. We discussed the need for extending the template loader in the
previous section on Creating reusable libraries with plugins. Here, we will complete the
implementation by creating extendable features and explaining how to extend these
features within other plugins.

We are planning to use the template loader across multiple plugins. So, we need
to have support for loading templates from different locations, beyond the default
templates and admin/templates folders. Let's have a look at the modified locate_
template function of the WPWA_Template_Loader class in order to understand the
use of custom filters:

public function locate_template($template_names, $load = false,
$require_once = true) {
 $located = false;

Developing Pluggable Modules

[160]

 foreach ((array) $template_names as $template_name) {
 if (empty($template_name))
 continue;
 $template_name = ltrim($template_name, '/');
 if (file_exists(trailingslashit($this->plugin_path) .
'templates/' . $template_name)) {
 $located = trailingslashit($this->plugin_path) .
'templates/' . $template_name;
 break;
 }
 elseif (file_exists(trailingslashit($this->plugin_path) .
'admin/templates/' . $template_name)) {
 $located = trailingslashit($this->plugin_path) .
'admin/templates/' . $template_name;
 break;
 }
 else{
 /* Enable additional template locations using filters */
 $template_locations = apply_filters('wpwa_template_loader_
locations',array());

 foreach($template_locations as $location){
 if(file_exists($location . $template_name)){
 $located = $location . $template_name;
 break;
 }
 }
 }
 }
 if ((true == $load) && ! empty($located))
 load_template($located, $require_once);
 return $located;
}

The modified implementation of the locate_template function contains a filter
called wpwa_template_loader_locations for defining other template locations
for different plugins. All the template locations specified using this filter will be
located inside the foreach loop. Now, third-party developers can extend the
template loader with various template loader locations. The following code
shows you how to extend the template loader with custom locations:

add_filter('wpwa_template_loader_locations','template_locations');
function template_locations($locations){

Chapter 5

[161]

 $location = trailingslashit(wpwa_addon_path) .
'/email_templates/';
 array_push($locations,$location);
 return $locations;
}

We can define the filter within the plugin that we are planning to access the template
loader. Here, we have added another template folder called email_templates. This
technique can be used to define multiple locations within the same plugin or within
multiple plugins. WordPress actions and filters is an amazing technique for creating
extensible plugins and allowing customizations for third-party developers. In the
next section, we will discuss pluggable plugins with the use of pluggable functions
in WordPress.

Pluggable plugins
WordPress provides the ability to use pluggable functions through its pluggable
architecture. Pluggable functions are no longer added to the core, due to the
limitations in comparison to using actions and filters. WordPress codex defines
pluggable functions as functions that let you override certain core functions via
plugins. You can find all the pluggable functions in the pluggable.php file located
inside the wp-includes folder of WordPress. The following are some of the popular
pluggable functions provided by WordPress:

•	 wp_logout: This is used to log the user out of the system. You can do tasks
such as removing custom session variables and recording the user session
time to the database by writing a custom wp_logout function.

•	 wp_mail: This is used to customize the e-mail settings before sending e-mails
through WordPress.

•	 wp_new_user_notification: This is used to customize the subject and
contents of the e-mail sent on new user registrations.

However, there are many plugins and themes that take advantage of this technique.
These plugins can be considered as different versions of extensible plugins. We
used actions and filters to create extensible plugins. Here, we use functions that are
pluggable through custom implementations. In web application terms, we can think
of it as a very basic version of inheritance. Instead of inheritance, WordPress prefers
extending through functions. Let's build a simple test plugin to understand the use
of pluggable plugins, using functions.

Developing Pluggable Modules

[162]

As usual, we will start with the plugin folder creation and definition. Create a folder
called wpwa-pluggable-plugin and create a main file called wpwa-pluggable-
plugin.php, as shown in the following code:

<?php
/*
 Plugin Name: WPWA Pluggable Plugin
 Plugin URI:
 Description: Explain the use of pluggable plugins by sending
mails on post saving
 Version: 1.0
 Author: Rakhitha Nimesh
 Author URI: http://www.innovativephp.com/
 License: GPLv2 or later
 */
?>

Assume that we need a plugin to send newsletters to users' e-mails. The following is
a basic implementation of such a requirement using the pluggable function:

if (!function_exists('wpwa_send_newletter')) {
 function wpwa_send_newletter($heading, $content) {
 $message = "<p>$heading
</p>";
 $message .= "<p>$content
</p>";
 wp_mail("example@gmail.com", "Pluggable Plugins", $message);
 }
}

We have created a function called wpwa_send_newletter to take the e-mail heading
and content, and send an e-mail message to the specified address. An important
thing to consider is the use of function_exists function. First, it allows us to
check whether a function with the same name is already defined. This function will
be executed, when an other function with same name is not available. So, plugin
developers can redefine the function to extend the capabilities of a core function.

In the extensible plugins, we extended a part of the functionality using
actions and filters. With pluggable functions, we need to recreate the
complete implementation instead of a part.

Now, we can move on to the plugged version of this function. You can define the
modified function inside any other plugin. Here, I have kept both functions inside
the same plugin for simplicity:

function wpwa_send_newletter($heading, $content , $template_name =
"") {

Chapter 5

[163]

 $message = "";
 if(empty($template_name)){
 $message = "<p>$heading
</p>";
 $message .= "<p>$content
</p>";
 }else{
 $template = wpwa_get_template($template_name);
 $message .= str_replace("%title%",$heading,$template);
 $message =
str_replace("%content%",$content,$message);
 }
 wp_mail("example@gmail.com", "Pluggable Plugins", $message);
}
function wpwa_get_template($template_name) {
 $template = "";
 switch($template_name){
 case 'projects':
 $template .=
"<h2>%title%</h2>
<p><i>%content%</i></p>";
 break;
 }
return $template;
}

In the plugged version, we have an additional parameter to pass the template
dynamically. Earlier we used a fixed template inside the function. The template is
made optional to prevent issues with the existing code. The plugged function has
two sections for handling fixed template and dynamic template. So, all the existing
function calls to wpwa_send_newletter will work without any issues using the
fixed template. All the new function calls will work by passing a dynamic template
name. Here, we have used another function called wpwa_get_template to get the
respective template.

In this scenario, we have used the template code inside PHP variables
to explain the features of pluggable functions. Ideally, the template
code used in this example should be separated into a template file
and use the template loader plugin to locate the template.

Now, let's look at the execution of the newsletter sending a function on post save
and update:

add_action('save_post', 'wpwa_create_newsletter');
function wpwa_create_newsletter($post_id) {
 if (!wp_is_post_revision($post_id)) {

Developing Pluggable Modules

[164]

 $post_title = get_the_title($post_id);
 $post_url = get_permalink($post_id);
 wpwa_send_newletter($post_title, $post_url,"projects");
 }
}

The WordPress save_post action allows us to call custom functions on post save
or update. Here, we are calling the wpwa_send_newletter function with the post's
title as the heading and the post's URL as the content. Also, we have used a template
called projects.

A function can only be reassigned this way once, so you can't install two
plugins that plug the same function for different reasons. For safety, it is
best to always wrap your functions with if (!function_exists()
); otherwise, you will produce fatal errors on plugin activation.

With pluggable functions, we can turn on or off new functionality any time without
affecting the existing code. Since WordPress uses procedural function calling,
pluggable plugins through functions makes sense. If you prefer OOP-based plugins,
you can choose inheritance over pluggable functions to build pluggable plugins.
Once the preceding code is completed and the plugin is activated, you can enter your
e-mail and create some posts to see the usage of pluggable functions.

Tips for using pluggable functions
Pluggable functions seem to be an easy way of extending the functionality of plugins.
However, you should be aware of the WordPress file loading process in order to
make use of pluggable functions without causing unexpected issues. The following
are some of the tips to be considered before creating pluggable functions:

•	 All the custom pluggable functions should be placed inside plugins since
plugins are loaded first.

•	 If plugins do not contain pluggable functions, the default core function
will be used.

•	 You shouldn't be overriding core pluggable functions in your theme files
since themes are loaded after pluggable functions. Hence, the default
function will be used.

Up to now, we have discussed the various types of reusable plugins suitable for
web applications. Using pluggable plugins with procedural functions is not the
most popular method amongst developers. Instead it's recommended that you
extend plugins with WordPress actions and filters or use inheritance with
object-oriented plugins.

Chapter 5

[165]

Time to practice
Developing high quality plugins is the key to success in web development using
WordPress. In this chapter, we introduced various techniques for creating extensible
plugins. Now, it's time for you to take one step further by exploring the various other
ways of using plugins. Take some time to try out the following tasks to get the best
out of this chapter:

•	 In this chapter, we integrated a media uploader to custom fields and
restricted the file types using actions. However, restrictions will be global
across all types of posts. Try to make the restrictions based on custom post
types and custom fields. We should be able to customize the media uploader
for each field.

•	 Use the wp_handle_upload function to implement a manual file uploading
to cater to complex scenarios, which cannot be developed using the existing
media uploader.

•	 Create extensible plugins using global variables instead of actions
and filters.

•	 Create pluggable plugins using inheritance without considering
pluggable functions.

Summary
We began this chapter by exploring the importance and architecture of WordPress
plugins. In the previous chapters, we developed one main plugin to cater to
application-specific requirements. Here, we identified the importance of creating
reusable plugins by categorizing such plugins into three types called reusable
libraries, extensible plugins, and pluggable plugins.

While building these plugins, we learned the use of actions, filters, and pluggable
functions within WordPress. The integration of a media uploader was very
important for web applications, which works with file-related functionalities.

In the next chapter, Chapter 6, Customizing the Dashboard for Powerful Backends, we
will master the use of the WordPress admin section to build highly customizable
backends using existing features. Stay tuned as this will be important for developers
who are planning to use WordPress as a backend system without using its theme.

[167]

Customizing the Dashboard
for Powerful Backends

Usually, developers build an application's backend from scratch as full-stack PHP
frameworks don't provide built-in admin sections. WordPress is mainly built on an
existing database, which makes it possible to provide a prebuilt admin section. Most
of the admin functionality is developed to cater to the existing content management
functionality. As developers, you won't be able to develop complex applications
without having the knowledge of extending and customizing the capabilities of
existing features.

The structure and content of this chapter is built in a way that it enables the tackling
of the extendable and customizable components of admin screens and features.
We will be looking at the various aspects of an admin interface using popular
frameworks and libraries while building the portfolio management application.

In this chapter, we will cover the following topics:

•	 Understanding the admin dashboard
•	 Customizing the admin toolbar
•	 Customizing the main navigation menu
•	 Adding features with custom pages
•	 Building options pages
•	 Using feature-packed admin list tables
•	 Awesome visual presentation with admin themes
•	 The responsive nature of the admin dashboard

Customizing the Dashboard for Powerful Backends

[168]

Understanding the admin dashboard
WordPress offers one of the most convenient admin sections among similar
frameworks such as Drupal and Joomla for building any kind of application. In the
previous chapters, we looked at the administration screens related to various areas
such as user management, custom post types, and posts. Here, we will look at some
of the remaining components in the perspective of web application development.
Let's identify the list of sections we will consider:

•	 The admin toolbar
•	 The main navigation menu
•	 Option and menu pages
•	 Admin list tables
•	 Responsive design capabilities

Customizing the admin toolbar
The admin toolbar is located at the top of the admin screen to allow direct access
to the most used parts of your website. Once you log in, the admin toolbar will
be displayed on the admin dashboard as well as at the frontend. Typical web
applications contain separate access menus for the frontend and backend. Hence,
web developers might find it difficult to understand the availability of the admin
toolbar at the frontend from the perspective of the functionality as well as the look
and feel. In web applications, it's your choice to remove the admin toolbar from the
frontend or customize it to provide a useful functionality. In this section, we will
look at both the methods to simplify your decision on the admin toolbar. First, let's
preview the admin toolbar at the frontend with its default settings, as shown in the
following screenshot:

Chapter 6

[169]

Let's add a new class called class-wpwa-dashboard.php to our main portfolio
manager plugin for functionalities in the admin section:

class WPWA_Dashboard {
 public function __construct() { }
}
$admin_dashboard = new WPWA_Dashboard();
?>

Be sure to include the class-wpwa-dashboard.php file inside
class-wpwa-portfolio-manager.php using the following line
of code:
require_once wpwa_path.'class-wpwa-dashboard.php';

Now, we are ready to get started with the implementation of admin features.

Removing the admin toolbar
WordPress allows us to configure the visibility settings of the admin toolbar at
the frontend. Unfortunately, it does not provide a way to remove the toolbar from
the backend. Let's consider the following implementation for removing the admin
toolbar from the frontend:

class WPWA_Dashboard {
 public function __construct() { }
 public function set_frontend_toolbar($status) {
 show_admin_bar($status);
 }
}
$admin_dashboard = new WPWA_Dashboard();
$admin_dashboard->set_frontend_toolbar(FALSE);

Here, we use a function called set_frontend_toolbar to dynamically set the visibility
of the admin toolbar at the frontend. WordPress uses the show_admin_bar function
with a Boolean condition to implement this functionality. You might have noticed
the difference in implementation compared to the plugins developed in the previous
chapters. Earlier, we used to initialize all the functions through the plugin constructor
using actions and filters. Setting the admin toolbar can be implemented as a standalone
function without actions or filters. Hence, we call the set_frontend_toolbar function
on the admin_dashboard object. Here, we used the FALSE value to hide the admin
toolbar at the frontend.

Customizing the Dashboard for Powerful Backends

[170]

Managing the admin toolbar items
Default items in the admin toolbar are designed to suit generic blogs or websites,
and hence, it's a must to customize the toolbar items to suit web applications. The
profile section in the top-right corner is suitable for any kind of application as it
contains common functionalities such as the editing profile, log out, and setting a
profile picture. Hence, our focus should be on the menu items on the left side of the
toolbar. First, we have to identify how menu items are generated in order to make
the customizations. So, let's look at the following code for retrieving the available
toolbar menu items list:

add_action('wp_before_admin_bar_render', array($this,
'wpwa_customize_admin_toolbar'));

Let's have a look at the steps:

1.	 As usual, we start by adding the necessary actions to the constructor of
the dashboard plugin, as shown in the following code:
public function wpwa_customize_admin_toolbar() {
 global $wp_admin_bar;
 $nodes = $wp_admin_bar->get_nodes();
 echo "<pre>";
 var_dump($nodes);
 exit;
}

We have access to the wp_admin_bar global object inside the wpwa_
customize_admin_toolbar function. All the toolbar items of the current
page will be returned by the get_nodes function.

2.	 Then, we can use print_r() on the returned result to identify the nodes.
The following code is a part of the returned nodes list, and you can see the
main item IDs called user-actions and user-info:

Array
(
 [user-actions] => stdClass Object
(
 [id] => user-actions
 [title] =>
 [parent] => my-account
 [href] =>
 [group] => 1
 [meta] => Array()
)
 [user-info] => stdClass Object
 (
 [id] => user-info

Chapter 6

[171]

 [title] =>developer developerdeveloper
 [parent] => user-actions
 [href] => http://localhost/packt/wordpress-web-
develop-test/wp-admin/profile.php

)
)

3.	 We need to use those unique IDs to add or remove menu items. Now, we
will remove all the items other than the first item and create menu items
specific to the portfolio application. So, let's remove the preceding code
and modify the wpwa_customize_admin_toolbar function as follows:
public function wpwa_customize_admin_toolbar() {
 global $wp_admin_bar;
 $wp_admin_bar->remove_menu('updates');
 $wp_admin_bar->remove_menu('comments');
 $wp_admin_bar->remove_menu('new-content');
}

4.	 By default, the admin toolbar contains three items for site updates, comments
and new posts, pages, and so on. Explore the result from print_r and
you will find the respective keys for the preceding items such as updates,
comments, and new content.

5.	 Then, use the remove_menu function on the wp_admin_bar object to remove
the menu items from the toolbar. Now, the toolbar should look like the
following screenshot:

6.	 Next, we need to add application-specific items to the toolbar. Since we
are mainly focusing on developers, we can have a menu called Developers
to contain links to projects, books, articles, and services, as shown in the
following updated code of the wpwa_customize_admin_toolbar function:

public function wpwa_customize_admin_toolbar() {
 global $wp_admin_bar;
 // Remove menus
 if (current_user_can('edit_posts')) {

Customizing the Dashboard for Powerful Backends

[172]

 $wp_admin_bar->add_menu(array(
 'id'=> 'wpwa-developers',
 'title' => 'Developer Components',
 'href' => admin_url()
));
 $wp_admin_bar->add_menu(array(
 'id'=> 'wpwa-new-books',
 'title' => 'Books',
 'href' => admin_url()."post-
new.php?post_type=wpwa_book",
 'parent'=>'wpwa-developers'
));
 $wp_admin_bar->add_menu(array(
 'id'=> 'wpwa-new-projects',
 'title' => 'Projects',
 'href' => admin_url()."post-
new.php?post_type=wpwa_project",
 'parent'=>'wpwa-developers'
));
 }
}

The WordPress wp_admin_bar global object provides a method called add_menu
to add new top menus as well as submenus. The preceding code contains the top
menu item for developers, containing two submenu items for books and projects.
Other menu items can be implemented similarly and have been omitted here for
simplicity. When defining submenus, we have to use the ID of the top menu for the
parent attribute. It's important to make the menu item IDs unique to avoid conflicts.
Finally, we define the URL to be invoked on the menu item click using the href
attribute. We can use any internal or external URL for the href attribute.

We have validated the permission called edit_posts as only developers are
allowed to create books and projects. Make sure you check the necessary
permission levels while building custom admin toolbars. The following
screenshot previews the admin toolbar with custom menu items:

Chapter 6

[173]

Now, we have the ability to extend the admin toolbar to suit various applications.
Make sure to add or remove menu items for the portfolio application to understand
the process of the admin toolbar.

Customizing the main navigation menu
In WordPress, the main navigation menu is located on the left-hand side of the
screen where we have access to all the sections of the application. In a similar way
to the admin toolbar, we have the ability to extend the main navigation menu with
customized versions.

Let's start by adding the admin menu invoking an action to the constructor:

add_action('admin_menu', array(
$this,'wpwa_customize_main_navigation'));

Now, consider the initial implementation of the wpwa_customize_main_navigation
function:

public function wpwa_customize_main_navigation(){
 global $menu,$submenu;
 echo "<pre>";print_r($menu);echo "</pre>";exit;
}

The preceding code uses the global variable menu for accessing the available main
navigation menu items. Before we begin the customizations, it's important to get
used to the structure of the menu array using a print_r statement. A part of the
output generated from the print_r statement is shown in the following section:

Array
(
 [2] => Array
 (
 [0] => Dashboard
 [1] => read
 [2] => index.php
 [3] =>
 [4] => menu-top menu-top-first menu-icon-dashboard
 [5] => menu-dashboard
 [6] => none
)
 [4] => Array
 (
 [0] =>
 [1] => read
 [2] => separator1
 [3] =>

Customizing the Dashboard for Powerful Backends

[174]

 [4] => wp-menu-separator
)
)

The structure of the menu array seems to be different compared to the admin
toolbar items array. Here, we have array indexes instead of unique keys, and
hence the altering of the menu will be done using index values.

Up until this point, we have used existing WordPress features for the functionality
of the portfolio management application, and hence, the main navigation menu
is constructed based on user roles and permissions. Therefore, we don't need to
alter the menu at this point. However, we will see how menu items can be added
and removed to cater to advanced requirements in the future. Let's get started by
removing the Dashboard menu item using the following code:

public function wpwa_customize_main_navigation() {
 global $menu, $submenu;
 unset($menu[2]);
}

We can use the unset function to remove items from the $menu array. Now, your
Dashboard menu item will be removed from the menu. Similarly, we can use the
global submenu variable to remove submenus when needed.

As of WordPress 3.1, we can use the remove_menu_page and remove
_submenu_page functions to remove the existing menu items. I
suggest that you try the preceding method to get an understanding
about the menu slugs and links before moving onto these functions.

The following code contains the functionality for removing the Dashboard menu
item with the latest technique:

remove_menu_page('index.php');

Creating new menu items
The latest versions of WordPress use add_menu_page or add_sub_menu_page to
create custom menu pages. In the preceding section, we removed items from the
existing menu. Adding new menu items is not as simple as removing a menu item.
We have to provide functionality and a display code for the menu page while adding
them to the menu. The implementation of add_menu_page will be discussed in the
next section on the settings page.

Chapter 6

[175]

Adding features with custom pages
WordPress was originally created as a blogging platform and evolved into a content
management system. Hence, most of the core functionality is implemented on the
concept of posts and pages. In web applications, we need to go way beyond these
basic posts and pages to build quality applications. Custom menu pages play a vital
role in implementing custom functionalities within the WordPress admin dashboard.
Let's consider the two main types of custom pages in the default context:

•	 Custom menu pages: Generally, these pages are blank by default. We need
to implement the interface as well as implementation for catering custom
requirements that can't take advantage of the core features of WordPress.

•	 Options pages: These are used to manage the options of the application.
Even though options pages are generally used for theme options, we can
manage any type of applications-specific settings with these pages.

Building options pages
The theme options page is implemented in each and every WordPress theme by
default. Design and available options may vary based on the quality and features
of the theme. We selected a theme called Responsive for the purpose of this book.
So, let's take a look at the default theme options panel of the Responsive theme
using the following screenshot:

Customizing the Dashboard for Powerful Backends

[176]

The Responsive theme uses its own layout structure for the options page. Generally,
we have two ways of creating options pages for plugins:

•	 Using custom menu pages with our own template and processing
•	 Using WordPress options pages with the options and settings API

Both techniques can be effectively used for web applications. However, most
developers will pick custom menu pages for large scale applications. Let's identify
the differences between the two techniques:

•	 Custom menu pages create a separate menu item on the left menu, while
the options page adds a submenu to the Settings menu.

•	 Options created with the options and settings API will be stored as
individual options in the wp_options table. When using custom menu
pages, we can save all the options inside one field and also options can
be stored in any database table according to our preferences.

•	 Options pages with the settings API will automatically save all the options,
while custom menu pages require the manual implementation of the options
saving process.

•	 Custom menu pages provide more flexibility in design as well as the
options saving process for large applications.

Basically, options pages with the options and settings API are useful for simple
applications, while custom menu pages with our own implementations will be more
suited for complex large-scale web applications. Having identified the differences,
we can now move on to the implementation of our application settings panel with
custom menu pages.

Creating a custom layout for options pages
We decided to create our own layout, instead of using default WordPress options
pages. Therefore, the design of the settings panel can be created based on our
preference without any restrictions on HTML elements as well as CSS classes. Let's
create a new template file inside the template folder of our main plugin
as settings-template.php.

Once completed, we can start defining the options required for our application. Here,
we will create two main sections called Subscription Settings and Frontend Widget
Settings containing one option field each and we will continue to add more options
with new requirements. So, add the following code to the settings-template.php
file for basic options for portfolio management application:

<div id="wpwa-settings-panel">

Chapter 6

[177]

 <h2><?php echo __('Portfolio Management Application
Settings','wpwa'); ?></h2>
 <form name="wpwa-settings-frm" id="wpwa-settings-frm"
method="POST">
 <div id="wpwa-subscription-setting" class="wpwa-settings-
tab"><?php echo __('Subscription Settings','wpwa'); ?></div>
 <div class="wpwa-settings-content">
 <div id="wpwa-subscription-setting-content"
class="wpwa-settings-tab-content">
 <div class="label"><?php echo __('Newsletter
Template','wpwa'); ?></div>
 <div class="field"><textarea id="wpwa_newsletter"
name="wpwa[newsletter]" class="" ><?php echo $wpwa_newsletter;
?></textarea></div>
 </div>
 </div>
 <div id="wpwa-widget-setting" class="wpwa-settings-
tab"><?php echo __('Frontend Widget Settings','wpwa'); ?></div>
 <div class="wpwa-settings-content">
 <div id="wpwa-widget-setting-content" class="wpwa-
settings-tab-content">
 <div class="label"><?php echo __('Number of
records in lists','wpwa'); ?></div>
 <div class="field"><input type="text"
id="wpwa_num_records" name="wpwa[num_records]" value="<?php echo
$wpwa_num_records; ?>" /></div>
 </div>
 </div>
 <div >
 <div class="wpwa-settings-tab-content">
 <div class="label"> </div>
 <div class="field"><input type="submit"
id="wpwa_settings_submit" name="wpwa_settings_submit" class=""
value="<?php echo __('Save Settings','wpwa'); ?>" /></div>
 </div>
 </div>
 </form>
</div>

We have two main tabs called Subscription Settings, with an option called
Newsletter template and Frontend Widgets with an option called Number of
records in lists. Next, we can move on to the implementation of the options panel
and the options saving process using the settings template.

Customizing the Dashboard for Powerful Backends

[178]

Building an application options panel
Create a new class called the class-wpwa-settings.php file inside the main
folder of the portfolio application plugin. Be sure to include the file in the
class-wpwa-portfolio-manager.php file. First, we need to register the menu
page for the portfolio management application settings. WordPress offers functions
called add_menu_page and add_sub_menu_page for manually creating blank menu
pages. Let's take a look at the initial implementation of the WPWA_Settings class
with menu page creation, as shown in the following code:

class WPWA_Settings{
 public function __construct(){
 add_action('admin_menu', array($this, 'add_menu'), 9);
 }
 public function add_menu(){
 add_menu_page(__('WPWA Settings', 'wpwa'), __('WPWA
Settings', 'wpwa'),'manage_options','wpwa-
settings',array($this,'settings'));
 }
 public function settings(){}
}

We have to use the admin_menu action to create a unique menu page for the settings
panel. Inside the add_menu function, we define the WPWA Settings page and the
function called settings to handle the settings panel. The settings function should
be used to load the template we created earlier in creating the custom layout section.
The following code previews the settings function with the updated code:

public function settings(){
 global $wpwa_template_loader,$template_data_settings;
 $wpwa_options = (array) get_option('wpwa_options');
 $template_data_settings['wpwa_newsletter'] =
isset($wpwa_options['newsletter']) ? $wpwa_options['newsletter'] :
'';
 $template_data_settings['wpwa_num_records'] =
isset($wpwa_options['num_records']) ? $wpwa_options['num_records']
: '';
 ob_start();
 $wpwa_template_loader->get_template_part('settings');
 $display = ob_get_clean();
 echo $display;
}

Chapter 6

[179]

As usual, we will use the $wpwa_template_loader object created from our reusable
plugin to load the settings template into the menu page. You will also notice the use
of the $wpwa_options and $template_data_settings variables in this code. We
use an option called wpwa_options to save all the options inside a single meta key
in the wp_options table. This option will be empty until we save the options for the
first time. Then, we use the $template_data_settings variable to pass the data to
the templates using a global variable.

Now, we need to apply the styles to our template design. You can find the CSS
styles for the settings template inside the settings.css file inside the css folder.
Let's update the constructor with the following code to include the CSS file:

add_action('admin_enqueue_scripts', array($this, 'add_scripts'),
9);

Then, we can register and include the CSS file using the implementation of the
add_scripts function, as shown in the following code:

public function add_scripts(){
 wp_register_style('wpwa_settings_styles', wpwa_url.
'css/settings.css');
 wp_enqueue_style('wpwa_settings_styles');
}

We should be able to see the new menu page for WPWA Settings on the left menu.
Once you click on the menu item, you should see the settings page similar to
following screenshot:

Customizing the Dashboard for Powerful Backends

[180]

The final part of this task is the implementation of the options saving process. Since
we are using custom menu pages, we have to develop the code from scratch to save
the options. Let's begin by updating the class constructor with the following action:

add_action('init', array($this, 'save_settings'));

Usually, we use the init action to intercept the GET or POST requests in WordPress.
Our settings panel works on normal form submission, and hence, we have to extract
data from the $_POST array and store the options in the database. Let's consider the
implementation of the save_settings function with the options saving code:

public function save_settings(){
 if(isset($_POST['wpwa_settings_submit'])){
 $wpwa_options = (array) get_option('wpwa_options');
 foreach($_POST['wpwa'] as $setting=>$val){
 $wpwa_options[$setting] = $val;
 }
 update_option('wpwa_options',$wpwa_options);
 add_action('admin_notices', array($this,'settings_notice'));
 }
}
public function settings_notice() {
 ?>
 <div class="updated">
 <p><?php _e('SettingsUpdated!', 'wpwa'); ?></p>
 </div>
 <?php
}

First, we check the availability of the submit button using the wpwa_settings_
submit key in the POST array. You might have noticed that we defined all the form
field names inside an array called wpwa for simplified access. We can get the existing
setting from the wp_options table and update it based on the settings available
in the $_POST['wpwa'] variable. Finally, we add an admin notice to display the
success message.

Now, you should be able to save the settings for our application. This settings panel
is at the most basic level at this stage. As we get more settings, we will have to
update the options saving process with conditional checks and filtering.

Chapter 6

[181]

Using the WordPress options API
We choose the options panel with custom menu pages over default WordPress
options managing technique. However, it's important to know how to use the
WordPress options and settings API in situations where you need a simple options
panel. We have to use the wp_options table for storing custom options for our
plugins and themes. WordPress provides a set of built-in functions for working
with the wp_options tables. Let's look at the most commonly used functions of the
WordPress options API:

•	 add_option: This is used to save new option/value pairs into the database.
It doesn't do anything if the option already exists in the database.

•	 delete_option: This is used to remove existing option/value pair from the
database. It returns true when the option is deleted successfully and false
on failure or when the option does not exist.

•	 get_option: This is used to retrieve option/value pairs from the database.
It returns false if the options don't exist in the database.

•	 update_option: This is used to update option/value pairs in the database.
First, it checks for the existence of the option and updates it accordingly.
If the option does not exist, it will be added using the add_option function.

Be sure to use these functions whenever you need to work with the wp_options
table, instead of writing your own queries. These functions come with built-in
filters and validations, and hence, are considered as the safest way of working with
the wp_options table. You can look at the complete WordPress options API at
http://codex.wordpress.org/Options_API.

Let's start building a simple options page with the default technique. First, we have
to define an admin settings page or menu page, as shown in the following code:

add_action('admin_menu', 'wpwa_options_menu');
function wpwa_options_menu() {
 add_options_page('WPWA Options', 'WPWA Options',
'administrator', __FILE__, 'wpwa_options_page');
 add_action('admin_init', 'wpwa_register_settings');
}

Then, we have to define the options of our page using the register_setting
function provided by WordPress. Let's consider the implementation of the
wpwa_register_settings function:

function wpwa_register_settings() {
 register_setting('wpwa-settings-group', 'option1');
 register_setting('wpwa-settings-group', 'option2');
}

http://codex.wordpress.org/Options_API

Customizing the Dashboard for Powerful Backends

[182]

Here, we have two fields in the options panel called Option1 and Option2. We can
define them inside a single group with the register_setting function. Next, we
can move into the HTML implementation of the form using the following code:

<?php
function wpwa_options_page() {
?>
<div class="wrap">
<form method="post" action="options.php">
 <?php settings_fields('wpwa-settings-group'); ?>
 <table class="form-table">
 <tr valign="top">
 <th scope="row">Option1</th>
 <td><input type="text" name="option1" value="<?php echo
get_option('option1'); ?>" /></td>
 </tr>
 <tr valign="top">
 <th scope="row">Option2</th>
 <td><input type="text" name="option2" value="<?php echo
get_option('option2'); ?>" /></td>
 </tr>
 </table>
 <?php submit_button(); ?>
</form>
</div>
<?php } ?>

It's important to define the form action as options.php to get the default functionality
provided by WordPress. Then, we pass the previously defined options group name to
the settings_fields function. This function will generate a set of hidden variables
needed for saving the options. Next, we define the existing values of the two options
by using the get_option function. We have to make sure that we use the same names
for the field name as well as the register_setting function. Finally, we call the
submit_button function to generate the submit button.

Once the form is submitted, WordPress will look for the fields names that match
the settings registered through the register_setting function. Then, it will
automatically save the data into the wp_options table. This process is quite useful
in scenarios where you don't want to rely on third-party plugins for creating options
panels. Make sure to test both the techniques to identify the pros and cons of each.

Chapter 6

[183]

Using feature-packed admin list tables
In web applications, you will find a heavy usage of CRUD operations. Therefore, we
need tables to display the list of records. These days, developers have the choice of
implementing common lists using client-side JavaScript as well as PHP. These lists
contain functionalities such as pagination, selections, sorting, and so on. Building
these types of lists from scratch is not recommended unless you are planning to build
a common library. WordPress offers a feature-packed list for its core features using
the WP_List_Table class located in the wp-admin/includes/wp-list-table.php
file. We have the ability to extend this class to create application-specific custom
lists. First, we'll look at the default list used for core features, as shown in the
following screenshot:

As you can see, most of the common tasks, such as filtering, sorting, custom actions,
searching, and pagination are built into this list, which is easily customized by
creating child classes. In the next section, we will discuss the default admin lists
and how we can customize them in our applications.

Working with default admin list tables
We have two ways of working with admin list tables. First, we can customize the
existing admin lists for posts, users, comments, and so on using the available actions
and filters. The second method is to use the WordPress code for admin list tables and
create our own tables with all the built-in features. The first option is the easiest and
most recommended of the two options. In this section, we will be looking at how to
customize the default list tables available in the WordPress admin section.

Customizing the Dashboard for Powerful Backends

[184]

The post list
The post list can be accessed using the Posts | All Posts menu item; it contains all
the available posts in the WordPress database. By default, it will display the data for
the following fields:

•	 Title
•	 Author
•	 Categories
•	 Tags
•	 Number of comments
•	 Date

On a normal WordPress site, blog posts will be listed in this list, and hence, we
rarely need to make any customizations. However, WordPress custom post types are
frequently used in web application development. You won't find the custom posts
inside the default WordPress post list. Instead, WordPress provides a separate list
of each custom post type. Assume that we have a custom post type called project.
Then, we can access the project post list from the Projects | All Projects menu item.
We can customize the admin list features for custom post types. Let's look at
the customizable features for custom post types and practical use cases:

•	 Custom actions for custom post types
•	 Custom filters for custom post types
•	 Post status links
•	 Post list columns

Creating custom actions for custom posts
We can find the actions list for custom post types in the top-left corner of the list
in the Bulk Actions dropdown. The default actions for custom posts are Edit and
Move To Trash. In web applications, we need custom actions to manage custom
posts. So, let's see how we can create and execute custom actions for the posts list:

add_action('admin_footer', 'wpwa_project_action_buttons');
function wpwa_project_action_buttons() {
 $screen = get_current_screen();;
 if ($screen->id != "edit-wpwa_project")
 return;
?>
 <script type="text/javascript">

Chapter 6

[185]

 jQuery(document).ready(function($) {
 $('option').val('wpwa_pro_planned_switch').text('Switch
Project to Planned').appendTo("select[name='action']");
 $('option').val('wpwa_pro_failed_switch').text('Switch
Project to Failed').appendTo("select[name='action']");
 });
 </script>
<?php
}

WordPress doesn't offer filters or actions for changing the default Bulk Actions
list. So, we have to make use of other actions with some workarounds. We use the
admin_footer action so that we can embed the necessary JavaScript code for the
footer. First, we have to check the current screen so that we only enable custom
actions for necessary post types. We should check whether the screen matches
edit-{custom post type}. Then, we add the new options to the existing
dropdown field with unique values. Now, you should see two new options
inside the Bulk Actions dropdown for the project post type.

The next part is to use the custom options to execute some custom tasks. Let's take
a look at the code:

function wpwa_project_page_loaded(){
 if((isset($_GET['action']) && $_GET['action'] ===
'wpwa_pro_planned_switch') ||
 (isset($_GET['action2']) && $_GET['action2'] ===
'wpwa_pro_planned_switch')) {
 $projects = isset($_GET['post']) ? $_GET['post'] : '';
 if ('' != $projects) {
 foreach ($projects as $project) {
 update_post_meta($project, '_wpwa_project_status',
'planned');
 }
 }
 }
}

First, you have to select some projects from the list and then select Switch Project
to Planned from the Bulk Actions dropdown. Once you click the Apply button, we
check the proper action using the value of dropdown and then get the projects list.
Finally, we update the status of all the projects to the Planned status. This is a great
feature for quickly working on a large number of custom post types at once. We have
only implemented one custom action in our example. You can implement the same
for the rest of the project statuses.

