Xamarin Blueprints

Leverage the power of Xamarin to create stunning
cross-platform and native apps

ww.allitebooks.co

http://www.allitebooks.org

Xamarin Blueprints

Leverage the power of Xamarin to create stunning
cross-platform and native apps

Michael Williams

PUBLISHING

BIRMINGHAM - MUMBAI

lvww.allitebooks.cond

http://www.allitebooks.org

Xamarin Blueprints

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016
Production reference: 1270916

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78588-744-4

www.packtpub.com

lvww.allitebooks.cond

http://www.packtpub.com
http://www.allitebooks.org

Author

Michael Williams

Reviewer

Engin Polat

Commissioning Editor

Amarabha Banerjee

Acquisition Editor

Larissa Pinto

Content Development Editor

Prashanth G

Technical Editor

Shivani K. Mistry

Credits

Copy Editor

Safis Editing

Project Coordinator

Ulhas Kambali

Proofreader

Safis Editing

Indexer

Tejal Daruwale Soni

Graphics

Jason Monteiro

Production Coordinator

Melwyn Dsa

lvww.allitebooks.cond

http://www.allitebooks.org

About the Author

Michael Williams is an Insightful, results-driven full stack developer with notable
experience in cross-platform development using Xamarin and native languages for multiple
platforms. He also builds and researches server-side architecture using CQRS and event-
sourcing. He shares his knowledge on his personal blog at (www. imobservable.com).

Also an entrepreneur, the owner of Flush Arcade, a company involved in developing
creative, innovative, and ideative games (www. flusharcade.com).

lvww.allitebooks.cond

http://www.imobservable.com
http://www.flusharcade.com
http://www.allitebooks.org

About the Reviewer

Engin Polat has been involved in many large and medium-scale projects on .NET
technologies as a developer, architect, and consulting and has won many awards since 1999.

Since 2008, he has been giving training to many large enterprises in Turkey about Windows
development, Web development, distributed application development, software
architecture, mobile development, cloud development, and so on. Apart from this, he
organizes seminars and events in many universities in Turkey about .NET technologies,
Windows platform development, cloud development, Web development, game
development, and so on.

He shares his experiences on his personal blog (http://www.enginpolat.com). He has
MCP, MCAD, MCSD, MCDBA, and MCT certifications.

Since 2012 he has been recognized as a Windows Platform Development MVP (Most
Valuable Professional) by Microsoft. Between 2013 and 2015, he was recognized as a Nokia
Developer Champion; very few people in the world are given this award.

Since 2015 he also recognized as a Microsoft Regional Director by Microsoft.

lvww.allitebooks.cond

http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.allitebooks.org

www.PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

IE\ PACKTL 1

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

o Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

lvww.allitebooks.cond

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Building a Gallery Application 7
Create an iOS project 8
Creating a UlViewController and UlTableView 9
Customizing a cell's appearance 12
Creating an Android project 16
Creating an XML interface and ListView 17
Shared projects 19
Custom row appearance 21
Bitmap functions 26
The ALAssetLibrary 29
Adding the iOS photo screen 33
Adding the Android photo screen 37
Summary 40
Chapter 2: Building a SpeechTalk Application 41
Cross-platform development with Xamarin.Forms 42
So how would this look in Xamarin.Forms? 43
Setting up platform projects 44
So what is happening here? 47
Setting up the SpeechTalk.iOS project 47
Setting up the SpeechTalk.Droid project 49
Xamarin.Forms, Windows Phone, and Visual Studio 49
What can we see here? 52
Inversion of Control (loC) with Xamarin.Forms 55
So why should we use it? 56

So how do we benefit from this? 56
Autofac 57
iOS text-to-speech implementation 59
Bindings 65
Android text-to-speech implementation 68
Setting up loC with Android 70
WinPhone text-to-speech implementation 71
loC with Windows Phone 72
Platform independent styling 73

lvww.allitebooks.cond

http://www.allitebooks.org

Summary 74
Chapter 3: Building a GPS Locator Application 75
Core location and GPS 76
Project setup 76
Navigation with Xamarin.Forms 78
Why would we do this? 78
Building the navigation control 80
View model navigation 82
Integrating Google Maps using Xamarin.Forms.Maps 86
Reactive Extensions 89
Core location with iOS and the CLLocationManager library 90
Handling location updates 94
Android and the LocationManager 100
Creating an exit point 105
Creating an API key for Android 107
Creating our Windows project 110
Core Location Services with Windows Phone 112
The Application class 116
Web services and data contracts 118
What about data contracts? 118
Creating another API key for geocoding 120
Creating GeocodingWebServiceController 121
Newtonsoft.Json and Microsoft HTTP client libraries 125
ModernHttpClient and client message handlers 127
Feeding JSON data into the I0bservable framework 130
More Reactive Extensions 132
Resource (RESX) files 132
Using GeocodingWebServiceController 134
OnNavigatedTo and OnShow 135
Pythagoras equirectangular projection 139
How are we going to calculate the closest position? 140
Summary 145
Chapter 4: Building an Audio Player Application 146
Solution setup 147
Inversion of control with MVVMCross 148
View-models with Xamarin native 149
Creating the bindings 152
NSLayoutContraints 153

[ii]

lvww.allitebooks.cond

http://www.allitebooks.org

MVVMCross setup inside the PCL 155

Setting up MVVMCross with iOS 156
Setting up MVVMCross with Android 158
The SoundHandler interface 160
Implementing the iOS SoundHandler using the AVAudioPlayer
framework 161
The Mvx loC container 164
The audio player 165
A cleaner code approach to NSLayout 168
Creating AudioPlayerPageViewModel 172
Implementing the Android SoundHandler using the MediaPlayer
framework 179
XML and Mvx bindings 183
MvxActivities 184
Summary 191
Chapter 5: Building a Stocklist Application 192
Understanding the backend 193
Creating an ASP.Net Web API 2 project 194
Building an API controller 197
Setting up the mobile projects 199
Building core mobile projects 200
Improving app performance 201
Creating a global App.xaml 207
Theming with ControlTemplates 209
Updating the MainPageViewModel 213
Creating the Stocklist web service controller 216
ListViews and ObservableCollections 218
Value converters 224
Adding a DataTemplate to the global resource dictionary 225
Styles 226
Further optimization with XAML 228
Creating StockltemDetailsPage 229
Custom renderers 232
Adding styles for custom elements 235
Creating StockltemDetailsPageViewModel 235
Setting up the native platform projects 238
Hosting the Web API project locally 239
Summary 244

[iii]

lvww.allitebooks.cond

http://www.allitebooks.org

Chapter 6: Building a Chat Application 245

The Model-View-Presenter (MVP) pattern 247
So why bother with this approach? 247
Architecture 247
How do we determine which layers our project needs? 248
SignalR 249
Starting with Open Web Interface for .NET (OWIN) 253
Creating an authorization server using OWIN OAuth 2.0 254
OAuthAuthorizationServerProvider 254
Use OAuthBearerAuthentication 256
Setting up the AuthenticationRepository 257
Configuring the Web API 259
Building the AccountController 260
Configuring OAuth Authentication with our Web API 262
Building the SignalR Hub 263
Setting up mobile projects 266
Creating the SignalRClient 267
Building the WebApiAccess layer 272
Application state 276
Setting up the navigation service 276
Building the iOS navigation service 277
Building the Android navigation service 278
Building the iOS interface 280
Handling Hub proxy callbacks 282
Implementing the LoginPresenter 284
Creating the connection between Presenter and View 287
Building the LoginActivity 292
Implementing the ClientsListPresenter 297
Creating ClientListViewController 302
The TaskCompletionSource framework 305
Creating the ClientsListActivity 306
Overriding the OnBackPressed activity 308
Building the ListAdapter 309
Building the ChatPresenter 312
Building the iOS ChatView 314
Extending the UlColor framework 318
Android TableLayouts 321
Building the Android ChatActivity 322

Running the server and clients 326

[iv]

Summary 326

Chapter 7: Building a File Storage Application 327
Project structure setup 328
Building a data access layer using SQLite 329
Building the ISQLiteStorage interface 331
Adding additional threading techniques 332

How do we solve this problem? 332
Creating the AsyncSemaphore 332
Creating the AsyncLock 334
Implementing native setup requirements for SQLite 335
Implementing the loC container and modules 336
Implementing cross-platform logging 337
Implementing the SQLiteStorage class 339
Introduction to C# 6.0 syntax 339
Handling alerts in view-models 344
Building the IMethods interface 346
Building the ExtendedContentPage 349

Why are we implementing two different techniques for showing alerts? 350
Building a CarouselView using custom layouts 350
Adding scroll control to the CarouselView 354
Building a CustomRenderer for native gestures 356
Building the user interface 366
Using a SynchronizationContext 374

How do we know this context is from the main Ul thread? 374
Building the EditFilePage 376
Behaviours 377
Challenge 381
Building the Windows Phone version 381
Summary 383

Chapter 8: Building a Camera Application 384
Solution setup 385
Building the MainPageViewModel class 387
Improving the INotifiedPropertyChanged implementation 387
Creating the custom Ul objects 395
Building the FocusView 399
Xamarin.Forms animations 400
Xamarin.Forms compound animations 402

Building the CameraView 405

[v]

Index

Building a control for the iOS camera
Building the iOS CameraRenderer
Integrating the Android Camera2 framework
Building the CameraViewRenderer in Android
Handling native touch events through the FocusView
Using RX to handle events
Building a VisualElementRenderer for iOS
Building the CustomimageRenderers
Building the UlimageEffects class
Building the CustomimageRenderer for Android
Triggers

Easing.SinIn

Easing.SinOut
Platform effects
Building the CameraPage
Adding native orientation events
Challenge
Summary

409
423
426
446
448
452
452
453
458
459
465
468
468
469
474
488
495
495

496

[vi]

Preface

Throughout my journey as a mobile developer, I have worked with many different
development paradigms and techniques. I have built mobile applications in Java, objective-
C, Swift (2 and 3), and C# across all mobile platforms. I've even built entire servers for my
mobile applications.

I'm not standing here to brag, or to say that I'm an expert. But I do believe that I have
encountered a ton of problems, and built solutions that a lot of mobile developers will
require.

My latest work has been around building cross-platform solutions with Xamarin using both
native and Xamarin.Forms. I have spent a lot of time narrowing down, what I believe are
the best approaches in building any cross-platform mobile application. Building good
architecture, structure, and a smooth user experience, whilst sharing as much code as
possible.

Enjoy.

What this book covers

Chapter 1, Building a Gallery Application, provides you a walkthrough for native
development with Xamarin by building an iOS and Android application that will read from
your local gallery files and display them into a UITableView and ListView.

Chapter 2, Build a SpeechTalk Application, provides you a walkthrough of Xamarin.Forms
development by building an iOS, Android and Windows Phone application that will use
platform speech services to talk text typed into a text field.

Chapter 3, Building a GPS Locator Application, shows you how to build a Xamarin.Forms
application that integrates native GPS location services and Google Maps APIs. We will
cover more content on IoC containers, the Xamarin.Forms.Maps library, and techniques for
C# async and background tasks.

Chapter 4, Building an Audio Player Application, in this chapter, we will integrate native
audio functions for processing a sound file using the AVFramework in iOS, and
MediaPlayer framework in Android.

Preface

Chapter 5, Building a Stocklist Application, in this chapter we look at detailing our XAML
interfaces using CustomRenderers, Styles, and ControlTemplates. We also build a simple
web service and setup a JSON feed for our mobile application.

Chapter 6, Building a Chat Application, in this chapter our user interface will move away
from MVVM design and follow a new paradigm called MVP (Model-View-Presenter). We
take another step further into the backend and set up a SignalR hub and client to simulate a
chat service, where data will be sent between the server and clients instantly as the
messages become available. Another key topic of focus is the project architecture, spending
time on separating the project into modules, and creating a nicely tiered structure that will
maximize code sharing across different platforms.

Chapter 7, Building a File Storage Application, in this chapter we walk through more
development using Xamarin.Forms. We look at Behaviors and their use with user
interfaces. We also build a custom layout using the Layout <View> framework and build
our first SQLite database for storing text files.

Chapter 8, Building a Camera Application, our last chapter, will introduce Effects and
Triggers. We learn how to apply them to user interfaces and use them with Styles. We also
build multiple complex CustomRenderers for native platform cameras, tinting images and
receiving touch events.

What you need for this book

Xamarin Studio

To install a copy of Xamarin Studio visit the following link:

https://www.xamarin.com/download
Building Windows Phone Applications

In order to build windows phone applications, you will need a computer with Windows,
Microsoft Visual Studio, and the Universal Windows Platform SDK installed.

Running solutions

You will also need an iOS, android and windows phone device for testing. If you don’t have
access to devices, you will have to install simulators for each platform.

[2]

https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download

Preface

i0S

Simulators can be installed via XCode. If you haven’t got XCode installed, you will need to
install a fresh copy.

Android

Please install a copy of Geny Motion from the link below:

https://www.genymotion.com/
Windows Phone

The UWP SDK comes with simulators for Microsoft Visual Studio.

Who this book is for

If you are a mobile developer looking to create interesting and fully featured apps for
different platforms, then this book is the ideal solution for you. A basic knowledge of
Xamarin and C# programming is assumed.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "Yes, it is
our AppDelegate file; notice the . cs on the end.”

A block of code is set as follows:

private void handleAssetsLoaded (object sender, EventArgs e)
{
_source.UpdateGalleryItems
(_imageHandler.CreateGalleryItems());
_tableView.ReloadData ();
}

[3]

https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/

Preface

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "To do so, we simply select
File | New | Solution and select an iOS Single View App."

0 Warnings or important notes appear in a box like this.
9 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-

mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http: //www.packtpub.c
om/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box.

[4]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Xamarin-Blueprints. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/support and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

[5]

https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[6]

Building a Gallery Application

This chapter will walkthrough native development with Xamarin by building an iOS and
Android application that will read from your local gallery files, and display them in a
UlTableView and ListView. The following topics will be covered in this chapter:

Expected knowledge:

Creating iOS provision certificates

i0OS development
Objective-C
Creating keystores

Android development
e Java

In this chapter you will learn the following:

¢ Creating an iOS project

¢ Creating a UIViewController and UlTableView
e Customizing a cell's appearance

¢ Creating an Android project

¢ Creating an XML interface and ListView
e Shared projects

e Custom row appearance

e Bitmap functions

e The ALAssetLibrary

¢ Adding the iOS photo screen

¢ Adding the Android photo screen

Building a Gallery Application

Create an iOS project

Let's begin our Xamarin journey; we will start by setting up our iOS project in Xamarin

Studio:

1. Start by opening Xamarin Studio and creating a new iOS project. To do so, we
simply select File | New | Solution and select an iOS Single View App; we
must also give it a name and add the bundle ID you want in order to run your
application.

It is recommended that for each project, a new bundle ID is created, along
with a developer provisioning profile for each project.

2. Now that we have created the iOS project, you will be taken to the following
screen:

[] [] | 2 [Debug | iPhone » @ ltems saved. Q-
[® Solution < > MainController.cs v
¥ [Gallery (master) Mo selection
¥ [Gallery.iOS {master) 1
» |3 References TableSource source;
Components
Packages
> Resources ImageHandler imageHandler;
[0] AppDelegate.cs
[Entitlements.plist
[0 GalleryCell.cs
D) ImageHandler.cs public MainController () : base ("M F, Aull)
[Info.plist ¢ .source = new TableSource ();
E. Main.cs 4 .source,ItemSelected += (sender, e) =>
w [il] MainController.cs {
P a NovigationControtler PUTVLGantroLLer (new PhotoComtrolier (ssset), trueds
[5) MainController.xit b o ' o . o
Pt .imageHandler = new ImageHandler ();
48 . imageHandler.AssetsLoaded += handleAssetsLoaded;
m Changes Bame Log Merge
@ Ervors
@ 0Emors 0'Warnings 0 Messages o Build Output Q
Line Descriptisn File Project Patt ﬁ‘
L
Bu
+ Tasks

Doesn't this look familiar? Yes, it is our AppDelegate file; notice the . cs on the end;

because we are using C#, all our code files will have this extension (no more . h or .m files).

[8]

Building a Gallery Application

Before we go any further, spend a few minutes moving around the IDE,
expanding the folders, and exploring the project structure; it is very
similar to an iOS project created in XCode.

Creating a UlViewController and
UlTableView

Now that we have our new iOS project, we are going to start by creating a
UIViewController. Right-click on the project file, select Add | New File, and select
ViewController from the iOS menu selection in the left-hand box:

@® @ | 3] Debug | iPhone > Michael's iPhone @ Items saved.

Solution < > MainController.cs

[&] Gallery (master) No selection

Build Gallery.i0S < TG

> Refere Rebuild Gallery.i0S ~38K 27 TableSource sourd|
Comp Clean Gallery.i0OS 8K 52
Packal Unload ;?
4 Resou Archive for Publishing 32 ImageHandler imag|
[01 AppDe View Archives 33
" 34
E] Entitlel 1 itemn 35
V] Gallery 11l 36
N Start mellmg_ Item 37 public MainController ()
[01 Imagel Start Debugging Item 38 {
=) Info.pll Run With > 39 .source = new Tab)
[E] Info.p
i Set As Startup Project 40
@ Maing prol 41 .source. ItemSeleg]
¥ [0 MainG] Add »> New File... Create a new file
. = - var asset = .
]@ Mal A N Add Files... A NavigationControl
MainC } :
E Version Control > Add Native Reference
Switch to Branch »> . imageHandler =
Add NuGet Packages... . imageﬂandler.Asz
Find in Files... +38F Add Web Reference I
Reveal in Finder i nges Blame Log Merge
Add Files from Folder...
Copy #C Add Existing Folder...
Cut #’X New Folder
Delete) v v oLnuie 0 Warnings 0 Messages
HeDamE %R ! Line Description
Options
Refresh

You will notice three files generated, a .xib, a .cs, and a .designer.cs file. We don't
need to worry about the third file; this is automatically generated based upon the other two
files.

[91

Building a Gallery Application

Right-click on the project item and select Reveal in Finder,

uggi

) Info.plist Run With >

il Main.cs Set As Startup Project

}7 MainControl

[©1 MainCon gad -

1 MainControl ~ Tools >
Version Control >
Switch to Branch >
Find in Files... 1+ 38F
Reveal in Finder
Copy 38C
Cut X
Delete
Rename ¥R
Options

Refresh

This will bring up the finder where you will double-click on the GalleryCell.xib file; this
will bring up the user interface designer in XCode. You should see automated text inserted
into the document to help you get started.

Firstly, we must set our namespace accordingly, and import our libraries with using
statements. In order to use the iOS user interface elements, we must import the UIKit and
CoreGraphics libraries. Our class will inherit the UIViewController class in which we
will override the ViewDidLoad function:

namespace Gallery.iOS

{
using System;
using System.Collections.Generic;

using CoreGraphics;
using UIKit;

public partial class MainController : UIViewController
{
private UlITableView _tableView;

private TableSource _source;

[10]

Building a Gallery Application

private ImageHandler _imageHandler;

public MainController () : base ("MainController", null)

{

_source = new TableSource ();

_imageHandler = new ImageHandler ();
_imageHandler.AssetsLoaded += handleAssetsLoaded;

private void handleAssetsLoaded (object sender, EventArgs e)

{

_source.UpdateGalleryItems

(_imageHandler.CreateGalleryItems());

}

_tableView.ReloadData ();

public override void ViewDidLoad ()

{

}

base.ViewDidLoad ();

var width = View.Bounds.Width;
var height = View.Bounds.Height;

tableView = new UITableView(new CGRect (0, 0, width, height));
tableView.AutoresizingMask = UIViewAutoresizing.All;

tableView.Source = _source;

Add (_tableView);

Our first Ul element created is UITableView. This will be used to insert into the UIView of
the UIViewController, and we also retrieve width and height values of the UIView to
stretch the UITableView to fit the entire bounds of the UIViewController. We must also
call Add to insert the UITableView into the UIView. In order to fill the list with data, we
need to create a UITableSource to contain the list of items to be displayed in the list. We
will also need an object called GalleryModel; this will be the model of data to be displayed

in each cell.

