
www.allitebooks.com

http://www.allitebooks.org

Xamarin Blueprints

Leverage the power of Xamarin to create stunning
cross-platform and native apps

Michael Williams

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Xamarin Blueprints

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016

Production reference: 1270916

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78588-744-4

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Author

Michael Williams

Copy Editor

Safis Editing

Reviewer

Engin Polat

Project Coordinator

Ulhas Kambali

Commissioning Editor

Amarabha Banerjee

Proofreader

Safis Editing

Acquisition Editor

Larissa Pinto

Indexer

Tejal Daruwale Soni

Content Development Editor

Prashanth G

Graphics

Jason Monteiro

Technical Editor

Shivani K. Mistry

Production Coordinator

Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Author
Michael Williams is an Insightful, results-driven full stack developer with notable
experience in cross-platform development using Xamarin and native languages for multiple
platforms. He also builds and researches server-side architecture using CQRS and event-
sourcing. He shares his knowledge on his personal blog at (www.imobservable.com).

Also an entrepreneur, the owner of Flush Arcade, a company involved in developing
creative, innovative, and ideative games (www.flusharcade.com).

www.allitebooks.com

http://www.imobservable.com
http://www.flusharcade.com
http://www.allitebooks.org

About the Reviewer
Engin Polat has been involved in many large and medium-scale projects on .NET
technologies as a developer, architect, and consulting and has won many awards since 1999.

Since 2008, he has been giving training to many large enterprises in Turkey about Windows
development, Web development, distributed application development, software
architecture, mobile development, cloud development, and so on. Apart from this, he
organizes seminars and events in many universities in Turkey about .NET technologies,
Windows platform development, cloud development, Web development, game
development, and so on.

He shares his experiences on his personal blog (h t t p : / / w w w . e n g i n p o l a t . c o m). He has
MCP, MCAD, MCSD, MCDBA, and MCT certifications.

Since 2012 he has been recognized as a Windows Platform Development MVP (Most
Valuable Professional) by Microsoft. Between 2013 and 2015, he was recognized as a Nokia
Developer Champion; very few people in the world are given this award.

Since 2015 he also recognized as a Microsoft Regional Director by Microsoft.

www.allitebooks.com

http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.enginpolat.com
http://www.allitebooks.org

www.PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Building a Gallery Application 7

Create an iOS project 8
Creating a UIViewController and UITableView 9
Customizing a cell's appearance 12
Creating an Android project 16
Creating an XML interface and ListView 17
Shared projects 19
Custom row appearance 21
Bitmap functions 26
The ALAssetLibrary 29
Adding the iOS photo screen 33
Adding the Android photo screen 37
Summary 40

Chapter 2: Building a SpeechTalk Application 41

Cross-platform development with Xamarin.Forms 42
So how would this look in Xamarin.Forms? 43

Setting up platform projects 44
So what is happening here? 47

Setting up the SpeechTalk.iOS project 47
Setting up the SpeechTalk.Droid project 49
Xamarin.Forms, Windows Phone, and Visual Studio 49

What can we see here? 52
Inversion of Control (IoC) with Xamarin.Forms 55

So why should we use it? 56
So how do we benefit from this? 56

Autofac 57
iOS text-to-speech implementation 59
Bindings 65
Android text-to-speech implementation 68
Setting up IoC with Android 70
WinPhone text-to-speech implementation 71
IoC with Windows Phone 72
Platform independent styling 73

www.allitebooks.com

http://www.allitebooks.org

[ii]

Summary 74

Chapter 3: Building a GPS Locator Application 75

Core location and GPS 76
Project setup 76
Navigation with Xamarin.Forms 78
Why would we do this? 78
Building the navigation control 80
View model navigation 82
Integrating Google Maps using Xamarin.Forms.Maps 86
Reactive Extensions 89
Core location with iOS and the CLLocationManager library 90

Handling location updates 94
Android and the LocationManager 100
Creating an exit point 105
Creating an API key for Android 107
Creating our Windows project 110
Core Location Services with Windows Phone 112
The Application class 116
Web services and data contracts 118
What about data contracts? 118
Creating another API key for geocoding 120
Creating GeocodingWebServiceController 121
Newtonsoft.Json and Microsoft HTTP client libraries 125
ModernHttpClient and client message handlers 127
Feeding JSON data into the IObservable framework 130
More Reactive Extensions 132
Resource (RESX) files 132
Using GeocodingWebServiceController 134
OnNavigatedTo and OnShow 135
Pythagoras equirectangular projection 139
How are we going to calculate the closest position? 140

Summary 145

Chapter 4: Building an Audio Player Application 146

Solution setup 147
Inversion of control with MVVMCross 148
View-models with Xamarin native 149
Creating the bindings 152
NSLayoutContraints 153

www.allitebooks.com

http://www.allitebooks.org

[iii]

MVVMCross setup inside the PCL 155
Setting up MVVMCross with iOS 156
Setting up MVVMCross with Android 158
The SoundHandler interface 160
Implementing the iOS SoundHandler using the AVAudioPlayer
framework 161
The Mvx IoC container 164
The audio player 165
A cleaner code approach to NSLayout 168
Creating AudioPlayerPageViewModel 172
Implementing the Android SoundHandler using the MediaPlayer
framework 179
XML and Mvx bindings 183
MvxActivities 184
Summary 191

Chapter 5: Building a Stocklist Application 192

Understanding the backend 193
Creating an ASP.Net Web API 2 project 194
Building an API controller 197
Setting up the mobile projects 199
Building core mobile projects 200
Improving app performance 201
Creating a global App.xaml 207
Theming with ControlTemplates 209
Updating the MainPageViewModel 213
Creating the Stocklist web service controller 216
ListViews and ObservableCollections 218
Value converters 224
Adding a DataTemplate to the global resource dictionary 225
Styles 226
Further optimization with XAML 228
Creating StockItemDetailsPage 229
Custom renderers 232
Adding styles for custom elements 235
Creating StockItemDetailsPageViewModel 235
Setting up the native platform projects 238
Hosting the Web API project locally 239
Summary 244

www.allitebooks.com

http://www.allitebooks.org

[iv]

Chapter 6: Building a Chat Application 245

The Model-View-Presenter (MVP) pattern 247
So why bother with this approach? 247

Architecture 247
How do we determine which layers our project needs? 248

SignalR 249
Starting with Open Web Interface for .NET (OWIN) 253

Creating an authorization server using OWIN OAuth 2.0 254
OAuthAuthorizationServerProvider 254
Use OAuthBearerAuthentication 256

Setting up the AuthenticationRepository 257
Configuring the Web API 259
Building the AccountController 260
Configuring OAuth Authentication with our Web API 262
Building the SignalR Hub 263

Setting up mobile projects 266
Creating the SignalRClient 267
Building the WebApiAccess layer 272
Application state 276

Setting up the navigation service 276
Building the iOS navigation service 277
Building the Android navigation service 278
Building the iOS interface 280

Handling Hub proxy callbacks 282
Implementing the LoginPresenter 284
Creating the connection between Presenter and View 287
Building the LoginActivity 292
Implementing the ClientsListPresenter 297
Creating ClientListViewController 302
The TaskCompletionSource framework 305
Creating the ClientsListActivity 306
Overriding the OnBackPressed activity 308
Building the ListAdapter 309
Building the ChatPresenter 312
Building the iOS ChatView 314
Extending the UIColor framework 318
Android TableLayouts 321
Building the Android ChatActivity 322
Running the server and clients 326

[v]

Summary 326

Chapter 7: Building a File Storage Application 327

Project structure setup 328
Building a data access layer using SQLite 329
Building the ISQLiteStorage interface 331
Adding additional threading techniques 332

How do we solve this problem? 332
Creating the AsyncSemaphore 332
Creating the AsyncLock 334
Implementing native setup requirements for SQLite 335
Implementing the IoC container and modules 336
Implementing cross-platform logging 337
Implementing the SQLiteStorage class 339
Introduction to C# 6.0 syntax 339
Handling alerts in view-models 344
Building the IMethods interface 346
Building the ExtendedContentPage 349

Why are we implementing two different techniques for showing alerts? 350
Building a CarouselView using custom layouts 350
Adding scroll control to the CarouselView 354
Building a CustomRenderer for native gestures 356
Building the user interface 366
Using a SynchronizationContext 374

How do we know this context is from the main UI thread? 374
Building the EditFilePage 376
Behaviours 377
Challenge 381
Building the Windows Phone version 381
Summary 383

Chapter 8: Building a Camera Application 384

Solution setup 385
Building the MainPageViewModel class 387
Improving the INotifiedPropertyChanged implementation 387
Creating the custom UI objects 395
Building the FocusView 399
Xamarin.Forms animations 400
Xamarin.Forms compound animations 402
Building the CameraView 405

[vi]

Building a control for the iOS camera 409
Building the iOS CameraRenderer 423
Integrating the Android Camera2 framework 426
Building the CameraViewRenderer in Android 446
Handling native touch events through the FocusView 448
Using RX to handle events 452
Building a VisualElementRenderer for iOS 452
Building the CustomImageRenderers 453
Building the UIImageEffects class 458
Building the CustomImageRenderer for Android 459
Triggers 465

Easing.SinIn 468
Easing.SinOut 468

Platform effects 469
Building the CameraPage 474
Adding native orientation events 488
Challenge 495
Summary 495

Index 496

Preface
Throughout my journey as a mobile developer, I have worked with many different
development paradigms and techniques. I have built mobile applications in Java, objective-
C, Swift (2 and 3), and C# across all mobile platforms. I’ve even built entire servers for my
mobile applications.

I'm not standing here to brag, or to say that I'm an expert. But I do believe that I have
encountered a ton of problems, and built solutions that a lot of mobile developers will
require.

My latest work has been around building cross-platform solutions with Xamarin using both
native and Xamarin.Forms. I have spent a lot of time narrowing down, what I believe are
the best approaches in building any cross-platform mobile application. Building good
architecture, structure, and a smooth user experience, whilst sharing as much code as
possible.

Enjoy.

What this book covers
Chapter 1, Building a Gallery Application, provides you a walkthrough for native
development with Xamarin by building an iOS and Android application that will read from
your local gallery files and display them into a UITableView and ListView.

Chapter 2, Build a SpeechTalk Application, provides you a walkthrough of Xamarin.Forms
development by building an iOS, Android and Windows Phone application that will use
platform speech services to talk text typed into a text field.

Chapter 3, Building a GPS Locator Application, shows you how to build a Xamarin.Forms
application that integrates native GPS location services and Google Maps APIs. We will
cover more content on IoC containers, the Xamarin.Forms.Maps library, and techniques for
C# async and background tasks.

Chapter 4, Building an Audio Player Application, in this chapter, we will integrate native
audio functions for processing a sound file using the AVFramework in iOS, and
MediaPlayer framework in Android.

Preface

[2]

Chapter 5, Building a Stocklist Application, in this chapter we look at detailing our XAML
interfaces using CustomRenderers, Styles, and ControlTemplates. We also build a simple
web service and setup a JSON feed for our mobile application.

Chapter 6, Building a Chat Application, in this chapter our user interface will move away
from MVVM design and follow a new paradigm called MVP (Model-View-Presenter). We
take another step further into the backend and set up a SignalR hub and client to simulate a
chat service, where data will be sent between the server and clients instantly as the
messages become available. Another key topic of focus is the project architecture, spending
time on separating the project into modules, and creating a nicely tiered structure that will
maximize code sharing across different platforms.

Chapter 7, Building a File Storage Application, in this chapter we walk through more
development using Xamarin.Forms. We look at Behaviors and their use with user
interfaces. We also build a custom layout using the Layout <View> framework and build
our first SQLite database for storing text files.

Chapter 8, Building a Camera Application, our last chapter, will introduce Effects and
Triggers. We learn how to apply them to user interfaces and use them with Styles. We also
build multiple complex CustomRenderers for native platform cameras, tinting images and
receiving touch events.

What you need for this book
Xamarin Studio

To install a copy of Xamarin Studio visit the following link:

h t t p s : / / w w w . x a m a r i n . c o m / d o w n l o a d

Building Windows Phone Applications

In order to build windows phone applications, you will need a computer with Windows,
Microsoft Visual Studio, and the Universal Windows Platform SDK installed.

Running solutions

You will also need an iOS, android and windows phone device for testing. If you don’t have
access to devices, you will have to install simulators for each platform.

https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download
https://www.xamarin.com/download

Preface

[3]

iOS

Simulators can be installed via XCode. If you haven’t got XCode installed, you will need to
install a fresh copy.

Android

Please install a copy of Geny Motion from the link below:

h t t p s : / / w w w . g e n y m o t i o n . c o m /

Windows Phone

The UWP SDK comes with simulators for Microsoft Visual Studio.

Who this book is for
If you are a mobile developer looking to create interesting and fully featured apps for
different platforms, then this book is the ideal solution for you. A basic knowledge of
Xamarin and C# programming is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Yes, it is
our AppDelegate file; notice the .cs on the end."

A block of code is set as follows:

 private void handleAssetsLoaded (object sender, EventArgs e)
 {
 _source.UpdateGalleryItems
(_imageHandler.CreateGalleryItems());
 _tableView.ReloadData ();
 }

https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/
https://www.genymotion.com/

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "To do so, we simply select
File | New | Solution and select an iOS Single View App."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / X a m a r i n - B l u e p r i n t s. We also have other code bundles from our rich catalog of
books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Building a Gallery Application

This chapter will walkthrough native development with Xamarin by building an iOS and
Android application that will read from your local gallery files, and display them in a
UITableView and ListView. The following topics will be covered in this chapter:

Expected knowledge:

Creating iOS provision certificates
iOS development
Objective-C
Creating keystores
Android development
Java

In this chapter you will learn the following:

Creating an iOS project
Creating a UIViewController and UITableView
Customizing a cell's appearance
Creating an Android project
Creating an XML interface and ListView
Shared projects
Custom row appearance
Bitmap functions
The ALAssetLibrary
Adding the iOS photo screen
Adding the Android photo screen

Building a Gallery Application

[8]

Create an iOS project
Let's begin our Xamarin journey; we will start by setting up our iOS project in Xamarin
Studio:

Start by opening Xamarin Studio and creating a new iOS project. To do so, we1.
simply select File | New | Solution and select an iOS Single View App; we
must also give it a name and add the bundle ID you want in order to run your
application.

It is recommended that for each project, a new bundle ID is created, along
with a developer provisioning profile for each project.

Now that we have created the iOS project, you will be taken to the following2.
screen:

Doesn't this look familiar? Yes, it is our AppDelegate file; notice the .cs on the end;
because we are using C#, all our code files will have this extension (no more .h or .m files).

Building a Gallery Application

[9]

Before we go any further, spend a few minutes moving around the IDE,
expanding the folders, and exploring the project structure; it is very
similar to an iOS project created in XCode.

Creating a UIViewController and
UITableView
Now that we have our new iOS project, we are going to start by creating a
UIViewController. Right-click on the project file, select Add | New File, and select
ViewController from the iOS menu selection in the left-hand box:

You will notice three files generated, a .xib, a .cs, and a .designer.cs file. We don't
need to worry about the third file; this is automatically generated based upon the other two
files.

Building a Gallery Application

[10]

Right-click on the project item and select Reveal in Finder,

This will bring up the finder where you will double-click on the GalleryCell.xib file; this
will bring up the user interface designer in XCode. You should see automated text inserted
into the document to help you get started.

Firstly, we must set our namespace accordingly, and import our libraries with using
statements. In order to use the iOS user interface elements, we must import the UIKit and
CoreGraphics libraries. Our class will inherit the UIViewController class in which we
will override the ViewDidLoad function:

namespace Gallery.iOS
{
 using System;
 using System.Collections.Generic;

 using CoreGraphics;
 using UIKit;

 public partial class MainController : UIViewController
 {
 private UITableView _tableView;

 private TableSource _source;

Building a Gallery Application

[11]

 private ImageHandler _imageHandler;

 public MainController () : base ("MainController", null)
 {
 _source = new TableSource ();

 _imageHandler = new ImageHandler ();
 _imageHandler.AssetsLoaded += handleAssetsLoaded;
 }

 private void handleAssetsLoaded (object sender, EventArgs e)
 {
 _source.UpdateGalleryItems
(_imageHandler.CreateGalleryItems());
 _tableView.ReloadData ();
 }

 public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();

 var width = View.Bounds.Width;
 var height = View.Bounds.Height;

 tableView = new UITableView(new CGRect(0, 0, width, height));
 tableView.AutoresizingMask = UIViewAutoresizing.All;
 tableView.Source = _source;

 Add (_tableView);
 }
 }
}

Our first UI element created is UITableView. This will be used to insert into the UIView of
the UIViewController, and we also retrieve width and height values of the UIView to
stretch the UITableView to fit the entire bounds of the UIViewController. We must also
call Add to insert the UITableView into the UIView. In order to fill the list with data, we
need to create a UITableSource to contain the list of items to be displayed in the list. We
will also need an object called GalleryModel; this will be the model of data to be displayed
in each cell.

Follow the previous process for adding two new .cs files; one will be used to create our
UITableSource class and the other for the GalleryModel class. In TableSource.cs, first
we must import the Foundation library with the using statement:

using Foundation;

Building a Gallery Application

[12]

Now for the rest of our class. Remember, we have to override specific functions for our
UITableSource to describe its behavior. It must also include a list for containing the item
view-models that will be used for the data displayed in each cell:

public class TableSource : UITableViewSource
 {
 protected List<GalleryItem> galleryItems;
 protected string cellIdentifier = "GalleryCell";

 public TableSource (string[] items)
 {
 galleryItems = new List<GalleryItem> ();
 }
 }

We must override the NumberOfSections function; in our case, it will always be one
because we are not having list sections:

 public override nint NumberOfSections (UITableView tableView)
 {
 return 1;
 }

To determine the number of list items, we return the count of the list:

 public override nint RowsInSection (UITableView tableview, nint
section)
 {
 return galleryItems.Count;
 }

Then we must add the GetCell function; this will be used to get the UITableViewCell to
render for a particular row. But before we do this, we need to create a custom
UITableViewCell.

Customizing a cell's appearance
We are now going to design our cells that will appear for every model found in the
TableSource class. Add a new .cs file for our custom UITableViewCell.

We are not going to use a .xib and simply build the user interface directly
in code using a single .cs file.

Building a Gallery Application

[13]

Now for the implementation:

public class GalleryCell: UITableViewCell
 {
 private UIImageView _imageView;

 private UILabel _titleLabel;

 private UILabel _dateLabel;

 public GalleryCell (string cellId) : base
(UITableViewCellStyle.Default, cellId)
 {
 SelectionStyle = UITableViewCellSelectionStyle.Gray;

 _imageView = new UIImageView()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 };

 _titleLabel = new UILabel ()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 };

 _dateLabel = new UILabel ()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 };

 ContentView.Add (imageView);
 ContentView.Add (titleLabel);
 ContentView.Add (dateLabel);
 }
 }

Our constructor must call the base constructor, as we need to initialize each cell with a cell
style and cell identifier. We then add a UIImageView and two UILabels for each cell, one
for the filename and one for the date. Finally, we add all three elements to the main content
view of the cell.

When we have our initializer, we add the following:

public void UpdateCell (GalleryItem gallery)
 {
 _imageView.Image = UIImage.LoadFromData (NSData.FromArray
(gallery.ImageData));
 _titleLabel.Text = gallery.Title;

Building a Gallery Application

[14]

 _dateLabel.Text = gallery.Date;
 }

 public override void LayoutSubviews ()
 {
 base.LayoutSubviews ();

 ContentView.TranslatesAutoresizingMaskIntoConstraints = false;

 // set layout constraints for main view
 AddConstraints
(NSLayoutConstraint.FromVisualFormat("V:|[imageView(100)]|",
NSLayoutFormatOptions.DirectionLeftToRight, null, new
NSDictionary("imageView", imageView)));
 AddConstraints
(NSLayoutConstraint.FromVisualFormat("V:|[titleLabel]|",
NSLayoutFormatOptions.DirectionLeftToRight, null, new
NSDictionary("titleLabel", titleLabel)));
 AddConstraints (NSLayoutConstraint.FromVisualFormat("H:|-10-
[imageView(100)]-10-[titleLabel]-10-|", NSLayoutFormatOptions.AlignAllTop,
null, new NSDictionary ("imageView", imageView, "titleLabel",
titleLabel)));
 AddConstraints (NSLayoutConstraint.FromVisualFormat("H:|-10-
[imageView(100)]-10-[dateLabel]-10-|", NSLayoutFormatOptions.AlignAllTop,
null, new NSDictionary ("imageView", imageView, "dateLabel", dateLabel)));
 }

Our first function, UpdateCell, simply adds the model data to the view, and our second
function overrides the LayoutSubViews method of the UITableViewCell class
(equivalent to the ViewDidLoad function of a UIViewController).

Now that we have our cell design, let's create the properties required for the view-model.
We only want to store data in our GalleryItem model, meaning we want to store images
as byte arrays. Let's create a property for the item model:

namespace Gallery.iOS
{
 using System;

 public class GalleryItem
 {
 public byte[] ImageData;

 public string ImageUri;

 public string Title;

Building a Gallery Application

[15]

 public string Date;

 public GalleryItem ()
 {
 }
 }
}

Now back to our TableSource class. The next step is to implement the GetCell function:

public override UITableViewCell GetCell (UITableView tableView, NSIndexPath
indexPath)
 {
 var cell = (GalleryCell)tableView.DequeueReusableCell
(CellIdentifier);
 var galleryItem = galleryItems[indexPath.Row];

 if (cell == null)
 {
 // we create a new cell if this row has not been created
yet
 cell = new GalleryCell (CellIdentifier);
 }

 cell.UpdateCell (galleryItem);

 return cell;
 }

Notice the cell reuse on the if statement; you should be familiar with this type of approach,
it is a common pattern for reusing cell views and is the same as the Objective-C
implementation (this is a very basic cell reuse implementation). We also call the
UpdateCell method to pass in the required GalleryItem data to show in the cell. Let's
also set a constant height for all cells. Add the following to your TableSource class:

public override nfloat GetHeightForRow (UITableView tableView, NSIndexPath
indexPath)
 {
 return 100;
 }

So what is next?

public override void ViewDidLoad ()
{
..
table.Source = new TableSource();
..

Building a Gallery Application

[16]

}

Let's stop development and have a look at what we have achieved so far. We have created
our first UIViewController, UITableView, UITableViewSource, and
UITableViewCell, and bound them all together. Fantastic!

We now need to access the local storage of the phone to pull out the required gallery items.
But before we do this, we are going to create an Android project and replicate what we have
done with iOS.

Creating an Android project
Our first step is to create new general Android app:

The first screen you will land on is MainActivity. This is our starting activity, which will
inflate the first user interface; take notice of the configuration attributes:

[Activity (Label = "Gallery.Droid", MainLauncher = true, Icon =
"@mipmap/icon")]

Building a Gallery Application

[17]

The MainLauncher flag indicates the starting activity; one activity must have this flag set to
true so the application knows what activity to load first. The icon property is used to set
the application icon, and the Label property is used to set the text of the application, which
appears in the top left of the navigation bar:

namespace Gallery.Droid
{
 using Android.App;
 using Android.Widget;
 using Android.OS;

 [Activity (Label = "Gallery.Droid", MainLauncher = true, Icon =
"@mipmap/icon")]
 public class MainActivity : Activity
 {
 int count = 1;

 protected override void OnCreate (Bundle savedInstanceState)
 {
 base.OnCreate (savedInstanceState);

 // Set our view from the "main" layout resource
 SetContentView (Resource.Layout.Main);
 }
 }
}

The formula for our activities is the same as Java; we must override the OnCreate method
for each activity where we will inflate the first XML interface Main.xml.

Creating an XML interface and ListView
Our starting point is the main.xml sheet; this is where we will be creating the ListView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ListView
 android:id="@+id/listView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_marginBottom="10dp"
 android:layout_marginTop="5dp"

www.allitebooks.com

http://www.allitebooks.org

Building a Gallery Application

[18]

 android:background="@android:color/transparent"
 android:cacheColorHint="@android:color/transparent"
 android:divider="#CCCCCC"
 android:dividerHeight="1dp"
 android:paddingLeft="2dp" />
</LinearLayout>

The main.xml file should already be in the resource | layout directory, so
simply copy and paste the previous code into this file.

Excellent! We now have our starting activity and interface, so now we have to create a
ListAdapter for our ListView. An adapter works very much like a UITableSource,
where we must override functions to determine cell data, row design, and the number of
items in the list.

Xamarin Studio also has an Android GUI designer.

Right-click on the Android project and add a new empty class file for our adapter class. Our
class must inherit the BaseAdapter class, and we are going to override the following
functions:

public override long GetItemId(int position);

public override View GetView(int position, View convertView, ViewGroup
parent);

Before we go any further, we need to create a model for the objects used to contain the data
to be presented in each row. In our iOS project, we created a GalleryItem to hold the byte
array of image data used to create each UIImage. We have two approaches here: we could
create another object to do the same as the GalleryItem, or even better, why don't we
reuse this object using a shared project?

Building a Gallery Application

[19]

Shared projects
We are going to delve into our first technique for sharing code between different platforms.
This is what Xamarin wants us to achieve, and reuse as much code as possible. The biggest
disadvantage when developing natively is two different language, and we can't reuse
anything.

Let's create our first shared project:

Building a Gallery Application

[20]

Our shared project will be used to contain the GalleryItem model, so whatever code we
include in this shared project can be accessed by both the iOS and Android projects:

In the preceding screenshot, have a look at the Solution explorer, and notice how the
shared project doesn't contain anything more than .cs code sheets. Shared projects do not
have any references or components, just code that is shared by all platform projects. When
our native projects reference these shared projects, any libraries being referenced via using
statements come from the native projects.

Now we must have the iOS and Android projects reference the shared project; right-click on
the References folder and select Edit References:

Building a Gallery Application

[21]

Select the shared project you just created and we can now reference the GalleryItem
object from both projects.

Custom row appearance
Let's get back to the ListAdapter implementation and design our ListView row
appearance. Open the Resources | Layout folder, create a new .xml file for the cell
appearance, call it CustomCell.xml, and copy in the following XML code:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:weightSum="4">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"

Building a Gallery Application

[22]

 android:layout_height="match_parent"
 android:layout_weight="1">
 <ImageView
 android:id="@+id/image"
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:adjustViewBounds="true" />
 </LinearLayout>
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="3"
 android:weightSum="2">
 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1" />
 <TextView
 android:id="@+id/date"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1" />
 </LinearLayout>
</LinearLayout>

We are creating the same layout as the custom cell made for iOS, but in Android we will use
the ImageView and TextView objects. Now that we have our custom cell, we can
implement the the GetView function. The GetView function is exactly like the GetCell
function in the preceding UITableSource implementation. Open up the ListAdapter.cs
file and continue with the list adapter implementation:

public class ListAdapter : BaseAdapter
 {
 private List<GalleryItem> _items;
 private Activity _context;

 public ListAdapter(Activity context) : base()
 {
 _context = context;
 _items = new List<GalleryItem>();
 }

 public override Java.Lang.Object GetItem (int position)
 {
 return null;

Building a Gallery Application

[23]

 }

 public override long GetItemId(int position)
 {
 return position;
 }

 public override int Count
 {
 get
 {
 return items.Count;
 }
 }
}

We override the Count property and functions GetItemId and GetItem, to return the
number of gallery items in our list. These override functions are exactly the same as the
overrides in Java for any BaseAdapter inherited class. Now for the GetView function:

public override View GetView(int position, View convertView, ViewGroup
parent)
 {
 View view = convertView; // re-use an existing view, if one is
available

 if (view == null)
 {
 // otherwise create a new one
 view =
context.LayoutInflater.Inflate(Resource.Layout.CustomCell, null);
 }

 // set image
 var imageView = view.FindViewById<ImageView>
(Resource.Id.image);
 BitmapHelpers.CreateBitmap (imageView, _items
[position].ImageData);

 // set labels
 var titleTextView = view.FindViewById<TextView>
(Resource.Id.title);
 titleTextView.Text = _items[position].Title;
 var dateTextView = view.FindViewById<TextView>
(Resource.Id.date);
 dateTextView.Text = _items[position].Date;

 return view;

Building a Gallery Application

[24]

 }

 private async void createBitmap(ImageView imageView, byte[]
imageData)
 {
 try
 {
 if (imageData != null)
 {
 var bm = await
BitmapFactory.DecodeByteArrayAsync(imageData, 0, imageData.Length);
 if (bm != null)
 {
 imageView.SetImageBitmap(bm);
 }
 }
 }
 catch (Exception e)
 {
 Console.WriteLine ("Bitmap creation failed: " + e);
 }
 }

Notice in the GetView function we are using the CustomCell layout for each row; we also
have a private method for creating our bitmaps from each model's byte array.

If we have a look at the current implementation, what do we notice here?

We are creating a bitmap every time the cell requires this data again for the view; is this
efficient? No, we should be reusing bitmaps and memory as much as possible.

This tends to be a common issue with Android ListView.

What is the most memory efficient way to reuse bitmaps across hundreds of items in a
ListView while scrolling and staying smooth as we move down the list at various speeds?
How can we tackle this problem? Let's have a look at how we can approach this problem.

Firstly, we need to implement an object called ImageHandler. This will contain the logic
for retrieving byte arrays from all gallery images on an Android device. Create a new file,
name it ImageHandler, and start importing these namespaces:

namespace Gallery.Droid
{
 using System;
 using System.Collections.Generic;

 using Android.Database;

Building a Gallery Application

[25]

 using Android.Content;
 using Android.Provider;

 using Gallery.Shared;

 public static class ImageHandler
 {
 }
}

This class will include a function, GetFiles, which will create gallery items based upon the
items pulled from any device's gallery using the ContentResolver interface:

public static IEnumerable<GalleryItem> GetFiles(Context context)
 {
 ContentResolver cr = context.ContentResolver;

 string[] columns = new string[]
 {
 MediaStore.Images.ImageColumns.Id,
 MediaStore.Images.ImageColumns.Title,
 MediaStore.Images.ImageColumns.Data,
 MediaStore.Images.ImageColumns.DateAdded,
 MediaStore.Images.ImageColumns.MimeType,
 MediaStore.Images.ImageColumns.Size,
 };
 var cursor =
cr.Query(MediaStore.Images.Media.ExternalContentUri, columns, null, null,
null);

 int columnIndex = cursor.GetColumnIndex(columns[2]);

 int index = 0;

 // create max 100 items
 while (cursor.MoveToNext () && index < 100)
 {
 index++;

 var url = cursor.GetString(columnIndex);

 var imageData = createCompressedImageDataFromBitmap (url);

 yield return new GalleryItem ()
 {
 Title = cursor.GetString(1),
 Date = cursor.GetString(3),
 ImageData = imageData,

Building a Gallery Application

[26]

 ImageUri = url,
 };
 }
 }

Using ContentResolver (used to access the content model), we resolve URIs to specific
content providers. A content provider provides queries to content, in our case image files.
We simply create an access query off the main context's ContentResolver instance, and
we provide an array of columns for the query to retrieve (for example, file titles, file data,
file size, and so on). The first parameter is as follows:

"MediaStore.Images.Media.ExternalContentUri"

This is used for retrieving the URI to each piece of content returned from the query. Finally,
we now have a cursor to iterate through, exactly like an Enumerable, which will loop to the
end until there are no more items, and for each iteration we pull the data and URI columns
and create a new GalleryItem. You will notice a little trick here with the yield keyword:
if we call this function, it will actually return the entire Enumerable from start to finish.
Calling the function starts for each-ing over the object; the function is called again until it
yields. In the return from calling this function, we get an Enumerable of all the items
retrieved from the query as gallery items with image information and local URI.

Bitmap functions
What about the byte data? First, let's implement our BitmapHelpers; these will include
two global functions to help with bitmap processing:

public static int CalculateInSampleSize(BitmapFactory.Options options, int
reqWidth, int reqHeight)
 {
 // Raw height and width of image
 float height = options.OutHeight;
 float width = options.OutWidth;
 double inSampleSize = 1D;

 if (height > reqHeight || width > reqWidth)
 {
 int halfHeight = (int)(height / 2);
 int halfWidth = (int)(width / 2);

 // Calculate a inSampleSize that is a power of 2 - the
decoder will use a value that is a power of two anyway.
 while ((halfHeight / inSampleSize) > reqHeight &&
(halfWidth / inSampleSize) > reqWidth)

Building a Gallery Application

[27]

 {
 inSampleSize *= 2;
 }
 }

 return (int)inSampleSize;
 }

 public static async void CreateBitmap(ImageView imageView, byte[]
imageData)
 {
 try
 {
 if (imageData != null)
 {
 var bm = await
BitmapFactory.DecodeByteArrayAsync(imageData, 0, imageData.Length);
 if (bm != null)
 {
 imageView.SetImageBitmap(bm);
 }
 }
 }
 catch (Exception e)
 {
 Console.WriteLine ("Bitmap creation failed: " + e);
 }
 }

Our first function will determine the best sample size by the requested width and height.
This is a very good technique for reducing the resources required to load an image into
memory. Our next function is used to create a bitmap for the ImageView that is passed in
from the byte data.

The next step is to create this image data using the private method
createCompressedImageDataFromBitmap:

private static byte[] createCompressedImageDataFromBitmap(string url)
 {
 BitmapFactory.Options options = new BitmapFactory.Options ();
 options.InJustDecodeBounds = true;
 BitmapFactory.DecodeFile (url, options);
 options.InSampleSize = BitmapHelpers.CalculateInSampleSize
(options, 1600, 1200);
 options.InJustDecodeBounds = false;

 Bitmap bm = BitmapFactory.DecodeFile (url, options);

Building a Gallery Application

[28]

 var stream = new MemoryStream ();
 bm.Compress (Bitmap.CompressFormat.Jpeg, 80, stream);
 return stream.ToArray ();
 }

This method will take the image URI and decode the bitmap options in order to sample the
smallest possible size for the dimensions provided.

We have to make sure that we flag InJustDecodeBounds so this bitmap is not loaded into
memory while we are retrieving the options information. This approach is very useful for
reducing images to the size we require, thus saving memory. We then compress the image
by 80% into a JPEG and convert the stream into a byte array for our GalleryItem model.

Now let's go back to the adapter class and add this method to fill in the items of our
ListAdapter:

public ListAdapter(Activity context) : base()
 {
 _context = context;
 _items = new List<GalleryItem>();

 foreach (var galleryitem in ImageHandler.GetFiles (_context))
 {
 _items.Add (galleryitem);
 }
 }

Remember we must have a reference in our list adapter to the main
context.

Now for the final piece of the puzzle, connecting the adapter to our list view. Open up the
MainActivity.cs file and update the code list like so:

public class MainActivity : Activity
 {
 private ListAdapter _adapter;

 protected override void OnCreate (Bundle savedInstanceState)
 {
 base.OnCreate (savedInstanceState);

 SetContentView (Resource.Layout.Main);

 _adapter = new ListAdapter (this);

Building a Gallery Application

[29]

 var listView = FindViewById<ListView> (Resource.Id.listView);
 listView.Adapter = adapter;
 }
 }

And voila! Try running the application and watching the ListView update with the images
in your device's Gallery folder. Congratulations! You have just developed your first
Xamarin.Android application. Now we must replicate this approach for the iOS version.

Notice the challenge with context switching when jumping back and forth
between Android and iOS; it can get confusing. Luckily, with Xamarin we
keep to just one programming language, which helps reduce the
complexity.

The ALAssetLibrary
Jumping back into our iOS, we are going to use the ALAssetsLibrary class and call the
Enumerate function by passing in the group type ALAssetsGroupType.SavedPhoto, the
enumeration result delegate GroupEnumerator, and the error action that will be performed
if an exception occurs.

Start by adding in a new .cs file for our iOS image handler:

We are not going to use a static class with this object.

namespace Gallery.iOS
{
 using System;
 using System.Threading;

 using UIKit;
 using AssetsLibrary;
 using Foundation;

 /// <summary>
 /// Image handler.
 /// </summary>
 public class ImageHandler
 {
 /// <summary>
 /// The asset library.

Building a Gallery Application

[30]

 /// </summary>
 ALAssetsLibrary _assetLibrary;

 /// <summary>
 /// Initializes a new instance of the <see
cref="Gallery.iOS.ImageHandler"/> class.
 /// </summary>
 public ImageHandler ()
 {
 _assetLibrary = new ALAssetsLibrary();
 _assetLibrary.Enumerate(ALAssetsGroupType.SavedPhotos,
GroupEnumerator, Console.WriteLine);
 }
 }
}

In our constructor, we create the new instance of the ALAssetsLibrary and call the
Enumerate function; now let's add the GroupEnumerator delegate:

private void GroupEnumerator(ALAssetsGroup assetGroup, ref bool shouldStop)
 {
 if (assetGroup == null)
 {
 shouldStop = true;
 NotifyAssetsLoaded ();

 return;
 }

 if (!shouldStop)
 {
 assetGroup.Enumerate(AssetEnumerator);
 shouldStop = false;
 }
 }

 private void AssetEnumerator(ALAsset asset, nint index, ref bool
shouldStop)
 {
 if (asset == null)
 {
 shouldStop = true;
 return;
 }

 if (!shouldStop)
 {
 // add asset name to list

Building a Gallery Application

[31]

 _assets.Add (asset.ToString());
 shouldStop = false;
 }
 }

 private void NotifyAssetsLoaded()
 {
 if (AssetsLoaded != null)
 {
 AssetsLoaded (this, EventArgs.Empty);
 }
 }

Notice the call to notify our event handler. This signals we have reached the end of the
asset library, and we have retrieved all ALAsset in our gallery. We can now pull out a list
of the file names, so we need to add another function that will pull out the ALAsset object
synchronously:

public ALAsset SynchronousGetAsset(string filename)
 {
 ManualResetEvent waiter = new ManualResetEvent(false);
 NSError error = null;
 ALAsset result = null;
 Exception exception;

 ThreadPool.QueueUserWorkItem ((object state) =>
assetLibrary.AssetForUrl (new NSUrl (filename), (ALAsset asset) =>
 {
 result = asset;
 waiter.Set ();
 },
 e =>
 {
 error = e;
 waiter.Set ();
 }));

 if(!waiter.WaitOne (TimeSpan.FromSeconds (10)))
 throw new Exception("Error Getting Asset : Timeout,
Asset=" + filename);

 if (error != null)
 throw new Exception (error.Description);

 return result;
 }

Building a Gallery Application

[32]

Finally, we need a public function that will pull all the byte arrays and NSURL into an
Enumerable of gallery items that we will use to populate the UITableView.

As this is only a demo, we are only going to take the first 100 items. If you
would like another challenge, remove Take(100), and see if you can
adjust the code to load thousands of images more efficiently.

foreach (var file in _assets.Take(100))
 {
 using (var asset = SynchronousGetAsset (file))
 {
 if (asset != null)
 {
 var thumbnail = asset.Thumbnail;
 var image = UIImage.FromImage (thumbnail);
 var jpegData = image.AsJPEG ().ToArray ();

 yield return new GalleryItem ()
 {
 Title = file,
 Date = asset.Date.ToString(),
 ImageData = jpegData,
 ImageUri = asset.AssetUrl.ToString ()
 };
 }
 }
 }
 }

Let's look a bit more closely at this function. We use the asset library object to pull out all
the filenames we have in our gallery, then for each filename we pull out the ALAsset object,
and from this we create a GalleryItem object for each, which takes the image data as a
byte array from the ALAsset and the NSURL of the asset. Now let's create an instance of the
ImageHandler inside our TableSource:

 private ImageHandler _imageHandler;

 public TableSource (string[] items)
 {
 _galleryItems = new List<GalleryItem> ();
 _imageHandler = new ImageHandler ();

 foreach (var galleryItem in imageHandler.GetFiles ())
 {
 _galleryItems.Add (galleryItem);

Building a Gallery Application

[33]

 }
 }

Excellent! Now we have our gallery items ready to display inside the table.

For the final piece of the iOS project, let's go back to our AppDelegate.cs file. We still need
to implement the FinishedLaunching method. Our root controller is going to be a
UINavigationController, which will use the MainController as the starting
UIViewController:

public override bool FinishedLaunching (UIApplication application,
NSDictionary launchOptions)
 {
 _window = new UIWindow (UIScreen.MainScreen.Bounds);

 MainController mainController = new MainController();

 var rootNavigationController = new UINavigationController();
 rootNavigationController.PushViewController(mainController,
false);

 _window.RootViewController = rootNavigationController;
 _window.MakeKeyAndVisible ();

 return true;
 }

We also adjust the window bounds the main screen bounds and call the function on the
window at the very end of MakeKeyAndVisible.

Adding the iOS photo screen
Now that we have our list page, we want to add another UIViewController for
displaying selected photos. Let's add a new UIViewController and call it
PhotoController. In PhotoController, we are going to build a screen that simply
displays the same content in the PhotoCell, but a bit larger.

Building a Gallery Application

[34]

First, let's add the navigation flow from MainController to PhotoController. We are
going to be pushing a new PhotoController whenever a row is selected. Open up
TableSource.cs and add the following; at the top, we need to add an EventHandler:

public event EventHandler<GalleryItem>
 ItemSelected;

Whenever the row is selected we want to fire this event:

public override void RowSelected (UITableView tableView, NSIndexPath
indexPath)
 {
 if (ItemSelected != null)
 {
 ItemSelected (this, galleryItems[indexPath.Row]);
 }

 tableView.DeselectRow (indexPath, true);
 }

Whenever the row is selected, we want to fire this event and pass the gallery item for the
index path row. Now we need to handle this event in the MainController class to push a
new PhotoController on the navigation stack, but before we do this we need to
implement PhotoController:

public partial class PhotoController : UIViewController
 {
 /// <summary>
 /// The image view.
 /// </summary>
 private UIImageView _imageView;

 /// <summary>
 /// The title label.
 /// </summary>
 private UILabel _titleLabel;

 /// <summary>
 /// The date label.
 /// </summary>
 private UILabel _dateLabel;

 /// <summary>
 /// Initializes a new instance of the <see
cref="Gallery.iOS.PhotoController"/> class.
 /// </summary>
 public PhotoController (ALAsset asset) : base ("PhotoController",

Building a Gallery Application

[35]

null)
 {
 _imageView = new UIImageView()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 ContentMode = UIViewContentMode.ScaleAspectFit
 };

 _titleLabel = new UILabel ()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 };

 _dateLabel = new UILabel ()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 };

 _imageView.Image = new
UIImage(asset.DefaultRepresentation.GetFullScreenImage ());
 _titleLabel.Text = asset.DefaultRepresentation.Filename;
 _dateLabel.Text = asset.Date.ToString();
 }

This is very similar to our GalleryCell presentation, but this controller will stack the
elements vertically and force the image to scale to fit, keeping the image's correct ratio to
avoid any warping. Now let's add ViewDidLoad to lay out the views:

public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();

 View.Add (_imageView);
 View.Add (_titleLabel);
 View.Add (_dateLabel);

 // set layout constraints for main view
 View.AddConstraints
(NSLayoutConstraint.FromVisualFormat("V:|[imageView]-10-
[titleLabel(50)]-10-[dateLabel(50)]|",
NSLayoutFormatOptions.DirectionLeftToRight, null, new
NSDictionary("imageView", imageView, "titleLabel", titleLabel, "dateLabel",
dateLabel)));

 View.AddConstraints
(NSLayoutConstraint.FromVisualFormat("H:|[imageView]|",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("imageView",
imageView)));

Building a Gallery Application

[36]

 View.AddConstraints
(NSLayoutConstraint.FromVisualFormat("H:|[titleLabel]|",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("titleLabel",
titleLabel)));
 View.AddConstraints
(NSLayoutConstraint.FromVisualFormat("H:|[dateLabel]|",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("dateLabel",
dateLabel)));
 }

There's nothing new here; we are simply adding the three elements and setting our layout
constraints accordingly. We stretch all elements to the entire width of the view and stack
elements down the pages with the image view on top and a dynamic size based upon the
aspect size of the image.

Finally, the last step is to add the event handler whenever a row is selected. We
use ImageHandler to fetch ALAsset by the title (filename) in the gallery item, then pass
this into the constructor of a new PhotoController and update the constructor
of MainController:

 public MainController () : base ("MainController", null)
 {
 _source = new TableSource ();

 _source.ItemSelected += (sender, e) =>
 {
 var asset = _imageHandler.SynchronousGetAsset (e.Title);
 NavigationController.PushViewController (new
PhotoController (asset), true);
 };

 _imageHandler = new ImageHandler ();
 _imageHandler.AssetsLoaded += handleAssetsLoaded;
 }

Excellent! Now run the application and try selecting a few items in the list; you will be
navigated to a new PhotoController which will display the selected ALAsset image with
its filename and date information.

Building a Gallery Application

[37]

Adding the Android photo screen
Implementing a photo view for cell selections is very similar, although with Android we
will be using an intent to create a new activity, which in turn will inflate a new view to
display the image and details. Let's start by adding a new XML called photo_view.xml,
and paste in the following code:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:weightSum="4">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1">
 <ImageView
 android:id="@+id/image_photo"
 android:scaleType="centerCrop"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:adjustViewBounds="true" />
 </LinearLayout>
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="3"
 android:weightSum="2">
 <TextView
 android:id="@+id/title_photo"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1" />
 <TextView
 android:id="@+id/date_photo"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1" />
 </LinearLayout>
</LinearLayout>

www.allitebooks.com

http://www.allitebooks.org

Building a Gallery Application

[38]

The layout is very much the same as the custom_cell.xml sheet, although we are going to
stack items vertically and set the following two properties to keep the correct image aspect
ratio:

android:adjustViewBounds="true"
android:scaleType="centerCrop"

Make sure XML sheets do not contain the same IDs as any other XML
sheet.

Now that we have our user interface for the PhotoActivity, let's add the new activity:

[Activity (Label = "Gallery.Droid", Icon = "@mipmap/icon")]
 public class PhotoActivity : Activity
 {
 /// <summary>
 /// Raises the create event.
 /// </summary>
 /// <param name="savedInstanceState">Saved instance state.</param>
 protected override void OnCreate (Bundle savedInstanceState)
 {
 base.OnCreate (savedInstanceState);

 // Set our view from the "main" layout resource
 SetContentView (Resource.Layout.Photo);

 var imageData = Intent.GetByteArrayExtra ("ImageData");
 var title = Intent.GetStringExtra ("Title") ?? string.Empty;
 var date = Intent.GetStringExtra ("Date") ?? string.Empty;

 // set image
 var imageView = FindViewById<ImageView>
(Resource.Id.image_photo);
 BitmapHelpers.CreateBitmap (imageView, imageData);

 // set labels
 var titleTextView = FindViewById<TextView>
(Resource.Id.title_photo);
 titleTextView.Text = title;
 var dateTextView = FindViewById<TextView>
(Resource.Id.date_photo);
 dateTextView.Text = date;
 }
 }

Building a Gallery Application

[39]

Looking at this new activity, what can we see? Notice the attributes at the top:

[Activity (Label = "Gallery.Droid", Icon = "@mipmap/icon")]

There is no MainLauncher tag because this is not our starting activity. We then add the
intent.GetExtras for the image data and strings required to display on our Photo
interface.

Now we need to make one addition to the ListAdapter class:

public GalleryItem GetItemByPosition (int position)
{
 return _items[position];
}

When an item in the list is selected, we need to be able to access the selected GalleryItem.
Our next step is to add the ItemClick delegate for the ListView. Open up the
MainActivity class and add the following to the OnCreate function:

listView.ItemClick += (object sender, AdapterView.ItemClickEventArgs e) =>
 {
 var galleryItem = adapter.GetItemByPosition (e.Position);
 var photoActivity = new Intent(this,
typeof(PhotoActivity));
 photoActivity.PutExtra ("ImageData",
galleryItem.ImageData);
 photoActivity.PutExtra ("Title", galleryItem.Title);
 photoActivity.PutExtra ("Date", galleryItem.Date);
 StartActivity(photoActivity);
 };

Place this after we set the list adapter. When an item is clicked, we simply pull out the
gallery item from our adapter by the position passed from the ItemClickEventArgs. Once
we have the gallery item, we create the new PhotoActivity intent and pass the extras.

That is all; run the application and play around selecting cells to display the
PhotoActivity.

Building a Gallery Application

[40]

Summary
In this chapter, we built a gallery application on both iOS and Android using native
development with Xamarin. We learnt how to setup projects in Xamarin Studio and code
using the native frameworks in C#. In the next chapter, we will build a text to speech service
using Xamarin.Forms.

Try improving on this code and make this function asynchronous; the more background
processing we have at this stage, the better. These are the small improvements we should
take time with, as combining all these small additions can create a real difference to the
speed of your application.

As this is only a demo, we are only going to take the first 100 items. If you would like
another challenge, remove Take(100), and see if you can adjust the code to load thousands
of images more efficiently.

2
Building a SpeechTalk

Application
In this chapter, we introduce development with Xamarin.Forms. We will build a cross-
platform application for iOS, Android, and Windows Phone that integrates native platform
speech services to speak text typed from a text field.

Expected knowledge:

Microsoft Visual Studio.

In this chapter, you will learn the following:

Cross-platform development with Xamarin.Forms
Setting up platform projects
Setting up a SpeechTalk.iOS project
Setting up a SpeechTalk.Droid project
Xamarin.Forms, Windows Phone, and Visual Studio
Inversion of Control (IoC) with Xamarin.Forms
AutoFac
iOS text-to-speech implementation
Bindings
Android text-to-speech implementation
Setting up IoC with Android
WinPhone text-to-speech implementation
IoC with Windows Phone
Platform-independent styling

Building a SpeechTalk Application

[42]

Cross-platform development with
Xamarin.Forms
The key ingredient in cross-platform development with Xamarin is code sharing. Sharing
native code is great, but we still have the issue of writing separate user interface code for
each platform. The Windows Presentation Framework (WPF) is a presentation system
which uses an XML-based language known as Extensible Application Markup Language
(XAML). Xamarin.Forms uses WPF and the Model-View-View-Model (MVVM) paradigm
to build native user interfaces from a single C# shared code base, whilst maintaining access
to all native APIs on each platform.

Building a SpeechTalk Application

[43]

The preceding diagram represents a native architecture. We keep all the sharable code
Inside the Shared C# App Logic block (normally a shared project) for each platform project
to access, i.e. the GalleryItem class would be kept here since it is shared between both
projects.

So how would this look in Xamarin.Forms?
Using Xamarin.Forms, since we have the ability to share the user interface screens, we can
share the entire view and view model code between all platforms:

In the preceding diagram, the code contained in the Shared C# App Logic block is
contained in a Portable Class Library (PCL), which each native project will import.
Xamarin.Forms makes it possible to share up to 85% of code.

Let's now delve into development and setup our first Xamarin.Forms project.

Building a SpeechTalk Application

[44]

Setting up platform projects
In Xamarin Studio, let's start by setting up the platform projects. Go to File | New Solution
and select a Xamarin.Forms app from the cross-platform menu on the left:

Once the project is created, you will see both an iOS and Android project created along with
a PCL.

Unfortunately, we can't develop our Windows Phone applications through
Xamarin Studio; we will be touching on this after the iOS and Android
projects.

Let's create our first ContentPage in XAML, right-click on the PCL, create a new XAML
ContentPage, and call it MainPage:

Building a SpeechTalk Application

[45]

Xamarin.Forms provides the option to build user interfaces entirely in C#, but it is
recommended you stick with XAML because it is a very powerful markup language. The
code required for a XAML sheet is much smaller than a user interface in C#.

We also want to create a new folder called Pages and add MainPage to this folder.

Our first element on the page is a Grid. A Grid separates a layout by rows and columns
based upon the entire size of the screen. Rows work from top to bottom and columns work
from left to right; copy the following into the MainPage.xaml sheet:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="SpeechTalk.Pages.MainPage">

 <ContentPage.Content>

 <Grid x:Name="Grid" RowSpacing="0" Padding="10, 10, 10, 10" >
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>

Building a SpeechTalk Application

[46]

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 </Grid>

 </ContentPage.Content>

</ContentPage>

At the top we have an XML description tag exactly like Android, which specifies an
encoding and a version. We have the declaration of a ContentPage with the XML
namespace specification attribute xmlns. We then specify the class name and add the
ContentPage.Content tags, where we will create the page layout. All these XML tags are
generated automatically; the only change we made was the namespace of the class:

x:Class="SpeechTalk.Pages.MainPage"

The Grid inserted between the ContentPage.Content tags has three rows and three
columns. Each row definition is assigned Auto, meaning the height of the row is based on
the element assigned to it. Since we have three rows assigned with Auto, the Grid will only
fill the height of the contained elements (similar to the wrap_content flag in android). The
Grid will take up the entire width of the page as its one column definition is set to “*”,
meaning it will stretch one column to the entire width of the page. We have our basic page
layout, so let's leave it there and move back into the project structure.

In SpeechTalk.PCL, we have a file called SpeechTalk.cs; we should rename this App.cs
to match the class name. In the App.cs, this is the application starting point. In the
constructor of the application class, you will see a MainPage property automatically set like
so:

public App ()
 {
 // The root page of your application
 MainPage = new ContentPage {
 Content = new StackLayout {
 VerticalOptions = LayoutOptions.Center,
 Children = {
 new Label {
 XAlign = TextAlignment.Center,
 Text = "Welcome to Xamarin Forms!"
 }
 }
 }

Building a SpeechTalk Application

[47]

 };
 }

So what is happening here?
When the project is created, we automatically receive an App class with the MainPage
property set to a new ContentPage. The preceding code block is an example of an interface
built entirely via c-sharp. We want to replace this with an instantiation of our MainPage,
and set this new object to the MainPage property of the App class.
Here is the updated constructor:

public App ()
 {
 MainPage = new MainPage ();
 }

It's much cleaner, you can already see how messy the code would look like if we were to
build complex user interfaces in C#.

Setting up the SpeechTalk.iOS project
Let's also have a look at the project setup on the native side for iOS and Android. Open the
AppDelegate.cs file; it should look like this:

 [Register ("AppDelegate")]
 public partial class AppDelegate :
global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate
 {
 public override bool FinishedLaunching (UIApplication app,
NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init ();

 LoadApplication (new App ());

 return base.FinishedLaunching (app, options);
 }
 }

Have a look at the super class:

global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate

Building a SpeechTalk Application

[48]

Since Xamarin.Forms 1.3.1 and the updated unified API, all our app delegate should be
inheriting is Xamarin.Forms.Platform.iOS.FormsApplicationDelegate. We also
have the standard FinishedLaunching function; in here we must call Forms.Init which
will initialize Xamarin.Forms, and then call LoadApplication with a new instantiation of
the App class. We then return the base class FinishedLaunching function, passing in the
app and options objects.

You can see that this FinishedLaunching function is an override of the standard app
delegate function.

We must initialize forms before anything else occurs in this function.

Let's run the iOS application and see what happens:

Fantastic, a blank application. That means we have now successfully run our first iOS
Xamarin.Forms project.

Building a SpeechTalk Application

[49]

Setting up the SpeechTalk.Droid project
Let's do the same for Android and set up Xamarin.Forms accordingly. Inside our Android
project, open the MainActivity.cs class and look at the OnCreate function:

[Activity (Label = "SpeechTalk.Droid", Icon = "@drawable/icon",
MainLauncher = true, ConfigurationChanges = ConfigChanges.ScreenSize |
ConfigChanges.Orientation)]
 public class MainActivity :
global::Xamarin.Forms.Platform.Android.FormsApplicationActivity
 {
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 global::Xamarin.Forms.Forms.Init (this, bundle);

 LoadApplication (new App ());
 }
 }

The MainActivity class must
inherit Xamarin.Forms.Platform.Android.FormsApplicationActivity; we must call
the super class OnCreate method before we initialize Xamarin.Forms and load in our new
instantiated app class. That's all, we can now run the Android application and see the exact
same results, a blank page. Congratulations, you have just shared your first
Xamarin.Forms interface.

Xamarin.Forms, Windows Phone, and Visual
Studio
Now let's look at sharing our MainPage interface with Windows Phone.

Not everyone will extend an app onto Windows Phone, so if you are not
interested in creating a Windows Phone example you can skip this part.

We are going to be using Microsoft Visual Studio, so open it up and open the SpeechTalk
solution file (SpeechTalk.sln) we created in Xamarin Studio. Portability between the two
IDEs is very good; watch the solution port directly into Visual Studio and open your PCL
file without any issues.

Building a SpeechTalk Application

[50]

Create a GIT repository to help control the continuous change between
Xamarin Studio and Visual Studio, we recommend creating a GIT
repository for every chapter.

The iOS and Android projects may not be compatible as we created these in Xamarin
Studio.

You can build iOS and Android applications directly in Visual Studio, but
running iOS applications will require a mac build host.

Now it's time to create a new Windows Phone project:

Unfortunately, the automated setup done with iOS and Android will not be done with the
Windows Phone project. All the setup will be done manually, but this is good for walking
you through the manual setup.

Building a SpeechTalk Application

[51]

We import the Xamarin.Forms nuget package:

Now its time to look at the MainPage.xaml and MainPage.xaml.cs files in the Windows
Phone project.

Wait a minute, haven't we already made one of these?

Now that you are preparing a Windows Phone project, we can see the original WPF
structure used in Xamarin.Forms.

Open up MainPage.xaml and paste in the following:

<forms:WindowsPhonePage
 x:Class="SpeechTalk.WinPhone.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:SpeechTalk.WinPhone"
 xmlns:forms="using:Xamarin.Forms.Platform.WinRT"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

Building a SpeechTalk Application

[52]

 mc:Ignorable="d"
 Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid>
 </Grid>
</forms:WindowsPhonePage>

If any lines get underlined, just ignore them; this is an issue in Visual
Studio.

What can we see here?
Yes, this is XAML. Windows apps are all built using the WPF framework. We create the
Xamarin.Forms element forms:WindowsPhonePage. Open the MainPage.xaml.cs in the
Windows Phone project and update the constructor:

public sealed partial class MainPage
{
 public MainPage()
 {
 InitializeComponent();

 NavigationCacheMode = NavigationCacheMode.Required;
 LoadApplication(new SpeechTalk.App());
 }
}

Project setup is quite simple, but we are not calling Forms.Init anywhere. Open up the
App.xaml.cs file in the Windows Phone project and look for this block of code:

if (rootFrame == null)
{
 // Create a Frame to act as the navigation context and navigate to the
first page
 rootFrame = new Frame();

 // TODO: change this value to a cache size that is appropriate for your
application
 rootFrame.CacheSize = 1;

 Xamarin.Forms.Forms.Init(e);

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {

Building a SpeechTalk Application

[53]

 // TODO: Load state from previously suspended application
 }

 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
}

We must manually add this line:

Xamarin.Forms.Forms.Init(e);

Set the cache size to 1:

rootFrame.CacheSize = 1;

Finally, we now need to reference the SpeechTalk PCL project we created in Xamarin
Studio earlier:

Building a SpeechTalk Application

[54]

You may run into issues with referencing this project to the targets set by the PCL by
default:

To fix this issue, open the SpeechTalk PCL project and update the target configurations in
Properties:

Building a SpeechTalk Application

[55]

Click on the Change button where it says Targets and make sure the preceding checkboxes
are selected. That's everything; try building and running the application. We should see a
blank page like the Android and iOS projects. Gerat we have now made a cross-platform
application for all platforms.