Customizing the Dashboard for Powerful Backends

[186]

Creating custom filters for custom post types
The admin list provides another useful feature for filtering custom post types. By
default, we can filter the custom post types by date. In web applications, we can
use this feature to create our own filters by using a technique similar to the custom
action creation. Let's see how we can add a filter for project statuses:

function wpwa_project_list_filters() {
 global $typenow;
 $project_status = isset($_GET['wpwa_project_status']) ?
$_GET['wpwa_project_status'] : '';
 if($typenow == 'wpwa_project'){
 $display = "<select name='wpwa_project_status'
id='wpwa_project_status' class='postform'>";
 $display .= "<option value=''>Show All Projects</option>";
 $display .= "<option value='planned' ".
selected($project_status,'planned',false) ." >Planned</option>";
 $display .= "<option value='pending' ".
selected($project_status,'pending',false) .">Pending</option>";
 $display .= "<option value='failed' ".
selected($project_status,'failed',false) .">Failed</option>";
 $display .= "<option value='completed' ".
selected($project_status,'completed',false)
.">Completed</option>";
 $display .= "</select>";
 echo $display;
 }
}
add_action('restrict_manage_posts','wpwa_project_list_filters');

We can find an action called restrict_manage_posts inside WordPress core files
to filter the records of normal posts as well as custom post types. In this scenario,
we create a custom filter by defining a dropdown field with the necessary filters.
We can get the selected filter value from the $_GET array and display it as the
selected value for the filter. It's important to check the post types using the $typenow
global variable to prevent new filters for all post types. Now, we have the input
fields to filter projects from our list. The next task is to apply the filters into post list
query. Consider the following code for filtering projects based on the status value:

add_filter('parse_query', 'wpwa_project_list_filter_query');
function wpwa_project_list_filter_query($query){
 global $pagenow;
 $type = 'wpwa_project';
 if (isset($_GET['post_type'])) {
 $type = $_GET['post_type'];
 }

Chapter 6

[187]

 if ('wpwa_project' == $type && is_admin() &&
$pagenow=='edit.php' && isset($_GET['wpwa_project_status']) &&
$_GET['wpwa_project_status'] != '') {
 $query->query_vars['meta_key'] = '_wpwa_project_status';
 $query->query_vars['meta_value'] =
$_GET['wpwa_project_status'];
 }
}

We have to use the WordPress parse_query filter to apply our custom filters into
the post list query.

The parse_query filter is an action triggered after WP_Query-
>parse_query() has set up query variables (such as the various
is_ variables used for conditional tags). We can use this action to
modify the queries in the current page or post.

As usual, we have to check the proper post type and current page. The post list
is loaded from the edit.php file, and hence, we have to use it for the conditional
check. In this scenario, we are filtering the project status, and hence, we should also
check the availability of the wpwa_project_status key inside the $_GET array. If all
conditions are satisfied, we change the default query variables to include the meta
key and meta value for the project status. Now, the modified query will only return
the projects matching the specified status.

We created the project status as a custom field, and hence, it's stored in
the wp_postmeta table. Therefore, we can directly change the query
by using the meta key and value. If you store these values on a different
database table or you are filtering a value from a different table, custom
filtering will be complex and will require manual queries.

Now, you can select a specific status from the new dropdown field and click on the
Filter button to filter the projects by status. You can repeat the same technique to
create more filters as required.

Creating custom post status links
WordPress posts can have one of the many statuses at any given time, and this is
used to determine how the post is handled. We have eight post statuses by default
for normal posts as well as custom post types. The following are the default post
statuses with their meaning within a post life cycle:

•	 Published: The post is published and viewable for everyone
•	 Future: The post is scheduled to be published on a future date

Customizing the Dashboard for Powerful Backends

[188]

•	 Draft: The incomplete post is viewable by anyone with the proper user level
•	 Pending: The post is awaiting the approval of a user with the

publish_posts capability to publish
•	 Private: The post is viewable only to WordPress users at an

administrator level
•	 Trash: The posts in Trash are assigned the trash status
•	 Auto-Draft: These are the revisions that WordPress saves

automatically while you are editing
•	 Inherit: This is used with a child post (such as attachments and revisions)

to determine the actual status from the parent post (inherit)

These post statuses will be displayed on top of the projects list. However, it only
displays statuses with at least one post. This is another way of filtering posts by
post statuses. In this application, we used default post statuses and created a meta
key to manage the project status. We can also have used post statuses for projects
by removing the default statuses and creating custom statuses. Let's see how we
can create a status link for the custom post status using the following code:

add_action('admin_footer-post-new.php',
'wpwa_create_post_status_list');
add_action('admin_footer-post.php','wpwa_create_post_status_list'
);
function wpwa_create_post_status_list(){
 global $post;
 $complete = '';
 $label = '';
 if($post->post_type == 'wpwa_project'){
 $complete = ' selected=selected ';
 $label = "Released";
?>
 <script>
 jQuery(document).ready(function($){
 $("select#post_status").append("<option value='wpwa_pro_
released' <?php echo $complete; ?> >Released
Status</option>");
 $(".misc-pub-section label").append("<?php echo $label;
?>");
 });
 </script>

Chapter 6

[189]

<?php
 }
}

We have to use admin_footer-post-new.php and admin_footer-post.php to
include custom statuses on the project creation screen as well as projects list. As
usual, we embed the new status into the post status dropdown using JavaScript.
Now, the new status will be available automatically as a link in the projects list.

We can create a new post status by using the register_post_
status function on the init action. You should never create
new post statuses before the init action. You can find complete
guidelines at http://codex.wordpress.org/Function_
Reference/register_post_status.

Once you click on the link, projects with the wpwa_pro_released status will be
displayed. This is a useful feature for applications with many custom post statuses.

Displaying custom list columns
We have discussed all the major features of the admin post list, such as custom
actions, filtering, and post statuses. Finally, we will complete this section by using
custom columns in post lists. The custom post list usually displays title and date
columns in the post list. Consider our portfolio application with managing projects.
Generally, we would need the project status, duration, and a clickable URL in the
list to make it easier to manage multiple projects at the same time. Let's take a look
at the following code for adding custom columns to the list:

add_filter('manage_edit-wpwa_project_columns',
'wpwa_project_list_columns') ;
function wpwa_project_list_columns($columns) {
 $columns = array(
 'cb' => '<input type="checkbox" />',
 'title' => __('Project' ,'wpwa'),
 'duration' => __('Duration' ,'wpwa'),
 'status' => __('Project Status' ,'wpwa'),
 'date' => __('Date' ,'wpwa'),
);
return $columns;
}

.wordpress.org/Function_Reference/register_post_status
.wordpress.org/Function_Reference/register_post_status

Customizing the Dashboard for Powerful Backends

[190]

We can decide the columns in the post list using the manage_edit-{custom post
type}_columns filter. In this scenario, we are trying to add two new custom columns
called Duration and Project Status. If needed, we can remove the existing columns
by removing it from the array. Now, you should see the new columns in the projects
list with empty values. Next, we have to retrieve and display the values for those new
columns. Consider the following code for displaying values:

add_action('manage_wpwa_project_posts_custom_column',
'wpwa_manage_project_columns', 10, 2);
function wpwa_manage_project_columns($column, $post_id) {
 global $post;
 switch($column) {
 case 'duration' :
 $duration = get_post_meta($post_id,
'_wpwa_project_duration', true);
 if (empty($duration))
 echo __('-');
 else
 echo $duration;
 break;
 case 'status' :
 $status = get_post_meta($post_id,
'_wpwa_project_status', true);
 if (empty($status))
 echo __('-');
 else
 echo $status;
 break;
 default :
 break;
 }
}

We have a built-in action called manage_{custom post type}_posts_custom_
column for managing and filtering the values in the post list. All the available columns
are passed as a parameter to this function. We can switch the columns and get the
values from the wp_postmeta table using the respective meta keys. If needed, we can
also filter and format the values before sending them to the list. Now, you should see
the new columns and values inside the projects list. The following screenshot previews
the projects list after all the customizations are completed:

Chapter 6

[191]

We have covered all the major features in the post list throughout the previous
sections, and now you should be able to customize any custom post list according
to your preference. You can find the source code for this section inside the
wpwa_actions_filters.php file.

The user list
We can access the backend user list by navigating to Users | All Users in the admin
panel. The WordPress user list is also built on top of the WP_List_Table class,
and hence, we can have most of the features we discussed in the previous section
on the post lists. I won't discuss all those features for the user list as the code is
similar to the variation of actions and filters. I suggest that you try custom actions,
filters, and custom columns for the user list on your own and check with the source
code provided in the official book website at http://www.innovativephp.com/
wordpress-web-applications.

We will discuss the practical usages of these features in the user list instead of
discussing the code. The user list only contains Delete as a custom action for
deleting multiple users at once. In large applications, we will need features such as:

•	 Confirming the e-mail address after registration
•	 Receiving user approval before login
•	 Enabling and disabling users

http://www.innovativephp.com/wordpress-web-applications
http://www.innovativephp.com/wordpress-web-applications

Customizing the Dashboard for Powerful Backends

[192]

In such scenarios, we can use these as custom actions in the Bulk Actions dropdown
to work with multiple users instantly.

You can use the admin_footer action for adding custom actions to
the dropdown field and the load-users.php action for updating
the users after selecting a specific action.

Adding dynamic columns to the user list is similar to the technique used in the post
list, and hence, we won't discuss it in detail. Next, we have user roles as links on the
top instead of post statuses. We have custom user roles in our portfolio application
and those will be added as links for filtering users. Finally, we can create custom
filters in the user list to filter approved/unapproved, confirmed/unconfirmed,
and enabled/disabled users based on the scenario we discussed.

You can use the restrict_manage_users action for creating the
new filter dropdowns for users and the pre_user_query action for
customizing the query based on the filter values.

We have discussed the practical customization of the user list and mentioned
the filters for implementing them. Make sure that you try these implementations
on your own and check with the code on the official book website.

The comments list
Comments is the other major list used for web applications and can be accessed
using the Comments menu in the admin panel. Similar to what we did with the
user list, we will only be only discussing the practical usage instead of code.

First, we can consider the custom actions for comments. By default, we have
Unapprove, Approve, Mark as Spam, and Move to Trash as the custom actions.
Let's recall our example from Chapter 1, WordPress as a Web Application Framework.
We used comments to provide answers to questions created through custom post
types. So, we can have custom actions, such as Mark answer as correct, Mark
answer as incorrect, and so on.

You can use the admin_footer action for adding custom actions to
the dropdown field and the init action for updating the comments
after selecting a specific action.

Chapter 6

[193]

Next, we can add new filters to the comments list. We can add a filter for correct/
incorrect answers. Also, we can add another filter for answers from a specific user.
Finally, we might need a filter for answers from a specific question. These are some
of the use cases in our simple example, and you will find many such filters in
advanced applications.

You can use the restrict_manage_comments action for creating the
new filter dropdowns for comments and the pre_get_comments action
for customizing the query based on the filter values.

Finally, we have comment status links on top instead of post status links. However,
WordPress doesn't provide a function for adding new custom comment statuses,
and hence, we can't change the filtering links available on the top of the list.

Throughout the previous three sections, we discussed how to customize the default
user, post, and comments list. However, we haven't covered the most important part
of creating our own lists with the admin list table. In large web applications, we will
be using custom database tables more than the default tables, and hence, custom list
building is a vital feature. We will be covering the WP_List_Table class and its usage
in the next section.

Building extended lists
The extended version of WP_List_Table can be created by manually overriding each
and every function in the base class. However, we will take a simpler approach by
using an existing template to extend the lists. The WordPress plugin directory contains
a useful plugin called Custom List Table Example for the reusable template of the
WP_List_Table class. You can grab a copy of the plugin at http://wordpress.org/
plugins/custom-list-table-example/ and get used to the code before we
get started.

Create a new class called class-wpwa-list-table.php and copy the list-table-
example.php file from the downloaded plugin. Then, you can change the plugin
descriptions and information if necessary. Now, we are ready to customize
the template.

http://wordpress.org/plugins/custom-list-table-example/
http://wordpress.org/plugins/custom-list-table-example/

Customizing the Dashboard for Powerful Backends

[194]

Using the admin list table for the following
developers
In requirements planning, we identified two roles called follower and developer,
where followers can subscribe to the activities of the developers. There are several
ways of implementing such requirements within WordPress. Here, we will be using
a custom list table to manage the subscription process. The following is the list of
identified tasks for this implementation:

•	 Developers should be listed for subscriptions
•	 Followers should be able to select multiple developers for subscriptions
•	 Selected developers should be saved in a custom database table with

follower details on executing custom action

Let's get started.

We need to have the wp_subscribed_developers table for
implementing this feature. It's not yet available in our database.
The activation handler of our portfolio application plugin is
updated with the code for creating the new database table. So,
you have to deactivate the plugin and replace the plugin with the
new version. Then, you can activate the plugin again to create the
new database table for subscribed developers.

Step 1 – defining the custom class
Change the name of the TT_Example_List_Table class to a new unique name.
Here, we have used WPWA_List_Table as the class name.

Step 2 – defining the instance variables
The template offered by the Custom List Table Example plugin uses hardcoded
data in a variable called $example_data. In real web applications, we need to
dynamically get this data from the database, file, or any external source. Therefore,
set the $example_data variable to an empty array as follows:

var $example_data = array();

Chapter 6

[195]

Step 3 – creating the initial configurations
We need to configure the necessary settings inside the WPWA_List_Table class
constructor, as given in the following code:

function __construct() {
 global $status, $page;
 //Set parent defaults
 parent::__construct(array(
 //singular name of the listed records
 'singular' => 'developer',
 //plural name of the listed records
 'plural' => 'developers',
 //does this table support ajax?
 'ajax' => false
));
}

Inside the array of configurations, we have to define a singular and plural name
for the records. This should be a unique name and has no relation to database
tables or columns. We can also define the support for AJAX, although it will be
not discussed here.

Step 4 – implementing the custom column handlers
In this step, we need to define the methods for handling each of the columns to
be displayed in the list. The developer list will contain a single column called
Developer Name, and hence, we need only the following function implementation:

function column_developer_name($item) {
 //Return the developer name contents
 return sprintf('%1$s ',
 /* $1%s */ $item['developer_name']
);
}

Before explaining the code, I would like you to have a look at the structure of our
final data set using the following code:

Array
(
 [0] => Array

Customizing the Dashboard for Powerful Backends

[196]

 (
 [ID] => 24
 [developer_name] => John Doe
)
 [1] => Array
 (
 [ID] => 22
 [developer_name] => Mark
)
)

The preceding data set is generated manually to contain custom keys. When we
are using the direct database result for the dataset, these keys will be replaced by
database columns. Here, we are using a column name called developer_name,
which doesn't actually exist in the database. So, the column_developer_name
function returns the contents of the developer_name key in the dataset.

Don't forget to create the column_{column name} functions for
each and every column in your list in case you decide to include
multiple columns.

Step 5 – implementing the column default handlers
In the previous step, we created column functions for available columns in the list.
If you skip the definition of specific function for a column, we should create a default
callback function called column_default, as shown in the following code:

function column_default($item, $column_name) {
 switch ($column_name) {
 case 'developer_name':
 return $item[$column_name];
 default:
 return print_r($item, true); //Show the whole array
for troubleshooting purposes
 }
}

Here, we need to define each and every column that will not be defined separately.
Even though we have defined developer_name, it won't be used as we have a
specific function called column_developer_name.

Chapter 6

[197]

Step 6 – displaying the checkbox for records
Apart from the custom columns, we need to have a column with a checkbox
for every record in the list. This checkbox will be used to select the records and
execute specific actions on the Bulk Actions dropdown menu. Let's consider the
implementation using the column_cb function inside the template:

function column_cb($item) {
 return sprintf(
 <input type="checkbox" name="%1$s[]" value="%2$s" />',
 /* $1%s */ $this->_args['singular'], //Let's simply
repurpose the table's singular label ("movie")
 /* $2%s */ $item['ID'] //The value of the checkbox should
be the record's id
);
}

The first parameter in the preceding statement uses a singular label we created
inside the constructor to set the name of checkbox as an array. The second parameter
contains the ID for the row as defined in our data set. This value should be the ID
of the record in the database table.

We can define any key for the ID in the data set. However, consistency
is important in developing reusable stuff, and hence, I prefer using ID
for all the record IDs in each of the lists I create. You may decide your
own key to be reused across all the custom lists.

Step 7 – listing the available custom columns
Now, we need to define all the columns available to create the custom list by
modifying the existing get_columns function, as illustrated in the following code:

function get_columns() {
 $columns = array(
 'cb' => '<input type="checkbox" />', //Render a checkbox
instead of text
 'developer_name' => __('Developer Name','wpwa')
);
return $columns;
}

This is an in-built function that returns an array of columns. We don't need to change
the details of the checkbox column as it's common to all the lists. Later, we have to
define all the custom columns using the column name as the key and the display
name as the value.

Customizing the Dashboard for Powerful Backends

[198]

Step 8 – defining the sortable columns of list
The get_sortable_columns function is pretty straightforward like the previous
one, where we define the columns to be sortable. Consider the following modified
implementation of this function for our requirements:

function get_sortable_columns() {
 $sortable_columns = array(
 'developer_name' => array('developer_name', false)
);
return $sortable_columns;
}

Here, we have only a single entry based on our requirements. You can add all the
available columns for custom lists. The key of the array item contains the column
name, and the value contains the database column. Since we will be using a
manually created data set from the database, the key and value will be same.

Step 9 – creating a list of bulk actions
In the default post list, we can see different options called Edit, Move to Trash,
and so on inside the Bulk Actions dropdown. Similarly, we can include custom
actions in custom lists. This is one of the most powerful features of this list, in
implementing complex requirements in web applications. Consider the modified
implementation of the get_bulk_actions function:

function get_bulk_actions() {
 $actions = array(
 'follow' => __('Follow','wpwa'),
);
return $actions;
}

The preceding function is prebuilt and returns a list of actions to be included in the
dropdown. In this scenario, we need followers to subscribe to developer activities.
Hence, we use a custom action called follow.

Step 10 – retrieving list data
Up until now, we have carried out the configuration part of the list, and now, we
are moving onto the exciting part by adding real data and executing actions. The
default template contains a function called prepare_items to set the data required
for the custom table. We can include the necessary SQL queries inside this function
to generate data. However, I prefer keeping the function at its default state and
providing the data through the example_data instance variable.

Chapter 6

[199]

You can use the extensive code comments of this function
to understand the functionality of each section and make
the customizations when necessary.

Step 11 – adding a custom list as a menu page
Having created the list, we need a specific location to access this list as it's not
available in any of the navigation menus. So, we will include the list on the left-hand
side of the navigation menu as an admin menu page. The following code should be
placed in class-wpwa-list-table.php after the WPWA_List_Table class:

function wpwa_followers_menu() {
 add_menu_page('Follow Developers', 'Follow Developers',
'follow_developer_activities', 'wpwa_subscriptions',
'followers_list_page');
}
add_action('admin_menu', 'wpwa_followers_menu');

The new menu page is created on the admin_menu action using the add_menu_page
function. Only users with the user role follow_developer_activities will have
the access to this function since we have specified the capability on add_menu_page.

This functionality can be provided for multiple user roles by creating
a new common capability for the preferred user roles.

Finally, we have defined the callback function as followers_list_page to generate
the HTML contents for the list.

Step 12 – displaying the generated list
First, we have to set the database results to the list table. So, consider the initial part
of the followers_list_page function for querying the database, as shown in the
following code:

function followers_list_page() {
 //Create an instance of our package class…
 $testListTable = new WPWA_List_Table();
 $user_query = new WP_User_Query(array('role' => 'developer'));
 foreach ($user_query->results as $developer) {

Customizing the Dashboard for Powerful Backends

[200]

 array_push($testListTable->example_data, array("ID" => $developer-
>data->ID, "developer_name" => $developer->data->display_name));
 }
 //Fetch, prepare, sort, and filter our data.
 $testListTable->prepare_items();
}

We can begin the implementation by initializing an object of the WPWA_List_Table
class. Then, we execute a WordPress query using a built-in WP_User_Query class to
retrieve the list of users with the role of a developer. We have chosen to manually
create the dataset by traversing through the database results and assigning it to the
dataset structure defined earlier. Keep in mind that we are passing the dataset to the
WPWA_List_Table class by using an instance variable called $example_data. Finally,
we call the prepare_items function to get the data ready with features such as
sorting, paginations, and so on.

Having completed the explanations on the initial part, we can move into the
HTML generation part of the followers_list_page function, as illustrated in
the following code:

<div class="wrap">
 <div id="icon-users" class="icon32">
</div>
 <h2><?php echo __('Follow Developers','wpwa'); ?></h2>
 <form method="POST">
 <!-- For plugins, we also need to ensure that the form
posts back to our current page -->
 <input type="hidden" name="page" value="<?php echo
$_REQUEST['page'] ?>" />
 <!-- Now we can render the completed list table -->
 <?php $testListTable->display() ?>
 </form>
</div>

Here, we have a basic HTML form and the necessary heading and labels. The
actual list generation is done through the display function of WPWA_List_Table.
This function is available on the WP_List_Table class and hasn't been overridden
on the template class. Hence, a call to display will use the function in the parent
class. You can also override the display function on the child class to provide a
different behavior to the default design.

Chapter 6

[201]

Now, your custom list should look like something similar to the following screenshot:

Even though we have completed the custom list implementation, the list doesn't
have any functionality until we implement the custom action to allow the followers
to subscribe to the developers. Let's move back to the process_bulk_action
function of the WPWA_List_Table class, as shown in the following code:

function process_bulk_action() {
 global $wpdb;
 //Detect when a bulk action is being triggered...
 if ('follow' === $this->current_action()) {
 $developers = $_POST['developer'];
 $user_ID = get_current_user_id();
 foreach ($developers as $developer) {
 $wpdb->insert(
 $wpdb->prefix . "subscribed_developers",
 array(
 'developer_id' => $developer,
 'follower_id' => $user_ID
)
 array(
 '%d',
 '%d'
)
);
 }

Customizing the Dashboard for Powerful Backends

[202]

 $msg = __('Succesfully completed.','wpwa') . "<a href='" .
admin_url() . "?page=wpwa_subscriptions'>
 " . __('Follow More Developers','wpwa') . "";
 wp_die($msg);
 }
}

The preceding function is used to execute all the actions defined in the Bulk Actions
dropdown. Since we have one action, using an if statement on current_action
seems appropriate. In scenarios where you have multiple actions, switch statements
will be ideal over if-else statements.

The followers have to tick the checkboxes of the developers they wish to follow.
Then, they can select the follow action and click on the Apply button to execute the
action. Once the button is clicked, we can get the selected developer IDs as an array
using $_POST['developer']. Also, we can get the ID of the follower using the
get_current_user_id function.

In Chapter 3, Planning and Customizing the Core Database, we created a custom table
called subscribed_developers to be used for developer-subscription management.
Now, we need to insert records to this table using a custom query, as shown in the
preceding code. Finally, we display the message on the same page with a link back
to the developer's list.

Now, we have a fully featured custom list with all the basic grid functionalities.
We can create as many lists as possible by creating new templates or creating a
reusable class for this library. It's for the future, but for now, you can test the list
by following developers.

An awesome visual presentation for
admin screens
In general, users who visit websites or applications don't understand the technical
aspects. Such users evaluate systems based on the user friendliness, simplicity, and
richness of the interface. Hence, we need to think about the design of the admin pages.
Most WordPress clients don't prefer the default interface as it is seen commonly by
users. This is where admin themes become handy in providing application-specific
designs. Even with admin themes, we cannot change the structure as it affects the
core functionality. However, we can provide eye-catching interfaces by changing the
default styles of the admin theme.

Chapter 6

[203]

Using existing themes
WordPress Version 3.8 and higher provide the ability to change the color theme
of the admin section using eight different color schemas. This is a great feature for
changing the look and feel of admin screens in WordPress. Users are allowed to
pick their own color scheme for the site, making it flexible for different users with
different color preferences. You can change the color theme from the Your Profile
section of the Users menu in the WordPress admin screen. The following screenshot
previews the available color themes in the user profiles section:

This is the most basic version of admin design customization as it only changes the
color scheme of the admin section. Other features such as elements, dimensions,
icons, and so on won't be changed. These features let users choose their color scheme.
However, most of you will need a simplified admin design or feature-rich modern
dashboards. This is where the admin theme plugin comes into action. We will
be covering admin theme plugins in the next section.

Using plugin-based third-party admin themes
The experienced WordPress developers know that the theme is designed to provide
the frontend functionality of a WordPress site. You can change the theme as you wish
and create custom themes based on your preference. However, the WordPress admin
features and design templates are stored inside the WordPress core files. WordPress
doesn't provide a feature for changing the admin theme or designing your own admin
theme. So, we can't provide the admin designs as part of a normal WordPress theme.
As a solution, we use plugins to customize the design of admin designs. You can find
many free and premium third-party plugins for admin themes.

Customizing the Dashboard for Powerful Backends

[204]

The following are some of the most popular admin theme plugins available in the
WordPress plugin directory and theme marketplaces:

•	 Bootstrap Admin: A clean, minimalistic admin theme based on Twitter's
Bootstrap (https://wordpress.org/plugins/bootstrap-admin/)

•	 Slate Admin theme: A clean, simplified WordPress admin theme
(https://wordpress.org/plugins/slate-admin-theme/)

•	 Retina Press: A brand new retina display custom theme designed for
the Wordpress admin (http://codecanyon.net/item/retina-press-
wordpress-admin-theme/4872562)

We will look at one of the listed admin theme plugins to understand how it changes
the look and feel of admin screens. We will be using the Slate Admin theme as it's
free and compatible with WordPress 4.0 and upwards and upwards. The following
screen previews the post creation screen using the Slate Admin theme:

Once this plugin is activated, you may notice that the design of the post creation
screen looks different from the default design and provides a much cleaner interface.
However, all the fields, text, and structure of the page still look the same.

As a developer, it's important for you to understand how an admin theme plugin
works and how you can create an admin theme plugin. We have already seen that
admin templates are generated from the core. So, the elements and structure are
fixed to certain elements, CSS classes, and IDs.

https://wordpress.org/plugins/bootstrap-admin/
https://wordpress.org/plugins/slate-admin-theme/
http://codecanyon.net/item/retina-press-wordpress-admin-theme/4872562
http://codecanyon.net/item/retina-press-wordpress-admin-theme/4872562

Chapter 6

[205]

In WordPress themes, we can completely change the design of the frontend posts
and pages by using our own templates and elements. Unfortunately, we can't use
the same procedure for admin themes as we don't have access to backend templates,
and we may lose some features by changing the elements on the WordPress admin
dashboard. In simple terms, it's not possible to change the elements of admin
templates using plugins. We can only change the design using CSS and JavaScript.
Admin theme plugins offer great features for changing the design of admin screens.
However, they are not flexible enough to create admin dashboards with advanced
components and designs. If we need a unique admin screens with our own features,
we need to remove the default admin menus and screens using filters and implement
all the features by using our own templates inside custom menu pages.

So far, we have looked at default color schemes and changing designs using
admin theme plugins. Next, we will discuss how to create your own admin
theme using a plugin.

Creating your own admin theme
Building a complete admin theme is a time-consuming task, which is beyond the scope
of this chapter, as we need to define custom styles for all the existing CSS selectors.
Therefore, we will provide a head start to the admin theme design by altering the main
navigation menu. Let's start by creating a class called class-wpwa-admin-theme.php
inside the portfolio management application. As usual, you will have to require the file
inside the main plugin file.

Let's start by defining the stylesheet for the admin theme using the following code:

<?php
class WPWA_Admin_Theme {
 public function __construct() {
 add_action('admin_enqueue_scripts', array($this,
'wpwa_admin_theme_style'));
 add_action('login_enqueue_scripts', array($this,
'wpwa_admin_theme_style'));
 }
 public function wpwa_admin_theme_style() {
 wp_enqueue_style('my-admin-theme', plugins_url('css/wp-
admin.css', __FILE__));
 }
}
$admin_theme = new WPWA_Admin_Theme();

Customizing the Dashboard for Powerful Backends

[206]

We begin the implementation by defining the necessary actions for including the
CSS file. Usually, we use admin_enqueue_scripts to include scripts and styles in
the admin area. The login_enqueue_scripts action is used to enable styles on
the login screen. You can omit the login_enqueue_scripts action if you are not
intending to customize the login screen.

Then, we add the CSS file specific to the plugin, using the wp_enqueue_style
function. That's all we need to implement in order to create admin themes. The
rest of the designing stuff will be handled through the CSS file. So, make sure to
create a new CSS file called wp-admin.css inside a folder called css.

The CSS file used for an admin theme is loaded after the default
WordPress admin stylesheets. Therefore, it will override the existing
styles provided by the default stylesheet.

In this section, we will style the main navigation menu of WordPress. You can
update the CSS file with menu-specific styles, as illustrated in the following code:

#adminmenuback,#adminmenuwrap { background: #000; }
#adminmenu a{ color : #FFF; }
#adminmenu a.menu-top, #adminmenu .wp-submenu .wp-submenu-head {
 border-bottom-color: #191A1B;
 border-top-color: #191A1B;
}
#adminmenu .wp-submenu, .folded #adminmenu a.wp-has-current-
submenu:focus + .wp-submenu, .folded #adminmenu .wp-has-current-
submenu .wp-submenu {
 background-color: #363636;
}
#adminmenu li.wp-menu-separator {
 background: none repeat scroll 0 0 #DFDFDF;
 border-color: #454545;
}
#adminmenu div.separator { background:#000; }
#adminmenu li.wp-menu-separator {
 background: none repeat scroll 0 0 #000;
 border-color: #000;
}
#adminmenu .wp-submenu li.current, #adminmenu .wp-submenu
li.current a, #adminmenu .wp-submenu li.current a:hover {
 color: #FFFFFF;
}

Chapter 6

[207]

#adminmenu .wp-submenu a:hover,
#adminmenu .wp-submenu a:focus {
 background-color: #d54e21;
 color: #fff;
}
#adminmenu li.menu-top:hover,#adminmenu li.opensub > a.menu-top,
#adminmenu li > a.menu-top:focus {
 background-color: #d54e21;
 color:#fff;
 font-weight:bold;
}
#adminmenu li.wp-has-current-submenu a.wp-has-current-submenu,
#adminmenu li.current a.menu-top, .folded #adminmenu li.wp-has-
current-submenu, .folded #adminmenu li.current.menu-top,
#adminmenu .wp-menu-arrow, #adminmenu .wp-has-current-submenu .wp-
submenu .wp-submenu-head {
 background: #d54e21 !important;
}
#adminmenu .wp-menu-arrow div { background:#d54e21 !important; }
a, #adminmenu a, #the-comment-list p.comment-author strong a,
#media-upload a.del-link, #media-items a.delete, #media-items
a.delete-permanently, .plugins a.delete, .ui-tabs-nav a {
 color: #FFFFFF;
}

Now, you can preview the navigation menu of the admin section using the
following screenshot:

Customizing the Dashboard for Powerful Backends

[208]

Customizing the menu was a very simple task, and now, we have a slightly different
interface with a different color scheme. Similarly, we have to define the styles for all
the available themes to make a complete admin theme.

The main style file of WordPress is the wp-admin.css file, located in the wp-admin/
css directory. I suggest that you have a look at this file to understand the styles of
the various components in WordPress. Fortunately, this file is well commented into
sections for easier identification. The following code shows the main components
inside the wp-admin.css file:

TABLE OF CONTENTS:

 1.0 - Text Elements
 2.0 - Forms
 3.0 - Actions
 4.0 - Notifications
 5.0 - TinyMCE
 6.0 - Admin Header
 6.1 - Screen Options Tabs
 6.2 - Help Menu
 7.0 - Main Navigation
 8.0 - Layout Blocks
 9.0 - Dashboard
10.0 - List Posts
 10.1 - Inline Editing
11.0 - Write/Edit Post Screen
 11.1 - Custom Fields
 11.2 - Post Revisions
 11.3 - Featured Images
12.0 - Categories
13.0 - Tags
14.0 - Media Screen
 14.1 - Media Library
 14.2 - Image Editor
15.0 - Comments Screen
16.0 - Themes
 16.1 - Custom Header
 16.2 - Custom Background
 16.3 - Tabbed Admin Screen Interface
17.0 - Plugins

Chapter 6

[209]

18.0 - Users
19.0 - Tools
20.0 - Settings
21.0 - Admin Footer
22.0 - About Pages
23.0 - Full Overlay w/ Sidebar
24.0 - Customize Loader
25.0 - Misc

Use the table of content provided in the wp-admin.css file to style the remaining
components to build a complete admin theme.

The responsive nature of the admin
dashboard
The responsive design has become one of the major trends in web application
development with an increase in the usage of mobile-based devices. Responsive
applications are built using stylesheets that adapt to various screen resolutions
with the help of media queries. Fortunately, the WordPress admin dashboard is
responsive by default, and hence, we can make responsive backends without
major implementations.

Let's consider the following screenshot of an admin dashboard in its default
resolution to understand its responsive nature:

Customizing the Dashboard for Powerful Backends

[210]

Now, let's preview the mobile version of the same screen using the following
screenshot:

With the low screen resolution, the theme has made adjustments to keep the
responsiveness by minimizing the main navigation menu and increasing the
size of the dashboard widgets. This is an example of the responsive nature of the
WordPress admin section. Try other screens to get an idea of how elements are
adjusted to keep the responsive nature .

Since the admin section is responsive by default, we don't have to do anything else
to make it responsive. However, keep in mind that the plugins we create and use
will not be responsive by default. Hence, it's important to design your plugin
screens using percentage dimensions to keep the responsive nature.

Time for action
In this chapter, we covered the basics of an admin panel-related functionality to
be compatible with web applications. Now, it's time for you to take these things
beyond the basics by implementing the following actions:

•	 We created a default type of the admin list table to allow subscriptions.
Now, try to include AJAX-based star rating system to allow followers to
rate developers by implementing a custom column in the existing list.

Chapter 6

[211]

•	 We started the implementation of the custom admin theme by setting up
styles for the left navigation menu. Try to complete the theme by styling
the remaining components.

Summary
Throughout this chapter, we looked at some of the exciting features of the WordPress
admin dashboard, and how we can customize them to suit complex applications.
We started by customizing the admin toolbar and the main navigation menu for
different types of users. Most of the access permissions to the menu were provided
through user capabilities, and hence, we didn't need the manual permission checking
in building the menu.

Typical web applications contain a large amount of applications settings to let users
customize the application based on their preferences. So, we looked at creating our
own options pages as well as the default options management features provided
by the WordPress core. Also, we looked at the default lists in the admin panel and
extended the existing WordPress admin list tables to cater to custom functionality
beyond core implementation.

Finally, we looked at the importance of responsive web design and how the
WordPress admin dashboard adapts to responsive layouts while showing a
glimpse into the WordPress admin theme design.

In the next chapter, Chapter 7, Adjusting Theme for Amazing Frontends, we will
explore how we can manage existing WordPress themes to build complex web
application layouts using modern techniques.

[213]

Adjusting Theme for
Amazing Frontends

Generally, users who visit web applications don't have any clue about the
functionality, accuracy, or quality of the code of the application. Instead, they decide
the value of the application based on its user interfaces and the simplicity of using its
features. Most expert-level web developers tend to give more focus on development
tasks in complex applications. However, the application's design plays a vital role
in building the initial user base. WordPress uses themes that allow you to create
the frontend of web applications with highly extendable features that go beyond
conventional layout designs. Developers and designers should have the capability
to turn default WordPress themes into amazing frontends for web applications.

In this chapter, we will focus on the extendable capabilities of themes while exploring
the roles of the main theme files for web applications. Widgetized layouts are essential
for building flexible applications, and hence, we will also look at the possibilities of
integrating widgetized layouts with WordPress action hooks. It's important to have
a very good knowledge of working with WordPress template files to understand the
techniques discussed in this chapter. By the end of this chapter, you will be able to
design highly customizable layouts to adapt future enhancements.

In this chapter, we will cover the following topics:

•	 A basic file structure of the WordPress theme
•	 Understanding the template execution hierarchy
•	 Web application layout creation techniques
•	 Building a portfolio application home page
•	 Widgetizing application layouts

Adjusting Theme for Amazing Frontends

[214]

•	 Generating the application frontend menu
•	 Managing options and widgets with a customizer
•	 Creating pluggable templates
•	 Planning action hooks for layouts

An introduction to the WordPress
application frontend
WordPress powers its frontend with a concept called themes, which consists of a set
of predefined template files to match the structure of the default website layouts. In
contrast to web applications, a WordPress theme works in a unique way. In Chapter
1, WordPress as a Web Application Framework, we had a brief introduction to the role
of a WordPress theme and its most common layout. Preparing a theme for web
applications can be one of the more complicated tasks that is not discussed widely
in the WordPress development community. Usually, web applications are associated
with unique templates, which are entirely different from the default page-based
nature of websites.

A basic file structure of the WordPress theme
As a WordPress developer, you should have a fairly good idea about the default
file structure of WordPress themes. Let's briefly introduce the default files before
identifying their usage in web applications. Think about a typical web application
layout where we have a common header, footer, and content area. In WordPress,
the content area is mainly populated by pages or posts. The design and the content
for pages are provided through the page.php template, while the content for posts
is provided through one of the following templates:

•	 index.php

•	 archive.php

•	 category.php

•	 single.php

Basically, most of these post-related file types are developed to cater to the typical
functionality of blogging systems, and hence, can be omitted in the context of web
applications. Since custom posts are widely used in application development, we need
to focus more on templates such as single-{post_type} and archive-{post_type}
rather than category.php, archive.php and tag.php.

Chapter 7

[215]

Even though default themes contain a number of files for providing
default features, only style.css and index.php files are enough for
implementing a WordPress theme. Complex web applications themes
are possible with the standalone index.php file.

In normal circumstances, WordPress sites have a blog built on posts, and all the
remaining content of the site is provided through pages. When referring to pages,
the first thing that comes to mind is the static content. However, WordPress is a fully
functional CMS, and hence, the page content can be highly dynamic. Therefore, we
can provide complex application screens by using various techniques on pages. Let's
continue our exploration by understanding the theme file execution hierarchy.

Understanding the template execution
hierarchy
WordPress has quite an extensive template execution hierarchy compared to
general web application frameworks. However, most of these templates will be
of minor importance in the context of web applications. Here, we will illustrate
the important template files in the context of web applications. The complete
template execution hierarchy can be found at http://codex.wordpress.org/
images/1/18/Template_Hierarchy.png.