Follow the previous process for adding two new . cs files; one will be used to create our
UITableSource class and the other for the GalleryModel class. In TableSource.cs, first
we must import the Foundation library with the using statement:

using Foundation;

[11]

Building a Gallery Application

Now for the rest of our class. Remember, we have to override specific functions for our
UITableSource to describe its behavior. It must also include a list for containing the item
view-models that will be used for the data displayed in each cell:

public class TableSource : UlITableViewSource

{
protected List<GalleryItem> galleryItems;
protected string celllIdentifier = "GalleryCell";

public TableSource (string[] items)

{

gallerylItems = new List<GalleryItem> ();
}
}

We must override the NumberofSections function; in our case, it will always be one
because we are not having list sections:

public override nint NumberOfSections (UITableView tableView)
{

return 1;

}

To determine the number of list items, we return the count of the list:

public override nint RowsInSection (UITableView tableview, nint
section)

{
return galleryItems.Count;

}

Then we must add the GetCell function; this will be used to get the UITableViewCell to
render for a particular row. But before we do this, we need to create a custom
UITableViewCell.

Customizing a cell's appearance

We are now going to design our cells that will appear for every model found in the
TableSource class. Add a new .cs file for our custom UITableViewCell.

We are not going to use a . xib and simply build the user interface directly
in code using a single . cs file.

[12]

Building a Gallery Application

Now for the implementation:

public class GalleryCell: UlITableViewCell
{

private UIImageView _imageView;
private UILabel _titlelLabel;
private UILabel _datelabel;

public GalleryCell (string cellId) : base
(UITableViewCellStyle.Default, cellId)

{
SelectionStyle = UITableViewCellSelectionStyle.Gray;

_imageView = new UIImageView ()

{

TranslatesAutoresizingMaskIntoConstraints = false,

bi

_titlelLabel = new UILabel ()
{

TranslatesAutoresizingMaskIntoConstraints = false,

bi

_datelLabel = new UILabel ()
{

TranslatesAutoresizingMaskIntoConstraints = false,

bi

ContentView.Add (imageView);
ContentView.Add (titlelLabel);
ContentView.Add (dateLabel);

}

Our constructor must call the base constructor, as we need to initialize each cell with a cell
style and cell identifier. We then add a UIImageView and two UILabels for each cell, one
for the filename and one for the date. Finally, we add all three elements to the main content
view of the cell.

When we have our initializer, we add the following;:

public void UpdateCell (GalleryItem gallery)
{

_imageView.Image = UIImage.LoadFromData (NSData.FromArray
(gallery.ImageData));
_titleLabel.Text = gallery.Title;

[13]

Building a Gallery Application

_datelLabel.Text = gallery.Date;

public override void LayoutSubviews ()
{
base.LayoutSubviews ();

ContentView.TranslatesAutoresizingMaskIntoConstraints = false;

// set layout constraints for main view

AddConstraints
(NSLayoutConstraint .FromVisualFormat ("V: | [imageView (100)] |",
NSLayoutFormatOptions.DirectionLeftToRight, null, new
NSDictionary ("imageView", imageView)));

AddConstraints

(NSLayoutConstraint.FromVisualFormat ("V: | [titleLabel] | ",
NSLayoutFormatOptions.DirectionLeftToRight, null, new
NSDictionary ("titleLabel", titlelLabel)));

AddConstraints (NSLayoutConstraint.FromVisualFormat ("H:|-10-
[imageView (100)]-10-[titleLabel]-10-|", NSLayoutFormatOptions.AlignAllTop,

null, new NSDictionary ("imageView", imageView, "titleLabel",
titleLabel)));

AddConstraints (NSLayoutConstraint.FromVisualFormat ("H:|-10-
[imageView (100)]-10-[datelLabel]-10-|", NSLayoutFormatOptions.AlignAllTop,
null, new NSDictionary ("imageView", imageView, "dateLabel", datelLabel)));

}

Our first function, UpdatecCell, simply adds the model data to the view, and our second
function overrides the Layout Subviews method of the UITableViewCell class
(equivalent to the ViewDidLoad function of a UIViewController).

Now that we have our cell design, let's create the properties required for the view-model.
We only want to store data in our GalleryItem model, meaning we want to store images
as byte arrays. Let's create a property for the item model:

namespace Gallery.iOS

{
using System;
public class GalleryItem
{
public byte[] ImageData;

public string ImageUri;

public string Title;

[14]

Building a Gallery Application

public string Date;

public GalleryItem ()
{
t

}

Now back to our TableSource class. The next step is to implement the GetCell function:

public override UITableViewCell GetCell (UITableView tableView, NSIndexPath
indexPath)

{

var cell = (GalleryCell)tableView.DequeueReusableCell
(CellIdentifier);

var galleryItem = gallerylItems[indexPath.Row];

if (cell == null)
{

// we create a new cell if this row has not been created
yet

cell = new GalleryCell (CellIdentifier);

cell.UpdateCell (galleryItem);

return cell;

}

Notice the cell reuse on the if statement; you should be familiar with this type of approach,
it is a common pattern for reusing cell views and is the same as the Objective-C
implementation (this is a very basic cell reuse implementation). We also call the
UpdateCell method to pass in the required GalleryItem data to show in the cell. Let's
also set a constant height for all cells. Add the following to your TableSource class:

public override nfloat GetHeightForRow (UITableView tableView, NSIndexPath
indexPath)

{
return 100;
}
So what is next?

public override void ViewDidLoad ()

{

table.Source = new TableSource();

[15]

Building a Gallery Application

}

Let's stop development and have a look at what we have achieved so far. We have created
our first UIViewController, UITableView, UITableViewSource, and

UITableViewCell, and bound them all together. Fantastic!

We now need to access the local storage of the phone to pull out the required gallery items.
But before we do this, we are going to create an Android project and replicate what we have

done with iOS.

Creating an Android project

Our first step is to create new general Android app:

[} Debug | iPhone »
LK]

Michael's iPhone

& Solution
&) Gallery (master)
» [] Gallery.iOS (master)

4 Multiplatform
App
Library
Tests

i ios
App
Extension
Library
Tests

0 watchOS
App

= oS
App
Library

Android

__Ap]

Library
Tests

O Mac
App

@ items saved.
New Project

Choose a template for your new project

General

D Wear App

L] webview ng
C‘ Blank Android App

Games

E OpenGL Game

; OpenGL ES 2.0 Game

; ‘OpenGL ES 3.0 Game

2

| [
Android App
Creates an Android App with an Activity.

This template also includes a basic test
fixture and configuration for automated Ul
testing.

Xamarin subscribers and trial users can run
tests on over 1,000 devices on Xamarin
Test Cloud.

Ul tests can alsa be run locally using
connected devices and simulators.

et), true);

T

Project

U
Patt w

Ti

Bu

v Tasks

The first screen you will land on is MainActivity. This is our starting activity, which will
inflate the first user interface; take notice of the configuration attributes:

[Activity (Label =
"@mipmap/icon")]

"Gallery.Droid",

MainLauncher =

true,

Icon =

[16]

Building a Gallery Application

The MainLauncher flag indicates the starting activity; one activity must have this flag set to
true so the application knows what activity to load first. The icon property is used to set
the application icon, and the Label property is used to set the text of the application, which
appears in the top left of the navigation bar:

namespace Gallery.Droid

{
using Android.App;
using Android.Widget;
using Android.OS;

[Activity (Label = "Gallery.Droid", MainLauncher = true, Icon =
"@mipmap/icon")]

public class MainActivity : Activity

{

int count = 1;

protected override void OnCreate (Bundle savedInstanceState)

{

base.OnCreate (savedInstanceState);

// Set our view from the "main" layout resource
SetContentView (Resource.Layout.Main);

}

The formula for our activities is the same as Java; we must override the OnCreate method
for each activity where we will inflate the first XML interface Main. xml.

Creating an XML interface and ListView

Our starting point is the main . xml sheet; this is where we will be creating the ListView:

<?xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<ListView
android:id="@+id/listView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_marginBottom="10dp"
android:layout_marginTop="5dp"

[17]

lvww.allitebooks.cond

http://www.allitebooks.org

Building a Gallery Application

android:background="@android:color/transparent"
android:cacheColorHint="Q@android:color/transparent"
android:divider="#CCCCcCC"
android:dividerHeight="1dp"
android:paddingLeft="2dp" />

</LinearLayout>

The main.xml file should already be in the resource | layout directory, so
simply copy and paste the previous code into this file.

Excellent! We now have our starting activity and interface, so now we have to create a
ListAdapter for our ListView. An adapter works very much like a UITableSource,
where we must override functions to determine cell data, row design, and the number of
items in the list.

Xamarin Studio also has an Android GUI designer.

Right-click on the Android project and add a new empty class file for our adapter class. Our
class must inherit the BaseAdapter class, and we are going to override the following
functions:

public override long GetItemId(int position);

public override View GetView (int position, View convertView, ViewGroup
parent) ;

Before we go any further, we need to create a model for the objects used to contain the data
to be presented in each row. In our iOS project, we created a GalleryItem to hold the byte
array of image data used to create each UIImage. We have two approaches here: we could
create another object to do the same as the GalleryItem, or even better, why don't we
reuse this object using a shared project?

[18]

Building a Gallery Application

Shared projects

We are going to delve into our first technique for sharing code between different platforms.
This is what Xamarin wants us to achieve, and reuse as much code as possible. The biggest
disadvantage when developing natively is two different language, and we can't reuse
anything.

Let's create our first shared project:

[Debug | iPhone » [] Michael's iPhane @ Items saved.

LN New Project
/& Solution v

[&] Gallery (master) Choose a template for your new project
» [Gallery.iOS (master)
& Multiplatform General

sl
Toots Portable Library @
A ios

Xamarin.Forms B
App

E’:::m Class Library
Tests Shared Project

Creates a project that allows sharing files
J watchOs between projects

App Et), true);

= wos

App

Library '
Android L

App
Library
Tests

!"'|

Project Patt #Y
@ Mac b

App

Gars o - .

— ;

[19]

Building a Gallery Application

Our shared project will be used to contain the GalleryItem model, so whatever code we
include in this shared project can be accessed by both the iOS and Android projects:

[N > [Debug | iPhone > [] Michael's iPhone Xamarin Studio Business

[® Solution € 3 Galleryltem.cs v
v [&] Gallery (master) No selection
w] Gallery.Droid
> References
Components
Packages (3 updates)
Assets 7 namespace Gallery.Shared
Bitmap it
Properties)
Resources.
(3] ImageHandier.cs
@) UistAdapter.cs 4 ému: class Galleryltem
[f1) MainActivity.cs
[©) packages.config .
[PhotoActivity.cs 19 public byte[] ImageData;
¥ [] Gallery.iOS (master)
P |3 References
Compenents
Packages
= fAm— m Changes Biame Log Meme
[} AppDelegate.cs ©Errors
[Entitlements.piist
[l GalleryCell.cs
[l ImageHandler.cs ! Line Description File Project Patt
[Into.plist
[l Main.cs
» [0 MainController.cs
[£1 MainController.xit
v [Gallery.Shared

B

Bu

yvYywyvwyy

@ 0Emors OWamings) O Messages B Build Output Q

L

Ty

+ Tasks

In the preceding screenshot, have a look at the Solution explorer, and notice how the
shared project doesn't contain anything more than . cs code sheets. Shared projects do not
have any references or components, just code that is shared by all platform projects. When
our native projects reference these shared projects, any libraries being referenced via using
statements come from the native projects.

Now we must have the iOS and Android projects reference the shared project; right-click on
the References folder and select Edit References:

[20]

Building a Gallery Application

[JON) Edit References
All | Packages Projects .Net Assembly CQ :' o,
Assembly Version Package e System

O & FSharp.Core 3.98.4.0 Xamarin.iOS

O [Gallery.Shared e System.Xml
0O @ 1aN 2.05.0 Xamarin.iOS

O & 18N.CKK 2.050 Xamarin.iOS e System.Core
O & 118N.MidEast 2.050 XamariniOS ° Xamarin.ios
O & 118N.Other 2.05.0 Xamarin.iOS

O & 118N.Rare 2.0.50 Xamarin.iOS

O & 118N.West 2.05.0 Xamarin.iOS

O & Microsoft.CSharp 2.05.0 XamariniOS

O & Mono.CSharp 2.05.0 Xamarin.iOS

O e Mono.Data.Sqlite 2.0.5.0 Xamarin.iOS

[0 & Mono.Data.Tds 2.05.0 Xamarin.iOS

O a Mono.Dynamic.Interpreter 2.05.0 Xamarin.iOS

O & Mono.Security 2.050 Xamarin.iOS

O & Mono.Security.Providers.DotNet 2.0.5.0 Xamarin.iOS

O & Mono.Security. Providers.NewSystemSource 2.0.5.0 Xamarin.iOS

O e Mono.Security. Providers.NewTls 2.0.5.0 Xamarin.iOS

0 & MonocTouch.Dialog-1 0.0.0.0 Xamarin.iOS

[VT ST TR PEET R VIRV

Cancel OK

Select the shared project you just created and we can now reference the GalleryItem
object from both projects.

Custom row appearance

Let's get back to the ListAdapter implementation and design our ListView row
appearance. Open the Resources | Layout folder, create a new .xml file for the cell
appearance, call it CustomCell.xml, and copy in the following XML code:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:weightSum="4">
<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"

[21]

Building a Gallery Application

android:layout_height="match_parent"
android:layout_weight="1">
<ImageView
android:id="@+id/image"
android:layout_width="100dp"
android:layout_height="100dp"
android:adjustViewBounds="true" />
</LinearLayout>
<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="3"
android:weightSum="2">
<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1" />
<TextView
android:id="@+id/date"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1" />
</LinearLayout>
</LinearLayout>

We are creating the same layout as the custom cell made for iOS, but in Android we will use
the Imageview and TextView objects. Now that we have our custom cell, we can
implement the the GetView function. The GetView function is exactly like the GetCell
function in the preceding UITableSource implementation. Open up the ListAdapter.cs
file and continue with the list adapter implementation:

public class ListAdapter : BaseAdapter
{

private List<GalleryItem> _items;
private Activity _context;

public ListAdapter (Activity context) : base()
{

_context = context;
_items = new List<GalleryItem>();

public override Java.Lang.Object GetItem (int position)

{

return null;

[22]

Building a Gallery Application

public override long GetItemId(int position)

{

return position;

public override int Count

{
get

{

return items.Count;

}

We override the Count property and functions Get ItemId and GetItem, to return the
number of gallery items in our list. These override functions are exactly the same as the
overrides in Java for any BaseAdapter inherited class. Now for the GetView function:

public override View GetView (int position, View convertView, ViewGroup
parent)
{
View view = convertView; // re-use an existing view, if one is
available
if (view == null)
{
// otherwise create a new one
view =
context.LayoutInflater.Inflate (Resource.Layout.CustomCell, null);

}

// set image
var imageView = view.FindViewById<ImageView>

(Resource.Id.image);
BitmapHelpers.CreateBitmap (imageView, _items

[position] .ImageData);

// set labels
var titleTextView = view.FindViewById<TextView>

(Resource.Id.title);
titleTextView.Text = _items[position].Title;
var dateTextView = view.FindViewById<TextView>

(Resource.Id.date);
dateTextView.Text = _items[position] .Date;

return view;

[23]

Building a Gallery Application

private async void createBitmap (ImageView imageView, bytel[]
imageData)
{
try
{
if (imageData !'= null)
{
var bm = await
BitmapFactory.DecodeByteArrayAsync (imageData, 0, imageData.Length);
if (bm !'= null)
{

imageView.SetImageBitmap (bm) ;

t
catch (Exception e)
{

Console.WritelLine ("Bitmap creation failed: " + e);

}

Notice in the GetView function we are using the CustomCel1 layout for each row; we also
have a private method for creating our bitmaps from each model's byte array.

If we have a look at the current implementation, what do we notice here?

We are creating a bitmap every time the cell requires this data again for the view; is this
efficient? No, we should be reusing bitmaps and memory as much as possible.

This tends to be a common issue with Android ListView.

What is the most memory efficient way to reuse bitmaps across hundreds of items in a
ListView while scrolling and staying smooth as we move down the list at various speeds?
How can we tackle this problem? Let's have a look at how we can approach this problem.

Firstly, we need to implement an object called ImageHandler. This will contain the logic
for retrieving byte arrays from all gallery images on an Android device. Create a new file,
name it ImageHandler, and start importing these namespaces:

namespace Gallery.Droid

{
using System;
using System.Collections.Generic;

using Android.Database;

[24]

Building a Gallery Application

using Android.Content;
using Android.Provider;

using Gallery.Shared;

public static class ImageHandler
{
}

}

This class will include a function, GetFiles, which will create gallery items based upon the
items pulled from any device's gallery using the ContentResolver interface:

public static IEnumerable<GalleryItem> GetFiles (Context context)

{
ContentResolver cr = context.ContentResolver;
string[] columns = new stringl]
{

MediaStore.Images.ImageColumns.Id,
MediaStore.Images.ImageColumns.Title,
MediaStore.Images.ImageColumns.Data,
MediaStore.Images.ImageColumns.DateAdded,
MediaStore.Images.ImageColumns.MimeType,
MediaStore.Images.ImageColumns.Size,
bi
var cursor =
cr.Query (MediaStore.Images.Media.ExternalContentUri, columns, null, null,
null);

int columnIndex = cursor.GetColumnIndex (columns[2]);
int index = 0;

// create max 100 items

while (cursor.MoveToNext () && index < 100)
{
index++;
var url = cursor.GetString(columnIndex);
var imageData = createCompressedImageDataFromBitmap (url);

yield return new GalleryItem ()

{
Title = cursor.GetString(l),
Date = cursor.GetString(3),
ImageData = imageData,

[25]

Building a Gallery Application

ImageUri = url,

bi
}

Using ContentResolver (used to access the content model), we resolve URISs to specific
content providers. A content provider provides queries to content, in our case image files.
We simply create an access query off the main context's ContentResolver instance, and
we provide an array of columns for the query to retrieve (for example, file titles, file data,
file size, and so on). The first parameter is as follows:

"MediaStore.Images.Media.ExternalContentUri"

This is used for retrieving the URI to each piece of content returned from the query. Finally,
we now have a cursor to iterate through, exactly like an Enumerable, which will loop to the
end until there are no more items, and for each iteration we pull the data and URI columns
and create anew GalleryItem. You will notice a little trick here with the yield keyword:
if we call this function, it will actually return the entire Enumerable from start to finish.
Calling the function starts for each-ing over the object; the function is called again until it
yields. In the return from calling this function, we get an Enumerable of all the items
retrieved from the query as gallery items with image information and local URI.