Now let's get into the fun stuff with IoC.

Inversion of Control (IoC) with
Xamarin.Forms
The Inversion of Control (IoC) principle is very a useful technique when writing cross-
platform applications.

Building a SpeechTalk Application

[56]

So why should we use it?
Sharing 100% of the code would be great, but it is not entirely possible; we still require
some implementation from platform-specific features (for example different platform
services, hardware, cameras). A way to tackle this problem is via an IoC container. Using
the IoC principle, we use an abstraction for the functionality in our shared code and pass an
implementation of the abstraction into our shared code. Our IoC containers handle the
instantiation of an object's dependency tree. We can register objects to their inherited
interfaces and allow containers to pass registered objects as their abstracted interfaces all
the way down the dependency tree (all the way to PCL).

So how do we benefit from this?
What if I needed view models to call methods to a native Bluetooth service in a PCL
project?

To put it simply, we can't. Our PCL projects know nothing about Bluetooth services on the
native side. We create an interface that sits in the PCL project, create a class that inherits this
interface, and define the methods and access all the native features required. We then
register this class to the inherited interface through our IoC container, and finally resolve
this abstracted interface in our PCL project. When we call functions from this interface
down in the PCL, it will be calling the registered class function definitions described on the
native side:

Building a SpeechTalk Application

[57]

Now back to our SpeechTalk application. Because the PCL project cannot share code from
the native side text-to-speech services, we will have to use IoC to access the native-side
features from our PCL. Let's start by declaring an interface for our text to speech service,
creating a new folder called Services, and adding a new ITextToSpeech.cs file for the
interface:

public interface ITextToSpeech
 {
 void Speak (string msg)
 }

Autofac
Before we begin implementing the different native sides to this interface, let's first add in
our IoC container to handle the abstraction. There are a few IoC containers that are free
online; for this example we are going to use Autofac. Let's add the NuGet packages for the
PCL, iOS, and Android projects:

Building a SpeechTalk Application

[58]

Now that we have our IoC container, let's build the iOS implementation. For each platform,
we want to create objects called Modules for registering abstracted interfaces. Let's add a
new folder called IoC to the PCL project and add a new file called IoC.cs:

public static class IoC
 {
 public static IContainer Container { get; private set; }

 private static ContainerBuilder builder;

 public static void CreateContainer()
 {
 builder = new ContainerBuilder();
 }

 public static void StartContainer()
 {
 Container = builder.Build();
 }

 public static void RegisterModule(IModule module)
 {
 module.Register (builder);
 }

 public static void RegisterModules(IEnumerable<IModule> modules)
 {
 foreach (var module in modules)
 {
 module.Register (builder);
 }
 }

 public static T Resolve<T>()
 {
 return Container.Resolve<T> ();
 }
 }

Looking at this closer, we use this static class for registering modules, registering types,
resolving registered types, creating the container, and building the container.

The ContainerBuilder must be built after all types have been registered.

Building a SpeechTalk Application

[59]

We must register and start this container before we initialize the application. Open up your
AppDelegate.cs file and update the FinishedLaunching function:

 public override bool FinishedLaunching (UIApplication app,
NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init ();

 InitIoC ();

 LoadApplication (new App ());

 return base.FinishedLaunching (app, options);
 }

 private void InitIoC()
 {
 IoC.CreateContainer ();
 IoC.RegisterModule (new IOSModule());
 IoC.RegisterModule (new PCLModule());
 IoC.StartContainer ();
 }

The InitIoC function will first create the container, register the modules, and build the IoC
container.

Our container must be created before we can start registering, and our
container builder must be built before we can start resolving.

Each module has register functions that will use the created ContainerBuilder to register
types.

iOS text-to-speech implementation
Each module will retrieve the current container used throughout the entire lifetime of your
application. Inside the register function is where we register the class implementation of the
text to speech interface. This will be done at the very start of the application before we load
anything else.

Building a SpeechTalk Application

[60]

Let's start first with adding the iOS module. Add a new folder in the iOS project called
Modules, create a new file called iOSModule.cs, and paste in the following:

 public class IOSModule : IModule
 {
 public void Register(ContainerBuilder builer)
 {
 builer.RegisterType<TextToSpeech> ().As<ITextToSpeech>
().SingleInstance ();
 }
 }

The next step is to add the iOS text to speech service. Add a new folder called Services
and add a new file called TextToSpeech.cs. In this file, we are going to access the iOS
AVSpeechSynthesizer:

public class TextToSpeech : ITextToSpeech
 {
 public void Speak (string msg)
 {
 var speechSynthesizer = new AVSpeechSynthesizer ();

 var speechUtterance = new AVSpeechUtterance (msg)
 {
 Rate = AVSpeechUtterance.MaximumSpeechRate / 4,
 Voice = AVSpeechSynthesisVoice.FromLanguage ("en-US"),
 Volume = 0.5f,
 PitchMultiplier = 1.0f
 };

 speechSynthesizer.SpeakUtterance (speechUtterance);
 }
 }

Looking closely at this class, we are going to use the speech synthesizer to produce a
SpeechUtterrance object, which contains the text to speak. We also set the language,
volume, and speech rate.

Notice how we inherit the interface we are going to register through the
IoC container?
As we are coding this class on the native side, we are able to access all
native iOS features, so back in the PCL when we call the function Speak in
the interface, the preceding code will execute.

Building a SpeechTalk Application

[61]

Our next step is to implement the view model principles for our pages. Create a new folder
called ViewModels and add two new files, ViewModelBase.cs and
MainPageViewModel.cs. The ViewModelBase class will be the base call for all view
models for handling property change events with any view model's properties:

public abstract class ViewModelBase : INotifyPropertyChanged
 {
 #region Public Events

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion

 #region Methods

 protected virtual void OnPropertyChanged([CallerMemberName] string
propertyName = null)
 {
 PropertyChangedEventHandler handler = this.PropertyChanged;

 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 #endregion
 }

Let's look a bit closer. The first property defined is PropertyChanged EventHandler,
which will fire on any property data change. Notice the use of the # define statements; these
are useful for breaking up blocks of coding and navigating through your code sheets.

These are particularly useful when we have big code sheets.

The class inherits the INotifyPropertyChanged interface, meaning we have to define the
OnPropertyChanged function. This function is used to fire the PropertyChanged event
to signal that a property within this class has changed data. Now let's implement the
MainPageViewModel.

How do we use the OnPropertyChanged principle with our MainPageViewModel?

Building a SpeechTalk Application

[62]

With each property in the MainPageViewModel, we have to call the OnPropertyChanged
function to fire the EventHandler, thus notifying of a data change for a particular
property. Let's begin by creating the MainPageViewModel with its private properties and
constructor:

public class MainPageViewModel : ViewModelBase
 {
 #region Private Properties

 private readonly ITextToSpeech _textToSpeech;

 private string _descriptionMessage = "Enter text and press the
'Speak' button to start speaking";

 private string _speakEntryPlaceholder = "Text to speak";

 private string _speakText = string.Empty;

 private string _speakTitle = "Speak";

 private ICommand _speakCommand;

 #endregion

 #region Constructors

 public MainPageViewModel (ITextToSpeech textToSpeech)
 {
 _textToSpeech = textToSpeech;

 _speakCommand = new Command ((c) => _textToSpeech.Speak
(this.SpeakText));
 }

 #endregion
 }

This is the first time we are going to access the Systems.Windows.Input library.
Commands are used for our Button object on the ContentPage; we will set up a binding
on the button so whenever a press event occurs, this command will execute, running the
action it is assigned in the constructor. Notice how we are passing the TextToSpeech
interface; this is where things will get trickier with the IoC container.

Building a SpeechTalk Application

[63]

Now we add the public properties of the view model, which call the OnPropertyChanged
function:

#region Public Properties

 public string DescriptionMessage
 {
 get
 {
 return _descriptionMessage;
 }

 set
 {
 if (value.Equals(_descriptionMessage))
 {
 return;
 }

 _descriptionMessage = value;
 OnPropertyChanged("DescriptionMessage");
 }
 }

 public string SpeakEntryPlaceholder
 {
 get
 {
 return _speakEntryPlaceholder;
 }

 set
 {
 if (value.Equals(_speakEntryPlaceholder))
 {
 return;
 }

 _speakEntryPlaceholder = value;
 OnPropertyChanged("SpeakEntryPlaceholder");
 }
 }

 public string SpeakText
 {
 get
 {
 return _speakText;

Building a SpeechTalk Application

[64]

 }

 set
 {
 if (value.Equals(_speakText))
 {
 return;
 }

 _speakText = value;
 OnPropertyChanged("SpeakText");
 }
 }

 public string SpeakTitle
 {
 get
 {
 return _speakTitle;
 }

 set
 {
 if (value.Equals(_speakTitle))
 {
 return;
 }

 _speakTitle = value;
 OnPropertyChanged("SpeakTitle");
 }
 }

 public ICommand SpeakCommand
 {
 get
 {
 return _speakCommand;
 }

 set
 {
 if (value.Equals(_speakCommand))
 {
 return;
 }

 _speakCommand = value;

Building a SpeechTalk Application

[65]

 OnPropertyChanged("SpeakCommand");
 }
 }

 #endregion

That's it! We have our first view model. Notice the get and set methods for each property;
they are exactly the same as functions, just with a nicer presentation. Every time we retrieve
the data inside a public property, it will pull the data contained in the private property,
and every time we set the public property, if the value is different to the current value, we
will set the private variable contained and call the OnPropertyChanged function to fire
the EventHandler in the base class. When this event fires, it will update whatever view is
bound to it.

Bindings
Back in the PCL project, we are going to run through the concept of binding view models to
views, displaying view model data, and propagating data changes through the
INotifyPropertyChanged interface.

Let's begin with our MainPage.cs and complete the rest of the user interface for this page:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="SpeechTalk.Pages.MainPage"
 BackgroundColor="White">

 <ContentPage.Content>

 <Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10"
VerticalOptions="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Label x:Name="DesciptionLabel" Font="Arial, 20" Grid.Row="0"
Grid.Column="0"/>

Building a SpeechTalk Application

[66]

 <Entry x:Name="SpeakEntry" Grid.Row="1" Grid.Column="0"/>

 <Button x:Name="SpeakButton" Grid.Row="2" Grid.Column="0"/>
 </Grid>

 </ContentPage.Content>

</ContentPage>

We now have a Label, Entry, and Button; each has the x:Name, Grid.Row, and
Grid.Column properties assigned.

Notice how we relate the rows and columns to the definitions section previously?

We have also set, on the bounding Grid, padding values for left, up, right, and down; set
the vertical options to Center; and set a row spacing of 10. The Padding will place gaps
around the entire bounds of the Grid and the ContentPage.

Padding works exactly like margins in HTML.

The RowSpacing property will set the gaps between each row; as each element is placed in
a new row, they will be stacked vertically with a pixel spacing of 10 between each. Since we
only have 1 column, this column width will take up the entire width of the Grid, so each
element will be at the full width of the Grid.

Finally, setting the VerticalOptions of the Grid to Center will position all elements to
the center of the Grid. Now let's set up the binding between the MainPage and
MainPageViewModel.

Create a new file, add it to the modules folder called PCLModule.cs, and paste in the
following:

 public class PCLModule : IModule
 {
 public void Register(ContainerBuilder builer)
 {
 builer.RegisterType<MainPageViewModel> ().SingleInstance();
 builer.RegisterType<MainPage> ().SingleInstance();
 }
 }

Hold on… why are we registering our pages and view models in the container?

Building a SpeechTalk Application

[67]

We don't need to abstract these.

Registering both views and view models in the container allows us to add our related view
models in the constructor; as we only ever need one instance of both the view and view
model throughout the entire lifetime of the application, we can set up the
MainPage.xaml.cs file like this:

public partial class MainPage : ContentPage
 {
 public MainPage ()
 {
 InitializeComponent ();
 }

 public MainPage (MainPageViewModel model)
 {
 BindingContext = model;
 InitializeComponent ();
 }
 }

The instance of the MainPageViewModel that was created in the container when registered
will be pulled out of the MainPage constructor on creation. This is the same technique used
with the instance of the MainPageViewModel, where we place the ITextToSpeech
abstraction in the constructor; it will pull out the instance registered on the native side, and
in turn we can now use this object to start calling the functions that will run the native-
side code.

Now back to the MainPage.xaml sheet, let's set up the property bindings; update the label,
entry, and button to the following:

<Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
Font="Arial, 20" Grid.Row="0" Grid.Column="0"/>

<Entry x:Name="SpeakEntry" Placeholder="{Binding SpeakEntryPlaceholder}"
Text="{Binding SpeakText, Mode=TwoWay}" Grid.Row="1" Grid.Column="0"/>

<Button x:Name="SpeakButton" Text="{Binding SpeakTitle}" Command="{Binding
SpeakCommand}" Grid.Row="2" Grid.Column="0"/>

We have set up bindings for the text on the label and entry properties; notice the two-way
binding mode set on the entry text property?

Building a SpeechTalk Application

[68]

What this means is if we change the data from the user interface (as it is a text box, will we
will be changing the data on the UI front) or the view model, both endpoints will receive
the data change accordingly. We have also set up a binding with the command on the
button; now, whenever we press this button on the page, it will run the action assigned to it
in the view model.

Now that all the coding is done, let's run the application; try typing in text and pressing the
Speak button and have a listen:

Well done! You have just completed your first iOS Xamarin.Forms application.

For some extra exercises, try changing the properties of volume and speech on the
SpeechUtterance object for iOS.

Android text-to-speech implementation
Now let's implement the IoC container and text to speech for Android. Start by creating a
folder for the both the Android Modules and Services, add in two files to it,
TextToSpeechDroid.cs and DroidModule.cs.

Building a SpeechTalk Application

[69]

Let's start with the text to speech service; for TextToSpeechDroid.cs. And add the
following:

public class TextToSpeechDroid : Java.Lang.Object, ITextToSpeech,
Android.Speech.Tts.TextToSpeech.IOnInitListener
 {
 private Android.Speech.Tts.TextToSpeech _speaker;

 private string _toSpeak;

 public void Speak (string msg)
 {
 var ctx = Forms.Context;
 _toSpeak = msg;

 if (_speaker == null)
 {
 _speaker = new Android.Speech.Tts.TextToSpeech (ctx, this);
 }
 else
 {
 var p = new Dictionary<string,string> ();
 speaker.Speak (_toSpeak, QueueMode.Flush, p);
 }
 }

 #region TextToSpeech.IOnInitListener implementation

 public void OnInit (OperationResult status)
 {
 if (status.Equals (OperationResult.Success))
 {
 var p = new Dictionary<string,string> ();
 _speaker.Speak (_toSpeak, QueueMode.Flush, p);
 }
 }

 #endregion
 }

This IOnInitListener interface requires the OnInit function to be implemented. The
OnInit function is called to signal the completion of the TextToSpeech engine
initialization. We then implement the interface's function Speak to speak the text passed in.
At the start of the function, we check to see that a new TextToSpeech object has been
initialized; if we have then speak the message.

Building a SpeechTalk Application

[70]

Setting up IoC with Android
Now for the IoC implementation. It works exactly the same as iOS; let's add the Android
module:

 public class DroidModule : IModule
 {
 public void Register(ContainerBuilder builer)
 {
 builer.RegisterType<TextToSpeechDroid> ().As<ITextToSpeech>
().SingleInstance ();
 }
 }

Easy, right?

Now we have to set up the IoC container in our MainActivity.cs class; simply copy the
iOS function in the AppDelegate file called initIoC and paste this into the MainActivity
class, replace the instantiation of the iOSModule with your DroidModule, then simply add
the function call after the initialization of Xamarin.Forms:

protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 global::Xamarin.Forms.Forms.Init (this, bundle);

 InitIoC ();

 LoadApplication (new App ());
 }

 private void InitIoC()
 {
 IoC.CreateContainer ();
 IoC.RegisterModule (new DroidModule());
 IoC.RegisterModule (new PCLModule());
 IoC.StartContainer ();
 }

You may have issues trying to get the speech to work on Android. One
thing you may need to set up first is within Settings | Controls | Text-to-
Speech options. Here is where you will have to install voice data if the
default has not already been installed. If you run the app and no speech
occurs, you will have to configure the voice data.

Building a SpeechTalk Application

[71]

That's all for Android, now try running the app and hear some speech.

WinPhone text-to-speech implementation
Now we go back to Windows Phone for the last implementation. See how tricky it can be
when you have to switch between multiple platforms. Imagine if we had to change
languages and re-write IoC containers; the amount of work would be much greater. Not
only that, there would be no point in using IoC, because we cannot share any code.

So firstly, don't forget to import the nuget package for Autofac:

Now that we have access to the Autofac framework, let's continue implementing the text to
speech service. Start with adding a new folder called Services, then add the
TextToSpeechWinPhone.cs file and implement it:

public class TextToSpeechWinPhone : ITextToSpeech
 {

Building a SpeechTalk Application

[72]

 public async void Speak(string text)
 {
 MediaElement mediaElement = new MediaElement ();

 var synth = new Windows.Media.SpeechSynthesis.
SpeechSynthesizer ();

 SpeechSynthesisStream stream = await
synth.SynthesizeTextToStreamAsync(text);

 mediaElement.SetSource(stream, stream.ContentType);
 mediaElement.Play();
 }
 }

Looking at this more closely, you can see the instantiation of MediaElement; this is used to
play an audio source. Our source in this case is SpeechSynthesisStream; this stream is
built via a speech synthesizer. When we call the function
SynthesizeTextToStreamAsync, it will be an audio stream based on the text inserted into
this function. We then set the MediaElement source to the stream and call the Play
function to begin speaking. One addition to configuring Windows Phone is checking the
capability in the app manifest file.

IoC with Windows Phone
Implementing IoC with Windows Phone is very much the same as iOS and Android. We
simply add the same function, InitIoC, at our application's starting point; in this case, it is
the MainPage constructor of the Windows Phone project (try not to get the two confused),
and we call it right before the LoadApplication function:

public MainPage()
 {
 InitializeComponent();

 InitIoC();

 NavigationCacheMode = NavigationCacheMode.Required;
 LoadApplication(new SpeechTalk.App());
 }

 private void InitIoC()
 {
 IoC.CreateContainer();
 IoC.RegisterModule(new WinPhoneModule ());

Building a SpeechTalk Application

[73]

 IoC.RegisterModule(new PCLModule ());
 IoC.StartContainer();
 }

Simple! Now we can run the Windows application.

Platform independent styling
Hold on! What has happened with the MainPage—no button, no text?

What is happening here is we have not specified colors for these elements, so the default
color of the text has come up as white. Open up MainPage.xaml and change the text colors
accordingly:

<Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
TextColor="Black" Font="Arial, 20" Grid.Row="0" Grid.Column="0"/>

<Button x:Name="SpeakButton" Text="{Binding SpeakTitle}" TextColor="Blue"
Command="{Binding SpeakCommand}" Grid.Row="2" Grid.Column="0"/>

It might be a good idea to color the background of the Entry object as well, so we can see
the text definition:

<Entry x:Name="SpeakEntry" Placeholder="{Binding SpeakEntryPlaceholder}"
BackgroundColor="Silver" Text="{Binding SpeakText, Mode=TwoWay}"
Grid.Row="1" Grid.Column="0"/>

Now run it again and see the text, button, and entry background display.

But wait! What if we don't want these colors to change for iOS and Android, or we want to
set these colors differently based on the platform?

Here is another trick to try: in the MainPage.xaml sheet, we are going to change the
background color of the entry based upon whether it is iOS, Android, or Windows Phone:

<Entry x:Name="SpeakEntry" Placeholder="{Binding SpeakEntryPlaceholder}"
Text="{Binding SpeakText, Mode=TwoWay}" Grid.Row="1" Grid.Column="0">
 <Entry.BackgroundColor>
 <OnPlatform x:TypeArguments="Color"
 Android="White"
 WinPhone="Silver"
 iOS="White">
 </OnPlatform>
 </Entry.BackgroundColor>
 </Entry>

Building a SpeechTalk Application

[74]

We start by specifying the property tag we are changing, and then a tag for OnPlatform in
which we specify the argument type, which is Color. Let's take it a step further and change
the text colors for the Button and Label as well:

<Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
Font="Arial, 20" Grid.Row="0" Grid.Column="0">
 <Label.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Black"
 WinPhone="Black"
 iOS="Black">
 </OnPlatform>
 </Label.TextColor>
 </Label>

 <Button x:Name="SpeakButton" Text="{Binding SpeakTitle}"
Command="{Binding SpeakCommand}" Grid.Row="2" Grid.Column="0">
 <Button.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Navy"
 WinPhone="Blue"
 iOS="Navy">
 </OnPlatform>
 </Button.TextColor>
 </Button>

This is a nice little variation between styles for the first page. As you build more complex
XAML sheets, you may find some areas where you will have to change pixel items, change
color, and perform other styling to give it that extra edge.

Let's call it a day and end this project here; it's now time to build our GPS locator.

Summary
In this chapter, we learned how to create a text to speech service using Xamarin.Forms. We
have learned about native speech service libraries for each platform. In the next chapter, we
will learn how to handle background location update events and using latitude and
longitude to calculate positions. You will also learn how to implement location services on
each platform by using Xamarin.Forms and Xamarin.Forms.Maps.

3
Building a GPS Locator

Application
In this chapter, we will delve deeper into code sharing. We will build a Xamarin.Forms
application that integrates native GPS location services and Google Maps APIs. We will
cover more content on IoC containers, the Xamarin.Forms.Maps library, and techniques
for c-sharp async and background tasks.

Expected knowledge:

Web services
JSON
Google Maps
Google Geocoding APIs (it helps to have a Google Developer account)

In this chapter, you will learn the following:

Core location and GPS
Navigation with Xamarin.Forms
Google Maps integration
Integrating Google Maps with Xamarin.Forms.Maps
Reactive extensions
Core location with iOS and the CLLocationManager Library
Android and the LocationManager
Creating our Windows project
Core location services with Windows Phone
The Application class

Building a GPS Locator Application

[76]

Web services and data contracts
Integrating with a Google APIs
Creating the Geocoding web service controller
Newtonsoft.Json and Microsoft HTTP client libraries
ModernHttpClient and client message handlers
Feeding JSON data into the IObservable framework more reactive extensions
Resource (RESX) files
Using the Geocoding web server controller
OnNavigatedTo and OnShow
Pythagoras equirectangular projection

Core location and GPS
All mobile phone platforms have access to core location services. These services are
background tasks that run in the background and update the latitude and longitude values
at certain intervals indefinitely until the service is stopped. 99% of smart phones come with
a built-in GPS tracker, allowing you to integrate these latitude and longitude values with
your application.

Project setup
Let's jump straight into project setup and create a new Xamarin.Forms application. We are
going to start by setting up an IoC container with Autofac, exactly the same as the previous
project, import Autofac into all three projects (PCL, Android, and iOS). We can reuse a lot
of the PCL code from the IoC container implementation in the previous project.

The more apps you build, the more problems you solve; why reinvent the
wheel over and over? Eventually, when you have built multiple
applications, future apps will be built mostly from piecing parts of
different projects together.

Copy in the IoC, Pages, and ViewModels folders, and let's start building our MainPage:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Locator.Pages.MainPage"
 BackgroundColor="White"
 Title="Welcome">

Building a GPS Locator Application

[77]

 <ContentPage.Content>

 <Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10"
VerticalOptions="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Image x:Name="Image" Source="map.png" HeightRequest="120"
WidthRequest="120"
 Grid.Row="0" Grid.Column="0"/>

 <Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
HorizontalOptions="Center" Font="Arial, 20" Grid.Row="1" Grid.Column="0">
 <Label.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Black"
 WinPhone="Black"
 iOS="Black">
 </OnPlatform>
 </Label.TextColor>
 </Label>

 <Button x:Name="LocationButton" Text="{Binding LocationTitle}"
Command="{Binding LocationCommand}" BackgroundColor="Silver" Grid.Row="2"
Grid.Column="0">
 <Button.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Navy"
 WinPhone="Blue"
 iOS="Black">
 </OnPlatform>
 </Button.TextColor>
 </Button>

 <Button x:Name="ExitButton" Text="{Binding ExitTitle}"
Command="{Binding ExitCommand}" BackgroundColor="Silver" Grid.Row="3"
Grid.Column="0">
 <Button.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Navy"

Building a GPS Locator Application

[78]

 WinPhone="Blue"
 iOS="Black">
 </OnPlatform>
 </Button.TextColor>
 </Button>
 </Grid>

 </ContentPage.Content>

</ContentPage>

This is very much the same as the previous MainPage, but this time we are adding two
Buttons, a Label, and an Image.

Before reading any further, have a look at the properties bounded to each
element. See if you can build the properties for the view model.

Navigation with Xamarin.Forms
Before we start building any view models we are going to build our navigation system.
Xamarin.Forms comes complete with navigation control for all platforms, so you won't
have to worry about it. But as we always like to do things the hard way, we are going to
show you a technique to separate our cross-platform structure a little more, in order to keep
things more modular. Using one PCL project to contain both view models and views is
great, but what if we could separate our views from view models into two PCL projects?

Why would we do this?
One small issue we have with the current PCL is that it relies completely on
Xamarin.Forms. Only our XAML sheets and user interfaces rely on Xamarin.Forms; our
view models do not. Then let's move the view models from the Xamarin.Forms PCL into
an even lower-level PCL project that only relies on c-sharp libraries.

Building a GPS Locator Application

[79]

This is a good technique to keep the PCL projects completely separated. Developing a
modular system is advantageous when it comes to code sharing. For example, we are
building a new app that requires a login screen, a list view screen, and other similar screens
most apps include. As we already have the view models that handle all the web services,
JSON processing, and property bindings, do we really need to change much? Now that we
have a low-level project that simply has the view models, let's just extract the ones we need,
design our user interfaces for the view models, and bind them together. Not only can we
reuse these view models for other apps, but if we wanted to develop an entirely separated
application (for example, a WPF application), we can just compare the required screens,
take the related view models, create new user interfaces, and bind them together. Keeping
everything completely separated allows for complete plug-and-play capability, which will
dramatically decrease the development time required to build similar applications.

Let's approach this pattern by creating a new PCL project and copying in the view models;
call it Locator.Portable:

We also want to copy over the IoC folder as well.

Building a GPS Locator Application

[80]

Building the navigation control
Our first step is to create a folder called enum, add the PageNames.cs file, and copy in the
following:

public enum PageNames
{
 MainPage,

 MapPage
}

Now let's add a new folder called UI and create a new file called
INavigationService.cs:

public interface INavigationService
{
 Task Navigate(PageNames pageName);
}

Then we create a new folder in the Xamarin.Forms PCL (Locator) project called UI, and
create a new file called NavigationService.cs. The NavigationService class will
inherit the INavigationService interface:

 public class NavigationService : INavigationService
 {
 #region INavigationService implementation

 public async Task Navigate (PageNames pageName)
 {
 }

 #endregion
 }

Simple, right? Navigate will be used whenever we want the stack to navigate to a page. In
making an abstracted interface, as we have done for navigation, this allows us to control
navigation way down in the lower-level PCL. Now, fill in the rest:

 public async Task Navigate (PageNames pageName, IDictionary<string,
object> navigationParameters)
 {
 var page = GetPage (pageName);

 if (page != null)
 {
 var navigablePage = page as INavigableXamarinFormsPage;

Building a GPS Locator Application

[81]

 if (navigablePage != null)
 {
 await IoC.Resolve<NavigationPage> ().PushAsync (page);
 navigablePage.OnNavigatedTo (navigationParameters);
 }
 }
 }

 private Page GetPage(PageNames page)
 {
 switch(page)
 {
 case PageNames.MainPage:
 return IoC.Resolve<MainPage> ();
 case PageNames.MapPage:
 return IoC.Resolve<MapPage> ();
 default:
 return null;
 }
 }

Firstly, look more closely at the private function GetPage; this will be called every time the
Navigate function is called to retrieve the correct ContentPage object (which is registered
in the IoC container) based upon the PageName enum passed to it, and if we have found the
correct page, push it onto the navigation stack.

Finally, let's build our new XamFormsModule for registering the pages and navigation
service:

public void Register(ContainerBuilder builer)
 {
 builer.RegisterType<MainPage> ().SingleInstance();
 builer.RegisterType<MapPage> ().SingleInstance();

 builer.Register (x => new
NavigationPage(x.Resolve<MainPage>())).AsSelf().SingleInstance();

 builer.RegisterType<NavigationService>
().As<INavigationService>().SingleInstance();
 }

We are registering one navigation page throughout the entire life of the application, and we
set the starting page to the one main page item we registered before.

Building a GPS Locator Application

[82]

Now open up the App.cs file and update it accordingly:

public App ()
 {
 MainPage = IoC.Resolve<NavigationPage> ();
 }

Making sense now?

IoC is a very powerful pattern for cross-platform applications.

View model navigation
Now let's get back to our MainPageViewModel and update and modify the previous
chapter's MainPageViewModel with the properties required for the data-bindings on
MainPage.xaml shown previously. Firstly, let's implement the private properties:

public class MainPageViewModel : ViewModelBase
 {
 #region Private Properties
 private readonly IMethods _methods;

 private string _descriptionMessage = "Find your location";

 private string _locationTitle = "Find Location";

 private string _exitTitle = "Exit";

 private ICommand _locationCommand;

 private ICommand _exitCommand;

 #endregion

}

Now for the Public properties:

#region Public Properties

 public string DescriptionMessage
 {
 get
 {
 return _descriptionMessage;
 }

Building a GPS Locator Application

[83]

 set
 {
 if (value.Equals(_descriptionMessage))
 {
 return;
 }

 _descriptionMessage = value;
 OnPropertyChanged("DescriptionMessage");
 }
 }

 public string LocationTitle
 {
 get
 {
 return _locationTitle;
 }

 set
 {
 if (value.Equals(_locationTitle))
 {
 return;
 }

 _locationTitle = value;
 OnPropertyChanged("LocationTitle");
 }
 }

 public string ExitTitle
 {
 get
 {
 return _exitTitle;
 }

 set
 {
 if (value.Equals(_exitTitle))
 {
 return;
 }

 _exitTitle = value;
 OnPropertyChanged("ExitTitle");
 }

Building a GPS Locator Application

[84]

 }

 public ICommand LocationCommand
 {
 get
 {
 return _locationCommand;
 }

 set
 {
 if (value.Equals(_locationCommand))
 {
 return;
 }

 _locationCommand = value;
 OnPropertyChanged("LocationCommand");
 }
 }

 public ICommand ExitCommand
 {
 get
 {
 return _exitCommand;
 }

 set
 {
 if (value.Equals(_exitCommand))
 {
 return;
 }

 _exitCommand = value;
 OnPropertyChanged("ExitCommand");
 }
 }

 #endregion

Are we starting to see the same pattern here?

Now add the constructor, which is going to use the navigation service interface that we
abstracted earlier through the IoC container:

 #region Constructors

Building a GPS Locator Application

[85]

 public MainPageViewModel (INavigationService navigation) : base
(navigation)
 {

 }

 #endregion

Now it's time to show you another trick using the IoC container. In our constructor, we
need to be able to create a new Command object from the Xamarin.Forms library. We are
lucky here, because since commands from Xamarin.Forms inherit the ICommand interface
from System.Windows.Input, we are able to register this object in the IoC container. Open
up XamFormsModule.cs and update the Register function to include the following:

builer.RegisterType<Xamarin.Forms.Command>
().As<ICommand>().InstancePerDependency();

Take note that we are registering this type as an
InstancePerDependency because we want an independent instance
every time we create a command in the view model constructors.

Now let's create a new command through the constructor of MainPageViewModel; update
the constructor like this:

 #region Constructors

 public MainPageViewModel (INavigationService navigation,
Func<Action, ICommand> commandFactory) : base (navigation)
 {
 _locationCommand = commandFactory (() =>
Navigation.Navigate(PageNames.MapPage));
 }

 #endregion

In the constructor, we are pulling a Func out of the IoC container, which takes an Action
and returns an ICommand object, because we have registered this interface to a
Xamarin.FormsCommand object, we will be left with a new Command with the action passed
in the constructor as follows:

 locationCommand = commandFactory (() =>
Navigation.Navigate(PageNames.MapPage));

Building a GPS Locator Application

[86]

This is exactly the same as doing this if we were using the Xamarin.Forms library:

 locationCommand = new Command (() =>
Navigation.Navigate(PageNames.MapPage));

Now we have a new Command set with and Action to push a new MapPage onto the stack
when the button is pressed:

 public class PortableModule : IModule
 {
 public void Register(ContainerBuilder builer)
 {
 builer.RegisterType<MainPageViewModel> ().SingleInstance();
 }
 }

Now to register our new view model with the IoC container. Create a new folder called
Modules for the portable IoC module. Create a new file called PortableModule.cs and
paste in the preceding code into it.

Integrating Google Maps using
Xamarin.Forms.Maps
Our next step is to implement the MapPage; this page will show a panel that will display
Google Maps. Underneath this panel, we will also display the location information
(latitude, longitude, address, and so on) retrieved from our native platform core location
services. To access these native services, we need to import Xamarin.Forms.Maps:

Building a GPS Locator Application

[87]

Now that we have imported the Xamarin.Forms.Maps library, we can access the native
Google Maps services. We can now create the Map user interface element via
MapPage.xaml:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:maps="clr-
namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps"
 x:Class="Locator.Pages.MapPage"
 BackgroundColor="White"
 Title="Map">

 <ContentPage.Content>

 <Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="80"/>
 <RowDefinition Height="60"/>
 <RowDefinition Height="60"/>
 </Grid.RowDefinitions>

www.allitebooks.com

http://www.allitebooks.org

Building a GPS Locator Application

[88]

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <maps:Map x:Name="MapView" IsShowingUser="true" Grid.Row="0"
Grid.Column="0"/>

 <Label x:Name="AddressLabel" Text="{Binding Address}"
TextColor="Black" Grid.Row="1" Grid.Column="0"/>

 <Button x:Name="GeolocationButton" Text="{Binding
GeolocationButtonTitle}"
 Command="{Binding GeolocationCommand}" Grid.Row="2"
Grid.Column="0"/>

 <Button x:Name="NearestAddressButton" Text="Find Nearest
Address"
 Command="{Binding NearestAddressCommand}" Grid.Row="3"
Grid.Column="0"/>
 </Grid>

 </ContentPage.Content>

</ContentPage>

See at the top how we imported the Xamarin.Forms.Maps library?

We have created four rows in the Grid, one for the Map (this will cover most of the screen),
one for a label that will display the address, and two buttons for starting/stopping location
updates and finding the closest location out of a list of addresses.

So where does the address come from?

We now need to implement the core location service; this is a background service that will
send position information based upon your location. The information returned is very
detailed; we can depict exact longitude and latitude values, as well as addresses.

Core location services can drain device battery life, so when using core
location, we must manage the usage and turn it on and off when required.
As this is a background service, when the app is placed in the background,
the location service will still be running.

To begin our core location implementation, we are going to create an abstracted geolocation
interface called IGeolocator, but first we are going to add another library for processing our
location updates.

Building a GPS Locator Application

[89]

Reactive Extensions
If you haven't heard of the RX framework before, you are about to enter a never-ending
rabbit hole of asynchrony. RX gives developers the ability to use LINQ-style query
operations for processing objects in observable sequences. It allows for full control over
event-based operations between different elements of an application.

In our project, we are going to use a Subject for handling location events received on the
native side. In cross-platform development, because we work in both PCL and native-level
projects, it involves passing data and events up and down the project structure.

We could use the event framework, which is standard in c-sharp, but instead we are going
to use a Subject to push events into an observable sequence, while we subscribe to the
subject at a lower level to receive and handle these events.

Let's start by importing the Reactive Extensions interface in our native and PCL projects:

Building a GPS Locator Application

[90]

Now let's create our IGeolocator class:

 public interface IGeolocator
 {
 Subject<IPosition> Positions { get; set; }

 void Start();

 void Stop();
 }

Notice the interface IPosition? We must also create a new interface, which is going to
store all the location information:

public interface IPosition
 {
 double Latitude {get; set;}

 double Longitude {get; set;}
 }

The interface is designed to return these variables to be used for the Xamarin.Forms
geolocator, so we can pull down address information. This information is returned
by CLLocationManager with every position update.

Why do we need to create an interface for the position information?

As this information comes from different native services, we want to create our own object
to contain the information we need in the lower-level projects.

Core location with iOS and the
CLLocationManager library
CLLocationManager is used for the delivery of location and heading events; we must use
this object in our Geolocator implementation, so let's begin:

 public class GeolocatorIOS : IGeolocator
 {
 public Subject<IPosition> Positions { get; set; }
 }

From our interface, we must include the Subject. Now let's
instantiate CLLocationManager. First, we must import the CoreLocation library:

Building a GPS Locator Application

[91]

 using CoreLocation;

Now we instantiate CLLocationManager in the constructor when this is created through
the IoC container. According to iOS standards, since changes to iOS 9 and iOS 8, we must
implement a few separate calls to allow the location manager to begin sending location
events:

public GeolocatorIOS()
 {
 Positions = new Subject<IPosition> ();
 locationManager = new CLLocationManager();
 locationManager.PausesLocationUpdatesAutomatically = false;

 // iOS 8 has additional permissions requirements
 if (UIDevice.CurrentDevice.CheckSystemVersion (8, 0))
 {
 locationManager.RequestWhenInUseAuthorization ();
 }

 if (UIDevice.CurrentDevice.CheckSystemVersion (9, 0))
 {
 locationManager.AllowsBackgroundLocationUpdates = true;
 }
 }

This is nothing major; in iOS 8 we must request the authorization before using the location
manager. For iOS 9, we can also set some conditional settings. For our example, we have
used this:

AllowsBackgroundLocationUpdates = true

This allows the location manager to keep sending events, even when the app is in the
background. We can also do this:

if (UIDevice.CurrentDevice.CheckSystemVersion (8, 0))
 {
 locationManager.RequestWhenInUseAuthorization ();
 }

This will only allow events from CLLocationManager when the app is in the foreground.
There are multiple settings that can be changed, between controlling location events in the
foreground and background when using location services. We want to know whether our
app is going to keep updates running in the background/foreground. Most of the time, we
want location updates when the app is in the foreground to reduce battery consumption,
but there are scenarios where updates should continue in the background.

Building a GPS Locator Application

[92]

Now for the rest of the class; let's begin handling the location events:

 private void handleLocationsUpdated (object sender,
CLLocationsUpdatedEventArgs e)
 {
 var location = e.Locations.LastOrDefault ();
 if (location != null)
 {
 Console.WriteLine ("Location updated, position: " +
location.Coordinate.Latitude + "-" + location.Coordinate.Longitude);

 // fire our custom Location Updated event
 Positions.OnNext(new Position()
 {
 Latitude = location.Coordinate.Latitude,
 Longitude = location.Coordinate.Longitude,
 });
 }
 }

The previous function is called every time we receive a location update
from CLLocationManager. From the event argument CLLocationsUpdatedEventArgs,
we pull out a list of locations; as sometimes the CLLocationManager receives multiple
updates at one time, we always want to take the very last location. Then once we create a
new Position, assign the latitude and longitude values, and by calling the OnNext
function, we push a new event into the observable sequence.

Our next step is to add some small additions to the info.plist file.

Let's add the following keys:

 <key>NSLocationAlwaysUsageDescription</key>
 <string>Can we use your location</string>
 key>NSLocationWhenInUseUsageDescription</key>
 <string>We are using your location</string>

The preceding code is from the source of the info.plist file.

The NSLocationAlwaysUsageDescription and
NSLocationWhenInUseUsageDescription keys will be displayed to the user in the alert
that requests location data access. We must also add the background modes for the location
in which we can set the iOS project properties:

Building a GPS Locator Application

[93]

Now we must implement the Start and Stop functions:

 public void Start()
 {
 if (CLLocationManager.LocationServicesEnabled)
 {
 locationManager.DesiredAccuracy = 1;
 locationManager.LocationsUpdated += handleLocationsUpdated;
 locationManager.StartUpdatingLocation();
 }
 }

 public void Stop()
 {
 locationManager.LocationsUpdated -= handleLocationsUpdated;
 locationManager.StopUpdatingLocation();
 }

The Start function will check whether location services have been enabled, assign the
LocationsUpdated event, and start the location updates:

public void Register(ContainerBuilder builer)
 {
builer.RegisterType<GeolocatorIOS>().As<IGeolocator>().SingleInstance();
 }

Building a GPS Locator Application

[94]

The Stop function will do nothing more than stop the location updates and remove the
event handler. That's all for the iOS geolocator. Next, we must register this interface
through the IoC container.

Handling location updates
Our next step is to build the MapPageViewModel; this view model will contain the
IGeolocator we just built. We will also be listening for location updates from the
observable sequence and processing latitude and longitude values to gather address details.

Let's begin with the constructor:

public MapPageViewModel (INavigationService navigation, IGeolocator
geolocator, Func<Action, ICommand> commandFactory,
 IGeocodingWebServiceController geocodingWebServiceController) :
base (navigation)
 {
 _geolocator = geolocator;
 _geocodingWebServiceController = geocodingWebServiceController;

 _nearestAddressCommand = commandFactory(() =>
FindNearestSite());
 _geolocationCommand = commandFactory(() =>
 {
 if (_geolocationUpdating)
 {
 geolocator.Stop();
 }
 else
 {
 geolocator.Start();
 }

 GeolocationButtonTitle = _geolocationUpdating ? "Start" :
"Stop";
 _geolocationUpdating = !_geolocationUpdating;
 });

 _positions = new List<IPosition> ();

 LocationUpdates = new Subject<IPosition> ();
 ClosestUpdates = new Subject<IPosition> ();
 }

Building a GPS Locator Application

[95]

Our constructor will retrieve the navigation service and the geolocator. Notice how we
assign the geolocator class:

_geolocator = geolocator;

The constructor will also be responsible for creating the commands for the two buttons on
our map page. Any view models that require objects from the IoC container are usually
assigned as read-only properties because they will never change. We want the property
name to be the exact same as the item in the constructor argument:

private readonly IGeolocator _geolocator;

Now let's create our private properties:

#region Private Properties
private IDisposable _subscriptions;

private readonly IGeolocator _geolocator;

private string _address;

#endregion

We have a new object, the IDisposable interface, which is used to take control of
unmanaged resources, meaning we can release objects that have no control over memory
disposal. In our case, we are going to be setting up a subscription to the events received via
the observable sequence (Subject).

Let's look at this technique more closely:

 public void OnAppear()
 {
 _subscriptions = _geolocator.Positions.Subscribe (x =>
 {
 _currentPosition = x;
 LocationUpdates.OnNext(x);
 });
 }

 public void OnDisppear()
 {
 geolocator.Stop ();

 if (subscriptions != null)
 {

Building a GPS Locator Application

[96]

 subscriptions.Dispose ();
 }
 }

We are going to use these functions to be called when the MapPage appears and disappears.
The OnAppear function will create a subscription to the Subject, so whenever a new
position is pushed onto the observable sequence, we will receive an item on the other side
where we subscribed. In this case, we will be calling the OnNext function on a different
subject, meaning we are passing the item of the observable sequence into another
observable sequence.

What a pointless function. We will show you why soon.

We are also assigning the subscription to our IDisposable. A subscription is an
unmanaged resource, meaning that without the use of an IDisposable, we can't control
the release of the subscription.

Why do we need to worry about disposing of the subscription?

Sometimes our observable streams may be propagating events to a user interface on the
main UI thread. If we change pages, and the previous page's view model is still receiving
events to update the previous page's interface, this means the events will be changing the
user interface on a different thread from the main UI thread, which will break the
application. This is just one example, but cleaning up subscriptions when we aren't using
them is a good practice to control unwanted application processing.

Now for the public properties:

#region Public Properties

 public string Address
 {
 get
 {
 return address;
 }

 set
 {
 if (value.Equals(address))
 {
 return;
 }

 address = value;
 OnPropertyChanged("Address");

Building a GPS Locator Application

[97]

 }
 }

 #endregion

All we need is a string that will be bound to MapPageLabel under the map item. It will be
used to display the address of the current location. Now we must create a label on MapPage:

<Label x:Name="AddressLabel" Text="{Binding Address}" Grid.Row="1"
Grid.Column="0"/>

Our next step is to make use of the latitude and longitude values that we receive
from CLLocationManager. We are going to use the Geocoder class to get address
information from our positions. A Geocoder class is used to convert positions (latitudes
and longitudes) into address information. We could actually do this conversion on the
native side, but the idea of this exercise is to show you what is available in Xamarin.Forms
to share between the different platforms.

Now let's get back to answering the questions about passing events between two observable
sequences.

Let's start building the MapPage.xaml.cs sheet:

private MapPageViewModel viewModel;

 private IDisposable locationUpdateSubscriptions;

 private IDisposable closestSubscriptions;

 private Geocoder geocoder;

 public MapPage ()
 {
 InitializeComponent ();
 }

 public MapPage (MapPageViewModel model)
 {
 viewModel = model;
 BindingContext = model;
 InitializeComponent ();

 Appearing += handleAppearing;
 Disappearing += handleDisappearing;

 geocoder = new Geocoder ();

Building a GPS Locator Application

[98]

 }

Here we create another two IDisposables for handling the events from the view-model.
We will also be subscribing to and disposing on the page's appearing and disappearing
events, so now add the HandleAppearing and HandleDisappearing functions:

 private void HandleDisappearing (object sender, EventArgs e)
 {
 viewModel.OnDisppear ();

 if (locationUpdateSubscriptions != null)
 {
 locationUpdateSubscriptions.Dispose ();
 }

 if (closestSubscriptions != null)
 {
 closestSubscriptions.Dispose ();
 }
 }

 private void HandleAppearing (object sender, EventArgs e)
 {
 viewModel.OnAppear ();

 locationUpdateSubscriptions =
viewModel.LocationUpdates.Subscribe (LocationChanged);
 }

We also create a new Geocoder, so every time we receive an event from the observable
sequence in the view model, we use this position to retrieve the address information
from Geocoder via the following function:

private void LocationChanged (IPosition position)
 {
 try
 {
 var formsPosition = new
Xamarin.Forms.Maps.Position(position.Latitude, position.Longitude);

 geocoder.GetAddressesForPositionAsync(formsPosition)
 .ContinueWith(_ =>
 {
 var mostRecent = _.Result.FirstOrDefault();
 if (mostRecent != null)
 {
 viewModel.Address = mostRecent;

Building a GPS Locator Application

[99]

 }
 })
 .ConfigureAwait(false);
 }
 catch (Exception e)
 {
 System.Diagnostics.Debug.WriteLine ("MapPage: Error with
moving map region - " + e);
 }
 }

That is everything we need to retrieve our latitude and longitude positions, as well as
update the current address. The last step of our iOS version is to update the position on the
map; we want the map view to zoom in to our current position and place the blue marker
on the map. Next, we add the following to the end of LocationChanged function:

MapView.MoveToRegion (MapSpan.FromCenterAndRadius (formsPosition,
Distance.FromMiles (0.3)));

The MoveToRegion function requires a MapSpan; a MapSpan is created from the latitude,
longitude point and the radius from the position point. A circle will be drawn from the
point to give the view radius to be shown on the map; in our case the radius is 0.3 miles
around the latitude and longitude position.

The ContinueWith function is used to execute some extra work as soon as the task finishes.
As soon as we have retrieved all the possible address names, we wake the first on the list
and assign it to the Address property of the variable.

Our final step is to complete the rest of the project; we must first create an iOS module for
registering the geolocator class:

 public class IOSModule : IModule
 {
 public void Register(ContainerBuilder builer)
 {
builer.RegisterType<GeolocatorIOS>().As<IGeolocator>().SingleInstance();
 }
 }

Then finally we add the extras to the AppDelegate.cs file (exactly the same as the
previous example iOS project):

[Register ("AppDelegate")]
 public partial class AppDelegate :
global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate
 {
 public override bool FinishedLaunching (UIApplication app,

Building a GPS Locator Application

[100]

NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init (this, bundle);
 global::Xamarin.FormsMaps.Init (this, bundle);

 initIoC ();

 LoadApplication (new App ());

 return base.FinishedLaunching (app, options);
 }

 private void initIoC()
 {
 IoC.CreateContainer ();
 IoC.RegisterModule (new IOSModule());
 IoC.RegisterModule (new XamFormsModule());
 IoC.RegisterModule (new PortableModule());
 IoC.StartContainer ();
 }
 }

Excellent! Let's run the project and click on the Find Location button. Watch the map
update with the address shown in the preceding label.

Let's move on to the Android project and implement the same features.

Android and the LocationManager
The Android LocationManager works like the CLLocationManager, but we will use an
observable sequence to handle location updates. When a location update is received, a new
Position object is instantiated with the latitude and longitude values from the location
update. Then the resulting Position is pushed on to the Geolocator's Subject.

First we create the Geolocator implementation. It must also inherit the
ILocationListener interface:

public class GeolocatorDroid : IGeolocator, ILocationListener
 {
 private string provider = string.Empty;

 public Subject<IPosition> Positions { get; set; }

 #region ILocationListener implementation

Building a GPS Locator Application

[101]

 public void OnLocationChanged (Location location)
 {
 Positions.OnNext (new Position ()
 {
 Latitude = location.Latitude,
 Longitude = location.Longitude
 });
 }

 public void OnProviderDisabled (string provider)
 {
 Console.WriteLine (provider + " disabled by user");
 }

 public void OnProviderEnabled (string provider)
 {
 Console.WriteLine (provider + " disabled by user");
 }

 public void OnStatusChanged (string provider, Availability status,
Bundle extras)
 {
 Console.WriteLine (provider + " disabled by user");
 }

 #endregion
}

You may have noticed the #define keywords. These are useful for
separating different sections and for referencing locations in code sheets,
making code more readable.

The only one we are concerned about is the OnLocationChanged function; whenever a
location update is received by the location manager, the listener function will be called with
the latitude and longitude values, and we will then use these values to push into the
observable sequence for the Geocoder and MapSpan.

We also have to implement the extra requirements for the ILocationListener interface.
Since this interface inherits the IJavaObject interface, we are required to implement the
Dispose function and the IntPtr object.

To save time, we can have the class inherit the Java.Lang.Object class like this:

public class GeolocatorDroid : Object, IGeolocator, ILocationListener

Building a GPS Locator Application

[102]

Next, we add the constructor:

private LocationManager locationManager;

 public GeolocatorDroid()
 {
 Positions = new Subject<IPosition> ();
 locationManager =
(LocationManager)Application.Context.GetSystemService(Context.LocationServi
ce);
 provider = LocationManager.NetworkProvider;
 }

In the constructor, we pull out the required system service using the GetSystemService
function for the location service. The line underneath simply retrieves the
NetworkProvider of the LocationManager; we need to use this for starting the location
updates. There are further configurations we can set for retrieving correct providers (mainly
logging purposes), but in this example we aren't going to bother too much as we are only
interested in retrieving location positions.

Now it's time to implement the other required functions of the IGeolocator interface:

public void Start()
 {
 if (locationManager.IsProviderEnabled(provider))
 {
 locationManager.RequestLocationUpdates (provider, 2000, 1,
this);
 }
 else
 {
 Console.WriteLine(provider + " is not available. Does the
device have location services enabled?");
 }
 }
 public void Stop()
 {
 locationManager.RemoveUpdates (this);
 }

The Start function will first check whether we have these services enabled, then by calling
the RequestLocationUpdates function, we pass in the provider, the minimum time
between locations updates, the minimum location distance between updates, and the
pending intent to be called on each location update; in our case, this is the geolocator (the
same class that started the location updates) as we have implemented the
ILocationListener class.

Building a GPS Locator Application

[103]

The Stop function simply removes the updates from the Geolocator, which in turn will
stop the location updates from the location manager. Our next step in implementing the
Android Geolocator is to create the Android IoC module, and register this
implementation in the IoC container:

 public void Register(ContainerBuilder builer)
 {
builer.RegisterType<GeolocatorDroid>().As<IGeolocator>().SingleInstance();
 }

Our final step is to set up the MainActivity class, which is exactly the same as the
previous project:

[Activity (Label = "Locator.Droid", Icon = "@drawable/icon", MainLauncher =
true, ConfigurationChanges = ConfigChanges.ScreenSize |
ConfigChanges.Orientation)]
 public class MainActivity :
global::Xamarin.Forms.Platform.Android.FormsApplicationActivity
 {
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 global::Xamarin.Forms.Forms.Init (this, bundle);
 global::Xamarin.FormsMaps.Init (this, bundle);

 LoadApplication (new App ());
 }

 private void initIoC()
 {
 IoC.CreateContainer ();
 IoC.RegisterModule (new DroidModule());
 IoC.RegisterModule (new XamFormsModule());
 IoC.RegisterModule (new PortableModule());
 IoC.StartContainer ();
 }
 }

Building a GPS Locator Application

[104]

Take note of how much code we are starting to reuse from previous
projects. Why reinvent the wheel when we can save a lot of time by
pulling from similar problems that have already been solved in other
projects?

The last step in the Android project is to apply some Android permissions to allow your
app to use location services. Open up the Mainfest.xml and add the following:

 <application android:label="Locator">
 <meta-data android:name="com.google.android.maps.v2.API_KEY"
android:value="YOUR-API-KEY" />
 <meta-data android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version" />
 </application>

 <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"
/>
 <uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Inside the <application> tag, we have to place API_KEY, which is generated from the
Google APIs platform (we will be doing this later). We then have to add the
ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION, and ACCESS_NETWORK_STATE
permissions for LocationManager to work. We can switch these permissions on through the
Application window:

Building a GPS Locator Application

[105]

Creating an exit point
You may have noticed the extra button added on the starting page for exiting the
application. We will have to go ahead and create an abstracted object for exiting the
application. Start by creating a new folder called Extras, then create a new file for the
IMethods interface:

 public interface IMethods
 {
 void Exit();
 }

Before moving on with the tutorial, have a go at implementing the native
side for each project on your own.

Building a GPS Locator Application

[106]

Let's begin with the iOS version:

 public class IOSMethods
 {
 public void Exit()
 {
 UIApplication.SharedApplication.PerformSelector(new
ObjCRuntime.Selector("terminateWithSuccess"), null, 0f);
 }
 }

For the iOS version, we must dig into the SharedApplication object and perform a
selector method terminateWithSuccess. We must then register this new object in our iOS
module:

public void Register(ContainerBuilder builer)
 {
builer.RegisterType<GeolocatorIOS>().As<IGeolocator>().SingleInstance();
builer.RegisterType<IOSMethods>().As<IMethods>().SingleInstance();
 }

Now the Android implementation:

 public class DroidMethods
 {
 public void Exit()
 {
 Android.OS.Process.KillProcess(Android.OS.Process.MyPid());
 }
 }

Using the Android operating system namespace, we use the static item Process to call the
function KillProcess on the main process. Again, we also register this within the IoC
container:

public void Register(ContainerBuilder builer)
 {
builer.RegisterType<GeolocatorDroid>().As<IGeolocator>().SingleInstance();
builer.RegisterType<DroidMethods>().As<IMethods>().SingleInstance();
 }

Finally, we use the IMethods interface in our MainPageViewModel to call the exit function:

public MainPageViewModel (INavigationService navigation, Func<Action,
ICommand> commandFactory,
 IMethods methods) : base (navigation)
 {
 exitCommand = commandFactory (() => methods.Exit());

Building a GPS Locator Application

[107]

 locationCommand = commandFactory (() =>
Navigation.Navigate(PageNames.MapPage));
 }

Looking at this more closely, we are using the command factory to initialize the exit
command to a new Xamarin.Forms Command, and when this command is executed, it will
call the Exit method from the IMethods interface.

Our last step is to create an API key using the Google APIs for our Android version.

Creating an API key for Android
In order for us to create an API key, we will have to access the Google API portal. Android
requires this extra step when configuring Google Maps:

You will need a Google Developer account to complete this section.

Visit the following link to create a new project in the API portal: h t t p s : / / c o n s o l1.
e . d e v e l o p e r s . g o o g l e . c o m / i a m - a d m i n / p r o j e c t s.

https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects
https://console.developers.google.com/iam-admin/projects

Building a GPS Locator Application

[108]

Select Create Project from the top menu and call the project Locator:2.

For more information on setting up an API key, visit this link: h t t p s : / / d e
v e l o p e r s . g o o g l e . c o m / m a p s / d o c u m e n t a t i o n / j a v a s c r i p t / g e t - a p i - k e y #

g e t - a n - a p i - k e y.

Once we have our new project, visit the API Manager and select the Google3.
Maps Android API:

https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key#get-an-api-key

Building a GPS Locator Application

[109]

Select the Enable button, then click Credentials from the left-hand menu. We4.
want to create a new API key from the drop-down list:

Make sure we select an Android key:5.

Building a GPS Locator Application

[110]

We are going to leave the name as Android key 1. Now click the Create button:6.

Finally, let's select our Android key and place it in the AndroidManifest.xml7.
file where it states YOUR-API-KEY:

Congratulations, we have now integrated the iOS and Android location services with
Google Maps.

Now let's move on to the Windows Phone version.

Creating our Windows project
Moving on to Visual Studio once again, let start by creating a new c-shape universal
Windows project and calling it Locator.WinRT:

Building a GPS Locator Application

[111]

We can remove the Windows store and shared projects. Before you remove the shared
projects, move the app.xaml files into the Windows Phone project.

The Map object from Xamarin.Forms.Maps is not usable in Windows
Phone 8.1. We have to use the universal platform instead.

For our Windows Phone version, we need the following:

A Windows Phone module for registering the geolocator and methods interfaces
To implement the geolocator interface
To implement the methods interface

Have a think about that for a second…
That's all we have to do to replicate the application for Windows Phone?
Think how much extra work would be involved if we were to rebuild this
app from scratch entirely on the Windows platform.

Building a GPS Locator Application

[112]

Next, add the three folders, Modules, Location, and Extras, and create a new .cs file for
each folder and name them accordingly: WinPhoneModule.cs, GeolocatorWinPhone.cs,
and WinPhoneMethods.cs.

Firstly, we have to change the targets of the PCL projects to be compatible with the
Windows Phone frameworks. Select the Windows Phone 8.1 target for both PCL projects,
then the Windows project can reference the two PCL projects:

We must also import the Xamarin.Forms, Xamarin.Forms.Maps, and Autofacnuget
packages.

Core Location Services with Windows Phone
Now for the exciting part. Let's integrate the core location services. First, we must turn on
certain permissions. Open up the package.appmanifest file, select the Capabilities tab,
and select the Location checkbox:

Building a GPS Locator Application

[113]

Secondly, open the GeolocatorWinPhone.cs file, and let's start building the Windows
Phone locator class.