Following diagram shows the template execution hierarchy in brief.

Once the initial request is made, WordPress looks for one of the main starting
templates, as illustrated in the preceding screenshot. It's obvious that most of
the starting templates such as the front page, comments popup, and index pages
are specifically designed for content management systems. In the context of web
applications, we need to put more focus into both singular and archive pages,
as most of the functionality depends on top of those templates. Let's identify the
functionality of the main template files in the context of web applications:

•	 Archive pages: These are used to provide summarized listings of data
as a grid.

http://codex.wordpress.org/images/1/18/Template_Hierarchy.png
http://codex.wordpress.org/images/1/18/Template_Hierarchy.png

Adjusting Theme for Amazing Frontends

[216]

•	 Single posts: These are used to provide detailed information about the
existing data in the system.

•	 Single pages: These are used for any type of dynamic content associated
with applications. Generally, we can use pages for form submissions,
dynamic data display, and custom layouts.

Let's dig deeper into the template execution hierarchy on the singular page path,
as illustrated in the following diagram:

A singular page is divided into two paths that contain posts or pages. The static
page is defined as custom or default page templates. In general, we will use default
page templates for loading website pages. WordPress looks for a page with the slug
or ID before executing the default page.php file. In most scenarios, web application
layouts will take the other route of custom page templates, where we create a unique
template file inside the theme for each of the layouts and define it as a page template
using code comments. We can create a new custom page template by creating a new
PHP file inside the theme folder and using the Template Name definition in code
comments, illustrated as follows:

<?php
/*

Chapter 7

[217]

* Template Name: My Custom Template
*/
?>

To the right of the preceding diagram, we have a single post page, which is divided
into three paths called the blog post, custom post, and attachment post. Both
attachment posts and blog posts are designed for blogs and hence will not be
used frequently in web applications. However, the custom post template will
have a major impact on application layouts. As with a static page, custom post
looks for specific post type templates before looking for a default single.php file.

The execution hierarchy of an archive page is similar in nature to posts, as it looks
for post-specific archive pages before reverting to the default archive.php file.

Now, we have had a brief introduction to the template loading process used by
WordPress. In the next section, we will look at the template loading process of a
typical web development framework to identify the differences.

The template execution process of web
application frameworks
Most stable web application frameworks use a flat and straightforward template
execution process compared to the extensive process used by WordPress. These
frameworks don't come with built-in templates, and hence, each and every
template will be generated from scratch:

Adjusting Theme for Amazing Frontends

[218]

In this process, the initial request always comes to the index.php file, which is
similar to the process used by WordPress or any other framework. This process
is known as the Front Controller pattern in most PHP frameworks. It then looks
for custom routes defined within the framework. It's possible to use custom routes
within a WordPress context, even though it's not used generally for websites
or blogs. Finally, the initial request looks for the direct template file located in
the templates section of the framework. As you can see, the process of a normal
framework has very limited depth and specialized templates.

Keep in mind that index.php, referred to in the preceding section,
is the file used for the main starting point of the application, not the
template file. In WordPress, we have a specific template file named
index.php located inside the theme folder as well.

Managing templates in a typical application framework is a relatively easy task
when compared to the extensive template hierarchy used by WordPress. In web
applications, it's ideal to keep the template hierarchy as flat as possible with
specific templates targeted towards each and every screen.

In general, WordPress developers tend to add custom functionalities and features
by using specific templates within the hierarchy. Having multiple templates for
a single screen and identifying the order of execution can be a difficult task in
large-scale applications, and hence should be avoided in every possible instance.

Web application layout creation
techniques
As we move into developing web applications, the logic and screens will become
complex, resulting in the need of custom templates beyond the conventional
ones. There are a wide range for techniques for putting such functionality into the
WordPress code. Each of these techniques have their own pros and cons. Choosing
the appropriate technique is vital in avoiding potential bottlenecks in large-scale
applications. Here is a list of techniques for creating dynamic content within
WordPress applications:

•	 Static pages with shortcodes
•	 Page templates
•	 Custom templates with custom routing

Chapter 7

[219]

Shortcodes and page templates
We discussed static pages with shortcodes and page templates in Chapter 2,
Implementing Membership Roles, Permissions, and Features. The shortcode technique
should not be used in web applications due to the lack of control it displays within
the source code. Even though page templates are not the best solution, we can use
them for advanced requirements in web applications.

In the preceding two techniques, the site admin has the capability of changing the
structure and core functionality of an application through the dashboard by changing
the database content. Usually, the site admin is someone who is capable of managing
the site, not someone who has the knowledge of web application development. As
developers, we should always keep the controlling logic and core functionality of an
application within our control by implementing it inside the source code files. The site
admin should only be allowed to change the application data and behavior within the
system rather than the applications control logic. Let's consider the following scenario
to help you understand the issues that occur in the preceding techniques:

Assume that we want to create a sign-up page for our application. So, we create a page
named sign-up from the admin dashboard and assign a shortcode or page template to
it to display the sign-up form. Later, users can use the sign-up page from the frontend
to get registered. Then, we get a new requirement to add some information to the
sign-up page. While updating the page, we get the part of shortcode that was deleted
by mistake and save it without even knowing. Now the application's sign-up page is
broken, and the users will not be able to use the system. This is the risk of using the
preceding techniques where we can easily break the core controlling functionality of
an application.

Instead, we should be allowing both data and behavior changes using the admin
dashboard, for example, we can allow the admin to choose the necessary fields for
the sign-up form using settings. We can alter the behavior of the sign-up form, but
we can never break the sign-up page. Therefore, the preceding two techniques are
not ideal in large-scale web application layouts.

Custom templates with custom routing
The custom routing technique allows us, as developers, to have complete control
over the template generation process. In Chapter 2, Implementing Membership Roles,
Permissions, and Features, we looked at the basics of custom templates with routing
while creating the frontend login and registration pages. Now, let's move on by
inspecting the advanced aspects of custom template techniques.

Adjusting Theme for Amazing Frontends

[220]

Using pure PHP templates
Pure PHP templates are a widely used technique within popular frameworks,
including WordPress. In this technique, template files are created as separate PHP
files to contain the visual output of the data. The separation of models, views,
and controllers allows us to manage each concern of the application development
independent from each other, thus increasing maintainability and extensibility. In
ideal situations, views should have a very limited business logic, or if possible, no
logic at all. Most probably, designers who don't have much of an idea about PHP
coding will be working with the views. Therefore, it's important to keep the views
as simple as possible with display logic and data. The data required for the views
should be generated from models by executing the business logic.

Even though this technique is widely used, it doesn't fulfill the expectation of using
views completely. These PHP templates will always have some PHP code included.
The main problem with this technique is when someone who doesn't have PHP
knowledge makes a mistake in the PHP code placed inside templates; the application
will break. PHP was originally meant to be a template engine, and hence, we won't
have many problems in using PHP templates other than the preceding issue.

The WordPress way of using templates
WordPress uses a function called get_template_part for reusing templates as
pure PHP files. This function locates the given template parts inside your theme
files and makes a file inclusion under the hood. Consider the following code for
understanding the use of the get_template_part function:

get_template_part($slug, $name);

The first parameter, $slug, is mandatory, and it is used to load the main template.
The second parameter, $name, is optional, and it is used to load a specialized
version of the template. Let's look at some different usages of this function:

get_template_part("project");
get_template_part("project", "wordpress");

The first line of code will include the project.php file inside the themes folder.
The second line of code will include the project-wordpress.php file, which will
be a specialized version of the project.php file in typical scenarios. Typically, we
pass the necessary data to templates when using template systems. However, the
get_template_part function does not provide the option of passing data as it's a
pure file inclusion. However, we have access to the data within this context, as this
is a pure file inclusion. Also, we have the option of accessing the necessary data
through global variables.

Chapter 7

[221]

If you decide to use the WordPress technique of using template
files, make sure you create each and every template file inside
your theme folder.

Direct template inclusion
Developers who don't prefer the WordPress method of including templates can
create their own style of template inclusion. In Chapter 2, Implementing Membership
Roles, Permissions, and Features, we used the direct template method with custom
routing. Let's recall the implementation to understand the process:

add_action('template_redirect', array($this, 'front_controller'));
public function front_controller() {
 global $wp_query;
 $control_action = $wp_query-
>query_vars['control_action'];
 switch ($control_action) {
 case 'register':
 do_action('wpwa_register_user');
 break;
 case 'login':
 do_action('wpwa_login_user');
 break;
 case 'activate':
 do_action('wpwa_activate_user');
 break;
 }
}

We intercepted the default template-locating procedure using the template_
redirect action and used a query variable to switch routes. Then, we implemented
the action hooks to contain the template inclusion and functionality, as shown in the
following code:

public function activate_user() {
 // Implementing neccessary functions and data generation
 include dirname(__FILE__) . '/templates/info.php';
 exit;
}

In this scenario, the info.php template has access to all the data generated inside
the activate_user function. Developers should execute all the business logic in the
top section of the activate_user function. Even though info.php has access to all
the data, it's good practice to put the data necessary for the template inside a specific
array so that anyone can identify the data used in the template just by looking at the
activate_user function.

Adjusting Theme for Amazing Frontends

[222]

With this technique, we can create the template files inside the themes folder or
plugins folder and load it where necessary, making it more flexible compared
to the get_template_part technique of WordPress.

Theme versus plugin-based templates
In typical web applications, templates will be created inside a separate folder
from the other main components such as models and controllers. WordPress
is mainly used for general websites and content management systems. So, the
visual representation is much more important than a web application. Hence,
theme templates become the top priority in WordPress development, where
we can create template files.

Now, the most important question is whether to place web application templates
within the themes or plugins folder. The decision between the theme and plugin
templates purely depends on your personal preference and the type of application.
First, we have to keep in mind that most existing theme templates are used for
generating CMS-related functionality, and hence, they will have a lesser impact
in advanced web applications. Most web application templates need to be created
from scratch. So, answering the following question will simplify your decision
making process.

Are you planning to create an application-specific theme?
What I mean by an application-specific theme is that you are willing to change the
structure and code of the existing templates to suit your application. These kinds of
themes will not be reused across multiple applications, and switching themes will
almost be impossible. The following list illustrates some of the tasks to be executed
on existing files to make application-specific themes:

•	 The heavy usage of custom fields
•	 Removing existing components such as sidebars, comments, and so on
•	 Using custom action hooks with templates
•	 Using custom widgetized areas

If your answer is yes, all the templates should be placed inside the themes folder as
they will not be used for any other application. On the other hand, if you are planning
to design new templates for the application while keeping the existing templates
without major customizations, it's a good practice to create the application-specific
templates inside the plugins folder. This technique separates application-specific
templates from the core templates, allowing you to switch the theme anytime without
breaking the application. Also, maintenance becomes easier as core templates and
application-specific templates are easily tracked separately.

Chapter 7

[223]

Building the portfolio application home
page
So far, we have learned the theoretical aspects of creating templates inside
WordPress themes. Now, it's time to put them into practice by creating the home
page for a portfolio application. In this section, we will talk about the importance
of widget-based layouts for web applications while building the home page.

What is a widget?
A widget is a dynamic module that provides additional features to your
website. WordPress uses widgets to add content to website sidebars. In most
web applications, we won't get sidebars while creating layouts. However, we can
take widgets beyond the conventional sidebar usage by creating fully widgetized
layouts for increased flexibility. With WordPress, we can widgetize any part of
the application layout, allowing developers to add content dynamically without
modifying the existing source code.

Let's plan the structure of the home page layout by using widgets, as shown in the
following diagram:

According to the preceding diagram, the home page will be fully widgetized by
using a single widget area. At this stage of the project, we will include three widgets
within the widgetized area to display the recent developers, recent projects, and
recent followers. There is no limitation to the number of widget areas allowed per
screen, and hence, you can define multiple widget areas wherever necessary. Also,
we can keep part of the layout static while widgetizing the other parts.

Adjusting Theme for Amazing Frontends

[224]

In web applications, widgets play a very important role compared to websites.
By widgetizing layouts, we allow the content to be dynamic and flexible for
future enhancements.

Widgetizing application layouts
As mentioned earlier, we have the option of creating template files inside a
theme or a plugin. Here, we will create the templates inside the plugins folder
to improve flexibility. So, let's begin the process by creating a file called
class-wpwa-theme.php within the root directory of our main plugin and including
it in the class-wpwa-portfolio-manager.php file. Next, we can update the
constructor code as follows to register the widgetized area for the home page:

class WPWA_Theme {
 public function __construct() {
 $this-> register_widget_areas();
 }
 public function register_widget_areas() {
 register_sidebar(array(
 'name' => __('Home Widgets','wpwa'),
 'id' => 'home-widgets',
 'description' => __('Home Widget Area', 'wpwa'),
'before_widget' => '<div id="one" class="home_list">',
 'after_widget' => '</div>',
 'before_title' => '<h2>',
 'after_title' => '</h2>'
));
 }
}

Surprisingly, we don't have to use an action hook to create the widget areas.
WordPress widgets are designed to work on sidebars, and hence the function
name, register_sidebar, is used for defining widgetized areas. However, we
don't need an actual sidebar to define widget areas for various purposes. Most
of the configurations used for this function are important for working with the
widget areas that are explained as follows:

•	 name: This is used to define the name of the widgetized area. It will be
used to load the widgetized area on frontend templates.

•	 id: This is used to uniquely identify the widget area.
•	 before_widget and after_widget: These are used to provide additional

HTML content before and after the widget contents.

Chapter 7

[225]

•	 before_title and after_title: These are used to provide additional
HTML content before and after the widget title.

Once the previous code is implemented, you will get a dynamic widgetized area in
the admin dashboard, as shown in the following screenshot:

Creating widgets
Having defined the widget area, we can create some dynamic widgets to populate
the home page content. Registering the widgets is similar to the process used for
registering the widgetized areas. Let's create a function for including and registering
widgets into the application:

public function register_widgets() {
 $base_path = plugin_dir_path(__FILE__);
 include $base_path . 'widgets/class-home-list-widget.php';
 register_widget('Home_List_Widget');
}

We will create all three widgets required for the home page using the class-home-
list-widget.php file inside the widgets folder of our plugins folder. First, we
have to include the widgets file inside the register_widgets function. Second,
we have to register each and every widget using the register_widget function.
We can create three separate widgets for the home page. However, we will create
a single widget to illustrate the power of reusability for complex web applications.

Adjusting Theme for Amazing Frontends

[226]

Therefore, we have limited the widget's registration to a single widget named
Home_List_Widget. This will be the class of the widget that extends the WP_Widget
class. Finally, we have to update the constructor with the widgets_init action,
as shown in the following code:

add_action('widgets_init', array($this, 'register_widgets'));

In general, widgets contain a prebuilt structure that provides their functionality.
Let's understand the process and functionality of a widget using its base structure,
as illustrated in the following code:

class Home_List_Widget extends WP_Widget {
 function __construct() { }
 public function widget($args, $instance) { }
 public function form($instance) { }
 public function update($new_instance, $old_instance) { }
}

First, each widget class should extend the WP_Widget class as the parent class.
Then, we need four components, including the constructor to make a widget.
Let's see the role of each of these functions within widgets:

•	 __construct: This function is used to register the widget by calling
the parent class constructor with necessary parameters

•	 widget: This function is used to construct the frontend view of the
widget using the processed data

•	 form: This function is used to create the backend form for the widget for
defining necessary configurations and options

•	 update: This function is used to save and update the fields inside the
form function to the database tables

Now, we have a basic idea about the prebuilt functions within widgets. Let's start
the implementation of Home_List_Widget to create the home page content. Basically,
this widget will be responsible for providing the home page content such as the
recent developers, projects, and followers. Considering the current requirements,
we need two form fields for defining the widget title and choosing the type of
widget. Let's get things started by implementing the constructor as follows:

public function __construct {
 parent::__construct(
 'home_list_widget', // Base ID

Chapter 7

[227]

 'Home_List_Widget', // Name
 array('description' => __('Home List Widget',
'wpwa'),) // Args
);
}

Here, we call the parent class constructor by passing ID, name, and description.

This will initialize the main settings of the widget. We can then have a look at
the implementation of the form function using the following code:

public function form($instance) {
 if (isset($instance['title'])) {
 $title = $instance['title'];
 } else {
 $title = __('New title', 'wpwa');
 }
 if (isset($instance['list_type'])) {
 $list_type = $instance['list_type'];
 } else {
 $list_type = 0;
 }
?>
 <p>
 <label for="<?php echo $this->get_field_name('title');
?>"><?php _e('Title:'); ?></label>
 <input class="widefat" id="<?php echo $this-
>get_field_id('title'); ?>" name="<?php echo $this-
>get_field_name('title'); ?>" type="text" value="<?php echo
esc_attr($title); ?>" />
 </p>
 <p>
 <label for="<?php echo $this->get_field_name('list_type');
?>"><?php _e('List Type:'); ?></label>
 <select class="widefat" id="<?php echo $this-
>get_field_id('list_type'); ?>" name="<?php echo $this-
>get_field_name('list_type'); ?>" >
 <option <?php selected($list_type, 0); ?>
value='0'>Select</option>
 <option <?php selected($list_type, "dev"); ?>
value='dev'>Latest Developers</option>
 </select>
 </p>
<?php
}

Adjusting Theme for Amazing Frontends

[228]

Let's get started!

1.	 First, we will check the existing values of the form fields using the $instance
array. This array will be populated with the existing values of the form fields
from the database. Initially, these fields will contain empty values.

2.	 Next, we have defined the form fields required for the widget. The title of
the widget is implemented as a text field, while the list type is implemented
as a drop-down field with developers, projects, and followers as the options.
Here, we have only defined the value for developers to simplify our
explanations. You can use the plugin source code for complete values.

You might have noticed the use of the get_field_name and get_field_id
functions inside the name and ID attributes of the form fields. These two
functions are located in the parent class and are used to generate dynamic
names in a common format. Use the view source of the browser window,
and you will find the field names as something similar to the following code:
widget-home_list_widget[1][title]
widget-home_list_widget[1][list_type]

These types of field names and IDs are assigned to make the automation
easier. The widgets' data-saving method is completely automated, and hence
we have to only define the necessary form fields. Saving the data to the
database will be done automatically by WordPress.

3.	 Next, we need to implement the form-updating function, as shown in the
following code:
public function update($new_instance, $old_instance) {
 $instance = array();
 $instance['title'] = (!empty($new_instance['title']))
? strip_tags($new_instance['title']) : '';
 $instance['list_type'] =
(!empty($new_instance['list_type'])) ?
strip_tags($new_instance['list_type']) : '';
 return $instance;
}

The update function is relatively simpler than other functions, as we just
have to define the form field keys inside the $instance array.

4.	 The rest of the database updating will be done automatically behind the
scenes. Once those fields are defined, you will get a new widget item named
Home_List_Widget in the Available Widgets area. You can drag the widget
into Home Widget to include the widget on the home page. Now, your
screen should look like the following screenshot:

Chapter 7

[229]

We need to implement the form function to complete the development of the home
page widgets. Here, we want to display the list of developers, projects, or followers.
We will construct the developer list for the purpose of this explanation, and you can
find the remaining widget implementations within the source code. This function
generates the frontend display contents. Throughout this book, we have given higher
priority to separating templates from business logic. Therefore, we need to use
separate templates for generating the HTML required for a widget's frontend display.
Here, we will use the template loader plugin we developed earlier in this book.

Now, we can move back to the implementation of the widget function of the home
page widget, as given in following code:

public function widget($args, $instance) {
 global $wpwa_template_loader,$home_list_data;
 extract($args);
 $title = apply_filters('widget_title', $instance['title']);
 $list_type = apply_filters('widget_list_type',
$instance['list_type']);
 echo $before_widget;
 if (!empty($title))
 echo $before_title . $title . $after_title;
 switch ($list_type) {
 case 'dev':
 $user_query = new WP_User_Query(array('role' => 'developer' ,
'number' => 10));
 $home_list_data = array();
 $home_list_data ["records"] = array();
 foreach ($user_query->results as $developer) {

Adjusting Theme for Amazing Frontends

[230]

 array_push($home_list_data ["records"], array("ID" =>
$developer->data->ID, "title" => $developer->data->display_name));
 }
 $home_list_data ["title"] = $title;
 ob_start();
 $wpwa_template_loader->get_template_part("home","list");
 echo ob_get_clean();
 break;
 }
echo $after_widget;
}

•	 The first three lines of this function extracts the arguments passed to the
widget function and retrieves the widget option values by applying the
necessary filters.

•	 The next three lines are used to wrap the widget with dynamic content
when required.

•	 Then, we come to the most important part of the function where we
generate the front layout and the data. The template loader class,
WPWA_Template_Loader, is accessed using global variable named
$wpwa_template_loader for dynamic template loading.

•	 Then, we check the value of the drop-down field using the switch
statement. In the widget form, we included dev as the key for developers.

•	 The other two option values can be found in the source code. Inside the dev
case section, we query the database to retrieve the recently joined developers
in the application using WP_User_Query. The user role for developers is used
to filter the values.

•	 Then, we add the generated results into the $home_list_data array to pass
them into the template.

•	 Finally, we call the get_template_part function of the template loader object
by passing the template name as home-list. You can create a PHP file named
home-list-template.php inside the templates folder. The implementation
of the home page widgets template is given in the following code:

<?php global $home_list_data; ?>
<div class='home_list_item'>
 <div class='list_panel'>
 <?php foreach($home_list_data["records"] as $record){
?>

Chapter 7

[231]

 <div class='list_row'><?php echo
$record['title']; ?><?php
do_action('wpwa_home_widgets_controls',$record['type'],$rec
ord['ID']); ?></div>
 <?php } ?>
 </div>
</div>

The preceding template generates the developers list using the data passed into the
template. So far, we have created the necessary widgets and the widget areas for the
home page. The final task of this process is to create the home page template itself.

Designing a home page template
We have to create a file named home-template.php inside the templates folder.
At the beginning of the widget creation process, we planned the structure of the
home page using a wireframe. Now, we need to adhere to the structure while
designing the home page, as shown in the following code:

<?php get_header(); ?>
<?php if (!function_exists('dynamic_sidebar') ||
!dynamic_sidebar('Home Widgets')) :
endif;
?>
<?php get_footer(); ?>

These three lines of code make the complete design and the data for the home page.
Usually, every page template contains a WordPress header and footer using the
get_header and get_footer functions. The code used between the header and
footer checks for the existence of the dynamic_sidebar function for loading dynamic
widget areas. Then, we load the widgetized area created in the Widgetizing application
layouts section using the sidebar name. This area is populated with the widgets
assigned in the admin section.

The design and functionality of the home page is now completed and ready to be
displayed in the application. However, we haven't given instructions to WordPress
to load it as the home page. So, let's go to the WPWA_Theme class to define the home
page. First, we have to add the following line of code to the plugin constructor to
customize the template redirection process:

add_action('template_redirect', array($this,
'application_controller'));

Adjusting Theme for Amazing Frontends

[232]

The implementation of the application_controller function will look like the
following code:

public function application_controller() {
 global $wp_query,$wpwa_template_loader;
 $control_action = isset ($wp_query-
>query_vars['control_action']) ? $wp_query-
>query_vars['control_action'] : '';
 if (is_home () && empty($control_action)) {
 ob_start();
 $wpwa_template_loader->get_template_part("home");
 echo ob_get_clean();
 exit;
 }
}

WordPress allows us to check the home page of the application using the is_home
function. Our plan is to redirect the default home page to the custom home template
created in the preceding sections. Hence, we intercept the default routing process
and use the template loader class to dynamically use the home template using the
get_template_part function. Also, we have to make sure that the control_action
query variable is empty before rendering the home page.

Now, you should get a blank page with the header and footer on the home page.
Next, you can log in as the admin and add the developers, followers, and projects
widgets to the widgetized area in the admin section and save the changes. The
final output of the home page will look like the following screenshot:

Chapter 7

[233]

Generating the application frontend menu
Typically, a web application's frontend navigation menu varies from the
backend menu. WordPress has a unique backend with the admin dashboard.
The logged-in users will see the backend menu on the top of the frontend screens
as well. In the previous chapter, we looked at various ways of customizing the
backend navigation menu. Here, we will look at how the frontend menu works
within WordPress.

Navigate to the themes folder and open the header.php file of the Responsive
theme. You will find the implementation for the frontend menu using the
wp_nav_menu function. This function is used to display the navigation menus
generated from the Appearance section of the WordPress admin dashboard.
As far as the portfolio application is concerned, we need four different frontend
menus for normal users, developers, followers, and members. By default,
WordPress uses the assigned menu or the default page list to create the menu.
Here, we will create four different navigation menus based on the user role.

For the purposes of explanation, we will be manually creating
menus for each user role. In large applications, we need to figure
out a method to dynamically generate menu items based on roles
and permissions.

Creating a navigation menu
We have to log in to the portfolio application as the admin and navigate to
Appearance | Menus to create new frontend menus. Since most of you are
familiar with creating menus for websites, I will keep the explanation process
as short as possible. Now, enter a menu name and click on the Save Menu
button to create the menu. Here, we will start by creating the developers menu.
Now, your screen will look something similar to the following screenshot:

Adjusting Theme for Amazing Frontends

[234]

Once created, we have to add the menu items specific to the developers user role.
Since we haven't got many frontend screens at this stage, we will be specifying Home
and Developers as the menu items. Later, we can add the necessary submenus to the
Developers menu item. Both the Home page and the Developers page will be created
from scratch using the custom templates procedure. Therefore, we have to use custom
links to create menu items. After adding two menu items, click on the Save Menu
button and you will get something similar to the following screenshot:

We have to follow this process for other user roles in the portfolio application.
Make sure that you use the menu names followers, members, and visitors for
the remaining user roles. Once all four menus are created, your menu screen will
look like the following screenshot:

Chapter 7

[235]

The manual implementation of frontend menus is not
practical in larger applications, and hence, we should have
a sound knowledge of working with menu-related database
tables and fields to automate the process.

Once the custom menu is created, the wp_terms table will have a new entry for
the menu with the name of the menu and the slug. Then, we have to look at the
wp_term_taxonomy table for the related entry of the menu item with the taxonomy
column defined as nav_menu. This database row will also contain the number of
menu items inside the menu, which is displayed in the count column, as illustrated
in the following screenshot taken from phpMyAdmin:

Finally, we have to look for the information about each and every menu item stored
in the wp_posts table. Consider the following screenshot taken from the wp_posts
table in phpMyAdmin:

As you can see, all the menu items are stored as table rows in the wp_posts table
with a post_type column named nav_menu_item. The post_status column stored
as publish means that the menu item is active, while draft means that the menu
item is inactive or deleted. Developers can use a combination of these three database
tables with user roles and permissions to automate the menu creation process.

Adjusting Theme for Amazing Frontends

[236]

Displaying user-specific menus on the
frontend
After having created user-specific menus in the WordPress admin section, we can
now move on to displaying them on the frontend. Open the header.php file of the
Responsive theme and you will find the main menu defined as header-menu using the
theme_location parameter. The main menu generation code is defined as follows:

<?php wp_nav_menu(array(
 'container' => '',
 'theme_location' => 'header-menu')
);
?>

By default, this code will load the menu used for the Header Menu drop-down
box in Appearance | Menus | Manage Locations. In web applications, we need
user role-specific menus, and hence, we can leave the Theme Locations section
empty. Replace the preceding code with the following code to display frontend
menus based on a user role:

<?php
if (current_user_can('edit_posts')){
 wp_nav_menu(array('menu' => 'developers'));
}elseif (current_user_can('follow_developer_activities')){
 wp_nav_menu(array('menu' => 'followers'));
}elseif(current_user_can('manage_membership')){
 wp_nav_menu(array('menu' => 'members'));
}else{
 wp_nav_menu(array('menu' => 'visitors'));
}
?>

WordPress doesn't have a proper method to check for user roles, including custom
roles. Even though we can use current_user_can to check for roles, the WordPress
documentation suggests that it might work incorrectly for custom roles. Therefore, we
need a user-role-specific capability for checking the role. Here, we have implemented
the four menus created in the admin section by checking the necessary capabilities.
The name of the menu is used as the one and only parameter.

In web applications, create a user-role-specific capability to check
various permissions. This capability doesn't have to provide any
functionality. Instead, it will be used to provide role-based permissions.

Once logged in, each user will have a frontend menu specific to their user role,
and now, we have a basic user role-based menu for a portfolio application.

Chapter 7

[237]

Managing options and widgets with
customizer
The WordPress theme customizer is a great feature for customizing a theme's
settings and components from the frontend. This feature lets you preview those
changes in real time and is hence useful for administrators. Generally, customizer is
capable of editing the following sections in real time:

•	 Site title and Tagline
•	 Colors
•	 Header Image
•	 Background Image
•	 Navigation
•	 Widgets
•	 Static Front Page

The sections of the customizer are theme-dependent, and hence, you will see
more or less sections in various themes. You can access the theme customizer
by navigating to the Appearance | Customize menu. The following screenshot
previews the default customizer screen of the Responsive theme:

All these sections play a part in designing a website with WordPress. However, theme
options and widgets are the most important components from the web development
perspective, and hence, we will discuss the usage of options and widgets.

Adjusting Theme for Amazing Frontends

[238]

Adding custom options to the theme
customizer
Apart from widgets, all other sections mentioned in the previous section are related
to theme options. These are built-in options of any given theme. In web applications,
we need the custom options panel to configure the features and design. In Chapter
6, Customizing the Dashboard for Powerful Backends, we created a simple options
page with two options. This options panel can be easily integrated into the theme
customizer for real-time customizations and testing. In this section, we will learn
how to add custom options to the theme customizer. After this chapter is completed,
you can use these techniques to integrate the complete options page into the theme
customizer. Let's get started!

Assume that we want to let an admin customize the text color of one of the
application-specific components. First, we need to add a custom options section to the
theme customizer. Then, we can add the necessary options as settings into the main
section. Let's modify the constructor of WPWA_Theme to add the following actions:

add_action('customize_register', array($this, 'customize_panel'
));
add_action('wp_head', array($this,'apply_custom_settings'));

WordPress uses the customize_register action to add custom sections to the
theme customizer. Next, we use the wp_head action to apply the options to our
application. We can start by implementing the customize_panel function, as
shown in the following code:

public function customize_panel($wp_manager){
 $wp_manager->add_section('wpwa_settings_section', array(
 'title' => __('WPWA Settings','wpwa'),
 'priority' => 35,
));
 $wp_manager->add_setting('color_setting', array(
 'default' => '#000000',
));
 $wp_manager->add_control(new WP_Customize_Color_Control(
$wp_manager, 'color_setting', array(
 'label' => __('Text Color','wpwa'),
 'section' => 'wpwa_settings_section',
 'settings' => 'color_setting',
 'priority' => 6
)));
}

Chapter 7

[239]

First, we add a custom section called WPWA Settings for our custom options. This
code will add an additional tab to the customizer tabs on the left. Then, we add a
setting called color_setting to specify the text color of a specific element within the
application. Finally, we add an input control for the setting using the add_control
function. In this scenario, we are using the WP_Customize_Color_Control class as
we need a color picker. You can find other available input control types at http://
codex.wordpress.org/Class_Reference/WP_Customize_Manager/add_control.

Now, refresh the theme customizer and you will see our new settings section, as
shown in the following screenshot:

Once the setting is defined, we have to apply it to the website. Here, we are changing
the text color, and hence, our CSS should be updated while changing the color of
this setting. Consider the following implementation of the apply_custom_settings
function to apply the setting to the website:

function apply_custom_settings(){
 ?>
 <style>
 body {
 color: <?php echo get_theme_mod(
'color_setting'); ?>;

http://codex.wordpress.org/Class_Reference/WP_Customize_Manager/add_control
http://codex.wordpress.org/Class_Reference/WP_Customize_Manager/add_control

Adjusting Theme for Amazing Frontends

[240]

 }
 </style>
 <?php
}

We can get the value of settings by passing the settings field key to the get_theme_mod
function. In this example, we are applying the color to the page <body> tag. Ideally,
you should target application-specific design elements using these settings. Now, you
can change the text color from our new settings control and the font color of the page
will be changed in real time. This technique can be used to add advanced settings
panels into the theme customizer for simplifying the customizing process and saving
time on backend operations.

Handling widgets in the theme customizer
Widgets are heavily used in web application development, and hence, we need
to know how to use them within the theme customizer. Also, widgets are the only
non-design-specific component in the theme customizer. We can access the widgets
by clicking on the Widgets tab in the customizer panel. The following screenshot
previews the default widget areas of our application:

We created a custom widget area called Home Widgets, and it contains the three
widgets assigned in the previous sections. Also, you can see some other widget
areas available by default in the Responsive theme. Changing widget configurations
is quite a simple task. Let's look at the following steps:

1.	 Click on the arrow on the right side to open the Followers widget. You will
get a screen similar to following one with the available widget options:

Chapter 7

[241]

2.	 Now, change the title or list type values. Here, we have changed the title to
Followers List and it's immediately applied on the widget on the right-hand
side of the page. Similarly, we can check any type of advanced widget settings
and test our widgets until we get the expected output. In this scenario, we are
working with an application-specific widget area, and hence, you can see the
changes on the page. However, normal widgets are displayed on the sidebar
of the page. So, you need to open a normal post/page with the sidebar before
using the customizer options.

3.	 The last task in this section is to identify how we can add new widgets into
widget areas without using the backend functionality. You can click the Add
a Widget button and it will open up a screen similar to the following one:

Adjusting Theme for Amazing Frontends

[242]

We can search the widgets from the available list and click on it to add to the
selected widgets area.

All the changes made through the theme customizer are temporary
for previewing purposes and will not be saved until you click the
Save and Publish button.

We discussed the importance of the theme customizer and how we can adapt
and customize it for web applications. Now, it's time for you to integrate the
application options panel into the theme customizer.

Creating pluggable templates
Templates can be categorized into several types based on their functionality. Each
of these types of templates plays a different role within complex applications. The
proper combination of these template types can result in highly maintainable and
reusable applications. Let's explore the functionality of various template types.

The simplest type of template contains the complete design for each and every
screen in the application. These types of templates are not reusable. We can also
have template parts that get included into some other main templates. These types
of templates are highly reusable across multiple other templates. The header and
footer are the most common examples of such templates.

These types of templates are highly adaptable and flexible for the future enhancements
or modification of existing features. WordPress provides the capability to create similar
types of templates with its pluggable architecture by using action hooks. There is a
drastic difference between the way reusable templates work in WordPress and normal
web applications. However, the final output is quite similar in nature. Let's find out
how pluggable templates are used in web applications before digging into WordPress.

Pluggable templates in WordPress
WordPress uses a hook-based architecture for adding new functionalities to the
existing screens. We can define certain hook points within templates and allow
developers to plug dynamic content through plugins. Both web application templates
and WordPress templates are extendable, but their functionality can be different.

Chapter 7

[243]

WordPress action hooks are very powerful for adding a new
behavior to existing templates. However, at present , they are
not as powerful as pure inheritance in web applications.

Now, let's see how we can implement the previous scenario with the use of
WordPress hooks. Consider the initial template for generating a developer list:

<div class='content'>
 <div id="developer_list">
 <?php do_action('before_developer_list'); ?>
 <table>
 <tr>
 <th>Name</th>
 <th>Role</th>
 <th>Experience</th>
 </tr>
 <tr>
 <td>John</td>
 <td>Web Developer</td>
 <td>3 Years</td>
 </tr>
 </table>
 <?php do_action('after_developer_list'); ?>
 // Other developer related template code
 </div>
</div>

In the preceding code, we have the same layout with two actions named, before_
developer_list and after_developer_list. The function named do_action
is used to execute a function defined by the add_action hook. Once do_action is
defined, plugin developers can customize the layouts and functionality using the add_
action definitions. So, here we can implement the header and pagination controls by
defining custom functions using add_action, as illustrated in the following code:

add_action('before_developer_list', 'customize_before_list');
function customize_before_list(){
 echo "<div class='header'>Developer List Header</div>";
}
add_action('after_developer_list', 'customize_after_list');
function customize_after_list(){
 echo "<div class='pagination'>Pagination Control Buttons</div>";
}

Adjusting Theme for Amazing Frontends

[244]

In the preceding code, we have added the header and pagination controls using
the available template hooks. Here, we have used only two parameters for action,
name and function. Apart from the two required parameters, add_action can have
optional parameters for defining the function's priority and arguments.

The priority parameter of add_action determines the order in
which actions are executed when we have multiple implementations
of the same action. The priority will be provided by the third
parameter, which has the default value of 10. We have to increase
or decrease the priority value to get the components on the top or
bottom of the page respectively.

Extending the home page template with
action hooks
Let's identify the practical usage of action hooks for extending web application
layouts. In the earlier sections, we developed the home page with three widgets
with a reusable template inside a dynamic widget area. Now, we have to figure
out the extendable locations of those widgets. Consider the following scenario:

Assume that we have been asked to add a button in front of each developer in
the home page widget. Users who are logged into the application can click on the
button to instantly follow the developers. The implementation of this requirement
needs to be done without affecting or changing the other two widgets. Also, we
have to plan for similar future requirements for other widgets.

The most simple and preferred way of many beginner-level developers is to
create three separate templates for the widgets and directly assign the button to
the widget by modifying the existing code. As a developer, you should be familiar
with the open-closed principle in application development. Let's see the Wikipedia
definition of the open-closed principle:

"software entities (classes, modules, functions, etc.) should be open for extension,
but closed for modification."