Bitmap functions

What about the byte data? First, let's implement our BitmapHelpers; these will include
two global functions to help with bitmap processing:

public static int CalculateInSampleSize (BitmapFactory.Options options, int
regWidth, int regHeight)
{
// Raw height and width of image
float height = options.OutHeight;
float width = options.OutWidth;
double inSampleSize = 1D;

if (height > regHeight |
{

width > regWidth)

int halfHeight = (int) (height / 2);
int halfWidth = (int) (width / 2);

// Calculate a inSampleSize that is a power of 2 - the
decoder will use a value that is a power of two anyway.

while ((halfHeight / inSampleSize) > regHeight &&
(halfwidth / inSampleSize) > reqgWidth)

[26]

Building a Gallery Application

inSampleSize *= 2;

return (int)inSampleSize;

public static async void CreateBitmap (ImageView imageView, bytel]
imageData)
{
try
{
if (imageData !'= null)
{
var bm = await
BitmapFactory.DecodeByteArrayAsync (imageData, 0, imageData.Length);
if (bm != null)
{

imageView.SetImageBitmap (bm) ;

}

catch (Exception e)

{

Console.WriteLine ("Bitmap creation failed: " + e);
t

Our first function will determine the best sample size by the requested width and height.
This is a very good technique for reducing the resources required to load an image into
memory. Our next function is used to create a bitmap for the Imageview that is passed in
from the byte data.

The next step is to create this image data using the private method
createCompressedImageDataFromBitmap:

private static byte[] createCompressedImageDataFromBitmap (string url)
{

BitmapFactory.Options options = new BitmapFactory.Options ();

options.InJustDecodeBounds = true;

BitmapFactory.DecodeFile (url, options);

options.InSampleSize = BitmapHelpers.CalculateInSampleSize
(options, 1600, 1200);

options.InJustDecodeBounds = false;

Bitmap bm = BitmapFactory.DecodeFile (url, options);

[27]

Building a Gallery Application

var stream = new MemoryStream ();
bm.Compress (Bitmap.CompressFormat.Jpeg, 80, stream);
return stream.ToArray ();

}

This method will take the image URI and decode the bitmap options in order to sample the
smallest possible size for the dimensions provided.

We have to make sure that we flag InJustDecodeBounds so this bitmap is not loaded into
memory while we are retrieving the options information. This approach is very useful for
reducing images to the size we require, thus saving memory. We then compress the image
by 80% into a JPEG and convert the stream into a byte array for our GalleryItem model.

Now let's go back to the adapter class and add this method to fill in the items of our
ListAdapter:

public ListAdapter (Activity context) : base()
{

_context = context;
_items = new List<GalleryItem>();

foreach (var galleryitem in ImageHandler.GetFiles (_context))

{
_items.Add (galleryitem);

Remember we must have a reference in our list adapter to the main
context.

Now for the final piece of the puzzle, connecting the adapter to our list view. Open up the
MainActivity.cs file and update the code list like so:

public class MainActivity : Activity
{
private ListAdapter _adapter;
protected override void OnCreate (Bundle savedInstanceState)
{
base.OnCreate (savedInstanceState);

SetContentView (Resource.Layout.Main);

_adapter = new ListAdapter (this);

[28]

Building a Gallery Application

var listView = FindViewById<ListView> (Resource.Id.listView);
listView.Adapter = adapter;

}

And voila! Try running the application and watching the ListView update with the images
in your device's Gallery folder. Congratulations! You have just developed your first
Xamarin.Android application. Now we must replicate this approach for the iOS version.

Notice the challenge with context switching when jumping back and forth
between Android and iOS; it can get confusing. Luckily, with Xamarin we
keep to just one programming language, which helps reduce the
complexity.

The ALAssetLibrary

Jumping back into our iOS, we are going to use the ALAssetsLibrary class and call the
Enumerate function by passing in the group type ALAsset sGroupType.SavedPhoto, the
enumeration result delegate GroupEnumerator, and the error action that will be performed
if an exception occurs.

Start by adding in a new . cs file for our iOS image handler:

We are not going to use a static class with this object.

namespace Gallery.iOS
{
using System;
using System.Threading;

using UIKit;
using AssetsLibrary;
using Foundation;

/// <summary>
/// Image handler.
/// </summary>
public class ImageHandler
{
/// <summary>
/// The asset library.

[29]

Building a Gallery Application

/// </summary>
AlLAssetsLibrary _assetLibrary;

/// <summary>
/// Initializes a new instance of the <see
cref="Gallery.i0S.ImageHandler"/> class.
/// </summary>
public ImageHandler ()
{
_assetlLibrary = new ALAssetsLibrary();
_assetlibrary.Enumerate (ALAssetsGroupType.SavedPhotos,
GroupEnumerator, Console.WritelLine);

}
}

In our constructor, we create the new instance of the ALAssetsLibrary and call the
Enumerate function; now let's add the GroupEnumerator delegate:

private void GroupEnumerator (ALAssetsGroup assetGroup, ref bool shouldStop)

{
if (assetGroup == null)
{
shouldStop = true;
NotifyAssetsLoaded ();
return;
}
if (!shouldStop)
{
assetGroup.Enumerate (AssetEnumerator) ;
shouldStop = false;
}
}
private void AssetEnumerator (ALAsset asset, nint index, ref bool
shouldStop)
{
if (asset == null)
{

shouldStop = true;
return;

if (!shouldStop)
{

// add asset name to list

[30]

Building a Gallery Application

_assets.Add (asset.ToString());
shouldStop = false;

private void NotifyAssetsLoaded()
{
if (AssetsLoaded != null)
{
AssetsLoaded (this, EventArgs.Empty);

}

Notice the call to notify our event handler. This signals we have reached the end of the
asset library, and we have retrieved all ALAsset in our gallery. We can now pull out a list
of the file names, so we need to add another function that will pull out the ALAsset object
synchronously:

public ALAsset SynchronousGetAsset (string filename)
{
ManualResetEvent waiter = new ManualResetEvent (false);
NSError error = null;
ALAsset result = null;
Exception exception;

ThreadPool.QueueUserWorkItem ((object state) =>
assetLibrary.AssetForUrl (new NSUrl (filename), (ALAsset asset) =>
{
result = asset;
waiter.Set ();
}I
e =>
{
error = e;

waiter.Set ();
)i

if (!waiter.WaitOne (TimeSpan.FromSeconds (10)))

throw new Exception("Error Getting Asset : Timeout,
Asset=" + filename) ;
if (error != null)

throw new Exception (error.Description);

return result;

[31]

Building a Gallery Application

Finally, we need a public function that will pull all the byte arrays and NSURL into an
Enumerable of gallery items that we will use to populate the UITableView.

foreach

As this is only a demo, we are only going to take the first 100 items. If you
would like another challenge, remove Take (100), and see if you can
adjust the code to load thousands of images more efficiently.

(var file in _assets.Take (100))

{

using (var asset = SynchronousGetAsset (file))
{
if (asset != null)
{
var thumbnail = asset.Thumbnail;
var image = UIImage.FromImage (thumbnail);
var jpegData = image.AsJPEG () .ToArray ();

yield return new GalleryItem ()
{

Title = file,

Date = asset.Date.ToString(),
ImageData = jpegData,
ImageUri = asset.AssetUrl.ToString ()

bi

}

Let's look a bit more closely at this function. We use the asset library object to pull out all
the filenames we have in our gallery, then for each filename we pull out the ALAsset object,
and from this we create a GalleryItem object for each, which takes the image data as a
byte array from the ALAsset and the NSURL of the asset. Now let's create an instance of the
ImageHandler inside our TableSource:

private ImageHandler _imageHandler;

public TableSource (string[] items)

{
_galleryItems = new List<GalleryItem> ();
_imageHandler = new ImageHandler ();

foreach (var galleryItem in imageHandler.GetFiles ())
{
_galleryItems.Add (galleryItem);

[32]

Building a Gallery Application

}
Excellent! Now we have our gallery items ready to display inside the table.

For the final piece of the iOS project, let's go back to our AppbDelegate. cs file. We still need
to implement the FinishedLaunching method. Our root controller is going to be a
UINavigationController, which will use the MainController as the starting
UIViewController:

public override bool FinishedLaunching (UIApplication application,
NSDictionary launchOptions)
{

_window = new UIWindow (UIScreen.MainScreen.Bounds);
MainController mainController = new MainController();

var rootNavigationController = new UINavigationController();
rootNavigationController.PushViewController (mainController,
false);

_window.RootViewController = rootNavigationController;
_window.MakeKeyAndVisible ();

return true;

}

We also adjust the window bounds the main screen bounds and call the function on the
window at the very end of MakeKeyAndvVisible.

Adding the iOS photo screen

Now that we have our list page, we want to add another UIViewController for
displaying selected photos. Let's add a new UIViewController and call it
PhotoController.InPhotoController, we are going to build a screen that simply
displays the same content in the PhotoCell, but a bit larger.

[33]

Building a Gallery Application

First, let's add the navigation flow from MainController to PhotoController. We are
going to be pushing a new PhotoController whenever a row is selected. Open up
TableSource.cs and add the following; at the top, we need to add an EventHandler:

public event EventHandler<GalleryItem>
ItemSelected;

Whenever the row is selected we want to fire this event:

public override void RowSelected (UITableView tableView, NSIndexPath
indexPath)
{
if (ItemSelected != null)
{
ItemSelected (this, galleryItems[indexPath.Row]);

tableView.DeselectRow (indexPath, true);

}

Whenever the row is selected, we want to fire this event and pass the gallery item for the
index path row. Now we need to handle this event in the MainController class to push a
new PhotoController on the navigation stack, but before we do this we need to
implement PhotoController

public partial class PhotoController : UIViewController
{
/// <summary>
/// The image view.
/// </summary>
private UIImageView _imageView;

/// <summary>

/// The title label.

/// </summary>

private UILabel _titlelabel;

/// <summary>

/// The date label.

/// </summary>

private UILabel _datelabel;

/// <summary>

/// Initializes a new instance of the <see
cref="Gallery.i0S.PhotoController"/> class.

/// </summary>

public PhotoController (ALAsset asset) : base ("PhotoController",

[34]

Building a Gallery Application

null)
{
_imageView = new UIImageView ()
{
TranslatesAutoresizingMaskIntoConstraints = false,
ContentMode = UIViewContentMode.ScaleAspectFit
bi
_titleLabel = new UILabel ()
{
TranslatesAutoresizingMaskIntoConstraints = false,
bi
_datelLabel = new UILabel ()
{
TranslatesAutoresizingMaskIntoConstraints = false,
bi
_imageView.Image = new
UIImage (asset.DefaultRepresentation.GetFullScreenImage ());
_titlelLabel.Text = asset.DefaultRepresentation.Filename;
_datelLabel.Text = asset.Date.ToString();
}

This is very similar to our GalleryCell presentation, but this controller will stack the
elements vertically and force the image to scale to fit, keeping the image's correct ratio to
avoid any warping. Now let's add ViewDidLoad to lay out the views:

public override void ViewDidLoad ()

{
base.ViewDidLoad ();

View.Add (_imageView);
View.Add (_titleLabel);
View.Add (_dateLabel);

// set layout constraints for main view

View.AddConstraints
(NSLayoutConstraint .FromVisualFormat ("V: | [imageView]-10-
[titleLabel (50)]-10-[dateLabel (50)] 1",
NSLayoutFormatOptions.DirectionLeftToRight, null, new
NSDictionary ("imageView", imageView, "titleLabel", titlelLabel, "dateLabel",
dateLabel)));

View.AddConstraints

(NSLayoutConstraint .FromVisualFormat ("H: | [imageView] | ",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("imageView",
imageView)));

[35]

Building a Gallery Application

View.AddConstraints
(NSLayoutConstraint.FromVisualFormat ("H: | [titleLabel] | ",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("titleLabel",
titleLabel)));

View.AddConstraints
(NSLayoutConstraint.FromVisualFormat ("H: | [dateLabel] | ",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("dateLabel",
dateLabel)));

t

There's nothing new here; we are simply adding the three elements and setting our layout
constraints accordingly. We stretch all elements to the entire width of the view and stack
elements down the pages with the image view on top and a dynamic size based upon the
aspect size of the image.

Finally, the last step is to add the event handler whenever a row is selected. We

use ImageHandler to fetch ALAsset by the title (filename) in the gallery item, then pass
this into the constructor of a new PhotoController and update the constructor

of MainController

public MainController () : base ("MainController", null)
{
_source = new TableSource ();
_source.ItemSelected += (sender, e) =>
{
var asset = _imageHandler.SynchronousGetAsset (e.Title);
NavigationController.PushViewController (new
PhotoController (asset), true);

bi

_imageHandler = new ImageHandler ();
_imageHandler.AssetsLoaded += handleAssetsLoaded;
}

Excellent! Now run the application and try selecting a few items in the list; you will be
navigated to a new PhotoController which will display the selected ALAsset image with
its filename and date information.

[36]

Building a Gallery Application

Adding the Android photo screen

Implementing a photo view for cell selections is very similar, although with Android we
will be using an intent to create a new activity, which in turn will inflate a new view to
display the image and details. Let's start by adding a new XML called photo_view.xml,
and paste in the following code:

<?xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:weightSum="4">
<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1">
<ImageView
android:1id="Q@+id/image_photo"
android:scaleType="centerCrop"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:adjustViewBounds="true" />
</LinearLayout>
<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="3"
android:weightSum="2">
<TextView
android:id="@+id/title_photo"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1" />
<TextView
android:id="Q@+id/date_photo"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1" />
</LinearLayout>
</LinearLayout>

[37]

lvww.allitebooks.cond

http://www.allitebooks.org

Building a Gallery Application

The layout is very much the same as the custom_cell.xml sheet, although we are going to

stack items vertically and set the following two properties to keep the correct image aspect
ratio:

android:adjustViewBounds="true"
android:scaleType="centerCrop"

Make sure XML sheets do not contain the same IDs as any other XML
sheet.

Now that we have our user interface for the PhotoActivity, let's add the new activity:

[Activity (Label = "Gallery.Droid", Icon = "@mipmap/icon")]
public class PhotoActivity : Activity
{

/// <summary>

/// Raises the create event.

/// </summary>

/// <param name="savedInstanceState">Saved instance state.</param>
protected override void OnCreate (Bundle savedInstanceState)

{

base.OnCreate (savedInstanceState);

// Set our view from the "main" layout resource
SetContentView (Resource.Layout.Photo);

var imageData = Intent.GetByteArrayExtra ("ImageData");
var title = Intent.GetStringExtra ("Title") ?? string.Empty;
var date = Intent.GetStringExtra ("Date") ?? string.Empty;

// set image

var imageView = FindViewById<ImageView>
(Resource.Id.image_photo);

BitmapHelpers.CreateBitmap (imageView, imageData);

// set labels

var titleTextView = FindViewById<TextView>
(Resource.Id.title_photo);

titleTextView.Text = title;

var dateTextView = FindViewById<TextView>
(Resource.Id.date_photo);

dateTextView.Text = date;

[38]

Building a Gallery Application

Looking at this new activity, what can we see? Notice the attributes at the top:

[Activity (Label = "Gallery.Droid", Icon = "@mipmap/icon")]

There is no MainLauncher tag because this is not our starting activity. We then add the
intent.GetExtras for the image data and strings required to display on our Photo
interface.

Now we need to make one addition to the ListAdapter class:

public GalleryItem GetItemByPosition (int position)
{

return _items[position];

}

When an item in the list is selected, we need to be able to access the selected GalleryItem.
Our next step is to add the TtemClick delegate for the ListVview. Open up the
MainActivity class and add the following to the OnCreate function:

listView.ItemClick += (object sender, AdapterView.ItemClickEventArgs e) =>
{
var galleryItem = adapter.GetItemByPosition (e.Position);
var photoActivity = new Intent (this,
typeof (PhotoActivity));
photoActivity.PutExtra ("ImageData",
galleryItem.ImageData);
photoActivity.PutExtra ("Title", galleryItem.Title);
photoActivity.PutExtra ("Date", galleryItem.Date);
StartActivity (photoActivity);
i

Place this after we set the list adapter. When an item is clicked, we simply pull out the
gallery item from our adapter by the position passed from the ItemClickEventArgs. Once
we have the gallery item, we create the new PhotoActivity intent and pass the extras.

That is all; run the application and play around selecting cells to display the
PhotoActivity

[39]

Building a Gallery Application

Summary

In this chapter, we built a gallery application on both iOS and Android using native
development with Xamarin. We learnt how to setup projects in Xamarin Studio and code
using the native frameworks in C#. In the next chapter, we will build a text to speech service
using Xamarin.Forms.

Try improving on this code and make this function asynchronous; the more background
processing we have at this stage, the better. These are the small improvements we should
take time with, as combining all these small additions can create a real difference to the
speed of your application.

As this is only a demo, we are only going to take the first 100 items. If you would like
another challenge, remove Take (100), and see if you can adjust the code to load thousands
of images more efficiently.

[40]

Building a SpeechTalk
Application

In this chapter, we introduce development with Xamarin.Forms. We will build a cross-
platform application for iOS, Android, and Windows Phone that integrates native platform
speech services to speak text typed from a text field.

Expected knowledge:

Microsoft Visual Studio.

In this chapter, you will learn the following;:

Cross-platform development with Xamarin.Forms
Setting up platform projects

Setting up a SpeechTalk.1i0S project

Setting up a SpeechTalk.Droid project
Xamarin.Forms, Windows Phone, and Visual Studio
Inversion of Control (IoC) with Xamarin.Forms
AutoFac

iOS text-to-speech implementation

Bindings

Android text-to-speech implementation

Setting up IoC with Android

WinPhone text-to-speech implementation

IoC with Windows Phone

Platform-independent styling

Building a SpeechTalk Application

Cross-platform development with
Xamarin.Forms

The key ingredient in cross-platform development with Xamarin is code sharing. Sharing
native code is great, but we still have the issue of writing separate user interface code for
each platform. The Windows Presentation Framework (WPF) is a presentation system
which uses an XML-based language known as Extensible Application Markup Language
(XAML). Xamarin.Forms uses WPF and the Model-View-View-Model (MVVM) paradigm
to build native user interfaces from a single C# shared code base, whilst maintaining access
to all native APIs on each platform.

s

Native iOS App Native Android app Mative Windows app

Platform-specific C# Platform-specific C#

Shared C# App Logic

[42]

Building a SpeechTalk Application

The preceding diagram represents a native architecture. We keep all the sharable code
Inside the Shared C# App Logic block (normally a shared project) for each platform project
to access, i.e. the GalleryItem class would be kept here since it is shared between both
projects.

So how would this look in Xamarin.Forms?

Using Xamarin.Forms, since we have the ability to share the user interface screens, we can
share the entire view and view model code between all platforms:

’ A
« L -

Shared C# User Interface Code

Shared C# App Logic

In the preceding diagram, the code contained in the Shared C# App Logic block is
contained in a Portable Class Library (PCL), which each native project will import.
Xamarin.Forms makes it possible to share up to 85% of code.

Let's now delve into development and setup our first Xamarin.Forms project.

[43]

Building a SpeechTalk Application

Setting up platform projects

In Xamarin Studio, let's start by setting up the platform projects. Go to File | New Solution
and select a Xamarin.Forms app from the cross-platform menu on the left:

New Project

Choose a template for your new project

& Multiplatform Xamarin.Forms
Fom Lo~
Library
Tests
Native (i0OS, Android)
0 ios D
Single View App
App .
Extension
Library Games (i0S, Mac)
Tests o Forms App
D Seriekicas Creates a Xamarin.Forms app using a
watchOS Shared Project or Portable Class Library
D SceneKit Game Project for code sharing.
App
This template also includes a basic test
= oS fixture and configuration for automated Ul
testing.
App
Li Xamarin subscribers and trial users can run
tests on over 1,000 devices on Xamarin
Test Cloud.
Android
Ul tests can also be run locally using
App connected devices and simulators.
Library
Tests
@ Mac
App
e o -

Once the project is created, you will see both an iOS and Android project created along with
a PCL.