Let's start by creating the constructor:

public class GeolocatorWinPhone : IGeolocator
 {
 public Subject<IPosition> Positions { get; set; }

 Geolocator _geolocator;

 public GeolocatorWinPhone()
 {
 Positions = new Subject<IPosition>();

 geolocator = new Geolocator();
 _geolocator.DesiredAccuracyInMeters = 50;
 }
 }

Building a GPS Locator Application

[114]

We are implementing a native Geolocator from the interface IGeolocator, meaning we
need to create an observable sequence for the positions. We also need a Geolocator object
to receive location updates, which we will use to push events into the sequence. With all
native locators, we can set accuracy for location points, which is what we are doing with the
following line:

geolocator.DesiredAccuracyInMeters = 50;

Our next step is to implement the Start and Stop functions:

public async void Start()
 {
 try
 {
 var geoposition = await _geolocator.GetGeopositionAsync(
 maximumAge: TimeSpan.FromMinutes(5),
 timeout: TimeSpan.FromSeconds(10)
);

 _geolocator.PositionChanged += geolocatorPositionChanged;

 // push a new position into the sequence
 Positions.OnNext(new Position()
 {
 Latitude = geoposition.Coordinate.Latitude,
 Longitude = geoposition.Coordinate.Longitude
 });
 }
 catch (Exception ex)
 {
 Console.WriteLine("Error retrieving geoposition - " + ex);
 }

 }

The Start function uses Geolocator to retrieve the positions with the asynchronous
function GetGeopositionAsync. The function will take the maximum age of a location,
meaning once the time period is passed, the location will update again. The request for this
location will cancel when the timeout value is reached during a location update. We also
listen on the event handler PositionChanged via the following function:

 private void GeolocatorPositionChanged(Geolocator sender,
PositionChangedEventArgs args)
 {
 // push a new position into the sequence
 Positions.OnNext(new Position ()
 {

Building a GPS Locator Application

[115]

 Latitude = args.Position.Coordinate.Latitude,
 Longitude =
args.Position.geoposition.Coordinate.Longitude
 });
 }

We actually have two places, which will push a new geoposition's latitude and longitude
into the observable sequence.

Now we add the Stop function:

 public void Stop()
 {
 // remove event handler
 _geolocator.PositionChanged -= GeolocatorPositionChanged;
 }

All this does is remove the event handler function that we assigned in the Start function.

You should be noticing the development patterns with this project, how
we implement abstracted interfaces, generate modules, register types, and
so on. The processes are all the same, no matter what platform.

That's all for the Geolocator class; we can now get on to the WinPhoneModule:

 public class WinPhoneModule : IModule
 {
 public void Register(ContainerBuilder builer)
 {
builer.RegisterType<GeolocatorWinPhone>().As<IGeolocator>().SingleInstance(
);
 builer.RegisterType<WinPhoneMethods>().As<
IMethods>().SingleInstance();
 }
 }

Now let's get to the WinPhoneMethods class. We only need to implement the one function,
Exit.

Building a GPS Locator Application

[116]

The Application class
The static class Application plays a similar role to the iOS UIApplication class. We
simply reference the current application, and terminate:

 public class WinPhoneMethods : IMethods
 {
 public void Exit()
 {
 Application.Current.Terminate();
 }
 }

Now we simply build the remaining elements with the MainPage.xaml page:

<forms:WindowsPhonePage
 x:Class="Locator.WinPhone.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Locator.WinPhone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:forms="using:Xamarin.Forms.Platform.WinRT"
 mc:Ignorable="d"
 Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
</forms:WindowsPhonePage>

And we do it for the MainPage.xaml.cs file:

public MainPage()
 {
 InitializeComponent();

 InitIoC();

 NavigationCacheMode = NavigationCacheMode.Required;
 LoadApplication(new Locator.App());
 }

 private void InitIoC()
 {
 IoC.CreateContainer();
 IoC.RegisterModule(new WinPhoneModule());
 IoC.RegisterModule(new SharedModule(true));
 IoC.RegisterModule(new XamFormsModule());
 IoC.RegisterModule(new PortableModule());
 IoC.StartContainer();

Building a GPS Locator Application

[117]

 }

Exactly the same as the previous chapter, we are starting the IoC container, adding our
modules, and loading the Xamarin.Forms.App object. The only difference is the
SharedModule, as we pass in true so the NativeMessageHandler is used.

Finally, we have one more issue to address. Since Xamarin.Forms 1.5, only Windows
Phone Silverlight is supported for using Google Maps. We have to add an additional library
to use maps in Windows Phone 8.1.

Personal thanks to Peter Foot for addressing this issue.

Luckily, an open source library is available to address this issue. We must install the nuget
package InTheHand.Forms.Maps.

This library is only available up to Xamarin.Forms 2.1.0.6529, meaning
this entire example must stick to this version of Xamarin.Forms.

Then, inside App.xaml.cs, we need to initialize Xamarin.Forms and
Xamarin.Forms.Maps. The Xamarin.Forms.Maps framework is initialized through the
library InTheHand.Forms.Maps like this:

if (rootFrame == null)
 {
 rootFrame = new Frame();

 rootFrame.CacheSize = 1;

 if (e.PreviousExecutionState ==
ApplicationExecutionState.Terminated)
 {
 }

 Xamarin.Forms.Forms.Init(e);
 InTheHand.FormsMaps.Init("YOUR-API-KEY");

 Window.Current.Content = rootFrame;
 }

Building a GPS Locator Application

[118]

Just like that, we now have the application on Windows Phone. Now that we have core
location services running with Google Maps, let's take things one step further with the
Google API platforms.

Web services and data contracts
We are now going to look at creating a web service controller to access web services
provided by Google. These are useful implementations for downloading JSON data,
deserializing it, and feeding this data in observable sequences for processing. With a web
service controller, we get to use more of the IObservable interface. These sequences will
be used to take in deserialized JSON objects from a web source, and feed these into our
view models.

Our web service controller will be kept inside the Locator.Portable project. Remember, we
can share this work across the different platforms as all use some form of HTTP client to
connect to a web URL.

What about data contracts?
Your data contract is a JSON object that is used to absorb the elements of the deserialized
objects, so whenever we pull down raw JSON data, your contract will be the deserialized
object or objects.

So the next question is, what data are we pulling to our application?

We are going to use the Google Geocoder API to turn address information into latitude and
longitude positions. We are going to pull down a list of addresses, calculate their latitude
and longitude positions, calculate the closest address to our current position, and place a
pin on the map.

Our first step is to create a new folder called WebServices in Locator.Portable. Inside
this folder, we want to create another folder called GeocodingWebServiceController,
and another folder inside this called Contracts. Let's first implement our contracts. A nice
quick easy way to implement your JSON objects is to use an online application like this one:
h t t p : / / j s o n 2 c s h a r p . c o m /.

http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/
http://json2csharp.com/

Building a GPS Locator Application

[119]

When we are pulling down JSON data, it takes time to look through the text and find all the
properties required for your JSON object. This provides a nice way is to call the web service
URL, retrieve some sample JSON data, and paste this JSON data into the box here:

Personal thanks to Jonathan Keith for saving us time.

This application creates c-sharp JSON objects based on the JSON data you entered. Now
let's get our sample JSON data to paste in the box, but before we can do this we have to
access the Google API.

Building a GPS Locator Application

[120]

Creating another API key for geocoding
Log back in to the Google Developer console, and our first step is to enable to the
Geocoding API from the API manager:

We then select the project Locator we created earlier, and this time we are going to create a
browser key to access the Geocoding API via HTTP requests:

Call the key Geocoding Key and click Create. We are now going to use this key for every
HTTP request passed to the Geocoding API:

Building a GPS Locator Application

[121]

Creating GeocodingWebServiceController
Our first step creating GeocodingWebServiceController is to hit the web URL using
your API key to pull down some sample JSON data; here is a test link:
https://maps.googleapis.com/maps/api/geocode/json?address=1600+Amphithe

atre+Parkway,+Mountain+View,+CA&key=YOUR_API_KEY.

Where it says YOUR_API_KEY, replace this text with your newly created API key, and then
paste this link into the browser. You should get JSON results like this:

{
 "results" : [
 {
 "address_components" : [
 {
 "long_name" : "1600",
 "short_name" : "1600",
 "types" : ["street_number"]
 },
 {
 "long_name" : "Amphitheatre Parkway",
 "short_name" : "Amphitheatre Pkwy",
 "types" : ["route"]
 },

Building a GPS Locator Application

[122]

 {
 "long_name" : "Mountain View",
 "short_name" : "Mountain View",
 "types" : ["locality", "political"]
 },
 {
 "long_name" : "Santa Clara County",
 "short_name" : "Santa Clara County",
 "types" : ["administrative_area_level_2", "political"]
 },

We are going to copy and paste the entire resulting JSON into Json2Sharp to create our c-
sharp objects:

There are quite a few JSON objects, so in the Contracts folder, create the following files:

AddressComponentContract.cs
GeocodingContract.cs
GeocodingResultContract.cs
GeometryContract.cs
LocationContract.cs
NortheastContract.cs

Building a GPS Locator Application

[123]

SouthwestContract.cs
ViewportContract.cs

Let's begin with AddressComponentContract.cs:

public sealed class AddressComponentContract
 {
 #region Public Properties

 public string long_name { get; set; }

 public string short_name { get; set; }

 public List<string> types { get; set; }

 #endregion
 }

Make sure we keep all these contracts in the namespace
Locator.Portable.GeocodingWebServiceController.Contracts.

Namespaces should be named according to the folder hierarchy.

Now for the GeocodingContract:

 public sealed class GeocodingContract
 {
 #region Public Properties

 public List<GeocodingResultContract> results { get; set; }

 public string status { get; set; }

 #endregion
 }

The rest of the files are exactly the same; we simply copy the c-sharp objects created by
Json2Sharp. Now it's time to complete the others:

 public sealed class GeocodingResultContract
 {
 #region Public Properties

 public List<AddressComponentContract> address_components { get;

Building a GPS Locator Application

[124]

set; }

 public string formatted_address { get; set; }

 public GeometryContract geometry { get; set; }

 public string place_id { get; set; }

 public List<string> types { get; set; }

 #endregion
 }

Make sure you double-check the property names are exactly the same as the JSON
properties, otherwise the values inside the JSON string will not be deserialized correctly.

We are not going to paste in every contract, as this should be enough
direction for you to build the others.

Now that we have our geocoding contracts, let's create the interface for the
GeocodingWebServiceController:

public interface IGeocodingWebServiceController
 {
 #region Methods and Operators

 IObservable<GeocodingContract> GetGeocodeFromAddressAsync (string
address, string city, string state);

 #endregion
 }

This is only a small interface; we only have one function, GetGeocodeFromAddressAsync.
The function requires three arguments to build the parameters in the web URL.

Now let's implement this interface.

A good practice with object-oriented and abstract coding is to declare
interfaces before implementing the class which coincides; it will help you
build the class quicker.

Building a GPS Locator Application

[125]

Newtonsoft.Json and Microsoft HTTP client
libraries
As we are going to be deserializing JSON, we will need to import a JSON framework
library. Newtonsoft is one of the most commonly used frameworks, so let's import this
library into our Locator.Portable project:

Building a GPS Locator Application

[126]

We will also need to import the HTTP client libraries for our web service controller to access
online web services:

Now that we have all the extra libraries for our Locator.Portable project, before we
implement the IGeocodingWebServiceController, we have to make some additions to
the project structure:

Building a GPS Locator Application

[127]

Right-click on the Locator and create a new shared project called Locator.Shared:

ModernHttpClient and client message handlers
In this project, we will be creating a shared module to register a HttpClientHandler class
in the IoC container. HttpClientHandler is a message handler class that receives a HTTP
request and returns a HTTP response. Message handlers are used on both the client and
server side for handling/delegating requests between different end points.

In our example, we are interested in the client side, as we are calling the server; our client
handler will be used to handle our HTTP messages sent from the HTTP client.

Building a GPS Locator Application

[128]

Let's begin by adding the ModernHttpClient library to our Locator (we will refer to this
project as the Xamarin.Forms project) and all native projects:

We also want to add the Microsoft Client Libraries package to all native projects.

In our shared project, remember we can't import libraries; these projects are only used to
share code sheets. In this project, we want to create a folder called Modules. In the Modules
folder, create a new file called SharedModule.cs and implement the following:

public sealed class SharedModule : IModule
 {
 #region Fields

 private bool isWindows;

 #endregion

 #region Constructors and Destructors

 public SharedModule(bool isWindows)
 {
 isWindows = isWindows;

Building a GPS Locator Application

[129]

 }

 #endregion

 #region Public Methods and Operators

 public void Register(ContainerBuilder builder)
 {
 HttpClientHandler clientHandler = isWindows ? new
HttpClientHandler() : new NativeMessageHandler();
 clientHandler.UseCookies = false;
 clientHandler.AutomaticDecompression =
DecompressionMethods.Deflate | DecompressionMethods.GZip;
 builder.Register(cb =>
clientHandler).As<HttpClientHandler>().SingleInstance();
 }
 #endregion
 }

One thing to notice is the minor change we have to make between the iOS and Android
projects, and the Windows Phone project. Windows must use NativeMessageHandler for
the HttpClientHandler in the IoC container. In iOS and Android, we can use a default
HttpClientHandler.

We tell the client handler that we not going to be using cookies, and we allow for automatic
decompression on the data being pulled through the client handler (GZIP is a common
form of JSON data compression).

Now let's focus our attention on the constructor. We simply pass in a bool to determine
whether we are using Windows to register the correct type of message handler for the
current platform.

Now let's add this module to the registration in the AppDelegate and MainActivity file;
it must be called before the LoadApplication function:

private void InitIoC()
 {
 IoC.CreateContainer ();
 IoC.RegisterModule (new IOSModule());
 IoC.RegisterModule (new SharedModule(false));
 IoC.RegisterModule (new XamFormsModule());
 IoC.RegisterModule (new PortableModule());
 IoC.StartContainer ();
 }

Building a GPS Locator Application

[130]

Excellent! We now have access to our HTTP client handler in the IoC container, so let's start
building the GeocodingWebServiceController class:

public sealed class GeocodingWebServiceController :
IGeocodingWebServiceController
 {
 #region Fields

 /// <summary>
 /// The client handler.
 /// </summary>
 private readonly HttpClientHandler clientHandler;

 #endregion

#region Constructors and Destructors

 public GeocodingWebServiceController (HttpClientHandler
clientHandler)
 {
 clientHandler = clientHandler;
 }

 #endregion

 }

Feeding JSON data into the IObservable
framework
As we are going to be registering this web service controller in the IoC container, we can
pull out the client handler we just created and registered in the SharedModule class. Now
we must implement the function we defined in the interface:

#region Public Methods

 public IObservable<GeocodingContract>
GetGeocodeFromAddressAsync(string address, string city, string state)
 {
 var authClient = new HttpClient(_clientHandler);

 var message = new HttpRequestMessage(HttpMethod.Get, new
Uri(string.Format(ApiConfig.GoogleMapsUrl, address, city, state)));

Building a GPS Locator Application

[131]

 return Observable.FromAsync(() => authClient.SendAsync(message,
new CancellationToken(false)))
 .SelectMany(async response =>
 {
 if (response.StatusCode != HttpStatusCode.OK)
 {
 throw new Exception("Respone error");
 }

 return await response.Content.ReadAsStringAsync();
 })
 .Select(json =>
JsonConvert.DeserializeObject<GeocodingContract>(json));
 }

 #endregion

It may look a bit daunting at first, but let's break it down. Our web service controller is
going to pull down data, deserialize the data into our main JSON object
GeocodingContract, and create contracts in an observable sequence.

When we instantiate a new HttpClient, we must pass in our registered client handler to
delegate the request messages being sent from the HTTP client. We then create a new
Http.Get message; this will be sent from the HttpClient and delegated through the
message handler (HttpClientHandler), which in turn will receive a JSON response.

This is where it gets tricky. Look at the Observable.FromAsync function; this method
takes an asynchronous function, will run and await the function, and will return data as an
observable sequence. The asynchronous function must return an IObservable.

The function we are passing is the SendAsync function of the HttpClient; we then use the
RX function SelectMany to take all the response objects. If each response object incurs a
HTTP status code 200 (OK), we return the response content as a string. Notice the async
keyword in front of the expression; we have to use an asynchronous function to await the
ReadAsAsync function and return the response content as a JSON string.

Finally, we use the RX function Select to take each response string and return the
deserialized GeocodingContract. This contract will be fed into the observable sequence
and returned to the original caller Observable.FromAsync, which in turn will be the data
returned from the function.

Building a GPS Locator Application

[132]

More Reactive Extensions
Before we move on, let's talk more about the RX functions we just used. The Select
function is used for iterating over any List, Enumerable, or IObservable, and taking the
value of each item to create a new observable sequence.

Say we have a list of objects with a string property Name, and we do the following:

var newObservable = list.Select (x => x);

We are simply returning the same sequence of items, but then we do something like this:

var newObservable = list.Select (x => x.Name);

Our new sequence would be a stream of just the Name property for each object. These
functions are very useful for filtering streams and lists.

Resource (RESX) files
Notice in our GetGeocodeFromAddressAsync function we are referencing a static class,
ApiConfig:

ApiConfig.GoogleMapsUrl

This is a technique for containing your application's resources, such as strings, URLs,
constant variables, settings properties, and so on. It is also used for languages in which we
have different constant variable values, based on language settings. This is normally how
you would make your app multilingual.

Building a GPS Locator Application

[133]

Let's create a new folder called Resources inside the Locator.Portable project:

In the ApiConfig.Designer.cs file, we must have the namespace set according to the
folder hierarchy. In this example, it is Locator.Portable | Resources.

Locator.Portable is the name assigned to our assembly. We must know the
assembly name to reference where the folders will be stored when the app
is built. To find out the name of your assembly, visit the properties page,
shown in the next screenshot.

Building a GPS Locator Application

[134]

Now that we have our ApiConfig.resx file, let's add a variable for the GoogleMapsUrl
property; paste the following in the ApiConfig.resx file:

 <!-- url -->
 <data name="GoogleMapsUrl" xml:space="preserve">
<value>https://maps.googleapis.com/maps/api/geocode/json?address={0},+{1},+
{2}&key={YOUR-BROSWER-API-KEY}</value>
 </data>

When you save this file, you will notice the ApiConfig.Designer.resx
file is automatically generated, meaning the namespace may change to
incorrect folder paths. Sometimes we have to manually change the folder
path every time this file regenerates.

Using GeocodingWebServiceController
Now that we have set up our web service controller, let's integrate it with our
MapPageViewModel. Our first step is to register the web service controller inside the IoC
container; open up PortableModule.cs and add the following to the Register function:

Building a GPS Locator Application

[135]

builer.RegisterType<GeocodingWebServiceController>
().As<IGeocodingWebServiceController>().SingleInstance();

Now we update the constructor inside MapPageViewModel to
use GeocodingWebServiceController from the IoC container:

 #region Constructors

 public MapPageViewModel (INavigationService navigation, IGeolocator
geolocator,
 IGeocodingWebServiceController geocodingWebServiceController) :
base (navigation)
 {
 _geolocator = geolocator;
 _geocodingWebServiceController= geocodingWebServiceController;

 LocationUpdates = new Subject<IPosition> ();
 }

 #endregion

Our next step is to add an array of static addresses as a dictionary:

 #region Constants

 private IDictionary<int, string[]> addresses = new Dictionary<int,
string[]>()
 {
 {0, new string[] { "120 Rosamond Rd", "Melbourne", "Victoria"
}},
 {1, new string[] { "367 George Street", "Sydney", "New South
Wales" }},
 {2, new string[] { "790 Hay St", "Perth", "Western Australi"
}},
 {3, new string[] { "77-90 Rundle Mall", "Adelaide", "South
Australia" }},
 {4, new string[] { "233 Queen Street", "Brisbane", "Queensland"
}},
 };

 #endregion

We are going to use the geocoder API to determine latitude and longitude positions of all
these address locations, and from your current location, determine which one is closer.

Building a GPS Locator Application

[136]

OnNavigatedTo and OnShow
Before we go any further with the Geocoding API, we need to make some additions to the
navigation setup. Let's begin by implementing the OnNavigatedTo function for all content
pages. Create a new file called INavigableXamFormsPage.cs and paste in the following:

 internal interface INavigableXamarinFormsPage
 {
 void OnNavigatedTo(IDictionary<string, object>
navigationParameters);
 }

Notice the internal keyword; this is because this class will never leave
the Xamarin.Forms project.

Now we want every page to inherit this interface and create the OnNavigatedTo function:

public partial class MainPage : ContentPage, INavigableXamarinFormsPage
 {
 public void OnNavigatedTo(IDictionary<string, object>
navigationParameters)
 {
 }
 }

public partial class MapPage : ContentPage, INavigableXamarinFormsPage
 {
 public void OnNavigatedTo(IDictionary<string, object>
navigationParameters)
 {
 }
 }

Now we want to call the OnNavigatedTo function every time a page is navigated to. First,
let's update our interface for the NavigationService:

 public interface INavigationService
 {
 Task Navigate (PageNames pageName, IDictionary<string, object>
navigationParameters);
 }

Now open up the NavigationService class and update the Navigate function:

 #region INavigationService implementation

Building a GPS Locator Application

[137]

 public async Task Navigate (PageNames pageName, IDictionary<string,
object> navigationParameters)
 {
 var page = getPage (pageName);

 if (page != null)
 {
 var navigablePage = page as INavigableXamarinFormsPage;

 if (navigablePage != null)
 {
 await IoC.Resolve<NavigationPage> ().PushAsync (page);
 navigablePage.OnNavigatedTo ();
 }
 }
 }

 #endregion

After the page is pushed, we then call the OnNavigatedTo function.

Now we want to do a similar thing with page view models. In your ViewModelBase class,
add the following:

 public void OnShow(IDictionary<string, object> parameters)
 {
 LoadAsync(parameters).ToObservable().Subscribe(
 result =>
 {
 // we can add things to do after we load the view model
 },
 ex =>
 {
 // we can handle any areas from the load async function
 });
 }

 protected virtual async Task LoadAsync(IDictionary<string, object>
parameters)
 {
 }

The OnShow function will take in the navigation parameters from the coinciding page's
OnNavigatedTo function.

Notice that the RX approach with handling asynchronous functions when the LoadAsync
has finished?

Building a GPS Locator Application

[138]

We have options to handle results and errors from the LoadAsync function. You may have
also noticed the short expressions used with arrows. This type of syntax is known as
lambda expressions, a very common c-sharp syntax for abbreviating functions, arguments,
and delegates. Our LoadAsync is also virtual, which means any page view model that
implements this interface can override this function.

Now let's make some extra additions to the Xamarin.Forms project (Locator). Create a
new file in the UI folder and call it XamarinNavigationExtensions.cs. Now for the
implementation:

public static class XamarinNavigationExtensions
 {
 #region Public Methods and Operators

 // for ContentPage
 public static void Show(this ContentPage page, IDictionary<string,
object> parameters)
 {
 var target = page.BindingContext as ViewModelBase;
 if (target != null)
 {
 target.OnShow(parameters);
 }
 }

 #endregion

 }

Looking at this more closely, we are actually making extension functions for all
ContentPage types. The OnShow function for a ContentPage will extract the binding
context as a ViewModelBase and call the OnShow function of the view model, which in turn
will call LoadAsync. Finally, we make the changes to MapPage.xaml.cs and
MainPage.xaml.cs:

 public void OnNavigatedTo(IDictionary<string, object>
navigationParameters)
 {
 this.Show (navigationParameters);
 }

Well done! What we just implemented is a Windows Phone principle. We know that when
the OnNavigatedTo function is called, our layout for the XAML sheet is already sized
accordingly. The advantage of having this is we can now retrieve x, y, height, and width
figures from the page inside this function.

Building a GPS Locator Application

[139]

Pythagoras equirectangular projection
Now back to the Geocoding API. We are going to implement the math behind calculating
the closest address to a latitude and longitude (current position).

For our first step, we need to add some properties for MapPageViewModel:

#region Private Properties
private IList<IPosition> _positions;

private Position _currentPosition;

private string _closestAddress;

private int _geocodesComplete = 0;

#endregion

Now for the extra public property, which will hold the string address of the closest
position:

public string ClosestAddress
 {
 get
 {
 return _closestAddress;
 }

 set
 {
 if (value.Equals(_closestAddress))
 {
 return;
 }

 _closestAddress = value;
 OnPropertyChanged("ClosestAddress");
 }
 }

Now we have to add another Subject sequence for when the closet position changes:

#region Subjects

public Subject<IPosition> ClosestUpdates { get; set; }

#endregion

Building a GPS Locator Application

[140]

This must be initialized in the constructor:

ClosestUpdates = new Subject<IPosition> ();

Now for the fun part.

How are we going to calculate the closest
position?
Let's start with the first private function, which will get the positions from the address:

 public async Task GetGeocodeFromAddress(string address, string
city, string state)
 {
 var geoContract = await
_geocodingWebServiceController.GetGeocodeFromAddressAsync(address, city,
state);

 if (geoContract != null && geoContract.results != null &&
geoContract.results.Count > 0)
 {
 var result = geoContract.results.FirstOrDefault();

 if (result != null && result.geometry != null &&
result.geometry.location != null)
 {
 _geocodesComplete++;

 _positions.Add(new Position()
 {
 Latitude = result.geometry.location.lat,
 Longitude = result.geometry.location.lng,
 Address = string.Format("{0}, {1}, {2}",
address, city, state)
 });

 // once all geocodes are found, find the closest
 if ((_geocodesComplete == _positions.Count) &&
_currentPosition != null)
 {
 FindNearestSite();
 }
 }
 }
 }

Building a GPS Locator Application

[141]

In this function, we finally get to use our GeocodingWebServiceController.

See how we pass in the variables that will make up the web service URL?

For each address, we must ping this API call to get the latitude and longitudes required to
calculate the closest position. Then we do a bunch of checks on the values in the data
contracts to make sure they aren't null, until we get the GeometryContract values; we will
then use these to create a new position and add it to the list.

Now let's make a small change to the Position class and interface:

 public class Position : IPosition
 {
 public string Address {get; set;}
 }

 public interface IPosition
 {
 double Latitude {get; set;}

 double Longitude {get; set;}

 public string Address {get; set;}
 }

Add the Address property so we can record the address string for the closest property. We
need to record this in the position because as we fire off so many requests to the API, they
will not necessarily finish in order so we can't expect to use index referencing to obtain the
position index in the list, to be the coinciding address in the array.

Now let's add the mathematical functions for calculating distances using the
PythagorasEquirectangular projection. It uses angular projection to calculate the
distance between two coordinates on a map plane. We also need a DegreesToRadians
conversion for the PythagorasEquirectangular function:

private double DegreesToRadians(double deg)
 {
 return deg * Math.PI / 180;
 }

 private double PythagorasEquirectangular
 (double lat1, double lon1, double lat2, double lon2)
 {
 lat1 = DegreesToRadians(lat1);
 lat2 = DegreesToRadians(lat2);

Building a GPS Locator Application

[142]

 lon1 = DegreesToRadians(lon1);
 lon2 = DegreesToRadians(lon2);

 // within a 10km radius
 var radius = 10;
 var x = (lon2 - lon1) * Math.Cos((lat1 + lat2) / 2);
 var y = (lat2 - lat1);
 var distance = Math.Sqrt(x * x + y * y) * radius;

 return distance;
 }

If the distance falls outside the radius value, it will not be used.

Try playing around with this setting to see the results you get.

Now for the FindNearestSite function:

private void FindNearestSite()
 {
 if (_geolocationUpdating)
 {
 _geolocationUpdating = false;
 _geolocator.Stop();
 GeolocationButtonTitle = "Start";
 }

 double mindif = 99999;
 IPosition closest = null;
 var closestIndex = 0;
 var index = 0;

 if (_currentPosition != null)
 {
 foreach (var position in _positions)
 {
 var difference =
PythagorasEquirectangular(_currentPosition.Latitude,
_currentPosition.Longitude,
 position.Latitude, position.Longitude);

 if (difference < mindif)
 {
 closest = position;
 closestIndex = index;

Building a GPS Locator Application

[143]

 mindif = difference;
 }

 index++;
 }

 if (closest != null)
 {
 var array = _addresses[closestIndex];
 Address = string.Format("{0}, {1}, {2}", array[0],
array[1], array[2]);
 ClosestUpdates.OnNext(closest);
 }
 }
 }

We will call this when all the geocodes for the address have been obtained and added to the
positions list. We then go through all the positions and compare each to our current
position, determine which coordinate difference is the smallest, and use this as our closest
position. Then we push a new position onto the ClosestUpdates observable sequence,
which we will subscribe to on the MapPage.

Our last step on the MapPageViewModel is to override the LoadAsync function:

 protected override async Task LoadAsync (IDictionary<string,
object> parameters)
 {
 var index = 0;

 for (int i = 0; i < 5; i++)
 {
 var array = _addresses [index];
 index++;

 GetGeocodeFromAddress(array[0], array[1],
array[2]).ConfigureAwait(false);
 }
 }

This is where everything will kick off; when the page loads, it will iterate through every
address and download the geocode, then once we count the entire count of the address list,
we find the nearest positions and push onto the ClosestUpdates sequence. We also want
to run the GetGeocodeFromAddress function in parallel for each address; this is why we
have ConfigureAwait set to false.

Building a GPS Locator Application

[144]

Now let's make changes to the MapPage. We are going to use two IDisposables now for
the MapPage, one for each subject in the view model:

private IDisposable _locationUpdateSubscriptions;

private IDisposable _closestSubscriptions;

Now we update the OnAppear and OnDisappear functions to handle the subscribing to
and disposing of the Subjects:

private void HandleDisappearing (object sender, EventArgs e)
 {
 _viewModel.OnDisppear ();

 if (_locationUpdateSubscriptions != null)
 {
 _locationUpdateSubscriptions.Dispose ();
 }

 if (_closestSubscriptions != null)
 {
 _closestSubscriptions.Dispose ();
 }
 }

 private void HandleAppearing (object sender, EventArgs e)
 {
 _viewModel.OnAppear ();

 _locationUpdateSubscriptions =
_viewModel.LocationUpdates.Subscribe (LocationChanged);
 _closestSubscriptions = _viewModel.ClosestUpdates.Subscribe
(ClosestChanged);
 }

And our final touch is to add the function that is called every time for the ClosetUpdates
observable sequence:

private void ClosestChanged (IPosition position)
 {
 try
 {
 var pin = new Pin()
 {
 Type = PinType.Place,
 Position = new Xamarin.Forms.Maps.Position
(position.Latitude, position.Longitude),
 Label = "Closest Location",

Building a GPS Locator Application

[145]

 Address = position.Address
 };

 MapView.Pins.Add(pin);

 MapView.MoveToRegion(MapSpan.FromCenterAndRadius(new
Xamarin.Forms.Maps.Position(position.Latitude, position.Longitude)
 ,
Distance.FromMiles(0.3)));
 }
 catch (Exception e)
 {
 System.Diagnostics.Debug.WriteLine ("MapPage: Error with
moving pin - " + e);
 }
 }

We are creating a pin to place on the map. This pin will also show the address information
when we click on the pin. We then move to the region on the map to show this pin, using
the MoveToRegion function.

That is everything; we have now integrated with Google Maps and Geocoding.

Summary
In this chapter, we discussed development with Xamarin.Forms and
Xamarin.Forms.Maps. We learned how to implement location services on each platform,
handling backgrounding location update events and using latitudes and longitudes to
calculate positions. Have a play around with the application on all three platforms, and
watch how the location updates and nearest positions update the regions on the map. In the
next chapter, we will jump back into native development, and build an application that will
control a sound file like an audio player.

4
Building an Audio Player

Application
In this chapter, we move back to native Xamarin. We will integrate native audio functions
for processing a sound file using the AVFramework in iOS with the AVAudioSessions,
AVAudioSettings, and AVAudioRecorder objects. In Android you will use the
MediaPlayer object from the Android.Media library.

Expected knowledge:

Some knowledge of either iOS AVAudioSessions, AVAudioSettings, and
AVAudioRecorder, or the Android MediaPlayer and MediaRecorder classes
NSLayoutConstraints

In this chapter, you will learn the following:

Project setup
Inversion of control with MVVMCross
View models with Xamarin native
Creating the bindings
NSLayoutContraints
MVVMCross setup inside the Portable Class Library
Setting up MVVMCross with iOS

Building an Audio Player Application

[147]

Setting up MVVMCross with Android
The SoundHandler interface
Implementing the iOS SoundHandler using the AVAudioPlayer framework
The Mvx IoC container
The audio player
A cleaner code approach to NSLayout
Creating AudioPlayerPageViewModel
Implementing the Android SoundHandler using the MediaPlayer framework
XML and Mvx bindings

Solution setup
Now that we are back to Xamarin native, it's time to get your mind out of XAML and back
into native iOS and Android. We aren't going to spend much time on user interface design,
but more on audio processing using the native frameworks.

If you are testing this application on your computer, the microphone will
still work as it will be using your laptop's microphone.

As we have looked into cross-platform applications and code sharing, we are going to apply
some of these principles to native development and setup an MVVM architecture. Let's
begin by setting up three different projects, an iOS, Android, and PCL project:

Building an Audio Player Application

[148]

Inversion of control with MVVMCross
In the last two chapters, we looked at the IoC container and bootstrapping fundamentals;
now it's time to use a different library for this principle with Xamarin native.

Building an Audio Player Application

[149]

For all projects, we want to import the MVVMCross library:

MVVMCross is available for Xamarin.Forms, Xamarin.iOS,
Xamarin.Android, Xamarin.Mac, and Windows, so take your pick.

MVVMCross is set up quite differently to AutoFac, but the principles are the same.

View-models with Xamarin native
After we add the libraries, let's start with the AudioPlayer.Portable project. Create a
new folder called ViewModels, and add a new file called MainPageViewModel.cs. Let's
start implementing our first view-model with MVVMCross:

namespace AudioPlayer.Portable.ViewModels
{
 using MvvmCross.Core.ViewModels;

Building an Audio Player Application

[150]

 public class MainPageViewModel : MvxViewModel
 {
 public MainPageViewModel()
 {
 }
 }
}

When we built our Xamarin.Forms view-models, we created our own base view-model for
handling property changes; using this library we can cut a few corners with base properties.
MvxViewModel has a similar implementation with handling property changes; for our
MainPage, we are going to develop the same first page as the last chapter, so let's start with
the private properties:

public class MainPageViewModel : MvxViewModel
 {
 #region Private Properties

 private string _descriptionMessage = "Welcome to the Music Room";

 private string _audioPlayerTitle = "Audio Player";

 private string _exitTitle = "Exit";

 private MvxCommand _audioPlayerCommand;

 private MvxCommand _exitCommand;

 #endregion
}

Notice how we are using a different Command type, called MvxCommand? It works very much
the same as the Xamarin.Forms.Command. Let's add the public properties and see how we
handle property changes:

#region Public Properties

 public string DescriptionMessage
 {
 get
 {
 return _descriptionMessage;
 }
 set
 {
 if (value.Equals(_descriptionMessage))
 {

Building an Audio Player Application

[151]

 _descriptionMessage = value;
 RaisePropertyChanged (() => DescriptionMessage);
 }
 }
 }

 public MvxCommand AudioPlayerCommand
 {
 get
 {
 return _audioPlayerCommand;
 }

 set
 {
 if (value.Equals(_audioPlayerCommand))
 {
 _audioPlayerCommand = value;
 RaisePropertyChanged (() => AudioPlayerCommand);
 }
 }
 }

 #endregion

Easy, right?

It is exactly the same as the set function. We are checking whether the value has changed;
if it has, then we set the private property and call RaisePropertyChanged. The only
difference is we are passing an action into the function with the public property.

Now we can start building the user interface for the MainPage. This time, we are going to
develop the iOS interface entirely off a .cs sheet. Add a new .cs file and call it
MainPage.cs:

[MvxViewFor(typeof(MainPageViewModel))]
 public partial class MainPage : MvxViewController
 {
 public MainPage ()
 {
 }
 }

Building an Audio Player Application

[152]

Creating the bindings
Our first step is to build the user interface. We are going to add two UIButtons, UILabel,
and UIImageView to the view controller:

public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();

 var mainView = new UIView ()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 BackgroundColor = UIColor.White
 };

 var imageView = new UIImageView()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 ContentMode = UIViewContentMode.ScaleAspectFit,
 Image = new UIImage("audio.png")
 };

 var descriptionLabel = new UILabel ()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 TextAlignment = UITextAlignment.Center
 };
 var audioPlayerButton = new UIButton (UIButtonType.RoundedRect)
 {
 TranslatesAutoresizingMaskIntoConstraints = false
 };

 var exitButton = new UIButton (UIButtonType.RoundedRect)
 {
 TranslatesAutoresizingMaskIntoConstraints = false
 };

 View.Add (mainView);

 // add buttons to the main view
 mainView.Add (imageView);
 mainView.Add (descriptionLabel);
 mainView.Add (audioPlayerButton);
 mainView.Add (exitButton);

 }

Building an Audio Player Application

[153]

Now let's create the bindings for the user interface elements. Add the following to the
bottom of the ViewDidLoad function:

var set = this.CreateBindingSet<MainPage, MainPageViewModel> ();
 set.Bind(this).For("Title").To(vm => vm.Title);
 set.Bind(descriptionLabel).To(vm => vm.DescriptionMessage);
 set.Bind(audioPlayerButton).For("Title").To(vm =>
vm.AudioPlayerTitle);
 set.Bind(audioPlayerButton).To(vm => vm.AudioPlayerCommand);
 set.Bind(exitButton).For("Title").To(vm => vm.ExitTitle);
 set.Bind(exitButton).To(vm => vm.ExitCommand);
 set.Apply ();

When we create a binding context (BindingSet), we will set up all the bindings through
the binding set. The first binding is with the description label. The object we are binding
too must be a string (DescriptionMessage is our string object from the view-model).

Further on, we can specify the particular properties of a UI element using the For function,
and in the parameter we specify the name of the property. In our case, we are specifying the
Title property of UIButton, then calling the To function to bind our specified string
object. We have also done this with UIViewController.

Finally, the last bindings we are using are MvxCommands from our view-model. We don't
need to specify the property name for this; all we do is call the To function and specify the
command in the view-model.

In the UIImageView we created, we used an image called audio.png.
You can put in any image you like, provided the name matches the one
being loaded inside the UIImage. All resources for this example can be
found via the GitHub link: h t t p s : / / g i t h u b . c o m / f l u s h a r c a d e / c h a p t e r 4

- a u d i o p l a y e r.

NSLayoutContraints
Let's have a closer look at where we are initializing our UI elements. The
TranslatesAutoresizingMaskIntoConstraints property is used to determine whether
we are going to use NSLayoutConstraints to build our user interface. When we set it to
false, it means we have to implement the layout constraints for this element.

Now we want to build the user interface using layout constraints. Let's add the following
after the elements are added to mainView:

https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer
https://github.com/flusharcade/chapter4-audioplayer

Building an Audio Player Application

[154]

View.AddConstraints (NSLayoutConstraint.FromVisualFormat("V:|[mainView]|",
NSLayoutFormatOptions.DirectionLeftToRight, null, new
NSDictionary("mainView", mainView)));
 View.AddConstraints
(NSLayoutConstraint.FromVisualFormat("H:|[mainView]|",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("mainView",
mainView)));

 mainView.AddConstraints
(NSLayoutConstraint.FromVisualFormat("V:|-80-[welcomeLabel]-
[audioPlayerButton]-[exitButton]",
NSLayoutFormatOptions.DirectionLeftToRight, null, new
NSDictionary("welcomeLabel", welcomeLabel, "audioPlayerButton",
audioPlayerButton, "exitButton", exitButton)));
 mainView.AddConstraints
(NSLayoutConstraint.FromVisualFormat("H:|-5-[welcomeLabel]-5-|",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("welcomeLabel",
welcomeLabel)));
 mainView.AddConstraints
(NSLayoutConstraint.FromVisualFormat("H:|-5-[audioPlayerButton]-5-|",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary
("audioPlayerButton", audioPlayerButton)));
 mainView.AddConstraints
(NSLayoutConstraint.FromVisualFormat("H:|-5-[exitButton]-5-|",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("exitButton",
exitButton)));

In the first two lines, we are adding constraints for the UIView. As the view contains only
one UIView, we create two constraints for the vertical and horizontal properties of the
mainView object. The vertical property is set to the following:

"V:|[mainView]|"

This means mainView will be stretched to the entire height of the containing view, and the
same applies for the horizontal property:

"H:|[mainView]|"

The width of the mainView object will be stretched to the entire width of the containing
view. These two text lines are known as VisualFormat.NSLayoutContraints, and they
use text input as a visual representation, describing how views present in their parent
views.

Building an Audio Player Application

[155]

Looking at the other properties we pass into the AddConstraints function, we pass in
NSLayoutFormatOption used for the view to abide by (that is, aligned left/top), then the
metrics and NSDictionary, which will contain the UI elements involved in the constraint.
You will notice some other constraints, such as these:

"H:|-5-[audioPlayerButton]-5-|"

These constraints include padding around the UI element:

"H:|-[audioPlayerButton]-|"

We can even simply place a dash character around the UI element, which will place a
default padding of 8.

MVVMCross setup inside the PCL
Further into the MVVMCross framework, let's begin by building the MvxApplication
class.

This is not the same as the application class inside a Xamarin.Forms
application.

public class App : MvxApplication
 {
 public override void Initialize()
 {
 CreatableTypes()
 .EndingWith("Service")
 .AsInterfaces()
 .RegisterAsLazySingleton();
 }
 }

Pay attention to the CreatableTypes function being called; the function uses reflection to
find all classes in the core assembly that are Creatable, meaning they have a public
constructor and they are not abstract. Then, following this function, only register the class
interfaces with their names ending in Service as lazy singletons.

Building an Audio Player Application

[156]

The lazy singleton ensures that if a class implements IOne and ITwo, then
the same instance will be returned when resolving both IOne and ITwo.

There is one more part to add to the Application class. We must register the starting
point, so add the following line under the RegisterAsLazySingleton function:

RegisterAppStart<MainPageViewModel>();

Setting up MVVMCross with iOS
Now we move over to the iOS project. For each platform, we must implement a Setup class
that will be used to instantiate the MvxApplication class. Add a new class called
IosSetup and implement the following:

public class IosSetup : MvxIosSetup
 {
 public IosSetup(MvxApplicationDelegate applicationDelegate,
UIWindow window) : base(applicationDelegate, window)
 {
 }

 protected override IMvxApplication CreateApp()
 {
 return new App();
 }

 protected override IMvxTrace CreateDebugTrace()
 {
 return new DebugTrace();
 }
 }

Firstly, we must include a constructor that takes in an MvxApplicationDelegate and
UIWindow; these will be passed into the base on instantiation. We also have two functions
that are overriden as part of the MvxIosSetup object.

Start with the CreateApp function. All we are doing here is instantiating the
MvxApplication class that we implemented previously. We will break this down into
more detail when we implement the AppDelegate class.

Building an Audio Player Application

[157]

We must also override the CreateDebugTrace functions, which will instantiate a new
DebugTrace object. Firstly, let's create a new folder called Logging inside our PCL project,
add a new file called DebugTrace.cs, and implement the following:

public class DebugTrace : IMvxTrace
 {
 public void Trace(MvxTraceLevel level, string tag, Func<string>
message)
 {
 Debug.WriteLine(tag + ":" + level + ":" + message());
 }

 public void Trace(MvxTraceLevel level, string tag, string message)
 {
 Debug.WriteLine(tag + ":" + level + ":" + message);
 }

 public void Trace(MvxTraceLevel level, string tag, string message,
params object[] args)
 {
 try
 {
 Debug.WriteLine(string.Format(tag + ":" + level + ":" +
message, args));
 }
 catch (FormatException)
 {
 Trace(MvxTraceLevel.Error, tag, "Exception during trace of
{0} {1}", level, message);
 }
 }
 }

As part of the IMvxTrace interface, we must implement all these functions. The functions
are not complicated; we are simply catching errors and outputting text to the console when
these functions are called. All the functions called via the DebugTrace object are routed via
a singleton object. We will be sharing this object between the two platform projects.

Great! Now that we have completed all our MVVMCross requirements for iOS, let's piece it
all together via the AppDelegate class:

public override bool FinishedLaunching (UIApplication application,
NSDictionary launchOptions)
 {
 _window = new UIWindow (UIScreen.MainScreen.Bounds);

 var setup = new IosSetup(this, window);

Building an Audio Player Application

[158]

 setup.Initialize();

 var startup = Mvx.Resolve<IMvxAppStart>();
 startup.Start();

 _window.MakeKeyAndVisible ();

 return true;
 }

What exactly are we doing in the FinishedLaunching function?

Firstly, we instantiate our UIWindow to the size of the main screen bounds. Then we
instantiate the IosSetup class by passing in the new UIWindow object, and call the
Initialize function we implemented in our MvxApplication in the PCL. Then, we use
the Mvx IoC container to resolve the IMvxAppStart interface and call Start to begin the
application at our MainPageViewModel.

Excellent! We have now set up MVVMCross with our iOS project; let's go ahead and do the
same for the Android project.

Setting up MVVMCross with Android
As we already completed the PCL setup for MVVMCross, we only need to create the setup
object, which will inherit the MvxAndroidSetup class.

Create a new file called AndroidSetup.cs and implement the following:

public class AndroidSetup : MvxAndroidSetup
 {
 public AndroidSetup(Context context) :base(context)
 {
 }

 protected override IMvxApplication CreateApp()
 {
 return new App();
 }

 protected override IMvxTrace CreateDebugTrace()
 {
 return new DebugTrace();
 }
 }

Building an Audio Player Application

[159]

This is very much the same as the iOS setup, but in the constructor we must pass in the
Android context.

Now for the final setup on Android. We don't normally have an application to override.
Instead, MVVMCross by default provides a splash screen. Delete the MainActivity class
that is automatically created, and replace it with a new activity called
SplashScreenActivity:

[Activity(Label = "AudioPlayer.Droid"
 , MainLauncher = true
 , Icon = "@drawable/icon"
 , Theme = "@style/Theme.Splash"
 , NoHistory = true
 , ScreenOrientation = ScreenOrientation.Portrait)]
 public class SplashScreenActivity : MvxSplashScreenActivity
 {
 public SplashScreenActivity(): base(Resource.Layout.SplashScreen)
 {
 }
 }

We don't need to add anything into our constructor, but we must add the MainLauncher =
true flag to the attribute to ensure this is the first thing created when the platform starts.
We must also create the new XML view for the splash screen activity. For this example, we
are going to create a simple screen with a TextView:

Try creating a splash screen that will display an image to give the
application branding.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Loading...."/>
</LinearLayout>

Building an Audio Player Application

[160]

That's everything; lets test run both platforms and we should now have the following
screen:

The SoundHandler interface
One issue with playing audio across multiple platforms is we can't share much code when
processing audio. We must create an interface and register implementations through an IoC
container.

Our next step is to create the ISoundHandler interface. In the AudioPlayer.Portable
project, add in a new folder called Sound. In this folder, add a new file called
ISoundHandler.cs and implement the following:

public interface ISoundHandler
 {
 bool IsPlaying { get; set; }

 void Load();

 void PlayPause();

 void Stop();

 double Duration();

 void SetPosition(double value);

Building an Audio Player Application

[161]

 double CurrentPosition();

 void Forward();

 void Rewind();
 }

Our interface will describe all the functions we will be using to process our audio streams
via the AudioPlayerPage interface.

Now let's go ahead and start with the iOS implementation.

Implementing the iOS SoundHandler using
the AVAudioPlayer framework
The AVAudioPlayer class is the framework we will be using to play and control our audio
streams in iOS, so let's begin by adding a new folder called Sound to the iOS project. We
then want to create a new file called SoundHandler.cs that will inherit the
ISoundHandler interface:

public class SoundHandler : ISoundHandler
 {
 }

Now let's create a private AVAudioPlayer object and add our public IsPlaying, which
will hold the playing status of the audio player:

private AVAudioPlayer _audioPlayer;

public bool IsPlaying { get; set; }

Then we add in the functions of the interface. In each function, we will be using the audio
player object to do all our audio processing:

public void Load()
 {
 _audioPlayer = AVAudioPlayer.FromUrl(NSUrl.FromFilename("Moby -
The Only Thing.mp3"));
 }

public void PlayPause()
 {
 if (_audioPlayer != null)
 {

Building an Audio Player Application

[162]

 if (IsPlaying)
 {
 _audioPlayer.Stop();
 }
 else
 {
 _audioPlayer.Play();
 }

 IsPlaying = !IsPlaying;
 }
 }

The first function will load the file from the Resources folder. In this example, we are
going to be loading in a Moby song (personally one of my favorites).

You can add in any audio file, provided the name matches the filename
being loaded via the NSURL object. If you want to use the same file as this
one, visit the GitHub link stated previously.

The second function will control starting and stopping the audio. If we click the play button
first, it will play and set the status of IsPlaying to true. Then if we click the play button
again, it will stop the audio and set the IsPlaying to false.

Now for the rest of the implementation:

public void Stop()
 {
 if (_audioPlayer != null)
 {
 _audioPlayer.Stop();
 }
 }

 public double Duration()
 {
 if (_audioPlayer != null)
 {
 return _audioPlayer.Duration;
 }

 return 0;
 }

 public void SetPosition(double value)
 {

Building an Audio Player Application

[163]

 if (_audioPlayer != null)
 {
 _audioPlayer.CurrentTime = value;
 }
 }

 public double CurrentPosition()
 {
 if (_audioPlayer != null)
 {
 return _audioPlayer.CurrentTime;
 }

 return 0;
 }

 public void Forward()
 {
 if (_audioPlayer != null)
 {
 IsPlaying = false;

 _audioPlayer.Stop();
 _audioPlayer.CurrentTime = audioPlayer.Duration;
 }
 }

 public void Rewind()
 {
 if (_audioPlayer != null)
 {
 IsPlaying = false;

 _audioPlayer.Stop();
 _audioPlayer.CurrentTime = 0;
 }
 }

All of this is straightforward: our Stop function will stop the audio. Our Rewind function
will stop the audio and set the current time to 0 (meaning the beginning of the audio
stream). Our Forward function will stop the audio and move the current time to the end of
the stream. The last two functions will set the current position of the audio stream to the
double value passed in. This will be used with our progress slider; when the slider position
changes, the value will be passed into this function to update the position of the audio
stream. Finally, the last function will retrieve the current time value so we can update our
user interface with this detail.

Building an Audio Player Application

[164]

Great! Now that we have our sound handler implemented for iOS, we want to register this
through the IoC container.

The Mvx IoC container
MVVMCross comes with its very own IoC container. It works exactly like our previous
example with Autofac, but we are not going to be using modules. Let's begin by registering
our sound handler implementation; open our AppDelegate.cs file and create a new
private function called setupIoC:

private void SetupIoC()
{
 Mvx.RegisterType<ISoundHandler, SoundHandler>();
}

We must also register our view-models so we can retrieve registered interfaces within our
view-model's constructor. Let's add a new folder called IoC inside our
AudioPlayer.Portable project. Add a new file called
PortableMvxIoCRegistrations.cs and implement the following:

public static class PortableMvxIoCRegistrations
 {
 public static void InitIoC()
 {
 Mvx.IocConstruct<MainPageViewModel>();
 Mvx.IocConstruct<AudioPlayerPageViewModel>();
 }
 }

Now we must call the static function InitIoC from the AppDelegate function SetupIoC:

private void SetupIoC()
 {
 Mvx.RegisterType<ISoundHandler, SoundHandler>();
 PortableMvxIoCRegistrations.InitIoC();
 }

Now that we have everything we require registered inside the IoC container, let's begin
building the AudioPlayerPage.

Building an Audio Player Application

[165]

The audio player
Our next step in this project is to build the user interface for controlling the audio. Add a
new file called AudioPlayerPage.cs inside the Views folder; don't forget to add the
attribute above the class declaration to register the view-model for the MVVMCross
framework:

[MvxViewFor(typeof(AudioPlayerPageViewModel))]
public class AudioPlayerPage : MvxViewController
{
 private UIButton playButton;

 private UISlider _progressSlider;

 private bool _playing;

 private AudioPlayerPageViewModel _model;
}

We have declared some local scope variables that need to be used across
multiple functions; you will see how these will be used later.

Now let's create the UI elements via the ViewDidLoad function:

public override void ViewDidLoad()
 {
 base.ViewDidLoad();

 var mainView = new UIView()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 BackgroundColor = UIColor.White
 };

 var buttonView = new UIView()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 BackgroundColor = UIColor.Clear
 };

 var imageView = new UIImageView()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 ContentMode = UIViewContentMode.ScaleAspectFit,
 Image = new UIImage("moby.png")

Building an Audio Player Application

[166]

 };

 var descriptionLabel = new UILabel()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 TextAlignment = UITextAlignment.Center
 };

 var startLabel = new UILabel()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 TextAlignment = UITextAlignment.Left,
 };

 var endLabel = new UILabel()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 TextAlignment = UITextAlignment.Right,
 };

 _progressSlider = new UISlider()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 MinValue = 0
 };

 _playButton = new UIButton(UIButtonType.Custom)
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 };
 var rewindButton = new UIButton(UIButtonType.Custom)
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 };
 var fastForwardButton = new UIButton(UIButtonType.Custom)
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 };
 }

We have labels for displaying the current track name, the start time, and the end time. We
also have our buttons for controlling the audio stream (play, pause, rewind, and forward).
Finally, we have our progress slider for animating the current time of the audio; we are also
going to be using this to change the position of the audio.

Building an Audio Player Application

[167]

We now want to add the button events for controlling some UI changes on the button
images; add the event handler assignation under the declaration of the play button:

_playButton.TouchUpInside += HandlePlayButton;
 _playButton.SetImage(UIImage.FromFile("play.png"),
UIControlState.Normal);

The TouchUpInside event will fire every time we click the button.

Then create the function for the event handler:

 private void HandlePlayButton(object sender, EventArgs e)
 {
 _playing = !_playing;
 _playButton.SetImage(UIImage.FromFile(playing ? "pause.png" :
"play.png"), UIControlState.Normal);
 }

Every time we click the play button, it will move the image back and forth between the play
and pause icon. Now let's add the rewind and forward button handlers; add the following
lines under each UI element declaration:

rewindButton.TouchUpInside += HandleRewindForwardButton;
 rewindButton.SetImage(UIImage.FromFile("rewind.png"),
UIControlState.Normal);
fastForwardButton.TouchUpInside += HandleRewindForwardButton;
fastForwardButton.SetImage(UIImage.FromFile("fast_forward.png"),
UIControlState.Normal);

Now we add the event handler function:

 private void HandleRewindForwardButton(object sender, EventArgs e)
 {
 _playing = false;
 _playButton.SetImage(UIImage.FromFile("play.png"),
UIControlState.Normal);
 }

This is similar to the play button handler, but this time we always set the playing status to
false, and set the play button image to the play icon.

Building an Audio Player Application

[168]

For all audio images, please visit the GitHub link given previously.

A cleaner code approach to NSLayout
On our previous screen, we built a very simple user interface using NSLayoutContraints.

Would you agree that the code looked quite clunky?

With our AudioPlayerPage, we are going to use a cleaner approach to coding the
NSLayoutConstraints. Firstly, create a new folder called Extras, and add a new file
called DictionaryViews.cs:

Building an Audio Player Application

[169]

This class is going to inherit the IEnumerable interface in order to create an
NSDictionary; part of this interface is we must specify the GetEnumerator function. It
will pull this from the NSDictionary; we also have our Add function, which simply adds a
new UIView to the dictionary. Then we have the static implicit operator which will return
the object as an NSDictionary (this is used so we can directly pass the object as an
NSDictionary to the FromVisualLayout function):

public class DictionaryViews : IEnumerable
 {
 private readonly NSMutableDictionary _nsDictionary;

 public DictionaryViews()
 {
 _nsDictionary = new NSMutableDictionary();
 }

 public void Add(string name, UIView view)
 {
 _nsDictionary.Add(new NSString(name), view);
 }

 public static implicit operator NSDictionary(DictionaryViews us)
 {
 return us.ToNSDictionary();
 }

 public NSDictionary ToNSDictionary()
 {
 return _nsDictionary;
 }

 public IEnumerator GetEnumerator()
 {
 return ((IEnumerable)_nsDictionary).GetEnumerator();
 }
 }

Now let's go ahead and create one of these inside our AudioPlayerPage; paste the
following under the declaration of the fast forward button:

 var views = new DictionaryViews()
 {
 {"mainView", mainView},
 {"buttonView", buttonView},
 {"imageView", imageView},
 {"descriptionLabel", descriptionLabel},
 {"startLabel", startLabel},

Building an Audio Player Application

[170]

 {"endLabel", endLabel},
 {"progressSlider", progressSlider},
 {"playButton", playButton},
 {"rewindButton", rewindButton},
 {"fastForwardButton", fastForwardButton}
 };

Great! We now have a new IEnumerable/NSDictionary with all the required views to be
used through the entire interface. We can directly pass this object into the
NSLayoutConstraint function FromVisualFormat so we don't need to repeat the
declaration of new dictionaries when we create each NSLayoutContraint. Now add all the
UI elements to the correct parent views:

View.Add(mainView);

 mainView.Add(imageView);
 mainView.Add(descriptionLabel);
 mainView.Add(buttonView);
 mainView.Add(startLabel);
 mainView.Add(endLabel);
 mainView.Add(progressSlider);

 buttonView.Add(playButton);
 buttonView.Add(rewindButton);
 buttonView.Add(fastForwardButton);

Then let's build all the NSLayoutConstraints; our first is the
UIViewController'sUIView:

View.AddConstraints(
 NSLayoutConstraint.FromVisualFormat("V:|[mainView]|",
NSLayoutFormatOptions.DirectionLeftToRight, null, views)
.Concat(NSLayoutConstraint.FromVisualFormat("H:|[mainView]|",
NSLayoutFormatOptions.AlignAllTop, null, views))
 .ToArray());

We have our new approach, using the System.Linq function Concat to combine all the
NSLayoutContraints required for the view. We only have to call the AddConstraints
function once, and pass in one array of all the required constraints for that parent view.

Let's add our constraint for mainView and buttonView:

mainView.AddConstraints(
 NSLayoutConstraint.FromVisualFormat("V:|-100-
[imageView(200)]-[descriptionLabel(30)]-[buttonView(50)]-[startLabel(30)]-
[progressSlider]", NSLayoutFormatOptions.DirectionLeftToRight, null, views)
 .Concat(NSLayoutConstraint.FromVisualFormat("V:|-100-

Building an Audio Player Application

[171]

[imageView(200)]-[descriptionLabel(30)]-[buttonView(50)]-[endLabel(30)]-
[progressSlider]", NSLayoutFormatOptions.DirectionLeftToRight, null,
views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-20-
[progressSlider]-20-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-25-
[startLabel(70)]", NSLayoutFormatOptions.AlignAllTop, null, views))
.Concat(NSLayoutConstraint.FromVisualFormat("H:[endLabel(70)]-25-|",
NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-5-
[descriptionLabel]-5-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-5-
[imageView]-5-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(new[] { NSLayoutConstraint.Create(buttonView,
NSLayoutAttribute.CenterX, NSLayoutRelation.Equal, mainView,
NSLayoutAttribute.CenterX, 1, 0) })
 .ToArray());

 buttonView.AddConstraints(
 NSLayoutConstraint.FromVisualFormat("V:|-5-
[rewindButton]-5-|", NSLayoutFormatOptions.AlignAllTop, null, views)
 .Concat(NSLayoutConstraint.FromVisualFormat("V:|-5-
[playButton]-5-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("V:|-5-
[fastForwardButton]-5-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-20-
[rewindButton]-[playButton(100)]-[fastForwardButton]-20-|",
NSLayoutFormatOptions.AlignAllTop, null, views))
 .ToArray());

This is exactly the same approach, but it looks much nicer and it reduces the number of
times we call AddConstraints. The view only needs to add all the constraints once, and
lay out the elements once, so it is much more efficient.