This means we should never change the working components of the application.
Hence, changing the widget to add the new requirement is not the ideal method.
Instead, we should be looking at extending the existing components. So, we need
to make use of WordPress action hooks to define extendable areas in the widget.

Chapter 7

[245]

Customize widgets to enable extendable
locations
The following are the steps to customize widgets to enable extendable locations:

1.	 First, let's modify the widget template with extendable hooks. Ideally,
this should have been done in the initial stage of widget creation. Open
the home-list-template.php file inside the templates folder and
replace the existing code with the following code:
<div class='home_list_item'>
 <div class='list_panel'>
 <?php foreach($home_list_data ["records"] as $record){
?>
 <div class='list_row'>
 <?php echo
$record['title']; ?>
 <?php
do_action('wpwa_home_widgets_controls',$record['type'],$rec
ord['ID']); ?></div>
 <?php } ?>
 </div>
</div>

Here, we have included an action hook named wpwa_home_widgets_
controls, which takes two parameters for the action type and ID of the
record. This widget layout is applied for multiple widgets, and hence, we
don't want the action to be executed for all the available widgets. Therefore,
we use the type parameter to check for widgets that require the do_action
call. The second parameter is that an ID will be used to execute functions for
these records. Here, it will be used to identify the developer to be followed.

2.	 Next, we have to change the widget code to pass the type parameter.
We must pass a value for the widgets that require the execution of
wpwa_home_widgets_controls. Otherwise, keep it blank to skip the
action execution. In this scenario, we will be passing a value named
follow as the type parameter.

3.	 Then, we need to implement the home_widgets_controls action by
including an add_action definition. Place the following action inside
the constructor of the WPWA_Theme class in the main plugin:

add_action('wpwa_home_widgets_controls', array($this,
'home_widgets_controls'), 10, 2);

Adjusting Theme for Amazing Frontends

[246]

The preceding code defines the wpwa_home_widgets_controls action with
the default priority of 10 and 2 parameters. Finally, we have to implement
the home_widgets_controls function to output the Follow button to the
widget list, as shown in the following code:
public function home_widgets_controls($type, $id) {
 if ($type == 'follow') {
 echo "<input type='button' class='$type' id='" .
$type . "_" . $id . "' data-id='$id' value='" .
ucfirst($type) . "' />";
 }
}

This function uses the two parameters passed by the do_action call. After
validating the type, we can output the Follow button with the necessary
attributes and CSS classes. Now, you will have a screen similar to the
following screenshot with the new Follow button:

Once the button is clicked, we can use the data-id attribute to get the
developer ID and make an AJAX request to execute the follow and
unfollow operations.

With the latest modifications, the home page widgets have become highly
flexible for future modifications. Now, developers have the ability to add
more functionality through the control buttons without changing the existing
source code. Let's summarize the list of tasks for adding new features to the widgets:

•	 Pass a type value to the template with widget data
•	 Implement the action using the add_action function with the

necessary parameters

Chapter 7

[247]

•	 Use the priority value to change the order of the control buttons
•	 Check the type value and generate the necessary HTML code

WordPress action hooks are a powerful technique for extending themes and plugins
with dynamic features. Developers should always look to create extendable areas in
their themes and plugins. Basically, you need to figure out the areas where you might
get future enhancements and place action hooks upfront for easier maintenance.

Planning action hooks for layouts
Usually, WordPress theme developers build template files using unique designs and
place the action hooks later. These hooks are mainly placed before and after the main
content of the templates. This technique works well for designing themes for websites.
However, a web application requires flexible templates, and hence, we should be
focusing on optimizing the flexibility as much as possible. So, the planning of hook
points needs to be done prior to designing. Consider the following sample template
code of a typical structure of a hook-based template:

<?php do_action('before_menu'); ?>
<div class='menu'>
 <div class='menu_header'>Header</div>

 Item 1
 Item 2

</div>
<?php do_action('after_menu'); ?>

The preceding code is well structured for extending purposes using action hooks.
However, we can only add new content before and after the menu container. There
is no way to change the content inside the menu container. Let's see how we can
increase the flexibility using the following code:

<?php do_action('before_menu'); ?>
<?php do_action('menu'); ?>
<?php do_action('after_menu'); ?>

Now, the template contains three action hooks instead of hardcoded HTML.
So, the original plugin or theme developer must implement the action hook
using the following code:

add_action('menu','create_dynamic_menu');
function create_dynamic_menu(){
 echo "<div class='menu'>

Adjusting Theme for Amazing Frontends

[248]

 <div class='menu_header'>Header</div>

 Item 1
 Item 2

 </div>";
}

So, the base theme also uses hooks to embed the template code. Now, it's possible
to change the inner components of the menu using another set of action hooks.

Even though the echo statement is used to simplify explanations,
this HTML code needs to be generated using a separate template
file in ideal scenarios.

Let's see how we can override the original menu template with our own template
at runtime using the following code:

remove_action('menu','create_dynamic_menu');
add_action('menu','create_alternative_dynamic_menu');
function create_alternative_dynamic_menu (){
 echo "<div class='menu'>
 <div class='menu_header'>Header</div>

 Item 1
 Item 2

 </div>";
}

First, we have to remove the original implementation of the menu using the
remove_action function. The syntax of remove_action should match exactly
with the add_action definition to make things work. Once removed, we implement
the same action with a different function to provide a different template to the
original template. This is a very useful way of extending and overriding an existing
functionality. In order to use this technique, you have to plan the action hooks from
the initial stage of the project. Now, you should have a clear idea about the advanced
template creation techniques in WordPress.

Chapter 7

[249]

Time for action
In this chapter, we discussed some of the advanced techniques in WordPress themes.
Developers who don't have any exposure to advanced application development with
WordPress might find it a bit difficult to understand these techniques. Therefore, I
suggest that you try out the following tasks to get familiar with the advanced theme
creation techniques:

•	 Automate the process of frontend menu item creation. The admin should be
able to add menu items to multiple navigation menus in a single event or the
complete menu should be generated based on permission levels.

•	 Complete the developer following process using AJAX and the necessary
WordPress actions.

•	 Create an extendable layout for the developer portfolio page to contain
personal information, projects, services, books, and articles. Make sure
that you optimize the flexibility of the layout.

Summary
The frontend of an application presents the backend data to the user in an interactive
way. The possibility of requesting for frontend changes of an application is relatively
high as compared to the backend. Therefore, it's important to make the application's
design as stylish and as flexible as possible. Advanced web applications will
require complex layouts that can be extended by new features. Planning for the
future is important, and hence, we prioritized the content of this chapter to talk
about extending the capabilities of the WordPress theme files using the widgetized
architecture and custom action hooks.

We also had a look at the integration of custom hooks with widgetized areas while
building the most basic home page for the portfolio application. A navigation menu
is vital for providing access to templates based on user roles and permissions. Here,
we looked at how we can create separate frontend menus based on user roles and
how to display them on the frontend.

In the next chapter, we will look at the use of an open source plugin within
WordPress. In web application development, developers usually don't get enough
time to build things from scratch. So, it's important to make use of the existing open
source libraries for rapid development. Get ready to experience the usage
of a popular, open source plugin within WordPress.

[251]

Enhancing the Power of
Open Source Libraries

and Plugins
WordPress is one of the most popular open source frameworks, serving millions
of people around the world. The WordPress core itself uses dozens of open source
libraries to power the existing features. Web application development is a complex
and time-consuming affair compared to generic websites. Hence, developers get
very limited opportunities for building everything from the ground up, creating
the need for using stable open source libraries.

With the latest versions, WordPress has given higher priority for using stable and
trending open source libraries within its core. Underscore.js, and jQuery masonry,
have been the recent popular additions among such open source libraries. Inclusion
of these types of libraries gives a hint about the improvement of WordPress as a
web development framework.

We will discuss the various usages of these existing open source libraries within
the core and how to adapt them into our applications. This chapter also includes
some of the popular techniques such as Twitter and Facebook logins to illustrate the
integration of external libraries that don't come with the core WordPress framework.

In this chapter, we will cover the following topics:

•	 Open source libraries inside WordPress core
•	 Open source JavaScript libraries in WordPress core
•	 Creating a developer profile page with Backbone.js
•	 Integrating Backbone.js and Underscore.js
•	 Understanding the importance of code structuring

Enhancing the Power of Open Source Libraries and Plugins

[252]

•	 Using PHPMailer for custom e-mail sending
•	 Implementing user authentication with OpenAuth
•	 Building a LinkedIn app
•	 Authenticating users to our application

So, let's get started.!

Why choose open source libraries?
Open source frameworks and libraries are taking control in web development.
On one hand, they are completely free and allow developers to customize and create
their own versions, while on the other, large communities are building around open
source frameworks. Hence, these frameworks are improving in leaps and bounds at
an increasing speed, providing developers with more stable and bug-free versions.
WordPress uses dozens of open source libraries and there are thousands of open
source plugins in its plugins directory. Therefore, it's important to know how to
 use these open source libraries in order to make our lives easier as developers.
Let's consider some of the advantages of using stable open source products:

•	 A large community support
•	 The ability to customize existing features by changing source code
•	 No fees are involved based on per-site or per-person licensing
•	 Usually, reliable and stable
•	 Possibility of having more features through forked versions

These reasons prove why WordPress uses these libraries to provide features, and
why developers should be making use of them to build complex web applications
to cater to time-consuming tasks.

Open source libraries inside the
WordPress core
As mentioned earlier, there are several libraries available within the core that have
yet to be noticed by many WordPress developers. Most beginner-level developers
tend to include such libraries in their plugins when it's already available inside the
core framework. This happens purely due to the nature of WordPress development,
where most of the development is done for generic websites with very limited
dynamic content.

Chapter 8

[253]

As we move into web application development, we should understand the need for
using existing libraries whenever possible due to the following reasons:

•	 WordPress contains libraries that are more stable and compatible
•	 This also prevents the duplication of libraries and reduces the size of the

project files

I am sure you are familiar with libraries and plugins such as jQuery and TinyMCE
within WordPress. Let's discover the lesser known and recently added libraries in
order to make full use of them with web applications.

Open source JavaScript libraries in the
WordPress core
Most of the open source JavaScript libraries are located inside the wp-includes/js
folder of your WordPress installation. Let's take a look at the following screenshot
for JavaScript libraries available with WordPress 4.1:

Enhancing the Power of Open Source Libraries and Plugins

[254]

As you can see, there are a large number of built-in libraries inside the wp-includes/
js folder. WordPress uses jQuery for most of its core features, and hence, there is
a separate folder for jQuery-related libraries, for example, jQuery UI, Masonry,
jQuery Form plugin, and many more. Developers can use all of these libraries
inside their own plugins and themes without duplicating the files. Backbone.js and
Underscore.js are the latest additions to the WordPress core. These two libraries are
becoming highly popular among web developers for building modularized client-
side code for large-scale applications. WordPress integration with Backbone.js and
Underscore.js has been rarely explained in online resources. So, we will look at the
integration of these two libraries into the portfolio application and to identify the
use of JavaScript libraries included in the WordPress core.

What is Backbone.js?
In recent months, Backbone.js has become one of the most trending open source
libraries for building large-scale JavaScript-based applications. It's a light-weight
library that depends on Underscore.js, and has the capability to easily integrate
with libraries such as jQuery and Node.js. Let's look at the official definition
from http://backbonejs.org/ to identify its importance:

"Backbone.js gives structure to web applications by providing models with key-
value binding and custom events, collections with a rich API of enumerable
functions, views with declarative event handling, and connects it all to your
existing API over a RESTful JSON interface."

The preceding definition contains a number of important aspects required for web
application development. We already discussed the importance of separating the
concerns in web application development throughout the first few chapters of this
book. The MVC architecture is heavily used in server-side implementation for
separating the concerns. However, most developers, including the experienced ones,
don't use such techniques in client-side scripting, which results in code that is very
hard to manage. Backbone.js provides a very flexible solution by structuring client-
side code to work in the MVC type process. Even though Backbone.js is referred to
as an MVC library, most of the implementations will be restricted to models and
views, as the role of controllers is ambiguous. Generally, Backbone.js views play the
role of controllers as well. Although it's not pure MVC, it's good enough to handle
complex code structuring in the client side.

The last part of the Backbone.js definition mentions the RESTful JSON interface.
REST is the acronym used for Representational State Transfer. REST is emerging
as the popular architectural style and will become the trend in future with the use
of JavaScript-based applications. You can learn more about RESTful architecture at
http://www.restapitutorial.com/lessons/whatisrest.html.

http://backbonejs.org/
http://www.restapitutorial.com/lessons/whatisrest.html

Chapter 8

[255]

The future of web application development will heavily depend
on JavaScript and HTML5, and hence, it's a must to get a head
start as developers to learn these popular frameworks.

Understanding the importance of code
structuring
Typically, WordPress developers tend to focus more on design aspects of the
application compared to development aspects. Hence, we can find a large number
of WordPress plugins with messy client-side codes filled up with jQuery events.
Let's see the importance of structuring code by looking at a practical scenario.
Consider the following screenshot for displaying the developer profile of the
portfolio management application:

Consider the Projects section of the screenshot where we have a data grid generated
on a page load using AJAX. There is an Add New button that creates new records on
the database using another AJAX request. Even though it's not shown, we need the
edit and delete actions in the future to complete the functionality of the grid. So, let's
see how developers implement these tasks with jQuery:

$(document).ready(function(){
 // Create the AJAX request to load the initial data
 // Generate the HTML code to update the grid

Enhancing the Power of Open Source Libraries and Plugins

[256]

});
$("#add_btn").click(function(){
 // Create the AJAX request to save the data
 // Generate the HTML code to update the grid
});
$("#edit_btn").click(function(){
 // Create the AJAX request to update the data
 // Generate the HTML code to update the grid
});
$("#del_btn").click(function(){
 // Create the AJAX request to save the data
 // Generate the HTML code to update the grid
});

There are four events to implement the given tasks. As application scales, we will
have hundreds of such events within the JavaScript files. The HTML code is placed
all over inline with these event handling functions. It's almost impossible for another
developer to identify the code required for any given screen.

Now, let's see how Backbone.js solves this issue in combination with Underscore.js.
Let's take a look at the advantages of using Backbone.js, compared to the
events-based structure of jQuery:

•	 Separates the concerns using models, views, and collections
•	 Template generation is done separately with Underscore.js
•	 Matching client-side data with server-side database models
•	 Organizing data into collections and synchronizing with the server
•	 The ability to listen to changes in models instead of UI elements

Basically, Backbone.js offers all the features required for building scalable
applications. Also, we can use other libraries with Backbone.js to cater to a
specific functionality such DOM handling.

Integrating Backbone.js and Underscore.js
We started the process of integrating Backbone.js and Underscore.js to identify the
use of the JavaScript libraries provided with the WordPress core. Let's begin the
integration by loading these libraries into WordPress. The following code illustrates
how we can include these existing libraries into plugins:

function include_scripts() {
 wp_enqueue_script('backbone');

Chapter 8

[257]

}
add_action('wp_enqueue_scripts', 'include_scripts');

The preceding code loads the Backbone.js library on the frontend of the application
with the necessary dependencies such as jQuery and Underscore.js. We can load all
the other libraries with a similar technique. Take a look at the available JavaScript
libraries by visiting the Default Scripts Included and Registered by WordPress section of
http://codex.wordpress.org/Function_Reference/wp_enqueue_script. You
can use the value of the Handle column as the parameter for the wp_enqueue_script
function to load the library into the plugin.

Creating a developer profile page with
Backbone.js
We looked at the basic structure for a developer's profile page at the beginning of
the Understanding the importance of code structuring section. In this section, we will
implement the mentioned tasks with the use of Backbone.js and Underscore.js. As
usual, we will update our main portfolio management plugin with the necessary code.
Create a class called class-wpwa-backbone-projects.php inside the root folder of
our plugin. Then, we can include the class inside class-wpwa-portfolio-manager.
php using the require_once statement.

Our first task will be to load the personal information for developers. First, we need
some custom rewrite rules to handle the routing for the Backbone.js-based projects
screen. Let's start by creating the necessary action hooks to handle the custom routing.
We already have a custom route handler function called manage_user_routes in our
main plugin. Let's update the function to include the new custom rewrite rules, as
shown in the following code:

public function manage_user_routes() {
 add_rewrite_rule('^user/([^/]+)/([^/]+)/?',
'index.php?control_action=$matches[1]&record_id=$matches[2]',
'top');
 add_rewrite_rule('^user/([^/]+)/?',
'index.php?control_action=$matches[1]', 'top');
}

In this scenario, we need another rewrite rule for working with the ID parameter.
Hence, we have introduced another rule to match the user /([^/]+)/([^/]+). The
first parameter will take the control action, while a second parameter is used for the
ID of the developer. Also, we have added another query variable named record_id
for handling the developer IDs. This rule can be reused across all the editor load
functions by ID.

http://codex.wordpress.org/Function_Reference/wp_enqueue_script

Enhancing the Power of Open Source Libraries and Plugins

[258]

The developer profile can be accessed by using /user/profile/ID
where ID is the unique ID in the wp_users table.

We have to also register a new query variable for record_id. So, we can update
our existing manage_user_routes_query_vars function, as shown in the
following code:

public function manage_user_routes_query_vars($query_vars) {
 $query_vars[] = 'control_action';
 $query_vars[] = 'record_id';
 return $query_vars;
}

Next, we have to load the profile page through a custom controller. We already
have a controller in our main plugin inside the front_controller function. Let's
update the existing front_controller function to include the new control action
for this section:

public function front_controller() {
 global $wp_query,$backbone_projects;
 $control_action = isset ($wp_query-
>query_vars['control_action']) ? $wp_query-
>query_vars['control_action'] : '';
 switch ($control_action) {
 case 'register':
 do_action('wpwa_register_user');
 break;
 case 'login':
 do_action('wpwa_login_user');
 break;
 case 'activate':
 do_action('wpwa_activate_user');
 break;
 case 'profile':
 $record_id = isset($wp_query->query_vars['record_id']) ?
$wp_query->query_vars['record_id'] : '' ;
 $developer_id = $record_id;
 $backbone_projects->create_developer_profile($developer_id);
 break;
 default:
 break;
 }
}

Chapter 8

[259]

This is the same technique we used in Chapter 2, Implementing Membership Roles,
Permissions, and Features, for working with custom routing. We will introduce a new
control action called profile. Here, we have an additional query parameter for the
developer ID named as record_id. Finally, we can look at the create_developer
_profile function of the WPWA_Backbone_Projects class for generating developer
profile data:

public function create_developer_profile($developer_id) {
 global $project_data,$wpwa_template_loader;
 $user_query = new WP_User_Query(array('include' =>
array($developer_id)));
 $project_data = array();
 foreach ($user_query->results as $developer) {
 $project_data['display_name'] = $developer->data-
>display_name;
 }
 $current_user = wp_get_current_user();
 $project_data['developer_status'] = ($current_user->ID ==
$developer_id);
 $project_data['developer_id'] = $developer_id;
 $wpwa_template_loader->get_template_part("developer");
 exit;
}

First, we use the WP_User_Query class to get the profile details of the developer.
At this stage, we only have the name of the developer in the profile. So, we will
assign the name to the $project_data array to be passed into the template.

In the final chapter, we will update the developer profile with
additional information to be displayed in the frontend.

Next, we will check whether the developer of this profile is logged into the
application to show or hide the Add New button on the projects screen. Finally,
we render the developer template with the $wpwa_template_loader global object.
This object is provided by the reusable template loader plugin we created earlier
in this book. In order to complete the initial page loading, we need to create the
developer-template.php template inside templates folder.

Here, are the initial contents of the developer.php template:

<?php
 global $project_data;
 get_header();
?>

Enhancing the Power of Open Source Libraries and Plugins

[260]

<div class='main_panel'>
 <div class='developer_profile_panel'>
 <h2> <?php echo __('Personal Information','wpwa'); ?> </h2>
 <div class='field_label'><?php echo __('Full Name','wpwa');
?> </div>
 <div class='field_value'><?php echo esc_html($project_data
['display_name']); ?></div>
 </div>
</div>
<?php get_footer(); ?>

At this stage, our developer profile seems pretty simple as we only have one field
to display. Now, we come to the complex part of the template, where we load the
projects dynamically.

Update the constructor with the wp_enqueue_scripts action to include Backbone.js
in the plugin, as illustrated in the following code:

public function include_scripts() {
 wp_register_script('developerjs', plugins_url('js/wpwa-
developer.js', __FILE__), array('backbone'));
 wp_enqueue_script('developerjs');
 $config_array = array(
 'ajaxUrl' => admin_url('admin-ajax.php'),
 'developerID' => $developer_id,
 'nameRequired' => __('Project name is required','wpwa'),
 'statusRequired' => __('Status is required','wpwa'),
 'durationRequired' => __('Duration is required','wpwa'),
);
wp_localize_script('developerjs', 'wpwaScriptData',
$config_array);
}

We create a new JavaScript file called wpwa-developer.js inside the wpwa-open-
source/js folder by providing the dependent library as Backbone.js. Now, you
will have both Backbone.js and Underscore.js included. Later, we will use the
wp_localize_script function to pass the WordPress AJAX URL into the wpwa-
developer.js file.

Structuring with Backbone.js and Underscore.js
Here, we come to the most exciting part of working with Backbone.js inside
WordPress. Defining the models, views, and collections are a major part of working
with Backbone.js. Let's plan the structure before we get into the implementation.

Chapter 8

[261]

The developer profile should contain the list of projects created by the developer.
So, the model in this scenario is Project and collection will be projects. The list
of projects needs to be loaded as a dynamic table, and hence, we need a view for
the project list. First, we need to define these three components to get started with
Backbone.js. Let's start with the creation of a model, as shown in the following code:

$jq =jQuery.noConflict();
$jq(document).ready(function(){
 var Project = Backbone.Model.extend({
 defaults: {
 name: '',
 status: '',
 duration:'',
 developerId : ''
 },
 });
});

Here, we have a very simple model named Project for working with projects in the
portfolio application. The details of the projects have been limited to name, status,
and duration to simplify the explanations. Next, we can look at the collection of
projects using the following code:

var ProjectCollection = Backbone.Collection.extend({
 model: Project,
 url: pwaScriptData.ajaxUrl
+"?action=wpwa_process_projects&developer_id="
+wpwaScriptData.developerID
});

Backbone.js uses collections to store lists of models for listening to changes in specific
attributes. So, we have assigned the Project model to the ProjectCollection
collection. Next, we have to define a URL for working with the model data from
the server. Generally, this URL will be used to save, fetch, delete, and update data
on the server.

These requests work in a RESTful manner. With WordPress custom routing,
it's difficult to take advantage of RESTful requests in its purest form. We will
use the WordPress AJAX handler URL to manipulate the various requests from
models. Therefore, we have used the AJAX handler URL with an action named
wpwa_process_projects, which will be responsible for handling all the requests
for the Project model.

Enhancing the Power of Open Source Libraries and Plugins

[262]

This is not the place for learning basics of Backbone.js. So, I suggest
that you familiarize yourself with the basic concepts of Backbone.js
using the official documentation at http://backbonejs.org.

Now, let's look at the view for displaying project list for developers:

var projectsList;
var ProjectListView = Backbone.View.extend({
 el: $jq('#developer_projects'),
 initialize: function () {
 projectsList = new ProjectCollection();
 }
});
var projectView = new ProjectListView();

Finally, we have the Backbone.js view for generating template data to the user screen.
Here, you can see that initialization of these components is handled by creating a new
object of the view class. Therefore, we can assume that the view acts as the controller
on most occasions.

The main container of the view is defined by the el attribute. Then, we initialized
the collection of projects using the ProjectCollection class. Now let's take a look
at the remaining sections of the developer.php file for understanding the view.
The following code is included after the profile information section:

<div id='developer_projects'>
 <h2><?php echo __('Projects','wpwa'); ?></h2>
 <div >
 <table id='list_projects'>
 </table>
 </div>
</div>

As defined in the view, this will be the main container used for displaying
developers list. Now, we have the definition of all the Backbone.js components
required for this scenario.

Displaying the projects list on page load
Once the page load is completed, we need to fetch the projects from the server to
be displayed on the profile page. So, let's update the view with necessary function,
as shown in the following code:

var ProjectListView = Backbone.View.extend({
 el: $jq('#developer_projects'),

http://backbonejs.org

Chapter 8

[263]

 initialize: function () {
 projectsList = new ProjectCollection();
 projectsList.bind("change", _.bind(this.getData, this));
 this.getData();
 }
 getData: function () {
 var obj = this;
 projectsList.fetch({
 success: function () {
 obj.render();
 }
 });
 },
});

Inside the initialize function, we bind an event named change for the projectsList
collection, to call a function named getData. This event will get fired whenever we
change the items in the collection. Next, we call the getData function inside the
initialize function.

The getData function is responsible for retrieving projects from the server. So, we
call the fetch function on the projectsList collection to generate a GET request to the
server. Since the request is asynchronous, we have to wait till the success function
is fired before proceeding with the callback to fetch projects. Once the request is
completed, the projectsList collection will be populated with the list of projects
from the server. Finally, we execute the render function to load the templates.

We have to understand the server-side implementation of this request before moving
into the render function. So, let's update the constructor of the WPWA_Backbone_
Projects class by adding the following action to enable AJAX requests on projects:

add_action('wp_ajax_nopriv_wpwa_process_projects', array($this,
'process_projects'));
add_action('wp_ajax_wpwa_process_projects', array($this,
'process_projects'));

Afterwards, we can look at the following code for the implementation of process_
projects function:

public function process_projects() {
 $request_data = json_decode(file_get_contents("php://input"));
 $project_developer = isset ($_GET['developer_id']) ?
$_GET['developer_id'] : '0';
 if (is_object($request_data) && isset ($request_data->name)) {
 // Saving and updating models
 } else {

Enhancing the Power of Open Source Libraries and Plugins

[264]

 $result = $this->list_projects($project_developer);
 echo json_encode($result);
 exit;
 }
}

All the requests to the server will be made by Backbone.js in a RESTful manner. So,
we have to use the PHP input stream accessing techniques to get the data passed by
Backbone.js. Here, we have used php://input, which allows us to read raw data of
request body.

The php://input stream is a read-only stream that allows you to
read raw data from the request body. In the case of POST requests, it is
preferable to use php://input instead of $HTTP_RAW_POST_DATA
as it does not depend on the special php.ini directives. Moreover,
for those cases where $HTTP_RAW_POST_DATA is not populated
by default, it is a potentially less memory intensive alternative to
activating always_populate_raw_post_data. The php://input
stream is not available with enctype="multipart/form-data".
More information on accessing various input/output streams can be
found at http://php.net/manual/en/wrappers.php.php.

The backbone fetch function uses the GET request with no parameters, and hence,
$request_data variable will be empty. So, the else part of the code will be invoked
to call the list_projects function, to generate the projects list, as shown in the
following code:

public function list_projects($developer_id) {
 $projects = new WP_Query(array('author' => $developer_id,
'post_type' => 'wpwa_project', 'post_status' => 'publish',
'posts_per_page' => 15, 'orderby' => 'date'));
 $data = array();
 if ($projects->have_posts()) : while ($projects->have_posts()) :
$projects->the_post();
 $post_id = get_the_ID();
 $status = get_post_meta($post_id, '_wpwa_project_status',
TRUE);
 $duration = get_post_meta($post_id, '_wpwa_project_duration',
TRUE);
 array_push($data, array("ID" => $post_id, "name" =>
get_the_title(), "status" => $status, "duration" => $duration));
 endwhile;
 endif;
return $data;
}

http://php.net/manual/en/wrappers.php.php

Chapter 8

[265]

The latest projects of the specified developer are retrieved using the WP_Query class.
Each project is set up as an array to be used as a model from the client side. Having
completed the server-side code, now we can move back to the render function of the
view, as shown in the following code:

render: function () {
 var template_data = _.template($jq('#project-list-
template').html(), {
 projects: projectsList.models
 });
var header_data = $jq('#project-list-header').html();
$jq(this.el).find("#list_projects").html(header_data+template_data
);
 return this;
}

We start the render function by loading a template called #project-list-template
using the Underscore.js template system. The data returned from the fetch request is
passed into a variable named projects. It's hard to understand the rest of the render
function without looking at the template. So, let's take a look at the two templates
stored inside the developer-template.php file:

<script type="text/template" id="project-list-template">
 <% _.each(projects, function(project) { %>
 <tr class="project_item">
 <td><%= project.get('name') %></td>
 <td><%= project.get('status') %></td>
 <td><%= project.get('duration') %></td>
 </tr>
 <% }); %>
</script>
<script type="text/template" id="project-list-header">
 <tr >
 <th><?php echo __('Project Name','wpwa'); ?></th>
 <th><?php echo __('Status','wpwa'); ?></th>
 <th><?php echo __('Duration','wpwa'); ?></th>
 </tr>
</script>

Using text/template as the script type parameter is a common way of defining
templates inside HTML files. The browser doesn't execute these client side scripts due
to the text/template type. Here, we have two templates, where first one generates
the list of projects using Underscore.js template variables. We can access the project
variable passed from the render function to generate the list. The data from the
Backbone.js models can be accessed using the get function by providing the necessary
attributes. The second template is used for the table header of the projects list.

Enhancing the Power of Open Source Libraries and Plugins

[266]

Now, let's get back to the render function. The render function loads both of the
preceding templates with necessary data. Then, we use the el element of the view to
find the #list_projects table, and populate the output generated from the templates
as the content using html function. Now, we will get the data grid populated with the
project list on page upload. So far, we have discussed the usage of Backbone.js model,
view, and collection. Next, we need the ability for the developer to create new projects
from the frontend.

Creating new projects from the frontend
The developer profile page should be visible to all types of users, including the
ones who are not logged in. So far, we have displayed the project list on the initial
page load. The developer of the profile page should be able to add, edit, or delete
projects from the frontend after logging in to the application. This improves the
user experience by avoiding the need to switch between the backend and frontend
to update and preview data. Here, we will implement the project creation from the
frontend. Therefore, the logged in developer should get an Add New button on top
of the project list, as shown in the following screenshot:

Let's update the developer-template.php template to include the Add New
button as illustrated in the following code:

<div id="msg_container"></div>
<?php if ($data['developer_status']) { ?>
 <input type='button' id="add_project" value="<?php
__('Add New','wpwa'); ?>" />
<?php } ?>

The preceding code is placed after the Projects heading in the #developer_projects
container. We want the button to be displayed only for the owner of the profile. So,
we use the developer_status value passed from the create_developer_profile
function. Once the button is clicked, the developer should get a form for saving
new projects.

Chapter 8

[267]

Initially, the form is hidden and will be displayed on the click event of the button.
So, let's add the hidden form to the developer-template.php template after the
preceding code:

<div id='pro_add_panel' style='display:none' >
 <div class='field_row'>
 <div class='field_label'><?php echo __('Project Name','wpwa');
?></div>
 <div class='field_value'><input type='text' id='pro_name'
/></div>
 </div>
 <div class='field_row'>
 <div class='field_label'><?php echo __('Status','wpwa');
?></div>
 <div class='field_value'>
 <select id="pro_status">
 <option value="0"><?php echo __('Select','wpwa');
?></option>
 <option value="planned"><?php echo __('Planned','wpwa');
?></option>
 <option value="pending"><?php echo __('Pending','wpwa');
?></option>
 <option value="failed"><?php echo __('Failed','wpwa');
?></option>
 <option value="completed"><?php echo
__('Completed','wpwa'); ?></option>
 </select>
 </div>
 </div>
 <div class='field_row'>
 <div class='field_label'><?php echo __('Duration','wpwa');
?></div>
 <div class='field_value'><input type='text' id='pro_duration'
/></div>
 </div>
 <div class='field_row'>
 <div class='field_label'><input type='hidden'
id='pro_developer' value='<?php echo
$project_data['developer_id']; ?>' /></div>
 <div class='field_value'><input type='button' id='pro_create'
value='<?php echo __('Save','wpwa'); ?>' /></div>
 </div>
</div>

Enhancing the Power of Open Source Libraries and Plugins

[268]

The CSS display:none attribute is used to hide the pro_add_panel container on the
initial page load. Inside the container, we have three fields for project name, status, and
duration with a save button called #pro_create. Now, we have to display the form by
clicking the Add New button. Generally, we use a jQuery event handler on the button
to cater to such requirements. However, we already looked at how the code becomes
hard to understand with the usage of jQuery events. So, we will use Backbone.js events
to structure the code properly.

Integrating events to Backbone.js views
Backbone.js allows you to define events on each view, making it possible to restrict
the scattering of events. This technique allows developers to quickly understand
the events used for any given screen without having to search through all the
code. Here, we need two events to display the project creation form and submit
the data to the server. Let's add the following code to the ProjectListView
variable created previously:

events: {
 'click #add_project': 'addNewProject',
 'click #pro_create': 'saveNewProject'
}
addNewProject: function(event) {
 $jq("#pro_add_panel").show();
}

As you can see, all the events are separated into a section called events inside
the view. We have used a click event on #add_project and #pro_create to call
addNewProject and saveNewProject functions respectively. The addNewProject
function uses the jQuery show function to make the project creation form visible
to the developer. Once the button is clicked, your screen should look like the
following screenshot:

Chapter 8

[269]

We used several rewriting rules with a similar structure throughout this
book. So, it's important to keep the rewrite rules in proper order to get
the desired results. We can use the Rewrite Rules Inspector plugin to
flush the rules after making updates to code.

Next, we need to concentrate on the saving and validating process of new projects.

Validating and creating new models for the server
Form validation is very important in web development to avoid harmful invalid
data and to keep the consistency in the database. Backbone.js automatically calls a
validation function on the execution of the create function on a collection. Let's add
the validate function to the Project model with basic validations on name, status,
and, duration, as shown in the following code:

var Project = Backbone.Model.extend({
defaults: {
 name: '',
 status: '',
 duration:''
},
 validate: function(attrs) {
 var errors = this.errors = {};
 if (!attrs.name) errors.name = wpwaScriptData.nameRequired;
 if (attrs.status == 0) errors.status =
wpwaScriptData.statusRequired;
 if (!attrs.duration) errors.duration =
wpwaScriptData.durationRequired;
 if (!_.isEmpty(errors)){
 console.log(errors);
 return errors;
 }
 }
});

The validate function is automatically executed before saving data to server, by
passing the attributes of the model as parameter. We can execute the necessary
validation within this function and return the errors as an object.

Enhancing the Power of Open Source Libraries and Plugins

[270]

Creating new models in the server
This is the final section of the process for saving new projects to database. Now, we
have to implement the saveNewProject function defined in the events section, as
shown in the following code:

saveNewProject: function(event) {
 var options = {
 success: function (response) {
 console.log(response);
 },
 error: function (model, error) {
 console.log(error);
 }
};
 var project = new Project();
 var name = $jq("#pro_name").val();
 var duration = $jq("#pro_duration").val();
 var status = $jq("#pro_status").val();
 var developerId = $jq("#pro_developer").val();
 projectsList.add(project);
 projectsList.create({
 name: name,
 duration:duration,
 status : status,
 developerId : developerId
 },options);
}

First, we have a variable called options for defining success and failure functions
for the project creation. Here, we are logging the result values to browser console.
In real implementations, the result should be displayed to the user as a message.

Then, we create a new object of the Project model by passing the data retrieved
from the form fields. Later, the newly created model is assigned to the original
projects collection retrieved in the initial page load. Remember that we defined the
following line of code while implementing initialize function of the view:

projectsList.bind("change", _.bind(this.getData, this));

Chapter 8

[271]

This event gets fired whenever the items in the collection are changed. Here, we
have assigned a new model to the collection, and hence, this event will get fired.
So, the project list will be updated without refreshing the page to contain the new
model. Finally, we execute the create function on the collection to save a new project
to database. This will generate a POST request to the AJAX action handler called
wpwa_process_projects. Finally, we complete the process by implementing the
rest of the process_projects function, as shown in the following code:

public function process_projects() {
 $request_data = json_decode(file_get_contents("php://input"));
 $project_developer = isset ($_GET['developer_id']) ?
$_GET['developer_id'] : '0';
 if (is_object($request_data) && isset($request_data->name)) {
 $project_name = isset($request_data->name) ?
$request_data->name : '';
 $project_status = isset($request_data->status) ?
$request_data->status : '' ;
 $project_duration = isset($request_data->duration) ?
$request_data->duration : '' ;
 $err = FALSE;
 $err_message = '';
 if ($project_name == '') {
 $err = TRUE;
 $err_message .= __('Project name is required.','wpwa');
 }
 if ($project_status == '0') {
 $err = TRUE;
 $err_message .= __('Status is required.','wpwa');
 }
 if ($project_duration == '') {
 $err = TRUE;
 $err_message .= __('Duration is required.','wpwa');
 }
 if ($err) {
 echo json_encode(array('status'=>'error', 'msg'=>
$err_message));
 exit;
 } else {
 $current_user = wp_get_current_user();

Enhancing the Power of Open Source Libraries and Plugins

[272]

 $post_details = array(
 'post_title' => esc_html($project_name),
 'post_status' => 'publish',
 'post_type' => 'wpwa_project',
 'post_author' => $current_user->ID
);
 $result = wp_insert_post($post_details);
 if (is_wp_error($result)) {
 echo json_encode(array('status'=>'error', 'msg'=>
$result));
 } else {
 update_post_meta($result, "_wpwa_project_status",
esc_html($project_status));
 update_post_meta($result,
"_wpwa_project_duration", esc_html($project_duration));
 echo json_encode(array('status'=>'success'));
 }
 }
 exit;
 }else{
 $result = $this->list_projects($project_developer);
 echo json_encode($result);
 exit;
 }
}

Earlier, we discussed the initial request data gathering technique and the else
statement while fetching data from server. Now, we will look at the if statement
for saving new project data. We can get the project data from the $request_data
object. It's important to validate data in both client side as well as the server side.
Earlier, we implemented the client-side validation using Backbone.js. Here, we have
used the server-side validations for all the input parameters. In case validation errors
are generated, we pass a JSON array containing the status and the error message.