Unfortunately, we can't develop our Windows Phone applications through
Xamarin Studio; we will be touching on this after the iOS and Android
projects.

Let's create our first ContentPage in XAML, right-click on the PCL, create a new XAML
ContentPage, and call it MainPage:

[44]

Building a SpeechTalk Application

[Bebug > [] iPhone 85i05 9.3 Xamarin Studio Business

& Selution =] <02
¥ [&] SpeechTalk {master)
| Osecmax Ry —
> 0] SechTarod e [[re— FormsGrtrpnge
» 7] SpeechTalk.iOS General @ Creates a Forms ContentPage with
- T
Misc
Sketches @ Forms ComentView

Text Templating
Web
XML

@ Forms ContentView Xaml

Name: | MyPage

U

Project pat Y

Ti

Bu

o Tasks

Xamarin.Forms provides the option to build user interfaces entirely in C#, but it is
recommended you stick with XAML because it is a very powerful markup language. The
code required for a XAML sheet is much smaller than a user interface in C#.

We also want to create a new folder called Pages and add MainPage to this folder.

Our first element on the page is a Grid. A Grid separates a layout by rows and columns
based upon the entire size of the screen. Rows work from top to bottom and columns work

from left to right; copy the following into the MainPage . xaml sheet:

<?xml version="1.0" encoding="UTF-8"7?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="SpeechTalk.Pages.MainPage">

<ContentPage.Content>

<Grid x:Name="Grid" RowSpacing="0" Padding="10, 10, 10,
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

10"

>

[45]

Building a SpeechTalk Application

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>

</Grid>
</ContentPage.Content>
</ContentPage>

At the top we have an XML description tag exactly like Android, which specifies an
encoding and a version. We have the declaration of a ContentPage with the XML
namespace specification attribute xm1ns. We then specify the class name and add the
ContentPage.Content tags, where we will create the page layout. All these XML tags are
generated automatically; the only change we made was the namespace of the class:

x:Class="SpeechTalk.Pages.MainPage"

The Grid inserted between the ContentPage.Content tags has three rows and three
columns. Each row definition is assigned Auto, meaning the height of the row is based on
the element assigned to it. Since we have three rows assigned with Auto, the Grid will only
fill the height of the contained elements (similar to the wrap_content flag in android). The
Grid will take up the entire width of the page as its one column definition is set to “*”,
meaning it will stretch one column to the entire width of the page. We have our basic page
layout, so let's leave it there and move back into the project structure.

In SpeechTalk.PCL, we have a file called SpeechTalk.cs; we should rename this App.cs
to match the class name. In the App. cs, this is the application starting point. In the
constructor of the application class, you will see a MainPage property automatically set like
so:

public App ()
{
// The root page of your application
MainPage = new ContentPage {
Content = new StackLayout {
VerticalOptions = LayoutOptions.Center,
Children = {
new Label {
XAlign = TextAlignment.Center,
Text = "Welcome to Xamarin Forms!"

[46]

Building a SpeechTalk Application

bi

So what is happening here?

When the project is created, we automatically receive an App class with the MainPage
property set to a new ContentPage. The preceding code block is an example of an interface
built entirely via c-sharp. We want to replace this with an instantiation of our MainPage,
and set this new object to the MainPage property of the App class.

Here is the updated constructor:

public App ()
{

MainPage = new MainPage ();

}

It's much cleaner, you can already see how messy the code would look like if we were to
build complex user interfaces in C#.

Setting up the SpeechTalk.iOS project

Let's also have a look at the project setup on the native side for iOS and Android. Open the
AppDelegate. cs file; it should look like this:

[Register ("AppDelegate")]
public partial class AppDelegate
global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate

{
public override bool FinishedLaunching (UIApplication app,
NSDictionary options)
{
global::Xamarin.Forms.Forms.Init ();
LoadApplication (new App ());

return base.FinishedLaunching (app, options);

}

Have a look at the super class:

global::Xamarin.Forms.Platform.i0S.FormsApplicationDelegate

[471]

Building a SpeechTalk Application

Since Xamarin.Forms 1.3.1 and the updated unified AP], all our app delegate should be
inheriting is Xamarin.Forms.Platform.i0S.FormsApplicationDelegate. We also
have the standard FinishedLaunching function; in here we must call Forms.Init which
will initialize Xamarin.Forms, and then call LoadApplication with a new instantiation of
the App class. We then return the base class FinishedLaunching function, passing in the
app and options objects.

You can see that this FinishedLaunching function is an override of the standard app
delegate function.

We must initialize forms before anything else occurs in this function.

Let's run the iOS application and see what happens:

iPhone 5s - iPhone 5s [i0S 9.0 (13A340)
Carrier & 3:09 PM -

Fantastic, a blank application. That means we have now successfully run our first iOS
Xamarin.Forms project.

[48]

Building a SpeechTalk Application

Setting up the SpeechTalk.Droid project

Let's do the same for Android and set up Xamarin.Forms accordingly. Inside our Android
project, open the MainActivity.cs class and look at the OnCreate function:

[Activity (Label = "SpeechTalk.Droid", Icon = "Q@drawable/icon",
MainLauncher = true, ConfigurationChanges = ConfigChanges.ScreenSize |
ConfigChanges.Orientation)]

public class MainActivity :
global::Xamarin.Forms.Platform.Android.FormsApplicationActivity

{

protected override void OnCreate (Bundle bundle)

{

base.OnCreate (bundle);
global::Xamarin.Forms.Forms.Init (this, bundle);
LoadApplication (new App ());

}

The MainActivity class must

inherit Xamarin.Forms.Platform.Android.FormsApplicationActivity; we must call
the super class OnCreate method before we initialize Xamarin.Forms and load in our new
instantiated app class. That's all, we can now run the Android application and see the exact
same results, a blank page. Congratulations, you have just shared your first
Xamarin.Forms interface.

Xamarin.Forms, Windows Phone, and Visual
Studio

Now let's look at sharing our MainPage interface with Windows Phone.

Not everyone will extend an app onto Windows Phone, so if you are not
interested in creating a Windows Phone example you can skip this part.

We are going to be using Microsoft Visual Studio, so open it up and open the SpeechTalk
solution file (SpeechTalk.s1n) we created in Xamarin Studio. Portability between the two
IDEs is very good; watch the solution port directly into Visual Studio and open your PCL
file without any issues.

[49]

Building a SpeechTalk Application

Create a GIT repository to help control the continuous change between
Xamarin Studio and Visual Studio, we recommend creating a GIT
repository for every chapter.

The iOS and Android projects may not be compatible as we created these in Xamarin
Studio.

You can build iOS and Android applications directly in Visual Studio, but
running iOS applications will require a mac build host.

Now it's time to create a new Windows Phone project:

D master - SpeechTalk (DebuglA) Sl (T & [stack Overflow X (3 | Quick Launch (Ctrl+Q L - & x
FILE EDIT VIEW GITEXT PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP signin [
B2 W > Start - Debug - AnyCPU - 5. D AttachTolls -
© Commit (masten) [& @ & 3 -
g
£ - master
o Add New Project an & E
s
o b Recent NET Framework 4.5~ Sort by: Default Search Installed Templates (Ctrl+E) O~ |echTalk » master (Ctrl+;)
4 Installed (33 - : Vi j
g nstalle E | Blank App (Windows Phone) Visual C# Type: Visual C# o>
g'“_ b Visual Basic - . A project for a single-page Windows ompatible)
4 Visual C# ’|3—J Hub App (Windows Phone) Visual C# Phone app that uses the Windows Inpatible)
P E Runtime and has no predefined controls P:
Store Apps |—m or layout.
kel A Pivot App (Windows Phone) Visual G#
Windows Apps res [[] Add Application Insights to Project
. WebView App (Windows Phone) Visual C#
Windows Phone Apps ed 70) Microsoft recommends adding
Windows Desktop RS) . Application Insights telemetry to help you
) vieb "xi! Class Library (Windows Phone) Visual C# G i e
. performance.
b EitsSineiei E‘j! Windows Runtime Component (Windows Phone) Visual C# Learn more
Android - Privacy Statement
o
b AWS EJ Unit Test App (Windows Phone) Visual C#
Cloud
s
ios EJ Coded Ul Test Project (Windows Phone) Visual C#
LightSwitch -
Reporting LJ Blank App (Windows Phone Silverlight) Visual Gt
Silverlight e rer Team Explorer Class View
Test Databound App (Windows Phone Silverlight) Visual C#
WCF - v i x
Workflow EE! Class Library (Windows Phone Silverlight) Visual C# fes -
[V v e
- D Panorama App (Windows Phone Silverlight) Visual G+
nline
Output Click here to go online and find templates.
Debug|Any CPU
Show output from: | General
Name: [speechalk WinPhond I C:\Users\Michael\Documents\Xamar
Location: CA\Users\Michaeh\Documents\Xamarin Blueprints - SpeechTalk
Misc
Find Symbol Results Error List | Output _Find Results 1

Unfortunately, the automated setup done with iOS and Android will not be done with the
Windows Phone project. All the setup will be done manually, but this is good for walking

you through the manual setup.

[50]

Building a SpeechTalk Application

We import the Xamarin.Forms nuget package:

ANALYZE

Stable Only

DO
o
?
?

BIR

b

@

el

WINDOW

HELP

..

a transitions

- Sort by: Relevance -

Xamarin.Forms
Build native Uls for i0S, Android, and
Windows Phone from a single, shared C#...

Xamarin.Forms.Maps
Maps models and renderers for Xamarin.Forms

Donky Core - Xamarin Forms
Donky.Core:Xamarin Forms: Core functionality for Xamarin
Forms

Signature Pad for Xamarin.Forms
Signature Pad view renderer and service dialog for Xamarin
Forms (1OS, Android, Windows Runtime)

MugenMvvmToolkit - Xamarin.Forms
This package contains the assemblies for Xamarin.Forms.

Mugen MVVM Toolkit makes it easier to develop cross-pla.

Scorchio.NinjaC: Xamarin.F

Helper For MvvmCross and Xamarin Forms

Scorchio.NinjaC Xamarin.Forms.C
Helper For Mwm(Cross and Xamarin Forms

12345

&

Stack Overflow

D Attach To IS _

X () Quick Launch (Ctrl+Q) P - B X

Rl Solution Explorer - SpeechTalk « master v B x

@l o-2dE o &=

? X br - SpeechTalk master (Cti

o~

xamarin formg|

x H falk’ (2 projects)

Created by: Xamarin Inc.
1d: XamarinForms
Version: 2.1.0.6524
Last Published: 3/2/2016
Downloads: 502491
License

View License
Project Information
Report Abuse
Description:

Portable)
nPhone (Windows Phone 8.1)

r Windows Store apps
s Phone 8.1

kaml

dpxmanifest

bid (incompatible)
5 (incompatible)

Build native Uls for iOS, Android, and
Windows Phone from a single, shared C#

codebase
Dependencies:

No Dependencies

in Explorer Team Explorer Class View

This item does not support previewing

D master - SpeechTalk (DebuglAny CPU) - & stra
FILE EDIT VIEW GITEXT PROJECT BUILD DEBUG TEAM TOOLS TEST
e - B-2@P 9 P Start - Debug ~ AnyCPU
© Commit L
£ Appramicst & X
i [€#] SpeechTalk WinPhone ~ | %3 SpeechTalk WinPhone.App
< 1
S . | SpeechTalk WinPhone - M: NuGet Pack
3 2 cinamespace SpeechTalk.lin ~Poo o i o€ - Manage Hubet fackages
= 3 b Installed packages
g al= using System;
g 5 using System.Collect 4 Online
6 using System.10;
7 using System.Ling; Al
8 using System.Runtime nuget.org
9 o ‘ Flush Arcade Source
e using Windows.APPlic gk arcade Local
11 using Windows.Applic ond
12 using Windows.Founda ~ Microsoftand NET
13 using Windows.Founda Search Results
14 using Windows.UT.Xam
15 using Windows.UI.Xam " Updates
16 using Windows.UI.Xam
17 using Windows.UT.Xam
18 using Windows.UL.Xam
19 using Windows.UT.Xam
20 using Windows.UL.Xam
21 using Windows.UI.Xan
22
23 g /11 <summary>
24 Provides applica
25 /1] </summary>
26 = public sealed partia
27
28 ivate Ti itd
100% - 4 private Transity gach package s licensed to you by its
owner. Microsoft is not responsible
Output for, nor does it grant any licenses to,
Show output from: | General Gy e
Find Symbol Results Error List | Output | Find Results 1

INS

441PM
8/03/2016

Now its time to look at the MainPage.xaml and MainPage.xaml.cs files in the Windows

Phone project.

Wait a minute, haven't we already made one of these?

Now that you are preparing a Windows Phone project, we can see the original WPF
structure used in Xamarin.Forms.

Open up MainPage.xaml and paste in the following;:

<forms:WindowsPhonePage
x:Class="SpeechTalk.WinPhone.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:SpeechTalk.WinPhone"
xmlns:forms="using:Xamarin.Forms.Platform.WinRT"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup—-compatibility/2006"

[51]

Building a SpeechTalk Application

mc:Ignorable="d"
Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Grid>
</Grid>
</forms:WindowsPhonePage>

If any lines get underlined, just ignore them; this is an issue in Visual
Studio.

What can we see here?

Yes, this is XAML. Windows apps are all built using the WPF framework. We create the
Xamarin.Forms element forms:WindowsPhonePage. Open the MainPage.xaml.cs in the
Windows Phone project and update the constructor:

public sealed partial class MainPage

{
public MainPage ()

{

InitializeComponent () ;

NavigationCacheMode = NavigationCacheMode.Required;
LoadApplication(new SpeechTalk.App());

}

Project setup is quite simple, but we are not calling Forms.Init anywhere. Open up the
App.xaml.cs file in the Windows Phone project and look for this block of code:

if (rootFrame == null)
{

// Create a Frame to act as the navigation context and navigate to the
first page

rootFrame = new Frame();

// TODO: change this value to a cache size that is appropriate for your
application
rootFrame.CacheSize = 1;

Xamarin.Forms.Forms.Init (e);

if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)

{

[52]

Building a SpeechTalk Application

// TODO: Load state from previously suspended application

// Place the frame in the current Window
Window.Current.Content = rootFrame;

We must manually add this line:
Xamarin.Forms.Forms.Init (e);

Set the cache size to 1:
rootFrame.CacheSize = 1;

Finally, we now need to reference the SpeechTalk PCL project we created in Xamarin
Studio earlier:

D master - SpeechTalk (DebuglAny CPU) - M Visual Studi st 2 [stack overflow Y | 3 Quick Launch (Ctrl+Q) P - B X
FILE EDIT VIEW GITEXT PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP signin [
o - B-< ' P Start - Debug ~ AnyCPU - j- n - DAtachTolls -

© Commit (master) $e@R.

MainPagexamlcs # X Appxamlcs Rl Solution Explorer - SpeechTalk « master
s % \ain)
Reference Manager - SpeechTalk WinPhone ? X \

Xoqjo0y Ie0jdxg AIRS

Projects

1

2 =Inames|

s} ¢ b Assemblies Search Solution (Ctrl P~) .
‘5‘ = 4 Solution Name Path Name:

6 ™1 SpeechTalk C:\Users\Michael\Documents\Xamarin Blueprints\SpeechTalk\... SpeechTalk

7

8

b Windows Phone 8.1

b Browse

Class View

v x

2
100% -
Output

Show output from:

[1o]

Find Symbol Results Error List | Output | Find Results 1

em does not support previewing

[53]

Building a SpeechTalk Application

You may run into issues with referencing this project to the targets set by the PCL by
default:

D master - SpeechTalk (DebuglA \ Studio (Administra & | stack Overflow X 6| QuickLaunch (Ctl+Q Pl= & X
FILE EDIT VIEW GITEXT PROJECT BULD DEBUG TEAM TOOLS TEST ANAYZE WINDOW HELP signin [
o - B-& e P Start - Debug - AnyCPU - A . P AtachTolls -
© Commit (masten) [& @ ¥
£ [Speechalk # X MainPagexamics Appxaml.cs B <. tion Explorer - . - B X
: -
°
S uid i) p-
" Build Events b Assemblies Search Solution (Ctrl+E) P ~ .
=
5
S Resoures 4 Solution Name Path Name:
% Reference Paths : [SpeechTalk CAUsers\MichaeD i ; Shoschalk
Projects
Signing
Code Analysis | © Windows Phone 8.1

b Browse
B.1)

Miosoft Vol o X —

e Unable to add a reference to project 'SpeechTalk'. The targets of
Portable Library project ‘SpeechTalk' are not the same or compatible
with the targets of the current Portable Library project.
hone
A Portable Library project’s targets can be changed via the Library
tab in the project's properties.

| Class View
|

v ix

Output

Show output from:

o]

Find Symbol Results Error List | Output | Find Results 1

This item does not support previewing

To fix this issue, open the SpeechTalk PCL project and update the target configurations in
Properties:

[54]

Building a SpeechTalk Application

%] & | stack Overflow X | (I | Quick Launch (Ctrl+Q) P - & X
FILE EDIT VIEW GITEXT PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE ~ WINDOW HELP Sign in
(<1 B-< W P> Start ~ Debug - AnyCPU - 5 . DAtachTolls .
© Commit (master) @
£ [T soecchialkWinPhone* MainPage xamlcs Appxaml.cs ~ | Solution Explorer - SpeechTalk - master v Ax
2 i - e =))
g Build Search Solution Explorer - SpeechTalk * master (Ctrl+, P~
5 Build Events General +[a1 Solution ‘SpeechTalk' (2 projects)
€ | Resources Assembly name: SpeechTalk 4 /[SpeechTalk (Portable)
g . y
R | Reference Paths —_—— b &% Properties
Default namespace: | SpeechTalk b *B References
Signing | ChangeTargets X > o P
. Class Library e
lysi e b &C* App.cs
Assembly Information. 53 packages.config
[.NET Framework 4.5 b “ SpeechTalk WinPhone (Windows Phone 8.1)
Te ti = =
fargeting [Windows 8 o b & Properties
Targets: NET Framework 4.5 — b+ References
Windows 8 [Windows Phone Silverlight 8 v b o
Windows Phone 8.1 [Silverlight 5 b D Appxaml
Windows Phone Silverlight 8 [Windows Phone 8.1 4 D MainPagesaml
;:::::r:%n:rmd [/] Xamarin.Android b) MainPagexamlcs
ini
XamariniOs (Classic) [Xamarinios K5 Package.appxmanifest
[Xamarin.iOS (Classic) ¥ packages.config
Change. b [@ SpeechTalk.Droid (incompatible)
b [SpeechTalkiOS (incompatible)
Code Analysis | Solution Explorer Team Explorer Class View
Properties v Ax
Install additional targets. P
a=]g,
e
Output

v Rx
Show output from: | Package Manager

I
IS

Find Symbol Results Error List | Output | Find Results 1

Click on the Change button where it says Targets and make sure the preceding checkboxes
are selected. That's everything; try building and running the application. We should see a
blank page like the Android and iOS projects. Gerat we have now made a cross-platform
application for all platforms.