Our final step in building the user interface is to set up the MVVMCross bindings; we use
the same approach as the MainPage. Let's create a new binding set between the
AudioPlayerPage and the AudioPlayerPageViewModel:

 var set = CreateBindingSet<AudioPlayerPage,
AudioPlayerPageViewModel>();
 set.Apply();

Before we get into creating our bindings, let's first build our AudioPlayerPageViewModel
for the AudioPlayer.Portable project.

Building an Audio Player Application

[172]

Creating AudioPlayerPageViewModel
Our AudioPlayerPageViewModel must include our ISoundHandler interface. We are
going to be controlling the audio from this view-model, so our buttons can initiate the
required events on the sound handler. Let's begin by making a new file inside the
ViewModels folder called AudioPlayerPageViewModel.cs, and implementing the
private properties to begin with:

public class AudioPlayerPageViewModel : MvxViewModel
 {
 #region Private Properties

 private readonly ISoundHandler _soundHandler;

 private string _title = "Audio Player";

 private string _descriptionMessage = "Moby - The Only Thing";

 private MvxCommand _playPauseCommand;

 private MvxCommand _forwardCommand;

 private MvxCommand _rewindCommand;

 private float _audioPosition;

 private double _currentTime;

 private double _endTime;

 private bool _updating;

 #endregion

Then we must add the public properties.

We are only going to show two of the public properties as examples, as
the code is repetitive.

public MvxCommand PlayPauseCommand
 {
 get
 {
 return _playPauseCommand;

Building an Audio Player Application

[173]

 }

 set
 {
 if (!value.Equals(_playPauseCommand))
 {
 _playPauseCommand = value;
 RaisePropertyChanged (() => PlayPauseCommand);
 }
 }
 }

 public MvxCommand RewindCommand
 {
 get
 {
 return _rewindCommand;
 }

 set
 {
 if (!value.Equals(_rewindCommand))
 {
 _rewindCommand = value;
 RaisePropertyChanged(() => RewindCommand);
 }
 }
 }

We also need to add these two public variables, which are going to take both the
CurrentTime and EndTime double values and create a formatted string from a TimeSpan
value.

Notice how we are also calling RaisePropertyChanged on the string inside the double
setter? Every time we get a new current time value, the formatted string needs to update as
well:

public string CurrentTimeStr
 {
 get
 {
 return
TimeSpan.FromSeconds(CurrentTime).ToString("mm\\:ss");
 }
 }

 public double CurrentTime

Building an Audio Player Application

[174]

 {
 get
 {
 return _currentTime;
 }

 set
 {
 if (!value.Equals(_currentTime))
 {
 _currentTime = value;
 RaisePropertyChanged(() => CurrentTime);
 // everytime we change the current time, the time span
values must also update
 RaisePropertyChanged(() => CurrentTimeStr);
 }
 }
 }

 public string EndTimeStr
 {
 get
 {
 return TimeSpan.FromSeconds(EndTime).ToString("mm\\:ss");
 }
 }

 public double EndTime
 {
 get
 {
 return _endTime;
 }

 set
 {
 if (!value.Equals(_endTime))
 {
 _endTime = value;
 RaisePropertyChanged(() => EndTime);
 RaisePropertyChanged(() => EndTimeStr);
 }
 }
 }

Building an Audio Player Application

[175]

Now for our constructor function:

#region Constructors

 public AudioPlayerPageViewModel (ISoundHandler soundHandler)
 {
 _soundHandler = soundHandler;

 // load sound file
 _soundHandler.Load();

 EndTime = _soundHandler.Duration();
 }

 #endregion

Here we are pulling out the ISoundHandler implementation from the IoC container, as we
will be registering this view-model inside the IoC container.

Our next step is to add two new functions to the view-model, Load and Dispose. These
two functions will be called when the AudioPlayerPage is shown, and when it disappears.
They will also be used when the audio stream is started and stopped.

Let's first add the Load function:

public void Load()
 {
 // make sure we only start the loop once
 if (!_updating)
 {
 _updating = true;

 // we are going to post a regular update to the UI with the
current time
 var context = SynchronizationContext.Current;

 Task.Run(async () =>
 {
 while (_updating)
 {
 await Task.Delay(1000);

 context.Post(unused =>
 {
 var current = _soundHandler.CurrentPosition();
;

Building an Audio Player Application

[176]

 if (current > 0)
 {
 CurrentTime = current;
 }

 }, null);
 }
 });
 }
 }

The Load function will be called when the page is shown, and when the audio stream starts.
The function uses the Task framework to run a repeating loop in the background, so every
second we will retrieve the current time of the audio stream from the ISoundHandler
interface. We propagate the updates to the current time label on the AudioPlayerPage
interface.

Notice how we are using the SynchronisationContext.Current variable?

This is used for threading purposes so we make sure that we set our CurrentTime variable
on the main UI thread. Since this loop is running on a separate thread, if we made changes
to this variable on a separate thread, it will break the application because you are trying to
make UI changes off the main UI thread.

Now for the Dispose function; this will be called every time the AudioPlayerPage
disappears and when the audio stream is stopped (we don't need to make updates to the UI
when the audio stream is not playing). This ensures we stop the background loop when the
page is not visible:

public void Dispose()
 {
 _updating = false;
 _soundHandler.Stop();
 }

The private variable _updating is used to control the status of whether the background
loop is running, so we make sure that only one background loop is running at any one time.

Now let's initiate the audio commands:

_playPauseCommand = new MvxCommand(() =>
 {
 // start/stop UI updates if the audio is not playing
 if (soundHandler.IsPlaying)
 {
 Dispose();

Building an Audio Player Application

[177]

 }
 else
 {
 Load();
 }

 _soundHandler.PlayPause();
 });

 _rewindCommand = new MvxCommand(() =>
 {
 // set current time to the beginning
 CurrentTime = 0;
 _soundHandler.Rewind();
 Dispose();
 });

 _forwardCommand = new MvxCommand(() =>
 {
 // set current time to the end
 CurrentTime = _soundHandler.Duration();
 _soundHandler.Forward();
 Dispose();
 });

Looking more closely at these commands, using PlayPauseCommand we will call Load or
Dispose based on the playing status of the audio stream, and it will also call PlayPause on
the ISoundHandler interface, which controls the audio stream. The rewindCommand
property will set the current time to 0, set the current time on the audio stream to 0, and
stop the background loop. The forwardCommand property will set the current time to the
end duration of the audio stream (which it will retrieve from the ISoundHandler
interface), set the current time on the audio stream to the end duration, and stop the
background loop.

Finally, we have to create a public function to set the current time of the audio stream.
This will be used by our progress slider every time the value changes, this function will be
called:

 public void UpdateAudioPosition(double value)
 {
 _soundHandler.SetPosition(value);
 }

Building an Audio Player Application

[178]

Now revert back to the AudioPlayerPage and add the final additions.

Since we declared a local variable before for the view-model that is bound to the view, we
want to pull this out of the data context of the UIView:

_model = (AudioPlayerPageViewModel)DataContext;

Our local variable has the bounded view-model. We need to call some public methods on
the view-model from our view. We must add in our event handler for the ValueChanged
event on the progress slider. Add the following under the declaration of the progress slider:

progressSlider.ValueChanged += ProgressSliderValueChanged;

Then create the event handler function:

 private void ProgressSliderValueChanged(object sender, EventArgs e)
 {
 _model.UpdateAudioPosition(_progressSlider.Value);
 }

And add the calls to the Load function when the page appears:

public override void ViewDidAppear(bool animated)
 {
 _model.Load();

 base.ViewDidAppear(animated);
 }

Override ViewDidDisappear to call the Dispose function:

public override void ViewDidDisappear(bool animated)
 {
 _model.Dispose();

 base.ViewDidDisappear(animated);
 }

And create the following bindings in the binding set:

set.Bind(this).For("Title").To(vm => vm.Title);
 set.Bind(descriptionLabel).To(vm => vm.DescriptionMessage);
 set.Bind(currentLabel).To(vm => vm.CurrentTime);
 set.Bind(endLabel).To(vm => vm.EndTime);
 set.Bind(progressSlider).For(v => v.Value).To(vm =>
vm.CurrentTime);
 set.Bind(progressSlider).For(v => v.MaxValue).To(vm =>
vm.EndTime);

Building an Audio Player Application

[179]

 set.Bind(playButton).To(vm => vm.PlayPauseCommand);
 set.Bind(rewindButton).To(vm => vm.RewindCommand);
 set.Bind(fastForwardButton).To(vm => vm.ForwardCommand);

We have our labels bound to the description, which are hard coded. This is why we must
make changes to the CurrentTime variable on the main UI thread, because it affects what
is displayed on the currentLabel. We also have our MvxCommand bindings on our audio
buttons. Finally, we have our bindings on the Value property of the progress slider to
match the CurrentTime variable, and the MaxValue to match the end time of the audio
stream, so it matches the percentage playing time of the audio stream.

Excellent! Try running the application and playing around with the play/pause and
progress slider functionality.

Let's move on to building the equivalent for the Android version.

Implementing the Android SoundHandler
using the MediaPlayer framework
To implement the same functionality for the sound handler interface in Android, we will be
using the the MediaPlayer framework.

Let's create a new folder in the Android project called Sound, and create a new file called
SoundHandler.cs:

public class SoundHandler : ISoundHandler
{
 private MediaPlayer _mediaPlayer;

 public bool IsPlaying { get; set; }
}

Building an Audio Player Application

[180]

The same as the iOS version, let's add the Load and PlayPause functions:

public void Load()
 {
 try
 {
 _mediaPlayer = new MediaPlayer();
 _mediaPlayer.SetAudioStreamType(Stream.Music);

 AssetFileDescriptor descriptor =
Android.App.Application.Context.Assets.OpenFd("Moby - The Only Thing.mp3");
 _mediaPlayer.SetDataSource(descriptor.FileDescriptor,
descriptor.StartOffset, descriptor.Length);

 _mediaPlayer.Prepare();
 _mediaPlayer.SetVolume(1f, 1f);
 }
 catch (Exception e)
 {
 Debug.WriteLine(e);
 }
 }

 public void PlayPause()
 {
 if (_mediaPlayer != null)
 {
 if (IsPlaying)
 {
 _mediaPlayer.Pause();
 }
 else
 {
 _mediaPlayer.Start();
 }

 IsPlaying = !IsPlaying;
 }
 }

Building an Audio Player Application

[181]

We have some exception handling in the Load function just in case for any reason the file
doesn't load; it will stop our app from crashing. When you place the .mp3 inside the
Android project, it must be placed in the Assets folder, and make sure the file build action
is set to AndroidAsset:

Inside our load function, after we initialize the MediaPlayer object, we set the stream type
to Stream.Music, and then we use AssestFileDescriptor to retrieve the .mp3 file.
The MediaPlayer's source is then set to the .mp3 file from AssetFileDescriptor. We
then call Prepare and set the volume to full (1.0f).

Our PlayPause function is very simple; we simply check whether the audio is playing to
determine whether we pause or start the audio stream.

Now for the other functions:

public void Stop()
 {
 if (_mediaPlayer != null)
 {
 _mediaPlayer.Stop();
 _mediaPlayer.Reset();
 }

Building an Audio Player Application

[182]

 }

 public double Duration()
 {
 if (_mediaPlayer != null)
 {
 return _mediaPlayer.Duration / 1000;
 }

 return 0;
 }

 public void SetPosition(double value)
 {
 if (_mediaPlayer != null)
 {
 _mediaPlayer.SeekTo((int)value * 1000);
 }
 }

 public double CurrentPosition()
 {
 if (_mediaPlayer != null)
 {
 return _mediaPlayer.CurrentPosition / 1000;
 }

 return 0;
 }

 public void Forward()
 {
 if (_mediaPlayer != null)
 {
 IsPlaying = false;

 _mediaPlayer.Pause();
 _mediaPlayer.SeekTo(_mediaPlayer.Duration);
 }
 }

 public void Rewind()
 {
 if (_mediaPlayer != null)
 {
 IsPlaying = false;

 _mediaPlayer.Pause();

Building an Audio Player Application

[183]

 _mediaPlayer.SeekTo(0);
 }
 }

The Stop function requires the Reset function to be called on the MediaPlayer after we
call Stop. The Duration and CurrentPosition functions require the value to be divided
by 1,000, as the values from MediaPlayer are in milliseconds. This is the same when we
call SeekTo on MediaPlayer; because we are passing in a value in seconds, it has to be
multiplied by 1,000 to give the answer in milliseconds. Then on to the Rewind and Forward
functions; we must Pause the audio stream first then call the SeekTo method to set the
stream position.

Excellent! We now have our Android implementation for the ISoundHandler interface, so
let's get on to building the Android user interface.

XML and Mvx bindings
Our Android user interface will start at MainPage, so we need to add a new file called
MainPage.xml, and a new MvxActivity called MainPage.cs. Firstly, add in a new folder
called Views; this is where we will be storing our MvxActivities. Let's add a new file
called MainPage.cs to the Views folder, and create a new file in the Resources | Layout
folder called Main.xml. Our Main.xml is going to start with a LinearLayout and contain
four elements: ImageView, TextView, and two Buttons:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:local="http://schemas.android.com/apk/res-auto"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center">
 <ImageView
 android:id="@+id/AudioImage"
 android:layout_width="200dp"
 android:layout_height="200dp"
 android:src="@drawable/audio" />
 <TextView
 android:id="@+id/DescriptionText"
 android:textSize="32sp"
 android:layout_marginBottom="5dp"
 android:layout_marginTop="5dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Building an Audio Player Application

[184]

 local:MvxBind="Text DescriptionMessage" />
 <Button
 android:id="@+id/AudioPlayerButton"
 android:layout_width="200dp"
 android:layout_height="wrap_content"
 local:MvxBind="Text AudioPlayerTitle; Click AudioPlayerCommand" />
 <Button
 android:id="@+id/ExitButton"
 android:layout_width="200dp"
 android:layout_height="wrap_content"
 local:MvxBind="Text ExitTitle; Click ExitCommand" />
</LinearLayout>

Let's look more closely at the local:Mvxbind properties on the Buttons and TextView.
This is where we will set up our bindings to the view-model. We must also add this line:

xmlns:local="http://schemas.android.com/apk/res-auto"

Does this look familiar?

It is the same as our XAML sheets in Xamarin.Forms; we must import this namespace so
we can use the binding properties on our UI elements.

Don't forget to copy all the images into the drawable folder before you try
building the project.

MvxActivities
MvxActivities are an extended object from a regular Android Activity; the app knows
we are using the MVVMCross binding system.

Let's implement MainPageMvxActivity:

[Activity(Label = "Audio Player")]
 public class MainPage : MvxActivity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 SetupIoC();

 SetContentView(Resource.Layout.MainPage);

Building an Audio Player Application

[185]

 }

 private void SetupIoC()
 {
 Mvx.RegisterType<ISoundHandler, SoundHandler>();
 PortableMvxIoCRegistrations.InitIoC();
 }
 }

We will need to set up our IoC registrations in the IoC container when this activity is
created. Then we simply set the content view to the XML sheet we created previously. Let's
test out the Android application and click run; you should now have a MainPage screen
like this:

Building an Audio Player Application

[186]

Now we move on to the fun part: let's add a new .xml and MvxActivity for the
AudioPlayerPage. Before we begin implementing the user interfaces for this page, we will
need to create a custom SeekBar, because we want to register a new type of event for the
"UP" motion event. Create a new folder called Controls and add a new file called
CustomSeekBar.cs, then implement the following:

public class CustomSeekBar : SeekBar
 {
 public event EventHandler ValueChanged;

 protected CustomSeekBar(IntPtr javaReference, JniHandleOwnership
transfer)
 : base(javaReference, transfer)
 {
 }

 public CustomSeekBar(Context context)
 : base(context)
 {

 }

 public CustomSeekBar(Context context, IAttributeSet attrs)
 : base(context, attrs)
 {
 }

 public CustomSeekBar(Context context, IAttributeSet attrs, int
defStyle)
 : base(context, attrs, defStyle)
 {
 }

 public override bool OnTouchEvent(MotionEvent evt)
 {
 if (!Enabled)
 return false;

 switch (evt.Action)
 {
 // only fire value change events when the touch is released
 case MotionEventActions.Up:
 {
 if (ValueChanged != null)
 {
 ValueChanged(this, EventArgs.Empty);
 }

Building an Audio Player Application

[187]

 }
 break;
 }

 // we also want to fire all base motion events
 base.OnTouchEvent(evt);

 return true;
 }
 }

We need to do this custom event because we are binding the progress of the audio stream to
the SeekBar. Since we want to control the audio position, we need to make sure that only
this event fires when we finish moving the seek bar.

Why can't we just use the ProgressChanged event, isn't that the same thing?

If we were to register the view-model function UpdateAudioPosition to the
ProgressChanged event, every time the background loop updates the current time
property, the SeekBar will call this event and try to set the audio position every second we
update the SeekBar.

Now let's build the XML for the AudioPlayerPage:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:local="http://schemas.android.com/apk/res-auto"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center">
 <ImageView
 android:id="@+id/AudioImage"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="80dp"
 android:layout_width="200dp"
 android:layout_height="200dp"
 android:src="@drawable/moby" />
 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:gravity="center">
 <ImageButton
 android:id="@+id/RewindButton"
 android:layout_width="50dp"
 android:layout_height="50dp"

Building an Audio Player Application

[188]

 android:src="@drawable/rewind"
 local:MvxBind="Click RewindCommand" />
 <ImageButton
 android:id="@+id/PlayButton"
 android:layout_marginLeft="20dp"
 android:layout_marginRight="20dp"
 android:layout_width="50dp"
 android:layout_height="50dp"
 android:src="@drawable/play"
 local:MvxBind="Click PlayPauseCommand" />
 <ImageButton
 android:id="@+id/ForwardButton"
 android:layout_width="50dp"
 android:layout_height="50dp"
 android:src="@drawable/fast_forward"
 local:MvxBind="Click ForwardCommand" />
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:gravity="center">
 <TextView
 android:id="@+id/CurrentTimeText"
 android:textSize="32sp"
 android:layout_marginBottom="5dp"
 android:layout_marginTop="5dp"
 android:layout_marginLeft="20dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:gravity="left"
 local:MvxBind="Text CurrentTimeStr" />
 <TextView
 android:id="@+id/EndTimeText"
 android:textSize="32sp"
 android:layout_marginBottom="5dp"
 android:layout_marginTop="5dp"
 android:layout_marginRight="20dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:gravity="right"
 local:MvxBind="Text EndTimeStr" />
 </LinearLayout>
 <AudioPlayer.Droid.Controls.CustomSeekBar
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

Building an Audio Player Application

[189]

 android:layout_gravity="center_vertical"
 android:layout_marginLeft="20dp"
 android:layout_marginRight="20dp"
 android:id="@+id/seekBar"
 local:MvxBind="Progress CurrentTime; Max EndTime" />
</LinearLayout>

It is a fairly large .xml sheet. Starting from the top, we have LinearLayout, which
contains ImageView at the very top where we will display the album art. We then have two
LinearLayouts, which contain horizontal orientation for the three ImageButtons and the
TextViews. These are stacked one under the other.

Finally, we have our custom SeekBar at the very bottom under the TextView items. You
will notice the layout_weight property used on the TextView items, so both have the
same width. We then use gravity to float each label to either side of the SeekBar.

Fantastic! Now let's add the MvxActivity for the AudioPlayerPage to the Views folder,
and implement the following:

[Activity(NoHistory = true)]
 public class AudioPlayerPage : MvxActivity
 {
 private bool _playing;

 private ImageButton _playButton;

 private CustomSeekBar _seekBar;

 private AudioPlayerPageViewModel _model;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 SetContentView(Resource.Layout.AudioPlayerPage);

 _seekBar = FindViewById<CustomSeekBar>(Resource.Id.seekBar);
 _seekBar.ValueChanged += handleValueChanged;

 _playButton =
FindViewById<ImageButton>(Resource.Id.PlayButton);
 _playButton.SetColorFilter(Color.White);
 _playButton.Click += handlePlayClick;

 var rewindButton =
FindViewById<ImageButton>(Resource.Id.RewindButton);
 rewindButton.SetColorFilter(Color.White);

Building an Audio Player Application

[190]

 rewindButton.Click += handleRewindForwardClick;

 var forwardButton =
FindViewById<ImageButton>(Resource.Id.ForwardButton);
 forwardButton.SetColorFilter(Color.White);
 forwardButton.Click += handleRewindForwardClick;

 _model = (AudioPlayerPageViewModel)ViewModel;
 }
 }

It all looks very similar to the iOS page. We assign the same types of event for each audio
button. Now add the event functions:

private void HandleValueChanged(object sender, System.EventArgs e)
 {
 _model.UpdateAudioPosition(_seekBar.Progress);
 }

 private void HandlePlayClick(object sender, System.EventArgs e)
 {
 _playing = !_playing;
 _playButton.SetImageResource(playing ? Resource.Drawable.pause
: Resource.Drawable.play);
 }

 private void handleRewindForwardClick(object sender,
System.EventArgs e)
 {
 _playing = false;
 _playButton.SetImageResource(Resource.Drawable.play);
 }

 protected override void OnDestroy()
 {
 _model.Dispose();

 base.OnDestroy();
 }

You will notice the NoHistory flag set to true on this Activity, so every time we load the
Activity, it loads a new Activity, and does not load any previously created
AudioPlayerPage. We also override the OnDestroy function so it will call the Dispose
method on our view-model.

Building an Audio Player Application

[191]

There is an equivalent to the following iOS line:

_model = (AudioPlayerPageViewModel)DataContext;

This is much more straightforward in Android:

_model = (AudioPlayerPageViewModel)ViewModel;

And voila! We now have our Android version.

Try running the project and relax to one of Moby's greatest hits.

Summary
In this chapter, we implemented audio on iOS and Android using Xamarin.iOS and
Xamarin.Android. We learned how to load audio, stream audio, and process audio via
start, stop, play, pause, rewind, and fast forward commands. We also built an MVVM
architecture for native using MVVM Cross. In the next chapter, we will build an application
for absorbing a web service using Xamarin.Forms. We will set up a ListView and create
an ObservableCollection for displaying
JSON objects.

5
Building a Stocklist Application

In this chapter, we step back into Xamarin.Forms and look at detailing our XAML
interfaces using CustomRenderers, Styles, and ControlTemplates. We will also look at the
use of animations and a basic introduction to compound animations. Then, we are going to
build a simple web service providing our mobile application with a JSON feed.

Expected knowledge:

JSON serialization/deserialization
Some understanding of API controllers
Visual Studio
Some understanding of Linq queries
Some understanding of Observables and IObservables
Some knowledge of IIS

In this chapter, you will learn the following:

Understanding the backend
Creating an ASP.Net Web API 2 project
Building an API controller
Setting up mobile projects
Building core mobile projects
Improving app performance
Creating a global App.xaml
Theming with ControlTemplates
Updating the MainPageViewModel
Creating Stocklist web service controller
ListViews and ObservableCollections

Building a Stocklist Application

[193]

Value converters
Styles
Further optimization with XAML
Creating StockItemDetailsPage
Custom renderers
Adding styles for custom elements
Creating the StockItemDetailsPageViewModel
Setting up native platform projects
Hosting the Web API project locally

Understanding the backend
As mobile developers, we are client side developers. We build user interfaces and absorb
JSON data from web services. One advantage of developing in both server and client is the
ability to tailor the back end to meet the needs of the mobile application. This can result in
enhancing performance with data transactions on a web API. Building fast and reliable
mobile applications can be difficult if we have to build off an old, slow-running back end. If
users experience slow and unstable
applications, they will normally never return to use it again.

In this example, we will build a simple web service that our mobile application will use.
Let's begin by opening up Visual Studio.

Building a Stocklist Application

[194]

Creating an ASP.Net Web API 2 project
We are going to start with creating a new project in Microsoft Visual Studio. Go to File |
New Project and select a new Visual C# ASP.Net project:

Building a Stocklist Application

[195]

We want to then select the Empty template and click the Web API checkbox.

We can actually test the project right away and click Run, it will automatically deploy the
site and run the application in your default browser. We now have our base ASP.NET
application template, let's look more closely at the project structure. In the Solution
Explorer, starting with the Models folder, this is where we create all our data objects that
represent the data in the application, which are the objects that will be serialized to JSON
and sent over HTTP requests. Then, in the Controllers folder, this is where we have our
API controllers, which are objects that handle HTTP requests. These are the main two areas
we are going to be focusing on.

Building a Stocklist Application

[196]

Let's start with creating a data model for a single stock item. Add a new file to the Models
folder called StockItem.cs:

public class StockItem
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
 }

This object will be serialized into JSON and passed through our API controllers for the
mobile application to retrieve. Normally, in every MVC / ASP.NET application, we have a
data source layer and a Web API layer. In our data source layer, this is where the database
sits, we store data here where our business logic layer will perform reads and writes. Our
API layer will normally use the business logic layer to access the data and send over
the network, a visual representation can be seen as follows:

Building a Stocklist Application

[197]

Building an API controller
Web API controllers are used to handle web requests. 99% of the time, mobile applications
will always use an API layer in which it will call web requests to retrieve data, perform
login, and so on. For our example, we are going to add a new empty WEBAPI 2 controller.

Implement the following:

public class StockItemsController : ApiController
 {
 List<StockItem> StockItems = new List<StockItem>() {
 new StockItem { Id = 1, Name = "Tomato Soup", Category =
"Groceries", Price = 1 },
 new StockItem { Id = 2, Name = "Yo-yo", Category = "Toys",
Price = 3.75M },
 new StockItem { Id = 3, Name = "Hammer", Category = "Hardware",
Price = 16.99M }
 };

Building a Stocklist Application

[198]

 public IEnumerable<StockItem> GetAllStockItems()
 {
 return StockItems;
 }

 public StockItem GetStockItem(int id)
 {
 var stockItem = StockItems.FirstOrDefault((p) => p.Id == id);
 if (stockItem == null)
 {
 return null;
 }

 return StockItem;
 }
 }

Looking more closely at the code above, the API has two functions, one for returning
all stock items, and another for returning a particular stock item. If we want to access this
API controller via HTTP requests, the URLs will be:

Get all stock items

 api/GetAllStockItems

Get a particular stock item by ID

 api/GetStockItem

Does this format look familiar?

We will use these two calls inside our mobile application to retrieve data we have sitting on
the backend.

In order to have this API live we have two options: we can either deploy
the site online (that is, using Azure or Amazon), or we can host it locally
(using localhost).

Let's test the API layer and run the project. When the browser opens, paste the following
URL into the browser: localhost:{PORT}/api/GetAllStockItems.

Building a Stocklist Application

[199]

The port number will be automatically assigned when the project is run so
make sure you paste the correct port number specific to your project.

You should see an XML displayer with the results from the items in the API controller.

Setting up the mobile projects
Moving back to the client side, we now need to start building our mobile applications. Let's
start with creating a blank Xamarin.Forms application:

Call the application Stocklist, and let's start with the iOS application.

Building a Stocklist Application

[200]

Building core mobile projects
Let's add two new PCL projects, call them Stocklist.XamForms and
Stocklist.Portable.

In the Stocklist.Portable project we want to add the following nuget packages:

Microsoft HTTP client libraries
Autofac
Newtonsoft.Json
Reactive extensions (main library)

In the Stocklist.XamForms project we want to add the following nuget packages:

Microsoft HTTP client libraries
Autofac
Xamarin.Forms
Reactive extensions (main library)

Building a Stocklist Application

[201]

Just copy the exact names of the libraries to bring up the libraries you
require via the Package Manager tool.

Now that we have our projects ready to go we can begin coding. From our previous
solution in Chapter 3, Building a GPS Locator Application, we want to reuse some major
parts, such as the IoC container, modules, and cross-platform navigation.

Keeping mobile solutions modular and decoupled makes it easier to share
code between different solutions. Why do you think we have nuget
packages?

Like our Locator application, we will reuse the MainPage and
MainPageViewModel objects. Copy these items over to your new projects and place the
XAML page into a new folder called Pages in Stocklist.XamForms, and place the view-
model object into a new folder called ViewModels inside Stocklist.Portable.

Improving app performance
Let's look at a few ways we can improve application performance. Mobile phones do not
have desktop processors, users typically run your application an older devices, meaning the
performance power maybe be lacking. This is why we must test applications on older and
newer devices to compare the performance difference and any API/OS changes that may
effect behavior.

Running applications on simulators can give different results when
running on devices. Make sure you always test on physical devices before
releasing.

Let's take a look at the MainPage.xaml page from the Locator project. Here we will make
small tweaks in the XAML layout to slightly improve the performance. The changes are
very minor and will only improve performance by a millisecond here and there, but when
you combine 100s of these small improvements, the end result will make a difference.

Building a Stocklist Application

[202]

We can see a Grid with three elements inside, now why did we pick a Grid? Grids are good
for views which we use to control any overlaying, or covering entire section/pages in which
it is placed. Our first question is do we need to cover the entire screen for the landing page?
No we don't, so we can replace the Grid with a StackLayout.

One rule to apply, don't use a Grid when a StackLayout will do, and don't use multiple
StackLayouts when a Grid will do.

One StackLayout will render faster than a single Grid when we don't need to cover the
screen or do any overlaying. Let's replace the containing Grid with a StackLayout:

<StackLayout x:Name="StackLayout" Spacing="10" Orientation="Vertical"
Padding="10, 10, 10, 10" VerticalOptions="Center">
 <Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
HorizontalOptions="Center" Font="Arial, 20">
 <Label.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Black"
 WinPhone="Black"
 iOS="Black">
 </OnPlatform>
 </Label.TextColor>
 </Label>

 <Button x:Name="StocklistButton" Text="{Binding LocationTitle}"
Command="{Binding LocationCommand}" BackgroundColor="Silver">
 <Button.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Navy"
 WinPhone="Blue"
 iOS="Black">
 </OnPlatform>
 </Button.TextColor>
 </Button>

 <Button x:Name="ExitButton" Text="{Binding ExitTitle}"
Command="{Binding ExitCommand}" BackgroundColor="Silver">
 <Button.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Navy"
 WinPhone="Blue"
 iOS="Black">
 </OnPlatform>
 </Button.TextColor>
 </Button>
 </StackLayout>

Building a Stocklist Application

[203]

Don't stop now, let's add some more. Turn attention to the DescriptionLabel, creating
bindings for static text values that never change is wasteful. Instead, we will use Spans
because they are a tad faster to render. First, create a new .resx file called
LabelResources.resx, add a new variable called DescriptionMessage, and set the
value to the string Welcome to the Grocery Store:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <resheader name="resmimetype">
 <value>text/microsoft-resx</value>
 </resheader>
 <resheader name="version">
 <value>2.0</value>
 </resheader>
 <resheader name="reader">
 <value>System.Resources.ResXResourceReader, System.Windows.Forms,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
 </resheader>
 <resheader name="writer">
 <value>System.Resources.ResXResourceWriter, System.Windows.Forms,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
 </resheader>

 <data name="DecriptionMessage" xml:space="preserve">
 <value>Welcome to the Grocery Store</value>
 </data>
</root>

Ignore everything above the first data tag; this will be automatically
generated when the file is created.

Now, let's import the namespace prefix in our MainPage:

xmlns:resx="clr-
namespace:Stocklist.Portable.Resources;assembly=Stocklist.Portable"

Add the preceding line to the starting tag of the page:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:resx="clr-
namespace:Stocklist.Portable.Resources;assembly=Stocklist.Portable"
 x:Class="Stocklist.XamForms.Pages.MainPage"
 BackgroundColor="White">

Building a Stocklist Application

[204]

Now let's rebuild the label item:

<Label x:Name="DesciptionLabel" HorizontalOptions="Center" >
 <Label.FormattedText>
 <FormattedString>
 <Span Text="{x:Static
resx:LabelResources.DecriptionMessage}"
 FontFamily="Arial"
 FontSize="24">
 <Span.ForegroundColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Black"
 WinPhone="Black"
 iOS="Black">
 </OnPlatform>
 </Span.ForegroundColor>

 </FormattedString>
 </Label.FormattedText>
 </Label>

Looking at this more closely, we have a Span that is enclosed by a FormattedString tag,
and the FormattedString tag is enclosed in the Label.FormattedText property. The
Span is taking a static reference from our new LabelResources, and we have also moved
the OnPlatform changes into the Span object (exactly the same as the label, but instead of
the TextColor property, we are using the Foreground property).

These are two tiny enhancements for one label, you probably won't notice much of a
difference in performance. If we had a page with a lot of static labels, it would make a small
difference in loading speeds. Rendering labels is expensive.

We can also apply these performance improvements to both button titles. Let's remove the
bindings for the Text property on both buttons and replace them with the static values.
Open up the LabelResources file and add the static values as follows:

<data name="ExitTitle" xml:space="preserve">
 <value>Exit</value>
 </data>
 <data name="StocklistTitle" xml:space="preserve">
 <value>Stock list</value>
 </data>

Then we apply it to the properties of the buttons:

Text="{x:Static resx:LabelResources.StocklistTitle}"
Text="{x:Static resx:LabelResources.ExitTitle}"

Building a Stocklist Application

[205]

To finish off the landing page, let's add an image above the buttons:

<Image x:Name="Image" Source="stocklist.png" IsOpaque="true"
HeightRequest="120" WidthRequest="120"/>

All image files can be retrieved from the GitHub link: h t t p s : / / g i t h u b . c o

m / f l u s h a r c a d e / c h a p t e r 5 - s t o c k l i s t.

The property IsOpaque is flagged to true on this image because the image is opaque.
Setting this property to true allows another small performance enhancement. Transparent
images are expensive to render.

Our last addition to the page is to set the title of the page to another static value from our
LabelResources. Add a new value called WelcomeTitle:

<data name="WelcomeTitle" xml:space="preserve">
 <value>Welcome</value>
</data>

Now let's add it to the starting flag for MainPage:

Title="{x:Static resx:LabelResources.WelcomeTitle}"

Our finished implementation will look as follows:

<StackLayout x:Name="StackLayout" Spacing="10" Orientation="Vertical"
Padding="10, 10, 10, 10" VerticalOptions="Center"
HorizontalOptions="Center" >
 <Image x:Name="Image" Source="stocklist.png" IsOpaque="true"
HeightRequest="120" WidthRequest="120"/>
 <Label x:Name="DesciptionLabel" >
 <Label.FormattedText>
 <FormattedString>
 <Span Text="{x:Static
resx:LabelResources.DecriptionMessage}"
 FontFamily="Arial"
 FontSize="24">
 <Span.ForegroundColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Black"
 WinPhone="Black"
 iOS="Black">
 </OnPlatform>
 </Span.ForegroundColor>

https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist

Building a Stocklist Application

[206]

 </FormattedString>
 </Label.FormattedText>
 </Label>

 <Button x:Name="StocklistButton" Text="{x:Static
resx:LabelResources.StocklistTitle}" Command="{Binding StocklistCommand}"
BackgroundColor="Silver">
 <Button.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Navy"
 WinPhone="Blue"
 iOS="Black">
 </OnPlatform>
 </Button.TextColor>
 </Button>

 <Button x:Name="ExitButton" Text="{x:Static
resx:LabelResources.ExitTitle}" Command="{Binding ExitCommand}"
BackgroundColor="Silver">
 <Button.TextColor>
 <OnPlatform x:TypeArguments="Color"
 Android="Navy"
 WinPhone="Blue"
 iOS="Black">
 </OnPlatform>
 </Button.TextColor>
 </Button>
 </StackLayout>

Let's review the small changes we made to this one ContentPage:

Don't use a StackLayout when a Grid will do
Don't use multiple StackLayouts, use a Grid
Replace bindings with static values where possible
Set the IsOpaque flag to true when the image is opaque
Use FormattedText and Span on labels with static label values

The more enhancements we can apply, the faster your application will run. We will look at
more enhancements in later projects.

Building a Stocklist Application

[207]

Creating a global App.xaml
In all Xamarin.Forms projects we must create an Application file that inherits the
Application class. We are going to extend this Application file and create a global
resource dictionary. If you came from WPF you will recognize the use of a global resource
dictionary that we can reference in all XAML sheets. This global resource dictionary is kept
in the App.xaml file. It will have references to different converters, styles, and data
templates. Rather than declaring static resource dictionaries at the top of every
ContentPage or ContentView, we want to create only one dictionary that every XAML
interface can access. This means we only create one dictionary at startup throughout the
entire life of the application, rather than creating multiple dictionaries on views when they
are displayed.

Let's create a new ContentPage, call it App.xaml, and place it in the
Stocklist.XamForms project. We can now remove the App.cs file that already exists in
this project. Inside the App.xaml file, implement the following:

<Application
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Stocklist.XamForms.App">
 <Application.Resources>
 <ResourceDictionary>
 </ResourceDictionary>
 </Application.Resources>
</Application>

We declare an Application object using XAML, and in the resources section of
the application we create the global dictionary. We also need to open the App.xaml.cs
file and initialize the component (exactly the same as the initialization of the ContentPage
and ContentView), the resource dictionary, and the MainPage object in the Application:

public partial class App : Application
 {
 public App()
 {
 this.InitializeComponent();

// The Application ResourceDictionary is available in Xamarin.Forms 1.3 and
later
 if (Application.Current.Resources == null)
 {
 Application.Current.Resources = new ResourceDictionary();
 }

Building a Stocklist Application

[208]

 this.MainPage = IoC.Resolve<NavigationPage>();
 }

 protected override void OnStart()
 {
 // Handle when your app starts
 }

 protected override void OnSleep()
 {
 // Handle when your app sleeps
 }

 protected override void OnResume()
 {
 // Handle when your app resumes
 }
 }

Didn't we forget to do something prior to resolving NavigationPage?

We must add our XamForms module to the IoC container. First, let's reuse the navigation
setup from the Locator project. Create a new folder called UI and copy the following files
from the Xamarin.Forms project in the Locator application:

INavigableXamarinFormsPage.cs

NavigationService.cs

XamarinNavigationExtensions.cs

We will need to change the namespace in each file from Locator.UI
to Stocklist.XamForms.UI, and make changes to the PageNames enum in the GetPage
function:

private Page GetPage(PageNames page)
 {
 switch(page)
 {
 case PageNames.MainPage:
 return IoC.Resolve<MainPage> ();
 case PageNames.StocklistPage:
 return IoC.Resolve<Func<StocklistPage>>()();
 default:
 return null;
 }
 }

Building a Stocklist Application

[209]

Great! We now have the navigation service ready, let's register this with the
XamFormsModule. Create a new folder in the Stocklist.XamForms project, add a new file
for XamFormsModule, implementing the following:

public class XamFormsModule : IModule
 {
 public void Register(ContainerBuilder builer)
 {
 builer.RegisterType<MainPage> ().SingleInstance();
 builer.RegisterType<StocklistPage> ().SingleInstance();

 builer.RegisterType<Xamarin.Forms.Command>
().As<ICommand>().SingleInstance();

 builer.Register (x => new
NavigationPage(x.Resolve<MainPage>())).AsSelf().SingleInstance();

 builer.RegisterType<NavigationService>
().As<INavigationService>().SingleInstance();
 }
 }

Now that our XamFormsModule is registered, we can resolve the NavigationPage and
NavigationService.

Let's start building the items that will be contained in the global resource dictionary.

Theming with ControlTemplates
ControlTemplates allow separation of logical view hierarchy from visual hierarchy.
Similar to a DataTemplate, a ControlTemplate will produce the visual hierarchy for
your controller page. One advantage of ControlTemplates, is the concept of theming.
Many software applications provide settings to change user interface styles (Visual Studio
and Xamarin Studio offer a dark and light theme). We are going to implement two themes
for the MainPage and provide a Button to switch between the two.

Let's start with opening the App.xaml page, and adding the first ControlTemplate for the
black theme:

<ControlTemplate x:Key="MainBlackTemplate">
 <StackLayout x:Name="StackLayout" Spacing="10"
Orientation="Vertical" Padding="10, 10, 10, 10" BackgroundColor="Black"
 VerticalOptions="Center" HorizontalOptions="Center" >
 <Image x:Name="Image" Source="stocklist.png" HeightRequest="120"

Building a Stocklist Application

[210]

WidthRequest="120"/>
 <Label x:Name="DesciptionLabel">
 <Label.FormattedText>
 <FormattedString>
 <Span Text="{x:Static
resx:LabelResources.DecriptionMessage}"
 FontFamily="Arial"
 FontSize="24"
 ForegroundColor="White"/>
 </FormattedString>
 </Label.FormattedText>
 </Label>

 <Button x:Name="StocklistButton"
 Text="{x:Static resx:LabelResources.StocklistTitle}"
 Command="{TemplateBinding StocklistCommand}"
 Style="{StaticResource HomeButtonStyle}"
 BackgroundColor="Gray"
 TextColor="White"/>

 <Button x:Name="ExitButton"
 Text="{x:Static resx:LabelResources.ExitTitle}"
 Command="{TemplateBinding ExitCommand}"
 Style="{StaticResource HomeButtonStyle}"
 BackgroundColor="Gray"
 TextColor="White"/>

 <ContentPresenter />
 </StackLayout>
 </ControlTemplate>

Here we simply copy the content of the MainPage apply minor color changes as the
templates are changed.

Now let's add another ControlTemplate for the white theme:

<ControlTemplate x:Key="MainWhiteTemplate">
 <StackLayout x:Name="StackLayout" Spacing="10"
Orientation="Vertical" Padding="10, 10, 10, 10" VerticalOptions="Center"
HorizontalOptions="Center" >
 <Image x:Name="Image" Source="stocklist.png" HeightRequest="120"
WidthRequest="120"/>
 <Label x:Name="DesciptionLabel" >
 <Label.FormattedText>
 <FormattedString>
 <Span Text="{x:Static
resx:LabelResources.DecriptionMessage}"
 FontFamily="Arial"

Building a Stocklist Application

[211]

 FontSize="24"
 ForegroundColor="Black"/>
 </FormattedString>
 </Label.FormattedText>
 </Label>

 <Button x:Name="StocklistButton"
 Text="{x:Static resx:LabelResources.StocklistTitle}"
 Command="{TemplateBinding StocklistCommand}"
 Style="{StaticResource HomeButtonStyle}"/>

 <Button x:Name="ExitButton"
 Text="{x:Static resx:LabelResources.ExitTitle}"
 Command="{TemplateBinding ExitCommand}"
 Style="{StaticResource HomeButtonStyle}"/>

 <ContentPresenter />
 </StackLayout>
 </ControlTemplate>

Notice the use of the ContentPresenter object in each template?

This is used to position content that will be shared across multiple templates. Open up
MainPage.xaml and replace the content with the following:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:resx="clr-
namespace:Stocklist.Portable.Resources;assembly=Stocklist.Portable"
 xmlns:vm="clr-
namespace:Stocklist.Portable.ViewModels;assembly=Stocklist.Portable"
 x:Class="Stocklist.XamForms.Pages.MainPage"
 ControlTemplate="{StaticResource MainBlackTemplate}"
 BackgroundColor="Black"
 Title="{x:Static resx:LabelResources.WelcomeTitle}"
 StocklistCommand="{Binding StocklistCommand}"
 ExitCommand="{Binding ExitCommand}">
 <ContentPage.Content>
 <Button Text="Change Theme" Clicked="ChangeThemeClicked" />
 </ContentPage.Content>
</ContentPage>

The content placed on the MainPage will be positioned where the ContentPresenter
objects are situated in the ControlTemplates. The content is simply a button that will be
shared across both ControlTemplates. We will start by setting the default
ControlTemplate to the black theme.

Building a Stocklist Application

[212]

Notice the two command bindings set up on the ContentPage?

As our ControlTemplates need to bind to the Commands in our MainPageViewModel, we
have to add some extra work setting up these bindings. Open up the MainPage.xaml.cs
and implement these custom bindings:

public static readonly BindableProperty StocklistCommandProperty =
BindableProperty.Create("StocklistCommand", typeof(ICommand),
typeof(MainPage), null);

public static readonly BindableProperty ExitCommandProperty =
BindableProperty.Create("ExitCommand", typeof(ICommand), typeof(MainPage),
null);

public ICommand StocklistCommand
{

get { return (ICommand)GetValue(StocklistCommandProperty); }
}

public ICommand ExitCommand
{

get { return (ICommand)GetValue(ExitCommandProperty); }
}

These custom bindings will set up the link between each ControlTemplate and the view-
model. Now each Command inside the ControlTemplate will respond to the Command
implemented in the view-model.

Now let's finish off the Change Theme addition. First, let's add the two template
definitions:

private bool _originalTemplate = true;
private ControlTemplate _blackTemplate;
private ControlTemplate _whiteTemplate;

The originalTemplate Boolean is used as a flag for switching to the opposite template
with every button click. Next, we must initiate ControlTemplate from our global
resource dictionary:

public MainPage()
 {

InitializeComponent();

_blackTemplate =
(ControlTemplate)Application.Current.Resources["MainBlackTemplate"];

_whiteTemplate =
(ControlTemplate)Application.Current.Resources["MainWhiteTemplate"];
 }

Building a Stocklist Application

[213]

Finally, let's add the ChangeThemeClicked function for the button:

public void ChangeThemeClicked(object sender, EventArgs e)
 {
 _originalTemplate = !_originalTemplate;
 ControlTemplate = _originalTemplate ? _blackTemplate :
_whiteTemplate;
 BackgroundColor = _originalTemplate ? Color.Black : Color.White;
 }

Each time the button is pressed, it will check to see if we are on the default template (the
black theme) and switch to the white template if we are on the black template. We will also
switch the background color between black and white to match the current theme.

All done. Now let's move over to the MainPageViewModel to finish up the page's
BindingContext.

Updating the MainPageViewModel
Now that we have rebuilt our MainPage, let's make some small changes to the
MainPageViewModel. Since we replaced the label bindings with static values, we remove
the following variables, DescriptionMessage, ExitTitle, and LocationTitle.

Now we should have the following private properties:

#region Private Properties
 private readonly IMethods _methods;

 private ICommand _stocklistCommand;

 private ICommand _exitCommand;

 #endregion

Building a Stocklist Application

[214]

Now simply update LocationCommand to the following:

 public ICommand StocklistCommand
 {
 get
 {
 return stocklistCommand;
 }

 set
 {
 if (value.Equals(stocklistCommand))
 {
 return;
 }

 _stocklistCommand = value;
 OnPropertyChanged("StocklistCommand");
 }
 }

We must also update our constructor:

#region Constructors

 public MainPageViewModel (INavigationService navigation,
Func<Action, ICommand> commandFactory,
 IMethods methods) : base (navigation)
 {
 this.exitCommand = commandFactory (() => methods.Exit());
 this.stocklistCommand = commandFactory (async () => await
this.Navigation.Navigate(PageNames.StocklistPage, null));
 }

 #endregion

Here we simply rename some variables to match our application. We must also copy over
the Enums and Extras folder, and replace the LocationPage enum to StocklistPage.

Next, we need to add the PortableModule. Create a new folder called Modules and copy
the PortableModule from Location.Portable. Change the PortableModule class to
the following:

public class PortableModule : IModule
 {
 public void Register(ContainerBuilder builer)
 {
 builer.RegisterType<MainPageViewModel> ().SingleInstance();

Building a Stocklist Application

[215]

 builer.RegisterType<StocklistPageViewModel>
().SingleInstance();
 }
 }

Finally, we need to add INavigationService. Create a new folder called UI and add
INavigationService from Location.Portable into the new UI folder.

Building project templates can reduce time spent setting up projects and
recreating similar modules.

Before we move any further we must update the namespaces in the code sheets copied from
the Locator project. The easiest way is by using Search | Replace in Files…. We want to
replace the text Location.Portable with the text.

Be careful doing this; only apply a global replacement when the string is
specific.

Building a Stocklist Application

[216]

Creating the Stocklist web service controller
Let's build our client web service controller to access the API. Since we built the back end,
we should be able to whip this up very quickly. Our first step is to create the object which
will deserialize a StockItem. We refer to these as contracts. Add a new folder in your
Stocklist.Portable project called StocklistWebServiceController, and add
another folder in this called Contracts. Create a new file called StockItemContract.cs
and implement the following:

public sealed class StockItemContract
 {
 #region Public Properties

 public int Id { get; set;}

 public string Name { get; set; }

 public string Category { get; set; }

 public decimal Price { get; set; }

 #endregion
 }

Now let's go ahead and build the IStocklistWebServiceController interface:

 public interface IStocklistWebServiceController
 {
 #region Methods and Operators

 IObservable<StockItemContract> GetAllStockItems ();

 Task<StockItemContract> GetStockItemById(int id);

 #endregion
 }

The functions match the exact functions we have in the API controller. Before we implement
this interface we have to create a new file called Config.resx in the Resources folder. For
now, let's just add some empty values for each URL path because we don't know these until
we either have the site running locally, or if we deploy it somewhere:

 <data name="ApiAllItems" xml:space="preserve">
 <value></value>
 </data>
 <data name="GetStockItem" xml:space="preserve">

Building a Stocklist Application

[217]

 <value></value>
 </data>

Now let's implement the IStocklistWebServiceController interface. Starting the
constructor; we will have to retrieve the HttpClientHandler (we will register this in the
IoC container later):

#region Constructors and Destructors

 public StocklistWebServiceController(HttpClientHandler
clientHandler)
 {
 _clientHandler = clientHandler;
 }

 #endregion

Now let's implement the first function to retrieve all the items. It will use a HttpClient to
create an Observable from the asynchronous function SendAsync via an HttpClient.
The Observable stream will be generated from the results returned from this function. We
will then retrieve the response as a string (this will be JSON), and deserialize the string into
multiple StockItemContracts, which then (using Linq) will be passed into the
Observable stream and returned to the result of the function:

public IObservable<StockItemContract> GetAllStockItems ()
 {
 var authClient = new HttpClient (this.clientHandler);

 var message = new HttpRequestMessage (HttpMethod.Get, new Uri
(Config.ApiAllItems));

 return Observable.FromAsync(() => authClient.SendAsync
(message, new CancellationToken(false)))
 .SelectMany(async response =>
 {
 if (response.StatusCode != HttpStatusCode.OK)
 {
 throw new Exception("Respone error");
 }

 return await response.Content.ReadAsStringAsync();
 })
 .Select(json =>
JsonConvert.DeserializeObject<StockItemContract>(json));
 }

Building a Stocklist Application

[218]

And now for the GetStockItem function:

public IObservable<StockItemContract> GetStockItem (int id)
 {
 var authClient = new HttpClient(this.clientHandler);

 var message = new HttpRequestMessage(HttpMethod.Get, new
Uri(string.Format(Config.GetStockItem, id)));

 return await Observable.FromAsync(() =>
authClient.SendAsync(message, new CancellationToken(false)))
 .SelectMany(async response =>
 {
 if (response.StatusCode != HttpStatusCode.OK)
 {
 throw new Exception("Respone error");
 }

 return await response.Content.ReadAsStringAsync();
 })
 .Select(json =>
JsonConvert.DeserializeObject<StockItemContract>(json));
 }

Great! We now have our StocklistWebServiceController; we now need to register this
object to the interface inside the IoC container. Open up the PortableModule class and add
the following:

builer.RegisterType<StocklistWebServiceController>
().As<IStocklistWebServiceController>().SingleInstance();

ListViews and ObservableCollections
Now we move on to StocklistPage and StocklistPageViewModel; these will be used
to display all the items we pull down from the API. On the frontend we will be using ListView, they are the most common UI elements for
displaying lists of data that are pulled down from any API. The beauty of ListViews is
how they are presented via each platform. Placing a ListView in our XAML sheet via
Xamarin.Forms on iOS will render a UITableView, on Android a native ListView, and in
Windows a FrameworkElement. We can also create custom cell items and set up data
bindings specific to each item, so with each contract that is deserialized, we want to have a
separate view-model that will be used for representing the data on each cell.

Building a Stocklist Application

[219]

Let's add a new file to the ViewModels folder in the Stocklist.Portable project
called StockItemViewModel.cs and implement the constructor:

public class StockItemViewModel : ViewModelBase
 {
 #region Constructors

 public StockItemViewModel (INavigationService navigation) : base
(navigation)
 {
 }

 #endregion
 }

Now we want to add the private properties; they will be the same properties as in
StockItemContract:

We can choose to only represent certain items in a custom view cell. Inside
the view-model we only create properties that will be displayed on the
view.

#region Private Properties

private int _id;

private string _name;

private string _category;

private decimal _price;

private bool _inProgress;

#endregion

Then we simply create the public properties for each private variable, following is one to
get you started:

public int Id
 {
 get
 {
 return id;
 }

Building a Stocklist Application

[220]

 set
 {
 if (value.Equals(_id))
 {
 return;
 }

 _id = value;
 OnPropertyChanged("Id");
 }
 }

Here we are building a translation layer between the objects we deserialize and the objects
we want to display. This is good for separating the logic contained in the view-models, as
they have extra logic for processing the data to be displayed. We want our contracts to
purely reflect the properties in the JSON object.

Next, we add a public method on the view-model called Apply. This will take
a StockItemContract as a parameter and update the properties of the view-model. It will
be called when we want to update the data to be displayed:

#region Public Methods

public void Apply(StockItemContract contract)
{
 Id = contract.Id;
 Name = contract.Name;
 Category = contract.Category;
 Price = contract.Price;
}

#endregion

Our next step is to implement the StocklistPageViewModel. This view-model will contain
an ObservableCollection, which will be used to bind to the ListView. After we retrieve
a list of contracts, we build another list of StockItemViewModels. Each item will apply the
data from the contract and the new StockItemViewModel will be added to the
ObservableCollection. We will apply the contract to update the data and then add the
view-model to ObservableCollection.

Building a Stocklist Application

[221]

Let's begin by adding a new file to the ViewModels folder called
StocklistPageViewModel.cs, and start by creating a new view-model with its
constructor:

#region Constructors

 public StocklistPageViewModel(INavigationService navigation,
IStocklistWebServiceController stocklistWebServiceController,
 Func<StockItemViewModel> stockItemFactory) : base(navigation)
 {
 _stockItemFactory = stockItemFactory;

 _stocklistWebServiceController = stocklistWebServiceController;

 StockItems = new ObservableCollection<StockItemViewModel>();
 }

 #endregion

The navigation service is the same as the one used in the Locator project. We will register
this later on in Stocklist.XamForms project. We use the
IStocklistWebServiceController to fetch the StockItems from the API.

We then need to register our StockItemViewModel inside PortableModule:

public void Register(ContainerBuilder builer)
{
 ...

builer.RegisterType<StockItemViewModel>().InstancePerDependency();

}

Notice how we are using the InstancePerDependency function instead
of SingleInstance? Since we are instantiating multiple items, if we used SingleInstance,
the same data would be copied and changed across all StockItemViewModels.

Now let's add the private and public properties:

 #region Private Properties

 private readonly IStocklistWebServiceController
_stocklistWebServiceController ;

 private readonly Func<StockItemViewModel> _stockItemFactory;

melwynd
Cross-Out

Building a Stocklist Application

[222]

 #endregion

 #region Public Properties

 public ObservableCollection<StockItemViewModel> StockItems;

 #endregion

Now we have all the properties, we can build the list of items for the
ObservableCollection. Next, we add the LoadAsync function, it is responsible for
creating the list of StockItemViewModels:

#region Methods

 protected override async Task LoadAsync(IDictionary<string, object>
parameters)
 {
 try
 {
 InProgress = true;

 // reset the list everytime we load the page
 StockItems.Clear();

 var stockItems = await
_stocklistWebServiceController.GetAllStockItems();

 // for all contracts build stock item view model and add to the
observable collection
 foreach (var model in stockItems.Select(x =>
 {
 var model = _stockItemFactory();
 model.Apply(x);
 return model;
 }))
 {
 StockItems.Add(model);
 }

 InProgress = false;
 }
 catch (Exception e)
 {
 System.Diagnostics.Debug.WriteLine(e);
 }
 }

 #endregion

Building a Stocklist Application

[223]

The LoadAsync function will be used to retrieve all contracts and build a list
of StockItemViewModels. Every time we add a new StockItemViewModel
to ObservableCollection, a CollectionChanged event will be fired to notify the
ListView to update.

Have a look at how we are instantiating StockItemViewModel through
stockItemfactory. It uses Func (Func<StockItemViewModel>) to generate a new view
model every time we execute Func. This is why we need to call InstancePerDependency,
so separate items are created. If we left the ending function on the registration
as SingleInstance, even though we are calling Func on StockItemViewModel, it will
only ever create one object.

Now let's build the user interface for the StocklistPage. It will contain the ListView for
displaying the StockItems from the API:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:maps="clr-
namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps"
 x:Class="Stocklist.XamForms.Pages.StocklistPage">
 <ContentPage.Content>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <ActivityIndicator x:Name="ActivityIndicator" IsRunning="{Binding
InProgress}" Grid.Row="0" Grid.Column="0"/>
 <ListView x:Name="StockItemsListView"
 IsVisible="{Binding InProgress, Converter={StaticResource
notConverter}}"
 CachingStrategy="RecycleElement"
 ItemsSource="{Binding StockItems}"
 ItemTemplate="{StaticResource ListItemTemplate}"
 SelectedItem="{Binding Selected, Mode=TwoWay}"
 RowHeight="100"
 Margin="10, 10, 10, 10"
 Grid.Row="0" Grid.Column="0"/>
 </Grid>
 </ContentPage.Content>
</ContentPage>

Building a Stocklist Application

[224]

Why can't we use StackLayout?

Since we need one element overlaying another, we have to use Grid. The
ActivityIndicator is used to show the loading progress of our LoadAync function.
When this is loading, our ListView will be invisible and the loading indicator is displayed.

Value converters
In some cases, there are times when we need to data bind two properties of incompatible
types. A Converter is an object that converts the value from source to target and vice
versa. Each converter must implement the IValueConverter interface, which implements
two functions, Convert and ConvetBack. We are going to create a converter that will take
a bool as the source, and simply return the opposite value to the value in the source.

The ConvertBack method will only be used if the data binding is a TwoWay binding.

In the Stocklist.XamForms project, add a new folder called Converters, and inside this
folder create a new file called NotConverter.cs, implement the following:

 public class NotConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 var b = value as bool?;

 if (b != null)
 {
 return !b;
 }

 return value;
 }

 public object ConvertBack(object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }

Building a Stocklist Application

[225]

Even though the InProgress property doesn't use a two way binding, we still have to
implement the ConvertBack function as part of the interface.

Now back to the StocklistPage.xaml. When the bool property in the view-model
changes, the Convert function of the NotConverter will be called. When the IsProgress
value changes, the converter will be called and will return the opposite value for the
IsVisible state on the ListView. When the progress is running, the ListView is
invisible, and when the progress is not running, the ListView is visible.

Now we are going to look at creating an App.xaml which will contain the DataTemplate
used for each cell.

Adding a DataTemplate to the global
resource dictionary
Now let's get back to the App.xaml file. Since we require a custom cell in our ListView on
the StocklistPage, we are going to create a DataTemplate in the global resource
dictionary. DataTemplate can be created in two ways, as an inline template or in a
resource dictionary. There is no better method, it's more on personal preference. In our
example, we are going to be creating ours in a resource dictionary.