When the input date is successfully validated, we create a new project using the
wp_insert_post function. Once the project is successfully saved, we can execute
update_post_meta functions to save additional metadata.

So, we have come to the end of a long process for identifying the basic usage of
Backbone.js and Underscore.js in WordPress frontend. In the last part, we learned
the uses of Backbone.js create and validate functions plus handling effects.

Chapter 8

[273]

Keep in mind that edit and delete functionalities will also go
through the if statement of the process_projects function.
We need to figure out a way to separate these functions by filtering
the request data send on create, update, and delete events.

Now, you should be able to understand the value of Backbone.js for creating
well-structured client-side code. In the next section, we will look at the integration
of existing PHP libraries inside WordPress.

Using PHPMailer for custom e-mail
sending
In the previous section, we looked at the use of Backbone.js and Underscore.js to
identify the usage of open source JavaScript libraries within the WordPress core.
Now, it's time to identify the use of open source PHP libraries within the WordPress
core, so we will choose PHPMailer among a number of other open source libraries.
PHPMailer is one of the most popular e-mail sending libraries used inside many
frameworks as a plugin or library. This library eases the complex tasks of creating
advanced e-mails with attachments and third-party account authentications.

PHPMailer has been added to Github for improving its development process. You can get
more information about this library at https://github.com/PHPMailer/PHPMailer.

WordPress has a copy of this library integrated into the core for all e-mail-related
tasks. We can find the PHPMailer library inside the wp-includes folder within the
file called class.phpmailer.php.

Usage of PHPMailer within the WordPress core
Basically, the functionality of this library is invoked using a common function
called wp_mail located at the pluggable.php file inside the wp-includes folder.
This function is used to handle all the e-mail sending tasks within WordPress. The
wp_mail function is very well structured to cater to various functionalities provided
by PHPMailer. Customizations to the existing behavior of this function can be
provided through various types of hooks as listed here:

•	 wp_mail_from: Changing the e-mail of the sender, which defaults to
wordpress@{sitename}

https://github.com/PHPMailer/PHPMailer

Enhancing the Power of Open Source Libraries and Plugins

[274]

•	 wp_mail_from_name: Changing the name of the sender, which defaults to
WordPress

•	 wp_mail_content_type: Changing the e-mail content type, which defaults
to text/plain

•	 wp_mail_charset: Changing the e-mail character set, which defaults to
charset assigned in settings

In web applications, we might need advanced customizations that go beyond the
capabilities of these existing hooks. In such situations, we have to use a customized
e-mail sending functionality. The existing PHPMailer library can be easily used to
create custom versions of e-mail sending functionalities. There are two ways
of creating custom e-mail sending functionality, as listed here:

•	 Creating a custom version of the pluggable wp_mail function
•	 Loading PHPMailer inside plugins and creating custom functions

Creating a custom version of a pluggable wp_mail
function
We briefly introduced pluggable functions in Chapter 5, Developing Pluggable Modules.
These functions are located inside the pluggable.php file inside the wp-includes
folder. As developers, we can override the existing behavior of these functions by
providing a custom implementation. wp_mail is a pluggable function, and hence,
we can create custom implementations within plugins. We just duplicate the
contents of existing function within a plugin and change the code as necessary
to provide custom features.

Loading PHPMailer inside plugins and creating
custom functions
This is a straightforward task, where we have to include the files and initialize the
PHPMailer class, as shown in the following code:

require_once ABSPATH . WPINC . '/class-phpmailer.php';
require_once ABSPATH . WPINC . '/class-smtp.php';
$mailer = new PHPMailer(true);

Then, we can use the $mailer variable object to configure and send e-mails as
described in the official documentation.

Chapter 8

[275]

By default, WordPress uses the default mail server of your web host
to send e-mails. This doesn't involve sender e-mail authentication,
and hence, becomes the reason behind spam e-mails.

We can prevent e-mail spamming by authenticating the user and using SMTP to
e-mail, so we will implement the custom PHPMailer function while implementing
the subscriber notification process of portfolio management application. Let's list
the tasks for this process:

•	 Creating custom function to use PHPMailer
•	 Sending e-mails in SMTP using an authenticated account
•	 Retrieving the subscribers from the database
•	 Sending notifications on new projects, articles, books, and services

We can start the process by creating a new class called WPWA_Open_Source in a file
called class-wpwa-open-source.php. Then, include the following action inside
the constructor of the WPWA_Open_Source class:

add_action('new_to_publish', array($this,
'send_subscriber_notifications'));
add_action('draft_to_publish', array($this,
'send_subscriber_notifications'));
add_action('pending_to_publish',array($this,
'send_subscriber_notifications'));

Here, we have used three actions related to the post status transfer. Subscribers
should get notifications about all the projects, articles, books, and services, once they
are published. So, we use the above post status transfer actions to execute a custom
function on publish status change. Let's look at the send_subscriber_notifications
function for sending e-mail notifications with PHPMailer:

public function send_subscriber_notifications($post) {
 global , $wpdb;
 $permitted_posts = array('wpwa_book','wpwa_project',
 'wpwa_services', 'wpwa_article');
 if (in_array($_POST['post_type'],$permitted_posts)) {
 require_once ABSPATH . WPINC . '/class-phpmailer.php';
 require_once ABSPATH . WPINC . '/class-smtp.php';
 $phpmailer = new PHPMailer(true);
 $phpmailer->From = "exaple@gmail.com";
 $phpmailer->FromName = "Portfolio Application";
 $phpmailer->SMTPAuth = true;
 $phpmailer->IsSMTP(); // telling the class to use SMTP

Enhancing the Power of Open Source Libraries and Plugins

[276]

 $phpmailer->Host = "ssl://smtp.gmail.com"; // SMTP
server
 $phpmailer->Username = "example@gmail.com";
 $phpmailer->Password = "password";
 $phpmailer->Port = 465;
 $phpmailer->addAddress('admin@example.com', 'Admin');
 $phpmailer->Subject = "New Activity on Portfolio
Application";
 $sql = "SELECT user_nicename,user_email
 FROM $wpdb->users
 INNER JOIN " . $wpdb->prefix .
"subscribed_developers
 ON " . $wpdb->users . ".ID = " . $wpdb->prefix
. "subscribed_developers.follower_id
 WHERE " . $wpdb->prefix .
"subscribed_developers.developer_id = '$post->post_author'";
 $subscribers = $wpdb->get_results($sql);
 foreach ($subscribers as $subscriber) {
 $phpmailer->AddBcc($subscriber->user_email,
$subscriber->user_nicename);
 }
 $phpmailer->Body = "New Update from your favorite
developers " . get_permalink($post->ID);
 $phpmailer->Send();
 }
}

We start the send_subscriber_notifications function by filtering necessary post
types to prevent code execution for unnecessary post types. Next, PHPMailer and
SMTP class will be included to load the library, as discussed in the earlier section.
Once the $phpmailer object is created, we can define the necessary parameters for
sending e-mails. So, we start by defining from the e-mail and display name.

Next, we have configured the SMTP settings for e-mail authentication and sending
through a custom SMTP server. We define the SMTP authentication by using true
for the SMTPAuth parameter. Then, we have to define the Host, Username, Password,
and Port of the SMTP account that will be used to authenticate e-mails.

Next, we need to retrieve the subscribers of the developer of the published book,
article, project, or service. The custom SQL query is used to retrieve the respective
subscribers from the database. Then, we add the e-mail of each subscriber into the
$phpmailer object, while looping through the subscribers. Here, we need to use the
AddBcc function to keep the confidentiality of the e-mail addresses. Finally, we send
the notification with common e-mail content using the permalink of the published
post. So, we have a very basic notification system for subscribers of the application.

Chapter 8

[277]

This technique works fine for basic scenarios where we have a limited number of
subscribers. In situations where we have large amount of subscribers, we can't use
this technique as it will delay the publishing of post. So, let's look at other possible
solutions for these situations:

•	 We can track the latest published posts in a separate database table and
schedule a cron job for sending notification periodically.

•	 We can create a developer-specific RSS feed with a custom feed URL.
Subscribers can then use third-party e-mail services to get notifications
on feed updates.

Here, we will not implement these techniques as they are beyond the scope
of this chapter. You can look at the book's website for guides on using the
preceding techniques.

Implementing user authentication with
OpenAuth
Login with open authentication has become a highly popular method among
application users as it provides quicker authentication compared to the conventional
registration forms. So, many users prefer the use of social logins to authenticate
themselves and try the application before deciding to register. Let's take a look at
the definition of OAuth by Wikipedia:

"OAuth is an open standard for authorization. OAuth provides client applications
a 'secure delegated access' to server resources on behalf of a resource owner. It
specifies a process for resource owners to authorize third-party access to their server
resources without sharing their credentials. Designed specifically to work with
Hypertext Transfer Protocol (HTTP), OAuth essentially allows access tokens to
be issued to third-party clients by an authorization server, with the approval of
the resource owner, or end-user. The client then uses the access token to access the
protected resources hosted by the resource server."

OpenAuth is becoming the standard third-party authentication system for providing
such functionality. Most existing web applications offer the user authentication using
OpenAuth, and hence, it's important to know how we can integrate the OpenAuth
login into WordPress. Here, we will upgrade our plugin to let users log in and register
through popular social networking sites such as Twitter, Facebook, and LinkedIn. We
will use third-party OAuth connection libraries to build this functionality as creating a
OAuth library from scratch, which is beyond the scope of this book.

Enhancing the Power of Open Source Libraries and Plugins

[278]

Now, we are ready for implementing the OpenAuth login integration for our
portfolio application. The portfolio application will contain the OpenAuth login
using Twitter, Facebook, and LinkedIn. So, we need three links or buttons just
under our login screen.

Basically, we have two ways of assigning these links into the login screen:

1.	 Directly embed the HTML code under the default login button.
2.	 Define an action hook and implement the hook within a plugin.

Even though both techniques does the same job, we have more advantage in
choosing the action hooks technique as it allows us to add or remove any number
of login-related components without affecting existing functionality. So, we have
to modify the login-template.php file inside the templates folder of our main
plugin. The following code previews the last part of login template with the new
action for social logins:

<form method="post" action="<?php echo site_url(); ?>/user/login"
id="login_form" name="login_form">
 <!-- Rest of the HTML fields -->

 <label class="frm_label" > </label>
 <input type="submit" name="submit" value="Login" />

</form>
<?php do_action('wpwa_social_login'); ?>

Here, we execute an action called wpwa_social_login with the do_action function.
This allows the possibility of adding dynamic content to the login screen using plugins.
Next, we have to generate the necessary login links to populate the wpwa_social_
login area. Create a new class called WPWA_Social in a file called class-wpwa-
social.php for including the functions related to social login links. The first task is
to create the login links for different social networks and add them to the login form.
Let's look at the initial version of WPWA_Social class:

<?php
class WPWA_Social{
 public function __construct(){
 /* Add the social login buttons to the registration and login
forms based on the settings */

Chapter 8

[279]

 add_action('wpwa_social_login',
array($this,'wpwa_social_login_buttons'));
 }
 public function wpwa_social_login_buttons($html){
 $allowed_networks = array('Twitter','Linkedin','Facebook');
 if (get_option('users_can_register') == '1') {
 $html = '<div align="center" style="margin:10px">';
 foreach ($allowed_networks as $key => $network) {
 $link =
'?wpwa_social_login='.$network.'&wpwa_social_action=login';
 $html .= '<a class="wpwa-social-link" href="' . $link .
'" >
 Login with '. $network .'
 ';
 }
 $html .= '</div>';
 }
 echo $html;
 }
}
$social_obj = new WPWA_Social();

We have implemented the wpwa_social_login action with the use of wpwa_social
_login_buttons function inside the WPWA_Social class. The simplicity of the HTML
code made me to output it using an echo statement. Ideally, we should be using
template parts for loading the display code. The href attribute contains the action
to be executed and the name of the social network. We will need both parameters
for the upcoming implementation.

Configuring login strategies
We need to implement the login strategy for each social network. So, we need a base
class for handling common functionality for all the social networks. Let's create a
new class called WPWA_Social_Connect inside a file called class-wpwa-social-
connect.php. This file needs to be created in the root of our plugins folder. As
usual, we need to include this file inside class-wpwa-portfolio-manager.php
using a require_once statement. The following code contains the initial version
of WPWA_Social_Connect class:

<?php
class WPWA_Social_Connect{

Enhancing the Power of Open Source Libraries and Plugins

[280]

 public function callback_url(){
 $url = 'http://' . $_SERVER["HTTP_HOST"] .
$_SERVER["PHP_SELF"];
 if(strpos($url, '?')===false){
 $url .= '?';
 }else{
 $url .= '&';
 }
 return $url;
 }
 public function redirect($redirect){
 wp_redirect($redirect);exit;
 }
 public function register_user($result){}
}

These are the most common functions for all the social networks at this stage.
However, we might need additional functions as we cater to advanced requirements
of social login. First, we have a function called callback_url for defining the the
return page after completing the authentication with the social network. We use the
current page URL as the callback URL. Then, we have a generic function for making
the redirections using the wp_redirect function. Finally, we have the register_user
function. This function will be used to either register a new user or login existing
user, after successful authentication with social network. Now, we have the base
functionality to implement the social login.

In this chapter, we will implement a social login with LinkedIn. We omit other
networks, as the process is similar. So first, we need to find an OAuth library and
LinkedIn API library. The OAuth library provided by https://code.google.
com/p/oauth/ is the popular choice among developers. You can select the PHP
version and grab the OAuth.php class. Since it's a library, we will create a new
folder called lib inside our main plugin. We can place the OAuth.php class inside
the lib folder and will require it in our main plugin file as usual.

Then, we can grab a library for LinkedIn API functions at https://code.google.
com/p/simple-linkedinphp/. This is the most popular and simplest choice. You
can download the library and copy the linkedin_3.2.0.class.php file into lib\
LinkedIn folder. As usual, we need to require this file from our main plugin file.

https://code.google.com/p/oauth/
https://code.google.com/p/oauth/
https://code.google.com/p/simple-linkedinphp/
https://code.google.com/p/simple-linkedinphp/

Chapter 8

[281]

Now, we are ready for the implementation of social login with LinkedIn. We created
a class called WPWA_Social for all the common functionality for social login. So, we
need to create a class for each social network and extend the WPWA_Social class for
the common functionality. Let's create a new class called WPWA_LinkedIn_Connect
in a file called class-wpwa-linkedin-connect.php. This file needs to be included
after the Oauth.php and linkedin_3.2.0.class.php files. First, we need to identify
the functionality of this class as follows:

•	 This class should redirect the user to the respective social network to
authorize the account with our application

•	 Once account is authorized and redirected to our site, we need to verify
the account details and log in the user

•	 We need to handle any errors generated from the social network

We will implement these features one by one.

Implementing LinkedIn account authentication
Let's start with redirecting to LinkedIn and authorizing the application. The
following code shows the initial implementation of the WPWA_LinkedIn_Connect
class with the login function:

<?php
class WPWA_LinkedIn_Connect extends WPWA_Social_Connect{
 public function login(){
 $callback_url = wpwa_add_query_string($this-
>callback_url(), 'wpwa_social_login=Linkedin&wpwa_social_
action=verify');
 $wpwa_social_action = isset($_GET['wpwa_social_action']) ?
$_GET['wpwa_social_action'] : '';
 $response = new stdClass();
 /* Configuring settings for LinkedIn application */
 $app_config = array(
 'appKey' => 'app key',
 'appSecret' => 'app secret',
 'callbackUrl' => $callback_url
);
 @session_start();
 $linkedin_api = new LinkedIn($app_config);

Enhancing the Power of Open Source Libraries and Plugins

[282]

 if ($wpwa_social_action == 'login'){
 /* Retrive access token from LinkedIn */
 $response_linkedin = $linkedin_api-
>retrieveTokenRequest(array('scope'=>'r_emailaddress'));
 if($response_linkedin['success'] === TRUE) {
 /* Redirect the user to LinkedIn for login and
authorizing the application */
 $_SESSION['oauth']['linkedin']['request'] =
$response_linkedin['linkedin'];
 $this->redirect(LINKEDIN::_URL_AUTH .
$response_linkedin['linkedin']['oauth_token']);
 }else{
 // Handle Error
 }
 }
 return $response;
 }
}

We start the implementation by extending the WPWA_Social_Connect class. Consider
the first three lines of the login function. We add the wpwa_social_login and
wpwa_social_action parameter to the callback URL generated from the parent class.
Here, we have used a custom function called wpwa_add_query_string, to add the
query variables to the callback URL. Implementation of the wpwa_add_query_string
function can be found inside the functions.php file of the main plugin. Then, we
assign the action to the $wpwa_social_action variable and create a stdClass object
to handle the response.

Afterwards, we have to define the LinkedIn app key and secret in the $app_config
array, along with the callback URL. We will cover more details on the app key and
secret in the next section on Building a LinkedIn app.

Now, we can start the process of authenticating user account with our application.
First, we start a new session using session_start to hold the data retrieved
from LinkedIn. Then, we initialize the third-party LinkedIn class by passing the
$app_config array. We have to check for the proper action using $wpwa_social_
action as we have multiple actions in this process. If the action is login, we call
the retrieveTokenRequest function of LinkedIn API class with a scope called
r_emailaddress. You can learn more about scope in LinkedIn API at https://
developer.linkedin.com/documents/authentication.

https://developer.linkedin.com/documents/authentication
https://developer.linkedin.com/documents/authentication

Chapter 8

[283]

Then, we save the information to session and redirect the user to LinkedIn on a
successful response from the retrieveTokenRequest function execution. If this
function generates any errors, we need to handle it using a custom function. We will
be omitting the error handling part considering the scope of this chapter. You will find
complete implementation on the book website. After redirecting to LinkedIn, the user
can authenticate the application with their LinkedIn account. Once the authentication
is completed, the request will be redirected to our application using the callback URL.
So, we need to start the implementation to verify account details and log in the user,
as we discussed in point 2 on the functionality of the WPWA_LinkedIn_Connect class.

Verifying LinkedIn account and generating
response
We created an if statement in the previous code to check for the availability of the
login action. Now, we need to extend it with the else if statement to check for the
response from LinkedIn. The following code contains the implementation of account
verification process:

elseif(isset($_GET['oauth_verifier'])){
 $response_linkedin = $linkedin_api-
>retrieveTokenAccess($_SESSION['oauth']['linkedin']['request']['oa
uth_token'],
$_SESSION['oauth']['linkedin']['request']['oauth_token_secret'],
$_GET['oauth_verifier']);
 if($response_linkedin['success'] === TRUE){
 $linkedin_api-
>setTokenAccess($response_linkedin['linkedin']);
 $linkedin_api-
>setResponseFormat(LINKEDIN::_RESPONSE_JSON);
 $user_result = $linkedin_api->profile('~:(email-
address,id,first-name,last-name,picture-url)');
 if($user_result['success'] === TRUE) {
 /* setting the user data object from the response */
 $data = json_decode($user_result['linkedin']);
 $response->status = TRUE;
 $response->wpwa_network_type = 'linkedin';
 $response->first_name = $data->firstName;
 $response->last_name = $data->lastName;

Enhancing the Power of Open Source Libraries and Plugins

[284]

 $response->email = $data->emailAddress;
 $response->username = $data->emailAddress;
 $response->error_message = '';
 }else{
 /* Handling LinkedIn specific errors */
 }
 }else{
 /* Handling LinkedIn specific errors */
 }
}

The LinkedIn API redirects the request to our application with a URL parameter
called oauth_verifier, and hence, we check the existence of the parameter before
proceeding. Once its set, we call the retrieveTokenAccess function of API class
with session parameters and the value of oauth_verifier. This function verifies the
request and requests the users access token from the Linkedin API. Once successful,
the response is returned and we call the setTokenAccess and setResponseFormat
functions of API class. Having completed the verification process, we can now
request the user details using the access tokens generated earlier. So, we execute
the profile function of the API class with necessary information such as email-
address, id, first-name, last-name, picture-url, and so on. Once the profile
information request is successful, we assign the necessary profile data to our
response object.

We have omitted all the error handling conditions in this function.
You can use the book website to look at the implementation of
handling errors.

We have completed the process requesting profile information from LinkedIn.
However, we didn't create a LinkedIn app for our application. Now, let's build
an app to generate these keys for LinkedIn. The app creation for these social
networking sites mentioned here is explained commonly in many online resources.
Hence, we will create a LinkedIn app to define a new strategy.

Those who are not familiar with the creation of Twitter, Facebook, and Google+ apps
can use the resource section for this chapter in the book's website for step-by-step
app creations for each of these strategies.

Chapter 8

[285]

Building a LinkedIn app
First, you have to log in to your existing LinkedIn account. Then, you have to visit
the developer section using https://www.linkedin.com/secure/developer.
You will get a screen similar to following with the existing apps, if there are any:

You can click on the Add New Application link to get the following screen:

https://www.linkedin.com/secure/developer

Enhancing the Power of Open Source Libraries and Plugins

[286]

Make sure that you fill out all the mandatory values in the given form. Choose the
permissions in the Default Scope section as appropriate to meet your application
requirements. Once you hit the Add Application button, you will get a screen
similar to the following one with all the application specific details, including
API Key and Secret key:

Now, we can move back to the configuration array in the login function and
include the LinkedIn configuration details, as shown in the following code:

$app_config = array(
 'appKey' => 'h8274rwoerp1',
 'appSecret' => 'W7xE1KINoDajgl0a',
 'callbackUrl' => $callback_url
);

We have completed the implementation of the WPWA_LinkedIn_Connect class.
Now, we need to initialize this process and log in the users into our application.

Chapter 8

[287]

The process of requesting the strategies
We have the login links assigned to the login screen with href values as Facebook,
Twitter, and LinkedIn. The URL of the login screen is http://www.yoursite.com/
user/login/, and once you click the link for LinkedIn, you will get a URL such as
http://www.yoursite.com/user/login/?wpwa_social_login=Linkedin&wpwa_
social_action=login. The verification and authentication process will be
processed based on these parameters.

Initializing the library
We have implemented all the functionality for authenticating users from LinkedIn,
using WPWA_LinkedIn_Connect and WPWA_Social classes. However, nothing will
work yet as we haven't initialized the social login library class. So, we have
to implement the initialization code inside the WPWA_Social class. Let's start the
process by including a wp_loaded action to execute the initialization. The following
code displays the modified constructor of the WPWA_Social class:

public function __construct(){
 add_action('wp_loaded', array($this,
'wpwa_social_login_initialize'));
 add_action('wpwa_social_login', array($this,
'wpwa_social_login_buttons'));
}

Next, we need to implement the wpwa_social_login_initialize function,
as shown in the following code:

public function wpwa_social_login_initialize(){
 $wpwa_social_login_obj = false;
 $wpwa_social_login = isset($_GET['wpwa_social_login']) ?
$_GET['wpwa_social_login'] : '';
 $wpwa_social_action = isset($_GET['wpwa_social_action']) ?
$_GET['wpwa_social_action'] : '';
 if('' != $wpwa_social_login){
 switch ($wpwa_social_login) {
 case 'Linkedin':
 $wpwa_social_login_obj = new
WPWA_LinkedIn_Connect();
 break;
 default:
 break;
 }
 if($wpwa_social_login_obj){

Enhancing the Power of Open Source Libraries and Plugins

[288]

 $login_response = $wpwa_social_login_obj->login();
 }
 }
}

First, we retrieve the wpwa_social_login and wpwa_social_action variables from
the $_GET array. We will check the existence of the wpwa_social_login variable
before proceeding further. Then, we switch the wpwa_social_login variable to
identify the social network. Here, we have only included LinkedIn as we are only
implementing the LinkedIn version in this chapter. You can add the remaining
networks once you complete the implementation.

So, we initialize the WPWA_LinkedIn_Connect class using the $wpwa_social_login_
obj object. Finally, we check the availability of valid object in the $wpwa_social_
login_obj variable. Then, we call the login function to start the authentication process
for social login. When the user is redirected to LinkedIn, the following screen will
appear asking the user to authenticate the application by logging in:

LinkedIn will redirect the user to our application once a user grants the permissions
for the application. The callback URL configured in the $app_config file will be used
as the redirection path. The next step in this process is to handle the response and
authenticate the user into our application.

Chapter 8

[289]

Authenticating users to our application
Once a user is successfully authenticated inside LinkedIn, the request will be
redirected to our application with the profile details of the user. However, each of these
services will provide different types of data, and hence, it's difficult to match them into
a common format. As developers, we should be relying on the most basic and common
data across all services for OpenAuth login and registrations. Let's understand the
process of authentication before moving into the response handling part:

•	 User clicks on the LinkedIn link
•	 User is redirected to LinkedIn for granting permissions to our application
•	 User is redirected back to our application on successful authentication with

profile details
•	 Application checks whether user already exists using the username
•	 Existing users will be automatically logged into the WordPress application
•	 Non-existing users will be saved in the application as a new user, using the

details retrieved from LinkedIn and redirected to profile for completing
remaining details

Now, let's see how we can handle the response object generated from the
WPWA_LinkedIn_Connect class, to authenticate users into our application. First,
we have to update the wpwa_social_login_initialize function as follows to
include the call to the register_user function:

public function wpwa_social_login_initialize(){
 $wpwa_social_login_obj = false;
 $wpwa_social_login = isset($_GET['wpwa_social_login']) ?
$_GET['wpwa_social_login'] : '';
 $wpwa_social_action = isset($_GET['wpwa_social_action']) ?
$_GET['wpwa_social_action'] : '';
 if('' != $wpwa_social_login){
 switch ($wpwa_social_login) {
 case 'Linkedin':
 $wpwa_social_login_obj = new WPWA_LinkedIn_Connect();
 break;
 default:
 break;
 }
 if($wpwa_social_login_obj){
 $login_response = $wpwa_social_login_obj->login();
 $wpwa_social_login_obj->register_user($login_response);
 }
 }
}

Enhancing the Power of Open Source Libraries and Plugins

[290]

Now, we can take a look at the implementation of the register_user function
inside WPWA_Social_Connect. Let's start with the first part of this function using
the following code:

public function register_user($result){
 if($result->status){
 if($result->wpwa_network_type != 'twitter'){
 $user = get_user_by('email',$result->email);
 }else{
 $user = get_user_by('login',$result->username);
 }
 // Remaining Code
 }else{
 // Handle Errors
 }
}

We start the process by checking the status of the $result object. This is the
response object generated after authenticating the account with LinkedIn. If a
successful response is received, we check the network type for login. We assigned
the network type inside the login function of the WPWA_LinkedIn_Connect class.
We have to do the error handling part for unsuccessful responses. There are some
key points we need to know about the username before moving forward.

Both the LinkedIn and Facebook API provide the e-mail address of the
user, and hence, we use it to verify the users. However, the Twitter
API doesn't provide an e-mail address, and hence, we have to use the
Twitter username for verifying the user account.

So, we get the user by login (username) for Twitter and user by email for other
social network. If the user is already registered with the given login or email, we
will get a valid $user object. Otherwise, it will return false. Now, we can move
into the next section of the register_user function:

public function register_user($result){
 if($result->status){
 // Retrieving the user from the database
 if(!$user){
 // Create a new user for the application
 }else{
 // Automatically authenticating existing users
 }

Chapter 8

[291]

 wp_redirect(admin_url('profile.php'));
 }else{
 // Handle Errors
}

A valid object for $user means that the existing user is trying to log in through the
LinkedIn connect. So, we authenticate and automatically log on the user and redirect
to the profile page of WordPress backend. If valid user is not found, the user is trying
to login through LinkedIn connect for the first time, and hence, we have to create a
new account for the user. Let's start by looking at the user creation process inside
the if statement:

if($result->wpwa_network_type != 'twitter'){
 $username = strtolower($result->first_name.$result->last_name);
 if(username_exists($username)){
 $username = $username.rand(10,99);
 }
}else{
 $username = $result->username;
 }
$sanitized_user_login = sanitize_user($username);
$user_pass = wp_generate_password(12, false);
/* Create the new user */
$user_id = wp_create_user($sanitized_user_login, $user_pass,
$result->email);
if (!is_wp_error($user_id)) {
 update_user_meta($user_id, 'user_email', $result->email);
 update_user_meta($user_id, 'wpwa_network_type', $result-
>wpwa_network_type);
 wp_update_user(array ('ID' => $user_id, 'display_name' =>
$result->first_name.' '.$result->last_name)) ;
 wp_set_auth_cookie($user_id, false, is_ssl());
}

We already mentioned that the Twitter API provides the username for the user,
and hence, we can use the same username for our application. The Facebook and
LinkedIn APIs don't provide a username. So, we have to build a dynamic custom
username using a combination of first and last names. However, the first and last
name combination may not be a unique username. In such cases, we add a dynamic
random number to the end of the username to make it unique. Then, we use the
sanitize_user function for stripping out unsafe characters and generate the
password using the wp_generate_password function.

Enhancing the Power of Open Source Libraries and Plugins

[292]

Finally, we create a new user by passing username, password, and e-mail to the
wp_create_user function. If the user creation is successful, we update the user with
first and last names in the wp_users table. We also add the user e-mail and network
type to the wp_usermeta table. Next, we will use the wp_set_auth_cookie function
to create the authentication cookies for WordPress and log on the user automatically.
Once registered, the user will be authenticated by setting the WordPress authenticate
cookie and redirected to the profile page to fill out their details. At this stage, the user
will have a default password. Therefore, it's mandatory to update the user profile
with a new password to complete the registration.

Now, we can have a look at the else part of the code for existing users. It's pretty
simple as we only have to automatically log on the existing users. So, we use the
following line to create authenticate cookies and log on the user:

wp_set_auth_cookie($user->ID, false, is_ssl());

We have completed the user registration and login process using social networks.
The intention of this implementation was to learn how to integrate third-party open
source libraries into WordPress web applications. So, we choose the OpenAuth
library and LinkedIn API class for integrating third-party services for OpenAuth
login. Now, we have completed the library integration and OpenAuth login. Make
sure that you test the user registration and login using different services. Having
completed this process, you should be capable of integrating other libraries for
networks such as Facebook and Twitter into WordPress applications.

Using third- party libraries and plugins
We discussed the importance of open source libraries in detail. Most WordPress
developers prefer the creation of web application by installing a bunch of third-party
plugins. Ideally, developers should be focusing on limiting the number of plugins
within an application to improve the structure of code and the possible conflicts.

On the other hand, some third-party libraries can contain malicious code that
enables security holes in your applications. Even though there are some tools for
checking malicious code, none of them are 100% accurate, and we can't guarantee
the results. The following are some of the plugins for checking malicious code and
vulnerabilities of your plugins and themes:

•	 Theme Authenticity Checker (TAC): You can find this plugin at https://
wordpress.org/plugins/tac/

•	 Exploit Scanner: You can find this plugin at https://wordpress.org/
plugins/exploit-scanner/

https://wordpress.org/plugins/tac/
https://wordpress.org/plugins/tac/
https://wordpress.org/plugins/exploit-scanner/
https://wordpress.org/plugins/exploit-scanner/

Chapter 8

[293]

•	 Theme Check: You can find this plugin at https://wordpress.org/
plugins/theme-check/

As developers, we should be always looking for stable and consistent libraries for
our projects. So, it's preferable to work with existing WordPress libraries and stable
third-party plugins as much as possible when developing web applications.

Time for action
As usual, we discussed plenty of practical usages of open source libraries within
WordPress. We completed the implementation of a few scenarios and left out some
tasks for future development. As developers, you should take this opportunity to
get the experience in integrating various third-party libraries.

•	 Implement the edit and delete functionality for projects list using Backbone.js
•	 Integrate the OpenAuth login for Facebook and Twitter
•	 Implement the subscriber notification process with cronjob and custom

RSS feed

Summary
The open source nature of WordPress has improved developer engagement to
customize and improve existing features by developing plugins, and contributing
to the core framework. Inside the core framework, we can find dozens of popular
open source libraries and plugins. We planned this chapter to understand the usage
of trending open source libraries within the core.

First, we looked at the open source libraries inside the core. Backbone.js and
Underscore.js are trending as popular libraries for web development and hence
have been included in the latest WordPress version. Throughout this chapter, we
looked at the use of Backbone.js inside WordPress while building the developer
profile page of the portfolio application. We looked into Backbone.js concepts such
as models, collections, validation, views, and events.

Later on, we looked at the usage of existing PHP libraries within WordPress by
using PHPMailer to build a custom e-mail sending interface. In web applications,
developers don't always get the opportunity to build everything from scratch. So,
it's important to make use of existing libraries as much as possible.

https://wordpress.org/plugins/theme-check/
https://wordpress.org/plugins/theme-check/

Enhancing the Power of Open Source Libraries and Plugins

[294]

As developers, you should have the know-how to integrate the third-party libraries
as well as the existing ones. Hence, we chose the third-party plugin called Opauth
for integrating social network logins into our application. We completed the chapter
by integrating the LinkedIn login page into the portfolio application. In the next
chapter, we will look at WordPress XML-RPC functions to build a simple yet flexible
API for the portfolio application. Until then, make sure that you try out the actions
given in this chapter.

[295]

Listening to Third-party
Applications

The complexity and size of web applications prompts developers to think about
rapid development processes through third-party applications. Basically, we use
third-party frameworks and libraries to automate the common tasks of web
applications. Alternatively, we can use third-party services to provide functionalities
that are not directly related to the core logic of application. Using APIs is a popular
way of working with third-party services. The creation of an API opens the gates
for third-party applications to access our the data of our applications.

WordPress provides the ability to create an API through its built-in API powered
by XML-RPC. Also, WordPress is moving towards the JSON REST API, and
hopefully, it will be available in the near future. The existing XML-RPC API caters
to the blogging and CMS functionalities, while allowing developers to extend the
APIs with custom functionalities. This chapter covers the basics of an existing API,
while building the foundation of a portfolio management system API. Here, you
will learn the necessary techniques for building complex APIs for larger applications.

In this chapter, we will cover the following topics:

•	 Introduction to APIs
•	 The WordPress XML-RPC API for web applications
•	 Building the API client
•	 Creating the custom API
•	 Integrating the API user authentication
•	 Integrating the API access tokens

Listening to Third-party Applications

[296]

•	 Providing the API documentation
•	 Time for action

Let's get started!

Introduction to APIs
API is the acronym for Application Programming Interface. According to the
definition on Wikipedia, an API specifies a set of functions that accomplishes specific
tasks or allows working with specific software components. As web applications
grow larger, we might need to provide the application services or data to third-party
applications. We cannot let third-party applications access our source code or database
directly due to security reasons. So, APIs allow the access of data and services of
the application through a restricted interface, where users can only access the data
provided through the API. Typically, users are requested to authenticate themselves
by providing usernames and necessary passwords or API keys. So, let's look at the
advantages of having an application-specific API.

The advantages of having an API
Often, we see the involvement of APIs with popular web and mobile applications.
As the owner of the application, you have many direct and indirect advantages by
providing an API for third-party applications. Let's go through some of the distinct
advantages of having an API:

•	 Access to the API can be provided to third-party applications as a free
or premium service

•	 User traffic increases as more and more applications use the API
•	 By offering an API, you get free marketing and popularity among

people who normally don't know your application
•	 Generally, APIs automate tasks that require user involvement,

allowing much better and quicker experience for the users

With the increasing use of mobile-based devices, API-based applications are
growing faster than ever before. Most of the popular web applications and services
have opened up their API for third-party applications, and others are looking
to build their API to compete in this rapidly changing world of web development.
Here are some of the most popular existing APIs used by millions of users around
the world:

•	 Twitter REST API: http://goo.gl/5Nukrb

http://goo.gl/5Nukrb

Chapter 9

[297]

•	 Facebook Graph API: http://goo.gl/RwgKsT
•	 Google Maps API: http://goo.gl/aoaLo9
•	 Amazon Product Advertising API: http://goo.gl/6iLxfw
•	 YouTube API: http://goo.gl/MMFAFa

Considering the future of web development, it's imperative to have knowledge of
building an API to extend the functionalities of web applications. So, we will look
at the WordPress API in the next section.

The WordPress XML-RPC API for web
applications
With the latest versions, the WordPress API has matured into a secure and flexible
solution that easily extends to cater to complex features. This was considered to be
an insecure feature that exposed the security vulnerabilities of WordPress, hence,
was disabled by default in earlier versions. As of Version 3.5, XML-RPC is enabled
by default and the enable/disable option from the admin dashboard has been
completely removed. As developers, now we don't have to worry about the security
risks identified in earlier releases.