Now let's get into the fun stuff with IoC.

Inversion of Control (IoC) with
Xamarin.Forms

The Inversion of Control (IoC) principle is very a useful technique when writing cross-
platform applications.

[55]

Building a SpeechTalk Application

So why should we use it?

Sharing 100% of the code would be great, but it is not entirely possible; we still require
some implementation from platform-specific features (for example different platform
services, hardware, cameras). A way to tackle this problem is via an IoC container. Using
the IoC principle, we use an abstraction for the functionality in our shared code and pass an
implementation of the abstraction into our shared code. Our IoC containers handle the
instantiation of an object's dependency tree. We can register objects to their inherited
interfaces and allow containers to pass registered objects as their abstracted interfaces all
the way down the dependency tree (all the way to PCL).

So how do we benefit from this?

What if I needed view models to call methods to a native Bluetooth service in a PCL
project?

To put it simply, we can't. Our PCL projects know nothing about Bluetooth services on the
native side. We create an interface that sits in the PCL project, create a class that inherits this
interface, and define the methods and access all the native features required. We then
register this class to the inherited interface through our IoC container, and finally resolve
this abstracted interface in our PCL project. When we call functions from this interface
down in the PCL, it will be calling the registered class function definitions described on the
native side:

|0OC Container

<object id = _a™
type-.AT>
«<set-prop refe_b™>
</object>

«<object id = b~
type - _E°/>

classa{
protected B _b;

publice b {
set { b= value;}

Configurationof
Dependencies

IoC Container

Actual
Implementation

[56]

Building a SpeechTalk Application

Now back to our SpeechTalk application. Because the PCL project cannot share code from
the native side text-to-speech services, we will have to use IoC to access the native-side
features from our PCL. Let's start by declaring an interface for our text to speech service,
creating a new folder called services, and adding a new ITextToSpeech.cs file for the
interface:

public interface ITextToSpeech

{

void Speak (string msg)

Autofac

Before we begin implementing the different native sides to this interface, let's first add in
our IoC container to handle the abstraction. There are a few IoC containers that are free
online; for this example we are going to use Autofac. Let's add the NuGet packages for the
PCL, iOS, and Android projects:

Debug » iPhone Bs i X (]
» [Cloeb h 05 9.0 a
Solution 4 » | appes | MainPage.xami.cs ' MainPage.xami < | PCLModule.cs | AppDelegate.cs loC.cs =
¥ L), SpeechTak (master) {3 MainPage * No selection
*) SpaschTalk 12 using Xamarin.Forms;
» (4 References 13
iimn CmmmaRTall Al adaln
eoe Add Paciages
Autofac
ReCom Q, Autofac|
R-Interfaces =D
Rx-Ling Aukctac s en koG contalrar kor Mcrosck NET. k marmages e dependencies betreen bles ke the .3':'2
Roe-Main et &ppiGATone iy 64y & Sangs & They Grow I 626 &N GopiGel. Baee assombios| Autofac lversion
Fix-PlatformServices] Autotnc
XamarinForme (2.1.0.8526 avalll Auwfn: ASP.NET MVC 5 In:oqmion o) I:E.EBE Aot Autofe Contribunn
ML S vien e e
IModule.cs.
a License Vigw License
,loC.cs Autofac.Extras.RegistrationAttributes 576 Project Page Visit Page
¥ | Modules [El's] Registaring into Dopendencies None
,PCLModuie.cs (et
¥ . Pages
X Amofm: ASP.NET Web API 2.2 Integration 431,674
¥ ¢ MainPage.xam! ovides an IControlierFactory implementation and other integration points for the:
 MainPage.xamlcs RS e
* | Properties
¥ [Senvices EventFlow.Autotac - Autofac support 4,060
rER U Autotac support for EventFlow | -
» [ViewMode's
uAPp.CS Autofac ASP.NET MVC2 Integration 6,231 [
 packages.config Proukies an onielerfaciory oplsasniston ard e ndegration pokls ke
- Wob.Mvc. binding redirects documentad at hita3/igoo.glf
T Talk Droid %.Gn. ires assMbly DINGING redire p/geo.gl
" . chrokicn .
¥ (i Refersnces Autofac WCF Integration 122429 ISpeechTali/Pages
Components ISpeec
— . Show pre-release packages Close Add Package hTalkPages
» (i Packages (1 updats) ISpeechTalk
s —1
» | Resources
v . Services
TextToSpeech.cs
oo Search completed - 4 matches.
Il Test Results

[57]

Building a SpeechTalk Application

Now that we have our IoC container, let's build the iOS implementation. For each platform,
we want to create objects called Modules for registering abstracted interfaces. Let's add a
new folder called IoC to the PCL project and add a new file called IoC.cs:

public static class IoC
{

public static IContainer Container { get; private set; }
private static ContainerBuilder builder;

public static void CreateContainer ()
{

builder = new ContainerBuilder();

public static void StartContainer ()

{

Container = builder.Build();

public static void RegisterModule (IModule module)
{

module.Register (builder);

public static void RegisterModules (IEnumerable<IModule> modules)
{
foreach (var module in modules)

{

module.Register (builder);

public static T Resolve<T> ()
{
return Container.Resolve<T> ();

}

Looking at this closer, we use this static class for registering modules, registering types,
resolving registered types, creating the container, and building the container.

The ContainerBuilder must be built after all types have been registered.

[58]

Building a SpeechTalk Application

We must register and start this container before we initialize the application. Open up your
AppDelegate.cs file and update the FinishedLaunching function:

public override bool FinishedLaunching (UIApplication app,
NSDictionary options)

{

global::Xamarin.Forms.Forms.Init ();
InitIoC ();
LoadApplication (new App ());

return base.FinishedLaunching (app, options);

}

private void InitIoC()

{
IoC.CreateContainer ();
IoC.RegisterModule (new IOSModule());
IoC.RegisterModule (new PCLModule());
IoC.StartContainer ();

}

The InitIoC function will first create the container, register the modules, and build the IoC
container.

Our container must be created before we can start registering, and our
container builder must be built before we can start resolving.

Each module has register functions that will use the created ContainerBuilder to register
types.

i0S text-to-speech implementation

Each module will retrieve the current container used throughout the entire lifetime of your
application. Inside the register function is where we register the class implementation of the
text to speech interface. This will be done at the very start of the application before we load
anything else.

[59]

Building a SpeechTalk Application

Let's start first with adding the iOS module. Add a new folder in the iOS project called
Modules, create a new file called i0SModule. cs, and paste in the following;:

public class IOSModule : IModule
{

public void Register (ContainerBuilder builer)
{
builer.RegisterType<TextToSpeech> () .As<ITextToSpeech>
() .SingleInstance ();
}
}

The next step is to add the iOS text to speech service. Add a new folder called Services
and add a new file called Text ToSpeech. cs. In this file, we are going to access the iOS
AVSpeechSynthesizer

public class TextToSpeech : ITextToSpeech

{
public void Speak (string msg)

{

var speechSynthesizer = new AVSpeechSynthesizer ();

var speechUtterance = new AVSpeechUtterance (msg)
{
Rate = AVSpeechUtterance.MaximumSpeechRate / 4,
Voice = AVSpeechSynthesisVoice.FromLanguage ("en-US"),
Volume = 0.5f,
PitchMultiplier = 1.0f
bi

speechSynthesizer.SpeakUtterance (speechUtterance);

}

Looking closely at this class, we are going to use the speech synthesizer to produce a
SpeechUtterrance object, which contains the text to speak. We also set the language,
volume, and speech rate.

Notice how we inherit the interface we are going to register through the
IoC container?

As we are coding this class on the native side, we are able to access all
native iOS features, so back in the PCL when we call the function Speak in
the interface, the preceding code will execute.

[60]

Building a SpeechTalk Application

Our next step is to implement the view model principles for our pages. Create a new folder
called viewModels and add two new files, ViewModelBase.cs and
MainPageViewModel.cs. The VviewModelBase class will be the base call for all view
models for handling property change events with any view model's properties:

public abstract class ViewModelBase : INotifyPropertyChanged
{

#region Public Events

public event PropertyChangedEventHandler PropertyChanged;
#endregion

#region Methods

protected virtual void OnPropertyChanged([CallerMemberName] string
propertyName = null)

{
PropertyChangedEventHandler handler = this.PropertyChanged;

if (handler != null)

{
handler (this, new PropertyChangedEventArgs (propertyName)) ;

}
}

#endregion

}

Let's look a bit closer. The first property defined is PropertyChanged EventHandler,
which will fire on any property data change. Notice the use of the # define statements; these
are useful for breaking up blocks of coding and navigating through your code sheets.

These are particularly useful when we have big code sheets.

The class inherits the INotifyPropertyChanged interface, meaning we have to define the
OnPropertyChanged function. This function is used to fire the PropertyChanged event
to signal that a property within this class has changed data. Now let's implement the
MainPageViewModel.

How do we use the OnPropertyChanged principle with our MainPageViewModel?

[61]

Building a SpeechTalk Application

With each property in the MainPageViewModel, we have to call the OnPropertyChanged
function to fire the EventHandler, thus notifying of a data change for a particular
property. Let's begin by creating the MainPageViewModel with its private properties and
constructor:

public class MainPageViewModel : ViewModelBase
{
#region Private Properties

private readonly ITextToSpeech _textToSpeech;

private string _descriptionMessage = "Enter text and press the
'Speak' button to start speaking";

private string _speakEntryPlaceholder = "Text to speak";
private string _speakText = string.Empty;
private string _speakTitle = "Speak";
private ICommand _speakCommand;
#endregion
#region Constructors
public MainPageViewModel (ITextToSpeech textToSpeech)
{
_textToSpeech = textToSpeech;
_speakCommand = new Command ((c) => _textToSpeech.Speak
(this.SpeakText));

}

#endregion

}

This is the first time we are going to access the Systems.Windows. Input library.
Commands are used for our Button object on the ContentPage; we will set up a binding
on the button so whenever a press event occurs, this command will execute, running the
action it is assigned in the constructor. Notice how we are passing the Text ToSpeech
interface; this is where things will get trickier with the IoC container.

[62]

Building a SpeechTalk Application

Now we add the public properties of the view model, which call the OnPropertyChanged
function:

#region Public Properties

public string DescriptionMessage

{
get
{
return _descriptionMessage;
}
set
{
if (value.Equals (_descriptionMessage))
{
return;
}
_descriptionMessage = value;
OnPropertyChanged ("DescriptionMessage") ;
}
}
public string SpeakEntryPlaceholder
{
get
{
return _speakEntryPlaceholder;
}
set
{
if (value.Equals (_speakEntryPlaceholder))
{
return;
}
_speakEntryPlaceholder = value;
OnPropertyChanged ("SpeakEntryPlaceholder");
}
}
public string SpeakText
{
get
{

return _speakText;

[63]

Building a SpeechTalk Application

set

if (value.Equals (_speakText))
{

return;

_speakText = value;
OnPropertyChanged ("SpeakText") ;

public string SpeakTitle
{

get

{

return _speakTitle;

set

if (value.Equals (_speakTitle))
{

return;

_speakTitle = value;
OnPropertyChanged ("SpeakTitle");

public ICommand SpeakCommand
{

get

{

return _speakCommand;

set
if (value.Equals (_speakCommand))

{

return;

_speakCommand = value;

[64]

Building a SpeechTalk Application

OnPropertyChanged (" SpeakCommand") ;

#endregion

That's it! We have our first view model. Notice the get and set methods for each property;
they are exactly the same as functions, just with a nicer presentation. Every time we retrieve
the data inside a public property, it will pull the data contained in the private property,
and every time we set the public property, if the value is different to the current value, we
will set the private variable contained and call the OnPropertyChanged function to fire
the EventHandler in the base class. When this event fires, it will update whatever view is
bound to it.

Bindings
Back in the PCL project, we are going to run through the concept of binding view models to

views, displaying view model data, and propagating data changes through the
INotifyPropertyChanged interface.

Let's begin with our MainPage.cs and complete the rest of the user interface for this page:

<?xml version="1.0" encoding="UTF-8"7?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="SpeechTalk.Pages.MainPage"
BackgroundColor="White">

<ContentPage.Content>

<Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10"
VerticalOptions="Center">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>

<Label x:Name="DesciptionLabel" Font="Arial, 20" Grid.Row="0"
Grid.Column="0"/>

[65]

Building a SpeechTalk Application

<Entry x:Name="SpeakEntry" Grid.Row="1" Grid.Column="0"/>

<Button x:Name="SpeakButton" Grid.Row="2" Grid.Column="0"/>
</Grid>

</ContentPage.Content>
</ContentPage>

We now have a Label, Entry, and Button; each has the x:Name, Grid.Row, and
Grid.Column properties assigned.

Notice how we relate the rows and columns to the definitions section previously?

We have also set, on the bounding Grid, padding values for left, up, right, and down; set
the vertical options to Center; and set a row spacing of 10. The Padding will place gaps
around the entire bounds of the Grid and the ContentPage.

Padding works exactly like margins in HTML.

The RowSpacing property will set the gaps between each row; as each element is placed in
a new row, they will be stacked vertically with a pixel spacing of 10 between each. Since we
only have 1 column, this column width will take up the entire width of the Grid, so each
element will be at the full width of the Grid.

Finally, setting the VerticalOptions of the Grid to Center will position all elements to
the center of the Grid. Now let's set up the binding between the MainPage and
MainPageViewModel.

Create a new file, add it to the modules folder called PCLModule. cs, and paste in the
following;:

public class PCLModule : IModule
{

public void Register (ContainerBuilder builer)

{
builer.RegisterType<MainPageViewModel> () .SinglelInstance();
builer.RegisterType<MainPage> () .SingleInstance();

}

Hold on... why are we registering our pages and view models in the container?

[66]

Building a SpeechTalk Application

We don't need to abstract these.

Registering both views and view models in the container allows us to add our related view
models in the constructor; as we only ever need one instance of both the view and view
model throughout the entire lifetime of the application, we can set up the
MainPage.xaml.cs file like this:

public partial class MainPage : ContentPage

{
public MainPage ()

{

InitializeComponent ();

public MainPage (MainPageViewModel model)
{

BindingContext = model;
InitializeComponent ();

}

The instance of the MainPageViewModel that was created in the container when registered
will be pulled out of the MainPage constructor on creation. This is the same technique used
with the instance of the MainPageViewModel, where we place the ITextToSpeech
abstraction in the constructor; it will pull out the instance registered on the native side, and
in turn we can now use this object to start calling the functions that will run the native-
side code.

Now back to the MainPage . xaml sheet, let's set up the property bindings; update the label,
entry, and button to the following:

<Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
Font="Arial, 20" Grid.Row="0" Grid.Column="0"/>

<Entry x:Name="SpeakEntry" Placeholder="{Binding SpeakEntryPlaceholder}"
Text="{Binding SpeakText, Mode=TwoWay}" Grid.Row="1" Grid.Column="0"/>

<Button x:Name="SpeakButton" Text="{Binding SpeakTitle}" Command="{Binding
SpeakCommand}" Grid.Row="2" Grid.Column="0"/>

We have set up bindings for the text on the label and entry properties; notice the two-way
binding mode set on the entry text property?

[67]

Building a SpeechTalk Application

What this means is if we change the data from the user interface (as it is a text box, will we
will be changing the data on the UI front) or the view model, both endpoints will receive
the data change accordingly. We have also set up a binding with the command on the
button; now, whenever we press this button on the page, it will run the action assigned to it
in the view model.

Now that all the coding is done, let's run the application; try typing in text and pressing the
Speak button and have a listen:

iPhone 5s - iPhone 5s /i0OS 9.0 (13A340)
Carrier ¥ 8:00 PM L_J

Enter text and press the 'Speak’
button to start speaking

Hello

Speak

Well done! You have just completed your first iOS Xamarin.Forms application.

For some extra exercises, try changing the properties of volume and speech on the
SpeechUtterance object for iOS.

Android text-to-speech implementation

Now let's implement the IoC container and text to speech for Android. Start by creating a
folder for the both the Android Modules and Services, add in two files to it,
TextToSpeechDroid.cs and DroidModule.cs.

[68]

Building a SpeechTalk Application

Let's start with the text to speech service; for Text ToSpeechDroid.cs. And add the
following;:

public class TextToSpeechDroid : Java.Lang.Object, ITextToSpeech,
Android.Speech.Tts.TextToSpeech.IOnInitListener

{
private Android.Speech.Tts.TextToSpeech _speaker;

private string _toSpeak;

public void Speak (string msg)
{

var ctx = Forms.Context;
_toSpeak = msg;

if (_speaker == null)

{
_speaker = new Android.Speech.Tts.TextToSpeech (ctx, this);

}

else

{
var p = new Dictionary<string,string> ();
speaker.Speak (_toSpeak, QueueMode.Flush, p);

#region TextToSpeech.IOnInitListener implementation

public void OnInit (OperationResult status)
{

if (status.Equals (OperationResult.Success))

{
var p = new Dictionary<string,string> ();
_speaker.Speak (_toSpeak, QueueMode.Flush, p);

#endregion

}

This IO0nInitListener interface requires the OnInit function to be implemented. The
OnInit function is called to signal the completion of the Text ToSpeech engine
initialization. We then implement the interface's function Speak to speak the text passed in.
At the start of the function, we check to see that a new Text ToSpeech object has been
initialized; if we have then speak the message.

[69]

Building a SpeechTalk Application

Setting up loC with Android

Now for the IoC implementation. It works exactly the same as iOS; let's add the Android
module:

public class DroidModule : IModule
{

public void Register (ContainerBuilder builer)

{

builer.RegisterType<TextToSpeechDroid> () .As<ITextToSpeech>
() .SingleInstance ();

}

}

Easy, right?

Now we have to set up the IoC container in our MainActivity.cs class; simply copy the
iOS function in the AppDelegate file called initIoC and paste this into the MainActivity
class, replace the instantiation of the i0SModule with your DroidModule, then simply add
the function call after the initialization of Xamarin.Forms:

protected override void OnCreate (Bundle bundle)

{
base.OnCreate (bundle);

global::Xamarin.Forms.Forms.Init (this, bundle);
InitIoC ();

LoadApplication (new App ());
}

private void InitIoC()

{
IoC.CreateContainer ();
IoC.RegisterModule (new DroidModule());
IoC.RegisterModule (new PCLModule());
IoC.StartContainer ();

You may have issues trying to get the speech to work on Android. One
thing you may need to set up first is within Settings | Controls | Text-to-
Speech options. Here is where you will have to install voice data if the
default has not already been installed. If you run the app and no speech
occurs, you will have to configure the voice data.

[70]

Building a SpeechTalk Application

That's all for Android, now try running the app and hear some speech.

WinPhone text-to-speech implementation

Now we go back to Windows Phone for the last implementation. See how tricky it can be
when you have to switch between multiple platforms. Imagine if we had to change
languages and re-write IoC containers; the amount of work would be much greater. Not
only that, there would be no point in using IoC, because we cannot share any code.