Open up the App.xaml file and insert the DataTemplate in the resource dictionary like
this:

 <DataTemplate x:Key="ListItemTemplate">
 <ViewCell>
 <StackLayout Margin="20, 15, 20, 5">
 <Label x:Name="NameLabel" Text="{Binding Name}"/>
 <Label x:Name="CategoryLabel" Text="{Binding Category}"/>
 <Label x:Name="PriceLabel" Text="{Binding Price}"/>
 </StackLayout>
 </ViewCell>
 </DataTemplate>

Building a Stocklist Application

[226]

Now we want to set the ItemTemplate property on our ListView in the StocklistPage.
Open up the StocklistPage and add the following to the ListView declaration:

 <ListView x:Name="StockItemsListView" ItemsSource="{Binding
StockItems}" ItemTemplate="{StaticResource ListItemTemplate}"/>

If we wanted to use the inline template approach, we would do this:

<ListView x:Name="StockItemsListView" ItemsSource="{Binding StockItems">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <StackLayout Margin="20, 15, 20, 5">
 <Label x:Name="NameLabel" Text="{Binding Name/>
 <Label x:Name="CategoryLabel" Text="{Binding Category}"/>
 <Label x:Name="PriceLabel" Text="{Binding Price}"/>
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>

Styles
In our custom cell we have three labels without any styling or font assignation. We are
going to spice up the look of each cell using Style. A Style groups a collection of property
values into one object that can be applied to multiple visual element instances. The idea of
this is to reduce repetitive markup so we can reuse similar styles across similar controls in
our XAML. There are multiple ways to apply styling to a control in Xamarin.Forms. In this
example, we will show you how to create a global style in the App.xaml file, and apply it to
different controls in our application.

Our first global style will be for the title label in our custom cell. Let's open up the
App.xaml file and insert the following into our resource dictionary:

<Style x:Key="TitleStyle" TargetType="Label">
 <Setter Property="TextColor" Value="Black" />
 <Setter Property="FontAttributes" Value="Bold" />
 <Setter Property="FontFamily" Value="Arial" />
 </Style>

Building a Stocklist Application

[227]

In preceding markup, each style will contain a list of Setter properties. These refer to the
BindableProperties on our control. Now that we have our Style, we can refer to this
static resource inside our DataTemplate:

<Label x:Name="NameLabel" Text="{Binding Name}" Style="{StaticResource
TitleStyle}"/>

Great! We have just created and set our first style on a Label. Let's add some more styles
to MainPageControlTemplates. We are going to style the buttons as they both share the
same styled properties. Add the following to the global resource dictionary:

<Style x:Key="HomeButtonStyle" TargetType="Button">
 <Setter Property="TextColor">
 <Setter.Value>
 <OnPlatform x:TypeArguments="Color"
 Android="Navy"
 WinPhone="Blue"
 iOS="Black">
 </OnPlatform>
 </Setter.Value>
 </Setter>
 <Setter Property="BackgroundColor" Value="Silver" />
</Style>

Looking closer at the preceding style, we can even use the <OnPlatform> tags to change
setter values based on the platform.

Now let's apply this Style to our MainPage buttons:

<Button x:Name="StocklistButton"
 Text="{x:Static resx:LabelResources.StocklistTitle}"
 Command="{Binding StocklistCommand}"
 Style="{StaticResource HomeButtonStyle}"/>

 <Button x:Name="ExitButton"
 Text="{x:Static resx:LabelResources.ExitTitle}"
 Command="{Binding ExitCommand}"
 Style="{StaticResource HomeButtonStyle}"/>

See how we are reducing the size of the markup?

This is one example of how we can apply Styles, we will see more techniques in further
chapters.

Building a Stocklist Application

[228]

Further optimization with XAML
Previously, we talked about some minor changes we can apply to our XAML to improve on
the performance. Let's look at how we can apply some performance enhancements on a
ListView. If you have worked with any native ListView or UITableView, one of the
biggest problems is the memory usage when we have a lot of elements to load whilst we are
scrolling (that is, loading an image into each bitmap for every cell).

How do we solve this issue?

We use techniques for caching cells and reusing cells. Since Xamarin.Forms 2.0, they have
introduced some new features and enhancements around cell recycling mechanisms and
caching strategies on ListViews. In order to set a caching strategy, we have two options:

RetainElement: This is the default behavior. It will generate a cell for each item
in the list, cell layout will run for each cell creation. We should only be using this
method if the cell layout is frequently changing, or if a cell has a large number of
bindings.
RecycleElement: This takes advantage of native cell recycling mechanisms on
iOS and Android. It will minimize the memory footprint and maximize the
performance of a ListView. We should use this method if cells have a small to
moderate amount of bindings, are similar in layout, and the cell view-model
contains all the data.

We should always be aiming to use the second element, try to design your
cells around this setting.

We are going to use the second caching strategy on our ListView:

<ListView x:Name="StockItemsListView" CachingStrategy="RecycleElement"
ItemsSource="{Binding StockItems}" ItemTemplate="{StaticResource
ListItemTemplate}"/>

RecycleElement should be used as much as possible as we always want to tailor our apps
to maximize performance wherever we can. Since we have a fairly simple cell design with a
small amount of bindings and we keep all the data inside our view-model, we are able to
use this setting.

Building a Stocklist Application

[229]

Now let's have a look at another simple addition we can use to improve the loading speed
of our XAML sheets. Turning on XAML compilation allows your XAML sheets to be
compiled rather than interpreted, which can provide multiple benefits:

Helps markup errors
Reduces application size
Removes load and instantiation time

It is highly recommended to have this setting on with all your Xamarin.Forms applications
as it will increase the loading speed of your user interfaces (in particular with Android). We
can add the compiled XAML by opening up the App.xaml.cs file and pasting the code
below the preceding namespace:

[assembly:
Xamarin.Forms.Xaml.XamlCompilation(Xamarin.Forms.Xaml.XamlCompilationOption
s.Compile)]

If we add up all the performance additions we have applied to the project, we should see
some improvement in the user interfaces as they present between different screens.

Creating StockItemDetailsPage
Now we move on to our last page of the application. We are going to add another page for
displaying the details of a selected stock item from the previous StocklistPage. Firstly,
we need to handle items selected from ListView, so open up StocklistPage.xaml and
update the ListView element with the SelectedItem object bound to the Selected item
in our view-model (we will add this after the XAML update). This will be set as a TwoWay
binding because the data will change from both sides (from the view as we selected items,
and the view-model as we will need the selected object data when we navigate to the stock
details page):

<ListView x:Name="StockItemsListView"
 IsVisible="{Binding InProgress, Converter={StaticResource
notConverter}}"
 CachingStrategy="RecycleElement"
 ItemsSource="{Binding StockItems}"
 ItemTemplate="{StaticResource ListItemTemplate}"
 SelectedItem="{Binding Selected, Mode=TwoWay}"
 RowHeight="100"
 Margin="10, 10, 10, 10"
 Grid.Row="0" Grid.Column="0"/>

Building a Stocklist Application

[230]

Now let's add to the StocklistPageViewModel; we need to add a
publicStockItemViewModel property that will hold the data of our binding when an
item is selected from the list. The ID property of the selected StockItemViewModel will be
passed through the navigation parameters for our StockItemDetailsPage:

private StockItemViewModel _selected;
....
public StockItemViewModel Selected
 {
 get
 {
 return _selected;
 }

 set
 {
 if (value.Equals(_selected))
 {
 return;
 }
 else
 {
 Navigation.Navigate(Enums.PageNames.StockItemDetailsPage, new
Dictionary<string, object>()
 {
 {"id", value.Id},
 }).ConfigureAwait(false);
 }

 _selected = value;
 OnPropertyChanged("Selected");
 }
 }

Now let's add the new StocklistItemDetailsPage. Create a new XAML ContentPage
and add the following:

<ContentPage.Content>
 <StackLayout Margin="20, 20, 20, 5">
 <Label x:Name="TitleLabel" >
 <Label.FormattedText>
 <FormattedString>
 <Span Text="{x:Static
resx:LabelResources.StockItemDetailsTitle}"
 FontFamily="Arial"
 FontSize="24">
 <Span.ForegroundColor>

Building a Stocklist Application

[231]

 <OnPlatform x:TypeArguments="Color"
 Android="Black"
 WinPhone="Black"
 iOS="Black">
 </OnPlatform>
 </Span.ForegroundColor>

 </FormattedString>
 </Label.FormattedText>
 </Label>
 <Label x:Name="NameLabel" Text="{Binding Name}"
Style="{StaticResource TitleStyle}"/>
 <controls:CustomLabel x:Name="CategoryLabel" Text="{Binding
Category}" Style="{StaticResource CustomLabelStyle}"/>
 <controls:CustomLabel x:Name="PriceLabel" Text="{Binding
Price}" Style="{StaticResource CustomLabelStyle}"/>

 <ActivityIndicator x:Name="ActivityIndicator" IsRunning="{Binding
InProgress}"/>
 </StackLayout>
 </ContentPage.Content>

Looking more closely at the code, we have added four labels and ActivityIndicator,
which are used to show the progress of our page loading the data. We have also included a
custom control CustomLabel, we reference this item via the namespace as follows:

xmlns:controls="clr-
namespace:Stocklist.XamForms.Controls;assembly=Stocklist.XamForms"

Whatever name follows the xmlns keyword, this name must be called first to reference the
item within the namespace we are trying to use, like this:

 <controls:CustomLabel/>

Now we must create our CustomLabel object, which will be used for a CustomRenderer
for Android, as we are going to set the font of this label to a custom Typeface, which we
will include in both native projects. Create a new folder called Controls in the
Stocklist.XamForms project, and create the following file, called CustomLabel.cs:

public class CustomLabel : Label
 {
 public static readonly BindableProperty AndroidFontStyleProperty =
BindableProperty.Create<CustomLabel, string>(
 p => p.AndroidFontStyle, default(string));

 public string AndroidFontStyle
 {

Building a Stocklist Application

[232]

 get
 {
 return (string)GetValue(AndroidFontStyleProperty);
 }
 set
 {
 SetValue(AndroidFontStyleProperty, value);
 }
 }
 }

In our CustomLabel, we are adding a custom binding, which will be used specifically to set
the font style for Android. When we set the font style on the native side, we have to set the
custom font by the filename not the font name, whereas in iOS we reference the custom font
by the font name and not the filename.

When we set up custom bindings, we must always include a static property, this is our
BindableProperty, which is used to reference the item of the UI element that we are
binding on. Then we must always include the actual property which is referenced in the
XAML:

<controls:CustomLabel AndroidFontStyle="GraCoRg_" />

Custom renderers
You will find Xamarin.Forms covers most of the native controls via cross-platform
elements such as XAML objects, but there are some UI elements which we must implement
ourselves using CustomRenderers. CustomRenderers allows anyone to override the
rendering process for specific controls placed in our XAML, and render native elements on
the platform side. We must place a renderer specific to each platform, but for this example,
we are only going to apply a custom renderer for the Android project as we want our
custom labels to use custom fonts. iOS doesn't need a renderer to allow custom fonts; all we
have to do is add the reference to our font file in the info.plist file. Open up the
info.plist file in your iOS project and add a new entry called Fonts provided by
application (for an array element we simply add the path of our font file
GraCoRg_.ttf). Then add the font file into the Resources folder of the iOS project, make
sure the build action of the font file is set to BundleResource (do this by right-clicking on
the file):

Building a Stocklist Application

[233]

We also want to add this font file into the Assets folder of the Android project, and make
sure we set the build action to AndroidAsset.

You can grab this font file from the GitHub link: h t t p s : / / g i t h u b . c o m / f l u s h a r c a d e / c h a p t

e r 5 - s t o c k l i s t.

To implement the equivalent for Android, we must create a CustomRenderer for the
CustomLabel item in our Controls folder. Open the Android project, create a new folder
called Renderers, and add a new file called CustomLabelRenderer, and implement the
following:

public class CustomLabelRenderer : LabelRenderer
 {
 protected override void OnElementChanged
(ElementChangedEventArgs<Label> e)
 {
 base.OnElementChanged (e);

 if (!string.IsNullOrEmpty((e.NewElement as
CustomLabel)?.AndroidFontStyle))
 {
 try

https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist
https://github.com/flusharcade/chapter5-stocklist

Building a Stocklist Application

[234]

 {
 var font = default(Typeface);

 font =
Typeface.CreateFromAsset(Forms.Context.ApplicationContext.Assets,
(e.NewElement as CustomLabel)?.AndroidFontStyle + ".ttf");

 if (Control != null)
 {
 Control.Typeface = font;
 Control.TextSize = (float)e.NewElement.FontSize;
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 }
 }
 }
 }

In just about all the renderers, we are exposed to the OnElementChanged function which is
called when a Xamarin.Forms custom control is created in order to render the
corresponding native control. In some circumstances, the OnElementChanged method can
be called multiple times, so care must be taken when instantiating a new native control in
order to prevent memory leaks, which can have a large performance impact. In our case, we
are not rendering a new control, so we only need to check that the NewElement and
Control objects are not null when the function is called. We must also cast the
NewElement item to our custom item, as this is the object which contains the custom
binding for the AndroidFontStyle property. The NewElement will always be the custom
item, so we can always cast it.

We can also now access the native UI frameworks; in this case, we are using the Android
Typeface framework to create a custom Typeface which will use our font file. Then this
Typeface is set to the Typeface property of the Control element (this is the actual
element which will be displayed), in this case, because it is a LabelRenderer, the Control
element is an Android TextView.

In other renderers, we can set this control element to specific native
elements, which we will be doing in further chapters.

Building a Stocklist Application

[235]

Finally, we have to add the following line to export and register the renderer:

[assembly:
Xamarin.Forms.ExportRenderer(typeof(Stocklist.XamForms.Controls.CustomLabel
), typeof(Stocklist.Droid.Renderers.CustomLabel.CustomLabelRenderer))]

Adding styles for custom elements
We still have one more addition to finalise the StockItemDetailsPage. We are going to
add a style for the CustomLabel. Open up the App.xaml file and add the following style:

<Style x:Key="CustomLabelStyle" TargetType="controls:CustomLabel">
 <Setter Property="TextColor" Value="Black" />
 <Setter Property="FontFamily" Value="Gravur-Condensed" />
 <Setter Property="AndroidFontStyle" Value="GraCoRg_" />
 </Style>

We have included a Setter for the AndroidFontStyle property we created earlier. Don't
forget we must also add the namespace reference for the Controls:

xmlns:controls="clr-
namespace:Stocklist.XamForms.Controls;assembly=Stocklist.XamForms"

That's everything for the user interface. Now let's move on to implementing the view-model
for the StockItemDetailsPage.

Creating StockItemDetailsPageViewModel
Now we move on to the last view-model in our application. Add a new file called
StockItemDetailsPageViewModel to our ViewModels folder in the
Stocklist.Portable project.

Let's start by implementing the private properties:

#region Private Properties

 private readonly IStocklistWebServiceController
_stocklistWebServiceController;

 private int _id;

 private string _name;

Building a Stocklist Application

[236]

 private string _category;

 private decimal _price;

 private bool _inProgress;
#endregion

You should be able to add the public properties yourself. Here is the first to get you
started:

public int Id
 {
 get
 {
 return _id;
 }

 set
 {
 if (value.Equals(_id))
 {
 return;
 }

 _id = value;
 OnPropertyChanged("Id");
 }
 }

Now we need to add the LoadAsync function, which will use
StocklistWebServiceController to pull the data from our API for a specific
StockItem. Notice the use of the InProgress property, this is used to track the loading
progress; as we are downloading in the background we want to display this progress to the
user interface via an ActivityIndicator:

#region Methods

 protected override async Task LoadAsync(IDictionary<string, object>
parameters)
 {
 InProgress = true;

 if (parameters.ContainsKey("id"))
 {
 Id = (int)parameters["id"];
 }

Building a Stocklist Application

[237]

 var contract = await
_stocklistWebServiceController.GetStockItem(Id);

 if (contract != null)
 {
 this.Name = contract.Name;
 this.Category = contract.Category;
 this.Price = contract.Price;
 }

 InProgress = false;
 }

 #endregion

Then we add our constructor which will pull out the registered IoC objects and assign our
private properties accordingly:

#region Constructors

 public StockItemDetailsPageViewModel(INavigationService navigation,
IStocklistWebServiceController stocklistWebServiceController,
 Func<Action, ICommand> commandFactory) : base(navigation)
 {
 _stocklistWebServiceController = stocklistWebServiceController;
 }

 #endregion

Finally, we need to register the view-model in the CommonModule:

builer.RegisterType<StockItemDetailsPageViewModel>().InstancePerDependency(
);

Add the extra enum for the StockItemDetailsPage to PageEnums.cs:

public enum PageNames
 {
 MainPage,

 StocklistPage,

 StockItemDetailsPage
 }

Building a Stocklist Application

[238]

And add the extra switch case to NavigationService:

case PageNames.StockItemDetailsPage:
 return IoC.Resolve<Func<StockItemDetailsPage>>()();

Setting up the native platform projects
Now we move on to the native platform layer and prepare the iOS, Android, and Windows
Phone projects. We are going to start with iOS; let's start by adding the NuGet packages
required for the project:

Microsoft HTTP client libraries
Modern HTTP client
Autofac
Reactive extensions (main library)

Once we've added these packages to the project, let's open the AppDelegate file and add
the same InitIoC function we used in the Locator project:

private void InitIoC()
{
 IoC.CreateContainer();
 IoC.RegisterModule(new DroidModule());
 IoC.RegisterModule(new SharedModule(false));
 IoC.RegisterModule(new XamFormsModule());
 IoC.RegisterModule(new PortableModule());
 IoC.StartContainer();
}

Then call this method before we load the application:

public override bool FinishedLaunching(UIApplication app, NSDictionary
options)
 {
 global::Xamarin.Forms.Forms.Init();

 InitIoC();

 LoadApplication(new App());

 return base.FinishedLaunching(app, options);
 }

Building a Stocklist Application

[239]

Before running the iOS application, let's also set up the Android project. We want to start
by adding the same libraries as iOS, then opening MainActivity.cs, and adding the same
function InitIoC as shown in the preceding example. Then, finally, we call the InitIoC
function before we load the application:

protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 InitIoC();

 global::Xamarin.Forms.Forms.Init(this, bundle);

 LoadApplication(new App());
 }

Simple, right? See how much code we are simply copying from another project?

The more problems we solve in other projects, the quicker we can piece together apps that
have similar functionality.

Hosting the Web API project locally
Before we can access the API layer from our mobile application, we have to set up hosting.
For this example, we are going to walkthrough setup for hosting locally.

Hosting locally does not require much work, but it will require an instance of Windows and
Mac OSX running together. You can achieve this by simply running parallels, or using a
Windows and Mac computer.

Our first step is to open Visual Studio from our Windows instance and click the run button:

Building a Stocklist Application

[240]

When the project starts, it will automatically open up your default web browser and show
the application.

Since we don't have any visible web pages, we don't need to have the
browser open. If the project is running, the web API will be running so we
will be able to ping it over an HTTP request.

Now that we have the backend running, how do we access the API?

If you are running via two separate computers, we should be able to simply access the API
through the IP address of the computer. In order to find out the IP address of the computer,
open up a new command prompt window and type in ipconfig. This will display the IPv4
address that the computer has been assigned to on the current network.

Building a Stocklist Application

[241]

In order for the local set up to work, please make sure both the mobile
device and the computer hosting the WEB API are both on the same
WIFI/LAN connection.

To confirm we have this working, paste the following URL into a web browser on the
Windows instance and see if we get results:

"localhost:{port}/api/StockItems"

The port is automatically assigned when the project is run, so when the
browser appears with the localhost URL, paste the URL extension
api/StockItems.

Now we want to test this link on the Mac instance, but before we do, we have to change
some settings in the applicationhost.config file located in
"C:\Users[YourName]\Documents\IISExpress\config\applicationhost.config"

.

If you are using Visual Studio 2015, it will be located in /{project
folder}/.vs/config/applicationhost.config.

If you haven't got Internet Information Services (IIS) switched on, follow these steps, to
install IIS to serve static content:

Click the Start button, click Control Panel, click Programs, and then click Turn1.
Windows features on or off.
In the list of Windows features, select Internet Information Services, and then2.
click OK.
Look through the file until you can file your application entry like this:3.

The best way to find your particular entry is by searching for the port
number.

 <site name="Stocklist" id="43">
 <application path="/"
 applicationPool="Clr4IntegratedAppPool">
 <virtualDirectory path="/"
physicalPath="C:\Users\Michael\Documents\Stocklist\Stocklist" />
 </application>
 <bindings>

Building a Stocklist Application

[242]

 <binding protocol="http" bindingInformation="*:
 {PORT}:localhost" />
 </bindings>
 </site>

In the <bindings> section, we want to add another row:4.

 <binding protocol="http" bindingInformation="*:{PORT}:{IPv4
Address}" />

Now we want to allow incoming connections on this PORT and IPv4 Address5.
from other computers.

If you're running Windows 7, most incoming connections are locked
down, so you need to specifically allow incoming connections to your
application.

First, start an administrative command prompt and run these commands,6.
replacing {IPv4}:{PORT} with the IPv4 Address and PORT you are using:

 > netsh http add urlacl url=http://{IPv4}:{PORT}/ user=everyone

This just tells http.sys that it's OK to talk to this URL. Next, run the7.
following command:

 > netsh advfirewall firewall add rule name="IISExpressWeb"
 dir=in protocol=tcp localport={PORT} profile=private
 remoteip=localsubnet action=allow

This adds a rule in the Windows Firewall, allowing incoming connections to the8.
port for computers on your local subnet.
Now we should be able to access the running API from our Mac instance. This9.
time, paste the URL with the IPv4 address instead of localhost: {IPv4
address}:{port}/api/StockItems.

Building a Stocklist Application

[243]

If all was successful, we should have the following XML layout displayed like10.
this:

Excellent! Now let's add these URL settings to our mobile application. Open up11.
the Config.resx file in the Resources folder of the Stocklist.Portable
project, and fill in these values:

 <data name="ApiAllItems" xml:space="preserve">
 <value>http://{IPv4}:{PORT}/api/StockItems</value>
 </data>
 <data name="GetById" xml:space="preserve">
 <value>http://{IPv4}:{PORT}/api/GetItemById</value>
 </data>

Now let's test our project on iOS and Android, and we should be able to see our
StocklistPage fill with items from our API controller.

Building a Stocklist Application

[244]

Summary
In this chapter, we have built an application for retrieving a web service
using Xamarin.Forms. We set up a ListView and created an ObservableCollection for
displaying JSON objects. We also learned how to set up a simple web service on the back
end. In the next chapter, we will create an application for both iOS and Android using the
native libraries. We will use Signal R on the client and server side, and set up a hub and
proxy connections via a client.

6
Building a Chat Application

In this chapter, we will be moving back into Xamarin native. Our user interface will move
away from an MVVM design and follow a new paradigm called Model-View-Presenter
(MVP). We will also step further into the backend and setup a SignalR hub and client to
simulate a chat service, which data will be sent between the server and clients instantly as
the messages become available. Another key topic of focus is project architecture, spending
time on separating the project into modules, and creating a nicely tiered structure that will
maximize code sharing across different platforms.

The following knowledge is expected:

Some understanding of Xamarin native (iOS and Android)
Visual Studio
Some understanding of the OWIN specification
Some understanding of OAuth

In this chapter, you will learn the following:

The Model-View-Presenter (MVP) pattern
Architecture
SignalR
Starting with Open Web Interface for .NET (OWIN)
Creating an authorization server using OWIN OAuth 2.0
OAuthAuthorizationServerProvider

Authorization server providers
UseOAuthBearerAuthentication

Setting up the Authentication Repository
Configuring the Web API

Building a Chat Application

[246]

Building the AccountController
Configuring OAuth Authentication with our Web API
Building the SignalR Hub
Setting up mobile projects
Creating the SignalRClient
Building the Web API access layer
Application State
Setting up the navigation service
Building the iOS navigation service
Building the Android navigation service
Building the iOS interface
Handling Hub proxy callbacks
Implementing the LoginPresenter
Creating the connection between Presenter and View
Building the LoginActivity
Implementing the ClientsListPresenter
Creating the ClientListViewController
The TaskCompletionSource framework
Creating the ClientsListActivity
Overriding the Activity OnBackPressed()
Building the ListAdapter
Building the ChatPresenter
Building the iOS ChatView
Extending the UIColor framework
Android TableLayouts
Building the Android ChatActivity
Running the server and clients

Building a Chat Application

[247]

The Model-View-Presenter (MVP) pattern
In all our previous chapters we have focused our development patterns around the Model-
View-View-Model (MVVM) approach. This time we are going to be setting up our project
around the MVP design pattern. In MVP the presenter centralizes the user interface
functionality between the model and the view, meaning all presentation logic is pushed to
the presenter.

So why bother with this approach?
The advantage with this approach is we can apply unit testing to our presenters, meaning
all UI logic is tested via the presenter. We also have the ability to keep our user interfaces in
native, and share a great amount of the UI logic between the different platforms.

Architecture
When it comes to cross-platform applications, our goal is to share as much code as possible.
We focus our attention on architecture, having a nice clean project structure that lends itself
to a maximization of code sharing across platforms. So how do we solve this problem? Ask
yourself:

What are the different layers?
How do we set up the folder structure?
What parts go in which projects?

Building a Chat Application

[248]

There are many different approaches to this problem; here are some of the most common
architectural layers:

Data layer: This stores the database
Data access layer: This layer focuses on the objects and wrappers that apply
operations on the data layer (Read, Write, Update)
Business layer (logic): This layer focuses on the different domains (domain-
driven design), separating the different areas of logic into objects that handle
operations for each domain
Service access layer: The area that focuses operations on the web API, how we
handle JSON, and data sent and received between the API Controllers
Application/platform layer: Code which is not shared, specific to the native
platform
Common layer: A shared project, code which is shared to all native projects
User interface layer: The layer which contains all the UI design (XAML sheets,
UIViewControllers, AXML)

How do we determine which layers our project
needs?
In this example it is quite simple; we don't have a database so we don't need the data layer
or data access layer. Everything else we will require, so let's begin building our project from
the ground up, starting with the lower layers first.

We are going to start building the project from the service access layer; it will include
everything involved with SignalR, so our first step is to build the backend SignalR hub.

Building a Chat Application

[249]

SignalR
SignalR is a library that provides real-time web functionality to applications using
WebSocket transport (if HTML 5 is supported; older transport methods will be used if it is
not supported). It has the ability for a server to push data to its clients in real-time as it
becomes available; this means we do not have to repeatedly ask the server for data (such as
refreshing/recalling the Web API).

In order to set up SignalR, we must first set up a SignalR Hub on the server side; our clients
(mobile projects) will use access this Hub by creating a HubConnection and creating a
HubProxy from which the server and client can call functions on either side.

Building a Chat Application

[250]

Now let's get into development; we will have the same hardware set up as the last chapter.
We will set up a locally hosted backend via Visual Studio and build our mobile projects via
Xamarin Studio on MacOSX. Open up Visual Studio, create a newASP.NET web application,
and call it Chat.

Building a Chat Application

[251]

Then we must select a template; select the Empty template:

Great! We now have our empty project, let's start by adding the NuGet
package, Microsoft.AspNet.SignalR.

Building a Chat Application

[252]

A readme file will appear with some basic directions on setting up the SignalR Hub. We also want to add Web
API 2.2 features for OWIN as we will be adding a small Web API to the project to handle login, register, and
account functionality. Let's add in the following libraries:

This will install Web API functionality so we can create API controllers and map routes
through the Startup class. We then want to add the Web API 2.2 OWIN library to integrate
the OWIN pipeline to our HTTP configuration:

We also want to add the OWIN.Security libraries for handling account authorization using
Bearer tokens.

Bearer tokens are used in HTTP request headers for authorizing access to
OAuth 2.0 protected resources.

Building a Chat Application

[253]

Finally, we have to add another package called
Microsoft.AspNet.Identity.Framework. This library will be used to handle storage of
user accounts (usernames and passwords) using the UserManager framework.

Now that we have all our packages added, let's start building the web application from the
ground up.

Starting with Open Web Interface for .NET
(OWIN)
OWIN is a standard interface between .NET servers and web applications. It provides a
middleware for decoupling a web server from a web application. The biggest advantage of
OWIN is that we are able to host the web application anywhere, and keep the server and
application completely separated.

For more information on OWIN, the best place to start is with the Katana
Project. Katana is a collection of projects that support OWIN with various
Microsoft components.

So what does OWIN have to do with our project?

If you notice the code above we see all references to OWIN namespaces, and we register in
the assembly the OwinStartup object to our Startup class. We must have at least one
Startup class registered in the OwinStartup attribute. The Startup class has one function
called Configuration. All Startup classes must include this function, and it must accept
IAppBuilder. Additional services, such as IHostingEnvironment and ILoggerFactory
may also be specified, in which case these services will be injected by the server if they are
available. The Configuration specifies how the application will respond to individual
HTTP requests. Finally, in our Configuration method, we will be calling the
MapSignalR (an extension to the IAppBuilder object). This will define the route for clients
to use to connect to your Hub/s.

Building a Chat Application

[254]

The route is set to the app builder pipeline at the URL /signalr by
default: we can also customize this URL if required.

Our next step is to bring in some security.

Creating an authorization server using OWIN
OAuth 2.0
The OAuth 2.0 framework enables a server to provide clients with limited access for HTTP
services. Protected server resources can only be accessed via access tokens that expire after
certain periods of time. Clients will shoot a HTTP request at a domain endpoint URL
(normally /token), the server will send a response with token details (such as expiration,
access token, time/date issued), and the access token will be used for a period of time with
other HTTP request headers to authorize access to protected resources.

Access tokens are strings denoting specified scope, lifetime, and other
access attributes.

So where do we begin to set up server authorization?

Our first step is to build the logic behind granting clients access from username and
password credentials.

OAuthAuthorizationServerProvider
An OAuthAuthorizationServerProvider determines how we validate user credentials
using OAuthGrantResourceOwnerCredentialsContext. Its job is to simply handle the
authentication of users. This item provides the context in which we handle resource grants.

Let's add a new folder called Providers, and add a new file in this folder called
AuthorizationServerProvider.cs. Implement the following:

public class AuthorizationServerProvider : OAuthAuthorizationServerProvider
 {
 public override async Task
ValidateClientAuthentication(OAuthValidateClientAuthenticationContext
context)

Building a Chat Application

[255]

 {
 context.Validated();
 }
 public override async Task
GrantResourceOwnerCredentials(OAuthGrantResourceOwnerCredentialsContext
context)
 {
 context.OwinContext.Response.Headers.Add("Access-Control-Allow-
Origin", new[] { "*" });
 string userName = null;
 using (AuthenticationRepository authenticationRepository = new
AuthenticationRepository())
 {
 IdentityUser user = await
authenticationRepository.FindUser(context.UserName, context.Password);
 if (user == null)
 {
 context.SetError("invalid_grant", "Incorrect user name
or password");
 return;
 }
 userName = user.UserName;
 }
 var identity = new
ClaimsIdentity(context.Options.AuthenticationType);
 identity.AddClaim(new Claim("Role", "User"));
 identity.AddClaim(new Claim("UserName", userName));
 context.Validated(identity);
 }
 }

Our implementation of the OAuthAuthorizationServerProvider will override the
ValidateClientAuthentication function, which simply returns whether the
usercontext has been validated. We then override the
GrantResourceOwnerCredentials() function, which is called when a request to the
token endpoint (/token) arrives with a grant_type of password (this key is set in the
request header along with the username and password). The function will simply initialize
a new AuthenticationRepository to access the UserManager framework and check if
the user exists; if it doesn't we return, and the context will still be invalid. If the user exists,
we create a new ClaimsIdentity object with two claims, one for the role and
username principles of there source owner (the user who sent the HTTP request). Finally, we
then place the ClaimsIdentity object into the context.Validated() function in order
to issue the access token. This ClaimsIdentity object is now the ticket that contains the
claims about the resource owner (the user) associated with the access token.

Building a Chat Application

[256]

A ClaimsIdentity is an object that is a collection of Claim objects to
represent an entity's identity. Each Claim object is simply a statement
describing an identity's role, permission, or an other quality of an entity.

Use OAuthBearerAuthentication
Our next step is to add the logic behind handling bearer tokens (these are the access tokens
granted by the authorization server provider). UseOAuthBearerAuthentication has the
job of ensuring that only authenticated users can access your protected server resources (in
our example the ChatHub). Add a new file called
OAuthBearerTokenAuthenticationProvider.cs and implement the following:

public class OAuthBearerTokenAuthenticationProvider :
OAuthBearerAuthenticationProvider
 {
 public override Task RequestToken(OAuthRequestTokenContext context)
 {
 string cookieToken = null;
 string queryStringToken = null;
 string headerToken = null;
 try
 {
 cookieToken =
context.OwinContext.Request.Cookies["BearerToken"];
 }
 catch (NullReferenceException)
 {
 System.Diagnostics.Debug.WriteLine("The cookie does not
contain the bearer token");
 }
 try
 {
 queryStringToken =
context.OwinContext.Request.Query["BearerToken"].ToString();
 }
 catch (NullReferenceException)
 {
 System.Diagnostics.Debug.WriteLine("The query string does
not contain the bearer token");
 }
 try
 {
 headerToken =
context.OwinContext.Request.Headers["BearerToken"];

Building a Chat Application

[257]

 }
 catch (NullReferenceException)
 {
 System.Diagnostics.Debug.WriteLine("The connection header
does not contain the bearer token");
 }
 if (!String.IsNullOrEmpty(cookieToken))
 context.Token = cookieToken;
 else if (!String.IsNullOrEmpty(queryStringToken))
 context.Token = queryStringToken;
 else if (!String.IsNullOrEmpty(headerToken))
 context.Token = headerToken;
 return Task.FromResult<object>(null);
 }
 }

Let's look at this item more closely. We are overriding the RequestToken() function to
access the OAuthRequestTokenContext from every HTTP request that hits the server.
Inside the OwinContext object, we can access the HTTP request that just hit the server,
check through the dictionary of headers for our BearerToken, and then extract this access
token and assign it to the OAuthRequestTokenContext.Token property.

Setting up the AuthenticationRepository
Now we move on to the AuthenticationRepository. This is the object that will handle
access and storage using the UserManager framework provided by
the Identity.EntityFramework library. Add in a new folder called Repositories, then
add a new file called AuthenticationRepository.cs, and implement the following:

The UserManager class is a facade for providing identity management in
any ASP.Net application

public class AuthenticationRepository : IDisposable
 {
 private AuthenticationContext authenticationContext;
 private UserManager<IdentityUser> userManager;
 public AuthenticationRepository()
 {
 authenticationContext = new AuthenticationContext();
 userManager = new UserManager<IdentityUser>(new
UserStore<IdentityUser>(authenticationContext));
 }

Building a Chat Application

[258]

 public async Task<IdentityResult> RegisterUser(UserModel userModel)
 {
 IdentityUser newUser = new IdentityUser()
 {
 UserName = userModel.Username
 };
 var foundUser = await
userManager.FindByNameAsync(newUser.UserName);
 if (foundUser != null)
 {
 await userManager.RemovePasswordAsync(foundUser.Id);
 return await userManager.AddPasswordAsync(foundUser.Id,
userModel.Password);
 }
 else
 {
 return await userManager.CreateAsync(newUser,
userModel.Password);
 }
 }
 public async Task<IdentityUser> FindUser(string userName, string
password)
 {
 return await userManager.FindAsync(userName, password);
 }
 public void Dispose()
 {
 authenticationContext.Dispose();
 userManager.Dispose();
 }
 }

Our main concern here involves two functions, one for registering users if they don't exist,
and one for finding users. The authorization server provider uses FindUser to determine
whether a user exists to confirm authentication.

We also need to add another file called AuthenticationContext.cs and implement the
following:

public class AuthenticationContext : IdentityDbContext<IdentityUser>
 {
 public AuthenticationContext()
 : base("AuthenticationContext")
 {
 }
 }

Building a Chat Application

[259]

This is a very simple class which inherits the IdentityDBContext of type
IdentityUser. This object is the access layer for retrieving data objects
(IdentityUser objects) via the EntityFramework. The following diagram shows the
layers of logic between your ASP.Net application and EntityFramework:

Fantastic! Hopefully those topic weren't too confusing. Now let's start building the Web
API.

Configuring the Web API
Our next step is to configure the Web API. Let's add in a new folder called App_Start.
Inside this folder add a new file called WebApiConfig.cs and implement the following:,

public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config)
 {
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{action}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }

Building a Chat Application

[260]

Look more closely at the routeTemplate; notice the {action} addition? This means we
have to include the ActionName attribute with each function in our AccountController.
The ActionName attribute represents the URL extension, for example:

ActionName("Register") = http://{IP Address}:{Port}/Register

Now let's add another file called Startup.cs and implement the following:,

public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 HttpConfiguration config = new HttpConfiguration();
 WebApiConfig.Register(config);
 app.UseWebApi(config);
 }
 }

Now let's move on to building the AccountController to handle incoming HTTP requests
for user login and registration.

Building the AccountController
Now that we have configured the Web API, let's build the first API controller. Add in a new
folder called Models. Inside this folder, add a new file called UserModel.cs, and
implement the following:

public class UserModel {
 [Required]
 public string Username { get; set; }
 [Required]
 public string Password { get; set; }
 }

The object will contain the username and password fields passed in through the HTTP
request from the client. The Register attribute is used to make sure that this property is
included with the HTTP request. We can then map this attribute to the API controller
ModelState.IsValid check, so if any of the properties with this attribute are missing, the
IsValid property will be false. Next, let's add in another folder called Controllers.
Inside this folder add in a new file, AccountController.cs, and implement the following:

public class AccountController : ApiController
 {
 private AuthenticationRepository authenticationRepository;

Building a Chat Application

[261]

 public AccountController()
 {
 authenticationRepository = new AuthenticationRepository();
 }

 [HttpPost]
 [AllowAnonymous]
 [ActionName("Register")]
 public async Task<IHttpActionResult> Register(UserModel userModel)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var result = await
authenticationRepository.RegisterUser(userModel);
 return Ok();
 }
 }

Our first step is the Register function, which is responsible for storing a new user into the
UserManager through the AccountRepository.

Notice the if statement on ModalState.IsValid?

If either the Username or Password properties are missing from the HTTP request, it will
return false.

Let's now add the Login function:

[HttpPost]
 [AllowAnonymous]
 [ActionName("Login")]
 public async Task<bool> Login(UserModel userModel)
 {
 if (!ModelState.IsValid)
 {
 return false;
 }
 var result = await
 authenticationRepository.FindUser(userModel.Username,
 userModel.Password);
 return (result != null);
 }

Building a Chat Application

[262]

This is exactly the same as Register but we are using the FindUser function to check if
the user exists in the UserManager. Finally, to avoid any memory leakage, we need to make
sure that the AuthenticationRepostiory is disposed when the API controller is
disposed. Let's override the Dispose function like this:

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 authenticationRepository.Dispose();

 base.Dispose(disposing);
 }

Great! That's everything for the AccountController, now we must integrate the OAuth
authentication and Web API together.

Configuring OAuth Authentication with our Web
API
In order to integrate our OAuth module with the Web API we must add some extra
configuration in Startup.cs. Add in a new function called ConfigureOAuth like this:

public class Startup
 {
 ...

public void ConfigureOAuth(IAppBuilder app)
 {
 OAuthAuthorizationServerOptions OAuthServerOptions = new
OAuthAuthorizationServerOptions()
 {
 AllowInsecureHttp = true,
 TokenEndpointPath = new PathString("/token"),
 AccessTokenExpireTimeSpan = TimeSpan.FromDays(1),
 Provider = new AuthorizationServerProvider()
 };
 app.UseOAuthAuthorizationServer(OAuthServerOptions);
 app.UseOAuthBearerAuthentication(new
OAuthBearerAuthenticationOptions()
 {
 Provider = new OAuthBearerTokenAuthenticationProvider()
 });
 }

Building a Chat Application

[263]

 ...
}

Looking more closely, we start with instantiating a new
OAuthAuthorizationServerOptions object, we set the endpoint URL, expiration period
for an access token, and the provider is set to our AuthorizationServerProvider class
created in the preceding example. We then add this object into the IAppBuilder object
using the function UseOAuthAuthorizationServer. Finally, we create a new
OAuthBearerAuthenticationOptions object where the provider is set to our
OAuthBearerTokenAuthenticationProvider object created in the preceding example.

That's all for now; we now have OAuth authentication integrated with our Web API. Now
let's implement the final part of our server application.

Building the SignalR Hub
The ChatHub will be responsible for routing messages between clients using a
ConnectionId. Let's add in a new file called ChatHub and start with overriding the
OnConnected and OnDisconnected functions:

[Authorize]
 public class ChatHub : Hub
 {
 public static readonly ConcurrentDictionary<string, SigRUser> Users
 = new ConcurrentDictionary<string,
SigRUser>(StringComparer.InvariantCultureIgnoreCase);
 public override Task OnConnected()
 {
 var userName = (Context.User.Identity as
ClaimsIdentity).Claims.FirstOrDefault(claim => claim.Type ==
"UserName").Value;
 string connectionId = Context.ConnectionId;
 var user = Users.GetOrAdd(userName, _ => new SigRUser
 {
 Name = userName,
 ConnectionIds = new HashSet<string>()
 });
 lock (user.ConnectionIds)
 {
 user.ConnectionIds.Add(connectionId);
 NotifyOtherConnectedUsers(userName);
 }
 return base.OnConnected();
 }

Building a Chat Application

[264]

 public override Task OnDisconnected(bool stopCalled)
 {
 var userName = (Context.User.Identity as
ClaimsIdentity).Claims.FirstOrDefault(claim => claim.Type ==
"UserName").Value;
 string connectionId = Context.ConnectionId;
 SigRUser user;
 Users.TryGetValue(userName, out user);
 if (user != null)
 {
 lock (user.ConnectionIds)
 {
 SigRUser removedUser;
 Users.TryRemove(userName, out removedUser);
 NotifyOtherConnectedUsers(userName);
 }
 }
 return base.OnDisconnected(stopCalled);
 }
 }

HashSetUsers is static because we are going to use this later on in our
AccountController.

Notice the Authorize attribute?

This is how we created a protected server resource; only clients with granted access tokens
can connect to the ChatHub.

Now let's turn our attention to the OnConnected function. When a client connects to
the ChatHub, the username is retrieved from the HubCallerContext property, which is
actually a ClaimsIdentity object. When we login through the AccountController,
inside the AuthorizationServerProvider we store the identity object inside the context
when the function GrantResourceOwnerCredentials is called. We also store a Claim
object of type username inside the identity, which we can now retrieve from the user's
identity in the HubCallerContext. This is how we integrate OAuth with SignalR.

Building a Chat Application

[265]

Now that we have the username, we are going to try and retrieve a SigRUser object from
the ConcurrentDictionary; if the username doesn't exist we create a new SignRUser
and add it to the HashSet. We then lock the ConnectionIdsConcurrentDictionary
making it thread safe as multiple threads (different user connections) can make changes on
this property. Inside the lock statement we add the new ConnectionId and notify all other
usernames connected to the ChatHub using the function NotifyOtherConnectedUsers.
Let's now add this function to the ChatHub:

public void NotifyOtherConnectedUsers(string userName)
 {
 var connectionIds = Users.Where(x => !x.Key.Contains(userName))
 .SelectMany(x => x.Value.ConnectionIds)
 .Distinct();
 foreach (var cid in connectionIds)
 {
 Clients.Client(cid).displayMessage("clients",
JsonConvert.SerializeObject(Users.Select(x => x.Key)));
 }
 }

This function will call displayMessage, sending a serialized JSON object of the
ConcurrentDictionary Users to all other connected clients (we will see why later).

Now let's turn our attention to the OnDisconnected function. This function will simply
check there is a SigRUser with the username equal to the one retrieved from the
HubCallerContext object. If this user exists, we try and remove it from
the ConcurrentDictionary and call the NotifyOtherConnectedUsers again sending
the updated dictionary of clients to the remaining connected clients.

We call this function every time a user connects or disconnects to the hub,
so in our mobile application we can update a list of connected clients in
real time without refreshing the page.

Now that we can handle an updated list of connected clients, our last step is to add the
function which will send a message between two clients. The Send function will be called
through the client's hub proxy with two parameters (message and username):

public void Send(string message, string to)
 {
 SigRUser receiver;
 if (Users.TryGetValue(to, out receiver))
 {
 var userName = (Context.User.Identity as
ClaimsIdentity).Claims.FirstOrDefault(claim => claim.Type ==

Building a Chat Application

[266]

"UserName").Value;
 SigRUser sender;
 Users.TryGetValue(userName, out sender);

 lock (receiver.ConnectionIds)
 {
 foreach (var cid in receiver.ConnectionIds)
 {
 Clients.Client(cid).displayMessage("chat",
message);
 }
 }
 }
 }

That's all for our backend. We have now created our first addition to the server's service
access layer.

The server service access layer will sit in a different service access layer to
the mobile projects. With server and client code, each side of the system
will have its own architecture and layers.

Now let's move onto the client side and start building our mobile applications.

Setting up mobile projects
Now we move back to the mobile side; in our mobile projects we are going to be setting up
SignalR clients on both Android and iOS natively. We will also be creating a presenter layer
to share the UI logic between both native platforms. Open up Xamarin Studio and create a
new shared project called Chat.Common; inside this project add two empty folders called
Model and Presenter.

Building a Chat Application

[267]

We then want to create a single view iOS application, a general Android application and a
shared project called Chat.ServiceAccess. Our project structure will look like this:

Creating the SignalRClient
We are going to start implementing a new class called SignalRClient. This will sit in the
service access layer, the shared project called Chat.ServiceAccess. Create a new file
called SignalRClient.cs, and implement the following:

public class SignalRClient
 {
 private readonly HubConnection _connection;
 private readonly IHubProxy _proxy;
 public event EventHandler<Tuple<string, string>> OnDataReceived;
 public SignalRClient()
 {
 _connection = new HubConnection("http://{IP
Address}:{Port}/");
 _proxy = _connection.CreateHubProxy("ChatHub");
 }
 }

Building a Chat Application

[268]

Now let's look more closely. We have two readonly properties in which we only initialize
once when the object is created, the hub connection which is set to the server URL, and the
HubProxy which is created off the connection to the server.

Now let's add two functions for connecting and disconnecting to the ChatHub:

public async Task<bool> Connect(string accessToken)
 {
 try
 {
 _connection.Headers.Add("Authorization",
 string.Format("Bearer {0}", accessToken));
 await _connection.Start();
 _proxy.On<string, string>("displayMessage", (id, data) =>
 {
 if (OnDataReceived != null)
 {
 OnDataReceived(this, new Tuple<string,
 string>(id, data));
 }
 });
 return true;
 }
 catch (Exception e)
 {
 Console.WriteLine(e);
 }
 return false;
 }
 public void Disconnect()
 {
 _connection.Stop();
 _connection.Dispose();
 }

The Connect function requires an access token which we add to the Headers dictionary of
the HubConnection object.

The access token is used as a Bearer token to authorize access to the
ChatHub.

Building a Chat Application

[269]

The function On called from the proxy takes in two parameters, the name of the function on
the server we are listening for, and the action that will be performed every time this
function is called on the Hub's connected clients. In this example, our proxy will fire this
action whenever two strings are received from the server. The first string is an ID for the
data passed in the second string (this could be a JSON list of connected clients or it could be
a simple chat message). This data will then be passed a Tuple<string, string> object to
the EventHandler.

We can call On for multiple functions, and fire different actions for as
many different functions being called on the Hub.

The Disconnect function simply closes the connection and disposes the HubConnection
object. Finally, we add another function for invoking the Send function via the
ChatHub object on the server:

public async Task SendMessageToClient(string user, string message)
{
 await _proxy.Invoke("Send", new object[]
 {
 message,
 user
 });
}

When we invoke server functions, we use an array of objects, in order to match the
parameters required on the server function.

Building a Chat Application

[270]

Since the SignalRClient will sit in a shared project, the same code will be used for each
different platform, but the libraries referenced from the using statements will come from
each platform project. Now let's have both the iOS and Android projects reference this
shared project. We also want to add the Microsoft.AspNet.SignalR.Client NuGet
package for all the platform projects (iOS and Android).

Building a Chat Application

[271]

If you are trying to add the NuGet package for SignalR version 2.2.0 with Xamarin.iOS 1.0,
the package will fail to add. If so, visit the following link and add the correct .dll files from
the lib folder to each platform project's references: h t t p s : / / c o m p o n e n t s . x a m a r i n . c o m / a u

t h ? r e d i r e c t _ t o = % 2 f d o w n l o a d % 2 f s i g n a l r.

To add the references correctly, right-click the folder References for each
project, click the .Net assembly tab, and click the Browse button to add
the .dll files (Microsoft.AspNet.SignalR.Client,
System.Net.Http.Extensions, and System.Net.Http.Primitives).

https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr
https://components.xamarin.com/auth?redirect_to=%2fdownload%2fsignalr

Building a Chat Application

[272]

For each platform project, we also need to add the Json.Net package from NuGet, then
right-click on the References, click the All tab, and select System.Net and System.Net.Http.

Now that we have SignalR configured, let's move on to building the WebApiAccess layer.

Building the WebApiAccess layer
Our WebApiAccess object will be mapped to the AccountController on the server. Let's
add in a new file called WebApiAccess.cs, and implement the LoginAsync function:

public class WebApiAccess
 {
 private string _baseAddress = "http://{IP Address}:{Port}/";
 public async Task<bool> LoginAsync(string name, string password,
 CancellationToken? cancellationToken = null)
 {
 var httpMessage = new HttpRequestMessage(HttpMethod.Post,
 new Uri(_baseAddress + "api/Account/Login"))
 {

Building a Chat Application

[273]

 Content = new StringContent(string.Format
 ("Username={0}&Password={1}", name, password),
Encoding.UTF8,
 "application/x-www-form-urlencoded"),
 };
 var client = new HttpClient();
 var response = await client.SendAsync(httpMessage,
 cancellationToken ?? new CancellationToken(false));
 switch (response.StatusCode)
 {
 case HttpStatusCode.NotFound:
 throw new Exception(string.Empty);
 }
 var responseContent = await
response.Content.ReadAsStringAsync();
 var loginSuccess = false;
 bool.TryParse(responseContent, out loginSuccess);
 return loginSuccess;
 }
 }

The _baseAddress property will be the same as the SignalRHubConnection address; this
is our server link. In our LoginAsync function, we start with creating a new
HttpRequestMessage set as a HttpMethod.Post. We also set the content to a new
StringContent object, which takes the username and password. This message is used in a
new HttpClient to send to the server, and the response received is read as a string and
parsed in to a new bool object to determine the success of the login.

Let's go ahead and implement the rest of the access layer:

public async Task<bool> RegisterAsync(string name, string password,
CancellationToken? cancellationToken = null)
 {
 var httpMessage = new HttpRequestMessage(HttpMethod.Post,
 new Uri(_baseAddress + "api/Account/Register"))
 {
 Content = new StringContent(string.Format
 ("Username={0}&Password={1}", name, password),
Encoding.UTF8,
 "application/x-www-form-urlencoded"),
 };
 var client = new HttpClient();
 var response = await client.SendAsync(httpMessage,
 cancellationToken ?? new CancellationToken(false));
 return response.StatusCode == HttpStatusCode.OK;
 }

Building a Chat Application

[274]

The Register function is very much the same, but we only check that the response status
code is a 200(OK) response; if so, then we have registered successfully.

public async Task<TokenContract> GetTokenAsync(string name, string
password, CancellationToken? cancellationToken = null)
 {
 var httpMessage = new HttpRequestMessage(HttpMethod.Post,
 new Uri(_baseAddress + "token"))
 {
 Content = new StringContent(string.Format
 ("Username={0}&Password={1}&grant_type=password", name,
 password), Encoding.UTF8, "application/x-www-form-
urlencoded"),
 };
 var client = new HttpClient();
 var response = await client.SendAsync(httpMessage,
 cancellationToken ?? new CancellationToken(false));
 switch (response.StatusCode)
 {
 case HttpStatusCode.NotFound:
 throw new Exception(string.Empty);
 }
 var tokenJson = await response.Content.ReadAsStringAsync();
 return
JsonConvert.DeserializeObject<TokenContract>(tokenJson);
 }

The GetTokenAsync function is responsible for retrieving the access token from the OAuth
endpoint (/token). The JSON response will be of the type TokenContract; let's go ahead
and add this object into the Chat.ServiceAccess project. Create a new folder called
Contracts inside the Web folder, add in a new file called TokenContract.cs, and
implement the following:

public class TokenContract
 {
 [JsonProperty("access_token")]
 public string AccessToken { get; set; }
 [JsonProperty("token_type")]
 public string TokenType { get; set; }
 [JsonProperty("expires_in")]
 public int ExpiresIn { get; set; }
 [JsonProperty("userName")]
 public string Username { get; set; }
 [JsonProperty(".issued")]
 public string IssuedAt { get; set; }
 [JsonProperty(".expires")]
 public string ExpiresAt { get; set; }

Building a Chat Application

[275]

 }

Notice the JsonProperty attribute?

We can map properties from the JSON objects into other named variables for the class.

Now for the final Web API function, GetAllConnectedUsersAsync. This function will be
called when a user logs in for the first time. We need to have both an API call and a real-
time update with the SignalRClient to keep track of the current connected clients because
when a new user logs in, the server will call displayMessage on all other clients. Even if
we were to call displayMessage on Clients.All (this is a reference to all the connected
clients on any SignalR Hub), the newly connected client won't appear in the Clients list as
there is a minor delay with the connection.

This minor delay is something we cannot control; only sometimes would
the newly connected client receives the updated list through the HubProxy
event. So, to make things more reliable, we add this update through the
API access layer.

Let's add the final Web API function for GetAllConnectedUsersAsync. This function will
deserialized an IEnumerable of strings which represents the list of connected clients from
the ChatHub:

public async Task<IEnumerable<string>>
 GetAllConnectedUsersAsync(CancellationToken? cancellationToken = null)
 {
 var httpMessage = new HttpRequestMessage(HttpMethod.Get,
 new Uri(_baseAddress + "api/Account/GetAllConnectedUsers"));
 var client = new HttpClient();
 var response = await client.SendAsync(httpMessage,
 cancellationToken ?? new CancellationToken(false));
 switch (response.StatusCode)
 {
 case HttpStatusCode.NotFound:
 throw new Exception(string.Empty);
 }
 var responseContent = await
response.Content.ReadAsStringAsync();
 return JsonConvert.DeserializeObject<IEnumerable<string>>
(responseContent);
 }

Great! We now have our Web API access layer. Our next step is to start building the
application state and navigation service required for each presenter.

Building a Chat Application

[276]

Application state
In MVP, every presenter must include the current application state. When we cross between
different screens, the persistent state of application data is kept alive throughout the entire
life of the application (this includes search results, downloaded JSON objects, and so on.

In some most MVP applications, the application state will include a service
for saving and loading this persistent data between different sessions.
For an extra learning activity, try implementing a new service called
IApplicationStateService. This will be responsible for saving and
loading the ApplicationState object locally to your device.

Excellent! Now let's add another file called ApplicationState.cs, and implement the
following:

public class ApplicationState
 {
 #region Public Properties
 public string AccessToken { get; set; }
 public string Username { get; set; }
 #endregion
 }

Nothing much to it, right?

We only ever want one instance of this object throughout the entire life of the application,
so we will build upon the persistent data to be kept alive between each screen.

Setting up the navigation service
Implementing a navigation service in MVP is very different from our Xamarin.Forms
navigation service. Our navigation service will not be used in an IoC container this time;
instead, we will be instantiating one of these objects at the start of our application in the
AppDelegate and MainActivity classes. Since we are working in native, we will also be
implementing a separate navigation service for each platform that will share the same
interface.

Let's start with creating the shared interface. Add a new file to the Chat.Common folder
Presenter | Services, call it INavigationService.cs, and implement the following:

public interface INavigationService { void PushPresenter(BasePresenter
presenter); }

Building a Chat Application

[277]

Building the iOS navigation service
Let's start with the iOS navigation service. Add in a new folder called Services to the
Chat.iOS project, create a new file called NavigationService.cs, and implement the
following:

public class NavigationService : INavigationService
 {
 #region Private Properties
 private UINavigationController _navigationController;
 #endregion
 #region Constructors
 public NavigationService(UINavigationController
navigationController)
 {
 _navigationController = navigationController;
 }
 #endregion
 #region INavigationService implementation
 public void PushPresenter(BasePresenter presenter)
 {
 if (presenter is LoginPresenter)
 {
 var viewController = new LoginViewController
 (presenter as LoginPresenter);
 _navigationController.PushViewController(viewController,
true);
 }
 }
 public void PopPresenter(bool animated)
 {
 _navigationController.PopViewController(animated);
 }
 #endregion
 }

When we instantiate this object we always want to pass in the UINavigationController
that is assigned to our RootViewController of the UIWindow object created in our
AppDelegate. We also have to implement the Push function, which takes a
BasePresenter object (any presenter), and we perform a type check to determine which
presenter is being passed, and pushing the related UIViewController, onto the navigation
stack. We must always pass the presenter to the new UIViewController, so we can
register the new view to the current presenter.

Building a Chat Application

[278]

Building the Android navigation service
Before we move onto the Android navigation service, we have to add an extra class to hold
persistent state on the current activity, current presenter, and current context. Add in a new
file called Application.cs and implement the following:

[Application]
 public class ChatApplication : Application
 {
 #region Public Properties
 public object Presenter
 {
 get;
 set;
 }
 public Activity CurrentActivity
 {
 get;
 set;
 }
 #endregion
 #region Constructors
 public ChatApplication()
 : base()
 {
 }
 public ChatApplication(IntPtr javaReference,
 JniHandleOwnership transfer)
 : base(javaReference, transfer)
 {
 }
 #endregion
 #region Public Methods
 public static ChatApplication GetApplication(Context context)
 {
 return (ChatApplication)context.ApplicationContext;
 }
 #endregion
 }

This class will extend off the Android application, so when we reference the Android
application class in other parts of our application, we have reference to the extra persistent
objects.

Building a Chat Application

[279]

Now let's implement the Android navigation service. Add in a new folder to the Android
project called Services, add a new file called NavigationService.cs, and implement
the following:

public class NavigationService : INavigationService
 {
 private ChatApplication _application;
 public NavigationService(ChatApplication application)
 {
 _application = application;
 }
 public void PushPresenter(BasePresenter presenter)
 {
 var oldPresenter = _application.Presenter as BasePresenter;
 if (presenter != oldPresenter)
 {
 _application.Presenter = presenter;
 Intent intent = null;
 if (presenter is LoginPresenter)
 {
 intent = new Intent(_application.CurrentActivity,
 typeof(LoginActivity));
 }
 if (intent != null)
 {
 _application.CurrentActivity.StartActivity(intent);
 }
 }
 }
 public void PopPresenter(bool animated)
 {
 _application.CurrentActivity.Finish();
 }
 }

In the constructor, we pass in the Application object and keep this stored as a private
variable inside the navigation service. The Push function requires the
Application everytime we push a new Activity onto the stack, because we require the
current activity reference to start the new intent from the current activity held inside the
Application object.

Now that we have our navigation service and application state, let's start building our user
interface for iOS.

Building a Chat Application

[280]

Building the iOS interface
Since we don't really know how the user interface is going to look for each screen, we can't
define the logic in our presenters. So let's loosely talk about how the user interface is going
to look.