The existing APIs mainly focus on addressing functionalities for blogging- and
CMS-related tasks. In web applications, we can make use of these API functions
to build an API for third-party applications and users. The following list contains
the existing components of the WordPress API:

•	 Posts
•	 Taxonomies
•	 Media
•	 Comments
•	 Options
•	 Users

The complete list of components and respective API functions can be found in the
WordPress codex at http://codex.wordpress.org/XML-RPC_WordPress_API.
Let's see how we can use the existing API functions of WordPress.

http://goo.gl/RwgKsT
http://goo.gl/aoaLo9
http://goo.gl/6iLxfw
http://goo.gl/MMFAFa
http://codex.wordpress.org/XML-RPC_WordPress_API

Listening to Third-party Applications

[298]

Building the API client
WordPress provides support for its API through the xmlrpc.php file located inside
the root of the installation directory. Basically, we need two components to build
and use an API:

•	 The API server: This is the application where the API function resides
•	 The API client: This is a third-party application or service that requests

the functionality of an API

Since we will use the existing API functions, we don't need to worry about
the server, as it's built inside the core. So, we will build a third-party client to
access the service. Later, we will improve the API server to implement custom
functionalities that go beyond the existing API functions. The API client is
responsible for providing the following features:

•	 Authenticating the user with the API
•	 Making XML-RPC requests to the server through the curl command
•	 Defining and populating the API functions with the necessary parameters

With the preceding features in mind, let's look at the implementation of an
API client:

class WPWA_XMLRPC_Client {
 private $xml_rpc_url;
 private $username;
 private $password;
 public function __construct($xml_rpc_url, $username, $password)
{
 $this->xml_rpc_url = $xml_rpc_url;
 $this->username = $username;
 $this->password = $password;
 }
 public function api_request($request_method, $params) {
 $request = xmlrpc_encode_request($request_method, $params);
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_POSTFIELDS, $request);
 curl_setopt($ch, CURLOPT_URL, $this->xml_rpc_url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_TIMEOUT, 1);
 $results = curl_exec($ch);
 $response_code = curl_getinfo($ch, CURLINFO_HTTP_CODE);
 $errorno = curl_errno($ch);
 $error = curl_error($ch);

Chapter 9

[299]

 curl_close($ch);
 if ($errorno != 0) {
 return array("error" => $error);
 }
 if ($response_code != 200) {
 return array("error" => __("Request Failed : ","wpwa") .
$results);
 }
 return xmlrpc_decode($results);
 }
}

Let's have a look at the following steps to build the API client:

1.	 First, we will define three instance variables for API URL, username,
and password. The constructor is used to initialize the instance variables
through the parameters provided by users in object initialization.

2.	 Next, we have the api_request function for making the curl requests to the
API. Here, we take two parameters as request method and attributes. The
WordPress API provides the request method for each API function. A
user can pass the necessary parameter values for the API call through
the $params array.

curl is a command-line tool and library for transferring data with URL
syntax, supporting various protocols, including HTTP and FTP. This
is the most popular tool used in API requests and responses. On some
servers, curl might not be enabled, so make sure that you enable curl
on your server.

Inside the api_request function, we use the xmlrpc_encode_request
function provided by PHP to generate an XML file from the passed
parameters and request data.

3.	 Then, we can pass the converted XML file to a curl request to invoke the
API functions on the server.

4.	 Based on the server response, we can generate an error or retrieve the
decoded result by using the xmlrpc_decode function. Generally, the result
returned from the server will be in the string, integer, or array format.

The official PHP documentation states that the xmlrpc_encode_
request and xmlrpc_decode functions are experimental and should
be used at our own risk. We have used those functions here, considering
the scope of this chapter.

Listening to Third-party Applications

[300]

We can create the XML request manually, or use a third-party XML-RPC
library to provide a much more stable solution. In case, you decide to
implement manual XML request creation, use the following format to
generate the parameters:
<?xml version="1.0"?>
<methodCall>
 <methodName>subscribeToDevelopers</methodName>
 <params>
 <param>
 <value><string>username</string></value>
 </param>
 </params>
</methodCall>

Now, we have the basic API client for requesting or sending server data.

5.	 Next, we need to define functions inside the client for invoking various
API functions. Here, we will implement the API functions for accessing
the services and projects of the portfolio management system. So, let's
update the API client class with the following two functions:

function getLatestProjects() {
 $params = array(0, $this->username, $this->password,
array("post_type" => "wpwa_project"));
 return $this->api_request("wp.getPosts", $params);
}
function getLatestServices() {
 $params = array(0, $this->username, $this->password,
array("post_type" => "wpwa_services"));
 return $this->api_request("wp.getPosts", $params);
}

Now, we have implemented two functions with similar code for accessing
WordPress posts.

WordPress provides the ability to access any post type through the wp.getPosts
request method. The request is invoked by passing the request method and
parameters to the api_request function created in the earlier section.

The parameters array contains four values for this request.

•	 The first parameter of 0 defines the blog ID.
•	 Next, we have the username and password of the user who wants

to access the API.

Chapter 9

[301]

•	 Finally, we have an array with optional parameters for filtering results. It's
important that you pass the values in preceding order as WordPress looks
for parameter values by its index.

Here, we have used post_type as the optional parameter for filtering services and
projects from the database. The following is a list of allowed optional parameters
for the wp.getPosts request method:

•	 post_type

•	 post_status

•	 number

•	 offset

•	 orderby

•	 order

In the codex, it is mentioned that the response of wp.getPosts will
only contain posts that the user has permission to edit. Therefore,
the user will only receive the permitted post list. If you want to
allow public access to all the post details, the custom API function
needs be developed to query the database.

Now, let's see how to invoke the API function by initializing the API client, as
illustrated in the following code:

$wpwa_api_client = new
WPWA_XMLRPC_Client("http://www.yoursite.com/xmlrpc.php",
"username", "password");
$projects = $wpwa_api_client->getLatestProjects();
$services = $wpwa_api_client->getLatestServices();

We can invoke the API by initializing the WPWA_XMLRPC_Client class with the three
parameters we discussed at the beginning of this process. So, the final output of the
$projects and $services variables will contain an array of posts.

Keep in mind that the API client is a third-party application
or service. So, we have to use this code outside the WordPress
installation to get the desired results.

So far, we have looked at the usage of existing API functions within WordPress.
Next, we will look at the possibilities of extending the API to create custom methods.

Listening to Third-party Applications

[302]

Creating a custom API
Custom APIs are essential for adding web application-specific behaviors, which
go beyond the generic blogging functionality. We need the implementation for
both the server and client to create a custom API. Here, we will build an API
function that outputs the list of developers in the portfolio application. Here,
we will use a separate plugin for API creation as an API is usually a separate
component from the application. Let's get started by creating another plugin folder
called wpwa-xml-rpc-api with the main file called class-wpwa-xml-rpc-api.php.

Let's look at the initial code to build the API server:

class WPWA_XML_RPC_API {
 public function __construct() {
 add_filter('xmlrpc_methods', array($this, 'xml_rpc_api'));
 }
 public function xml_rpc_api($methods) {
 $methods['wpwa.getDevelopers'] = array($this,
'developers_list');
 return $methods;
 }
}
new WPWA_XML_RPC_API();

First, we use the plugin constructor to add the WordPress filter called
xmlrpc_methods, which allows us to customize the API functions assigned
to WordPress. The preceding filter will call the wpwa_xml_rpc_api function by
passing the existing API methods as the parameter. The $methods array contains
both the existing API methods as well as the methods added by plugins.

The xmlrpc_methods filter allows for the customization of the
methods exposed by the XML-RPC server. This can be used to both
add new methods and remove built-in methods.

Inside the function, we need to add new methods to the API. WordPress uses wp as
the namespace for the existing methods. Here, we have defined the custom namespace
for application-specific functions as wpwa. The preceding code adds a method called
getDevelopers in the wpwa namespace to call a function called developers_list.
The following code contains the implementation of the developers_list function
for generating the entire developers list as the output:

public function developers_list($args) {
 $user_query = new WP_User_Query(array('role' => 'developer'));
 return $user_query->results;
}

Chapter 9

[303]

The list of developers is generated through the WP_User_Query object by using
the developer role as the filter. Now, we have the API server ready with the custom
function. Consider the following code to understand how custom API methods
are invoked by the client:

function getDevelopers(){
 $params = array();
 return $this->api_request("wpwa.getDevelopers", $params);
}
$wpwa_api_client = new
WPWA_XMLRPC_Client("http://www.yoursite.com/xmlrpc.php",
"username", "password");
$developers = $wpwa_api_client->getDevelopers();

As we did earlier, the definition of the getDevelopers function is located inside
the client class and the API is initialized from outside the class. Here, you will
receive a list of all the developers in the system.

A similar process can be used to get a list of projects and services,
instead of using wp.getPosts, which limits the posts based on
the permission.

Now, we know the basics of creating a custom API with WordPress. In the next
section, we will look at the authentication for custom API methods.

Integrating API user authentication
Building a stable API is not one of the simplest tasks in web development. However,
once you have an API, hundreds of third-party applications will be requesting to
connect to the API, including potential hackers. So, it's important to protect your API
from malicious requests and avoid an unnecessary overload of traffic. Therefore, we
can request an API authentication before providing access to the user. Also, providing
the API through SSL is almost a must to secure your API.

The existing API functions come built-in with user authentication; hence, we had to
use user credentials in the section where we retrieved a list of projects and services.
Here, we need to manually implement the authentication process for custom API
methods. Let's create another API method for subscribing to the developers of the
portfolio application. This feature is already implemented in the admin dashboard
using admin list tables. Now, we will provide the same functionality for the API users.

Listening to Third-party Applications

[304]

Let's get started by modifying the xml_rpc_api function as follows:

public function xml_rpc_api($methods) {
 $methods['wpwa.subscribeToDevelopers'] = array($this,
'developer_subscriptions');
 $methods['wpwa.getDevelopers'] = array($this,
'developers_list');
 return $methods;
}

Now, we can build the subscription functionality inside the
developer_subscriptions function using the following code:

public function developer_subscriptions($args) {
 global $wpdb;
 $username = isset($args['username']) ? $args['username'] : '';
 $password = isset($args['password']) ? $args['password'] : '';
 $user = wp_authenticate($username, $password);
 if (!$user || is_wp_error($user)) {
 return $user;
 }
 follower_id = $user->ID;
 $developer_id = isset($args['developer']) ? $args['developer']
: 0 ;
 $user_query = new WP_User_Query(array('role' => 'developer',
'include' => array($developer_id)));
 if (!empty($user_query->results)) {
 foreach ($user_query->results as $user) {
 $wpdb->insert(
 wpdb->prefix . "subscribed_developers",
 array(
 'developer_id' => $developer_id,
 'follower_id' => $follower_id
),
 array(
 '%d',
 '%d'
)
);
 return array("success" => __("Subsciption
Completed.","wpwa");
 }
 } else {

Chapter 9

[305]

 return array("error" => __("Invalid Developer ID.", "wpwa");
 }
 return $args;
}

Let's have a look at the steps.

1.	 First, we will retrieve the username and password from the arguments
array and call the built-in wp_authenticate function by passing them as
parameters. This function will authenticate the user credentials against the
wp_users table. If the credentials fail to match a user from the database,
we return the error as an object of the WP_Error class.

Notice the use of array keys for retrieving various arguments in
this function. By default, WordPress uses array indexes as 0, 1, 2
for retrieving the arguments, and hence, the ordering of arguments
is important. Here, we have introduced key-based parameters
so that users have the freedom of sending parameters without
worrying about the order.

2.	 Once the user is successfully authenticated, we can access the ID of
the user to be used as the follower. We also need the ID of a preferred
developer through the method parameters.

3.	 Next, we get the details of the preferred developer by using the
WP_User_Query class by passing the role and developer ID.

4.	 Finally, we insert the record into the wp_subscribed_developers table
to create a new subscription for a developer.

The other parts of the code contain the necessary error handlings based on various
conditions. Make sure that you keep a consistent format for providing error messages.

Now, we can implement the API client code by adding the following code into the
API client class:

function subscribeToDevelopers($developer_id){
 $params = array("username"=>$this->username,"password"=>$this-
>password
,"developer"=>$developer_id);
 return $this->api_request("wpwa.subscribeToDevelopers",
$params);
}

Listening to Third-party Applications

[306]

Here, we call the custom API method called wpwa.subscribeToDevelopers with
the necessary parameters. As usual, we invoke the API by initializing an object of
the WPWA_XMLRPC_Client class, as shown in the following code:

$wpwa_api_client = new
WPWA_XMLRPC_Client("http://yoursite.com/xmlrpc.php", "follower",
"follower123");
$subscribe_status = $wpwa_api_client->subscribeToDevelopers(1);

Once implemented, this API function allows followers to subscribe to the activities
of developers.

Integrating API access tokens
In the preceding section, we introduced API authentication to prevent unnecessary
access to the API. Even the authenticated users can overload the API by accessing it
unnecessarily. Therefore, we need to implement user tokens for limiting the use of
the API. There can be many reasons for limiting requests to an API. We can think
of two main reasons for limiting the API access as listed here:

•	 To avoid the unnecessary overloading of server resources
•	 To bill the users based on API usage

If you are developing a premium API, it's important to track its usage for billing
purposes. Various APIs use unique parameters to measure the API usage. Here
are some of the unique ways of measuring API usage:

•	 The Twitter API uses the number of requests per hour to measure API usage
•	 Google Translate uses the number of words translated to measure API usage
•	 Google Cloud SQL uses input and output storage to measure API usage

Here, we won't measure the usage or limit the access to the portfolio API. Instead,
we will be creating user tokens for measuring the usage in future. We will allow
API access to the follower role. First, we have to create an admin menu page for
generating user tokens. Let's update the WPWA XML-RPC API plugin constructor
by adding the following action:

public function __construct() {
 add_filter('xmlrpc_methods', array($this, 'xml_rpc_api'));
 add_action('admin_menu', array($this, 'api_settings'));
}

Chapter 9

[307]

The following code contains the implementation of the api_settings function to
create an admin menu page for token generation:

public function api_settings() {
 add_menu_page('API Settings', 'API Settings',
'follow_developer_activities', 'wpwa-api', array($this,
'user_api_settings'));
}

We will not discuss the preceding code in detail as we have already done it in the
previous chapters. Only followers are allowed to access the API through tokens
and thus, a capability named follow_developer_activities is used to integrate
the screen for followers only. Now, we can look at the user_api_settings function
for the implementation of the token generation screen as follows:

public function user_api_settings() {
 global $wpwa_template_loader,$api_data;
 $user_id = get_current_user_id();
 if (isset($_POST['api_settings'])) {
 $api_token = $this->generate_random_hash();
 update_user_meta($user_id, "api_token", $api_token);
 } else {
 $api_token = (string) get_user_meta($user_id, "api_token",
TRUE);
 if (empty($api_token)) {
 $api_token = $this->generate_random_hash();
 update_user_meta($user_id, "api_token", $api_token);
 }
 }
 $api_data['api_token'] = $api_token;
 ob_start();
 $wpwa_template_loader->get_template_part('api-settings');
 $html = ob_get_clean();
 echo $html;
}

In the preceding code, the same user_api_settings() function is used to
generate the screen as well as to handle the form submission. We have a HTML
form for the API settings in a template called api-settings-template.php.
We can use our reusable template loader plugin to load the template through the
global $wpwa_template_loader object. Let's look at the template file using the
following code:

<?php global $api_data;
 extract($api_data);

Listening to Third-party Applications

[308]

?>
<div class="wrap"><form action="" method="post" name="options">
 <h2><?php _e('API Credentials','wpwa'); ?></h2>
 <table class="form-table" width="100%" cellpadding="10">
 <tbody>
 <tr>
 <td scope="row" align="left">
 <label><?php _e('API Token :','wpwa'); ?><?php echo
$api_token; ?></label>
 </td>
 </tr>
 </tbody>
 </table>
 <input type="submit" name="api_settings" value="Update"
/></form>
</div>

Here, we have a HTML form with a submit button and a label for displaying the
API key. We don't have any input fields as the key is generated automatically.
Once the form is submitted, a new token needs to be generated as a hashed string.

Now, both the template and loading part are ready. However, this template resides
outside our main plugin, and hence, the template loader object will not be able
to identify the templates folder of this plugin. So, we need to use the extendable
features to add the necessary template locations. First, we have to update the
constructor to include the following code:

add_filter('wpwa_template_loader_locations',array($this,
'api_template_locations'));

Next, we can have a look at the implementation for the api_template_locations
function to include custom template locations, as shown in the following code:

public function api_template_locations($locations){
 $location = trailingslashit(plugin_dir_path(__FILE__)) .
'templates/';
 array_push($locations,$location);
 return $locations;
}

So, we add the path of the templates folder of our new plugin to the existing
template locations array. Now, the template loader should be able to identify
the templates folder.

Chapter 9

[309]

Now, we can move back to the API key generation process:

1.	 First, we check for the submission of the form.
2.	 Then, we generate a new token using a custom function called

generate_random_hash. The following code shows the implementation
of the generate_random_hash function inside the WPWA_XML_RPC_API class:
public function generate_random_hash($length = 10) {
 $characters =
'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUV
WXYZ';
 $random_string = '';
 for ($i = 0; $i < $length; $i++) {
 $random_string .= $characters[rand(0,
strlen($characters) - 1)];
 }
 $random_hash = wp_hash($random_string);
 return $random_hash;
}

We can generate a dynamic hashed string by passing a random string to the
existing wp_hash function provided by WordPress.

3.	 Then, we update the generated token using the update_user_meta function.
If a user is loading the screen without submission, we will display the
existing token to the user.

4.	 Now, you will have a menu item called API Settings in the admin menu bar
to generate the API token screen, as shown in the following screenshot:

Listening to Third-party Applications

[310]

5.	 Having created the token, we now have to check for the token values
before providing access to the API. So, consider the updated version of the
developer_subscriptions function, as shown in the following code:
public function developer_subscriptions($args) {
 global $wpdb;
 $username = isset($args['username']) ? $args['username']
: '';
 $password = isset($args['password']) ? $args['password']
: '';
 $user = wp_authenticate($username, $password);
 if (!$user || is_wp_error($user)) {
 return $user;
 }
 $follower_id = $user->ID;
 $api_token = (string) get_user_meta($follower_id,
"api_token", TRUE);
 $token = isset($args['token']) ? $args['token'] : '';
 if ($args['token'] == $api_token) {
 $developer_id = isset($args['developer']) ?
$args['developer'] : 0 ;
 $user_query = new WP_User_Query(array('role' =>
'developer', 'include' => array($developer_id)));
 if (!empty($user_query->results)) {
 foreach ($user_query->results as $user) {
 $wpdb->insert(
 $wpdb->prefix . "subscribed_developers",
 array(
 'developer_id' => $developer_id,
 'follower_id' => $follower_id
),
 array(
 '%d',
 '%d'
)
);
 return array("success" => __("Subscription
Completed.", "wpwa"));
 }
 } else {
 return array("error" => __("Invalid Developer ID.",
"wpwa"));
 }
} else {

Chapter 9

[311]

 return array("error" => __("Invalid Token.",
"wpwa"));
 }
return $args;
}

6.	 Now, the user will have to log in to the WordPress admin page, and generate
a token before using the API. In a premium API, you can either bill the user
for purchasing the API token or bill the user based on their usage.

So now, the API client code also needs to be changed to include the token
parameter. The following code contains the updated call to the API with
the inclusion of tokens:

$wpwa_api_client = new
WPWA_XMLRPC_Client("http://www.yoursite.com/xmlrpc.php",
"username", "password");
$subscribe_status = $wpwa_api_client-
>subscribeToDevelopers("developer id", "api token");

Providing the API documentation
Typically, most popular APIs provide complete documentation for accessing the
API methods. Alternatively, we can use a new API method to provide details about
all the other API methods and parameters. This allows third-party users to request
an API method and get the details about all the other functions.

WordPress uses the API method called system.listMethods
for listing all the existing methods inside the API. Here, we
will take one step further by providing the parameters of API
methods with the complete list.

We can start the process by adding another API method to the xml_rpc_api
function, as shown in the following code:

public function xml_rpc_api($methods) {
 $methods['wpwa.subscribeToDevelopers'] = array($this,
'developer_subscriptions');
 $methods['wpwa.getDevelopers'] = array($this,
'developers_list');
 $methods['wpwa.apiDoc'] = array($this, 'wpwa_api_doc');
 return $methods;
}

Listening to Third-party Applications

[312]

Once updated, we can use the following code to provide details about the
API methods:

public function api_doc() {
 $api_doc = array();
 $api_doc["wpwa.subscribeToDevelopers"] = array("authentication"
=> "required",
 "api_token" => "required",
 "parameters" => array(__("Developer ID","wpwa"), __("API
Token","wpwa")),
 "result" => __("Subscribing to Developer Activities","wpwa")
);
 $api_doc["wpwa.getDevelopers"] = array("authentication" =>
"optional",
 "api_token" => "optional",
 "parameters" => array(),
 "result" => __("Retrieve List of Developers","wpwa")
);
return $api_doc;
}

Here, we have added all the custom API functions with all the necessary details for
making use of them. The authentication parameter defines whether a user needs
to provide login credentials for accessing the API. The api_token parameter defines
whether the user needs a token to proceed. A list of allowed parameters to the API
method is defined by parameters, and finally, the result parameter defines what
a user will get after accessing the API method.

Now, we have completed the process of working with APIs in WordPress. You should
be able to build complex APIs for web applications by using the discussed techniques.

Time for action
Throughout this chapter, we looked at the various aspects of the WordPress
XML-RPC API while developing practical scenarios. In order to build stable and
complex custom APIs, you should have practical experience of the preceding
techniques. So, I recommend that you try the following tasks to extend the
knowledge gathered in this chapter:

•	 You can measure the API usage through the number of requests.
•	 We created an API function to list all the projects and services of the

application. Try to introduce the filtering of results with additional parameters.

Chapter 9

[313]

•	 The custom API created in this chapter returns an array as the result.
Introduce different result formats such as JSON, XML, and array, so that
developers can choose their preferred format.

Summary
We started this chapter with the intention of building an XML-RPC-based API for
web applications. Then, we discussed the usage of the existing API functions while
building an API client from scratch.

Complex applications will always exceed the limits of an existing API, hence, we
looked at the possibility of creating a custom API. User authentication and API
tokens were necessary for preventing unnecessary API access and measuring the
API usage. Finally, we looked at the possibility of creating the API documentation
through another API function. Having completed the API creation techniques, you
should now be able to develop complex APIs to suit any kind of web application.

In the next chapter, we will be restructuring our application plugin to improve
consistency of code, while looking at some of the incomplete areas of the portfolio
management application. So, be prepared for an exciting finish to this book!

[315]

Integrating and Finalizing
the Portfolio Management

Application
Building a large web application is a complex task that should be planned and
managed with well-defined processes. Typically, we separate large applications into
smaller submodules, where each submodule is tested independently from other
modules. Finally, we integrated all the modules to complete the application. The
integration of modules is one of the most difficult tasks in application development.

The portfolio management application created throughout this book was intended
to illustrate the advanced concepts of WordPress web application development.
Therefore, we had to use different techniques in different modules to understand the
issues and find feasible solutions. In real world, we have to limit the use of different
techniques and keep the consistency across all the features of the application. So, we
will be fixing the inconsistencies of the application while restructuring the necessary
components. After the completion of this chapter, developers should be able to build
similar or complex applications without any difficulty.

In this chapter, we will cover the following topics:

•	 Integrating and structuring the portfolio application
•	 Integrating the template loader into a user manager
•	 Working with a restructured application
•	 Updating the user profile with additional fields

Integrating and Finalizing the Portfolio Management Application

[316]

•	 Scheduling subscriber notifications
•	 Time for action
•	 Final thoughts

Let's get started!

Integrating and structuring the portfolio
application
Throughout the first nine chapters, we implemented the functionality of a developer
portfolio management system using one main plugin and several independent plugins.
In each chapter, we explained some of the advanced concepts while developing the
features related to that concept. So, our application was structured based on modules
in WordPress. In the real world, we plan all the features of the application at the
same time while separating them into sections based on functionality. Here, we have
separated them into sections based on WordPress core modules. So, let's restructure
and integrate the inconsistent components in our application before moving forward.

We can go through the code of the main plugin and sub plugins developed through
the application to identify the following inconsistencies and issues:

•	 We used the template loader as an external reusable plugin. So, we have to
check the availability of the template loader before using it inside classes.
The availability checking is done inside the wpwa_plugin_init function. We
have only implemented it for the WPWA_Custom_Post_Types_Manager class.

•	 User management functionalities are implemented inside the main plugin
class. Ideally, we should separate user functionality into a new class while
keeping the common functionality in the main plugin class.

•	 Add the template loader into the user management functionality.
•	 Separate modules based on the application logic instead of

WordPress modules.

So, now we need to restructure the application to resolve the preceding issues and
build a solid foundation for developing any type of web application with WordPress.
Let's get started!

Chapter 10

[317]

Adding the template loader dependencies
We have four classes in the main plugin that depend on the template loader and
we have only checked the dependency for the WPWA_Custom_Post_Types_Manager
class. Let's define the dependencies for the remaining classes. The following code
contains the current code for the wpwa_plugin_init function inside the class-
wpwa-portfolio-manager.php file:

function wpwa_plugin_init(){
 if(!class_exists('WPWA_Template_Loader')){
 add_action('admin_notices', 'wpwa_plugin_admin_notice');
 }else{
 global $wpwa_custom_post_types_manager;
 $wpwa_custom_post_types_manager = new
WPWA_Custom_Post_Types_Manager();
 }
}

Now, let's add the remaining dependencies inside this function, as shown in the
following code:

function wpwa_plugin_init(){
 if(!class_exists('WPWA_Template_Loader')){
 add_action('admin_notices', 'wpwa_plugin_admin_notice');
 }else{
 global $wpwa_custom_post_types_manager, $wpwa_theme,
$wpwa_settings, $backbone_projects ;
 $wpwa_custom_post_types_manager = new
WPWA_Custom_Post_Types_Manager();
 $backbone_projects = new WPWA_Backbone_Projects();
 $wpwa_settings = new WPWA_Settings();
 $wpwa_theme = new WPWA_Theme();
 }
}

We have added the remaining dependencies by initializing the objects after checking
the existence of the WPWA_Template_Loader class. Now, we have to remove the
object initializations within the respective classes. You have to follow this process
for any new class with a dependency to the template loader object.

Integrating and Finalizing the Portfolio Management Application

[318]

Interating the template loader into a user
manager
In Chapter 2, Implementing Membership Roles, Permissions, and Features, we used direct
file inclusions to load the necessary templates. A few chapters later, we improved
the loading of templates by introducing a common template loader. Now, we can
integrate the template loader into the user management functionality to keep the
code consistent. Also, we need to move the user-related functionality into its own
class instead of keeping it inside the main plugin file. First, we'll move the user-
related functionality to its own class.

Create a new model called WPWA_Model_User inside the models folder of our
main plugin. Then, we can move all the user-related functions from the WPWA_
Portfolio_Manager class to the WPWA_Model_User class. The following code
shows the structure and function definitions of the WPWA_Model_User class after
the changes. The implementation of the functions will be the same and hence
avoided in the code here in the WPWA_Model_User class:

<?php
class WPWA_Model_User {
 public function __construct(){
 add_action('wpwa_register_user',array($this,'register_user')
);
 add_action('wpwa_login_user', array($this, 'login_user'));
 add_action('wpwa_activate_user',array($this,'activate_user'
));
 add_filter('authenticate', array($this, 'authenticate_user'
),30, 3);
 }
 public function add_application_user_roles() {}
 public function remove_application_user_roles() { }
 public function add_application_user_capabilities() {}
 public function activate_user() { }
 public function login_user() {}
 public function authenticate_user($user,$username,$password) {}
 public function register_user() {}
}
?>

Chapter 10

[319]

This class included all the main functions related to a user. The last four functions
are called within the constructor. However, we can't find the calls to the first three
functions. These functions were earlier implemented in WPWA_Portfolio_Manager,
and hence, the function calls were made within that class. Now, we have to make
external function calls from the WPWA_Portfolio_Manager class to the WPWA_Model_
User class. Let's update the activate_portfolio_manager function as follows:

public function activate_portfolio_manager(){
 global $wpwa_user;
 $wpwa_user->add_application_user_roles();
 $wpwa_user->remove_application_user_roles();
 $wpwa_user->add_application_user_capabilities();
 $this->flush_application_rewrite_rules();
 $this->create_custom_tables();
}

Now, we are using the global $wpwa_user model object to make the function
calls. However, we didn't initialize the $wpwa_user object. So, let's update the
wpwa_plugin_init function as explained earlier to include the initialization of
the $wpwa_user object. Now, we are ready to modify the template loading of the
user management functionality.

Let's apply the template loader instead of using direct template inclusions.
Consider the template loading section of the register_user function, as shown
in the following code:

include dirname(__FILE__) . '/templates/register-template.php';
exit;

Now, we can take a look at the modified version with the support of the template
loader object, as shown in the following code:

$wpwa_template_data['errors'] = isset($errors) ? $errors: array();
$wpwa_template_data['user_login'] = isset($user_login) ?
$user_login : '';
$wpwa_template_data['user_email'] = isset($user_email) ?
$user_email : '';
$wpwa_template_data['user_type'] = isset($user_type) ? $user_type
: '';
ob_start();
$wpwa_template_loader->get_template_part('register');
echo ob_get_clean();
exit;

Integrating and Finalizing the Portfolio Management Application

[320]

With the implementation of the new process, we can pass the template data through
a global variable called $wpwa_template_data. This is the process recommended by
WordPress instead of including templates directly.

We have completed the refactoring process and fixed the potential
impacts to the existing components. There can be several other
impacts, which aren't discussed here. Feel free to find them and
discuss them on the book website. Once refactoring is completed,
you should also carry out regression testing for the existing test cases
against the modified code.

WordPress has emerged as a web development framework in recent years. However,
it still has a very limited amount of applications compared to generic blogs or
websites. So, the best practices and design patterns have not been discussed or
implemented for web application development. Here, we have discussed a possible
technique for structuring applications. Yet, there is still a lot of scope for improving
the current design. On the other hand, you might have a better structuring process
for developing web applications with WordPress. So, I invite you to discuss your
preferred structuring process on the book website and help to improve WordPress
as a web application development framework.

Working with a restructured application
Having completed the restructuring process, we now have to understand the
process of creating new functionalities from scratch. So, in this section, we will
build the developer list page with autocomplete search using AJAX. Let's get
started with the requirements planning!

There can be many lists within the portfolio management application. So, we need
a new rewrite rule for implementing list-based pages. Then, we need a separate
template for displaying the data for a developers list. All the existing developers
will be displayed in the initial page load. Then, users can use the autocomplete
textbox to search the developers. The list will be updated on the jQuery keyup
event of the textbox to filter the list of developers using the search string.

We have to start the process by adding a new rewriting rule to WordPress.
Remember that we created all the rewriting rules inside the manage_user_routes
function of the WPWA_Portfolio_Manager class. So, let's look at the updated code
with the inclusion of the new rule for lists:

public function manage_routing_rules() {
 add_rewrite_rule('user/([^/]+)/([^/]+)/?',
'index.php?control_action=$matches[1]&record_id=$matches[2]',
'top');

Chapter 10

[321]

 add_rewrite_rule('user/([^/]+)/?',
'index.php?control_action=$matches[1]', 'top');
 add_rewrite_rule('list/([^/]+)/?',
'index.php?control_action=$matches[1]', 'top');
}

Once the rule is defined, we can match all the list-based pages with the
control_action parameter. In this scenario, our URL will be /list/developers,
and hence, we need to match the control_action parameter to the value of
developers. Now, we have to update the front_controller function with the
new control action, as shown in the following code:

case 'developers':
 $result = $wpwa_developer->list_developers();
 $wpwa_template_data['developers'] = $result;
 ob_start();
 $wpwa_template_loader->get_template_part("developer_list");
 echo ob_get_clean();
 exit;
 break;

Inside the matching case, we have the code for retrieving the default developer list and
assigning the result to the template. So, let's start by creating the developer model.

We have used a template loader object to load the template,
and hence, you need to define $wpwa_template_data and
$wpwa_template_loader as global objects just after the
function declaration.

Building the developer model
Models are mainly used for working with the database. We created four models in
the custom post manager for projects, books, articles, and services. The developer
also plays one of the major roles in the application, and hence, we need a separate
model to handle developer-specific functionalities. So, let's create a new file called
class-wpwa-model-developer.php inside the models folder.

An autoloader created in the earlier section uses a prefix called WPWA_Model_ to load
the models, and hence, we will name the new model class as WPWA_Model_Developer.
Let's take a look at the initial implementation of the developer model with the default
data retrieval function:

class WPWA_Model_Developer {
 public function list_developers() {

Integrating and Finalizing the Portfolio Management Application

[322]

 $user_query = new WP_User_Query(array('role' => 'developer',
'number' => 25));
 return $user_query->results;
 }
}

Here, we use the WP_User_Query class to retrieve 25 developers to be displayed on
the initial page load. Next, we have to create a template to display the data retrieved
from the list_developers function.

Designing the developer list template
With the new structure, all template files are located inside the templates folder inside
the root plugin folder. The developer list template should contain an autocomplete
textbox and a dynamic panel for displaying the developers' list. So, let's create a new
template file called developer_list-template.php, as shown in the following code:

<?php
 global $wpwa_template_data;
 extract($wpwa_template_data);
 get_header(); ?>
<div class='main_panel'>
 <div class='developer_profile_panel
developer_profile_panel_list'>
 <h2><?php echo __("Developer List","wpwa"); ?> </h2>
 <div class='field_label'><input type="text"
id="autocomplete_dev_list" name="autocomplete_dev_list" /></div>
 </div>
 <div id='developer_list'>
 <?php foreach($developers as $developer){ ?>
 <div class="developer_row"><a href="<?php echo
site_url();?>/user/profile/<?php echo $developer->data->ID;
?>"><?php echo esc_html($developer->data-
>display_name);?></div>
 <?php } ?>
 </div>
</div>
<?php get_footer(); ?>

Chapter 10

[323]

Once the preceding code is implemented, you can use http://www.yoursite.
com/list/developers to access the developer's list page. The following screenshot
previews the developer page with an initial dataset:

Enabling AJAX-based filtering
AJAX-based filtering is becoming a trend in web development, used by many
popular sites such as Facebook and Google. Here, we will implement the filtering
for the developer's list. Once a user presses a key inside the textbox, we use the
value of the textbox as the search string to retrieve the list of developer records
instantly without refreshing the page. We already have a specific JavaScript file for
developers. Let's update the wpwa-developer.js file with the following code to
enable AJAX-based filtering:

$jq(document).ready(function(){
 $jq("#autocomplete_dev_list").keyup(function(){
 $jq.post(wpwaconf.ajaxURL, {
 action:"wpwa_developer_list",
 search : $jq(this).val(),
 }, function(response) {
 console.log(response);
 ajax_developer_list(response);
 }, "json");
 });
});

http://www.yoursite.com/list/developers
http://www.yoursite.com/list/developers

Integrating and Finalizing the Portfolio Management Application

[324]

We invoke a jQuery AJAX request on the keyup event of the #autocomplete_dev_
list textbox. Here, we have used JSON as the data type and ajax_developer_list
as the success handler function. We pass the search string and the corresponding
server side action to the wpwa_developer_list action. Let's add the AJAX action
handler to the constructor of the WPWA_Model_Developer class, as shown in the
following code:

public function __construct(){
 add_action('wp_ajax_nopriv_wpwa_developer_list', array($this,
'developer_list'));
 add_action('wp_ajax_wpwa_developer_list', array($this,
'developer_list'));
}

Let's go through the implementation of the developer_list function for completing
the server-side process of filtering developers:

public function ajax_developer_list() {
 global $wpdb;
 $search_val = isset($_POST['search']) ? $_POST['search'] : "";
 $sql = "SELECT u.ID, u.user_login, u.display_name, u.user_email
 FROM $wpdb->users u
 INNER JOIN $wpdb->usermeta m ON m.user_id = u.ID
 WHERE m.meta_key = 'wp_capabilities'
 AND m.meta_value LIKE '%developer%'
 AND u.display_name LIKE '%$search_val%'
 ";
 $userresults = $wpdb->get_results($sql);
 $result = array();
 foreach ($userresults as $val) {
 array_push($result, array("id" => $val->ID, "name" => $val-
>display_name));
 }
echo json_encode($result);
exit;
}

First, we retrieve the search string from the $_POST data for the request. Then, we
use the custom query by joining the users table and the usermeta table to search
by display name. We can check for the necessary user roles using a LIKE statement
on the wp_capabilities key on the usermeta table. Here, we had to use a custom
query as WP_User_Query does not offer any built-in support for searching the
display_name column.

Chapter 10

[325]

Finally, we send the result back to the browser in a simplified manner using a
JSON-encoded string. Now, we can move back to the JavaScript code to implement
the success handler for completing the request:

var ajax_developer_list = function(result){
 $jq("#developer_list").html("");
 $jq.each(result, function(i, val) {
 if(val){
 $jq("#developer_list").append('<div class="developer_row">\n\
 \n\
 '+val.name+'\n\
 \n\
 </div>');
 }
 });
};

Once the result is retrieved, we empty the existing list of developer records using the
jQuery html function. Next, we append the filtered records back into the list while
traversing through the dataset using the jQuery each statement.