So firstly, don't forget to import the nuget package for Autofac:

o master- 5 Any) ft 4 nistrato & [stack Overflow Y1 3 Quick Launch (Ctrl+Q P - B X
FILE EDIT VIEW GITEXT PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP Sign in s
o - B-2 Il P Emulator 8.1 WVGA 4 inch 512MB ~ Debug - Any CPU - o n - DAtachTolls -
€ Commit (master) S eBR-
. SpeechTalk WinPhone - Manage NuGet Packages ? X
€ MainPagexamles # X Appxamlcs IS — RS
3 b Installed pack - - -
2 () SpeechTal WinPhone nstalled packages Stable Only Sort by: Relevance autofac ba ‘E
T 17 using Windows.UI.xam 4 Online @ Autofac . . O Created by: Autofac Contributors Br - SpeechTalk master (Ctrl+;) P~
g 18 using Windows.UL.Xam Autofacis an loC container for Microsoft .NET. It Tyt
- 19 using Xamarin.Forms; manages the dependencies between classes so that ap... 5 -
g Version: 3.5.2
g 2% nuget.org
g o eummarys Flush Arcade Source “gm Autofac Extras: Domain Service Factory for RIA Services Last Published: 8/12/2014 le
g a8 /1 y>
> 71/ An empty page tH Flush Arcade Local Autofac extension for WCF RIA services support. Downloads: 1790783
2 // </sumary> . Microsoft and NET License fonfig
;2 i 'z”bl“ sealed partia o ch Results e Autofac Extras: Microsoft Common Service Locator Im... View License pid (incompatible)
e blic Mainp Autofac extension for using the Microsoft Enterprise Library mIT 5 (incompatible)
;7 public MainPage(l , ;o jaes Common Service Locator with Autofac. Project Information VinPhone (Windows Phone 8.1)
28 this.Initial Report Abuse
s . o) Autofac.Events Description:
X X Autofac Events extension to support pub/sub and domain .
30 this.Navigat P — Base assemblies for the Autofac Inversion [Windows Store apps
31 LoadApplicat of Control Container £
32 ¥ Rhino.ServiceBus.Autofac Tags: Talle
33 } Autofac integration with Rhino ServiceBus D L s Phone 8.1
N ependencies:
34 [} n.Forms.Core
35 No Dependencies . Forms Platform
:“:";“_sf"'et’“'"‘ '";‘f';'“’s"h ot .Forms Platform WinRT
I D S L e n.Forms.Platform.WinRT.Phone
O~ [P P g n Explorer Team Explorer Class View
Each package is licensed to you by its nalects.Caliburn.Micro.Autofac
GEEERIE o [*e) Integration of Caliburn Micro with Autofac. -8 x
owner. Microsoft is not responsible
for, nor does it grant any licenses to, -
third-party packages. 12345»
100% ~
output
Show output from: | General - P
Find Symbol Results Error List | Output | Find Results 1

This item does not support previewing

Now that we have access to the Autofac framework, let's continue implementing the text to
speech service. Start with adding a new folder called Services, then add the
TextToSpeechWinPhone.cs file and implement it:

public class TextToSpeechWinPhone : ITextToSpeech
{

[71]

Building a SpeechTalk Application

public async void Speak (string text)
{

MediaElement mediaElement = new MediaElement ();

var synth = new Windows.Media.SpeechSynthesis.
SpeechSynthesizer ();

SpeechSynthesisStream stream = await
synth.SynthesizeTextToStreamAsync (text);

mediaElement.SetSource (stream, stream.ContentType);
mediaElement.Play () ;

}

Looking at this more closely, you can see the instantiation of MediaElement; this is used to
play an audio source. Our source in this case is SpeechSynthesisStream; this stream is
built via a speech synthesizer. When we call the function
SynthesizeTextToStreamAsync, it will be an audio stream based on the text inserted into
this function. We then set the MediaElement source to the stream and call the Play
function to begin speaking. One addition to configuring Windows Phone is checking the
capability in the app manifest file.

loC with Windows Phone

Implementing IoC with Windows Phone is very much the same as iOS and Android. We
simply add the same function, InitIoC, at our application's starting point; in this case, it is
the MainPage constructor of the Windows Phone project (try not to get the two confused),
and we call it right before the LoadApplication function:

public MainPage ()
{

InitializeComponent () ;
InitIoC();

NavigationCacheMode = NavigationCacheMode.Required;
LoadApplication (new SpeechTalk.App());

private void InitIoC()

{
IoC.CreateContainer () ;
IoC.RegisterModule (new WinPhoneModule ());

[72]

Building a SpeechTalk Application

IoC.RegisterModule (new PCLModule ());
IoC.StartContainer () ;

}

Simple! Now we can run the Windows application.

Platform independent styling

Hold on! What has happened with the MainPage—no button, no text?

What is happening here is we have not specified colors for these elements, so the default
color of the text has come up as white. Open up MainPage.xaml and change the text colors
accordingly:

<Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
TextColor="Black" Font="Arial, 20" Grid.Row="0" Grid.Column="0"/>

<Button x:Name="SpeakButton" Text="{Binding SpeakTitle}" TextColor="Blue"
Command="{Binding SpeakCommand}" Grid.Row="2" Grid.Column="0"/>

It might be a good idea to color the background of the Ent ry object as well, so we can see
the text definition:

<Entry x:Name="SpeakEntry" Placeholder="{Binding SpeakEntryPlaceholder}"
BackgroundColor="Silver" Text="{Binding SpeakText, Mode=TwoWay}"
Grid.Row="1" Grid.Column="0"/>

Now run it again and see the text, button, and entry background display.

But wait! What if we don't want these colors to change for iOS and Android, or we want to
set these colors differently based on the platform?

Here is another trick to try: in the MainPage . xaml sheet, we are going to change the
background color of the entry based upon whether it is iOS, Android, or Windows Phone:

<Entry x:Name="SpeakEntry" Placeholder="{Binding SpeakEntryPlaceholder}"
Text="{Binding SpeakText, Mode=TwoWay}" Grid.Row="1" Grid.Column="0">
<Entry.BackgroundColor>
<OnPlatform x:TypeArguments="Color"
Android="White"
WinPhone="Silver"
i0S="White">
</OnPlatform>
</Entry.BackgroundColor>
</Entry>

[73]

Building a SpeechTalk Application

We start by specifying the property tag we are changing, and then a tag for OnPlatformin
which we specify the argument type, which is Color. Let's take it a step further and change
the text colors for the Button and Label as well:

<Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
Font="Arial, 20" Grid.Row="0" Grid.Column="0">
<Label.TextColor>
<OnPlatform x:TypeArguments="Color"
Android="Black"
WinPhone="Black"
i0S="Black">
</OnPlatform>
</Label.TextColor>
</Label>

<Button x:Name="SpeakButton" Text="{Binding SpeakTitle}"
Command="{Binding SpeakCommand}" Grid.Row="2" Grid.Column="0">
<Button.TextColor>
<OnPlatform x:TypeArguments="Color"
Android="Navy"
WinPhone="Blue"
ios="Navy">
</OnPlatform>
</Button.TextColor>
</Button>

This is a nice little variation between styles for the first page. As you build more complex
XAML sheets, you may find some areas where you will have to change pixel items, change
color, and perform other styling to give it that extra edge.

Let's call it a day and end this project here; it's now time to build our GPS locator.

Summary

In this chapter, we learned how to create a text to speech service using Xamarin.Forms. We
have learned about native speech service libraries for each platform. In the next chapter, we
will learn how to handle background location update events and using latitude and
longitude to calculate positions. You will also learn how to implement location services on
each platform by using Xamarin.Forms and Xamarin.Forms.Maps.

[74]

Building a GPS Locator
Application

In this chapter, we will delve deeper into code sharing. We will build a Xamarin.Forms
application that integrates native GPS location services and Google Maps APIs. We will
cover more content on IoC containers, the Xamarin.Forms.Maps library, and techniques
for c-sharp async and background tasks.

Expected knowledge:

Web services

JSON

Google Maps

Google Geocoding APIs (it helps to have a Google Developer account)

In this chapter, you will learn the following:

Core location and GPS

Navigation with Xamarin.Forms

Google Maps integration

Integrating Google Maps with Xamarin.Forms.Maps
Reactive extensions

Core location with iOS and the CLLocationManager Library
Android and the LocationManager

Creating our Windows project

Core location services with Windows Phone

The Application class

Building a GPS Locator Application

e Web services and data contracts

e Integrating with a Google APIs

¢ Creating the Geocoding web service controller

® Newtonsoft.Json and Microsoft HTTP client libraries

e ModernHttpClient and client message handlers

¢ Feeding JSON data into the TObservable framework more reactive extensions
¢ Resource (RESX) files

¢ Using the Geocoding web server controller

e OnNavigatedTo and OnShow

¢ Pythagoras equirectangular projection

Core location and GPS

All mobile phone platforms have access to core location services. These services are
background tasks that run in the background and update the latitude and longitude values
at certain intervals indefinitely until the service is stopped. 99% of smart phones come with
a built-in GPS tracker, allowing you to integrate these latitude and longitude values with
your application.

Project setup

Let's jump straight into project setup and create a new Xamarin.Forms application. We are
going to start by setting up an IoC container with Autofac, exactly the same as the previous
project, import Autofac into all three projects (PCL, Android, and iOS). We can reuse a lot
of the PCL code from the IoC container implementation in the previous project.

The more apps you build, the more problems you solve; why reinvent the
wheel over and over? Eventually, when you have built multiple
applications, future apps will be built mostly from piecing parts of
different projects together.

Copy in the ToC, Pages, and ViewModels folders, and let's start building our MainPage:

<?xml version="1.0" encoding="UTF-8"7?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="Locator.Pages.MainPage"
BackgroundColor="White"
Title="Welcome">

[76]

Building a GPS Locator Application

<ContentPage.Content>

<Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10"
VerticalOptions="Center">
<Grid.RowDefinitions>
<RowDefinition Height="*"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>

<Image x:Name="Image" Source="map.png" HeightRequest="120"
WidthRequest="120"
Grid.Row="0" Grid.Column="0"/>

<Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
HorizontalOptions="Center" Font="Arial, 20" Grid.Row="1" Grid.Column="0">
<Label.TextColor>
<OnPlatform x:TypeArguments="Color"
Android="Black"
WinPhone="Black"
i0sS="Black">
</OnPlatform>
</Label.TextColor>
</Label>

<Button x:Name="LocationButton" Text="{Binding LocationTitle}"
Command="{Binding LocationCommand}" BackgroundColor="Silver" Grid.Row="2"
Grid.Column="0">
<Button.TextColor>
<OnPlatform x:TypeArguments="Color"
Android="Navy"
WinPhone="Blue"
i0S="Black">
</OnPlatform>
</Button.TextColor>
</Button>

<Button x:Name="ExitButton" Text="{Binding ExitTitle}"
Command="{Binding ExitCommand}" BackgroundColor="Silver" Grid.Row="3"
Grid.Column="0">
<Button.TextColor>
<OnPlatform x:TypeArguments="Color"
Android="Navy"

[771

Building a GPS Locator Application

WinPhone="Blue"
i0S="Black">
</OnPlatform>
</Button.TextColor>
</Button>
</Grid>

</ContentPage.Content>
</ContentPage>

This is very much the same as the previous MainPage, but this time we are adding two
Buttons, a Label, and an Image.

Before reading any further, have a look at the properties bounded to each
element. See if you can build the properties for the view model.

Navigation with Xamarin.Forms

Before we start building any view models we are going to build our navigation system.
Xamarin.Forms comes complete with navigation control for all platforms, so you won't
have to worry about it. But as we always like to do things the hard way, we are going to
show you a technique to separate our cross-platform structure a little more, in order to keep
things more modular. Using one PCL project to contain both view models and views is
great, but what if we could separate our views from view models into two PCL projects?

Why would we do this?

One small issue we have with the current PCL is that it relies completely on
Xamarin.Forms. Only our XAML sheets and user interfaces rely on Xamarin.Forms; our
view models do not. Then let's move the view models from the Xamarin.Forms PCL into
an even lower-level PCL project that only relies on c-sharp libraries.

[781

Building a GPS Locator Application

This is a good technique to keep the PCL projects completely separated. Developing a
modular system is advantageous when it comes to code sharing. For example, we are
building a new app that requires a login screen, a list view screen, and other similar screens
most apps include. As we already have the view models that handle all the web services,
JSON processing, and property bindings, do we really need to change much? Now that we
have a low-level project that simply has the view models, let's just extract the ones we need,
design our user interfaces for the view models, and bind them together. Not only can we
reuse these view models for other apps, but if we wanted to develop an entirely separated
application (for example, a WPF application), we can just compare the required screens,
take the related view models, create new user interfaces, and bind them together. Keeping
everything completely separated allows for complete plug-and-play capability, which will
dramatically decrease the development time required to build similar applications.

Let's approach this pattern by creating a new PCL project and copying in the view models;
call it Locator.Portable:

[Debug » [] iPhone 6si0S 8.3 Xamarin Studio Business
®0e New Project

[® Solution

& Locator (master) Configure your Forms App

» [Locator

» [Locator.Droid

» [[] Locator.iOS

¥ [] Locator.Portable

> References

Packages
Enums App Name:
Extras
loC
Location

\ /
Modules \ /
Properties

Repositories

Organization Identifier: | com. locator

Target Platforms: Androld
08

Resources
ul
ViewModels

YyYYvYvYYYYYYTYY

[©] packages.config Shared Code: () Use Portable Class Library
» [Locator.Shared Use Shared Library

|

"N
Project pat 7

Cancel Previous

 Tasks

We also want to copy over the IocC folder as well.

[791

Building a GPS Locator Application

Building the navigation control

Our first step is to create a folder called enum, add the PageNames. cs file, and copy in the
following;:

public enum PageNames

{

MainPage,

MapPage
}

Now let's add a new folder called UI and create a new file called
INavigationService.cs:

public interface INavigationService

{

Task Navigate (PageNames pageName) ;

}

Then we create a new folder in the Xamarin.Forms PCL (Locator) project called UI, and
create a new file called NavigationService.cs. The NavigationService class will
inherit the INavigationService interface:

public class NavigationService : INavigationService

{

#region INavigationService implementation

public async Task Navigate (PageNames pageName)
{
}

#endregion

}

Simple, right? Navigate will be used whenever we want the stack to navigate to a page. In
making an abstracted interface, as we have done for navigation, this allows us to control
navigation way down in the lower-level PCL. Now, fill in the rest:

public async Task Navigate (PageNames pageName, IDictionary<string,
object> navigationParameters)

{
var page = GetPage (pageName);

if (page != null)
{

var navigablePage = page as INavigableXamarinFormsPage;

[80]

Building a GPS Locator Application

if (navigablePage != null)

{
await IoC.Resolve<NavigationPage> () .PushAsync (page);
navigablePage.OnNavigatedTo (navigationParameters);

private Page GetPage (PageNames page)
{
switch (page)
{
case PageNames.MainPage:
return IoC.Resolve<MainPage> ();
case PageNames.MapPage:
return IoC.Resolve<MapPage> ();
default:
return null;

}

Firstly, look more closely at the private function GetPage; this will be called every time the
Navigate function is called to retrieve the correct ContentPage object (which is registered
in the ToC container) based upon the PageName enum passed to it, and if we have found the
correct page, push it onto the navigation stack.

Finally, let's build our new XamFormsModule for registering the pages and navigation
service:

public void Register (ContainerBuilder builer)
{
builer.RegisterType<MainPage> () .SingleInstance();
builer.RegisterType<MapPage> () .SingleInstance();

builer.Register (x => new
NavigationPage (x.Resolve<MainPage>())) .AsSelf () .SinglelInstance();

builer.RegisterType<NavigationService>
() .As<INavigationService> () .SingleInstance () ;

}

We are registering one navigation page throughout the entire life of the application, and we
set the starting page to the one main page item we registered before.

[81]

Building a GPS Locator Application

Now open up the App. cs file and update it accordingly:

public App ()
{

MainPage = IoC.Resolve<NavigationPage> ();

}
Making sense now?

IoC is a very powerful pattern for cross-platform applications.

View model navigation

Now let's get back to our MainPageViewModel and update and modify the previous
chapter's MainPageViewModel with the properties required for the data-bindings on
MainPage.xaml shown previously. Firstly, let's implement the private properties:

public class MainPageViewModel : ViewModelBase
{
#region Private Properties
private readonly IMethods _methods;

private string _descriptionMessage = "Find your location";
private string _locationTitle = "Find Location";
private string _exitTitle = "Exit";

private ICommand _locationCommand;
private ICommand _exitCommand;
#endregion

}

Now for the Public properties:

#region Public Properties
public string DescriptionMessage
{

get

{

return _descriptionMessage;

[82]

Building a GPS Locator Application

set

{
if (value.Equals (_descriptionMessage))
{

return;

_descriptionMessage = value;
OnPropertyChanged ("DescriptionMessage") ;

public string LocationTitle
{

get

{

return _locationTitle;

}
set
{
if (value.Equals(_locationTitle))
{
return;
}
_locationTitle = value;
OnPropertyChanged ("LocationTitle");
}

public string ExitTitle
{

get

{

return _exitTitle;

}
set
{
if (value.Equals (_exitTitle))
{
return;
}
_exitTitle = value;
OnPropertyChanged ("ExitTitle");
}

[83]

Building a GPS Locator Application

public ICommand LocationCommand
{

get

{

return _locationCommand;

set

if (value.Equals (_locationCommand))
{

return;

_locationCommand = value;
OnPropertyChanged ("LocationCommand") ;

public ICommand ExitCommand
{

get

{

return _exitCommand;

set
if (value.Equals (_exitCommand))

{

return;

_exitCommand = value;
OnPropertyChanged ("ExitCommand") ;

#endregion
Are we starting to see the same pattern here?

Now add the constructor, which is going to use the navigation service interface that we
abstracted earlier through the IoC container:

#region Constructors

[84]

Building a GPS Locator Application

public MainPageViewModel (INavigationService navigation) : base
(navigation)

{

#endregion

Now it's time to show you another trick using the IoC container. In our constructor, we
need to be able to create a new Command object from the Xamarin.Forms library. We are
lucky here, because since commands from Xamarin.Forms inherit the ICommand interface
from system.Windows.Input, we are able to register this object in the IoC container. Open
up XamFormsModule.cs and update the Register function to include the following:

builer.RegisterType<Xamarin.Forms.Command>
() .As<ICommand> () .InstancePerDependency () ;

Take note that we are registering this type as an
InstancePerDependency because we want an independent instance
every time we create a command in the view model constructors.

Now let's create a new command through the constructor of MainPageViewModel; update
the constructor like this:

#region Constructors

public MainPageViewModel (INavigationService navigation,
Func<Action, ICommand> commandFactory) : base (navigation)
{
_locationCommand = commandFactory (() =>
Navigation.Navigate (PageNames.MapPage)) ;

}
#endregion

In the constructor, we are pulling a Func out of the ToC container, which takes an Action
and returns an ICommand object, because we have registered this interface to a
Xamarin.FormsCommand object, we will be left with a new Command with the action passed
in the constructor as follows:

locationCommand = commandFactory (() =>
Navigation.Navigate (PageNames.MapPage)) ;

[85]

Building a GPS Locator Application

This is exactly the same as doing this if we were using the Xamarin.Forms library:

locationCommand = new Command (() =>
Navigation.Navigate (PageNames.MapPage));

Now we have a new Command set with and Action to push a new MapPage onto the stack
when the button is pressed:

public class PortableModule : IModule
{

public void Register (ContainerBuilder builer)

{
builer.RegisterType<MainPageViewModel> () .SinglelInstance();

}
}

Now to register our new view model with the ToC container. Create a new folder called
Modules for the portable ToC module. Create a new file called PortableModule.cs and
paste in the preceding code into it.