We should normally have screen mock-ups at this point before we move
to the UI layer of a project.

We have three screens in our application, one of which is going to be list which displays all
the connected clients live on the ChatHub on our server. A user will be able to select this
user from the list; when a user selects another client from the list, this client should receive a
message asking for permission to start a chat conversation. When a user accepts, this will
move to another screen which will show a typical chat conversation, much the same as with
any other SMS application (speech bubbles on either side). The following diagram is a quick
mock-up of the three screens and workflow. All we see is the first screen showing a login
screen, then another showing a list with the connected clients, and the last screen showing a
conversation between two connected clients.

Excellent! Now that we have an idea as to how our screens are going to look, let's talk about
the logic behind the first screen that we can share. We have a screen with two entry boxes
for a username and password. The screen will be able to perform logins and registrations on
our Web API, so we will require a button for each. If we are successful with login, this will
push the list page on to the navigation stack.

Let's consider a cross-platform approach; what can we share here?

Web API layer
EventHandlers to handle the click events for a login and register
Navigation service to handle push/pop onto our navigation stack

Building a Chat Application

[281]

We have a rough idea of the logic behind our first screen; let's build our first Presenter.
Create two new files called BasePresenter.cs and IView.cs. We will start with
the IView class:

public interface IView
 {
 void SetMessage(string message);
 bool IsInProgress
 {
 get;
 set;
 }
 }

We want all screens to have an IsInProgress variable, if any screen is loading or
processing, we can display loading activity to the user. The SetMessage function is used
to display any errors to the user through an alert dialog.

Now for the BasePresenter, this is an abstract class which will be used for all presenters.
All presenters require the ApplicationState, INavigationService, and the
SignalRClient. Throughout our entire application, each screen requires events from the
SignalRClient to function, so we can bring it into the BasePresenter object. We have
created two EventHandlers; these are fired based upon the data received via the hub
proxy on the SignalRClient. If we receive a list of Clients, we will fire the
ConnectedClientsUpdated event. If we receive a string, we will fire the ChatReceived
event, so we can actually control all SignalR data via the BasePresenter class, and
channel specific data types to specific events for our views to register. We also have the
WebApiAccess object for accessing the Web API and a string for holding the access token
when we login successfully:

public abstract class BasePresenter
 {
 #region Private Properties
 private IDictionary<string, Action<string>> _signalREvents;
 #endregion
 #region Protected Properties
 protected INavigationService _navigationService;
 protected ApplicationState _state;
 protected SignalRClient _signalRClient;
 protected WebApiAccess _webApiAccess;
 protected string _accessToken;
 #endregion

 #region Events
 public event EventHandler<ConnectedClientsUpdatedEventArgs>

Building a Chat Application

[282]

 ConnectedClientsUpdated;
 public event EventHandler<ChatEventArgs> ChatReceived;
 #endregion
 }

Handling Hub proxy callbacks
Let's turn our attention to the SignalRClient; we created an EventHandler, which fires
every time data is received from the Hub. The BasePresenter will be responsible for
handling the data received from this EventHandler:

 #region Constructors
 public BasePresenter()
 {
 _webApiAccess = new WebApiAccess();
 _signalREvents = new Dictionary<string, Action<string>>()
 {
 {"clients", (data) =>
 {
 var list =
JsonConvert.DeserializeObject<IEnumerable<string>>(data);
 if (ConnectedClientsUpdated != null)
 {
 ConnectedClientsUpdated(this, new
ConnectedClientsUpdatedEventArgs(list.Select(x => new Client
 {
 Username = x,
 })));
 }
 }
 },
 {"chat", (data) =>
 {
 if (ChatReceived != null)
 {
 ChatReceived(this, new ChatEventArgs(data));
 }
 }
 },
 };
 }
 #endregion
 #region Protected Methods
 protected void HandleSignalRDataReceived(object sender,
Tuple<string, string> e)
 {

Building a Chat Application

[283]

 _signalREvents[e.Item1](e.Item2);
 }
 #endregion

The private dictionary _signalREvents is used instead of a switch
statement.

With each Tuple received from the SignalRClient's OnDataReceived event, the first string
will be the key matching the indexed Action<string> in the dictionary. The other string
of the Tuple is the data string (either a serialized JSON of HashSet<string>, or a string
which represents a chat message), which is passed as the input parameter for our
Action<string>, then, out of this input parameter, we will create the correct arguments
used for the specified event.

We could take things a step further and abstract a view object into the
BasePresenter, as every presenter requires a view, but because each
view logic is independent, it is very hard to centralize this logic in one
area. The need for this will come if multiple views have similar behaviors.
Then we can look at abstracting these areas into the BasePresenter.

But wait! You may have noticed that we have two types of arguments being passed into
each EventHandler. Add a new file to the Events folder in the Chat.Common project
called ConnectedClientsUpdatedEventArgs.cs, and implement the following:

public class ConnectedClientsUpdatedEventArgs : EventArgs
 {
 public IList<Client> ConnectedClients { private set; get;
 }
 public ConnectedClientsUpdatedEventArgs(IEnumerable<Client>
connectedClients)
 {
 ConnectedClients = new List<Client>();
 foreach (var client in connectedClients)
 {
 ConnectedClients.Add(client);
 }
 }
 }

We also need another file called ChatEventArgs.cs. Add this to the Events folder and
implement the following:

public class ChatEventArgs : EventArgs

Building a Chat Application

[284]

 {
 public string Message { private set; get;
 }
 public ChatEventArgs(string message)
 {
 Message = message;
 }
 }

This object is the wrapper for every message received for a chat message. Now we have
everything ready to implement our first presenter object.

Implementing the LoginPresenter
Create a new file called LoginPresenter.cs, add it to the Presenter folder in the
Chat.Common project, and implement the following:

public class LoginPresenter : BasePresenter
 {
 #region Private Properties
 private ILoginView _view;
 #endregion
 #region IClientsListView
 public interface ILoginView : IView
 {
 event EventHandler<Tuple<string, string>> Login;
 event EventHandler<Tuple<string, string>> Register;
 }
 #endregion
 #region Constructors
 public LoginPresenter(ApplicationState state, INavigationService
navigationService)
 {
 _navigationService = navigationService;
 _state = state;
 _webApiAccess = new WebApiAccess();
 }
 #endregion

#region Public Methods
 public void SetView(ILoginView view)
 {
 _view = view;
 _view.Login -= HandleLogin;
 _view.Login += HandleLogin;

Building a Chat Application

[285]

 _view.Register -= HandleRegister;
 _view.Register += HandleRegister;
 }
 #endregion
 }

Our LoginPresenter contains a new ILoginView interface with two new event handlers
for the two buttons that will appear on the login screen. We also include a
new WebApiAccess object as we will need to perform logins and registrations on the Web
API. We also need another function called SetView, this will take the user interface object
and register any EventHandlers specified by the ILoginView interface. Let's now add the
function for handling logins:

 #region Private Methods
 private async void HandleLogin(object sender, Tuple<string,
string> user)
 {
 if (!_view.IsInProgress)
 {
 _state.Username = user.Item1;
 _view.IsInProgress = true;
 if (user.Item2.Length >= 6)
 {
 var loggedIn = await
_webApiAccess.LoginAsync(user.Item1, user.Item2, CancellationToken.None);
 if (loggedIn)
 {
 var tokenContract = await
_webApiAccess.GetTokenAsync(user.Item1, user.Item2,
CancellationToken.None);
 if
(!string.IsNullOrEmpty(tokenContract.AccessToken))
 {
 var presenter = new
ClientsListPresenter(_state, _navigationService,
tokenContract.AccessToken);
 _navigationService.PushPresenter(presenter);
 }
 else
 {
 _view.SetErrorMessage("Failed to register
user.");
 }
 }
 else
 {
 _view.SetErrorMessage("Invalid username or

Building a Chat Application

[286]

password.");
 }
 }
 else
 {
 _view.SetErrorMessage("Password must be at least 6
characters.");
 }
 _view.IsInProgress = false;
 }
 }

The HandleLogin function will check first if the screen is currently progressing from
another login; we want to make sure that only one login or registration can occur at any one
time. Firstly, we call the LoginAsync and check that the user exists in the UserManager,
then we call the GetTokenAsync function to retrieve the access token which will be used in
our HubConnection. If both are successful, we push on the
ClientsListViewController using the NavigationService. If either fails, we use the
SetErrorMessage function for displaying an error.

We control the navigation stack by the presenter type passed into the
PushPresenter/ PopPresenter functions.

Now let's add the function for handling registrations:

private async void HandleRegister(object sender, Tuple<string, string>
user)
 {
 // make sure only once can we be registering at any one time
 if (!_view.IsInProgress)
 {
 _state.Username = user.Item1;
 _view.IsInProgress = true;
 if (user.Item2.Length >= 6)
 {
 var registerSuccess = await
_webApiAccess.RegisterAsync(user.Item1, user.Item2,
CancellationToken.None);
 if (registerSuccess)
 {
 _view.SetErrorMessage("User successfully
registered.");
 }
 }

Building a Chat Application

[287]

 else
 {
 _view.SetErrorMessage("Password must be at least 6
characters.");
 }
 _view.IsInProgress = false;
 }
 }
 #endregion

Very much the same as the LoginAsync, but we call the RegisterAsync and simply wait
for the call to finish and check we have the HTTP status code of 200 (OK).

Creating the connection between Presenter
and View
Now we move on to the user interface design and demonstrate how we set up the link
between our presenters. Developing the user interface is no different to developing natively
for iOS and Android; the only difference with MVP is that we initialize a view with its
related presenter in the constructor.

Let's start by adding a new folder to the Chat.iOS project called Views, add in a new file
called LoginViewController.cs, and implement the following:

public class LoginViewController : UIViewController,
LoginPresenter.ILoginView
 {
 #region Private Properties
 private bool _isInProgress = false;
 private LoginPresenter _presenter;
 private UITextField _loginTextField;
 private UITextField _passwordTextField;
 private UIActivityIndicatorView _activityIndicatorView;
 #endregion
 #region Constructors
 public LoginViewController(LoginPresenter presenter)
 {
 _presenter = presenter;
 }
 #endregion
 }

Building a Chat Application

[288]

We start off simply with the private properties and the constructor, where we are passing a
new LoginPresenter object that we create from the AppDelegate as the starting
presenter. The two text fields are used for the username and password entries. We have
these as a local variable as we will need to access one instance of each from multiple
functions. We also have a UIActivityIndicatorView for displaying the progress when
we login and register.

Let's go ahead and add the ViewDidLoad function. We will implement this in a few parts.
First we are going to set the view of the presenter and initialize all the UI elements and add
them into the View:

#region Public Methods
 public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 View.BackgroundColor = UIColor.White;
 _presenter.SetView(this);
 var width = View.Bounds.Width;
 var height = View.Bounds.Height;
 Title = "Welcome";
 var titleLabel = new UILabel()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 Text = "Chat",
 Font = UIFont.FromName("Helvetica-Bold", 22),
 TextAlignment = UITextAlignment.Center
 };
 _activityIndicatorView = new UIActivityIndicatorView()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 Color = UIColor.Black
 };
 var descriptionLabel = new UILabel()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 Text = "Enter your login name to join the chat room.",
 Font = UIFont.FromName("Helvetica", 18),
 TextAlignment = UITextAlignment.Center
 };
 _loginTextField = new UITextField()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 Placeholder = "Username",
 Font = UIFont.FromName("Helvetica", 18),
 BackgroundColor = UIColor.Clear.FromHex("#DFE4E6"),
 TextAlignment = UITextAlignment.Center
 };

Building a Chat Application

[289]

 _passwordTextField = new UITextField()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 Placeholder = "Password",
 Font = UIFont.FromName("Helvetica", 18),
 BackgroundColor = UIColor.Clear.FromHex("#DFE4E6"),
 TextAlignment = UITextAlignment.Center
 };
 var buttonView = new UIView()
 {
 TranslatesAutoresizingMaskIntoConstraints = false
 };
 var loginButton = new UIButton(UIButtonType.RoundedRect)
 {
 TranslatesAutoresizingMaskIntoConstraints = false
 };
 loginButton.SetTitle("Login", UIControlState.Normal);
 loginButton.TouchUpInside += (sender, e) =>
 Login(this, new Tuple<string,
string>(_loginTextField.Text, _passwordTextField.Text));
 var registerButton = new UIButton(UIButtonType.RoundedRect)
 {
 TranslatesAutoresizingMaskIntoConstraints = false
 };
 registerButton.SetTitle("Register", UIControlState.Normal);
 registerButton.TouchUpInside += (sender, e) =>
 Register(this, new Tuple<string,
string>(_loginTextField?.Text, _passwordTextField?.Text));
 Add(titleLabel);
 Add(descriptionLabel);
 Add(_activityIndicatorView);
 Add(_loginTextField);
 Add(_passwordTextField);
 Add(buttonView);
 buttonView.Add(loginButton);
 buttonView.Add(registerButton);
 }
 #endregion

This is a large block of code, but we are creating quite a few UI elements. All have the
TranslatesAutoresizingMaskIntoConstraints set to false ready for NSLayout.
Have a look at how we integrate the ILoginView implementation with the Login and
RegisterEventHandlers as they are wired to the TouchUpInside event of each button.

Building a Chat Application

[290]

Now let's start building the NSLayoutConstraints. Add the following to the bottom of
the ViewDidLoad function:

We are using the DictionaryViews object that we used in
previous chapters. Create a new folder called Extras and add this object
into the Extras folder.

var views = new DictionaryViews()
 {
 {"titleLabel", titleLabel},
 {"descriptionLabel", descriptionLabel},
 {"loginTextField", _loginTextField},
 {"passwordTextField", _passwordTextField},
 {"loginButton", loginButton},
 {"registerButton", registerButton},
 {"activityIndicatorView", _activityIndicatorView},
 {"buttonView", buttonView}
 };
 buttonView.AddConstraints(
 NSLayoutConstraint.FromVisualFormat("V:|-[registerButton]-
|", NSLayoutFormatOptions.DirectionLeftToRight, null, views)
 .Concat(NSLayoutConstraint.FromVisualFormat("V:|-
[loginButton]-|", NSLayoutFormatOptions.DirectionLeftToRight, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-
[registerButton]-30-[loginButton]-|",
NSLayoutFormatOptions.DirectionLeftToRight, null, views))
 .ToArray());
 View.AddConstraints(
 NSLayoutConstraint.FromVisualFormat("V:|-100-
[titleLabel(50)]-[descriptionLabel(30)]-10-[loginTextField(30)]-10-
[passwordTextField(30)]-10-[buttonView]",
NSLayoutFormatOptions.DirectionLeftToRight, null, views)
 .Concat(NSLayoutConstraint.FromVisualFormat("V:|-100-
[activityIndicatorView(50)]-[descriptionLabel(30)]-10-
[loginTextField(30)]-10-[passwordTextField(30)]-10-[buttonView]",
NSLayoutFormatOptions.DirectionLeftToRight, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-10-
[titleLabel]-10-|", NSLayoutFormatOptions.AlignAllTop, null, views))
.Concat(NSLayoutConstraint.FromVisualFormat("H:[activityIndicatorView(30)]-
10-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-10-
[descriptionLabel]-10-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-30-
[loginTextField]-30-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-30-
[passwordTextField]-30-|", NSLayoutFormatOptions.AlignAllTop, null, views))

Building a Chat Application

[291]

 .Concat(new[] { NSLayoutConstraint.Create(buttonView,
NSLayoutAttribute.CenterX, NSLayoutRelation.Equal, View,
NSLayoutAttribute.CenterX, 1, 1)
 })
 .ToArray());

The constraints will position the buttonView to the center of the screen horizontally; each
buttons inside will be positioned horizontally next to each other. The rest of the layout is
very self-explanatory. We are simply stacking the remaining element vertically down the
page. The UIActivityIndicatorView will be positioned to the top right of the screen next
to the TitleLabel. The rest of the layout will make more sense when we try running the
application.

Finally, we add the remaining interface implementations; we require both Login and
Register for the ILoginView interface. We also require IsInProgress bool and the
SetErrorMessage function; this will create a new UIAlertView showing the error
message. We also override the get and set of IsInProgress to control the start and stop
animation of the UIActivityIndicatorView:

 #region ILoginView implementation
 public event EventHandler<Tuple<string, string>> Login;
 public event EventHandler<Tuple<string, string>> Register;
 #endregion
 #region IView implementation

 public void SetErrorMessage(string message)
 {
 var alert = new UIAlertView()
 {
 Title = "Chat",
 Message = message
 };
 alert.AddButton("OK");
 alert.Show();
 }
 public bool IsInProgress
 {
 get
 {
 return _isInProgress;
 }
 set
 {
 if (value == _isInProgress)
 {
 return;

Building a Chat Application

[292]

 }
 // we control the activity view when we set 'IsInProgress'
 if (value)
 {
 _activityIndicatorView.StartAnimating();
 }
 else
 {
 _activityIndicatorView.StopAnimating();
 }
 _isInProgress = value;
 }
 }
 #endregion

The link between our first view and presenter is not as clean as an MVVM BindingContext
with Xamarin.Forms, but the advantage is having no middle layer of rendering between
the native user interface and the data to be displayed.

Building the LoginActivity
Let's move back into the Chat.Droid project; before we create our Activity we need to
create the layout using a new XML sheet. Add a new file called LoginView.xml into the
Resources | layout and implement the following:

<?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tableLayout"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical"
 android:gravity="center"
 android:background="#FFFFFF">
 <TextView
 android:id="@+id/titleTextView"
 android:text="Chat"
 android:fontFamily="helvetica"
 android:textStyle="bold"
 android:textSize="22dp"
 android:textColor="#000000"
 android:paddingBottom="20dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <TextView

Building a Chat Application

[293]

 android:id="@+id/descriptionTextView"
 android:text="Enter your login name to join the chat room."
 android:fontFamily="helvetica"
 android:textColor="#000000"
 android:paddingBottom="20dp"
 android:layout_centerInParent="true"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <EditText
 android:id="@+id/usernameField"
 android:textColor="#000000"
 android:layout_width="fill_parent"
 android:layout_height="50dp"
 android:paddingBottom="20dp"
 android:hint="Enter Username" />
 <EditText
 android:id="@+id/passwordField"
 android:textColor="#000000"
 android:layout_width="fill_parent"
 android:layout_height="50dp"
 android:hint="Enter Password" />
 <LinearLayout
 android:id="@+id/tableLayout"
 android:gravity="center"
 android:layout_width="fill_parent"
 android:layout_height="150dp"
 android:orientation="horizontal"
 android:background="#FFFFFF">
 <Button
 android:id="@+id/registerButton"
 android:text="Register"
 android:textColor="#417BB5"
 android:background="@android:color/transparent"
 android:layout_height="50dp"
 android:layout_width="100dp" />
 <Button
 android:id="@+id/loginButton"
 android:text="Login"
 android:textColor="#417BB5"
 android:background="@android:color/transparent"
 android:paddingLeft="20dp"
 android:layout_height="50dp"
 android:layout_width="100dp" />
 </LinearLayout>
 </LinearLayout>

Building a Chat Application

[294]

The XMLlayout will stack the page vertically, with the two buttons placed side-by-side.

A quick way of checking your layouts in Xamarin.Studio is to click the Designer
window:

Now let's create a new folder called Views, add in a new file called LoginActivity.cs,
and implement the first section:

[Activity(MainLauncher = true, Label = "Chat", ScreenOrientation =
ScreenOrientation.Portrait)]
 public class LoginActivity : Activity, LoginPresenter.ILoginView
 {
 #region Private Properties
 private bool _isInProgress = false;
 private bool _dialogShown = false;
 private LoginPresenter _presenter;
 private EditText _loginField;
 private EditText _passwordField;
 private ProgressDialog progressDialog;
 #endregion
 #region Protected Methods
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

Building a Chat Application

[295]

 SetContentView(Resource.Layout.LoginView);
 progressDialog = new ProgressDialog(this);
 progressDialog.SetMessage("Loading...");
 progressDialog.SetCancelable(false);
 _loginField =
FindViewById<EditText>(Resource.Id.usernameField);
 _passwordField =
FindViewById<EditText>(Resource.Id.passwordField);
 var registerButton =
FindViewById<Button>(Resource.Id.registerButton);
 registerButton.Touch += (sender, e) =>
 Register(this, new Tuple<string, string>(_loginField.Text,
_passwordField.Text));
 var loginButton =
FindViewById<Button>(Resource.Id.loginButton);
 loginButton.Touch += (sender, e) =>
 Login(this, new Tuple<string, string>(_loginField.Text,
_passwordField.Text));
 var app = ChatApplication.GetApplication(this);
 var state = new ApplicationState();
 _presenter = new LoginPresenter(state, new
NavigationService(app));
 _presenter.SetView(this);
 app.CurrentActivity = this;
 }
 #endregion

Since we already have the UI logic in our presenter, building the interface for
LoginActivity is much easier as the answers all lie in the presenter. This is the advantage
of code-sharing using the MVP pattern.

In our OnCreate() function, we will start with setting the ContentView to the XMLlayout
we created previously. We will then register the button Touch events to the ILoginView
interface, very much like the iOS version with the TouchUpInside events. We then retrieve
the application from the GetApplication function. We also create an instance of the
ApplicationState, and create a new LoginPresenter.

We must also add the requirements of the ILoginView and IView interfaces. The
SetErrorMessage will use the AlertDialog.Builder framework to create the same
popup as the iOS version. We only set one button for this dialog which will simply close the
dialog when we press OK:.

 #region ILoginView implementation
 public event EventHandler<Tuple<string, string>> Login;
 public event EventHandler<Tuple<string, string>> Register;
 #endregion

Building a Chat Application

[296]

 #region IView implementation
 public void SetErrorMessage(string message)
 {
 if (!_dialogShown)
 {
 _dialogShown = true;
 AlertDialog.Builder builder = new
AlertDialog.Builder(this);
 builder
 .SetTitle("Chat")
 .SetMessage(message)
 .SetNeutralButton("Ok", (sender, e) => { _dialogShown
= false ;})
 .Show();
 }
 }
 public bool IsInProgress
 {
 get
 {
 return _isInProgress;
 }
 set
 {
 if (value == _isInProgress)
 {
 return;
 }
 // we control the activity view when we set 'IsInProgress'
 if (value)
 {
 progressDialog.Show();
 }
 else
 {
 progressDialog.Dismiss();
 }
 _isInProgress = value;
 }
 }
 #endregion
 }

See how the structure is the exact same as iOS?

Building a Chat Application

[297]

We just have to match the UI elements for each platform independently. Our final part to
the activity is the OnResume function. This function will reset the CurrentActivity in the
Application:

It is important that every time an activity is resumed we reset the
CurrentActivity, otherwise the navigation service will not push/pop on
the correct Activity.

protected override void OnResume()
 {
 base.OnResume();
 var app = ChatApplication.GetApplication(this);
 app.CurrentActivity = this;
 if (_presenter != null)
 {
 _presenter.SetView(this);
 }
 }
 #endregion

Excellent! Now we have created the first screen, presenter, and linked it up with the
navigation service. Let's hop back into the Chat.iOS project and build the next screen of
our application.

Implementing the ClientsListPresenter
Create a new file called ClientsListPresenter.cs, add it to the Presenter folder in the
Chat.Common project, and implement the following:

public class ClientsListPresenter : BasePresenter
 {
 #region Private Properties
 private IClientsListView _view;
 #endregion
 #region IClientsListView
 public interface IClientsListView : IView
 {
 event EventHandler<ClientSelectedEventArgs> ClientSelected;
 void NotifyConnectedClientsUpdated(IEnumerable<Client>
clients);
 }
 #endregion

Building a Chat Application

[298]

 #region Constructors
 public ClientsListPresenter(ApplicationState state,
INavigationService navigationService,
 string accessToken)
 {
 _navigationService = navigationService;
 _state = state;
 _state.AccessToken = accessToken;
 InitSignalR(accessToken).ConfigureAwait(false);
 }
 #endregion
 }

We have declared a new IClientsListView interface specific to the current
UIViewController (this must be done for every screen). It simply extends off the IView
interface, and we add an extra event handler for selected items in our UITableView. We
then have our constructor which we must pass in an ApplicationState,NavigationService,
and an access token. We also initialize the SignalRClient: the ConfigureAwait function is
set to false because we don't want to wait for this task to finish.

We now need to add another function called SetView.This will take the action user
interface object and register any EventHandlers specified by the IClientsListView
interface. We also make another call to the Web API to retrieve the current clients connected
to the ChatHub. We also specify that we don't want to wait on this task via the
ConfigureAwaitfunction.

In each SetView that will be responding to real-time data updates from the SignalRClient,
we have to reregister to the OnDataReceivedEventHandler so the correct presenter
function HandleSignalRDataReceived is called:

#region Public Methods public void SetView(IClientsListView view)
 {
 _view = view;
 _signalRClient.OnDataReceived -= HandleSignalRDataReceived;
 _signalRClient.OnDataReceived += HandleSignalRDataReceived;
 _view.ClientSelected -= HandleClientSelected;
 _view.ClientSelected += HandleClientSelected;
 ConnectedClientsUpdated -= HandleConnectedClientsUpdated;
 ConnectedClientsUpdated += HandleConnectedClientsUpdated;
 GetAllConnectedClients().ConfigureAwait(false);
 }
 #endregion

Building a Chat Application

[299]

A presenter can also have the opposite to the SetView function called ReleaseView. It will
be responsible for disposing EventHandlers when screens disappear. This ensures we don't
have events on any previous pages doing work when they are not visible. Add the
following under the SetView function:

public void ReleaseView()
 {
 _signalRClient.OnDataReceived -= HandleSignalRDataReceived;
 }

Now let's add the Signout function.This will be called when a user wants to disconnect
from the ChatHub (when the user leaves the ClientsListViewController):

public void Signout()
 {
 _signalRClient.Disconnect();
 _navigationService.PopPresenter(true);
 }

Let's add two more functions: HandleClientSelected will use the INavigationService to
push the next screen on to the stack, and the other function,
HandleConnectedClientsUpdated will call the native implementation in the user
interface object. We will also filter the list of clients using Linq to include all other clients
but the current user:

#region Private Methods
 private void HandleClientSelected(object sender,
ClientSelectedEventArgs e)
 {
 var presenter = new ChatPresenter(_state, _navigationService,
e.Client, _signalRClient);
 _navigationService.PushPresenter(presenter);
 }
 private void HandleConnectedClientsUpdated(object sender,
 ConnectedClientsUpdatedEventArgs e)
 {
 _view.NotifyConnectedClientsUpdated(e.ConnectedClients
 .Where(x =>
!x.Username.ToLower()
.Contains(_state.Username.ToLower())));
 }
 #endregion

Building a Chat Application

[300]

Since we know that we require a UITableView on the ClientsListView screen, we need to
create a TableSource object that will show all our clients that are connected to the
ChatHub. We also need a model object to hold the data to be displayed for each Client.

Firstly, create a new folder in the Chat.Common project called Model, add in a new file
called Client.cs and implement the following:

public class Client { public string Username; }

For each cell, we are only going to display one text label showing the username of the
connected client. Now let's add in a new file called ClientsTableSource.cs and start
with the following:

public class ClientsTableSource : UITableViewSource
{
 #region Public Properties

 public event EventHandler<Client> ItemSelected;

 #endregion

 #region Private Properties

 private List<Client> _clients;

 string CellIdentifier = "ClientCell";

 #endregion

 #region Constructors

 public ClientsTableSource ()
 {
 _clients = new List<Client> ();
 }

 #endregion
}

We require a private List for holding the latest clients connected, we have our
CellIdentifier label set as ClientCell, and we have an EventHandler for selected cell
events that will occur from the UITableView.

Building a Chat Application

[301]

Every time one of these events are fired from the TableSource, we will be firing the event
handler in our ClientsListPresenter presenter. Now let's implement the rest of the
overrides required by the UITableViewSource class:

#region Methods
 public void UpdateClients(IEnumerable<Client> clients)
 {
 foreach (var client in clients)
 {
 _clients.Add (client);
 }
 }
 public override nint NumberOfSections (UITableView tableView)
 {
 return 1;
 }
 public override nint RowsInSection (UITableView tableview, nint
section)
 {
 return _clients.Count;
 }
 public override void RowSelected (UITableView tableView,
NSIndexPath indexPath)
 {
 if (ItemSelected != null)
 {
 ItemSelected (this, _clients[indexPath.Row]);
 }
 tableView.DeselectRow (indexPath, true);
 }
 public override nfloat GetHeightForRow (UITableView tableView,
NSIndexPath indexPath)
 {
 return 80;
 }
 public override UITableViewCell GetCell (UITableView tableView,
NSIndexPath indexPath)
 {
 UITableViewCell cell =
tableView.DequeueReusableCell(CellIdentifier);
 var client = _clients[indexPath.Row];
 if (cell == null)
 {
 cell = new UITableViewCell(UITableViewCellStyle.Default,
CellIdentifier);
 }
 cell.TextLabel.Text = client.Ip;
 return cell;

Building a Chat Application

[302]

 }
 #endregion

Our GetCell function will use the default UITableViewCellStyle, and the text will
be set to the username of the Client object. Our RowSelected function will fire our
custom EventHandlerItemSelected. We will register a delegate on this EventHandler
for firing our related presenter Event. Finally, our UpdateClients will be called whenever
we receive a proxy event when the client count changes.

Creating ClientListViewController
Now we will move on to the user interface design and demonstrate how we set up the link
between our presenters. Developing the user interface is no different to developing natively
for iOS and Android; the only difference with MVP is that we initialize a view with its
related presenter in the constructor.

Let's start by adding a new folder to the Chat.iOS project called Views, add in a new file
called ClientsListViewController.cs, and implement the following:

public class ClientsListViewController : UIViewController,
ClientsListPresenter.IClientsListView
 {
 #region Private Properties
 private UITableView _tableView;
 private ClientsTableSource _source;
 private ClientsListPresenter _presenter;
 private UIActivityIndicatorView _activityIndicatorView;
 #endregion
 #region Constructors
 public ClientsListViewController(ClientsListPresenter presenter)
 {
 _presenter = presenter;
 _source = new ClientsTableSource();
 _source.ItemSelected += (sender, e) =>
 {
 if (ClientSelected != null)
 {
 ClientSelected(this, new ClientSelectedEventArgs(e));
 }
 };
 }
 #endregion

Building a Chat Application

[303]

 }

Notice how we pass the presenter in the constructor of the UIViewController?

We will be doing this with every view that is added to the navigation service.

Inside the constructor, we are also registering the itemSelected event to fire the interface
event for our presenter. Let's add in the following:

#region Public Methods
 public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 // Perform any additional set up after loading the view,
typically from a nib.
 UIBarButtonItem backButton = new UIBarButtonItem("< Back",
UIBarButtonItemStyle.Bordered, HandleSignout);
 NavigationItem.SetLeftBarButtonItem(backButton, false);
 View.BackgroundColor = UIColor.White;
 _presenter.SetView(this);
 var width = View.Bounds.Width;
 var height = View.Bounds.Height;
 Title = "Clients";
 var titleLabel = new UILabel()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 Text = "Connected Clients",
 Font = UIFont.FromName("Helvetica-Bold", 22),
 TextAlignment = UITextAlignment.Center
 };
 var descriptionLabel = new UILabel()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 Text = "Select a client you would like to chat with",
 Font = UIFont.FromName("Helvetica", 18),
 TextAlignment = UITextAlignment.Center
 };
 _tableView = new UITableView(new CGRect(0, 0, width, height))
 {
 TranslatesAutoresizingMaskIntoConstraints = false
 };
 _tableView.AutoresizingMask = UIViewAutoresizing.All;
 _tableView.Source = _source;
 Add(titleLabel);
 Add(descriptionLabel);
 Add(_tableView);

Building a Chat Application

[304]

 var views = new DictionaryViews()
 {
 {"titleLabel", titleLabel},
 {"descriptionLabel", descriptionLabel},
 {"tableView", _tableView},
 };
 View.AddConstraints(
 NSLayoutConstraint.FromVisualFormat("V:|-100-
[titleLabel(30)]-[descriptionLabel(30)]-[tableView]|",
NSLayoutFormatOptions.DirectionLeftToRight, null, views)
.Concat(NSLayoutConstraint.FromVisualFormat("H:|[tableView]|",
NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-10-
[titleLabel]-10-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-10-
[descriptionLabel]-10-|", NSLayoutFormatOptions.AlignAllTop, null, views))
.ToArray());
 }

#endregion

In the ViewDidLoad function, we will always be calling the SetView on a presenter class,
and passing the view itself to the presenter. We are also going to add another little trick on
this screen to override the navbar back button. We must create a UIBArButtonItem, which
will be set as the left button of the navigation bar. When we instantiate this item, the
HandleSignout function will be called when this button is pressed. Let's add this to the
UIViewController:

public async void HandleSignout(object sender, EventArgs e)
 {
 bool accepted = await ShowAlert("Chat", "Would you like to
signout?");
 if (accepted)
 {
 _presenter.Signout();
 }
 }

The function will show an alert and wait for a response to be provided by the user. In this
case, it will be "Yes" or "No". We are going to add another function ShowAlert(), which
will use the TaskCompletionSource framework to allow us to await a response from a
UIAlertView.

Building a Chat Application

[305]

The TaskCompletionSource framework
The ShowAlert function will instantiate a new instance of a TaskCompletionSource of
type bool. We then invoke the action on the main thread using
the UIApplication.SharedApplication, and then return the Task object of
the TaskCompletionSource. This means we can wait for the task to be returned When we
create the UIAlertView, we set the Clicked event of the dialog to call the
SetResultfunction of the TaskCompletionSource, so the Task will not finish until this
click event has occurred:

 public Task<bool> ShowAlert(string title, string message)
 {
 var tcs = new TaskCompletionSource<bool>();
 UIApplication.SharedApplication.InvokeOnMainThread(new
Action(() =>
 {
 UIAlertView alert = new UIAlertView(title, message, null,
NSBundle.MainBundle.LocalizedString("Cancel", "Cancel"),
NSBundle.MainBundle.LocalizedString("OK", "OK"));
 alert.Clicked += (sender, buttonArgs) =>
 tcs.SetResult(buttonArgs.ButtonIndex != alert.CancelButtonIndex);
 alert.Show();
 }));
 return tcs.Task;
 }

Now that we have overriden the back button, when a user tries to click back on the clients
list screen to return to the login, the UIAlertView will appear, asking if the user wants to
signout (meaning the user will disconnect from the ChatHub). If the user presses Yes, we
will call the Signout function on the ClientsListPresenter.

Now let's get back to the ViewDidLoad function and add in the NSLayoutConstraints to
build the screen:

View.AddConstraints(NSLayoutConstraint.FromVisualFormat("V:|-100-
[titleLabel(30)]-[descriptionLabel(30)]-[tableView]|",
NSLayoutFormatOptions.DirectionLeftToRight, null, views)
.Concat(NSLayoutConstraint.FromVisualFormat("H:|[tableView]|",
NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-10-
[titleLabel]-10-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-10-
[descriptionLabel]-10-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .ToArray());

Building a Chat Application

[306]

We have all the elements stacked vertically, taking up the entire width of the screen with
padding.

Finally, we also want to add the ViewDidUnload function, so we can remove the
OnDataReceived event on the SignalRClient:

public override void ViewDidUnload()
 {
 base.ViewDidUnload();
 _presenter.ReleaseView();
 }

Creating the ClientsListActivity
Let's move back again to the Chat.Droid project. Create a new folder called Views, add in
a new file called ClientsListView.cs, and implement the following:

[Activity(Label = "Chat Room", Icon = "@drawable/icon", ScreenOrientation =
ScreenOrientation.Portrait)]
 public class ClientsListActivity : ListActivity,
ClientsListPresenter.IClientsListView
 {
 #region Private Properties
 private ClientsListPresenter _presenter;
 private ClientsListAdapter _adapter;
 private bool _dialogShown = false;
 #endregion
 #region Protected Methods
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 ListView.SetBackgroundColor(Color.White);
 var app = ChatApplication.GetApplication(this);
 app.CurrentActivity = this;
 _presenter = app.Presenter as ClientsListPresenter;
 _presenter.SetView(this);
 _adapter = new ClientsListAdapter(this);
 ListAdapter = _adapter;
 }
 protected override void OnResume()
 {
 base.OnResume();
 var app = ChatApplication.GetApplication(this);
 app.CurrentActivity = this;
 if (_presenter != null)

Building a Chat Application

[307]

 {
 _presenter.SetView(this);
 }
 }

 #endregion
 }

For the first section of the ClientsListActivity, let's look at the OnCreateoverride. We
will start with the ChatApplication instance and set the current Activity to the
ClientsListView activity. We then instantiate a new ClientsListPresenter, add in the
state, and add a new NavigationService. We will also set the view object of the presenter
to the ClientsListView. Finally, we simply instantiate a new ClientsListAdapter and
set it to the ListAdapter of the Activity, as we are inheriting a ListActivity. We are
going to have a different layout to iOS and only show the ListView on this screen so we
can demonstrate the ListActivity; therefore, we don't need an XMLsheet for the layout
of this Activity.

The OnResume function is the same as the LoginActivity; we have to maintain the current
Activity shown to the user. We also want to override the OnPause function to call
ReleaseView on the ClientsListPresenter so we remove the EventHandler on the
OnDataReceived property of the SignalRClient. This ensures we don't call
HandleSignalRDataReceived whilst the screen is not visible.

protected override void OnPause()
 {
 base.OnPause();
 if (_presenter != null)
 {
 _presenter.ReleaseView();
 }
 }

Now let's add the IClientsListView and IView implementation.The
NotifyConnectedClientsUpdated will call the UpdateClients function on the
ListAdapter, and we must propogate the NotifyDataSetChanged on the main thread as
we are making data changes to the ListView:

#region IClientsListView implementation
 public event EventHandler<ClientSelectedEventArgs> ClientSelected;
 public void NotifyConnectedClientsUpdated(IEnumerable<Client>
clients)
 {
 if (_adapter != null)
 {

Building a Chat Application

[308]

 _adapter.UpdateClients(clients);
 // perform action on UI thread
 Application.SynchronizationContext.Post(state =>
 {
 _adapter.NotifyDataSetChanged();
 }, null);
 }
 }
 #endregion
 #region IView implementation
 public void SetErrorMessage(string message)
 {
 if (!_dialogShown)
 {
 _dialogShown = true;
 AlertDialog.Builder builder = new
AlertDialog.Builder(this);
 builder
 .SetTitle("Chat")
 .SetMessage(message)
 .SetNeutralButton("Ok", (sender, e) => { _dialogShown
= false; })
 .Show();
 } }
 public bool IsInProgress { get; set;
 }
 #endregion

The SetErrorMessage() will initiate a dialog similar to iOS, using the
AlertDialog.Builder framework. In this case, we only need to set the original button
since we only need one button on the dialog.

Overriding the OnBackPressed activity
With our iOS implementation we integrated an override to the navigation back button, so
when a user leaves the ClientListViewController, we ask the user if they would like to
signout from the ChatHub. We are going to do the same here but on the Android platform.
We will be building the alert from the AlertDialog.Builder framework:

public override void OnBackPressed()
 {
 //Put up the Yes/No message box
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder
 .SetTitle("Chat")

Building a Chat Application

[309]

 .SetMessage("Would you like to signout?")
 .SetNegativeButton("No", (sender, e) => { })
 .SetPositiveButton("Yes", (sender, e) =>
 {
 _presenter.Signout();
 })
 .Show();
 }

We start with instantiating a new builder object which must take the Activity context as
the only parameter. We then set the title and message of the dialog, and two buttons for the
"Yes" and "No" selections. Only when the user selects "Yes" does an action occur by
calling the same Signout as with iOS.

Our last piece of this Activity is to override the OnListItemClick. When an item in the
list is selected, we want to fire the ClientSelected event specified by the interface, so we
can tie this event logic into the ClientsListPresenter:

 protected override void OnListItemClick(ListView l,
Android.Views.View v, int position, long id)
 {
 var item = _adapter[position];
 if (ClientSelected != null)
 {
 ClientSelected(this, new ClientSelectedEventArgs(item));
 }
 }
 #endregion

Building the ListAdapter
Before we build our ListAdapter, we need to create another AXML sheet for the
CustomCell, add another file to the Resources | layout folder called CustomCell.xml, and
implement the following:

<?xml version="1.0" encoding="utf-8"?> <LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:weightSum="4">
 <TextView
 android:id="@+id/username"
 android:layout_width="wrap_content"

Building a Chat Application

[310]

 android:layout_height="wrap_content"
 android:layout_weight="1" />
 </LinearLayout>

This is another simple layout which has one TextView wrapped in a LinearLayout. The
TextView will display the ConnectionId for each Client.

Now let's get back to the ListAdapter. Inside the Views folder, add another file called
ClientsListAdapter.cs and implement the following:

public class ClientsListAdapter : BaseAdapter<Client>
 {
 private List<Client> _clients;
 private Activity _context;
 public ClientsListAdapter(Activity context) : base()
 {
 _context = context;
 _clients = new List<Client>();
 }
 }

Firstly, we are just creating a new class which inherits the BaseAdapter class which is
typecasted to the Client object. We also have a private List which is going to store the
clients retrieved from the SignalRClient, and finally we have the current Activity
Context. Now let's add in the required override functions from the BaseAdapter:

public override Client this[int position]
 {
 get
 {
 return _clients[position];
 }
 }
 public override Java.Lang.Object GetItem (int position)
 {
 return null;
 }

 public override long GetItemId(int position)
 {
 return position;
 }
 public override int Count
 {
 get
 {
 return _clients.Count;

Building a Chat Application

[311]

 }
 }

 public override View GetView(int position, View convertView,
ViewGroup parent)
 {
 View view = convertView; // re-use an existing view, if one is
available
 if (view == null)
 {
 // otherwise create a new one
 view =
_context.LayoutInflater.Inflate(Resource.Layout.CustomCell, null);
 }
 // set labels
 var connectionIdTextView = view.FindViewById<TextView>
 (Resource.Id.username);
 connectionIdTextView.Text = _clients[position].Username;
 return view;
 }

The first override is to implement an index reference to the _clientslist. All the override
functions are the same as we implemented in Chapter 1, Building a Gallery Application. Let's
turn our attention to the GetView function; we are simply creating a new CustomCell
layout using the LayoutInflater framework (this will take any AXML file and create a
new instance of the view).

Then, now that we have our new view, we will set the Text property of
the TextView object in the CustomCell view to the Username in our Client object.

Finally, our last step is to add a another function called UpdateClients (as specified in our
presenter). This will simply take a new IEnumerable of Clients, and the List will be
updated accordingly:

public void UpdateClients(IEnumerable<Client> clients)
 {
 foreach (var client in clients)
 {
 _clients.Add(client);
 }
 }

With complete direction from the presenter class, look how fast we developed the android
interface.

Building a Chat Application

[312]

Before we can test the connection to the server Hub, we have to make
changes to the application.config and http.sys using netsh in the
command prompt. Follow the section Hosting the Web API project locally in
Chapter 5, Building a Stocklist Application.

You can try testing the first page. Startup the server Hub and watch the list update
whenever we connect or disconnect a new client. A good test on this example is to use
multiple running instances of the application on different devices.

Building the ChatPresenter
Now we move on to the next screen; this will be our chat window in which we will be
passing messages between different clients connected to the server Hub. Our first step is to
build the ChatPresenter:

public class ChatPresenter : BasePresenter
 {
 #region Private Properties
 private Client _client;
 private IChatView _view;
 #endregion
 #region IChatView
 public interface IChatView : IView
 {
 void NotifyChatMessageReceived(string message);
 }
 #endregion
 }

We are going to start by inheriting the BasePresenter class. It will include two private
properties, one for the Client selected from the previous ClientListView screen and
another for the IChatView interface. The IChatView interface inherits the IView interface
and it will include one function for handling messages received from the receiving Client.

Let's implement the following:

#region Constructors
 public ChatPresenter(ApplicationState state, INavigationService
navigationService, Client client)
 {
 _navigationService = navigationService;
 _state = state;
 _client = client;

Building a Chat Application

[313]

 }
 #endregion
 #region Public Methods
 public void SetView(IChatView view)
 {
 _view = view;
 ChatReceived -= HandleChatReceived;
 ChatReceived += HandleChatReceived;
 }
 public async Task SendChat(string message)
 {
 await _signalRClient.SendMessageToClient(_client.ConnectedId,
message);
 }

 #endregion
 #region Private Methods
 private void HandleChatReceived(object sender, ChatEventArgs e)
 {
 _view.NotifyChatMessageReceived(e.Message);
 }
 #endregion

It is the same set up as the ClientsListPresenter; our SetView function will take the
native view object and register the events. We also have another function, SendChat which
will invoke the SendChat function on the Hub. Don't forget the ReleaseView function;
this will be exactly the same as the ClientsListPresenter:

public void ReleaseView()
 {
 _signalRClient.OnDataReceived -= HandleSignalRDataReceived;
 }

Now that we have built all our presenter objects, we need to make a small update to the
navigation service implementations to allow navigation for the other screens. Open the
Android NavigationService.cs, and in the PushPresenter function update the if
statement to the following:

if (presenter is LoginPresenter)
 {
 intent = new Intent(_application.CurrentActivity,
typeof(LoginActivity));
 }
 else if (presenter is ClientsListPresenter)
 {
 intent = new Intent(_application.CurrentActivity,
typeof(ClientsListActivity));

Building a Chat Application

[314]

 }
 else if (presenter is ChatPresenter)
 {
 intent = new Intent(_application.CurrentActivity,
typeof(ChatActivity));
 }

For the iOS NavigationService.cs, update the if statement to the following:

if (presenter is LoginPresenter)
 {
 var viewController = new LoginViewController(presenter as
LoginPresenter);
 _navigationController.PushViewController(viewController,
true);
 }
 else if (presenter is ClientsListPresenter)
 {
 var viewController = new
ClientsListViewController(presenter as ClientsListPresenter);
 _navigationController.PushViewController(viewController,
true);
 }
 else if (presenter is ChatPresenter)
 {
 var viewController = new ChatViewController(presenter as
ChatPresenter);
 _navigationController.PushViewController(viewController,
true);
 }

Building the iOS ChatView
Add a new file called ChatViewController into the Views project of the Chat.iOS
project and implement the following:

public class ChatViewController : UIViewController, ChatPresenter.IChatView
{
 #region Private Properties
 private ChatPresenter _presenter;
 private UITextField _chatField;
 private UIScrollView _scrollView;
 private int _currentTop = 20;
 private nfloat _width;
 #endregion

Building a Chat Application

[315]

 #region Constructors
 public ChatViewController(ChatPresenter presenter)
 {
 _presenter = presenter;
 }
 #endregion

}

We have multiple Private properties, one for the presenter, a local UITextField. We
need this UI object to be local, as we need to extract the Text value to send through the
SignalRClient, and we also need the UIScrollView to be local so we can change the
content size and add in ChatView objects. The integers are use to record the current top (y-
axis + height) of the all chat messages which will display on the screen. Finally, the
remaining nfloat is used for recording the height and width of the screen.

We will see all these variables used further on through the class functions.

Let's now add the ViewDidLoad function to build the user interface:

#region Public Methods
 public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 Title = "Chat Room";
 _presenter.SetView(this);
 View.BackgroundColor = UIColor.White;
 _width = View.Bounds.Width;
 var _sendButton = new UIButton(UIButtonType.RoundedRect)
 {
 TranslatesAutoresizingMaskIntoConstraints = false
 };
 _sendButton.SetTitle("Send", UIControlState.Normal);
 _sendButton.TouchUpInside += HandleSendButton;
 _chatField = new UITextField()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 BackgroundColor = UIColor.Clear.FromHex("#DFE4E6"),
 Placeholder = "Enter message"
 };
 _scrollView = new UIScrollView()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 };

Building a Chat Application

[316]

 Add(_chatField);
 Add(_sendButton);
 Add(_scrollView);
 var views = new DictionaryViews()
 {
 {"sendButton", _sendButton},
 {"chatField", _chatField},
 {"scrollView", _scrollView},
 };
 this.View.AddConstraints(
 NSLayoutConstraint.FromVisualFormat("V:|-68-
[chatField(60)]", NSLayoutFormatOptions.DirectionLeftToRight, null, views)
 .Concat(NSLayoutConstraint.FromVisualFormat("V:|-62-
[sendButton(60)]-20-[scrollView]|",
NSLayoutFormatOptions.DirectionLeftToRight, null, views))
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-5-
[chatField]-[sendButton(60)]-5-|", NSLayoutFormatOptions.AlignAllTop, null,
views))
.Concat(NSLayoutConstraint.FromVisualFormat("H:|[scrollView]|",
NSLayoutFormatOptions.AlignAllTop, null, views))
 .ToArray());
 }
 #endregion

The chat screen will contain a UITextField, a UIButton, and a UIScrollView. The
button is for notifying the current Text value of the UITextField to be sent to the server
Hub, and our UIScrollView will contain all the messages published from each client.

We also want to add the ViewDidUnload() function, so we can remove the
OnDataReceived event on the SignalRClient:

public override void ViewDidUnload()
 {
 base.ViewDidUnload();
 _presenter.ReleaseView();
 }

Let's then add the IView implementation:

#region IView implementation
 public void SetMessage(string message)
 {
 var alert = new UIAlertView()
 {
 Title = "Chat",
 Message = message
 };
 alert.AddButton("OK");

Building a Chat Application

[317]

 alert.Show();
 }
 public bool IsInProgress { get; set; } #endregion

The IView implementation is the same as with the ClientsListViewController.

Let's create a new file called ChatBoxView.cs and add it to the Views folder. We will
create a new one of these for every chat message:

public class ChatBoxView : UIView
 {
 private UILabel messageLabel;
 public ChatBoxView(string message)
 {
 Layer.CornerRadius = 10;
 messageLabel = new UILabel()
 {
 TranslatesAutoresizingMaskIntoConstraints = false,
 Text = message
 };
 Add(messageLabel);
 var views = new DictionaryViews()
 {
 {"messageLabel", messageLabel},
 };
AddConstraints(NSLayoutConstraint.FromVisualFormat("V:|[messageLabel]|",
NSLayoutFormatOptions.AlignAllTop, null, views)
 .Concat(NSLayoutConstraint.FromVisualFormat("H:|-5-
[messageLabel]-5-|", NSLayoutFormatOptions.AlignAllTop, null, views))
 .ToArray());
 }
 }

This is a very simple object that contains one UILabel for the chat message. We also set the
height and width of this label to the height and width of the UIView using NSAutoLayout.
We also round the corners of the Layer to 5.

If you have ever used the SMS application on any iOS device, you will see we have two
colors, distinguishing between you and the person you are talking to. We are going to do
the same with our application but instead of using standard colors from the UIColor
interface, we are going to use custom hex colors.

Building a Chat Application

[318]

Extending the UIColor framework
In this section we are going to apply a common technique for extending on standard iOS
classes. In the UIColor class, there is no function for applying hex strings to determine a
color, so let's add this on top. Create a new folder called Extensions, add in a new file
called UIColorExtensions.cs, and implement the following:

public static class UIColorExtensions
 {
 public static UIColor FromHex(this UIColor color, string hexValue,
float alpha = 1.0f)
 {
 var colorString = hexValue.Replace("#", "");
 if (alpha > 1.0f)
 {
 alpha = 1.0f;
 }
 else if (alpha < 0.0f)
 {
 alpha = 0.0f;
 }
 float red, green, blue;
 switch (colorString.Length)
 {
 case 3: // #RGB
 {
 red = Convert.ToInt32(string.Format("{0}{0}",
 colorString.Substring(0, 1)), 16) / 255f;
 green = Convert.ToInt32(string.Format("{0}{0}",
 colorString.Substring(1, 1)), 16) / 255f;
 blue = Convert.ToInt32(string.Format("{0}{0}",
 colorString.Substring(2, 1)), 16) / 255f;
 return UIColor.FromRGBA(red, green, blue, alpha);
 }
 case 6: // #RRGGBB
 {
 red = Convert.ToInt32(colorString.Substring(0, 2),
16) / 255f;
 green = Convert.ToInt32(colorString.Substring(2,
2), 16) / 255f;
 blue = Convert.ToInt32(colorString.Substring(4,
2), 16) / 255f;
 return UIColor.FromRGBA(red, green, blue, alpha);
 }
 default:
 throw new
ArgumentOutOfRangeException(string.Format("Invalid color value {0} is

Building a Chat Application

[319]

invalid. It should be a hex value of the form #RBG, #RRGGBB", hexValue));
 }
 }
 }

When we extend a class with extra functions, the first input parameter must always start
with the this keyword; this represents the current object calling the function. The next two
parameters are a string representing the hex value and an alpha percentage (between 0 and
1) for transparency.

Firstly, we remove the # character from the hex string. We then double-check if the alpha
character is below 0, if so, set the alpha to 0, and vice versa with the alpha if it is greater
than 1. Then our switch statement will select a case based on the hex string length (either an
RGB or RRGGBB value). Then we simply extract the red, green, and blue string values and
return a new UIColor from the red, green, and blue values.

Now we can apply a hex color string to the UIColor framework like this:

UIColor.Clear.FromHex("#FFFFFF");

Since MonoTouch 5.4, we have to apply the FromHex extension to a
Color.Clear. Previously we were able to use a parameterless constructor
like this: new UIColor().FromHex("FFFFFF").

Now that we have our UIColor additions, let's use these for our chatbox
BackgroundColor property. We are going to add in a new function to the ChatView,
which will create a new ChatBox and set the color according to whether it was sent or
received. We will also do the same with the x-axis position and set the ChatBox to the left if
sent and to the right if received:

 public void CreateChatBox(bool received, string message)
 {
 _scrollView.ContentSize = new CGSize(_width, _currentTop);
 _scrollView.AddSubview(new ChatBoxView(message)
 {
 Frame = new CGRect(received ? _width - 120 : 20,
_currentTop, 100, 60),
 BackgroundColor = UIColor.Clear.FromHex(received ?
"#4CD964" : "#5AC8FA")
 });
 _currentTop += 80;
 }

Building a Chat Application

[320]

We first update the ContentSize property of the UIScrollView; this represents the
dimensions of the scroll area. The currentTop variable is used to record the last ChatBox's
y-axis value so we know the height of the UIScrollView's content, and so we know the next
y-axis position for the next ChatBox. Then we add the new ChatBox object, pass in the new
message, and assign the message to the Title of the UILabel. We also use our new
extension function to set the BackgroundColor property of the ChatBox.

Now, where do we call this function?

We have two areas, whenever the Send button is pressed, or when a message is received.
Let's add the TouchUpInside callback on the _sendButton:

 #region Private Properties private void HandleSendButton(object sender,
EventArgs e)
 {
 _presenter.SendChat(_chatField.Text).ConfigureAwait(false);
 CreateChatBox(false, _chatField.Text);
 }
 #endregion

The HandleSendButton will also call the presenter function, SendChat, and send the
message to the server Hub. We also need to add the IChatView implementation. The
NotifyChatMessageReceived function will also use CreateChatBox, but this time we
will set the received flag to true. This must also be invoked on the main thread as
sometimes the event might fire this function on another thread:

#region IChatView implementation
 public void NotifyChatMessageReceived(string message)
 {
 InvokeOnMainThread(() => CreateChatBox(true, message));
 }
 #endregion

Fantastic!

Now that we have finished the iOS ChatView, try testing. Connect two iOS clients to the
Hub, select the other client from either client, try entering messages into the UITextField,
press Send, and watch the magic happen.

That's enough of iOS development, let's move back over to Android and complete the
ChatView.

Building a Chat Application

[321]

Android TableLayouts
Let's move back to the Android implementation. This part is easy, we have already mapped
the UI logic to the ChatPresenter so let's get straight into building the interface. For our
ChatView.xml file, we are going to introduce a TableLayout. TableLayouts are similar to
Grids in Xamarin.Forms; we simply split an area into rows and columns. We are able to
set UI objects to specific rows and columns as well as span specific UI objects across
multiple rows and columns.

Let's add a new file called ChatView.xml to the Resources | layout folder and implement
the following:

<?xml version="1.0" encoding="utf-8"?>
 <TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tableLayout"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FFFFFF">
 <TableRow
 android:id="@+id/tableRow1"
 android:layout_width="fill_parent"
 android:layout_height="100dp"
 android:padding="5dip">
 <EditText
 android:id="@+id/chatField"
 android:hint="Enter message"
 android:textColor="#000000"
 android:layout_weight="2"
 android:layout_column="1" />
 <Button
 android:id="@+id/sendButton"
 android:text="Send"
 android:textColor="#417BB5"
 android:background="@android:color/transparent"
 android:focusableInTouchMode="false"
 android:layout_weight="1"
 android:layout_column="3" />
 </TableRow>
 <TableRow
 android:id="@+id/tableRow2"
 android:layout_width="fill_parent"
 android:layout_weight="1"
 android:padding="5dip">
 <ScrollView
 android:id="@+id/scrollView"
 android:layout_width="match_parent"

Building a Chat Application

[322]

 android:layout_height="match_parent"
 android:fillViewport="true"
 android:layout_weight="2"
 android:layout_span="4">
 <LinearLayout
 android:id="@+id/scrollViewInnerLayout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical" />
 </ScrollView>
 </TableRow>
 </TableLayout>

Each row is declared using the <TableRow> tag; our first row contains an EditText item
for the messages, and a button to call the SendChat function on the SignalRClient.

Building the Android ChatActivity
Let's move back to the Android implementation. This part is easy, we have already mapped
the UI logic to the ChatPresenter, so let's get straight into building the interface. Add a
new file to the Views folder in the Chat.Droid project, call it ChatActivity.cs, and
implement the first part:

[Activity(Label = "Chat", ScreenOrientation = ScreenOrientation.Portrait)]
 public class ChatView : ListActivity, ChatPresenter.IChatView
 {
 #region Private Properties
 private ChatPresenter _presenter;
 private LinearLayout _scrollViewInnerLayout;
 private EditText _editText;
 private long _lastSendClick = 0;
 private int _width;
 private float _currentTop;
 private bool _dialogShown = false;
 #endregion
 #region Protected Methods
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.ChatView);
 var metrics = Resources.DisplayMetrics;
 _width = (int)((metrics.WidthPixels) /
 Resources.DisplayMetrics.Density);
 _scrollViewInnerLayout = FindViewById<LinearLayout>
 (Resource.Id.scrollViewInnerLayout);

Building a Chat Application

[323]

 _editText = FindViewById<EditText>(Resource.Id.chatField);
 var sendButton = FindViewById<Button>(Resource.Id.sendButton);
 sendButton.Touch += HandleSendButton;
 var app = ChatApplication.GetApplication(this);
 app.CurrentActivity = this;
 _presenter = app.Presenter as ChatPresenter;
 _presenter.SetView(this);
 app.CurrentActivity = this;
 }
 #endregion

 }

In the OnCreate function, we are setting the content view to the ChatView layout. We then
retrieve the width of the screen as we need to be able position the x-axis of the chat box to
the left or right of the screen, based on whether it was sent/received. We then assign the
SendButton's Touch event to call the HandleSendButton function. Finally, we retrieve the
ChatApplication object and cast the presenter to a ChatPresenter, call the SetView
function, and pass the ChatActivity. Then we set the CurrentActivity of the
ChatApplication object to the ChatActivity. Let's also add an override on the
OnPause so we can call ReleaseView on the ChatPresenter to remove the
OnDataReceived event from the SignalRClient. This is the equivalent to the
ViewDidUnload override on a UIViewController:

protected override void OnPause()
 {
 base.OnPause();
 if (_presenter != null)
 {
 _presenter.ReleaseView();
 }
 }

Now we have to add the IChatView implementation; CreateChatBox must be propagated
to the main thread as this event will sometimes call this function on a different thread:

#region IChatView implementation
 public void NotifyChatMessageReceived(string message)
 {
 // perform action on UI thread
 Application.SynchronizationContext.Post(state =>
 {
 CreateChatBox(true, message);
 }, null);
 }
 #endregion

Building a Chat Application

[324]

Now we have to add the IView implementation, which we can simply copy from the
previous activity:

#region IView implementation
 public void SetErrorMessage(string message)
 {
 if (!_dialogShown)
 {
 _dialogShown = true;
 AlertDialog.Builder builder = new
AlertDialog.Builder(this);
 builder
 .SetTitle("Chat")
 .SetMessage(message)
 .SetNeutralButton("Ok", (sender, e) => { _dialogShown
= false; })
 .Show();
 }
 }
 public bool IsInProgress { get; set; }
 #endregion

Before we add the remaining functions, we are going to add another layout for the
ChatBoxView in Android. Add a new file called ChatBoxView.xml, add it to the
Resources | layout folder, and implement the following:

<?xml version="1.0" encoding="utf-8"?>
 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:weightSum="4">
 <TextView
 android:id="@+id/messageTextView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1" />
 </LinearLayout>

This is a very simple view which contains a LinearLayout that contains one TextView to
display the chat message.