Now, we have completed the filtering process for the developer's list. Users can
enter the search text inside the textbox to filter the values. Consider the following
screenshot for the filtered developer list on pressing two keys:

Integrating and Finalizing the Portfolio Management Application

[326]

As illustrated in the preceding screenshot, the AJAX request is made whenever
you enter a new character into the textbox. This can really reduce the performance
in situations where you have a large amount of database records. An alternative
option is to start the searching once a user inputs at least n number of characters. So,
it's important to use this technique wisely with the optimization of database with
indexing.

Up until this point, we restructured the application and looked at the possible ways
of working with the restructured version for new requirements. In the previous
chapters, we left some tasks uncompleted. So, here we will complete the foundation
of the portfolio application by completing those remaining tasks. In the next two
sections, we will complete the developer profile page with additional fields and move
subscriber notifications to WordPress scheduling instead of creating notifications on
post publishing. So, let's get started.

Updating a user profile with additional
fields
The developer profile page was created in Chapter 8, Enhancing the Power of Open
Source Libraries and Plugins, with the use of Backbone.js and Underscore.js. The
Profile section of this page was limited to the name of the user as we had very
limited information for the users. Here, we will capture more information by using
additional fields on the profile screen of the WordPress dashboard. So, let's update
the constructor function of the WPWA_Model_User class to add the necessary actions
for editing the profile, as shown in the following code:

add_action('show_user_profile', array($this,
"add_profile_fields"));
add_action('edit_user_profile', array($this,
"add_profile_fields"));

We have defined two actions to be executed on the user profile screen. Both the
show_user_profile and edit_user_profile actions are used to add new fields to
the end of the user edit form. According to the preceding code, the addition of new
fields will be implemented in the add_profile_fields function of the WPWA_Model_
User class. Let's look at the implementation of the add_profile_fields function:

public function add_profile_fields() {
 global $user_ID,$wpwa_template_loader,$wpwa_template_data;
 ob_start();
 $wpwa_template_loader->get_template_part("profile_fields");
 echo ob_get_clean();
}

Chapter 10

[327]

Inside the add_profile_fields function, we can load a new template using our
template loader to contain the HTML code for the new fields. The following code
contains the additional fields inside the profile_fields template:

<?php
 global $wpwa_template_data;
 extract($wpwa_template_data);
?>
<table class="form-table">
 <tr>
 <th><label for="job_role"><?php _e("Job Role","wpwa");
?></label></th>
 <td><input type="text" class="regular-text" value="<?php echo
$job_role; ?>" id="job_role" name="job_role"></td>
 </tr>
 <tr>
 <th><label for="skills"><?php _e("Skills","wpwa");
?></label></th>
 <td><input type="text" class="regular-text" value="<?php echo
$skills; ?>" id="skills" name="skills"></td>
 </tr>
<?php
 $countries = array(
 'AF' => 'Afghanistan',
 'AL' => 'Albania',
);
 ?>
 <tr>
 <th><label for="country"><?php _e("Country","wpwa");
?></label></th>
 <td>
 <select name="country" id="country">
 <option value="" ><?php _e("Select Country","wpwa");
?></option>
 <?php foreach($countries as $country_name){ ?>
 <option <?php echo ($country_name == $country)? "selected":
"";?> value="<?php echo $country_name;?>"><?php echo $country_
name;?></option>
 <?php } ?>
 </select>
 </td>
 </tr>
</table>

Integrating and Finalizing the Portfolio Management Application

[328]

Basically, we have three fields for storing the job role, skills, and the country name of
the developers. At this stage, the $wpwa_template_data array is empty, and hence,
these fields won't have default values. It's important to use the CSS class form-table
for keeping the consistency of design with the existing fields. Now, your profile page
should look something similar to the following screenshot:

Updating the values of the profile fields
Once a user clicks the Update Profile button, all the custom fields need to be saved
automatically into the database. So, we have to define another two actions called
edit_user_profile_update and personal_options_update. We have to add them
inside the constructor of the WPWA_Model_User class as shown in the following code:

add_action('edit_user_profile_update', array($this,
"save_profile_fields"));
add_action('personal_options_update', array($this,
"save_profile_fields"));

Actions hooks defined in the preceding code are generally used to update
additional profile fields. So, we will invoke the save_profile_fields function
of a user model to cater to the persisting tasks. Consider the implementation of the
save_profile_fields function inside the WPWA_Model_User class, as shown in
the following code:

public function save_profile_fields() {
 global $user_ID;
 $job_role = isset($_POST['job_role']) ? esc_html(trim(
$_POST['job_role'])) : "";

Chapter 10

[329]

$skills = isset($_POST['skills']) ? esc_html(trim(
$_POST['skills'])) : "";
 $country = isset($_POST['country']) ? esc_html(trim(
$_POST['country'])) : "";
 update_user_meta($user_ID, "_wpwa_job_role", $job_role);
 update_user_meta($user_ID, "_wpwa_skills", $skills);
 update_user_meta($user_ID, "_wpwa_country", $country);
}

Custom profile fields will be stored inside the wp_usermeta table, and hence,
we use the update_user_meta function to save the values grabbed from the
$_POST array. Once the custom profile field values are updated, we need to display
the existing values on the profile screen. Earlier, we used an empty array to load the
profile_fields template. Now, we can look at the updated version of the function
to pass the necessary data to the profile_fields template to be displayed on the
profile screen:

public function add_profile_fields() {
 global $user_ID,$wpwa_template_loader,$wpwa_template_data;
 $job_role = esc_html(get_user_meta($user_ID, "_wpwa_job_role",
TRUE));
 $skills = esc_html(get_user_meta($user_ID, "_wpwa_skills",
TRUE));
 $country = esc_html(get_user_meta($user_ID, "_wpwa_country",
TRUE));
 $wpwa_template_data['job_role'] = $job_role;
 $wpwa_template_data['skills'] = $skills;
 $wpwa_template_data['country'] = $country;
 ob_start();
 $wpwa_template_loader->get_template_part("profile_fields");
 echo ob_get_clean();
}

With the new implementation, we can access the template variables inside the
template using the $wpwa_template_data array. Having completed the profile field
creation, we can now move onto our main goal of displaying the profile details inside
the developer profile screen in the frontend. We can easily use the get_user_meta
function to retrieve the necessary profile details. Let's look at the updated version of
the create_developer_profile function inside the WPWA_Backbone_Projects class:

public function create_developer_profile($developer_id) {
 global $project_data,$wpwa_template_loader;
 $user_query = new WP_User_Query(array('include' =>
array($developer_id)));
 $project_data = array();
 foreach ($user_query->results as $developer) {

Integrating and Finalizing the Portfolio Management Application

[330]

 $project_data['display_name'] = $developer->data-
>display_name;
 $project_data['job_role'] = esc_html(get_user_meta($developer-
>data->ID, "_wpwa_job_role", TRUE));
 $project_data['skills'] = esc_html(get_user_meta($developer-
>data->ID, "_wpwa_skills", TRUE));
 $project_data['country'] = esc_html(get_user_meta($developer-
>data->ID, "_wpwa_country", TRUE));
 }
 $current_user = wp_get_current_user();
 $project_data['developer_status'] = ($current_user->ID ==
$developer_id);
 $project_data['developer_id'] = $developer_id;
 ob_start();
 $wpwa_template_loader->get_template_part("developer");
 echo ob_get_clean();
 exit;
}

Here, we have retrieved all the custom profile fields to be passed as template variables.
Finally, the process will be completed by updating the developer-template.php
template to include the profile field data, as shown in the following code:

<div class='developer_profile_panel'>
 <h2><?php echo __('Personal Information','wpwa'); ?></h2>
 <div class='field_label'><?php echo __('Full Name','wpwa');
?></div>
 <div class='field_value'><?php echo
esc_html($project_data['display_name']); ?></div>
 <div class='field_label'><?php echo __("Country","wpwa");
?></div>
 <div class='field_value'><?php echo
esc_html($project_data['country']); ?></div>
 <div class='field_label'><?php echo __("Job Role","wpwa");
?></div>
 <div class='field_value'><?php echo
esc_html($project_data['job_role']); ?></div>
 <div class='field_label'><?php echo __("Skills","wpwa");
?></div>
 <div class='field_value'><?php echo
esc_html($project_data['skills']); ?></div>
</div>

Chapter 10

[331]

Now, go to the browser and access /user/profile/{user id}, and you will get a
screenshot similar to the following one:

So, we have completed the first of the two tasks for finalizing the basic foundation
of the portfolio application. In the next section, we will be completing the
implementations of this book by developing the subscriber notification scheduling.

Scheduling subscriber notifications
Sending notifications is a common task in any web application. In this scenario,
we have subscribers who want to receive e-mail updates about developer activities.
In Chapter 8, Enhancing the Power of Open Source Libraries and Plugins, we created a
simple e-mail notification system on post publish. Notifying subscribers on post
publish can become impossible in a situation where you have a large number of
subscribers. Therefore, we will take a look at the scheduling features of WordPress
for automating the notification sending process.

As a developer, you might be familiar with cron, which executes certain tasks in a
time-based manner. WordPress scheduling functions offer the same functionality with
less flexibility. In WordPress, this action will be triggered only when someone visits
the site after the scheduled time has passed. In a normal cron job, the action will be
triggered without any interaction from users. Let's see how to schedule subscriber
notifications for predefined time intervals using the wp_schedule_event function
of WordPress:

wp_schedule_event($timestamp, $recurrence, $hook, $args);

Integrating and Finalizing the Portfolio Management Application

[332]

The preceding code illustrates the basic implementation of the wp_schedule_event
function. The first parameter defines the starting time of the cron job. The next
parameter defines the time interval between the executions of cron. WordPress
provides built-in time intervals called hourly, twice daily, and daily. Also, we
can add custom time intervals to the existing list of values. The third parameter
defines the hook to be executed to provide the results of the cron. You should use
a unique name as the hook. The last parameter defines the arguments to the hook,
which we can keep blank in most cases.

The wp_schedule_event function initializes recurred function
executions, and hence, should be avoided inside a hook such as
init, which gets executed on every request. Ideally, scheduling
events should be done inside the plugin activation handler.

First, we have to update the activate_portfolio_manager function to call the
scheduling function on plugin activation. Consider the following code for an
updated activate_portfolio_manager function:

public function activate_portfolio_manager(){
 global $wpwa_user;
 $wpwa_user->add_application_user_roles();
 $wpwa_user->remove_application_user_roles();
 $wpwa_user->add_application_user_capabilities();
 $this->flush_application_rewrite_rules();
 $this->create_custom_tables();
 $this->create_event_schedule();
}

Let's schedule subscriber notifications by implementing the create_event_schedule
function inside the main plugin file as follows:

public function create_event_schedule() {
 wp_schedule_event(time(), 'everytenminutes',
'notification_sender');
}

Inside the activation hook, we have initialized the scheduled event using the
wp_schedule_event function. The activation time of the plugin is used as the
starting time of the scheduled event. We have used a custom interval called
everytenminutes to execute the task at 10-minute intervals. Since this is a custom
interval, we have to add it to the existing schedules before using it. Finally, we have
the hook called notification_sender for executing a custom functionality. Next,
we need to add the custom time interval into the existing schedules list.

Chapter 10

[333]

This notification-related functionality is common to all parts of an application, and
hence, we cannot specify a model for the implementation. Generally, we use these
kinds of functionalities in the utility class or in a file. Here, we will include it inside
the wpwa-actions-filters.php file. Let's begin with the implementation
of a custom interval:

function everytenminutes($schedules) {
 $schedules['everytenminutes'] = array(
 'interval' => 60*10,
 'display' => __('Once Ten Minutes','wpwa')
);
return $schedules;
}
add_filter('cron_schedules', 'everytenminutes');

WordPress allows the customization of schedules using the cron_schedules filter
with the preceding syntax. We have added 10- minute schedule using 600 seconds
as the time interval. Now, the schedules list will have four values including the
10-minute interval. Next, we have to implement the notification_sender hook
for sending notifications to subscribers.

Notifying subscribers through e-mails
The process of notifying subscribers through e-mails is far more complex compared
to the notification procedure used earlier with the publishing of posts. Here, we need
to cater to the following list of tasks to automate the notification sending:

•	 Add a custom status on post publish to identify new posts
•	 Grab the new posts within the time interval using a custom status for posts
•	 Get the list of subscribers for the author of each post
•	 Send notifications to filtered subscribers

First, we need a way to track the posts that have been already notified and those
that are yet to be notified. Therefore, we will use a custom post metavalue to track
the notified status. I hope you remember the following code, which was used to
send notifications on post publish:

add_action('new_to_publish', array($this,
'send_subscriber_notifications'));
add_action('draft_to_publish', array($this,
'send_subscriber_notifications'));
add_action('pending_to_publish',array($this,
'send_subscriber_notifications'));

Integrating and Finalizing the Portfolio Management Application

[334]

Now, we will update the send_subscriber_notifictions function to suit the new
process, as shown in the following code:

public function send_subscriber_notifictions($post) {
 update_post_meta($post->ID, "notify_status", "0");
}

Here, we have removed the e-mail sending functionality and updated a post
metavalue called notify_status to contain a value of 0. The notify_status
parameter of 0 means the post is new and subscribers haven't been notified.

Next, we will look at the implementation of the notification_sender hook inside
the wpwa-actions-filters.php file.

add_action("notification_sender", "notification_send");
function notification_send() {
 global $wpdb;
 require_once ABSPATH . WPINC . '/class-phpmailer.php';
 require_once ABSPATH . WPINC . '/class-smtp.php';
 $phpmailer = new PHPMailer(true);
 $phpmailer->From = "example@gmail.com";
 $phpmailer->FromName = __("Portfolio Application","wpwa");
 $phpmailer->SMTPAuth = true;
 $phpmailer->IsSMTP(); // telling the class to use SMTP
 $phpmailer->Host = "ssl://smtp.gmail.com"; // SMTP server
 $phpmailer->Username = "example@gmail.com";
 $phpmailer->Password = "password";
 $phpmailer->Port = 465;
 $phpmailer->IsHTML(true);
 $phpmailer->Subject = __("New Schedule","wpwa");
 // Remaining code
}

We have defined the notification_sender action with a function called
notification_send. The first part of the function contains the necessary code for
initializing the PHPMailer class for sending e-mails. Afterwards, we have to grab
the posts with the notify_status parameter of 0 for sending e-mails to subscribers.
Consider the next part of the code for retrieving posts based on notify_status:

function notification_send() {
 global $wpdb;
 // Initial code
 $args = array(

Chapter 10

[335]

 'post_type' => array('wpwa_service', 'wpwa_book',
'wpwa_project', 'wpwa_article'),
 'post_status' => 'publish',
 'meta_query' => array(
 array(
 'key' => 'notify_status',
 'value' => '0'
)
)
);
$post_query = null;
$post_query = new WP_Query($args);
$message = "";
}

The WP_Query class is used to retrieve all the published books, articles, projects, and
services with the notify_status value of 0. Finally, we have to use the following
code inside this function for sending e-mails to subscribers:

function notification_send() {
 global $wpdb;
 // Initial code
 if ($post_query->have_posts()) : while ($post_query-
>have_posts()) : $post_query->the_post();
 $author = get_the_author_ID();
 $sql = "SELECT user_nicename,user_email FROM $wpdb->users
INNER JOIN " . $wpdb->prefix . "subscribed_developers
ON " . $wpdb->users . ".ID = " . $wpdb->prefix .
"subscribed_developers.follower_id WHERE " . $wpdb->prefix .
"subscribed_developers.developer_id = '$author'";
 $subscribers = $wpdb->get_results($sql);
 $message.= "" .
get_the_title() . "";
 foreach ($subscribers as $subscriber) {
 $phpmailer->AddBcc($subscriber->user_email, $subscriber-
>user_nicename);
 }
 $phpmailer->Body = __("New Updates from your favorite
developers","wpwa") . "

" . $message;
 $phpmailer->Send();
 update_post_meta(get_the_ID(), "notify_status", "1");
 endwhile;
 endif;
}

Integrating and Finalizing the Portfolio Management Application

[336]

While looping through the posts list, we get the subscribers using the author
(developer) of the post. Then, all the subscribers are added to the e-mail using the
AddBcc function. The e-mail message contains the name of the post with a direct link
to access the browser. Afterwards, we send the e-mail with the new updates. This
process will be continued for each and every post with a notify_status parameter
of 0. Once the e-mail is sent, we update the notify_status parameter to 1 to prevent
duplicate notification in the next schedule.

WordPress scheduling works in a similar way to the cron jobs in
Linux-based systems. However, we have a limitation compared to
the normal cron jobs. WordPress scheduling is initialized based on
user activities. Once a user accesses the application, WordPress will
check for the available schedules. If the next scheduled time has
already passed, WordPress will execute the hook. If there are no user
actions within the application, schedules will not be executed until
someone interacts with the application.

Finally, we have completed the process of building a basic foundation of the
portfolio application. We looked at various different techniques in building a web
application-specific functionality. The process of developing this application will be
continued on the book website, and I hope you will follow the rest of the development.

In the next section, we will talk about a few features of WordPress that we have
left out so far , but are important to web application development.

Time for action
Throughout this book, we have developed various practical scenarios to learn the
art of web application development. Here, we have the final set of actions before
we complete the portfolio application for this book. By now, you should have all
the knowledge to get started with WordPress web development. After reading this
chapter, you need to try the following set of actions for getting experienced with
the process:

•	 Find out different ways of structuring WordPress for web applications
•	 Improve the AJAX-based list to contain more filtering options

Chapter 10

[337]

Final thoughts
WordPress is slowly but surely becoming a trend in web application development.
Developers are getting started on building larger applications by customizing
existing modules and features. However, there are a lot of limitations and a lack
of resources for web development-related tasks. So, the best practices and design
patterns are yet to be defined for building applications with WordPress.

In this book, we developed an application structure, considering the best practices
of a general web application development. The WordPress architecture is different
from the typical PHP frameworks, and hence, this structure might not be the best
solution. As developers, we want to drive WordPress into a fully featured web
application framework.

In this chapter, we completed the development of the demo application for this
book. So, feel free to discuss your own application structures and the techniques
you have used for WordPress applications on the website of this book at
http://www.innovativephp.com/wordpress-web-applications.

Summary
We began this chapter by looking at the issues of the application plugins developed
throughout the first nine chapters of the book. Our portfolio application lacked
a proper structure in some parts. So, we restructured the application to keep the
consistency across all its features.

Once the restructuring process was completed, we implemented a few new
requirements, such as subscriber notifications, AJAX-based developer list filtering,
and additional user profile fields in order to understand how to work with the
restructured application.

Here, we are completing the demo application for this book with the basic
foundation of the portfolio application. Make sure that you follow the guides on the
website for this book to understand the more complex theories and techniques of
developing web applications while completing the portfolio management system.

You can now take a look at the next chapter for supplementary modules for
WordPress applications. This will be a theoretical chapter explaining the
concepts to improve your application with utility features.

http://www.innovativephp.com/wordpress-web-applications

[339]

Supplementary Modules for
Web Development

In web application development, we mainly focus and plan our business logic.
Throughout the first ten chapters of this book, we developed features that are
directly related to the portfolio management application. However, there are
supplementary features that are not related to the business requirements of the
application, and yet play a vital part in the success of a project.

Multi-language support, caching, and security are important features of any
web application. WordPress provides built-in features to support these type
of non-application-related tasks. Apart from this, WordPress also offers some
features that can be used to improve the flexibility and user experience of
applications. Throughout this chapter, we will give a brief introduction to these
supplementary modules so that you can use them when the opportunity arises.

In this chapter, we will cover the following topics:

•	 Internationalization
•	 Working with the media grid and image editor
•	 Introduction to the post editor
•	 Lesser-known WordPress features
•	 Introduction to multisite
•	 Time for action
•	 Final thoughts

Let's get started.

Supplementary Modules for Web Development

[340]

Internationalization
Internationalization is the process of making your application ready for translating
to other languages. WordPress itself provides translation for its core by default. In
most cases, we will be developing web applications using plugins or themes. So, it's
essential to make the theme and plugins translatable for an improved flexibility. We
can develop web applications as standalone projects for a specific client or as projects
for any client that you wish to use for. Internationalization is more important in the
latter as a product is used by many clients compared to a project. Even with projects,
it's an important aspect of development, when your client wants a
non-English application.

In this section, we will look at internationalization support in WordPress and how
to translate and manage plugins.

Introduction to WordPress translation support
WordPress allows translation support for plugins using the GetText Portable Object.
We need to have three things to enable translation support in WordPress:

•	 Defining the text domain
•	 Enabling translations on strings using WordPress functions
•	 Loading the text domain

WordPress uses the text domain to define all the text strings that belong to a certain
plugin. In our scenario, we choose wpwa as the text domain for all our plugins. This
should be a unique identifier for your plugin and can have alphanumeric characters
and dashes. This text domain needs to be placed in all translation functions, just as
we did throughout the last ten chapters.

Then, we need to enable translations by using the WordPress translate functions.
We have to enable translations on every string that gets displayed on the site. The
following code contains a sample translation function extracted from our main plugin:

$template_data['service_availability_label'] = __('Service
availability','wpwa');
$template_data['service_price_type_label'] = __('Service Prize
Type','wpwa');

As you can see, we have enabled translation using the __() function and we have
used wpwa as the text domain. Let's consider the translation functions in WordPress.

Chapter 11

[341]

The translation functions in WordPress
WordPress provides a lot of translation functions for different scenarios. Among those
functions, __ and _e are the most frequently used functions. Both these functions
retrieve translated strings using the WordPress translate function. The difference
between the two functions is that the first one returns the translated string, while the
latter directly displays the translated string. Generally, we can use __() for variables
and business logic while _e() is used for templates. Apart from these two functions,
there are many other functions such as _n(), _x(),esc_attr__(), and so on. These
functions will be used in advanced use cases. You can learn more about these functions
inside the codex using http://codex.wordpress.org/Function_Reference/
translate.

Creating plugin translations
Most popular plugins are translation-ready, which means you can use the built-in
translation files or create translation files for any language. However, this feature
seems to be lacking in many less popular plugins, as well as application plugins that
were built for a specific website. So, as a developer, its important to understand how
to add support for translation files and create translation files from scratch. Let's see
how we can build a fully translatable plugin. Create a new plugin in a file called
wpwa-lang.php. Then, add a shortcode with a translatable string, as shown in the
following code:

<?php
/*
 Plugin Name: WPWA Language
 Plugin URI:
 Description: Learn translation management in WordPress.
 Version: 1.0
 Author: Rakhitha Nimesh
 Author URI:
 Text Domain: wpwalang
 */
add_shortcode('wpwa_lang_checker','wpwa_lang_checker');
 function wpwa_lang_checker(){
 $app_name = "<h1>" . __('My Application','wpwalang') .
"</h1>";
 return $app_name;
}

Here, we have a basic shortcode that displays the text My Application inside
a header tag. We have enabled translation using the __() function and we have
used wpwalang as the plugin text domain. Now, we need to create translation files
for this plugin.

http://codex.wordpress.org/Function_Reference/translate
http://codex.wordpress.org/Function_Reference/translate

Supplementary Modules for Web Development

[342]

Creating the POT file using PoEdit
First, we have to create the Portable Object Template (POT) file for the plugin. This
file is considered as the base for translations. If you want to create a translation for a
new language, you have to use this file and generate the translation file. Apart from
the .pot file, we also have .mo and .po files. The Portable Object (PO) file is what we
get as the result by translating the .pot file. The Machine Object (MO) file contains
a complied version of the .po file and is used to apply the translations. Having got ten
a basic introduction to these file types, now we can move into creating those fields.

We can use the PoEdit software to generate and manage translations. You can
download PoEdit from http://sourceforge.net/projects/poedit/. I have
downloaded the version for Windows. You can download PoEdit for your OS.
Once installed, we have to go to File | New Catalog to create a new catalog for
our project, as shown in the following screenshot:

We can fill the fields for project name, team name, e-mail, and language, as shown
in the preceding screenshot. Next, we have to add the source paths to our plugin.
Consider the following screenshot for adding source paths:

http://sourceforge.net/projects/poedit/

Chapter 11

[343]

In this section, we have to define the paths to identify the source files. The source
files within these paths will be explored by PoEdit to find translatable strings. We are
planning to place our language files inside a folder called lang. So, all source files will
be available one folder above the lang folder, and hence, we use ../ to define the
source path. You can add as many paths as you wish using the New Item button.

Finally, we have to define the Source keywords, as shown in the following screenshot:

Supplementary Modules for Web Development

[344]

Here, we have added __ and _e as the source function names for our project. If you
are using other WordPress translation functions, you will have to add them using the
New Item button as well. Based on current settings, PoEdit will only look for __()
and _e() functions inside the project files.

Once we click on the OK button, PoEdit will search the source files and ask you to
save the file. We have to name the file with the .pot extension before saving. Make
sure that you save the .pot file inside a new folder called lang in your plugin folder.
Once saved, PoEdit will show the strings available for translation, as shown in the
following screenshot:

Since we only have one string, PoEdit will only display that string. If you apply this
technique to our main portfolio plugin, you will get a huge list of translatable strings.
Now, our next task is to create the actual translation files from the .pot file. Let's
start with the translation file for the English language.

By default, we have the .pot file in English. So, we don't need to add any translations.
You can just choose the save as option and save the file as wpwalang-en_US.po in
the lang folder. In here, we use wpwalang as the text domain and then en_US as the
language. Once the .po file is saved, it will automatically create the compiled .mo file.

Chapter 11

[345]

Now, let's create another file for the French language. In this case, we have to
add translations. So, get the translated text for My Application and add it to the
Translation section, as shown in the bottom of the screenshot. We have to repeat this
task for all other translations. Then, choose save as and save the file as wpwalang-
fr_FR.po in the lang folder. Now, we have two translation files for the English and
French languages.

Loading language files
Now, we have to let WordPress know that there are translation files available for
this plugin. WordPress provides a function called load_plugin_textdomain to
define the translation file path. Let's add the following code to our plugin for the
loading plugin text domain:

add_action('init', 'wpwa_lang_textdomain');
function wpwa_lang_textdomain() {
 load_plugin_textdomain('wpwalang', false, dirname(
plugin_basename(__FILE__)) . '/lang');
}

We have added the path to our language files folder with the plugin text domain.
Now, WordPress will look for translation files with the prefix wpwalang followed
by the language code. Now, everything is set up for the translation support for our
new plugin.

Changing the WordPress language
WordPress Version 4.0 and later allows us to change the site language from the admin
section. Once the language is changed, the text in our plugin will be displayed in their
respective language. Let's change the language to French using Site Language in the
WordPress Settings | General section, as shown in the following screenshot:

Supplementary Modules for Web Development

[346]

Once the language is changed, you will see the French version of the WordPress
admin section. Now, create a new page/post and add our shortcode. You will see
that My Application is converted to French as defined in our translation file.

The next thing we need to know is how to update translation files. Assume that
we have added new functionality to the plugin with new strings. Then, we need to
update our translation files to include the new strings. So, first, we open the .pot file
using PoEdit. Then, we click the Update button on the menu at the top. PoEdit will
search for all the translations again and update the list. Once it's completed, you can
save the .pot file again. You have to repeat this process for all other translation files.
The only difference is that you will have to add translations to new strings before
saving them again. By following this process, you can make the plugins ready for
translation to any language you want.

Working with media grid and image
editor
In normal web applications, we let users upload images and files using the HTML file
upload field. These files are uploaded into a specific server location. However, what
if the admin wants to view the files or edit them? We have to manually download
the files, make the modifications and upload them again. WordPress offers media
management section by default. This section is improved in WordPress 4.0+ versions
to include the media grid and image editor. This is a great feature for managing media
as administrators. You can can use this to let your users upload images and edit them
before saving them in the WordPress backend. Since it's a built-in feature, you don't
have to develop any functionality for image uploading in WordPress applications.
Let's see the default display of the new media grid using the following screenshot:

Chapter 11

[347]

Once you click on a single item, all the details will be displayed in a popup menu
with the ability to navigate between the other media items. Also, for images, it lets us
edit them instantly without needing any tool. The following screenshot previews the
media item information screen:

As a developer, you have to get the support of the WordPress media uploader and
image editor to let users upload and manage images, especially in the admin section.

Introduction to the post editor
The WordPress post editor provides amazing features to edit the content of your
site. It's improving with every version and now we have come to a stage where we
are considering the frontend direct content editing. The default post editor provides
lots of built-in items to format your content using HTML tags. Also, we use the post
editor for adding shortcodes to content through buttons.

Supplementary Modules for Web Development

[348]

Using the WordPress editor
In web applications, we usually need to use text areas to get descriptive information
from the user. In such scenarios, we just put the default HTML textarea field or use a
comprehensive editor such as TinyMCE. Adding and configuring this types of editor
usually takes a lot of time. In WordPress, we have the ability to use a built-in editor
anywhere you wish. Normally, we see it as the post/page editor. However, we can
use it on both the frontend and backend of the application by just including the
wp_editor function. This will create a nice content editor similar to the WordPress
post editor. The following code shows the syntax of the wp_editor function:

wp_editor($content, $editor_id, $settings = array());

Once this line is used, you will get a great looking content editor, as shown in the
following screenshot:

Once it's enabled, users can edit and format the content without any issues. Also,
it offers the Add Media button, allowing users to upload images instantly and
place them inside the content. In a normal application, we have to upload the file
separately, get the URL manually, and add it to the content. So, developers should
use wp_editor whenever possible instead of default text areas or manually adding
editors such as TinyMCE.

Chapter 11

[349]

Video embedding
Video embedding is also a quite useful feature in developing applications. These
days, most applications use videos to provide content. The WordPress editor allows
you to just paste the URL as text and get the embedded video as the output. Without
this feature, we need to upload videos or get the link, find the embedded code, and
display the video manually. In an application where you need to embed videos, this
feature becomes handy.

This feature doesn't work with any URL. WordPress provides a list of predefined
providers with the support URL embedding. The following are some of the popular
providers that are supported through this feature:

•	 Vimeo
•	 YouTube
•	 Twitter
•	 Flickr
•	 Instagram
•	 SlideShare

You can find the complete providers list at http://codex.wordpress.org/Embeds.

Lesser-known WordPress features
Throughout this book, we have looked at the major components related to web
application development. WordPress also offers some additional features that are
rarely noticed among the developers community. Let's get a brief introduction to
the following lesser-known features of WordPress:

•	 Caching
•	 Transients
•	 Testing
•	 Security

http://codex.wordpress.org/Embeds

Supplementary Modules for Web Development

[350]

Caching
In complex web applications, performance becomes a critical task. There are various
ways of improving the performance from the application level as well as the database
level. Caching is one of the major features of the performance-improving process,
where you keep the result of complex logic or larger files in the memory or database
for quick retrievals. WordPress offers a set of functions for managing caching within
applications. Caching is provided through a class called WP_Object_Cache, which
can be used effectively to manage nonpersistent cache.

We can cache the data using the built-in wp_cache_add function, as defined in the
following code:

wp_cache_add($key, $data, $group, $expire);

The cached data is added using a specific key as the first parameter. The $group
parameter defines the group name of the cached data. It's somewhat similar to
namespacing, where we are allowed to create the same class inside multiple
namespaces. By defining the $group parameter, we allow the possibility of creating
duplicate cache keys in different groups. The fourth and final parameter defines the
expiration time for the cached data.

The cached data can be accessed using the wp_cache_get function, as shown in the
following code:

wp_cache_get($key, $group);

The existing functions allow you to manage caching functionality for simple use
cases. However, this might not be the best solution for larger web applications.

The nonpersistent nature of WordPress cache is a limitation
where you lose all the cached data on page refresh.

More information about WordPress caching can be accessed from the codex at
http://codex.wordpress.org/Class_Reference/WP_Object_Cache.

Generally, developers prefer the automation of caching tasks using existing
plugins. So, let's look at some of the most popular plugins for providing caching
inside WordPress:

•	 W3 Total Cache: http://wordpress.org/plugins/w3-total-cache/
•	 WP Super Cache: http://wordpress.org/plugins/wp-super-cache/

http://codex.wordpress.org/Class_Reference/WP_Object_Cache
http://wordpress.org/plugins/w3-total-cache/
http://wordpress.org/plugins/wp-super-cache/

Chapter 11

[351]

These are the most popular caching plugins, exceeding over seven million
downloads in combination inside the WordPress plugin directory. Developers
have to get used to these plugins to cater to the performance of complex applications.

Transients
A WordPress transient API caters to the limitations of the caching functions by
providing database-level cache for temporary time intervals. Compared to caching,
transients are used by many developers for working with large web applications.
Transient functions work in a manner similar to caching functions, where we have
functions for settings and getting transient values. An example usage of transients
is illustrated in the following code:

set_transient($transient, $value, $expiration);
get_transient($transient);

The syntax of the transient functions is similar to the caching function with the
exception of the group parameter. Each and every transient value will be stored in
the wp_options table as a single row. The following screenshot shows a typical
database result set with transient values:

If you are using external plugins, you will see a large number of existing transient
values within your database. In situations where you need persistent cache, make
sure that you use transients instead of caching functions.

Testing
Application testing is another critical task that is used to identify potential defects
before releasing to the live environment. Testing is mainly separated into two areas
called unit testing and integration testing. Unit testing is used to test each small
component independent from others, while integration testing is used to test the
application with the combination of all the modules.

Supplementary Modules for Web Development

[352]

Compared to other popular frameworks, WordPress code is not the easiest to test.
However, we can use PHPUnit for testing themes as well as plugins in WordPress.
You can find a guide for working with PHPUnit at http://make.wordpress.org/
core/handbook/automated-testing/.

WordPress provides a set of test cases for testing major features. Many developers
have a limited knowledge about existing test cases as it's not available inside the core.
You can access a complete list of test cases at http://unit-tests.svn.wordpress.
org/trunk/tests/. Make sure that you get the knowledge about testing WordPress
by going through the existing test cases. Then, you can write test cases for your own
plugins and themes for unit testing purposes.

Security
In WordPress web applications, security is considered to be one of the major threats.
Most people believe that WordPress is insecure as a large number of WordPress
websites are hacked every day. However, not many people know that the reason
behind the hacking of most WordPress sites is due to the lack of knowledge of the
site administrators. Once the necessary security policies are implemented, we can
use WordPress applications without major issues.

The WordPress codex provides a separate section called Hardening WordPress for
defining the necessary security constraints. You can read this guide at http://codex.
wordpress.org/Hardening_WordPress. The following are some of the common and
most basic guidelines for securing WordPress applications:

•	 Update the core plugins and themes to the latest version and remove the
unused plugins and themes

•	 Check third-party plugins for malicious code before usage
•	 Move the wp-config.php file from the default directory
•	 Restrict the access to WordPress core folders using the necessary permission

levels (the BulletProof Security plugin can be used to restrict permissions)
•	 Use unique and strong usernames and passwords
•	 Limit admin access via SSH and/or whitelisted IPs

There can be unlimited ways of breaking web applications and it's hard to imagine
and plan for every possibility. Apart from the basic guidelines, we can also use
popular and stable WordPress plugins for securing our applications. Here is a list
of most popular security plugins provided in the WordPress plugin directory:

•	 iThemes Security: http://wordpress.org/plugins/better-wp-security/

http://make.wordpress.org/core/handbook/automated-testing/
http://make.wordpress.org/core/handbook/automated-testing/
http://unit-tests.svn.wordpress.org/trunk/tests/
http://unit-tests.svn.wordpress.org/trunk/tests/
http://codex.wordpress.org/Hardening_WordPress
http://codex.wordpress.org/Hardening_WordPress
http://wordpress.org/plugins/better-wp-security/

Chapter 11

[353]

•	 WP Security Scan: http://wordpress.org/plugins/wp-security-scan/
•	 BulletProof Security: http://wordpress.org/plugins/bulletproof-

security/

•	 Secure WordPress: http://wordpress.org/plugins/secure-wordpress/

Introduction to multisite
WordPress provides a module called multisite where you can create multiple
networks of WordPress sites using a single installation. All the sites in the network
share the same files. These sites can be installed as sub folders of the main site or
sub domains. We need to know how WordPress multisite is used and how it can
support web application development.

Let's identify the common usages of WordPress multisite:

•	 It lets users create their own blog, website, or product selling website within
your site. This is a widely used technique where you let your users purchase
a membership to manage their site within your network.

•	 It manages multiple products. WordPress theme and plugin developers
use this technique to create demo sites for their plugins and themes using
a single installation.

•	 It manages the branches of a large scale organization. Many large
organizations have branches in multiple countries. So, multisite allows them
to manage a separate site for each country within the network. Since all
branches have similar features, multisite makes it very easy to manage.

Having looked at the practical use cases of WordPress multisite, now we have to
know why multisite should be preferred over several single sites. Let's consider the
advantages of using multisite:

•	 WordPress themes and plugins are shared across multiple sites
•	 You can manage multiple sites within one hosting account
•	 You can add/upgrade/delete plugins and themes once without duplicating

these tasks for all sites
•	 You can control all the sites and users as a single super admin
•	 Upgrading and customizing the site is less time-consuming and effective
•	 You can dynamically create a new site any time within minutes, rather than

wasting time on installing separate sites

http://wordpress.org/plugins/wp-security-scan/
http://wordpress.org/plugins/bulletproof-security/
http://wordpress.org/plugins/bulletproof-security/
http://wordpress.org/plugins/secure-wordpress/

Supplementary Modules for Web Development

[354]

Based on the practical scenarios and advantages, we can clearly see that we need
to have multiple sites that use similar sets of features to get the most out of multisite
features. Consider the following screenshot for the superadmin section of a
multisite network:

As you might notice, this screen is completely different to the normal admin
section of WordPress. Here, we have a menu item called Sites, which is used to
add/edit/delete new sites inside the network. The superadmin of the network
can manage these sites while an admin can manage a single site within the network.