Integrating Google Maps using
Xamarin.Forms.Maps

Our next step is to implement the MapPage; this page will show a panel that will display
Google Maps. Underneath this panel, we will also display the location information
(latitude, longitude, address, and so on) retrieved from our native platform core location
services. To access these native services, we need to import Xamarin.Forms.Maps:

[86]

Building a GPS Locator Application

[bebug » [] iPhene 65 05 9.3 Xamarin Studio Business
Solution a <
¥ [&] Locator (master)
¥ [Locator
» [References
[N] Add Packages
Official MuGet Gallery [~ (Q xamarinforms.meps © |
= =% |
Xamarin.Forms. Maps 2.1.0.6526
Maps models and renderers for
Xamarin. Forms
id Xamarin Forms Maps
Xamarin.Forms.Maps Author Xamarin, Inc.
Published
»O R] 6 Maps madels and renderers for Xamarin Forms
»] Locator.iOS License View License
4 Project Page Visit Page
» [Locator.Portable Xamarin.Forms.Maps 134,625 Depenciencies
» [Locator.Shared 0 9 Maps models and renderers for XamarinForms Xamarin,Forms (z 2.1.0.6526)
Extended, bindable Map of Xamarin.Forms.Maps 1,002
0 Extended, bindable Map of Xamarin Forms.Maps
Xamarin.Forms.Maps for Windows 2,251
0 Do not use with Xamarin,Forms. Maps 2.2 and above as these include Windows
renderers. Q
Project
XamMapz 216
] a Advanced map control for Xamarin Forms.
Show pre-release packages Close Add Package

1

Now that we have imported the Xamarin.Forms.Maps library, we can access the native

Google Maps services. We can now create the Map user interface element via
MapPage.xaml:

<?xml version="1.0" encoding="UTF-8"7?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

xmlns:maps="clr—

namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps"
x:Class="Locator.Pages.MapPage"
BackgroundColor="White"
Title="Map">

<ContentPage.Content>

<Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10">
<Grid.RowDefinitions>
<RowDefinition Height="*"/>
<RowDefinition Height="80"/>
<RowDefinition Height="60"/>
<RowDefinition Height="60"/>
</Grid.RowDefinitions>

[87]

[vww . allitebooks.cond

http://www.allitebooks.org

Building a GPS Locator Application

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>

<maps:Map x:Name="MapView" IsShowingUser="true" Grid.Row="0"
Grid.Column="0"/>

<Label x:Name="AddressLabel" Text="{Binding Address}"
TextColor="Black" Grid.Row="1" Grid.Column="0"/>

<Button x:Name="GeolocationButton" Text="{Binding
GeolocationButtonTitle}"
Command="{Binding GeolocationCommand}" Grid.Row="2"
Grid.Column="0"/>

<Button x:Name="NearestAddressButton" Text="Find Nearest
Address"
Command="{Binding NearestAddressCommand}" Grid.Row="3"
Grid.Column="0"/>
</Grid>

</ContentPage.Content>
</ContentPage>
See at the top how we imported the Xamarin.Forms.Maps library?

We have created four rows in the Grid, one for the Map (this will cover most of the screen),
one for a label that will display the address, and two buttons for starting/stopping location
updates and finding the closest location out of a list of addresses.

So where does the address come from?

We now need to implement the core location service; this is a background service that will
send position information based upon your location. The information returned is very
detailed; we can depict exact longitude and latitude values, as well as addresses.

Core location services can drain device battery life, so when using core
location, we must manage the usage and turn it on and off when required.
As this is a background service, when the app is placed in the background,
the location service will still be running.

To begin our core location implementation, we are going to create an abstracted geolocation
interface called IGeolocator, but first we are going to add another library for processing our
location updates.

[88]

Building a GPS Locator Application

React

ive Extensions

If you haven't heard of the RX framework before, you are about to enter a never-ending
rabbit hole of asynchrony. RX gives developers the ability to use LINQ-style query
operations for processing objects in observable sequences. It allows for full control over
event-based operations between different elements of an application.

In our project, we are going to use a Subject for handling location events received on the
native side. In cross-platform development, because we work in both PCL and native-level

projects, it involves passing data and events up and down the project structure.

We could use the event framework, which is standard in c-sharp, but instead we are going
to use a subject to push events into an observable sequence, while we subscribe to the
subject at a lower level to receive and handle these events.

Let's start by importing the Reactive Extensions interface in our native and PCL projects:

5 Solution
¥ [&] Locator (master)
¥ [Locator
» [References

] Debug » [] iPhene 65 05 9.3

Xamarin Studio Business

[BN] Add Packages
» B Modules Official NuGet Gallery (Q Reactive extensions @)
L2 . Reactive Extensions - Core Library 225
P [Properties Feaciive Exiensions Core Library containing
»EU base ciasses and scheduler inirasiructure.
[0) Appcs . rhxcere
thot Microsoft
E’] packages.config Reactive Extensions - Interfaces Library G
»O ——] Reactive Extensions Interfaces Library containing essential interfaces. D:vmln-da
»] Locator.i0S License View License
Project Page Visit Page
» [Locator.Portable Reactive Extensions - Query Library Depadencies
» D Locator.Shared 1 Reactive Extensions Query Library used 10 express complex event processing queries Ax-Interfaces (2 2.2.5)
g over observabie sequences.
Reactive Extensions - Main Library
1 Feactive Extensions Main Library combining the interfaces, core, LINQ, and platform
! services libraries.
Reactive Extensions - Platform Services Library
1 Reactive Extensions Platform Services Library used to access platform-specific
{ functionality and enfightenment services.
My useful extensions pack 1,128
e Extensions, sorted by namespaces
Show pre-release packages Close Add Package

R

jol

Project

A
Patt ™

Ti

 Tasks

[89]

Building a GPS Locator Application

Now let's create our IGeolocator class:

public interface IGeolocator

{

Subject<IPosition> Positions { get; set; }
void Start();

void Stop();
}

Notice the interface TPosition? We must also create a new interface, which is going to
store all the location information:

public interface IPosition

{
double Latitude {get; set;}

double Longitude {get; set;}
}

The interface is designed to return these variables to be used for the Xamarin.Forms
geolocator, so we can pull down address information. This information is returned
by CLLocationManager with every position update.

Why do we need to create an interface for the position information?

As this information comes from different native services, we want to create our own object
to contain the information we need in the lower-level projects.

Core location with iOS and the
CLLocationManager library

CLLocationManager is used for the delivery of location and heading events; we must use
this object in our Geolocator implementation, so let's begin:

public class GeolocatorIOS : IGeolocator

{

public Subject<IPosition> Positions { get; set; }

}

From our interface, we must include the Subject. Now let's
instantiate CLLocat ionManager. First, we must import the CoreLocation library:

[90]

Building a GPS Locator Application

using CorelLocation;

Now we instantiate CLLocationManager in the constructor when this is created through
the IoC container. According to iOS standards, since changes to iOS 9 and iOS 8, we must
implement a few separate calls to allow the location manager to begin sending location
events:

public GeolocatorIOS()
{

Positions = new Subject<IPosition> ();
locationManager = new CLLocationManager () ;
locationManager.PausesLocationUpdatesAutomatically = false;

// 10S 8 has additional permissions requirements
if (UIDevice.CurrentDevice.CheckSystemVersion (8, 0))

{

locationManager.RequestWhenInUseAuthorization ();

if (UIDevice.CurrentDevice.CheckSystemVersion (9, 0))
locationManager.AllowsBackgroundLocationUpdates = true;

}

This is nothing major; in iOS 8 we must request the authorization before using the location
manager. For iOS 9, we can also set some conditional settings. For our example, we have
used this:

AllowsBackgroundLocationUpdates = true

This allows the location manager to keep sending events, even when the app is in the
background. We can also do this:

if (UIDevice.CurrentDevice.CheckSystemVersion (8, 0))
{

locationManager.RequestWhenInUseAuthorization ();

}

This will only allow events from CLLocat ionManager when the app is in the foreground.
There are multiple settings that can be changed, between controlling location events in the
foreground and background when using location services. We want to know whether our
app is going to keep updates running in the background/foreground. Most of the time, we
want location updates when the app is in the foreground to reduce battery consumption,
but there are scenarios where updates should continue in the background.

[91]

Building a GPS Locator Application

Now for the rest of the class; let's begin handling the location events:

private void handlelLocationsUpdated (object sender,
CLLocationsUpdatedEventArgs e)
{

var location = e.Locations.LastOrDefault ();
1

if (location != null)
{
Console.WriteLine ("Location updated, position: " +
location.Coordinate.Latitude + "-" + location.Coordinate.Longitude);

// fire our custom Location Updated event
Positions.OnNext (new Position ()
{
Latitude = location.Coordinate.Latitude,
Longitude = location.Coordinate.Longitude,

)i
}

The previous function is called every time we receive a location update

from CLLocationManager. From the event argument CLLocationsUpdatedEventArgs,
we pull out a list of locations; as sometimes the CLLocat ionManager receives multiple
updates at one time, we always want to take the very last location. Then once we create a
new Position, assign the latitude and longitude values, and by calling the OnNext
function, we push a new event into the observable sequence.

Our next step is to add some small additions to the info.plist file.

Let's add the following keys:

<key>NSLocationAlwaysUsageDescription</key>
<string>Can we use your location</string>
key>NSLocationWhenInUseUsageDescription</key>
<string>We are using your location</string>

The preceding code is from the source of the info.plist file.

The NSLocationAlwaysUsageDescription and
NSLocationWhenInUseUsageDescription keys will be displayed to the user in the alert
that requests location data access. We must also add the background modes for the location
in which we can set the iOS project properties:

[92]

Building a GPS Locator Application

< > Entitlements.plist Info.plist

A

v Maps Integration

Enable Maps Integration
Routing:

Plane Streetcar
Bike Subway
Bus Taxi

Car Train
Ferry Other

Pedestrian

v Background Modes
Enable Background Modes
Modes:

Audio and AirPlay
Location updates

Voice over IP

Newsstand downloads

Advanced Source Changes Log Merge

Now we must implement the Start and Stop functions:

public void Start ()

{
if (CLLocationManager.LocationServicesEnabled)
{
locationManager.DesiredAccuracy = 1;
locationManager.LocationsUpdated += handleLocationsUpdated;
locationManager.StartUpdatingLocation () ;
}
}
public void Stop ()
{
locationManager.LocationsUpdated —-= handleLocationsUpdated;
locationManager.StopUpdatingLocation () ;
}

The start function will check whether location services have been enabled, assign the
LocationsUpdated event, and start the location updates:

public void Register (ContainerBuilder builer)
{
builer.RegisterType<GeolocatorIOS> () .As<IGeolocator>().SinglelInstance();

}

[93]

Building a GPS Locator Application

The Stop function will do nothing more than stop the location updates and remove the
event handler. That's all for the iOS geolocator. Next, we must register this interface
through the IoC container.

Handling location updates

Our next step is to build the MapPageViewModel; this view model will contain the
IGeolocator we just built. We will also be listening for location updates from the
observable sequence and processing latitude and longitude values to gather address details.

Let's begin with the constructor:

public MapPageViewModel (INavigationService navigation, IGeolocator
geolocator, Func<Action, ICommand> commandFactory,
IGeocodingWebServiceController geocodingWebServiceController)
base (navigation)
{
_geolocator = geolocator;
_geocodingWebServiceController = geocodingWebServiceController;

_nearestAddressCommand = commandFactory (() =>
FindNearestSite());
_geolocationCommand = commandFactory(() =>

{
if (_geolocationUpdating)

{
geolocator.Stop();

}

else

{
geolocator.Start () ;

GeolocationButtonTitle = _geolocationUpdating ? "Start"
"Stop";
_geolocationUpdating = !_geolocationUpdating;

P
_positions = new List<IPosition> ();

LocationUpdates = new Subject<IPosition> ();
ClosestUpdates = new Subject<IPosition> ();

[94]

Building a GPS Locator Application

Our constructor will retrieve the navigation service and the geolocator. Notice how we
assign the geolocator class:

_geolocator = geolocator;

The constructor will also be responsible for creating the commands for the two buttons on
our map page. Any view models that require objects from the IoC container are usually
assigned as read-only properties because they will never change. We want the property
name to be the exact same as the item in the constructor argument:

private readonly IGeolocator _geolocator;

Now let's create our private properties:

#region Private Properties
private IDisposable _subscriptions;

private readonly IGeolocator _geolocator;
private string _address;
#endregion

We have a new object, the IDisposable interface, which is used to take control of
unmanaged resources, meaning we can release objects that have no control over memory
disposal. In our case, we are going to be setting up a subscription to the events received via
the observable sequence (Subject).

Let's look at this technique more closely:

public void OnAppear ()
{

_subscriptions = _geolocator.Positions.Subscribe (x =>

{
_currentPosition = x;
LocationUpdates.OnNext (x) ;

)i

public void OnDisppear ()

{
geolocator.Stop ();

if (subscriptions != null)

{

[95]

Building a GPS Locator Application

subscriptions.Dispose ();
t

We are going to use these functions to be called when the MapPage appears and disappears.
The onAppear function will create a subscription to the Subject, so whenever a new
position is pushed onto the observable sequence, we will receive an item on the other side
where we subscribed. In this case, we will be calling the onNext function on a different
subject, meaning we are passing the item of the observable sequence into another
observable sequence.

What a pointless function. We will show you why soon.

We are also assigning the subscription to our IDisposable. A subscription is an
unmanaged resource, meaning that without the use of an IDisposable, we can't control
the release of the subscription.

Why do we need to worry about disposing of the subscription?

Sometimes our observable streams may be propagating events to a user interface on the
main Ul thread. If we change pages, and the previous page's view model is still receiving
events to update the previous page's interface, this means the events will be changing the
user interface on a different thread from the main UI thread, which will break the
application. This is just one example, but cleaning up subscriptions when we aren't using
them is a good practice to control unwanted application processing.

Now for the public properties:
#region Public Properties

public string Address
{
get
{
return address;

}

set

{

if (value.Equals (address))

{

return;

}

address = value;
OnPropertyChanged ("Address") ;

[96]

Building a GPS Locator Application

#endregion

All we need is a string that will be bound to MapPageLabel under the map item. It will be
used to display the address of the current location. Now we must create a label on MapPage:

<Label x:Name="AddressLabel" Text="{Binding Address}" Grid.Row="1"
Grid.Column="0"/>

Our next step is to make use of the latitude and longitude values that we receive

from CLLocationManager. We are going to use the Geocoder class to get address
information from our positions. A Geocoder class is used to convert positions (latitudes
and longitudes) into address information. We could actually do this conversion on the
native side, but the idea of this exercise is to show you what is available in Xamarin.Forms
to share between the different platforms.

Now let's get back to answering the questions about passing events between two observable
sequences.

Let's start building the MapPage . xaml . cs sheet:
private MapPageViewModel viewModel;
private IDisposable locationUpdateSubscriptions;
private IDisposable closestSubscriptions;
private Geocoder geocoder;
public MapPage ()

{

InitializeComponent ();

public MapPage (MapPageViewModel model)
{
viewModel = model;
BindingContext = model;
InitializeComponent ();

Appearing += handleAppearing;
Disappearing += handleDisappearing;

geocoder = new Geocoder ();

[97]

Building a GPS Locator Application

}

Here we create another two IDisposables for handling the events from the view-model.
We will also be subscribing to and disposing on the page's appearing and disappearing
events, so now add the HandleAppearing and HandleDisappearing functions:

private void HandleDisappearing (object sender, EventArgs e)
{

viewModel.OnDisppear ();

if (locationUpdateSubscriptions != null)
{
locationUpdateSubscriptions.Dispose ();
}
if (closestSubscriptions != null)

closestSubscriptions.Dispose ();

private void HandleAppearing (object sender, EventArgs e)
{
viewModel.OnAppear ();

locationUpdateSubscriptions =
viewModel.LocationUpdates.Subscribe (LocationChanged);

}

We also create a new Geocoder, so every time we receive an event from the observable

sequence in the view model, we use this position to retrieve the address information
from Geocoder via the following function:

private void LocationChanged (IPosition position)
{
try
{
var formsPosition = new
Xamarin.Forms.Maps.Position (position.Latitude, position.Longitude);

geocoder.GetAddressesForPositionAsync (formsPosition)

.ContinueWith (_ =>

{
var mostRecent = _.Result.FirstOrDefault ();
if (mostRecent != null)
{

viewModel .Address = mostRecent;

[98]

Building a GPS Locator Application

H)

.ConfigureAwait (false);

}

catch (Exception e)
{
System.Diagnostics.Debug.WriteLine ("MapPage: Error with
moving map region - " + e);
t
t

That is everything we need to retrieve our latitude and longitude positions, as well as
update the current address. The last step of our iOS version is to update the position on the
map; we want the map view to zoom in to our current position and place the blue marker
on the map. Next, we add the following to the end of Locat ionChanged function:

MapView.MoveToRegion (MapSpan.FromCenterAndRadius (formsPosition,
Distance.FromMiles (0.3)));

The MoveToRegion function requires a MapSpan; a MapSpan is created from the latitude,
longitude point and the radius from the position point. A circle will be drawn from the
point to give the view radius to be shown on the map; in our case the radius is 0.3 miles
around the latitude and longitude position.

The ContinuewWith function is used to execute some extra work as soon as the task finishes.
As soon as we have retrieved all the possible address names, we wake the first on the list
and assign it to the Address property of the variable.

Our final step is to complete the rest of the project; we must first create an iOS module for
registering the geolocator class:

public class IOSModule : IModule
{

public void Register (ContainerBuilder builer)

{

builer.RegisterType<GeolocatorIOS> () .As<IGeolocator>().SingleInstance () ;
}
}

Then finally we add the extras to the AppDelegate.cs file (exactly the same as the
previous example iOS project):

[Register ("AppDelegate")]
public partial class AppDelegate
global::Xamarin.Forms.Platform.i0S.FormsApplicationDelegate
{
public override bool FinishedLaunching (UIApplication app,

[99]

Building a GPS Locator Application

NSDictionary options)
{
global::Xamarin.Forms.Forms.Init (this, bundle);
global::Xamarin.FormsMaps.Init (this, bundle);

initIoC ();
LoadApplication (new App ());

return base.FinishedLaunching (app, options);

private void initIoC()
{
IoC.CreateContainer
IoC.RegisterModule
IoC.RegisterModule
IoC.RegisterModule
IoC.StartContainer

(
new IOSModule ());

new XamFormsModule());
new PortableModule());
)

}

Excellent! Let's run the project and click on the Find Location button. Watch the map
update with the address shown in the preceding label.

Let's move on to the Android project and implement the same features.

Android and the LocationManager

The Android LocationManager works like the CLLocationManager, but we will use an
observable sequence to handle location updates. When a location update is received, a new
Position object is instantiated with the latitude and longitude values from the location
update. Then the resulting Position is pushed on to the Geolocator's Subject.

First we create the Geolocator implementation. It must also inherit the
ILocationListener interface:

public class GeolocatorDroid : IGeolocator, ILocationListener
{
private string provider = string.Empty;

public Subject<IPosition> Positions { get; set; }

#region ILocationlListener implementation

[100]

Building a GPS Locator Application

public void OnLocationChanged (Location location)
{
Positions.OnNext (new Position ()
{
Latitude = location.Latitude,
Longitude = location.Longitude

)i

public void OnProviderDisabled (string provider)
{

Console.WritelLine (provider + " disabled by user");

public void OnProviderEnabled (string provider)
{

Console.WritelLine (provider + " disabled by user");

public void OnStatusChanged (string provider, Availability status,
Bundle extras)

{

Console.WritelLine (provider + " disabled by user");
#endregion

You may have noticed the #define keywords. These are useful for
separating different sections and for referencing locations in code sheets,
making code more readable.