Building a Chat Application

[325]

Finally, we add the remaining HandleSendButton and CreateChatBox functions; they are
the same functions as iOS, but use Android objects:

#region Private Methods
 private void HandleSendButton(object sender, View.TouchEventArgs
e)
 {
 // multiple-clicking prevention using a threshold of 1000 ms
 if (SystemClock.ElapsedRealtime() - _lastSendClick < 1000)
 {
 return;
 }
 _lastSendClick = SystemClock.ElapsedRealtime();
 _presenter.SendChat(_editText.Text).ConfigureAwait(false);
 CreateChatBox(false, _editText.Text);
 }
 #endregion
 #region Public Methods
 public void CreateChatBox(bool received, string message)
 {
 var view = LayoutInflater.Inflate(Resource.Layout.ChatBoxView,
null);
 view.SetX(received ? _width : 0);
 view.SetY(_currentTop);
 var messageTextView = view.FindViewById<TextView>
 (Resource.Id.messageTextView);
 messageTextView.Text = message;
 var color = Color.ParseColor(received ? "#4CD964" :
"#5AC8FA");
 messageTextView.SetBackgroundColor(color);
 _scrollViewInnerLayout.AddView(view);
 _currentTop += 60;
 }
 #endregion

The HandleSendButton function will do the exact same: call the presenter function,
SendChat, create a new chatbox, and add it to the ScrollView. The
CreateChatBox function will use the context's LayoutInflator and create a
new ChatBoxView. We will then set the x, y, width and height properties, retrieve the
TextView property of the view, and set the Text property to the message. We then
call SetBackgroundColor on the view and change the background color according to
whether it has been sent or received. Finally, we add the new view to the ScrollView and
record the current y-axis value.

Building a Chat Application

[326]

Running the server and clients
Before we can test everything together, please revisit the section in Chapter 5, Building a
Stocklist Application, called Hosting a Web API project locally. This must be done before we
can connect to the server side from our mobile clients. Once we have the server application
running, build and run the mobile application from either platform and register a user first
before we login. The Register button will place the new account in the UserManager,
allowing us to perform a Login with those account details as they now exist in the
UserManager. Once we login, we can't do anymore unless we have another mobile client
that can run the app and login. It is best to test this application with two mobile devices
running the mobile application. Once both have logged in and the clients list screen has
been loaded, each user will be connected to the user, and both users can now click on each
other to navigate to the chat window and begin sending messages to each other.

To further understand everything going on, try adding debug breakpoints to server
functions, and test these server functions by clicking between the different screens of the
mobile application. This will give a better overview as to what is happening between server
and client on each screen.

Summary
In this chapter, we created an application for iOS and Android using the native libraries.
We integrated SignalR on the client and server side by building a hub and proxy
connections via a client. In the next chapter, we will see how to store files locally with
Xamarin.Forms using dependency services. You will learn about shared projects and their
differences to PCL projects. We will also run through SQLite, setting it up with Android,
iOS, and WinPhone and share the same code using different platform-specific libraries.

7
Building a File Storage

Application
In this chapter, we will walk through advanced development with Xamarin.Forms. We
take a look at the use of Behaviors on UI elements. Then we will build a custom layout
using the Layout <View> framework. We will also build our first SQLite database for
storing text files. The following topics will be covered in this chapter:

Expected knowledge:

Basic Xamarin.Forms
XAML
MVVM
SQL
C# threading

In this chapter, you will learn the following:

Project structure setup
Building a data access layer using SQLite
Building the ISQLiteStorage interface
Additional threading techniques
Creating the AsyncSemaphore
Creating the AsyncLock
Implementing native setup requirements for SQLite
Implementing the IoC container and modules
Implementing cross-platform logging

Building a File Storage Application

[328]

Implementing the SQLiteStorage class
Introduction to C# 6.0 syntax
Handling alerts in view-models
Building the IMethods interface
Building the ExtendedContentPage
Building a CarouselView using custom layouts
Adding scroll control to the CarouselView
Building a CustomRenderer for native gestures
Building the user interface
Using a SynchronizationContext
Building the EditFilePage
Challenge
Building the Windows Phone version

Project structure setup
Let's begin by creating a new Xamarin.Forms project. Select File | New | Solution and
create a new Forms App, as shown in the following screenshot:

Building a File Storage Application

[329]

Call the project FileStorage. Once the project is created, create another portable class
library called FileStorage.Portable, as shown in the following screenshot:

We are going to start at the lower level and work upwards to native projects.

Building a data access layer using SQLite
In the previous chapter, we focused on project architecture and we discussed the
concepts one layer for data access this is where our database layer sits. Our data access layer
is where we will be storing local text files.

SQLite is the most commonly used database framework for mobiles. It is an in-process
library that implements a self-contained, serverless, zero-configuration, transactional SQL
database engine, and is free to use.

There are other frameworks that Xamarin supports such as ADO.NET and
Realm, but it has been proven that SQLite is the most efficient database
layer.

Building a File Storage Application

[330]

The first step in the setup process is to add the following SQLite NuGet packages in our
FileStorage.Portable project:

SQLite.Net.Async-PCL

SQLite.Net.Core-PCL

SQLite.Net-PCL

Once you add these in your packages, they should look like the following:

The next step is to add a new folder called DataAccess. Inside this folder, create two
subfolders called Storable and Storage. Inside the Storable folder, add a new file called
IStorable.cs and implement the following:

public interface IStorable
 {
 string Key { get; set; }
 }

This will be the interface for every object type stored in the database. In the preceding
example, we are only going to have one storable, and each storable must have a string
property called Key. This property will be used as the primary key for each database table.

Create another file in the Storable folder called FileStorable.cs and implement the
following:

public class FileStorable : IStorable
 {
 #region Public Properties
 [PrimaryKey] public string Key { get; set; }
 public string Contents { get; set; }
 #endregion
 }

Building a File Storage Application

[331]

The FileStorable object will be used as the data model for the file storable table in the
database. In SQLite, during the setup of the database, tables are created from objects using
the following:

CreateTable<FileStorable>(CancellationToken.None);

The FileStorable object we pass as the type to the CreateTable function is used to map
columns in the table.

Building the ISQLiteStorage interface
Now we must set up another class, which will be used to control the queries performed on
the database. Add a new file called ISQLiteStorage.cs into the Storage folder and
implement the following:

public interface ISQLiteStorage
 {
 void CreateSQLiteAsyncConnection();
 Task CreateTable<T>(CancellationToken token) where T : class,
IStorable, new();
 Task InsertObject<T>(T item, CancellationToken token) where T :
class, IStorable, new();
 Task<IList<T>> GetTable<T>(CancellationToken token) where T :
class, IStorable, new();
 Task<T> GetObject<T>(string key, CancellationToken token) where T
: class, IStorable, new();
 Task ClearTable<T>(CancellationToken token) where T : class,
IStorable, new();
 Task DeleteObjectByKey<T>(string key, CancellationToken token)
where T : class, IStorable, new();
 void CloseConnection();
 }

The preceding interface defines all the functions that will be executed on the database. The
advantage of using SQLite is that it performs all processing asynchronously, so every
function that executes an SQL query returns a task. If you look closely at the InsertObject
and DeleteObjectByKey functions, these require a type, meaning that we can execute
queries to specific tables using types.

Building a File Storage Application

[332]

Adding additional threading techniques
This is where we will add some finesse with a common threading approach known as
asynchronous locking. Since there will only be one instance of the SQLiteStorage object,
this means we have the possibility of a race condition as multiple threads can make changes
to the same database connection at the same time.

Race conditions are a common threading issue where multiple threads try
to perform operations at the same time on shared data.

How do we solve this problem?
Locking is the most common C# approach for restricting shared resources between multiple
threads. In order to avoid this situation, we create an object for locking as follows:

private Object lockObject = new Object();

Then, to restrict code blocks to one thread at any one time, we do the following:

lock (thisLock)
 {
 ...
 }

This is the perfect approach when our code is synchronous. The problem we have is our
SQLite implementation is asynchronous, and the restriction with basic locking is we cannot
execute asynchronous code inside a lock statement. This is where we have to implement the
async-lock pattern.

Creating the AsyncSemaphore
Let's add a new folder called Threading to the FileStorage.Portable project. Inside
this folder, we are going to add a new file called AsyncSemaphore.cs and implement the
first part as follows:

public class AsyncSemaphore
 {
 private readonly static Task s_completed = Task.FromResult(true);
 private readonly Queue<TaskCompletionSource<bool>> m_waiters = new
Queue<TaskCompletionSource<bool>>();

Building a File Storage Application

[333]

 private int m_currentCount;
 public AsyncSemaphore(int initialCount)
 {
 if (initialCount < 0) throw new
ArgumentOutOfRangeException("initialCount");
 m_currentCount = initialCount;
 }
 public Task WaitAsync()
 {
 lock (m_waiters)
 {
 if (m_currentCount > 0)
 {
 --m_currentCount;
 return s_completed;
 }
 else
 {
 var waiter = new TaskCompletionSource<bool>();
 m_waiters.Enqueue(waiter); return waiter.Task;
 }
 }
 }
}

A SemaphoreSlim object is used to limit the number of threads that can
access a resource.

The AsyncSemaphore keeps a count (the m_count property), which is the number of open
slots it has available to satisfy waiters.

The Task returned from the WaitAsync function (the static s_completed property) will
enter the completed state when the AsyncSemaphore has given it an available slot. That
same Task will enter the Canceled state if the CancellationToken is signaled before the
wait is satisfied; in that case, the AsyncSemaphore does not lose a slot.

A waiter is simply a TaskCompletionSource of type bool. It contains a
Task, which is the operation to be performed by a single thread.

Building a File Storage Application

[334]

Creating the AsyncLock
Now that we have built the AsyncSemaphore class, we will use this object inside the
AsyncLock object. Let's add a new file called AsyncLock.cs into the Threading folder
and implement the following:

public class AsyncLock
 {
 private readonly AsyncSemaphore m_semaphore;
 private readonly Task<Releaser> m_releaser;
 public AsyncLock()
 {
 m_semaphore = new AsyncSemaphore(1);
 m_releaser = Task.FromResult(new Releaser(this));
 }
 public Task<Releaser> LockAsync()
 {
 var wait = m_semaphore.WaitAsync();
 return wait.IsCompleted ?
 m_releaser :
 wait.ContinueWith((_, state) =>
 new Releaser((AsyncLock)state),
 this, CancellationToken.None,
 TaskContinuationOptions.ExecuteSynchronously,
TaskScheduler.Default);
 }
 public struct Releaser : IDisposable
 {
 private readonly AsyncLock m_toRelease;
 internal Releaser(AsyncLock toRelease) { m_toRelease =
toRelease; }
 public void Dispose()
 {
 if (m_toRelease != null)
 m_toRelease.m_semaphore.Release();
 }
 }
 }

The AsyncLock class uses the AsyncSemaphore to ensure that only one thread at any one
time has access to the bounded code block after the LockAsync function. The lock can be
acquired asynchronously by calling LockAsync, and it is released by disposing the result of
that task. The AsyncLock takes an optional CancellationToken, which can be used to
cancel the acquiring of the lock.

Building a File Storage Application

[335]

The Task returned from the LockAsync function will enter the Completed state when it
has acquired the AsyncLock. That same Task will enter the Canceled state if the
CancellationToken is signaled before the wait is satisfied; in that case, the AsyncLock is
not taken by that task.

Now let's get back to implementing the SQLiteStorage class; this is where we are going to
implement the async-lock pattern.

Implementing native setup requirements for
SQLite
Our next step is to add the final setup requirements. Each device platform has a specific
framework that it must use when setting up the connection to the local database. This
means we are going to add another dependency-injected interface to set these native side
requirements.

Add a new file called ISqliteSetup.cs to the Storage folder and implement the
following:

public interface ISQLiteSetup
 {
 string DatabasePath { get; set; }
 ISQLitePlatform Platform { get; set; }
 }

Before we implement this class in the platform projects, we need to add the following
SQLite NuGet packages for all platform projects:

SQLite.Net.Async-PCL

SQLite.Net.Core-PCL

SQLite.Net-PCL

Now let's turn our attention to the iOS project. Add a new folder called DataAccess, add in
a new file called SQLiteSetup.cs, and implement the following:

public class SQLiteSetup : ISQLiteSetup
 {
 public string DatabasePath { get; set; }
 public ISQLitePlatform Platform { get; set; }
 public SQLiteSetup(ISQLitePlatform platform)
 {
 DatabasePath =

Building a File Storage Application

[336]

Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.Personal),
"filestorage.db3");;
 Platform = platform;
 }
 }

The main property that we need to focus on is ISQLitePlatform. This comes from the
SQLite.Net.Interop library. We will be registering this item inside an IoC container as
we will need this instance down in the portable project when we create a connection to the
database.

Before we go any further, we need to set up the IoC container with Autofac.

Implementing the IoC container and modules
Just like our last projects, we are going to set up another IoC container using Autofac. Let's
first add the Autofac nuget packages to all projects in the solution. We can then copy the
IoC folder from the Stocklist.Portable project in Chapter 5, Building a Stocklist
Application. Make sure you include both the IoC.cs and IModule.cs files.

Now let's hop over to the native projects, add the Modules folder in the iOS and Android
projects, and implement IOSModule.cs and DroidModule.cs:

public class IOSModule : IModule
 {
 #region Public Methods
 public void Register(ContainerBuilder builder)
 {
builder.RegisterType<SQLiteSetup>().As<ISQLiteSetup>().SingleInstance();
builder.RegisterType<SQLitePlatformIOS>().As<ISQLitePlatform>().SingleInsta
nce();
 }
 #endregion
 }

and the DroidModule,

public class DroidModule : IModule
 {
 #region Public Methods
 public void Register(ContainerBuilder builder)
 {
builder.RegisterType<SQLiteSetup>().As<ISQLiteSetup>().SingleInstance();
builder.RegisterType<SQLitePlatformAndroid>().As<ISQLitePlatform>().SingleI
nstance();

Building a File Storage Application

[337]

 }
 #endregion
}

Notice how quick we are piecing things together?
When you have the right direction in building cross-platform applications,
the complexity of multiple platform support should not be an issue.

Inside both of the aforementioned modules we are registering the SQLiteSetup and
SQLitePlatformIOS/Droid objects so the SQLiteStorage implementation can use these
items inside the FileStorage.Portable project.

Before we get back to finishing off the SQLiteStorage implementation, we are going to set
up a useful logging approach that can be used in all cross-platform applications.

Implementing cross-platform logging
Now that we have our IoC container, we are going to use dependency injection for logging.
Adding customized logging features in cross-platform applications is very useful for
tracking operations between all of the different projects. The first step is to add a new folder
called Logging, add a new file called ILogger.cs, and implement the following:

public interface ILogger
 {
 #region Methods
 void WriteLine(string message);
 void WriteLineTime(string message, params object[] args);
 #endregion
 }

For this example, our logger is going to use the standard Debug console from
System.Diagnostics with iOS, but in Android we are going to use the extensive logging
functionality provided by Android.

Building a File Storage Application

[338]

Now let's add the Logging folder in both iOS and Android and implement the following:

public class LoggeriOS : ILogger
 {
 #region Public Methods
 public void WriteLine(string text)
 {
 Debug.WriteLine(text);
 }
 public void WriteLineTime(string text, params object[] args)
 {
 Debug.WriteLine(DateTime.Now.Ticks + " " + String.Format(text,
args));
 }
 #endregion
 }

Nothing too flash with iOS logging, but we have an extra output line for logging statements
with current time.

Now, for the Android implementation, we are going to use native logging from the
Android.Util library:

public class LoggerDroid : ILogger
 {
 #region Public Methods
 public void WriteLine(string text)
 {
 Log.WriteLine(LogPriority.Info, text, null);
 }
 public void WriteLineTime(string text, params object[] args)
 {
 Log.WriteLine(LogPriority.Info, DateTime.Now.Ticks + " " +
 String.Format(text, args), null);
 }
 #endregion
 }

In the Log object from the Android.Util library, we have the option to specify priorities
(info, debug, error). The more we can dig into the specifics of what we want the
application to spit out, the better we can track exactly what is happening under the hood.

Excellent! Now let's get back to building the SQLiteStorage implementation.

Building a File Storage Application

[339]

Implementing the SQLiteStorage class
Now back to the FileStorage.Portable project. Let's add another file into the Storage
folder called SQLiteStorage.cs and implement the private variables:

public class SQLiteStorage : ISQLiteStorage
 {
 #region Private Properties
 private readonly AsyncLock asyncLock = new AsyncLock();
 private readonly object lockObject = new object();
 private SQLiteConnectionWithLock _conn;
 private SQLiteAsyncConnection _dbAsyncConn;
 private readonly ISQLitePlatform _sqlitePlatform;
 private string _dbPath;
 private readonly ILogger _log;
 private readonly string _tag;
 #endregion
 }

We have a private AsyncLock object as we will be doing synchronous and asynchronous
locking implementations. We then have two SQLite objects for creating the connection to
our local database. The _dbPath variable is used to hold the local database path; this will be
used for setting up the connection. We also have our dependency service interface ILogger
and another string for tagging the current object. Tagging is useful with logging as it tells
the logger what class is logging.

Introduction to C# 6.0 syntax
Now let's add in the constructor as follows:

public SQLiteStorage(ISQLiteSetup sqliteSetup, ILogger log)
 {
 _dbPath = sqliteSetup?.DatabasePath;
 _sqlitePlatform = sqliteSetup?.Platform;
 _log = log; _tag = $"{GetType()} ";
 }

Here we can see some C# 6.0 syntax. Using the question mark (?) after the constructor
parameter sqliteSetup means that, if the object is not null, we can access the property.
This avoids having to create an if statement such as the following:

If (sqliteSetup != null)
 _dbPath = sqliteSetup?.DatabasePath;

Building a File Storage Application

[340]

There is also some more C# 6.0 syntax with the following:

_tag = $"{GetType()} ";

The dollar sign ($) character is used for interpolated strings. Interpolated string expressions
create a string by replacing the contained expressions with the ToString representations of
the expressions' results.

Look more closely at the items we are assigning. We are using the SQLiteSetup object to
set the database path and SQLite platform properties.

Let's add our first two methods:

public void CreateSQLiteAsyncConnection()
 {
 var connectionFactory = new Func<SQLiteConnectionWithLock>(() =>
 {
 if (_conn == null)
 {
 _conn = new SQLiteConnectionWithLock(_sqlitePlatform, new
SQLiteConnectionString(_dbPath, true));
 }
 return _conn;
 });
 _dbAsyncConn = new SQLiteAsyncConnection(connectionFactory);
 }
 public async Task CreateTable<T>(CancellationToken token) where T :
class, IStorable, new()
 {
 using (var releaser = await asyncLock.LockAsync())
 {
 await _dbAsyncConn.CreateTableAsync<T>(token);
 }
 }

The CreateSQLiteAsyncConnection function creates a new Func of
type SQLiteConnectionWithLock, we use this Func to instantiate a new
SQLiteAsyncConnection. The Func checks if we have already created a connection to the
database. If we haven't yet established this connection, it will create a new instance of the
SQLiteConnectionWithLock object and pass in the database path and platform we
retrieved from the SQLSetup object.

In the CreateTable function, we will take our first look at the async-lock pattern. The great
thing about the AsyncLock object is that we can contain the await inside a using statement.
When one thread is creating a table on the one instance of the SQLiteAsyncConnection,
another thread will have to wait at the using line until the previous thread has finished

Building a File Storage Application

[341]

creating the table.

Our next function is GetTable. This will use the async-lock pattern again to make sure that
only one thread is querying the database at any one time. This function will perform a
standard SQL query for selecting all the items of a table:

 SELECT * FROM {TableName};

The table will be determined by the type T passed, and the result received from the
database will be all the table's items as an IEnumerable of type T:

public async Task<IList<T>> GetTable<T>(CancellationToken token) where T :
class, IStorable, new()
 {
 var items = default(IList<T>);
 using (var releaser = await asyncLock.LockAsync())
 {
 try
 {
 items = await
_dbAsyncConn.QueryAsync<T>(string.Format("SELECT * FROM {0};",
typeof(T).Name));
 }
 catch (Exception error)
 {
 var location = string.Format("GetTable<T>() Failed to
'SELECT *' from table {0}.", typeof(T).Name);
 _log.WriteLineTime(_tag + "\n" + location + "\n" +
"ErrorMessage: \n" + error.Message + "\n" + "Stacktrace: \n " +
error.StackTrace);
 }
 }
 return items;
 }

Notice how we are catching any exception that may occur in this query?

We are building a location string to pinpoint the exact location in our application where the
exception is coming from. Then we use our ILogger implementation to route the custom-
built exception string to the specific native output console.

Next we have the InsertObject function. This will be responsible for adding a new item
to the correct table in the database. We will also make use of the async-lock pattern to lock
the connection from being accessed while an insertion is taking place:

public async Task InsertObject<T>(T item, CancellationToken token) where T
: class, IStorable, new()

Building a File Storage Application

[342]

 {
 using (var releaser = await asyncLock.LockAsync())
 {
 try
 {
 var insertOrReplaceQuery =
item.CreateInsertOrReplaceQuery();
 await _dbAsyncConn.QueryAsync<T>(insertOrReplaceQuery);
 }
 catch (Exception error)
 {
 var location = string.Format("InsertObject<T>() Failed to
insert
 or replace object with key {0}.", item.Key);
 _log.WriteLineTime(_tag + "\n" + location + "\n" +
"ErrorMessage:
 \n" + error.Message + "\n" + "Stacktrace: \n " +
 error.StackTrace);
 }
 }
 }

Notice the CreateInsertOrReplaceQuery function?

We are going to add an extension class to the IStorable interface. Add a new file called
StorableExtensions.cs to the location DataAccess | Storable in the
FileStorage.Portable project and implement the following:

public static class StorableExtensions
 {
 #region Public Methods
 public static string CreateInsertOrReplaceQuery(this IStorable
storable)
 {
 var properties = storable.GetType().GetRuntimeProperties();
 var tableName = storable.GetType().Name;
 string propertiesString = "";
 string propertyValuesString = "";
 var index = 0;
 foreach (var property in properties)
 {
 propertiesString += (index == (properties.Count() - 1)) ?
 property.Name : property.Name + ", ";
 var value = property.GetValue(storable);
 var valueString = value == null ? "null" : value is bool ?
"'"
 + ((bool)value ? 1 : 0) + "'" : "'" + value + "'";
 // if data is serialized if (property.Name.Equals("Data") &&

Building a File Storage Application

[343]

 !valueString.Equals("null"))
 {
 valueString = valueString.Replace(""", """);
 }
 propertyValuesString += valueString +
 ((index == (properties.Count() - 1)) ? string.Empty : ", ");
 index++;
 }
 return string.Format("INSERT OR REPLACE INTO {0}({1})
 VALUES ({2});", tableName, propetiesString,
propertyValuesString);
 }
 #endregion
 }

The preceding function is clever enough to build an insert and replace query out of any
item that inherits the IStorable interface. It uses the System.Reflection library to
retrieve all properties of an IStorable object using the GetRuntimeProperties function.
We then iterate through all properties and build a query according to the following syntax:

 INSERT OR REPLACE INTO names (prop1, prop2, ...) VALUES (val1, val2,
...)

If we didn't have the PrimaryKey attribute set on the Key property in the
FileStorable class, the update would not work and a new item would
be added every time.

Now for the DeleteObjectByKey function. This will be used to delete an item from a table
using the Key property from the IStorable interface:

public async Task DeleteObjectByKey<T>(string key, CancellationToken token)
where T : class, IStorable, new()
 {
 using (var releaser = await asyncLock.LockAsync())
 {
 try
 {
 await _dbAsyncConn.QueryAsync<T>(string.Format("DELETE FROM
{0} WHERE Key='{1}';", typeof(T).Name, key));
 }
 catch (Exception error)
 {
 var location = string.Format("DeleteObjectByKey<T>()
Failed to
 delete object from key {0}.", key);
 _log.WriteLineTime(_tag + "\n" + location + "\n" +

Building a File Storage Application

[344]

 "ErrorMessage: \n" + error.Message + "\n" + "Stacktrace:
\n " +
 error.StackTrace);
 }
 }
 }

Fantastic! SQLite has been set up and integrated with the async-lock pattern to make it
thread-safe. Our final step is to add the PortableModule for the IoC container and register
the SqliteStorage class.

Inside the FireStorable.Portable project, create a new folder called Modules, add in a
new file called PortableModule.cs, and implement the following:

public class PortableModule : IModule
 {
 #region Public Methods
 public void Register(ContainerBuilder builder)
 {
builder.RegisterType<SQLiteStorage>().As<ISQLiteStorage>().SingleInstance()
;
 }
 #endregion
 }

Now we can start with the user interface layer and begin building some custom UI objects.

Handling alerts in view-models
Handling alerts via view-models is important as we handle many errors via try/catch
statements. To respond to these errors, we want to display an alert dialog showing the error
message to the user. There are two ways we are going to do this:

Using an EventHandler for pushing events to the current page so that we can
call the DisplayAlert function with different messages
Using an interface for dependency injection where we will implement native
alerts

Our first step is to add the ViewModelBase class; this is where alerts will be fired from.

Create a new folder in the FileStorage.Portable project called ViewModels, add a new
file called ViewModelBase.cs, and implement the following:

public class ViewModelBase : INotifyPropertyChanged

Building a File Storage Application

[345]

 {
 #region Public Events
 public event PropertyChangedEventHandler PropertyChanged;
 public event EventHandler<string> Alert;
 #endregion
 #region Private Properties
 private IMethods _methods;
 #endregion
 #region Public Properties
 public INavigationService Navigation;
 #endregion
 #region Constructors
 public ViewModelBase(INavigationService navigation, IMethods
methods)
 {
 Navigation = navigation;
 _methods = methods;
 }
 #endregion
 }

We are using the same ViewModelBase implementation we used in Chapter 5, Building a
Stocklist Application, except we are adding an extra IMethods interface in the constructor
(we will implement this later), which is used to show native alerts.

Next, add the protected methods OnPropertyChanged and LoadAsync as follows:

#region Protected Methods
protected virtual void OnPropertyChanged([CallerMemberName] string
propertyName = null)
 {
 PropertyChangedEventHandler handler = PropertyChanged;
 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }
 protected virtual async Task LoadAsync(IDictionary<string, object>
parameters)
 {
 }
#endregion

And the public methods as follows:

#region Public Methods
public Task<string> ShowEntryAlert(string message)
 {

Building a File Storage Application

[346]

 var tcs = new TaskCompletionSource<string>();
 _methods.DisplayEntryAlert(tcs, message);
 return tcs.Task;
 }
public void NotifyAlert(string message)
 {
 if (Alert != null)
 {
 Alert(this, message);
 }
 }
public void OnShow(IDictionary<string, object> parameters)
 {
 LoadAsync(parameters).ToObservable().Subscribe(result =>
 {
 // we can add things to do after we load the view model }, ex =>
 {
 // we can handle any areas from the load async function });
 }
#endregion

Even though we are working in the portable project, this is still part of the
presentation layer when it comes to architecture.

The NotifyAlert function is used to display alerts via the Xamarin.Forms function
DisplayAlert on a ContentPage. The ShowEntryAlert function is used to display alerts
via the IMethod interface.

Notice the use of the TaskCompletionSource?

This means we can await the ShowEntryAlert function. When the user responds to the
alert, the Task will enter the completed state. This ensures that the code is executed only
once a response is received.

Building the IMethods interface
Let's start by creating a new folder in the FileStorage.Portable project, adding a new
file called IMethods.cs, and implementing the following:

public interface IMethods
 {
 #region Methods

Building a File Storage Application

[347]

 void Exit();
 void DisplayEntryAlert(TaskCompletionSource<string> tcs, string
message);
 #endregion
 }

For all native projects, add a new folder called Extras. Let's start with the iOS project. add
a new file called IOSMethods.cs, and implement the following:

public class IOSMethods : IMethods
 {
 #region Public Methods
 public void Exit()
 {
 UIApplication.SharedApplication.PerformSelector(new
ObjCRuntime.Selector("terminateWithSuccess"), null, 0f);
 }
 public void DisplayEntryAlert(TaskCompletionSource<string> tcs, string
message)
 {
 UIAlertView alert = new UIAlertView(); alert.Title = "Title";
 alert.AddButton("OK");
 alert.AddButton("Cancel");
 alert.Message = message;
 alert.AlertViewStyle = UIAlertViewStyle.PlainTextInput;
 alert.Clicked += (object s, UIButtonEventArgs ev) =>
 {
 if (ev.ButtonIndex == 0)
 {
 tcs.SetResult(alert.GetTextField(0).Text);
 }
 else
 {
 tcs.SetResult(null);
 }
 };
 alert.Show();
 }
 #endregion
}

We should recognize the Exit function from previous chapters. The DisplayEntryAlert
function creates a PlainTextInputUIAlertView. This alert will ask for text input via a
textbox and we can retrieve this text value using the GetTextField function. The alert will
also display a Yes and No button, so when the user enters text and presses Yes, a new file
will be created with the text input set as the filename.

Building a File Storage Application

[348]

Now let's replicate the same procedure for Android. Add a new file called
DroidMethods.cs and implement the following:

public class DroidMethods : IMethods
 {
 #region Public Methods
 public void Exit()
 {
 Android.OS.Process.KillProcess(Android.OS.Process.MyPid());
 }
 public void DisplayEntryAlert(TaskCompletionSource<string> tcs, string
message)
 {
 var context = Forms.Context;
 LayoutInflater factory = LayoutInflater.From(context);
 var view = factory.Inflate(Resource.Layout.EntryAlertView, null);
 var editText = view.FindViewById<EditText>(Resource.Id.textEntry);
 new AlertDialog.Builder(context)
 .SetTitle("Chat")
 .SetMessage(message)
 .SetPositiveButton("Ok", (sender, e) =>
 {
 tcs.SetResult(editText.Text);
 })
 .SetNegativeButton("Cancel", (sender, e) =>
 {
 tcs.SetResult(null);
 })
 .SetView(view)
 .Show();
 }
 #endregion
 }

This time for Android, we are using the AlertDialog.Builder framework. We use the
Forms.Context property to retrieve the current context, which we use to create a new
AlertDialog.Builder. We have to use the SetView function in this framework to assign
a custom view for text input. This custom view is created using a new XML layout.

Add a new file called EntryAlertView.xml to the Resources | layout folder and
implement the following:

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/textEntry" android:layout_height="wrap_content"
 android:layout_width="250px" android:layout_centerHorizontal="true"
 android:singleLine="true" />

Building a File Storage Application

[349]

All we have is an EditText object to retrieve the filename from the user in the alert dialog.
Using FindViewById in the DroidMethods class, we can reference this EditText item to
retrieve the text value entered by the user.

That's everything. Our next step is a customized ContentPage to handle the Alert events
from each view-model.

Building the ExtendedContentPage
Add a new folder called UI inside the FileStorage project, add in a new file called
ExtendedContentPage.cs, and implement the following:

public class ExtendedContentPage : ContentPage
 {
 #region Private Properties
 private ViewModelBase _model;
 #endregion
 #region Constructors
 public ExtendedContentPage(ViewModelBase model)
 {
 _model = model;
 _model.Alert -= HandleAlert;
 _model.Alert += HandleAlert;
 }
 #endregion
 #region Private Methods
 private async void HandleAlert(object sender, string message)
 {
 await DisplayAlert("FileStorage", message, "OK");
 }
 #endregion
 }

The _model property is used to reference the view-model of each page as every view-model
inherits the ViewModelBase class. When the page is created, we register the HandleAlert
function to the view-model Alert event. Every time this function is called, it will call the
DisplayAlert function from Xamarin.Forms.

Building a File Storage Application

[350]

Why are we implementing two different
techniques for showing alerts?
The cross-platform feature for displaying alerts does not allow us to use the text input
addition that we built natively.

Great! We now have a nice solution for multiple types of alert in out cross-platform projects.
Our next step is to implement our first custom layout known as a CarouselView.

Xamarin.Forms has its own CarouselView, but it has been removed
until the UI object is more stable.

Building a CarouselView using custom
layouts
Xamarin.Forms is a very young layout system, meaning that the number of layouts is quite
limited. There are times when we will need to implement our own custom layouts to give
us control over exactly where and how our views and controls appear on screen. The
requirement will come from situations where you need to improve performance on screens
that display a lot of views and controls, and sometimes the standard layouts are not good
enough. We want to implement our custom layouts to carry out the absolute minimum
amount of work required to produce the required layout.

All layouts derive from the Xamarin.Forms.Layout class, which
provides the required mechanisms for adding and removing children
internally as well as some key utilities for writing a layout.

Let's start by adding a new folder called Controls in the FireStorable project. Add a
new file called CarouselLayout.cs and implement the first part as follows:

public class CarouselLayout : Layout<View>
 {
 #region Private Properties
 private IDisposable dataChangesSubscription;
 public double LayoutWidth;
 #endregion
 }

Building a File Storage Application

[351]

All layouts must inherit the Layout framework. Xamarin.Forms.Layout<T> provides a
publicly exposed IList<T> Children that end users can access. We want all children of this
collection to be of type View.

We have two private properties, one for the layout width and an IDisposable for
handling data change subscriptions.

Let's add in some more properties:

#region Public Properties
public Object this[int index]
 {
 get
 {
 return index < ItemsSource.Count() ? ItemsSource.ToList()[index] :
null;
 }
 }
public DataTemplate ItemTemplate { get; set; }
public IEnumerable<Object> ItemsSource { get; set; }
#endregion

We have an indexing reference that will return an array element from the ItemsSource
IEnumerable, and the ItemTemplate property, which is used to render a view layout for
every child in ItemsSource. We have to use the Linq function ToList to allow us to
access an IEnumerable via an index value.

Now we are going to add some overrides to the Layout framework. Every custom layout
must override the LayoutChildren method. This is responsible for positioning children on
screen:

protected override void LayoutChildren(double x, double y, double width,
double height)
 {
 var layout = ComputeLayout(width, height);
 var i = 0;
 foreach (var region in layout)
 {
 var child = Children[i];
 i++;
 LayoutChildIntoBoundingRegion(child, region);
 }
 }

Building a File Storage Application

[352]

The preceding function will call another method, ComputeLayout, which will return an
IEnumerable of Rectangles (also known as regions). We then iterate through the
IEnumerable and call LayoutChildIntoBoundingRegion for each region. This method
will handle positioning the element relative to the bounding region.

Our layout must also implement the OnMeasure function. This is required to make sure the
new layout is sized correctly when placed inside other layouts. During layout cycles, this
method may be called many times depending on the layout above it and how many layout
exceptions are required to resolve the current layout hierarchy. Add the following below
the LayoutChildren function:

protected override SizeRequest OnMeasure(double widthConstraint, double
heightConstraint)
 {
 List<Row> layout = ComputeNiaveLayout(widthConstraint,
heightConstraint);
 var last = layout[layout.Count - 1];
 var width = (last.Count > 0) ?
 last[0].X + last.Width : 0; var height = (last.Count > 0) ? last[0].Y +
 last.Height : 0;
 return new SizeRequest(new Size(width, height));
 }

It is therefore important to consider speed when implementing this
function. Failure to implement this function will not always break your
layout, particularly if it's always inside parents, which fix the child size
anyway.

The ComputeNiaveLayout will return a list of rows. We then retrieve the last row from this
list and use this for the max x-value and max y-value to determine the total width and
height by calculating the difference between the first and last element on both the x-axis and
y-axis. Finally, we return a new SizeRequest object with the calculated width and height,
which will be used to resize the layout.

Let's add the missing functions ComputeNiaveLayout and ComputeLayout as follows:

public IEnumerable<Rectangle> ComputeLayout(double widthConstraint, double
heightConstraint)
 {
 List<Row> layout = ComputeNiaveLayout(widthConstraint,
heightConstraint);
 return layout.SelectMany(s => s);
 }

Building a File Storage Application

[353]

This function is used simply to perform the SelectMany query. The ComputeNiaveLayout
layout is where all the work is done. This will iterate through all children; it will create one
row, and one rectangle inside this row that will size to the height of the layout and the
width will equal the total of all children widths. All children will be positioned horizontally
next to one another to the right of the screen, as shown in the following screenshot:

But only one child will be visible on screen at any one time as each child is sized to the full
height and width of the layout:

private List<Row> ComputeNiaveLayout(double widthConstraint, double
heightConstraint)
 {
 var result = new List<Row>();
 var row = new Row();
 result.Add(row);
 var spacing = 20;
 double y = 0;
 foreach (var child in Children)
 {
 var request = child.Measure(double.PositiveInfinity,
 double.PositiveInfinity);
 if (row.Count == 0)
 {
 row.Add(new Rectangle(0, y, LayoutWidth, Height));
 row.Height = request.Request.Height; continue;
 }
 var last = row[row.Count - 1];
 var x = last.Right + spacing;
 var childWidth = LayoutWidth;
 var childHeight = request.Request.Height;
 row.Add(new Rectangle(x, y, childWidth, Height));
 row.Width = x + childWidth; row.Height = Math.Max(row.Height,
Height);
 }
 return result;
 }

Hold on! What if I have a lot of children? This means that they will be stacked horizontally
past the width of the screen. What do we do now?

Building a File Storage Application

[354]

The idea of a carousel view is to only show one view at a time, when the user swipes left
and right; the view on the left/right side of the current view will come onto screen while the
current view will move out of view, as shown in the following screenshot:

Even though we have a custom layout that presents children horizontally, how are we
going to handle the swipe events and scroll control?

We will achieve scroll control via a ScrollView and create a custom renderer for handling
swipe events.

Adding scroll control to the CarouselView
Add a new file into the Controls folder called CarouselScroll.cs and implement the
first part as follows:

public class CarouselScroll : ScrollView
 {
 #region Private Properties
 private CarouselLayout _carouselLayout;
 #endregion
 public DataTemplate ItemTemplate
 {
 set
 {
 _carouselLayout.ItemTemplate = value;
 }
 }
 public CarouselScroll()
 {

Building a File Storage Application

[355]

 Orientation = ScrollOrientation.Horizontal;
 _carouselLayout = new CarouselLayout();
 Content = _carouselLayout;
 }
 }

The CarouselScroll will inherit the ScrollView object as this will be the bounding view
for the CarouselLayout. We are also going to create a DataTemplate variable for setting
the DataTemplate object inside the CarouselLayout. Then, in the constructor, we
instantiate a new CarouselLayout object as the Content of the ScrollView.

Now let's add a custom binding object for the ItemsSource. Like a ListView, we will bind
an ObserableCollection of items to this property:

 public static readonly BindableProperty ItemsSourceProperty =
BindableProperty.Create<CarouselLayout, IEnumerable<Object>>(o =>
o.ItemsSource,
 default(IEnumerable<Object>), propertyChanged: (bindable, oldvalues,
newValues) =>
 {
 ((CarouselScroll)bindable)._carouselLayout.ItemsSource = newValues;
 });

Take note of the propertyChanged event; when the binding changes, we will update the
ItemsSource property of the CarouselLayout. Remember that the CarouselLayout is
in charge of laying out a child for every item in the IEnumerable.

We also need another bindable property for data changes. This will be an IObservable
object that will listen for any DataChange events. If an event occurs, the CarouselLayout
will layout the children:

 public static readonly BindableProperty DataChangesProperty =
BindableProperty.Create("DataChanges",
 typeof(IObservable<DataChange>), typeof(CarouselLayout), null,
propertyChanged: (bindable, oldvalue, newValue) =>
 {
((CarouselScroll)bindable)._carouselLayout.SubscribeDataChanges((IObservabl
e<DataChange>)newValue);
 });

Then we need to override the LayoutChildren function; so when the ScrollView
updates its children, we want to update the height and width properties of the
CarouselLayout, thus updating the layout of the children:

protected override void LayoutChildren(double x, double y, double width,
double height)

Building a File Storage Application

[356]

 {
 base.LayoutChildren(x, y, width, height);
 if (_carouselLayout != null)
 {
 if (width > _carouselLayout.LayoutWidth)
 {
 _carouselLayout.LayoutWidth = width;
 }
 _carouselLayout.ComputeLayout(width, height);
 }
 }

We also have one more function, GetSelectedItem, which simply returns a child from the
CarouselLayout using an index:

public Object GetSelectedItem(int selected)
 {
 return _carouselLayout[selected];
 }

Our next stage into the CarouselView is creating a CustomRenderer that will allow swipe
gestures.

Building a CustomRenderer for native
gestures
Now we need to handle swipe left and right gestures for each mobile platform.
Unfortunately, Xamarin.Forms doesn't offer a cross-platform feature for swipe gestures, so
we need to implement this ourselves. In order to do this, we are going to build a
CustomRenderer. Start by adding a new file to the Controls folder called
GestureView.cs and implement the following:

public class GestureView : View
 {
 public event EventHandler SwipeLeft;
 public event EventHandler SwipeRight;
 public event EventHandler Touch;
 public void NotifySwipeLeft()
 {
 if (SwipeLeft != null)
 {
 SwipeLeft (this, EventArgs.Empty);
 }
 }

Building a File Storage Application

[357]

 public void NotifySwipeRight()
 {
 if (SwipeRight != null)
 {
 SwipeRight (this, EventArgs.Empty);
 }
 }
 public void NotifyTouch()
 {
 if (Touch != null)
 {
 Touch(this, EventArgs.Empty);
 }
 }
 }

This view has an EventHandler for each gesture, we also require a gesture for tap events.
Even though Xamarin.Forms offers this feature when we render over the top of the
CarouselView at runtime, the Xamarin.Forms gesture will no longer work.

Now, inside the FileStorage.iOS project, let's add a new folder called Renderers and
another folder inside this called GestureView. Then, inside the GestureView folder, add
in a new file called GestureViewiOS.cs and implement the following:

[Register("GestureViewiOS")]
 public sealed class GestureViewiOS : UIView
 {
 private UIView _mainView;
 private UISwipeGestureRecognizer _swipeLeftGestureRecognizer;
 private UISwipeGestureRecognizer _swipeRightGestureRecognizer;
 private UITapGestureRecognizer _tapGestureRecognizer;
 public GestureViewiOS()
 {
 _mainView = new UIView ()
 {
 TranslatesAutoresizingMaskIntoConstraints = false
 };
 _mainView.BackgroundColor = UIColor.Clear;
 Add (_mainView);
 // set layout constraints for main view AddConstraints
 (NSLayoutConstraint.FromVisualFormat("V:|[mainView]|",
 NSLayoutFormatOptions.DirectionLeftToRight, null,
 new NSDictionary("mainView", _mainView)));
 AddConstraints (NSLayoutConstraint.FromVisualFormat("H:|[mainView]|",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("mainView",
_mainView)));
 }

Building a File Storage Application

[358]

 }

This view has an EventHandler for each gesture, we also require a gesture for tap events.
Even though Xamarin.Forms offers these features when we render over the top of the
CarouselView at runtime, the Xamarin.Forms gesture will no longer work.

public void InitGestures(GestureView swipeView)
 {
 _swipeLeftGestureRecognizer = new UISwipeGestureRecognizer
(swipeView.NotifySwipeLeft);
 _swipeLeftGestureRecognizer.Direction =
UISwipeGestureRecognizerDirection.Left;
 _swipeRightGestureRecognizer = new UISwipeGestureRecognizer
(swipeView.NotifySwipeRight);
 _swipeRightGestureRecognizer.Direction =
UISwipeGestureRecognizerDirection.Right;
 _tapGestureRecognizer = new
UITapGestureRecognizer(swipeView.NotifyTouch);
 _tapGestureRecognizer.NumberOfTapsRequired = 1;
 _mainView.AddGestureRecognizer (_swipeLeftGestureRecognizer);
 _mainView.AddGestureRecognizer (_swipeRightGestureRecognizer);
 _mainView.AddGestureRecognizer (_tapGestureRecognizer);
 }

This function will only be called once from the OnElementChanged function of the
GestureViewRenderer.

Now let's add the renderer class. Add another file called GestureViewRenderer.cs and
implement the following:

public class GestureLayoutRenderer : ViewRenderer<GestureView,
GestureViewiOS>
 {
 private GestureViewiOS _swipeViewIOS;
 private bool gesturesAdded;
 public GestureLayoutRenderer()
 {
 _swipeViewIOS = new GestureViewiOS ();
 }
 protected override void OnElementChanged
(ElementChangedEventArgs<GestureView> e)
 {
 base.OnElementChanged (e);
 if (Control == null)
 {
 SetNativeControl(_swipeViewIOS);
 }

Building a File Storage Application

[359]

 if (Element != null && !gesturesAdded)
 {
 _swipeViewIOS.InitGestures(Element);
 gesturesAdded = true;
 }
 }
 }

Whenever a property from the UI object changes, the OnElementChanged function will be
called. We only call the SetNativeControl once if the Control property of the renderer is
null. The Element property of a renderer is usually the UI object from the Xamarin.Forms
project (in our case the FileStorage project, GestureView). When we receive a reference
to the GestureView object (inside the OnElementChanged function), we pass this into the
InitGestures function in order to use the EventHandlers on the GestureView object.
Now, when we swipe left and right or tap on the native mainView object, it will call the
NotifySwipeLeft, NotifySwipeLeft, and NotifyTouch functions for the GestureView
object.

Don't forget to add the following line above the namespace declaration:

[assembly:
Xamarin.Forms.ExportRenderer(typeof(FileStorage.Controls.GestureView),
typeof(FileStorage.iOS.Renderers.GestureView.GestureLayoutRenderer))]
 namespace FileStorage.iOS.Renderers.GestureView

We must always add the ExportRenderer attribute to a custom renderer class to specify
that it will be used to render the Xamarin.Forms control.

The GestureViewiOS object will be the view displayed on top of the GestureView object
in our FileStorage project. Wherever a new GestureView object is placed in our
ContentPage, the GestureViewRenderer will render a new GestreViewiOS view in its
place.

Now let's implement the same for Android. Add a new folder inside the
FileStorage.Droid project called Renderers and another folder inside this called
GestureView. Then, inside the GestureView folder, add in a new file called
GestureListener.cs and implement the first part:

public class GestureListener : GestureDetector.SimpleOnGestureListener
 {
 private const int SWIPE_THRESHOLD = 50;
 private const int SWIPE_VELOCITY_THRESHOLD = 50;
 private GestureView _swipeView;
 public void InitCoreSwipeView(GestureView swipeView)
 {

Building a File Storage Application

[360]

 _swipeView = swipeView;
 }
 }

A GestureDetector is used to respond to multiple types of press event for a particular
view. We also pass the Xamarin.Forms GestureView object into this class so that we can
fire the NotifySwipeLeft, NotifySwipeLeft, and NotifyTouch functions when a
particular event occurs. The threshold values are used as a minimum swipe distance and
touch pressure. When a user performs a swipe on this view, a certain amount of pressure
and movement must be applied for an event to be fired.

The SimpleOnGestureListener extension is a convenience class when
you only want to listen for a subset of all the gestures.

Now we must override the following functions (we aren't going to be doing anything with
these but they must be overridden):

public override void OnLongPress (MotionEvent e)
 {
 base.OnLongPress (e);
 }
public override bool OnDoubleTap (MotionEvent e)
 {
 return base.OnDoubleTap (e);
 }
public override bool OnDoubleTapEvent (MotionEvent e)
 {
 return base.OnDoubleTapEvent (e);
 }
public override bool OnDown (MotionEvent e)
 {
 return base.OnDown (e);
 }
public override bool OnScroll (MotionEvent e1, MotionEvent e2, float
distanceX, float distanceY)
 {
 return base.OnScroll (e1, e2, distanceX, distanceY);
 }
public override void OnShowPress (MotionEvent e)
 {
 base.OnShowPress (e);
 }
public override bool OnSingleTapConfirmed (MotionEvent e)
 {
 return base.OnSingleTapConfirmed (e);

Building a File Storage Application

[361]

 }

Now for the functions that we are going to use. The OnSingleTapUp function will be
responsible for handling touch events, called when a user applies a single tap gesture to the
view:

public override bool OnSingleTapUp (MotionEvent e)
 {
 _swipeView.NotifyTouch();
 return base.OnSingleTapUp (e);
 }

The OnFling function is responsible for handling swipe events. The two MotionEvent
items are the start and end points (x, y) when a user starts to swipe and when the finger is
removed. We calculate the drag distance and make sure that the absolute value of diffX is
greater than the absolute value of diffY. This ensures that we are dragging horizontally.
We then make sure that the absolute value of diffX is greater than the Swipe_Threshold,
and the VelocityX is greater than the Swipe_Velocity_Threshold. If all this is met, we
then fire a swipe right if the diffX is positive; otherwise, it will fire a swipe left:

public override bool OnFling (MotionEvent e1, MotionEvent e2, float
velocityX, float velocityY)
 {
 try
 {
 float diffY = e2.GetY() - e1.GetY();
 float diffX = e2.GetX() - e1.GetX();
 if (Math.Abs(diffX) > Math.Abs(diffY))
 {
 if (Math.Abs(diffX) > SWIPE_THRESHOLD && Math.Abs(velocityX) >
SWIPE_VELOCITY_THRESHOLD)
 {
 if (_swipeView != null)
 {
 if (diffX > 0)
 {
 _swipeView.NotifySwipeRight ();
 }
 else
 {
 _swipeView.NotifySwipeLeft ();
 }
 }
 }
 }
 }
 catch (Exception) { }

Building a File Storage Application

[362]

 return base.OnFling (e1, e2, velocityX, velocityY);
 }

Let's now build the GestureViewRenderer and integrate is with the GestureDetector.
Add a new file into the Gesture folder called GestureViewRenderer.cs and implement
the following:

public class GestureViewRenderer : ViewRenderer<GestureView, LinearLayout>
 {
 private LinearLayout _layout;
 private readonly GestureListener _listener;
 private readonly GestureDetector _detector;
 public GestureViewRenderer ()
 {
 _listener = new GestureListener ();
 _detector = new GestureDetector (_listener);
 _layout = new LinearLayout (Context);
 }
 }

We are now going to create an empty LinearLayout to use for the Control. This is the
blank view that will receive the touch events. We then instantiate a new GestureListener
from above and pass this into a new GestureDetector. The GestureDetector's
OnTouchEvent function is called for all touch and motion events, and within this class we
break down the events in more detail to determine the exact event that took place:

protected override void OnElementChanged
(ElementChangedEventArgs<GestureView> e)
 {
 base.OnElementChanged (e);
 if (e.NewElement == null)
 {
 GenericMotion -= HandleGenericMotion;
 Touch -= HandleTouch;
 }
 if (e.OldElement == null)
 {
 GenericMotion += HandleGenericMotion;
 Touch += HandleTouch;
 }
 if (Element != null)
 {
 _listener.InitCoreSwipeView(Element);
 }
 SetNativeControl (_layout);
 }
 private void HandleTouch (object sender, TouchEventArgs e)

Building a File Storage Application

[363]

 {
 _detector.OnTouchEvent (e.Event);
 }
 private void HandleGenericMotion (object sender, GenericMotionEventArgs
e)
 {
 _detector.OnTouchEvent (e.Event);
 }

Notice the null checks on the OldElemenet and NewElement properties of the arguments?

If the OldElemenet is null, we must deregister touch events, and if the NewElement is null,
we register the GenericMotion and Touch events.

Now that we have our GestureView and GestureViewRenderers ready, it's time to
create the final control and add a new Forms ContentView Xaml file called
CarouselView.xaml, as shown in the following screenshot:

We also implement the following in CarouselView.xaml:

<?xml version="1.0" encoding="UTF-8"?>
<ContentView xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:FileStorage.Controls;assembly=FileStorage"
 x:Class="FileStorage.Controls.CarouselView">
<ContentView.Content>
 <Grid x:Name="Container">
 <Grid.RowDefinitions>

Building a File Storage Application

[364]

 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <controls:CarouselScroll x:Name="CarouselScroll" ItemsSource="{Binding
Cells}"
 ItemTemplate="{StaticResource CarouselTemplate}"
 DataChanges="{Binding DataChanges}" Grid.Row="0" Grid.Column="0"/>
 <controls:GestureView x:Name="GestureView" Grid.Row="0" Grid.Column="0"/>
 </Grid>
 </ContentView.Content>
 </ContentView>

The preceding code will create a Grid to overlay the GestureView on top of the
CarouselScroll. This means that the GestureView will detect the swipe and touch
events and pass these down to the CarouselScroll.

Now let's implement CarouselView.xaml.cs as follows:

public partial class CarouselView : ContentView
 {
 private bool _animating;
 public int SelectedIndex = 0;
 public static readonly BindableProperty SelectedCommandProperty =
BindableProperty.Create<CarouselView, ICommand>(w => w.SelectedCommand,
default(ICommand),
 propertyChanged: (bindable, oldvalue, newvalue) => { });

 public ICommand SelectedCommand
 {
 get
 {
 return (ICommand)GetValue(SelectedCommandProperty);
 }
 set
 {
 SetValue(SelectedCommandProperty, value);
 }
 }
 public CarouselView()
 {
 InitializeComponent();
 GestureView.SwipeLeft += HandleSwipeLeft;
 GestureView.SwipeRight += HandleSwipeRight;
 GestureView.Touch += HandleTouch;
 }
 }

Building a File Storage Application

[365]

The first part shows the event registration to the GestureView. We also have a custom
binding for a Command, which will be invoked when a Touch event occurs. Let's add the
EventHandler functions as follows:

public void HandleTouch(object sender, EventArgs e)
 {
 if (SelectedCommand != null)
 {
 var cell = CarouselScroll.GetSelectedItem(SelectedIndex);
 SelectedCommand.Execute(cell);
 }
 }
public async void HandleSwipeLeft(object sender, EventArgs e)
 {
 if (((CarouselScroll.ScrollX + CarouselScroll.Width) <
(CarouselScroll.Content.Width - CarouselScroll.Width)) && !_animating)
 {
 _animating = true;
 SelectedIndex++;
 await CarouselScroll.ScrollToAsync(CarouselScroll.ScrollX + Width +
20, 0, true);
 _animating = false;
 }
 }
public async void HandleSwipeRight(object sender, EventArgs e)
 {
 if (CarouselScroll.ScrollX > 0 && !_animating)
 {
 _animating = true;
 SelectedIndex--;
 await CarouselScroll.ScrollToAsync(CarouselScroll.ScrollX - Width
- 20, 0, true);
 _animating = false;
 }
 }
 }

The HandleTouch function will simply call the GetSelectedItem function from the
CarouselScroll. This means we get the bound object from the view and we use this as a
parameter that is passed into the execution of the SelectCommand. The HandleSwipeLeft
function will increase the selected index by 1 and scroll to the left by the entire width
amount of the view. Remember, each child takes up the entire width and height of the view,
so in order to move to the next child, we have to scroll horizontally by the width.

Building a File Storage Application

[366]

Then we have the HandleSwipeRight function, which will perform the opposite to
HandleSwipeLeft and scroll in the opposite direction. In each swipe function, we also
perform a check to see if we are on the starting child or the last child.

Congratulations, you have just built your first custom layout. Now let's build the rest of the
user interface and see how we can use it.

Building the user interface
It's now time to build the user interface screens; we are going to start by building the view-
models. Inside the FileStorage.Portable project, add a new folder called ViewModels,
add a new file called MainPageViewModel.cs, and implement the following:

public class MainPageViewModel : ViewModelBase
 {
 #region Private Properties
 private string _descriptionMessage = "Welcome to the Filing Room";
 private string _FilesTitle = "Files";
 private string _exitTitle = "Exit";
 private ICommand _locationCommand;
 private ICommand _exitCommand;
 private ISQLiteStorage _storage;
 #endregion
 }

We include the ISQLiteStorage object in this view-model because we will be creating the
database tables when this view-model is created. Don't forget we need to implement the
public properties for all private properties; the following are two properties to get you
started:

#region Public Properties
public ICommand LocationCommand
 {
 get
 {
 return _locationCommand;
 }
 set
 {
 if (value.Equals(_locationCommand))
 {
 return;
 }
 _locationCommand = value; OnPropertyChanged("LocationCommand");

Building a File Storage Application

[367]

 }
 }
public ICommand ExitCommand
 {
 get
 {
 return _exitCommand;
 }
 set
 {
 if (value.Equals(_exitCommand))
 {
 return;
 }
 _exitCommand = value; OnPropertyChanged("ExitCommand");
 }
 }
#endregion

Then we add the remaining properties. We call the SetupSQLite function from the
constructor to set up the database as follows:

#region Constructors
public MainPageViewModel (INavigationService navigation, Func<Action,
ICommand> commandFactory,
IMethods methods, ISQLiteStorage storage) : base (navigation, methods)
 {
 _exitCommand = commandFactory (() => methods.Exit());
 _locationCommand = commandFactory (async () => await
Navigation.Navigate(PageNames.FilesPage, null));
 _storage = storage;
 SetupSQLite().ConfigureAwait(false);
 }
#endregion
private async Task SetupSQLite()
 {
 // create Sqlite connection _storage.CreateSQLiteAsyncConnection();
 // create DB tables await _storage.CreateTable<FileStorable>
 CancellationToken.None);
 }
}

The SetupSQLite function is responsible for creating the asynchronous connection to the
local database and building the one table from the FileStorable object.