Also, there are important sections called Themes, Plugins, Settings, and so on.
These sections are used globally across all plugins. A plugin or theme activated from
this section will act as a network-activated theme or plugin. If you deactivate them,
it will affect all the sites within the network.

Managing WordPress multisite is an advanced topic that is beyond the scope
of this book. What we need to know is how and when to use multisite in web
application development. In general, WordPress web applications will be developed
for direct clients, and hence, multisite may not play a vital role. However, if you are
developing an application that provides a service to the user, then multisite could be
an awesome option.

Time for action
Throughout this book, we developed various practical scenarios to learn the art
of web application development. Here, we have the final set of actions before we
complete this book. By now, you should have all the knowledge of getting started
with WordPress web development. After reading this chapter, you need to try the
following set of actions for getting experienced with the process:

Chapter 11

[355]

•	 Translate the Portfolio Manager plugin using the technique discussed
in this chapter

•	 Figure out practical scenarios for implementing Cache and Transients

Summary
WordPress is slowly but surely becoming a trend in web application development.
Developers are getting started on building larger applications by customizing
existing modules and features. However, there are a lot of limitations and a lack
of resources for web development-related tasks. So, the best practices and design
patterns are yet to be defined for building applications with WordPress.

We started this book by discussing how WordPress can be adapted to web applications
and developed a simple question-answer interface using existing features. Then, we
looked at user and database management capabilities while initiating the development
of our portfolio management plugin. Also, we looked at the possibilities of extending
core features as well as techniques for developing extensible plugins.

Then, we looked at customizing the backend features as well as the frontend features
with the use of widgets and themes. The use of open source plugins and libraries is a
key component in web application development, and hence, we had an in-depth look
at the integration of open source libraries. We developed a simple API to understand
the importance of APIs in web development. Finally, we integrated all the developed
components into our application and looked at the possibilities of securing and
improving the performance of web applications.

In this book, we developed an application structure considering the best practices
of general web application development. The WordPress architecture is different
from typical PHP frameworks, and hence, this structure might not be the best solution.
As developers, we want to drive WordPress into a fully-featured web application
framework. So, feel free to discuss your own application structures and techniques
that can be used for WordPress applications on the website for this book at
http://www.innovativephp.com/wordpress-web-applications.

The website for this book is designed to provide additional resources on top of
the theories and techniques discussed in this book. Make sure that you follow the
website content as it will be updated regularly with resources related to WordPress
web application development. Also, we will transform the basic portfolio application
developed in this book into a large-scale application by discussing every possible
scenario. Please provide your contribution to improve the functionality of the
portfolio application.

http://www.innovativephp.com/wordpress-web-applications

[357]

Configurations, Tools,
and Resources

In this appendix, we will set up and configure WordPress and necessary tools
to follow the demo application in this book. You can find a list of resources and
tutorials on libraries and plugins used in this book. Let's start by configuring and
setting up WordPress.

Configure and set up WordPress
WordPress is a CMS that can be installed in a few minutes with an easy setup guide.
Throughout this book, we are implementing a personal portfolio management
application with advanced users. This short guide is intended to help you set
up your WordPress installation with necessary configurations to be compatible
with the features of our application. Let's get started!

Step 1 – downloading WordPress
We are using WordPress 4.2.2 as the latest version available at the time of
writing this book, so we have to download version 4.0 from the official website
at http://wordpress.org/download/.

http://wordpress.org/download/

Configurations, Tools, and Resources

[358]

Step 2 – creating the application folder
First, we need to create a folder for our application inside the web root directory.
Then extract the contents of the downloaded zip file into the application folder. Finally,
we have to provide the necessary permissions to create files inside the application
folder. Make sure that you provide write permission for the wp-config.php file before
starting the installation. Generally, we can use 755 permissions for directories and 644
permissions for files. You can learn more about WordPress file permissions at
http://codex.wordpress.org/Hardening_WordPress#File_Permissions.

Step 3 – configuring the application URL
Initially, our application will be running on a local machine with the local web
server. There are ways of working in the local environment:

•	 Create a virtual host for running the application
•	 Use a localhost for running the application

Creating a virtual host
Virtual hosts, often referred to as vhosts, allow us to configure multiple websites
inside a single web server. Also, we can match a custom URL to refer to our
application. This method is preferred in web application development
as the migration from local to real server becomes less complex.

Let's say we want to run the portfolio application as www.developerportfolio.com.
All we have to do is configure a virtual host to point the application folder to www.
developerportfolio.com. Once set up, this will call the local application folder
instead of an actual online website.

By using an actual server URL for virtual host, we can directly export the local
database into the server without changes.

The following resources will help you to set up virtual hosts on different
operating systems:

•	 Windows (Wamp) (http://www.kristengrote.com/blog/articles/how-
to-set-up-virtual-hosts-using-wamp)

•	 Mac (http://goo.gl/mZfVCi)
•	 Fedora (http://www.techchorus.net/setting-apache-virtual-hosts-

fedora)
•	 Ubuntu (https://www.digitalocean.com/community/articles/how-to-

set-up-apache-virtual-hosts-on-ubuntu-12-04-lts)

http://codex.wordpress.org/Hardening_WordPress#File_Permissions
http://www.kristengrote.com/blog/articles/how-to-set-up-virtual-hosts-using-wamp
http://www.kristengrote.com/blog/articles/how-to-set-up-virtual-hosts-using-wamp
http://goo.gl/mZfVCi
http://www.techchorus.net/setting-apache-virtual-hosts-fedora
http://www.techchorus.net/setting-apache-virtual-hosts-fedora
https://www.digitalocean.com/community/articles/how-to-set-up-apache-virtual-hosts-on-ubuntu-12-04-lts
https://www.digitalocean.com/community/articles/how-to-set-up-apache-virtual-hosts-on-ubuntu-12-04-lts

Appendix

[359]

Using a localhost
The second and commonly used method is to use a localhost as the URL to access the
web application. Once the application folder is created inside the web root, we can
use http://localhost/application_folder_name to access the application.

Step 4 – installing WordPress
Open a web browser and enter your preceding application URL to get the initial screen
of the WordPress installation process, as illustrated in the following screenshot:

We have to select the language for the site as the initial step from WordPress Version
4.0. Select the language as English (United States) for this installation and click the
Continue button. Then we have to manually create the database before starting this
installation process. So, create a new database from your favorite database editor
and create a database user with the necessary permission to access the database.

Configurations, Tools, and Resources

[360]

Next, click the Create a Configuration File button to load the screen shown in the
following image:

The preceding screen displays all the information needed to continue with the
installation. Click the Let's go! button after reading the contents to get the next
screen, as shown in the following image:

Appendix

[361]

Here, we have to enter the details for connecting to the database. Use the details in
the database creation process for defining the database name, user, password, and
database host. Finally, we have to enter the table prefix. By default, WordPress uses
wp_ as the prefix. It's ideal to set a custom prefix, such as a random string, for your
tables to improve the security of your application. Once all the details are entered,
hit the Submit button to get the next screen, as shown in the following image:

Also, we can use the WP Better Security plugin to generate a random
prefix and update the database.

Click the Run the install button to get the next screen, as shown in the
following image:

Configurations, Tools, and Resources

[362]

Fill the form with the requested details. By default, WordPress provides a blank field
for the username. Ideally, you should be using a custom username as the admin role,
instead of admin as the username, to improve the security of the application. Once
all the details are filled, submit the form to complete the installation, and get the
following screen:

Details of your admin account will be displayed in this screen. Click the Log In
button to get the login form and log into the admin area. Now, we are ready to go!

Step 5 – setting up permalinks
Permalinks allow you to define the custom URL structure for your posts, pages,
and custom URLs using mod_rewrite.

Your Apache installation must have mod_rewrite installed
and turned on for permalinks to work.

By default, WordPress uses query parameters to load posts and pages through the
ID. Usually, we change the existing URL structure to provide a pretty URL. So,
navigate to the Settings | Permalinks section on the admin menu, and you will find
different URL structures. Select the Post name option for the URL and click on the
Save button. Your screen should look something similar to the following:

Appendix

[363]

Step 6 – downloading the Responsive theme
We are using a free theme called Responsive for the developer portfolio management
application of this book. We can download the Responsive theme from the official
WordPress themes directory at http://wordpress.org/themes/responsive. Then
we have to copy the extracted theme folder into the /wp-content/themes directory
of our application.

Step 7 – activating the Responsive theme
Now we have to activate the theme from the WordPress admin panel. Choose
Appearance | Themes from the left menu and click on the Activate link under
the Responsive theme.

Step 8 – activating the plugin
Now copy the wpwa-web-application plugin into the /wp-content/plugins folder.
Use the Plugins section on the admin menu to activate the plugin for this book.

http://wordpress.org/themes/responsive

Configurations, Tools, and Resources

[364]

Step 9 – using the application
Now we have completed the process of configuring WordPress for our portfolio
management application. Open the web browser and enter the URL as http://www.
yoursite.com/user/register or http://localhost/application_folder/
user/register, based on your URL structure, to load the registration page of the
application. You can use the menu and forms to navigate through the site and check
all the features built throughout this book.

Open source libraries and plugins
We used a number of open source libraries and plugins throughout the book.
The following list illustrates all the libraries and plugins used with the respective
URLs to get more information:

•	 The Responsive theme: This theme is developed by CyberChimps.
You can find this at http://goo.gl/Uf9Mp1.

•	 The Members plugin: This plugin is developed by Justin Tadlock.
This can be found at http://goo.gl/HuhDax.

•	 The Rewrite Rules Inspector plugin: This plugin is developed by Daniel
Bachhuber and Automattic. You can find this at http://goo.gl/oBVJmL.

•	 The Posts 2 Posts plugin: This plugin is developed by Alex Ciobica and
scribu. This is available at http://goo.gl/8pQGmT.

•	 Pods—Custom Content Types and Fields: You can find this framework
at http://goo.gl/ixMspf.

•	 The Custom List Table Example plugin: This plugin is developed by
Matt Van Andel, and you can find this at http://goo.gl/3tnfmf.

•	 Backbone.js: This library can be found at http://goo.gl/VyhEDl.
•	 Underscore.js: This library is available at http://goo.gl/aZ42YD.
•	 PHPMailer: This library can be found at http://goo.gl/VX90ym.

Online resources and tutorials
Web application development with WordPress has still not matured, so you will
find various perspectives from various people about using WordPress as an
application development framework. This section provides various tutorials
and articles for understanding various perspectives on using WordPress for
web application development:

•	 Wordpress As An Application Platform, Tom McFarlin (http://goo.gl/gONP3i)

http://goo.gl/Uf9Mp1
http://goo.gl/oBVJmL
http://goo.gl/8pQGmT
http://goo.gl/ixMspf
http://goo.gl/3tnfmf
http://goo.gl/VyhEDl
http://goo.gl/aZ42YD
http://goo.gl/VX90ym
http://goo.gl/gONP3i

Appendix

[365]

•	 WordPress For Application Development, Tom McFarlin
(http://goo.gl/ubDasf)

•	 My Thoughts on Building Web Applications with WordPress,
Tom McFarlin (http://goo.gl/fTUqQf)

•	 Why WordPress Isn't Viewed as an Application Framework,
Tom McFarlin (http://goo.gl/Ophmak)

•	 Using WordPress as a Web Application Framework,
Harish Chouhan (http://goo.gl/BFHqVB)

•	 Build Powerful Websites and Applications with WordPress,
Piklist (http://goo.gl/WYqRNh)

•	 Build an App With WordPress—The compulsory todo list,
Harley Alexander (http://goo.gl/rwMB6c)

http://goo.gl/ubDasf
http://goo.gl/fTUqQf
http://goo.gl/Ophmak
http://goo.gl/BFHqVB
http://goo.gl/WYqRNh
http://goo.gl/rwMB6c

[367]

Index
A
action hooks

planning, for layouts 247, 248
used, for extending home page

template 244
active/inactive status, checking

constants 148
functions 147
plugin status, checking 148

admin dashboard
about 9
appearance 10
defining 168
pages 10
posts 10
settings 10
users 10

admin list tables
available custom columns, listing 197
checkbox for records, displaying 197
column default handlers,

implementing 196
comments list 192
custom class, defining 194
custom column handlers,

implementing 195, 196
custom list, adding as menu page 199
generated list, displaying 199-202
implementing 194
initial configurations, creating 195
instance variables, defining 194
list data, retrieving 198
list of bulk actions, creating 198
post list 184
sortable columns of list, defining 198

user list 191
using 183, 194
working with 183

admin theme plugins
Bootstrap Admin 204
Slate Admin theme 204

admin toolbar
customizing 168, 169
items, managing 170-172
removing 169

AJAX-based star rating system
including 210

Amazon Product Advertising API
URL 296

API
about 296
advantages 296

API access tokens
integrating 306-311

API client
about 298
building 298-301

API documentation
providing 311, 312

API server 298
API user authentication

integrating 303-305
application data tables 80
application frontend menu

generating 233
navigation menu, creating 233-235
user specific menus, displaying 236

application layouts
widgetizing 224

Application Programming
Interface. See API

[368]

application testing 351
application URL

configuring 358
localhost, using 359
virtual host, creating 358

application users
registering 43, 44

B
Backbone.js 255

about 254
advantages 256
URL 254

Bootstrap Admin
URL 204

built-in delete functions
delete_post_meta 85
delete_user_meta 85
wp_delete_post 85

built-in insert functions
add_option 84
wp_insert_comment 84
wp_insert_post 84

built-in update functions
update_post_meta 84
update_user_meta 84
wp_update_term 84

BulletProof Security
URL 353

C
caching

about 350
URL 350

comment-related tables
about 74
wp_commentmeta 74
wp_comments 74

comments list 192
components, WordPress

about 7
admin dashboard 9
application layout, customizing 9
plugins 10

widgets 11
WordPress page layout 8
WordPress themes 8

custom API
creating 302, 303

custom content types
about 96
articles 99
books 99
class-wpwa-custom-post-manager.php 100
class-wpwa-template-loader.php 101
configurations, implementing 103, 104
custom fields, with meta boxes 113, 114
custom taxonomies, creating 108-111
implementing, for portfolio

application 100-102
models 101
permissions, assigning to projects 107, 108
permissions, assigning to project

type 111-113
planning, for applications 97
Pods framework 132-135
projects 97
projects class, creating 104-107
role, in web applications 96
services 98
templates 101

custom e-mail sending functionality
creating 274

custom field data
persisting 123-126

Custom List Table Example plugin
URL 364

custom pages
custom menu pages 175
options pages 175

custom post type messages
customizing 127-129

custom post type relationships 129-132
custom routing technique

application-specific theme, creating 222
direct template inclusion 221
pure PHP templates, using 220
templates, using in WordPress 220
theme, versus plugins based templates 222
using, in custom templates 219

[369]

D
database, querying

custom tables, querying 85, 86
existing tables, querying 84
posts, working with 86
WordPress query classes 88
WP_Query class, extending for

applications 87
data selecting functions

get_option 85
get_posts 85
get_users 85

default post statuses, post life cycle
Auto-Draft 188
Draft 188
Future 187
Inherit 188
Pending 188
Private 188
Published 187
Trash 188

default roles
admin 40
author 40
contributor 40
editor 40
subscriber 40
superadmin 40

demo application
URL 337

developer profile page, with Backbone.js
about 257-260
events, integrating to Backbone.js

views 268, 269
models, creating for server 269
models, creating in server 270-272
models, validating for server 269
projects, creating from frontend 266-268
projects list, displaying on page

load 262-266
structuring, with Backbone.js 260-262
structuring, with Underscore.js 260-262

developer's list page
URL 323

development plan, portfolio management
application

about 13
application goals 13
features, planning 15
functions, planning 15
planning 14
target audience 13
user roles 15

E
entity relationship diagram, WordPress

reference 75
existing tables

about 70
categorizing 70
comment-related tables 74
post-related tables 72
term-related tables 73
user-related tables 71
wp_links table 75
wp_options table 75

existing tables, adapting into web
applications

about 75
other tables 78
post-related tables 76
term-related tables 77
user-related tables 76

existing tables, querying
about 84
records, deleting 85
records, inserting 84
records, selecting 85
records, updating 84

Exploit Scanner
URL 292

extended lists
building 193

extensible plugins
about 148
allowed types of images,

customizing 155-157

[370]

extensible file uploader plugin,
creating 150, 151

file fields, converting with jQuery 151, 152
file uploader, planning for portfolio

application 149
file uploader plugin, extending 155
media uploader, integrating to

buttons 152-154
project screens, loading 157-159
project screens, saving 157-159
used, with custom actions and

filters 159, 160
used, with WordPress core actions 149
used, with WordPress filters 149

F
Facebook Graph API

URL 296
Fedora

URL 358
Front Controller pattern 218
frontend login

about 62
activation status, checking 66, 67
creating 62-64
login form, displaying 64-66

frontend registration
automatic login after registration,

implementing 60
custom template implementation 46
custom templates, creating 52
do_action function, using 51
functions access, controlling 50
implementing 44
page template implementation 45
registration form, designing 52-54
registration form submission,

handling 55-57
registration process, planning 54, 55
registration success path,

exploring 58-60
shortcode implementation 44
simple router, building for user module 46
system users, activating 61, 62

functions, portfolio management
application

developer profile management 16
frontend login and registration 16
notification service 16
responsive design 16
settings panel 16
third party libraries 16
XML API 16

functions, WordPress options API
add_option 181
delete_option 181
get_option 181
update_option 181

G
get_template_part function 117
Google Maps API

URL 296

H
high quality plugins

developing 165
home page template

designing 231, 232
extending, with action hooks 244
widgets, customizing to enable extendable

locations 245-247

I
image editor

working with 346, 347
input control types

URL 239
instance variables

base_path 103
projects 103
template_parser 103

internationalization
about 340
plugin translations, creating 341
WordPress translation support 340

iThemes Security
URL 352

[371]

L
layout creation techniques, web application

about 218
page templates 219
shortcodes 219

LinkedIn API
URL 282

login strategies
configuring 279, 280
LinkedIn account authentication,

implementing 281-283
LinkedIn account, verifying 283, 284

M
Mac

URL 358
Machine Object (MO) file 342
main navigation menu

customizing 173, 174
features, adding with custom pages 175
new menu items, creating 174

master tables 80
media grid

working with 346, 347
Members plugin

URL 43
multisite

about 353, 354
advantages 353
scenarios 354
usages 353

O
OAuth library

URL 280
OpenAuth 277
open-closed principle

about 140
URL 140

open source JavaScript libraries, in
WordPress

about 253, 254
Backbone.js 254, 255
Backbone.js, integrating 256, 257

code structuring, defining 255, 256
developer profile page, creating with

Backbone.js 257-260
Underscore.js, integrating 256, 257

open source libraries
advantages 252
online references 364
selecting 252
used, in WordPress core 252, 253

options pages
application options panel,

building 178-180
building 175, 176
creating 176
custom layout, creating for 176, 177
WordPress options API, using 181, 182

P
page templates

about 45
cons 45
pros 45

permalinks
about 362
setting up 362

PHPMailer
custom functions, creating 274-276
custom version, creating of pluggable

wp_mail function 274
loading 274-276
URL 273
used, for custom e-mail sending 273
used, within WordPress 273

PHPUnit
URL 352

pluggable functions
wp_logout 161
wp_mail 161
wp_new_user_notification 161

pluggable plugins
about 161-163
pluggable functions, using 164

pluggable templates
creating 242
creating, in WordPress 242, 243

[372]

plugin dependencies
handling 145-148

plugins
about 10
online references 364
using 292

plugin translations
creating 341
language files, loading 345
POT file, creating with PoEdit 342-344
WordPress language, changing 345, 346

Pods framework
about 132
features 132
for custom content types 132-135
selecting, for web development 135, 136
URL 133

PoEdit
about 342
URL 342
used, for creating POT file 342-344

Portable Object (PO) file 342
Portable Object Template (POT) file 342
portfolio application

custom tables, creating 81-83
development plan 13
home page, building 223
implementing 336
integrating 316
structuring 316
tables, planning 80
types of tables, in web applications 80
widget 223, 224

post editor 347
post filters

reference 88
post list

about 184
custom actions, creating for custom

posts 184, 185
custom filters, creating for custom

post types 186, 187
custom list columns, displaying 189, 190
custom post status links,

creating 187-189

post-related tables
about 72, 76
hotel reservation system scenario 77
online shopping cart scenario 77
project management application

scenario 77
wp_postmeta table 72
wp_posts table 72

Posts 2 Posts plugin
URL 364

Q
question-answer interface

building 18
comments template, customizing 22, 23
prerequisites 18
question list, generating 30-32
questions, creating 19-22
status of answers, changing 23-27
status of answers, saving 28, 29

questions plugin
design of questions, customizing 32
features, enhancing 32
questions, approving 33
questions, categorizing 33
questions, rejecting 33
star rating, adding to answers 33

R
Representational State Transfer (REST) 254
responsive nature, of admin

dashboard 209, 210
Responsive theme

activating 363
downloading 363
URL 364

RESTful architecture
URL 254

restructured application, portfolio
application

AJAX-based filtering, enabling 323-326
developer list template, designing 322, 323
developer model, building 321
working with 320

[373]

Retina Press
URL 204

reusable libraries
creating, with plugins 142
plugin dependencies, handling 145-148
template loader plugin, planning 142-144
template loader plugin, using 144, 145

Rewrite Rules Inspector plugin
URL 364

router
building, for user module 46
query variables, adding 47
requirements 46
rewriting rules, flushing 48, 49
routing rules, creating 47

S
Secure WordPress

URL 353
security 352
shortcode

cons 45
implementing 44
pros 45

Slate Admin theme
URL 204

subscriber notifications
scheduling 331-333
sending, through e-mails 333-336

T
tables in web applications

about 80
application data tables 80
master tables 80
transaction tables 80

table creation query
reference 82

template engine
about 115
comparing, with template loader 122
first template, creating 118-121
simple custom template loader,

building 116, 117

templates without parts 117
templates with parts 117

template execution hierarchy
Archive pages 215
Single pages 216
Single posts 216
URL 215

template loader
integrating, into user manager 318-320

template loader dependencies
adding 317

template loader plugin
building 142
planning 142-144
using 144, 145

term-related tables
about 73
wp_term_relationships 73
wp_terms 73
wp_term_taxonomy 73

Theme Authenticity Checker (TAC)
URL 292

Theme Check
URL 293

theme customizer
custom options, adding 238-240
used, for managing options 237
used, for managing widgets 237
widgets, handling 240-242

third- party libraries
using 292

Timber plugin
URL 116

transaction tables 80
transients 351
Twig documentation

URL 116
Twitter REST API

URL 296

U
Ubuntu

URL 358
Underscore.js

URL 364

[374]

user authentication, with OpenAuth
implementing 277-279
library, initializing 287, 288
LinkedIn app, building 285, 286
login strategies, configuring 279, 280
strategies, requesting 287
to application 289-292

user capabilities
about 41
creating 42
default capabilities 42, 43

user list 191
user management

about 36
plugin, preparing 36, 37

user profile
field values, updating 328-331
updating, with additional fields 326-328

user-related tables
about 71, 76
wp_usermeta table 71
wp_users table 71

user roles
about 37
adding 38, 39
application installation, using 38
application user roles, creating 38
default and custom roles, selecting

between 40, 41
default roles 40
existing user roles, removing 41
options, for implementing 38, 39
plugin activation, using 38
URL 38

user roles, portfolio application
admin 15
developer 15
members 15
subscribers 15

V
vhosts 358
video embedding 349
visual presentation, for admin screens

about 202
admin theme, creating 205-208

existing themes, using 203
third-party admin themes, using 203-205

W
W3 Total Cache

URL 350
web application development, with

built-in features
about 4
actions 7
admin dashboard 7
caching 6
database management 5
filters 7
media management 5
plugins 6
routing 5
scheduling 6
template management 5
themes 6
user management 5
widgets 6
XMR-RPC API 6

web application registration process
detailed information, requesting 44
user accounts, activating 44
user-friendly interface 43

widget
__construct function 226
about 11, 12, 223
creating 225-231
form function 226
update function 226
widget function 226

widgets, application layouts
after_title 225
after_widget 224
before_title 225
before_widget 224
id 224
name 224

Windows (Wamp)
URL 358

WordPress
about 167, 251
application folder, creating 358

[375]

application URL, configuring 358
application, using 364
as CMS 2
as web application framework 3
auto saving 92
components, identifying 7
configuring 357
considerations 90
downloading 357
final thoughts 337
guidelines 17
installing 359-362
limitations 17, 18, 90
meta tables, using 92
MVC, versus event-driven architecture 4
structure, page layout 8
permalinks, setting up 362
pluggable templates, creating 242, 243
plugin, activating 363
post revisions 91
reference 4
Responsive theme, activating 363
Responsive theme, downloading 363
revisions, disabling 92
revisions, enabling 91
themes 8
transaction support 91

WordPress application frontend
about 214
automating 249
extendable layout, creating 249
template execution hierarchy 215-217
web application frameworks, template

execution process 217, 218
WordPress theme, file structure 214, 215

WordPress codex
URL 112

WordPress database
about 70
existing tables, exploring 70
extending, with custom tables 79
querying 84

WordPress features
about 349
caching 350
security 352

testing 351
transients 351

WordPress, for web application
development

online resources and tutorials 364
WordPress options API

URL 181
WordPress plugins

about 139
architecture 140, 141
defining 140
extensible plugins 148
pluggable plugins 161-163
reusable libraries, creating with 142
used, for web development 141, 142

WordPress transient API 351
WordPress translation support

about 340
translation functions 341

WordPress web applications
reference 92
URL 191

WordPress XML-RPC API
for web applications 297
URL 297

WP_Date_Query class 90
wpdb class

$wpdb->get_results("select query") 85
$wpdb->get_row('query') function 86
$wpdb->query('query') function 85
reference 84

wp_mail function
about 273
wp_mail_charset 274
wp_mail_content_type 274
wp_mail_from 273
wp_mail_from_name 274

WP_Meta_Query class 90
WP_Query class

extending, for applications 87, 88
reference 86

WP Security Scan
URL 352

WP Super Cache
URL 351

WP_Tax_Query class 90

[376]

WP_User_Query class
about 89
filtering methods 89
reference 89

WP_UWP_Comment_Query class
about 89
reference 90

Y
YouTube API

URL 296

Thank you for buying
WordPress Web Application Development

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

WordPress 3.7 Complete
Third Edition
ISBN: 978-1-78216-240-7 Paperback: 404 pages

Make your first end-to-end website from scratch
with WordPress

1.	 Learn how to build a WordPress site
quickly and effectively.

2.	 Find out how to create content that's
optimized to be published on the Web.

3.	 Learn the basics of working with WordPress
themes and playing with widgets.

WordPress Multisite
Administration
ISBN: 978-1-78328-247-0 Paperback: 106 pages

A concise guide to set up, manage, and customize
your blog network using WordPress multisite

1.	 Learn how to configure a complete, functional,
and attractive WordPress Multisite.

2.	 Customize your sites with WordPress
themes and plugins.

3.	 Set up, maintain, and secure your
blog network.

Please check www.PacktPub.com for information on our titles

WordPress Plugin Development:
Beginner's Guide
ISBN: 978-1-84719-359-9 Paperback: 296 pages

Build powerful, interactive plugins for your blog and
to share online

1.	 Everything you need to create and distribute
your own plug-ins following WordPress
coding standards.

2.	 Walk through the development of six complete,
feature-rich, real-world plug-ins that are being
used by thousands of WP users.

3.	 Written by Vladimir Prelovac, WordPress
expert and developer of WordPress plug-ins
such as Smart YouTube and Plugin Central.

Internet Marketing with
WordPress
ISBN: 978-1-84951-674-7 Paperback: 112 pages

Use the power of WordPress to target customers,
increase traffic, and build your business

1.	 Get practical experience in key aspects of
online marketing.

2.	 Accurately identify your business objectives
and target audience to maximize your
marketing efficiency.

3.	 Create and deliver awesome SEO-enhanced,
targeted content to drive large numbers of
visitors through your blog.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: WordPress as a Web Application Framework
	WordPress as a CMS
	WordPress as a web application framework
	The MVC versus event-driven architecture

	Simplifying development with built-in features
	User management
	Media management
	Template management
	Database management
	Routing
	XMR-RPC API
	Caching
	Scheduling
	Plugins and widgets
	Themes
	Actions and filters
	The admin dashboard

	Identifying the components of WordPress
	The role of WordPress themes
	Structure of a WordPress page layout
	Customizing application layout
	The role of admin dashboard
	The admin dashboard
	Posts and pages
	Users
	Appearance
	Settings

	The role of plugins
	The role of widgets

	Development plan for portfolio management application
	Application goals and target audience
	Planning the application
	User roles of the application
	Planning application features and functions

	Understanding limitations and sticking with guidelines
	Building a question-answer interface
	Prerequisites for building a question-answer interface
	Creating questions
	Customizing the comments template
	Changing the status of answers
	Saving the status of answers
	Generating a question list

	Enhancing features of the questions plugin
	Customizing the design of questions
	Categorizing questions
	Approving and rejecting questions
	Adding star rating to answers

	Summary

	Chapter 2: Implementing Membership Roles, Permissions, and Features
	Introducing user management
	Preparing the plugin

	Getting started with user roles
	Creating application user roles
	The best action for adding user roles

	Knowing the default roles of Wordpress
	Choosing among default and custom roles

	Removing existing user roles

	Understanding user capabilities
	Create your first capability
	Understanding default capabilities

	Registering application users
	Implementing frontend registration
	Shortcode implementation
	Pros and cons of using shortcodes

	Page template implementation
	Pros and cons of page templates

	Custom template implementation
	Building a simple router for a user module
	Creating the routing rules
	Adding query variables
	Flush the rewriting rules

	Controlling access to your functions
	The advantages of using the do_action function

	Creating custom templates
	Designing the registration form
	Planning the registration process
	Handling registration form submission
	Exploring the registration success path

	Automatically log in the user after registration
	Activating system users

	Creating a login form in the frontend
	Displaying the login form
	Checking whether we implemented the process properly

	Time to practice
	Summary

	Chapter 3: Planning and Customizing Core Database
	Understanding the WordPress database
	Exploring the role of existing tables
	User-related tables
	Post-related tables
	Term-related tables
	Other tables

	Adapting existing tables into web applications
	User-related tables
	Post-related tables
	Scenario 1 – An online shopping cart
	Scenario 2 – A hotel reservation system
	Scenario 3 – The project management application

	Term-related tables
	Other tables

	Extending the database with custom tables
	Planning the portfolio application tables
	Types of tables in web applications
	Creating custom tables

	Querying the database
	Querying the existing tables
	Inserting records
	Updating records
	Deleting records
	Selecting records

	Querying the custom tables
	Working with posts
	Extending the WP_Query class for applications
	Introduction to WordPress query classes
	The WP_User_Query class
	The WP_Comment_Query class
	Other query classes

	Limitations and considerations
	Transaction support
	Post revisions
	How to know whether to enable or disable revisions?

	Auto saving
	Using meta tables

	Summary

	Chapter 4: Building Blocks of Web Applications
	Introduction to custom content types
	The role of custom post types in web applications

	Planning custom post types for application
	Projects
	Services
	Articles
	Books

	Implementing custom post types for a portfolio application
	Implementing the custom post type settings
	Creating the project class
	Assigning permissions to projects

	Creating custom taxonomies for technologies and project types
	Assigning permissions to the project type

	Introduction to custom fields with meta boxes

	What is a template engine?
	Building a simple custom template loader
	Creating your first template
	Comparing the template loader and template engine

	Persisting custom field data
	Customizing custom post type messages

	Introducing custom post type relationships
	Pods framework for custom content types
	Should you choose Pods for web development?

	Time to practice
	Summary

	Chapter 5: Developing Pluggable Modules
	A brief introduction to WordPress plugins
	Understanding the WordPress plugin architecture

	WordPress plugins for web development
	Creating reusable libraries with plugins
	Planning the template loader plugin
	Using the template loader plugin
	Handling plugin dependencies

	Extensible plugins
	Extend plugins with WordPress core actions and filters
	Extend plugins with custom actions and filters

	Pluggable plugins
	Tips for using pluggable functions

	Time to practice
	Summary

	Chapter 6: Customizing the Dashboard for Powerful Backends
	Understanding the admin dashboard
	Customizing the admin toolbar
	Removing the admin toolbar
	Managing admin toolbar items

	Customizing the main navigation menu
	Creating new menu items

	Adding features with custom pages
	Building options pages
	Creating a custom layout for options pages
	Building an application options panel
	Using the WordPress options API

	Using feature-packed admin list tables
	Working with default admin list tables
	The post list
	The user list
	The comments list

	Building extended lists
	Using the admin list table for following developers
	Step 1 – defining the custom class
	Step 2 – defining the instance variables
	Step 3 – creating the initial configurations
	Step 4 – implementing the custom column handlers
	Step 5 – implementing the column default handlers
	Step 6 – displaying the checkbox for records
	Step 7 – listing the available custom columns
	Step 8 – defining the sortable columns of list
	Step 9 – creating a list of bulk actions
	Step 10 – retrieving list data
	Step 11 – adding a custom list as a menu page
	Step 12 – displaying the generated list

	Awesome visual presentation for admin screens
	Using existing themes
	Using plugin based third-party admin themes
	Creating your own admin theme

	The responsive nature of the admin dashboard
	Time for action
	Summary

	Chapter 7: Adjusting Theme for Amazing Frontends
	An introduction to the WordPress application frontend
	A basic file structure of the WordPress theme
	Understanding the template execution hierarchy
	The template execution process of web application frameworks

	Web application layout creation techniques
	Shortcodes and page templates

	Custom templates with custom routing
	Using pure PHP templates
	The WordPress way of using templates
	Direct template inclusion
	Theme versus plugins based templates

	Building the portfolio application home page
	What is a widget?

	Widgetizing application layouts
	Creating widgets

	Designing a home page template
	Generating the application frontend menu
	Creating a navigation menu
	Displaying user specific menus on the frontend

	Managing options and widgets with customizer
	Adding custom options to the theme customizer
	Handling widgets in the theme customizer

	Creating pluggable templates
	Pluggable templates in WordPress

	Extending the home page template with action hooks
	Customize widgets to enable extendable locations

	Planning action hooks for layouts
	Time for action
	Summary

	Chapter 8: Enhancing the Power of Open Source Libraries and Plugins
	Why choose open source libraries
	Open source libraries inside WordPress core
	Open source JavaScript libraries in WordPress core
	What is Backbone.js?
	Understanding the importance of code structuring
	Integrating Backbone.js and Underscore.js
	Creating a developer profile page with Backbone.js
	Structuring with Backbone.js and Underscore.js
	Displaying the projects list on page load
	Creating new projects from the frontend
	Integrating events to Backbone.js views
	Validating and creating new models for the server
	Creating new models in the server

	Using PHPMailer for custom e-mail sending
	Usage of PHPMailer within the WordPress core
	Creating custom version of a pluggable wp_mail function
	Loading PHPMailer inside plugins and creating custom functions

	Implementing user authentication with OpenAuth
	Configuring login strategies
	Implementing LinkedIn account authentication
	Verifying LinkedIn account and generating response

	Building a LinkedIn app
	The process of requesting the strategies
	Initializing the library
	Authenticating users to our application

	Using third- party libraries and plugins
	Time for action
	Summary

	Chapter 9: Listening to Third-party Applications
	Introduction to APIs
	The advantages of having an API

	The WordPress XML-RPC API for web applications
	Building the API client
	Creating a custom API
	Integrating API user authentication
	Integrating API access tokens
	Providing the API documentation
	Time for action
	Summary

	Chapter 10: Integrating and Finalizing the Portfolio Management Application
	Integrating and structuring the portfolio application
	Adding the template loader dependencies
	Interating the template loader into a user manager
	Working with a restructured application
	Building the developer model
	Designing the developer list template
	Enabling AJAX-based filtering

	Updating a user profile with additional fields
	Updating the values of the profile fields

	Scheduling subscriber notifications
	Notifying subscribers through e-mails

	Time for action
	Final thoughts
	Summary

	Chapter 11: Supplementary Modules for Web Development
	Internationalization
	Introduction to WordPress translation support
	The translation functions in WordPress

	Creating plugin translations
	Creating the POT file using PoEdit
	Loading language files
	Changing the WordPress language

	Working with media grid and image editor
	Introduction to the post editor
	Using the WordPress editor
	Video embedding

	Lesser-known WordPress features
	Caching
	Transients
	Testing
	Security

	Introduction to multisite
	Time for action
	Summary

	Appendix: Configurations, Tools, and Resources
	Configure and set up WordPress
	Step 1 – downloading WordPress
	Step 2 – creating the application folder
	Step 3 – Configuring the application URL
	Creating a virtual host
	Using a localhost

	Step 4 – installing WordPress
	Step 5 – setting up permalinks
	Step 6 – downloading the Responsive theme
	Step 7 – activating the Responsive theme
	Step 8 – activating the plugin
	Step 9 – using the application

	Open source libraries and plugins
	Online resources and tutorials

	Index