The only one we are concerned about is the OnLocat ionChanged function; whenever a
location update is received by the location manager, the listener function will be called with
the latitude and longitude values, and we will then use these values to push into the
observable sequence for the Geocoder and MapSpan.

We also have to implement the extra requirements for the ILocationListener interface.
Since this interface inherits the IJavaobject interface, we are required to implement the
Dispose function and the IntPtr object.

To save time, we can have the class inherit the Java.Lang.Object class like this:

public class GeolocatorDroid : Object, IGeolocator, ILocationListener

[101]

Building a GPS Locator Application

Next, we add the constructor:

private LocationManager locationManager;

public GeolocatorDroid()

{

Positions = new Subject<IPosition> ();
locationManager =
(LocationManager)Application.Context.GetSystemService (Context.LocationServi

ce);
provider = LocationManager.NetworkProvider;

}

In the constructor, we pull out the required system service using the Get SystemService
function for the location service. The line underneath simply retrieves the
NetworkProvider of the LocationManager; we need to use this for starting the location
updates. There are further configurations we can set for retrieving correct providers (mainly
logging purposes), but in this example we aren't going to bother too much as we are only
interested in retrieving location positions.

Now it's time to implement the other required functions of the IGeolocator interface:

public void Start ()
{
if (locationManager.IsProviderEnabled (provider))

{
locationManager.RequestLocationUpdates (provider, 2000, 1,
this);
}

else
{
Console.Writeline (provider + " is not available. Does the
device have location services enabled?");
}
}
public void Stop ()
{
locationManager.RemoveUpdates (this);

}

The start function will first check whether we have these services enabled, then by calling
the RequestLocationUpdates function, we pass in the provider, the minimum time
between locations updates, the minimum location distance between updates, and the
pending intent to be called on each location update; in our case, this is the geolocator (the
same class that started the location updates) as we have implemented the
ILocationListener class.

[102]

Building a GPS Locator Application

The Stop function simply removes the updates from the Geolocator, which in turn will
stop the location updates from the location manager. Our next step in implementing the
Android Geolocator is to create the Android IoC module, and register this
implementation in the IoC container:

public void Register (ContainerBuilder builer)
{
builer.RegisterType<GeolocatorDroid> () .As<IGeolocator>().SinglelInstance();

}

Our final step is to set up the MainActivity class, which is exactly the same as the
previous project:

[Activity (Label = "Locator.Droid", Icon = "@drawable/icon", MainLauncher =
true, ConfigurationChanges = ConfigChanges.ScreenSize |
ConfigChanges.Orientation)]
public class MainActivity
global::Xamarin.Forms.Platform.Android.FormsApplicationActivity
{
protected override void OnCreate (Bundle bundle)
{

base.OnCreate (bundle);

global::Xamarin.Forms.Forms.Init (this, bundle);
global::Xamarin.FormsMaps.Init (this, bundle);

LoadApplication (new App ());

private void initIoC()
{
IoC.CreateContainer (
IoC.RegisterModule (new DroidModule());
IoC.RegisterModule (new XamFormsModule());
IoC.RegisterModule (new PortableModule());
IoC.StartContainer ()

[103]

Building a GPS Locator Application

Take note of how much code we are starting to reuse from previous
projects. Why reinvent the wheel when we can save a lot of time by
pulling from similar problems that have already been solved in other
projects?

The last step in the Android project is to apply some Android permissions to allow your
app to use location services. Open up the Mainfest .xml and add the following:

<application android:label="Locator">
<meta-data android:name="com.google.android.maps.v2.API_KEY"
android:value="YOUR-API-KEY" />
<meta-data android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version" />
</application>

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"
/>

<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Inside the <application> tag, we have to place API_KEY, which is generated from the
Google APIs platform (we will be doing this later). We then have to add the
ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION, and ACCESS_NETWORK_STATE
permissions for LocationManager to work. We can switch these permissions on through the
Application window:

[104]

Building a GPS Locator Application

eve p [Debug > W Android-Emulator (API 21) arv | ® Q
Solution 4 » /Geoloc: % Geoloc: * Geoloc: * AppDel % MainAci* DroidM: % \0SMoc * ' XamFor \I0SMet % DroidM * MainPa % Portable X IMethoc %/ Androic @ __¥
¥ (1] Modules
T T T TR Application name Locator
¥ & Pages Package name com.flusharcade.locator.locator
» [Propertios
4L Application icon -
App.cs.
packages.config Version number 1

¥ [Locator.Droid

e cos Version name | 1.0

ECorpsoens Minimum Android version | Override - Android 4.0.3 (API level 15) e
¥ (i Packages (2 updates)
RS Target Android version | Automatic - use target framework version (API 23) L]
b [Extras o
» (] Location Install Location | Default L]
» [Modules - —

uired permissions

¥ [Properties [AccessCoarseLocation

‘AndroidManifest.xm|
l e
‘Assemblyinfo.cs

» | Resources) AccessLocationExtraCommands

MainActivity.cs [AccessMockLocation
packages.config [AccessNetworkState
¥ [LocatoriOS = SR

(& References YN Source Changes Blame Log Merge

(i Components -
» i Packages 1 update) 4 Emors 4 Application Output

~ (& Exdraa €3 OEmors| & 1Warning |{) OMessages| i Build Output Q
I0SMethods.cs
v [Location ! Line Description Warnings:
it At /Users/mm121/Projects/Locator/Droid/Locator.Droid. csproj (Build) —>
v [Modules fLibrary/Frameworks/Mono. framework/External/xbuild/Xamarin/Android/Xamarin. Android.Common, t)
i0SMadule.cs
» [Resources
AppDelegate.cs
Entitiements.plist Build: @ errors, 1 warning

/Library/Frameworks/Mono. framework/External/xbuild/Xamarin/Android/Xamarin.Android.

Done

Test Results 1 Package Console

Creating an exit point

You may have noticed the extra button added on the starting page for exiting the
application. We will have to go ahead and create an abstracted object for exiting the
application. Start by creating a new folder called Ext ras, then create a new file for the
IMethods interface:

public interface IMethods

{
void Exit ();

Before moving on with the tutorial, have a go at implementing the native
side for each project on your own.

[105]

Building a GPS Locator Application

Let's begin with the iOS version:

public class IOSMethods

{
public void Exit ()

{
UIApplication.SharedApplication.PerformSelector (new
ObjCRuntime.Selector ("terminateWithSuccess"), null, 0f);
}
}

For the iOS version, we must dig into the SharedApplication object and perform a
selector method terminateWithSuccess. We must then register this new object in our iOS
module:

public void Register (ContainerBuilder builer)

{
builer.RegisterType<GeolocatorIOS> () .As<IGeolocator>().SinglelInstance ();
builer.RegisterType<IOSMethods> () .As<IMethods> () .SinglelInstance();

}

Now the Android implementation:

public class DroidMethods

{
public void Exit ()

{
Android.OS.Process.KillProcess (Android.OS.Process.MyPid ()) ;

}

Using the Android operating system namespace, we use the static item Process to call the
function KillProcess on the main process. Again, we also register this within the IoC
container:

public void Register (ContainerBuilder builer)

{
builer.RegisterType<GeolocatorDroid> () .As<IGeolocator> () .SingleInstance();
builer.RegisterType<DroidMethods> () .As<IMethods> () .SinglelInstance();

}
Finally, we use the IMethods interface in our MainPageViewModel to call the exit function:
public MainPageViewModel (INavigationService navigation, Func<Action,
ICommand> commandFactory,

IMethods methods) : base (navigation)

exitCommand = commandFactory (() => methods.Exit());

[106]

Building a GPS Locator Application

locationCommand = commandFactory (() =>
Navigation.Navigate (PageNames.MapPage)) ;

}

Looking at this more closely, we are using the command factory to initialize the exit
command to a new Xamarin.Forms Command, and when this command is executed, it will
call the Exit method from the IMethods interface.

Our last step is to create an API key using the Google APIs for our Android version.

Creating an API key for Android

In order for us to create an API key, we will have to access the Google API portal. Android
requires this extra step when configuring Google Maps:

You will need a Google Developer account to complete this section.

1. Visit the following link to create a new project in the API portal: https://consol

e.developers.google.com/iam-admin/projects.

S iAM&Admin Projects £3 CREATE PROJECT
Select a project - e T
= All projects Project name Project ID
Locator locator-1372
+8 1AM
e] Settings

o3 Service accounts
Labels

=] Quotas

[107]

https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects

Building a GPS Locator Application

2. Select Create Project from the top menu and call the project Locator:

New Project

Project name

| Locator|

Your project ID will be eastern-team-137209 Edit

Show advanced options...

For more information on setting up an API key, visit this link: https://de
velopers.google.com/maps/documentation/javascript/get—-api-key#
get-an—-api-key.

3. Once we have our new project, visit the API Manager and select the Google
Maps Android API:

API API Manager Overview

.)
< Overview Google APIs Enabled APIs (3)

O Credentials

Popular APIs
Google Cloud APls Sutgle Maps APls
Compute Engine APl - Google Maps Android API
BigQuery AP GooglE Traps or 105

Cloud Storage Service
Cloud Datastore API
Cloud Deployment Manager API
Cloud DNS API
More:

Google Maps JavaScript AP|
Google Places API for Android
Google Places API for i0S
Google Maps Roads APl

More

[108]

https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key

Building a GPS Locator Application

4. Select the Enable button, then click Credentials from the left-hand menu. We
want to create a new API key from the drop-down list:

API API Manager Credentials
» Overview Credentials ~ OAuth consent screen Domain verification

O Credentials
Create credentials ~

AP key
Identifies your project using a simple AP key to check quota and access.
For APIs like Google Translate.

OQAuth client ID
RL‘qLICSIS user consent so your app can access the user's data.
For APls like Google Calendar.

Service account key
Enables server-to-server, app-level authentication using robot accounts.
For use with Google Cloud APls.

Help me choose
Asks a few questions to help you decide which type of credential to use.

5. Make sure we select an Android key:

Create a new key

You need an API key to call certain Google APIs. The API key identifies your
project. Also, it is used to enforce quotas and handle billing, so keep it safe.

Server key Browser key (Android key i0S key

[109]

Building a GPS Locator Application

6. We are going to leave the name as Android key 1. Now click the Create button:

“

Create Android API key
Name

| Android key 1|

Restrict usage to your Android apps

ame and SHA-1 &

AL

keytool -list -v -keystore mystore.keystore T]

<4 Add package name and fingerprint ‘

Note: It may take up to 5 minutes for settings to take effect

Cancel

7. Finally, let's select our Android key and place it in the AndroidManifest.xml
file where it states YOUR-API-KEY:

Android Jul 14, 2016 Android
key 1

Congratulations, we have now integrated the iOS and Android location services with
Google Maps.

Now let's move on to the Windows Phone version.

Creating our Windows project

Moving on to Visual Studio once again, let start by creating a new c-shape universal
Windows project and calling it Locator.WinRT:

[110]

Building a GPS Locator Application

[] Y: D B - & x
FRE EDNT VIEW GITEX) F M EST ANMYIE WINDOW wnin M
-] 3 -2 M 1 WWGA 4 inch 512ME = oy A - A, Daechions
e e .. P
Ak New P ’ -
,

Vo (Windows Phoms £.1]

& first chance exception of tyd - Debruglny CPU

1 Co\Unara\Michsal\ DocumanssiXamarin §
Browse.. |

Locat: WinR T Windewshane

We can remove the Windows store and shared projects. Before you remove the shared
projects, move the app . xaml files into the Windows Phone project.

The Map object from Xamarin.Forms.Maps is not usable in Windows
Phone 8.1. We have to use the universal platform instead.

For our Windows Phone version, we need the following;:

¢ A Windows Phone module for registering the geolocator and methods interfaces
¢ To implement the geolocator interface

¢ To implement the methods interface

Have a think about that for a second...

That's all we have to do to replicate the application for Windows Phone?
Think how much extra work would be involved if we were to rebuild this
app from scratch entirely on the Windows platform.

[111]

Building a GPS Locator Application

Next, add the three folders, Modules, Location, and Extras, and create a new . cs file for
each folder and name them accordingly: WinPhoneModule.cs, GeolocatorWinPhone.cs,
and WinPhoneMethods.cs.

Firstly, we have to change the targets of the PCL projects to be compatible with the
Windows Phone frameworks. Select the Windows Phone 8.1 target for both PCL projects,
then the Windows project can reference the two PCL projects:

Y] & | stack Overflow X | 03 Quick Launch (Ctrl+Q P - B X
FILE EDIT VIEW GITEXT PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP Sign in
e - B-& W > Start - Debug ~ AnyCPU - 5 . DAtachTolls .
@ Commit (masten) [& @ §F 3 -
£ [T inehoneModule.cs MainPage xaml.cs Appxamlcs ~ | Solution Explorer - Locator - master v Ex
2 'my w2 n a8 E
; © o-cosB +
g Build Search Solution Explorer - Locator « master (Ctrl+;) P~
5 Build Events General &1 Solution "Locator’ (3 projects) -
B || e Assembly name: Locator.Portable 4 /(& Locator (Portable)
£ Reference Paths = b & & Properties
Default namespace: |Locator.Portable b *B References
—_— [locatorPortable |
igning pm— Change Targets X » -
Code Analysis ass Library b
Targets: Pages
Assembly Information... b ul
NET Framework 4.5 ¥ b &% App.cs
Te ti —
HEEoR) Windows 8 v ¥ packages.config
Targets: NET Framework 4.5 — b [@ Locator.Droid (incompatible)
Windows 8 B v b (@ LocatoriOS (incompatible)
Windows Phone 8.1 [Silverlight 5 > cator.Portable (Portable)
Windows Phone Silverlight 8 [7] Windows Phone 8.1 4 B Locator WinPhone (Windo
Xamarin.Android [“] Xamarin.Android b J Properties
XamariniOS [Xamarinios 4 vm Ref
XamariniOS (Classic) - erence:
[XamariniOs (Classic) *B NET for Windows Store apps
Change. *8 |ocator
=8 Windows Phone 8.1
Code Analysis | Solution Explorer Team Explorer Class View
Properties N L%
Install additional targets. P
=g,
Output v B X
Show output from: Package Manager - % E%
.Forms. rm.WinkT.Phone’ to project ’ or.Winphone" -
ject ‘Loca
*Locator.winPhone
6529" to Locator.WinPhone
4 »

We must also import the Xamarin.Forms, Xamarin.Forms.Maps, and Autofacnuget

packages.

Core Location Services with Windows Phone

Now for the exciting part. Let's integrate the core location services. First, we must turn on

certain permissions. Open up the package.appmanifest file, select the Capabilities tab,
and select the Location checkbox:

[112]

Building a GPS Locator Application

D master - Locator (Debug|Any CPU) - Microsoft Visual Studio (Administrator) Stack Overflow X | O | Quick Launch (Ctrl+Q) P - & X
FILE EDIT VIEW GITEXT PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP signin [
o - B2 e P Start - Debug ~ AnyCPU - A . P AtachTolls -
© Commit @R
§ R Locator WinPhone* Locator.Portable WinPhoneModule.cs MainPage xaml.cs Appxamlcs ~ | Solution Explorer - Locator + master v 1x
| Theinformation the system needs to deploy, display, or update your app is contained in the Package.appxmanifest file, and the information used for the Store lsting is @ e-udd © "E
S contained in the StoreManifest.umi file You can use the Manifest Designer to modiy the propertis in these fis. Search Solution Explorer - Locator » p-
o b1 Pages -
] Application Visual Assets Requirements Capabilities Declarations Content URIs Packaging 4 ul
S N b &€ Appcs
Use this page to specify system features or devices that your app can use. ¥ packages.config
b [@ Locator.Droid (incompatible)
Capab Description: P [@ LocatoriOS (incompatible)
b 7@ Locator Portable (Portable)
(T Provides access to the current location, which is obtained from dedicated hardware like a GPS sensor in the 4 B Locator WinPhone (Windo
device or derived from available network informati
[] Contacts b Properties
More information . %
[] Enterprise Authentication '; H (ke
Assets
]
[/] Internet (Client & Server) “ Modules
¥ tocation b € WinPhoneModule.cs
[Microphone) App.xaml
[[] Music Library L) MainPage xaml
>) MainPage.xaml.cs
[Pictures Library
O prox) Package.appxmanifest
Prosimity ¥ packages.config
[Removable Storage e
is | Soluti Expl
[Shared User Certificates Code Analysis | Solution Explorer Team Explorer Class View
[Videos Library Properties v X
[Webcam M
B
Output - B X
Show output from: | Package Manager - % E"
Added reference ‘Xamarin.Forms.Platform.WinRT.Phone’ to project ‘Locator.Winphone' -
Added rence ‘Xamarin .Xaml' to project 'Locator.WinPhone
Added file ‘packages.config'.
Added file ‘packages.config® to project ‘Locator.WinPhone'
suc fully added 'Xamarin.Forms 2.1.0.6529' to Locator.WinPhone.
v
“ »
Find Symbol Results Error List | Output | Find Results 1

Ready

Secondly, open the GeolocatorWinPhone. cs file, and let's start building the Windows
Phone locator class.

Let's start by creating the constructor:

public class GeolocatorWinPhone : IGeolocator
{

public Subject<IPosition> Positions { get; set; }
Geolocator _geolocator;

public GeolocatorWinPhone ()

{

Positions = new Subject<IPosition>();

geolocator = new Geolocator();
_geolocator.DesiredAccuracyInMeters = 50;

[113]

Building a GPS Locator Application

We are implementing a native Geolocator from the interface IGeolocator, meaning we
need to create an observable sequence for the positions. We also need a Geolocator object
to receive location updates, which we will use to push events into the sequence. With all
native locators, we can set accuracy for location points, which is what we are doing with the
following line:

geolocator.DesiredAccuracyInMeters = 50;

Our next step is to implement the Start and Stop functions:

public async void Start ()
{
try
{
var geoposition = await _geolocator.GetGeopositionAsync (
maximumAge: TimeSpan.FromMinutes(5),
timeout: TimeSpan.FromSeconds (10)

)i
_geolocator.PositionChanged += geolocatorPositionChanged;

// push a new position into the sequence
Positions.OnNext (new Position ()
{
Latitude = geoposition.Coordinate.Latitude,
Longitude = geoposition.Coordinate.Longitude
1)
}

catch (Exception ex)

{

Console.WritelLine ("Error retrieving geoposition - " + ex);

}

The start function uses Geolocator to retrieve the positions with the asynchronous
function GetGeopositionAsync. The function will take the maximum age of a location,
meaning once the time period is passed, the location will update again. The request for this
location will cancel when the timeout value is reached during a location update. We also
listen on the event handler PositionChanged via the following function:

private void GeolocatorPositionChanged (Geolocator sender,
PositionChangedEventArgs args)
{
// push a new position into the sequence
Positions.OnNext (new Position ()

{

[114]

Building a GPS Locator Application

Latitude = args.Position.Coordinate.Latitude,
Longitude =
args.Position.geoposition.Coordinate.Longitude
F) i
}

We actually have two places, which will push a new geoposition's latitude and longitude
into the observable sequence.

Now we add the Stop function:

public void Stop ()
{
// remove event handler
_geolocator.PositionChanged —-= GeolocatorPositionChanged;

}
All this does is remove the event handler function th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>