Building a File Storage Application

[368]

Now let's build the page for this view-model. Add a new folder called Pages inside the
FileStorage project, add in a new file called MainPage.xaml, and implement the
following:

<?xml version="1.0" encoding="UTF-8"?>
<ui:ExtendedContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:ui="clr-namespace:FileStorage.UI;assembly=Xamarin.Forms"
 x:Class="FileStorage.Pages.MainPage"
 BackgroundColor="White"
 Title="Welcome">
<ui:ExtendedContentPage.Content>
 <Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10"
VerticalOptions="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Image x:Name="Image" Source="files.png" HeightRequest="120"
 WidthRequest="120" Grid.Row="0" Grid.Column="0"/>
 <Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
 TextColor="Black" HorizontalOptions="Center" Font="Arial, 20"
 Grid.Row="1" Grid.Column="0"/>
 <Button x:Name="LocationButton" Text="{Binding FilesTitle}"
 Command="{Binding LocationCommand}"
 Style="{StaticResource ButtonStyle}" Grid.Row="2"
Grid.Column="0"/>
 <Button x:Name="ExitButton" Text="{Binding ExitTitle}"
 Command="{Binding ExitCommand}" Style="{StaticResource
ButtonStyle}"
 Grid.Row="3" Grid.Column="0"/>
 </Grid>
 </ui:ExtendedContentPage.Content>
</ui:ExtendedContentPage>

Remember our custom control ExtendedContentPage?

We are going to use this for all pages so that every page has alert functionality connected
with its view-model. The following line gives the reference to our custom control:

xmlns:ui="clr-namespace:FileStorage.UI;assembly=Xamarin.Forms"

Building a File Storage Application

[369]

We have to declare a new ExtendedContentPage like the following:

<ui:ExtendedContentPage

The rest of the page is the same as previous projects. A simple Grid contains an image,
label, and two buttons. Now implement the following for MainPage.xaml.cs:

public partial class MainPage : ExtendedContentPage,
INavigableXamarinFormsPage
 {
 #region Constructors
 public MainPage (MainPageViewModel model) : base(model)
 {
 BindingContext = model;
 InitializeComponent ();
 }
 #endregion
 #region INavigableXamarinFormsPage interface
 public void OnNavigatedTo(IDictionary<string, object>
navigationParameters)
 {
 this.Show (navigationParameters);
 }
 #endregion
 }

We are able to assign the BindingContext property through the constructor because we
are registering this item inside the IoC container.

Now we move on to the next page, where we will be including the CarouselView. We will
also be loading in our files that are saved locally in our database. Our first step is to create a
new view-model for each view that is going to appear in the CarouselView. Add a new file
to the ViewModels folder called FileItemViewModel.cs and implement the following:

public class FileItemViewModel : ViewModelBase
 {
 #region Private Properties
 private string _fileName;
 private string _contents;
 #endregion
 #region Public Properties
 public string FileName
 {
 get
 {
 return _fileName;
 }

Building a File Storage Application

[370]

 set
 {
 if (value.Equals(_fileName))
 {
 return;
 }
 _fileName = value; OnPropertyChanged("FileName");
 }
 }
 public string Contents
 {
 get
 {
 return _contents;
 }
 set
 {
 if (value.Equals(_contents))
 {
 return;
 }
 _contents = value; OnPropertyChanged("Contents");
 }
 }
 #endregion
 #region Public Methods
 public void Apply(FileStorable file)
 {
 FileName = file.Key ?? string.Empty;
 Contents = file.Contents ?? string.Empty;
 }
 #endregion
 #region Constructors
 public FileItemViewModel(INavigationService navigation, IMethods
methods) :
 base(navigation, methods) { }
 #endregion
 }

It is very simple, just two properties to contain the filename and text contents of the file.
These two items will be saved in a FileStorable object in our local database. We have an
Apply function that will take a FileStorable object to load the properties of the view-
model.

Building a File Storage Application

[371]

Now let's build the page. Inside the ViewModels folder, add a new file called
FilesPageViewModel.cs and implement the following:

public class FilesPageViewModel : ViewModelBase
 {
 #region Private Properties
 private readonly Func<FileItemViewModel> _fileFactory;
 private readonly ISQLiteStorage _storage;
 private readonly SynchronizationContext _context;
 private ICommand _editFileCommand;
 private ICommand _createFileCommand;
 private bool _noFiles;
 #endregion
 }

We have two commands for editing a file, which will be bound to the custom binding
SelectCommandProperty on the CarouselView. When a user touches the current child
on the CarouselLayout, this command will be invoked.

Notice the SynchronizationContext property?

This will be used for threading purposes to ensure we update the ObservableCollection
on the main UI thread.

Now let's add the public properties as follows:

#region Public Properties
public Subject<DataChange> DataChanges { get; private set; }
public ICommand EditFileCommand
 {
 get
 {
 return _editFileCommand;
 }
 set
 {
 if (value.Equals(_editFileCommand))
 {
 return;
 }
 _editFileCommand = value;
 OnPropertyChanged("EditFileCommand");
 }
 }
public ICommand CreateFileCommand
 {
 get

Building a File Storage Application

[372]

 {
 return _createFileCommand;
 }
 set
 {
 if (value.Equals(_createFileCommand))
 {
 return;
 }
 _createFileCommand = value;
 OnPropertyChanged("CreateFileCommand");
 }
 }
public bool AnyFiles
 {
 get
 {
 return _noFiles;
 }
 set
 {
 if (value.Equals(_noFiles))
 {
 return;
 }
 _noFiles = value;
 OnPropertyChanged("AnyFiles");
 }
 }
public ObservableCollection<FileItemViewModel> Cells { get; set; }
#endregion

Don't forget that we only need a public property for the properties that
are going to be bound to the view.

We have an ObservableCollection of type FileItemViewModel; so, for every file we
pull from the database, a new view-model will be created to show the details on the child
view of the CarouselView. We also have an IObservable property called DataChanges;
every time we update the ObservableCollection, we will publish a new event through
the stream, and because we will be binding this property to the CarouselView, the list of
children will be structured accordingly.

Building a File Storage Application

[373]

Now let's add the constructor as follows:

#region Constructors
public FilesPageViewModel(INavigationService navigation,
Func<Action<object>, ICommand> commandFactory,
 IMethods methods, ISQLiteStorage storage, Func<FileItemViewModel>
 fileFactory) : base(navigation, methods)
 {
 DataChanges = new Subject<DataChange>();
 // retrieve main thread context _context =
 SynchronizationContext.Current;
 _storage = storage;
 _fileFactory = fileFactory;
 Cells = new ObservableCollection<FileItemViewModel>();
 _editFileCommand = commandFactory(async (file) =>
 {
 await Navigation.Navigate(PageNames.EditFilePage,
 new Dictionary<string, object>()
 {
 {
 "filename", (file as FileItemViewModel).FileName},
 {
 "contents", (file as FileItemViewModel).Contents}
});
 });
 _createFileCommand = commandFactory(async (obj) =>
 {
 var fileName = await ShowEntryAlert("Enter file name:");
 if (!string.IsNullOrEmpty(fileName))
 {
 await Navigation.Navigate(PageNames.EditFilePage,
 new Dictionary<string, object>()
 {
 {
 "filename", fileName
 }
 });
 }
 });
 }
#endregion

Building a File Storage Application

[374]

Using a SynchronizationContext
In all Xamarin.Forms applications, when we update view-model properties that are bound
to a view, they must be changed on the main UI thread.

This rule applies to any application. UI changes must happen on the main
UI thread.

The SynchronizationContext.Current property is used to retrieve the current sync
context of any thread.

How do we know this context is from the main UI
thread?
We store a reference to this context in the constructor because all view-models are created
on the main UI thread. This means we have the current sync context of the main thread.

Let's have a look at how we are going to use this sync context reference:

#region Private Methods
private void UpdateFiles()
 {
 _context.Post(async (obj) =>
 {
 Cells.Clear();
 var files = await
_storage.GetTable<FileStorable>(CancellationToken.None);
 foreach (var file in files)
 {
 var fileModel = _fileFactory();
 fileModel.Apply(file);
 Cells.Add(fileModel);
 }
 AnyFiles = Cells.Any();
 DataChanges.OnNext(new DataChange()
 {
 SizeChanged = true
 });
 }, null);
 }
#endregion

Building a File Storage Application

[375]

The UpdateFiles function is called every time the page appears. When we call Post on the
context object, we have to pass an action that will be propagated to the main UI thread
when it becomes available. Inside this action, we will use the GetTable function to retrieve
all files from the table. Then, for every FileStorable object, we instantiate a new
FileItemViewModel from the factory and add this to the ObservableCollection. After
we do this for all files, we publish a new event to the DataChanges sequence.

Finally, we have to add the OnAppear function, which will be called every time the page
appears; it doesn't matter if we push or pop to this page, this function will be called every
time. This means that we will update the current files, every time the page appears, so the
CarouselView will have the most current list of files in the database at all times:

#region Public Methods
public void OnAppear()
 {
 UpdateFiles();
 }
#endregion

Now let's build the page for this view-model. To do so, inside the Pages folder, add in
FilesPage.xaml and implement the following:

<ui:ExtendedContentPage.Content>
 <Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="60"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Label x:Name="NoFilesLabel"
 IsVisible="{Binding AnyFiles, Converter={StaticResource
notConverter}}"
 HorizontalTextAlignment="Center" VerticalTextAlignment="Center"
Grid.Row="0"
 Grid.Column="0">
 <Label.FormattedText>
 <FormattedString>
 <Span Text="{x:Static resx:LabelResources.NoFilesLabel}"
FontFamily="Arial"
 FontSize="24" ForegroundColor="Black"/> </FormattedString>
 </Label.FormattedText>
 </Label>
 <controls:CarouselView x:Name="CarouselView" SelectedCommand="{Binding
 EditFileCommand}" Grid.Row="0" Grid.Column="0"/>

Building a File Storage Application

[376]

 <Button x:Name="CreateFileButton" Command="{Binding CreateFileCommand}"
 Text="{x:Static resx:LabelResources.CreateFileLabel}"
Style="{StaticResource
 ButtonStyle}" Grid.Row="1" Grid.Column="0"/>
 </Grid>
</ui:ExtendedContentPage.Content>

Since we are including the CarouselView in this page, we have to add a new reference
namespace at the top of the page as follows:

xmlns:controls="clr-namespace:FileStorage.Controls;assembly=FileStorage"

Notice our custom binding property on the CarouselView with the SelectCommand?

Every time we click the current child, this will execute the EditFileCommand from the view-
model.

The page has also been set up to hide the CarouselView and display the NoFilesLabel if
there are no files in local storage. Then, if we want to create a new file, we click on the
CreateFileButton.

Building the EditFilePage
Now we move to the last page of the application. Add a new file called
EditFilePage.xaml to the Pages folder and implement the following:

<ui:ExtendedContentPage.Content>
 <Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10">
 <Grid.RowDefinitions>
 <RowDefinition Height="60"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="60"/>
 <RowDefinition Height="60"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Entry x:Name="FileNameLabel" Text="{Binding FileName, Mode=TwoWay}"
 BackgroundColor="Silver"
 Grid.Row="0"
 Grid.Column="0">
 <Entry.Behaviors>
 <beh:LowercaseEntryBehaviour/>
 </Entry.Behaviors>
 </Entry>

Building a File Storage Application

[377]

 <Editor x:Name="ContentsEditor" Text="{Binding Contents, Mode=TwoWay}"
 BackgroundColor="Silver" Grid.Row="1" Grid.Column="0"/>
 <Button x:Name="SaveFileButton" Command="{Binding SaveFileCommand}"
 Text="{x:Static resx:LabelResources.SaveFileLabel}"
 Style="{StaticResource ButtonStyle}" Grid.Row="2" Grid.Column="0"/>
 <Button x:Name="DeleteFileButton" Command="{Binding DeleteFileCommand}"
 Text="{x:Static resx:LabelResources.DeleteFileLabel}"
 Style="{StaticResource ButtonStyle}" Grid.Row="3" Grid.Column="0"/>
 </Grid>
 </ui:ExtendedContentPage.Content>

We have an Entry property at the very top for editing the filename and we have an Editor
for filling in the text contents of the file. We also have two buttons: one for saving the file
and one for deleting it.

Now, turn our attention to the Entry item; we are going to introduce a new
Xamarin.Forms feature called Behaviours.

Behaviours
Behaviours enable you to implement objects which can be concisely attached to events and
behaviours of any control type. This means we can package and reuse behaviours between
similar controls without having to write repetitive code behind our XAML sheets.

Let's create a new folder called Behaviours, add in a new file called
LowercaseEntryBehaviour.cs, and implement the following:

public class LowercaseEntryBehaviour : Behavior<Entry>
 {
 protected override void OnAttachedTo(Entry entry)
 {
 entry.TextChanged += OnEntryTextChanged;
 base.OnAttachedTo(entry);
 }
 protected override void OnDetachingFrom(Entry entry)
 {
 entry.TextChanged -= OnEntryTextChanged;
 base.OnDetachingFrom(entry);
 }
 void OnEntryTextChanged(object sender, TextChangedEventArgs args)
 {
 ((Entry)sender).Text = args.NewTextValue.ToLower();
 }
 }

Building a File Storage Application

[378]

The OnAttachedTo and OnDetachingFrom methods get invoked when the behavior is
attached/detached from parent UI element; so we subscribe to the TextChanged event, and
when it triggers, we update the Text property by calling the ToLower function. This means
that irrespective of the case of the text when it is entered into the Entry object, it will
always be lowercase.

Now let's add the view-model for the EditFilePage. Inside the ViewModels folder, add
another file called EditFilePageViewModel.cs and implement the private properties
first as follows:

public class EditFilePageViewModel : ViewModelBase
 {
 #region Private Properties
 private readonly ISQLiteStorage _storage;
 private ICommand _saveFileCommand;
 private ICommand _deleteFileCommand;
 private string _contents;
 private string _fileName;
 #endregion
 }

We have to use the ISQLiteStorage object for saving and deleting files on the local
database. We then have another two properties to record the contents of the file and
filename. The two commands are used to invoke the SQLite functions for saving and
deleting.

Let's go ahead and add the public properties as follows:

#region Public Properties
public ICommand SaveFileCommand
 {
 get
 {
 return _saveFileCommand;
 }
 set
 {
 if (value.Equals(_saveFileCommand))
 {
 return;
 }
 _saveFileCommand = value; OnPropertyChanged("FileEditCommand");
 }
 }
public ICommand DeleteFileCommand
 {

Building a File Storage Application

[379]

 get
 {
 return _deleteFileCommand;
 }
 set
 {
 if (value.Equals(_deleteFileCommand))
 {
 return;
 }
 _deleteFileCommand = value; OnPropertyChanged("CreateFileCommand");
 }
 }
public string Contents
 {
 get
 {
 return _contents;
 }
 set { if (value.Equals(_contents))
 {
 return;
 }
 _contents = value; OnPropertyChanged("Contents");
 }
}
public string FileName
 {
 get
 {
 return _fileName;
 }
 set
 {
 if (value.Equals(_fileName))
 {
 return;
 }
 _fileName = value; OnPropertyChanged("FileName");
 }
 }
#endregion

Remember that we only want to publicize the variables that are going to
be bound through the XAML.

Building a File Storage Application

[380]

Now we add the constructor as follows:

#region Constructors
 public EditFilePageViewModel (INavigationService navigation, Func<Action,
ICommand> commandFactory,
 IMethods methods, ISQLiteStorage storage)
 : base (navigation, methods)
 {
 _storage = storage;
 _saveFileCommand = commandFactory(async () =>
 {
 await _storage.InsertObject(new FileStorable()
 {
 Key = FileName, Contents = Contents },
CancellationToken.None);
 NotifyAlert("File saved.");
 });
 _deleteFileCommand = commandFactory(async () =>
 {
 await _storage.DeleteObjectByKey<FileStorable>(FileName,
CancellationToken.None);
 await Navigation.Pop();
 });
 }
#endregion

Then, finally, we add the remaining functions; we have the OnDisppear function, which
will be used for clearing the filename and contents whenever the page disappears. Then we
have the LoadAsync override, which is going to set the filename and contents from the
navigation parameters that are passed in from the previous page. From the FilesPage,
when a user selects a file from the carousel, the FileItemViewModel object details are
passed into a dictionary for the navigation parameters that are passed into the
EditFilePage:

#region Public Methods
public void OnDisppear()
 {
 FileName = string.Empty;
 Contents = string.Empty;
 }
protected override async Task LoadAsync (IDictionary<string, object>
parameters)
 {
 if (parameters.ContainsKey("filename"))
 {
 FileName = (parameters["filename"] as string).ToLower();
 }

Building a File Storage Application

[381]

 if (parameters.ContainsKey("contents"))
 {
 Contents = parameters["contents"] as string;
 }
 }
#endregion
 }

Fantastic! We have finished implementing the user interface.

Challenge
We have built everything in the FileStorage.Portable and FileStorage projects, but
there are still pieces missing. Here is your challenge; fill in the missing pieces of the solution
and compile it. The remaining files are exactly the same from all our other Xamarin.Forms
solutions, but now it is your turn to finish off the project.

Building the Windows Phone version
If you are looking for an even bigger challenge, then try adding on the Windows Phone
version. Don't be intimidated by this exercise, most of the code is shared for you. On the
Windows Phone version, you will have to implement the following:

WinPhoneMethods

GestureViewRenderer

SQLiteSetup

LoggerWinPhone

You will also need to download a Visual Studio extension for SQLite from the following
link h t t p : / / s q l i t e . o r g / d o w n l o a d . h t m l.

Download the sqlite-wp81-winrt-3130000.vsix file:

http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html

Building a File Storage Application

[382]

Install the extensions and then reopen Visual Studio. Then, in your Windows Phone project,
right-click on References and select Add Reference…. Then select Windows Phone 8.1 |
Extensions from the left-hand side and select SQLite for Windows Phone 8.1, as shown in
the following screenshot:

When you run this project, you must make sure that the x86 configuration is set:

To help you get started, the implementation for the SQLiteSetup class is as follows:

public class SQLiteSetup : ISQLiteSetup
 {
 #region Public Properties
 public string DatabasePath { get; set; }
 public ISQLitePlatform Platform { get; set; }
 #endregion
 #region Constructors
 public SQLiteSetup(ISQLitePlatform platform)
 {
 DatabasePath =
Path.Combine(ApplicationData.Current.LocalFolder.Path,
 "mycaremanager.db3")

Building a File Storage Application

[383]

 Platform = platform;
 }
 #endregion
}

To see the finished version, visit the following link: h t t p s : / / g i t h u b . c o m /

f l u s h a r c a d e / c h a p t e r 7 - f i l e s t o r a g e.

Summary
In this chapter, we explored a walkthrough for integrating SQLite in a Xamarin.Forms
application. We addressed the async-lock pattern and how to implement it with SQLite to
make database connections thread-safe. In the final chapter, we will build a cross-platform
camera application that will implement native control over camera hardware. We will also
present camera video outlets via a CustomRenderer and build events to handle camera
events in our portable library.

https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage
https://github.com/flusharcade/chapter7-filestorage

8
Building a Camera Application

We have reached the end of an era, learning the ins and outs of cross-platform development
using the Xamarin platform.

In our last chapter, we are going to walk-through the final Xamarin.Forms project. We will
introduce Effects, Triggers, and how they apply to UI elements. Then, we will build a
CustomRenderer for each platform camera. The following topics will be covered in this
chapter.

Expected knowledge:

Xamarin.Forms

XAML
MVVM
C# threading
HashMap data structures
CustomRenderers
INotifiedPropertyChanged framework

In this chapter, you will learn the following:

Solution setup
Building the MainPageViewModel
Improving the INotifiedPropertyChanged implementation
Creating the custom UI objects
Building the FocusView
Xamarin.Forms animations
Xamarin.Forms compound animations

Building a Camera Application

[385]

Building the CameraView
Building a control for the iOS camera
Building the iOS CameraRenderer
Integrating the Android Camera2 framework
Building the CameraViewRenderer in Android
Handling native touch events through the FocusView
Using RX to handle events
Building a VisualElementRenderer for iOS
Building the CustomImageRenderer
Building the UIImageEffect class
Building the CustomImageRenderer for Android
Triggers
Platform effects
Building the CameraPage
Adding native orientation events

Solution setup
Let's begin by creating a new Xamarin.Forms project and calling it Camera. We also want
to create the Camera.Portable project. Now that we have built up several
Xamarin.Forms applications, we have a lot of reusable parts that will be brought across to
this application.

Starting with the Camera.Portable project, we want to copy in the IoC, Extras, and
Logging folders used in Chapter 7, Building a File Storage Application. Make sure all the files
contained in these folders are copied in accordingly.

Don't forget to update namespaces in each code sheet.

Then we want to add the following NuGet packages for every project:

Autofac
Reactive extensions

Building a Camera Application

[386]

Next, we want to create a folder called Enums. Add in a new folder called PageNames.cs
and implement the following:

public enum PageNames
 {
 #region Properties

 MainPage,

 CameraPage,

 #endregion
 }

Like our other projects, this will be used in the navigation setup. In this folder, we also want
to add another file called Orientation.cs and implement the following:

public enum Orientation
 {
 Portrait,

 LandscapeLeft,

 LandscapeRight,

 None
 }

This enum will be used with orientation settings on our CameraPage. Each different
orientation setting will be handled for adjusting camera preview surface areas.

Our next step is to create a new folder called UI and copy in the INavigationService.cs.
We also want to add another file called AlertArgs.cs and implement the following:

public class AlertArgs : EventArgs
 {
 #region Public Properties

 public string Message { get; set; }

 public TaskCompletionSource<bool> Tcs { get; set; }

 #endregion
 }

Building a Camera Application

[387]

The preceding class will be used inside all alerts that are invoked inside our view-models.
We use a TaskCompletionSource object to await the method that fires the alert, and the
Message object for every alert message.

Building the MainPageViewModel class
Let's add the ViewModelBase class, which will contain the AlertArgs event. Create a new
folder called ViewModels, add in a new file called ViewModelBase.cs, and implement the
following:

public class ViewModelBase : INotifyPropertyChanged
 {
 #region Public Events

 public event PropertyChangedEventHandler PropertyChanged;

 public event EventHandler<AlertArgs> Alert;

 #endregion

 #region Public Properties

 public INavigationService Navigation;

 #endregion

The ViewModelBase class will be similar to the other Xamarin.Forms projects. We have
the INotifiedPropertyChanged requirements, another EventHandler for alerts, and the
INavigationService for navigation control.

Next, we have the constructor:

 #region Constructor

 public ViewModelBase(INavigationService navigation, IMethods
methods)
 {
 Navigation = navigation;

 _methods = methods;
 }

 #endregion

Building a Camera Application

[388]

Improving the INotifiedPropertyChanged
implementation
As you may have noticed from previous projects, our standard property implementation for
handling property changes looks like the following:

private string _descriptionMessage = "Take a Picture";

public string DescriptionMessage
 {
 get
 {
 return _descriptionMessage;
 }

 set
 {
 if (value.Equals(_descriptionMessage))
 {
 return;
 }

 _descriptionMessage = value;
 OnPropertyChanged("DescriptionMessage");
 }
 }

The repeated code in every public property makes our view-model code look much bigger
than it actually is. In all your code sheets, a good coding practice to think about is how you
can reduce the amount of lines of code and, especially repeated code. The following
function SetProperty is an example of how we can turn 13 lines of code into just two:

 protected void SetProperty<T>(string propertyName,
 ref T referenceProperty, T newProperty)
 {
 if (!newProperty.Equals(referenceProperty))
 {
 referenceProperty = newProperty;
 }

 OnPropertyChanged(propertyName);
 }

Building a Camera Application

[389]

In all properties, we always check first if the value being assigned is different to the current
value before firing the OnPropertyChanged function. Since this is a generic type function,
the same logic can be used for any property on all view-models. Now the
DescriptionMessage property will look like the following:

public string DescriptionMessage
 {
 get { return _descriptionMessage; }
 set { SetProperty(nameof(DescriptionMessage),
 ref _descriptionMessage, value); }
 }

Let's add the rest of the ViewModelBase as follows:

 protected virtual void OnPropertyChanged([CallerMemberName]
 string propertyName = null)
 {
 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 protected virtual async Task LoadAsync(IDictionary<string, object>
parameters)
 {
 }

 #endregion

 #region Public Methods

 public Task<bool> NotifyAlert(string message)
 {
 var tcs = new TaskCompletionSource<bool>();

 Alert?.Invoke(this, new AlertArgs()
 {
 Message = message,
 Tcs = tcs
 });

 return tcs.Task;
 }

 public void OnShow(IDictionary<string, object> parameters)

Building a Camera Application

[390]

 {
 LoadAsync(parameters).ToObservable().Subscribe(
 result =>
 {
 // we can add things to do after we load the view model
 },
 ex =>
 {
 // we can handle any areas from the load async function
 });
 }

 #endregion
 }

The preceding functions are the same from previous implementations. Take note of how we
fire the Alert event. Since we now have access to C# 6.0, we can turn a standard null check
on an event like the following:

If (Alert != null)
{
Alert(this, new AlertArgs()
 {
 Message = message,
 Tcs = tcs
 });
}

Into this:

Alert?.Invoke(this, new AlertArgs()
 {
 Message = message,
 Tcs = tcs
 });

It looks much cleaner, meaning we can remove all the if statements.

Now let's add a new file called MainPageViewModel.cs and implement the following:

public class MainPageViewModel : ViewModelBase
 {
 #region Private Properties

 private readonly IMethods _methods;

 private string _descriptionMessage = "Take a Picture";

Building a Camera Application

[391]

 private string _cameraTitle = "Camera";

 private string _exitTitle = "Exit";

 private ICommand _cameraCommand;

 private ICommand _exitCommand;

 #endregion
}

Exactly like the other MainPageViewModel objects, the MainPage layout is the same, with
two buttons, an image, and a label.

Now let's add the public properties. We are going to use the new SetProperty function
for each public property:

 #region Public Properties

 public string DescriptionMessage
 {
 get { return _descriptionMessage; }
 set { SetProperty(nameof(DescriptionMessage),
 ref _descriptionMessage, value); }
 }

 public string CameraTitle
 {
 get { return _cameraTitle; }
 set { SetProperty(nameof(CameraTitle), ref _cameraTitle,
value); }
 }

 public string ExitTitle
 {
 get { return _exitTitle; }
 set { SetProperty(nameof(ExitTitle), ref _exitTitle, value); }
 }

 public ICommand CameraCommand
 {
 get { return _cameraCommand; }
 set { SetProperty(nameof(CameraCommand), ref _cameraCommand,
value); }
 }

 public ICommand ExitCommand
 {

Building a Camera Application

[392]

 get { return _exitCommand; }
 set { SetProperty(nameof(ExitCommand), ref _exitCommand,
value); }
 }

 #endregion

Now for the constructor, we are going to use the Command factory again to instantiate our
binded Command:

 #region Constructors

 public MainPageViewModel (INavigationService navigation,
Func<Action, ICommand> commandFactory): base (navigation, methods)
 {
 _methods = methods;

 _exitCommand = commandFactory (async () =>
 {
 await NotifyAlert("GoodBye!!");

 _methods.Exit();
 });

 _cameraCommand = commandFactory (async () => await
Navigation.Navigate(PageNames.CameraPage, null));
 }

 #endregion

Now let's build the next view-model for the CameraPage. Add a new file called
CameraPageViewModel.cs to the ViewModels folder and implement the private
properties to begin with:

public sealed class CameraPageViewModel : ViewModelBase
 {
 #region Private Properties

 private Orientation _pageOrientation;

 private byte[] _photoData;

 private string _loadingMessage = "Loading Camera..."

 private bool _canCapture;

 private bool _cameraLoading;

Building a Camera Application

[393]

 private bool _isFlashOn;

 private bool _photoEditOn;

 #endregion

}

The CameraPage is going to include an Orientation property for adjusting Grid rows
and columns using converters. The _photoData property will be used for recording the
image taken as bytes, we will also be using these bytes to bind to an ImageSource.
The _loadingMessage and _cameraLoading properties are used when displaying a view
showing the native camera hardware is busy. The _isFlashOn will be used to control UI
elements displaying the status of the flash. The CameraPage will also have a target image
representing the focus target. Then finally, the _canCapture is used to determine whether
the camera has loaded and we are ready to take photos, and the _photoEditOn is used to
bind the visibility status of a view showing the photo just taken.

Next, we add the public properties; following are two to get you started:

#region Public Properties

 public bool CanCapture
 {
 get { return _canCapture; }
 set { SetProperty(nameof(CanCapture), ref _canCapture, value);
}
 }

 public string LoadingMessage
 {
 get { return _loadingMessage; }
 set { SetProperty(nameof(LoadingMessage), ref _loadingMessage,
value); }
 }

#endregion

Add the constructor as follows:

 #region Constructors and Destructors

 public CameraPageViewModel(INavigationService navigation,
Func<Action, ICommand> commandFactory) : base (navigation, methods)
 {
 }

Building a Camera Application

[394]

 #endregion

Now for the public functions, we have the AddPhoto function, this will take the image as
bytes from the native side, and the PhotoData is assigned for the ImageSource binding:

 public void AddPhoto(byte[] data)
 {
 PhotoData = data;
 PhotoEditOn = true;
 }

We also have a function for resetting the variables used in the current photo taken. When
the PhotoEditOn is false, this means we remove the view that is displaying the current
photo taken. When the PhotoData property is assigned an empty byte array, this means we
have freed the data of the image that is currently displaying:

 public void ResetEditPhoto()
 {
 PhotoData = new byte[] { };
 PhotoEditOn = false;
 }

Finally, we have two more functions that are called when the page appears and disappears:

 public void OnAppear()
 {
 CameraLoading = false;
 }

 public void OnDisappear()
 {
 CameraLoading = true;
 ResetEditPhoto();
 }

The OnAppear function simply resets the CameraLoading property to false, and the
OnDisappear function resets the entire view-model; when we return to this page, the state
is the same as the starting point (that is, the camera is not loading, no photo is showing)

Excellent! Now that we have built our view-models, let's add the PortableModule for our
IoC container as follows:

public class PortableModule : IModule
 {
 #region Public Methods

 public void Register(ContainerBuilder builder)

Building a Camera Application

[395]

 {
 builder.RegisterType<MainPageViewModel> ().SingleInstance();
 builder.RegisterType<CameraPageViewModel> ().SingleInstance();
 }

 #endregion
 }

Let's begin building the user interface screens.

Creating the custom UI objects
Jump back in the Camera project and let's begin adding a new folder called Controls. Add
in a new file called OrientationPage.cs and implement the following:

public class OrientationPage : ContentPage
 {
 #region Static Properties

 public static Orientation PageOrientation;

 public static event EventHandler<Orientation> OrientationHandler;

 public static event EventHandler<Point> TouchHandler;

 #endregion

 #region Static Methods

 public static void NotifyOrientationChange(Orientation orientation)
 {
 if (OrientationHandler != null)
 {
 OrientationHandler (null, orientation);
 }
 }

 public static void NotifyTouch(Point touchPoint)
 {
 if (TouchHandler != null)
 {
 TouchHandler(null, touchPoint);
 }
 }

Building a Camera Application

[396]

 #endregion
 }

In our previous chapter, we created an ExtendedContentPage for handling alerts. This
time, the ExtendedContentPage will inherit the OrientationPage, meaning it will be
handling orientation events as well. The CameraPage is going to use this
OrientationPage to track orientation events to resize camera preview areas, and rotate
the camera view.

Our next control is the FocusView. It is going to be used for custom rendering purposes so
that we are able to record touch point (x, y) coordinates on a view plane. These touch points
will then be used to focus the camera at that particular (x, y) coordinate.

Our next custom control is an extension to the Image class. Add another file into the
Controls folder called CustomImage.cs and implement the following:

public class CustomImage : View
 {
 public static readonly BindableProperty TintColorStringProperty =
BindableProperty.Create ((CustomImage o) => o.TintColorString,
string.Empty,
 propertyChanged: (bindable, oldvalue, newValue) =>
 {
 var eh = ((CustomImage)bindable).CustomPropertyChanged;

 if (eh != null)
 {
 eh (bindable, TintColorStringProperty.PropertyName);
 }
 });

 public string TintColorString
 {
 get
 {
 return (string)GetValue(TintColorStringProperty);
 }
 set
 {
 this.SetValue(TintColorStringProperty, value);
 }
 }

 public static readonly BindableProperty TintOnProperty =
BindableProperty.Create ((CustomImage o) => o.TintOn, default(bool),
 propertyChanged: (bindable, oldvalue, newValue) =>
 {

Building a Camera Application

[397]

 var eh = ((CustomImage)bindable).CustomPropertyChanged;

 if (eh != null)
 {
 eh (bindable, TintOnProperty.PropertyName);
 }
 });

 public bool TintOn
 {
 get
 {
 return (bool)GetValue (TintOnProperty);
 }
 set
 {
 SetValue (TintOnProperty, value);
 }
 }
}

These custom bindings will be used for tinting. Since this view will be used for a
CustomRenderer, we will have access to native tinting features. This is where we will add
some advanced techniques to our CustomRenderer.

Next, we are going to add two more custom bindings. The Path property will be used for
the absolute path of the file, and the Aspect property will be used for the image aspect ratio
so we can change the image aspect natively:

 public static readonly BindableProperty PathProperty =
BindableProperty.Create((CustomImage o) => o.Path, default(string),
 propertyChanged: (bindable, oldvalue, newValue) =>
 {
 var eh = ((CustomImage)bindable).CustomPropertyChanged;

 if (eh != null)
 {
 eh (bindable, PathProperty.PropertyName);
 }
 });

 public string Path
 {
 get
 {
 return (string)GetValue(PathProperty);
 }

Building a Camera Application

[398]

 set
 {
 SetValue(PathProperty, value);
 }
 }

 public static readonly BindableProperty AspectProperty =
BindableProperty.Create((CustomImage o) => o.Aspect, default(Aspect),
 propertyChanged: (bindable, oldvalue, newValue) =>
 {
 var eh = ((CustomImage)bindable).CustomPropertyChanged;

 if (eh != null)
 {
 eh(bindable, AspectProperty.PropertyName);
 }
 });

 public Aspect Aspect
 {
 get
 {
 return (Aspect)GetValue(AspectProperty);
 }
 set
 {
 SetValue(AspectProperty, value);
 }
 }

Have a look at the delegate function passed in as the last parameter for each Create
function. This will be called every time the property changes; the bindable object that
comes from the first parameter of this delegate function is the object itself. We retrieve the
CustomPropertyChangedEventHandler and fire a new event to signal that a property on
this object has changed.

Let's add the following to the CustomImage class:

 public event EventHandler<string> CustomPropertyChanged;

 protected override void OnPropertyChanged (string propertyName)
 {
 base.OnPropertyChanged (propertyName);

 if (propertyName ==
 CustomImage.TintColorStringProperty.PropertyName ||
 propertyName == CustomImage.TintOnProperty.PropertyName ||

Building a Camera Application

[399]

 propertyName == CustomImage.AspectProperty.PropertyName)
 {
 if (CustomPropertyChanged != null)
 {
 this.CustomPropertyChanged (this, propertyName);
 }
 }
 }
 }

That's all for the CustomImage class; let's move on to the next custom control.

Building the FocusView
The FocusView is going to be used as an overlay view with a target image for touching
focus points. This will be a CustomRenderer as we have to use native libraries for
retrieving specific (x, y) coordinates on touch points.

Start with adding a new file into the Controls folder called FocusView.cs and implement
the following:

public sealed class FocusView : RelativeLayout
 {
 #region Constant Properties

 const int IMG_TARGET_BOUND = 100;

 #endregion

 #region Private Properties

 private bool _isAnimating;

 private bool _startingPointsAssigned;

 private readonly CustomImage _focalTarget;

 private Point _pStartingOrientation;

 private Point _pFlippedOrientation;

 #endregion

 #region Public Events

Building a Camera Application

[400]

 public event EventHandler<Point> TouchFocus;

 #endregion

}

The first part we see here are two Point objects for specific (x, y) coordinates for portrait
and landscape orientation starting points. These two points will be set when the view first
loads. Both points will be set to the center of the view in both landscape and portrait
orientations. We also have the _startingPointsAssigned Boolean to ensure we only set
the starting focus points once.

The CustomImage object is used for the actual image of the target. We will be using the
tinting properties each time a user touches to focus. The _isAnimating property is used
for tracking progress of current animations (we will be animating the scale of the image
each time a touch is detected). The constant property is used to hard set the height and
width of the target image, and we have two events for detecting all user touch events.

Next, we have a single public property for the orientation:

 #region Public Properties

 public Orientation Orientation;

 #endregion

Xamarin.Forms animations
Xamarin.Forms has multiple functions for animating views. We have access to the
following functions:

FadeTo: This is used to animate opacity (that is, fade in/out).
RotateTo: This is used to animate rotations.
ScaleTo: This is used to animate size.
TranslateTo: This is used to animate (x, y) positions.
LayoutTo: This is used to animate x, y, width, and height.

Building a Camera Application

[401]

Stay away from the LayoutTo function. Jason Smith (the creator of
Xamarin.Forms) recommends you stick with the TranslateTo instead.
The issue with LayoutTo is the parent of the view you are calling
LayoutTo on will not be aware of the translation/resize that happened
and will simply overwrite it at the next layout cycle (like when you rotate
the device). This is because LayoutTo is calling the same method Layouts
call to position children.

We are now going to use a few of these animation functions to animate our target image
when a use touches to focus. The AnimateFocalTarget function will be responsible for
performing the animations every time a user touches the view. At first, it will change the
tint color of the image to green, then translate the (x, y) coordinate to the starting position,
expand the scale, fade the image, contract the scale, and wait a second until the tint color
changes back to white:

#region Private Methods

 private async Task AnimateFocalTarget(Point touchPoint)
 {
 _focalTarget.TintColorString = "#007F00";

 await _focalTarget.TranslateTo(touchPoint.X - (IMG_TARGET_BOUND
/ 2),
 touchPoint.Y - (IMG_TARGET_BOUND / 2),
0).ConfigureAwait(false);

 await _focalTarget.ScaleTo(1, 0);

 // fade in
 await _focalTarget.FadeTo(0.7f, 25);

 await _focalTarget.ScaleTo(0.5, 250);

 _focalTarget.TintOn = true;

 await Task.Delay(1000);

 _focalTarget.TintColorString = "#FFFFFF";

 _isAnimating = false;
 }

 #endregion

All these await functions, is there a cleaner way?

Building a Camera Application

[402]

In a lot of cases, you will need to combine multiple transitions at any one time. Let's replace
the preceding combination of animations with a compound animation.

Xamarin.Forms compound animations
Compound animations give you the ability to combine multiple animations as a storyboard.
Let's replace the preceding function with our new implementation using a compound
animation as follows:

private async Task AnimateFocalTarget(Point touchPoint)
 {
 _focalTarget.TintColorString = "#007F00";

 var storyboard = new Animation();

 var translationX = new Animation(callback: x
 => _focalTarget.TranslationX = x,
 start: touchPoint.X,
 end: touchPoint.X -
(IMG_TARGET_BOUND / 2),
 easing: Easing.Linear);

 var translationY = new Animation(callback: y
 => _focalTarget.TranslationY = y,
 start: touchPoint.Y,
 end: touchPoint.Y -
(IMG_TARGET_BOUND / 2),
 easing: Easing.Linear);

 var scaleFirst = new Animation(callback: o =>
_focalTarget.Scale = o,
 start: 0.5,
 end: 1,
 easing: Easing.Linear);

 var fade = new Animation(callback: o => _focalTarget.Opacity =
o,
 start: 1,
 end: 0.7f,
 easing: Easing.Linear);

 var scaleSecond = new Animation(callback: o =>
_focalTarget.Scale = o,
 start: 1,
 end: 0.5f,

Building a Camera Application

[403]

 easing: Easing.Linear);

 storyboard.Add(0, 0.01, translationX);
 storyboard.Add(0, 0.01, translationY);
 storyboard.Add(0, 0.01, scaleFirst);
 storyboard.Add(0, 0.5, fade);
 storyboard.Add(0.5, 1, scaleSecond);

 var tcs = new TaskCompletionSource<bool>();
 storyboard.Commit(_focalTarget, "_focalTarget", length: 300,
finished: async (arg1, arg2) =>
 {
 _focalTarget.TintOn = true;

 await Task.Delay(500);

 _focalTarget.TintColorString = "#FFFFFF";

 _isAnimating = false;

 tcs.TrySetResult(true);
 });

 await tcs.Task;
 }

Each Animation object has the property we are animating, a start point and an end point,
and easing (linear, bounce in, bounce out). All Animation objects are then added to the
storyboard. The first two parameters of the Add function are the start time and finish time of
that particular animation. Finally, we call the commit, and instead of awaiting the Commit
function, we will use a TaskCompletionSource object to await the commit until it is
finished. The finished action is called after the length of 300 milliseconds.

Isn't that much nicer than our previous implementation?

We should use this approach when we have multiple animations to commit at any one time.

Now let's add the Reset functions to our FocusView. This will be called whenever an
orientation has occurred, we will use the assign the focus point to the correct orientation
starting point:

 #region Public Methods

 public void Reset()
 {
 switch (Orientation)
 {

Building a Camera Application

[404]

 case Orientation.Portrait:
 NotifyFocus(_pStartingOrientation);
 break;
 case Orientation.LandscapeLeft:
 case Orientation.LandscapeRight:
 NotifyFocus(_pFlippedOrientation);
 break;
 }
 }

The NotifyFocus function is responsible for controlling the entire touch animation; this is
where we will set the starting state of the _focalTarget image, call the
AddFocualTargetImg function, and then fire the TouchFocus event. This event will be
used to focus the CameraView through the custom renderer:

 public void NotifyFocus(Point touchPoint)
 {
 if (_isAnimating)
 {
 return;
 }

 _focalTarget.Opacity = 0.0f;
 _focalTarget.TintOn = false;
 _isAnimating = true;

 Device.BeginInvokeOnMainThread(async () => await
AnimateFocalTarget(touchPoint));

 TouchFocus?.Invoke (this, touchPoint);
 }

Finally, we have the SetFocusPoints function to assign the starting focus points in each
orientation (landscape and portrait). These starting points will always be the center of the
CameraView. This is to ensure that the _focalTarget image is centered inside the
CameraView on every change in orientation:

 public void SetFocusPoints(Point pStart, Point pFlipped)
 {
 _pStartingOrientation = pStart;
 _pFlippedOrientation = pFlipped;
 }

 #endregion

Building a Camera Application

[405]

That's everything for our FocusView. Let's add our next custom UI element, the
CameraView.

Building the CameraView
Our next custom element is the UI object for rendering the native camera. Let's add a new
file into the Controls folder called CameraView.cs and implement the first part:

public sealed class CameraView : ContentView
 {
 #region Events

 public event EventHandler<Orientation> OrientationChange;

 public event EventHandler<Point> Focus;

 public event EventHandler<bool> AvailabilityChange;

 public event EventHandler<bool> OpenCamera;

 public event EventHandler<bool> Busy;

 public event EventHandler<bool> Flash;

 public event EventHandler<bool> Torch;

 public event EventHandler<bool> Loading;

 public event EventHandler<byte[]> Photo;

 public event EventHandler<float> Widths;

 public event EventHandler Shutter;

 #endregion
}

There are many events to manage because we have to handle events coming from the
Xamarin.Forms object in order for the native object to respond to, and vice-versa.

Next, we add the public properties:

 #region Public Properties

 public bool CameraAvailable;

Building a Camera Application

[406]

 public Orientation Orientation;

 public float CameraButtonContainerWidth = 0f;

 #endregion

The first bool is set when we receive events for the AvailabilityChangeEventHandler.
The Orientation property is assigned every time the screen orientation changes.

Screen orientation changes will come from the native side, these events
will come from the AppDelegate (iOS), MainActivity (Android), and
MainPage.xaml.cs (Windows).

Then we have the CameraButtonContainerWidth, this will only be relevant for iOS as we
need to resize the preview layer for the iOS camera when the orientation changes.

Our next functions are all for notifying the preceding events:

 #region Public Methods

 public void NotifyShutter()
 {
 Shutter?.Invoke(this, EventArgs.Empty);
 }

 public void NotifyOpenCamera(bool open)
 {
 OpenCamera?.Invoke(this, open);
 }

 public void NotifyFocus(Point touchPoint)
 {
 Focus?.Invoke(this, touchPoint);
 }

 public void NotifyBusy(object sender, bool busy)
 {
 Busy?.Invoke(this, busy);
 }

 public void NotifyOrientationChange(Orientation orientation)
 {
 Orientation = orientation;

 OrientationChange?.Invoke(this, orientation);
 }

Building a Camera Application

[407]

 public void NotifyAvailability(object sender, bool isAvailable)
 {
 CameraAvailable = isAvailable;

 AvailabilityChange?.Invoke(this, isAvailable);
 }

 public void NotifyPhoto(object sender, byte[] imageData)
 {
 Photo?.Invoke(this, imageData);
 }

 public void NotifyFlash(bool flashOn)
 {
 Flash?.Invoke(this, flashOn);
 }

 public void NotifyTorch(bool torchOn)
 {
 Torch?.Invoke(this, torchOn);
 }

 public void NotifyLoading(object sender, bool loading)
 {
 Loading?.Invoke(this, loading);
 }

 public void NotifyWidths(float cameraButtonContainerWidth)
 {
 CameraButtonContainerWidth = cameraButtonContainerWidth;

 Widths?.Invoke (this, cameraButtonContainerWidth);
 }

 #endregion

Then, we have the constructor:

 #region Constructors

 public CameraView()
 {
 BackgroundColor = Color.Black;
 }

 #endregion

Building a Camera Application

[408]

Excellent! Now we have the final custom control to build. Add a new ContentView.xaml,
as shown in the following screenshot:

Call the LoadingView.xaml file and implement the following:

<?xml version="1.0" encoding="utf-8" ?>
<ContentView xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Camera.Controls.LoadingView"
 xmlns:controls="clr-namespace:Camera.Controls;assembly=LogIt.XamForms"
 xmlns:converters="clr-
namespace:Camera.Converters;assembly=LogIt.XamForms"
 BackgroundColor="White">

 <Grid x:Name="MainLayout" BackgroundColor="Black">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>

Building a Camera Application

[409]

 </Grid.ColumnDefinitions>
 <StackLayout Orientation="Vertical" HorizontalOptions="Center"
VerticalOptions="Center"
 Grid.Row="0" Grid.Column="0">
 <ActivityIndicator x:Name="ProgressActivity" Color="White"
IsRunning="true" />
 <Label x:Name="LoadingLabel" Text="{Binding LoadingMessage}"
TextColor="White"/>
 </StackLayout>
 </Grid>
</ContentView>

The layout of the FocusView consists of a Grid containing another StackLayout, which is
centered both horizontally and vertically inside the Grid. The StackLayout contains an
ActivityIndicator, which will be running every time this view is shown, and a Label to
display a loading message.

Then, expand the LoadingView.xaml.cs and implement the following:

 public partial class LoadingView : ContentView
 {
 public LoadingView()
 {
 InitializeComponent();
 }
 }

This view will be used on the CameraPage. When the camera is loading or processing an
image, the entire screen will be cast black, displaying the ActivityIndicator and loading
message, to show the user that the camera is processing.

Building a control for the iOS camera
Now that we have built the CameraView object in the Xamarin.Forms PCL, we are going
to build the CustomRenderer for iOS. Jump into the Camera.iOS project and add a new
folder called Renderers, and then add a new file called CameraiOS.cs and implement the
following private properties:

public sealed class CameraIOS : UIView
 {
 #region Private Properties

 private readonly string _tag;

Building a Camera Application

[410]

 private readonly ILogger _log;

 private readonly AVCaptureVideoPreviewLayer _previewLayer;

 private readonly AVCaptureSession _captureSession;

 private UIView _mainView;

 private AVCaptureDeviceInput _input;

 private AVCaptureStillImageOutput _output;

 private AVCaptureConnection _captureConnection;

 private AVCaptureDevice _device;

 private bool _cameraBusy;

 private bool _cameraAvailable;

 private float _cameraButtonContainerWidth;

 private float _imgScale = 1.25f;

 private double _systemVersion;

 private nint _width;

 private nint _height;

 #endregion
}

The _tag and _log properties will be used for all logging that occurs when an exception
occurs. The _previewLayer is used to display the video input from the camera; this will be
set to the entire width and height of the CameraView. The _captureSession is used in
conjunction with an AVCaptireVideoPreviewLayer object for capturing an image from
the video input. The _input object is used in conjunction with an AVCaptureDevice and
CaptureSession; this provides the video stream input, which the CaptureSession will
use to capture an image. We also have an AVCaptureStillImageOutput object called
_output; this is used to capture high-quality still images with accompanying metadata.

Building a Camera Application

[411]

An AVCaptureStillImageOutput object also contains AVCaptureConnections, which
we use for controlling the video stream orientation. Then finally, we have the _device
property, which is the object that represents a physical capture device. In our example, we
are going to use the rear camera. We will see how the remaining properties are used
through the other functions.

Next we have to add three events that will be notified when the camera is busy, when the
camera is available, and when a photo is taken:

 #region Events

 public event EventHandler<bool> Busy;

 public event EventHandler<bool> Available;

 public event EventHandler<byte[]> Photo;

 #endregion

Then we have the constructor:

 #region Constructors

 public CameraIOS()
 {
 _log = IoC.Resolve<ILogger>();
 _tag = $"{GetType()} ";

 // retrieve system version
 var versionParts = UIDevice.CurrentDevice.SystemVersion.Split
('.');
 var versionString = versionParts [0] + "." + versionParts [1];
 _systemVersion = Convert.ToDouble (versionString,
CultureInfo.InvariantCulture);

 _mainView = new UIView () {
TranslatesAutoresizingMaskIntoConstraints = false };
 AutoresizingMask = UIViewAutoresizing.FlexibleMargins;

 _captureSession = new AVCaptureSession();

 _previewLayer = new AVCaptureVideoPreviewLayer(_captureSession)
 {
 VideoGravity = AVLayerVideoGravity.Resize
 };

 _mainView.Layer.AddSublayer (_previewLayer);

Building a Camera Application

[412]

 // retrieve camera device if available
 _cameraAvailable = RetrieveCameraDevice ();

 Add (_mainView);

 // set layout constraints for main view
 AddConstraints
(NSLayoutConstraint.FromVisualFormat("V:|[mainView]|",
NSLayoutFormatOptions.DirectionLeftToRight, null, new
NSDictionary("mainView", _mainView)));
 AddConstraints
(NSLayoutConstraint.FromVisualFormat("H:|[mainView]|",
NSLayoutFormatOptions.AlignAllTop, null, new NSDictionary ("mainView",
_mainView)));
 }

 #endregion

The constructor will start with retrieving the ILogger object from the IoC container and
assigning the _tag to the type name using C# 6. Then we retrieve the system version
information and create a new UIView. Setting the AutoresizingMask to
UIViewAutoresizing.FlexibleMargins ensures that the CameraiOS view adjusts to the
entire bounds of the CustomRenderer. Then we instantiate a new AvCaptureSession and
an AVCaptureVideoPreviewLayer, we pass the AVCaptureSession object into the new
AVCaptureVideoPreviewLayer, and add this layer to the mainView layer. We then
retrieve the physical camera device using the RetrieveCameraDevice function.

Let's add this function in below the constructor:

public bool RetrieveCameraDevice()
 {
 _device =
AVCaptureDevice.DefaultDeviceWithMediaType(AVMediaType.Video);

 if (_device == null)
 {
 _log.WriteLineTime(_tag + "\n" + "RetrieveCameraDevice() No
device detected \n ");
 return false;
 }

 return true;
 }

On this line, add the following:

_device = AVCaptureDevice.DefaultDeviceWithMediaType(AVMediaType.Video);

Building a Camera Application

[413]

This is used to retrieve the physical rear-view camera.

Now let's get back to the constructor. After we retrieved the physical device, we simply add
the mainView to the CameraiOS view and set the layout constraints of the mainView to fill
the bounds of the CameraiOS view.

Next, we add the private functions. Our first function AdjustPreviewLayer is
responsible for setting the bounds of the layer to fill the CameraiOS view when an
orientation change occurs:

 #region Private Methods

 /// <param name="orientation">Orientation.</param>
 private void AdjustPreviewLayer(Orientation orientation)
 {
 CGRect previewLayerFrame = _previewLayer.Frame;

 switch (orientation)
 {
 case Orientation.Portrait:
 previewLayerFrame.Height =
UIScreen.MainScreen.Bounds.Height - _cameraButtonContainerWidth;
 previewLayerFrame.Width =
UIScreen.MainScreen.Bounds.Width;
 break;

 case Orientation.LandscapeLeft:
 case Orientation.LandscapeRight:
 if (_systemVersion >= 8)
 {
 previewLayerFrame.Width =
UIScreen.MainScreen.Bounds.Width - _cameraButtonContainerWidth;
 previewLayerFrame.Height =
UIScreen.MainScreen.Bounds.Height;
 }
 else
 {
 previewLayerFrame.Width =
UIScreen.MainScreen.Bounds.Height - _cameraButtonContainerWidth;
 previewLayerFrame.Height =
UIScreen.MainScreen.Bounds.Width;
 }
 break;
 }

 try
 {

Building a Camera Application

[414]

 _previewLayer.Frame = previewLayerFrame;
 }
 catch (Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "AdjustPreviewLayer() Failed to adjust frame \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }

We also need a function for setting the starting orientation:

 private void SetStartOrientation()
 {
 Orientation sOrientation = Orientation.None;

 switch (UIApplication.SharedApplication.StatusBarOrientation)
 {
 case UIInterfaceOrientation.Portrait:
 case UIInterfaceOrientation.PortraitUpsideDown:
 sOrientation = Orientation.Portrait;
 break;
 case UIInterfaceOrientation.LandscapeLeft:
 sOrientation = Orientation.LandscapeLeft;
 break;
 case UIInterfaceOrientation.LandscapeRight:
 sOrientation = Orientation.LandscapeRight;
 break;
 }

 HandleOrientationChange(sOrientation);
 }

Then we have the SetBusy function, which will invoke the Busy EventHandler and set the
private variable to keep the busy status locally:

 private void SetBusy(bool busy)
 {
 _cameraBusy = busy;

 // set camera busy
 Busy?.Invoke(this, _cameraBusy);
 }

Building a Camera Application

[415]

Next, we have the CaptureImageWithMetadata function. This is called every time the
user clicks to take a picture (this function will be called from the public method
TakePhoto). When we call the CaptureImageWithMetadata function, we must pass in an
AVCaptureStillImageOutput object and an AVCaptureConnection. From the
AVCaptureStillImageOutput object, we call the CaptureStillImageTaskAsync
function on the AVCaptureConnection. The connection we pass in is linked to the
_previewLayer connection. After this call is successful, we retrieve the raw image as a
JPEG and retrieve the raw bytes to invoke the Photo EventHandler. We also use the
RotateImage function for rotating the original UIImage image to the correct orientation:

 private async Task
CaptureImageWithMetadata(AVCaptureStillImageOutput captureStillImageOutput,
AVCaptureConnection connection)
 {
 var sampleBuffer = await
captureStillImageOutput.CaptureStillImageTaskAsync(connection);
 var imageData =
AVCaptureStillImageOutput.JpegStillToNSData(sampleBuffer);
 var image = UIImage.LoadFromData(imageData);

 RotateImage(ref image);

 try
 {
 byte[] imgData = image.AsJPEG().ToArray();

 if (Photo != null)
 {
 Photo(this, imgData);
 }
 }
 catch (Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "CaptureImageWithMetadata() Failed to take photo \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }

 #endregion

Building a Camera Application

[416]

Let's add the RotateImage function:

private void RotateImage(ref UIImage image)
 {
 CGImage imgRef = image.CGImage;
 CGAffineTransform transform = CGAffineTransform.MakeIdentity();

 var imgHeight = imgRef.Height * _imgScale;
 var imgWidth = imgRef.Width * _imgScale;

 CGRect bounds = new CGRect(0, 0, imgWidth, imgHeight);
 CGSize imageSize = new CGSize(imgWidth, imgHeight);
 UIImageOrientation orient = image.Orientation;

 switch (orient)
 {
 case UIImageOrientation.Up:
 transform = CGAffineTransform.MakeIdentity();
 break;
 case UIImageOrientation.Down:
 transform = CGAffineTransform.MakeTranslation
(imageSize.Width, imageSize.Height);
 transform = CGAffineTransform.Rotate(transform,
(float)Math.PI);
 break;
 case UIImageOrientation.Right:
 bounds.Size = new CGSize(bounds.Size.Height,
bounds.Size.Width);
 transform =
CGAffineTransform.MakeTranslation(imageSize.Height, 0);
 transform = CGAffineTransform.Rotate(transform,
(float)Math.PI / 2.0f);
 break;
 default:
 throw new Exception("Invalid image orientation");
 }

 UIGraphics.BeginImageContext(bounds.Size);
 CGContext context = UIGraphics.GetCurrentContext();

 if (orient == UIImageOrientation.Right)
 {
 context.ScaleCTM(-1, 1);
 context.TranslateCTM(-imgHeight, 0);
 }
 else
 {

Building a Camera Application

[417]

 context.ScaleCTM(1, -1);
 context.TranslateCTM(0, -imgHeight);
 }

 context.ConcatCTM(transform);

 context.DrawImage(new CGRect(0, 0, imgWidth, imgHeight),
imgRef);
 image = UIGraphics.GetImageFromCurrentImageContext();
 UIGraphics.EndImageContext();
 }

In the preceding function, we use the UIGraphics context for rebuilding and rotating the
UIImage image. We start with a new CGImage, gather the orientation from the original
UIImage, and transform this image, then redraw using the
UIGraphics.GetImageFromCurrentImageContext() method.

Now we add the public methods. Start with overriding the Draw function so that we can
assign the most recent frame on the _previewLayer. The Draw function is called every
time the screen rotates. We want to ensure the _previewLayer frame fills the bounds of the
screen:

 public override void Draw(CGRect rect)
 {
 _previewLayer.Frame = rect;

 base.Draw(rect);
 }

Next, we have the TakePhoto function. This will retrieve the current
AVCaptureConnection from the AVCaptureStillImageOutput, set the connection
orientation to the _previewLayer orientation, and pass the connection and output to the
CaptureImageWithMetadata function:

 public async Task TakePhoto()
 {
 if (!_cameraBusy)
 {
 SetBusy(true);

 try
 {
 // set output orientation
 _output.Connections [0].VideoOrientation =
_previewLayer.Orientation;

Building a Camera Application

[418]

 var connection = _output.Connections[0];

 await CaptureImageWithMetadata(_output, connection);

 SetBusy(false);
 }
 catch (Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "TakePhoto() Error with camera output capture \n "
+
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 IoC.Resolve<ILogger>().WriteLineTime ("CameraIOS:
Error with camera output capture - " + e);
 }
 }
 }

Don't forget to look at the exception handling occurring for all functions.
Sometimes, bizarre errors can occur (null connections, device retrieval
fails) when dealing with camera hardware, so we must handle all
exceptions that may occur.

Next, we have the SwitchFlash function, which is used to turn the flash on/off using the
AVCaptureDevice configurations:

 public void SwitchFlash(bool flashOn)
 {
 NSError err;

 if (_cameraAvailable && _device != null)
 {
 try
 {
 _device.LockForConfiguration(out err);
 _device.TorchMode = flashOn ? AVCaptureTorchMode.On :
AVCaptureTorchMode.Off;
 _device.UnlockForConfiguration();
 }
 catch (Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "SwitchFlash() Failed to switch flash on/off \n " +
 "ErrorMessage: \n" +

Building a Camera Application

[419]

 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }
 }

Then we have the SetBounds function. This is called from the
OnElementPropertyChanged method of the CustomRenderer, on any height and with
property changes:

 public void SetBounds(nint width, nint height)
 {
 _height = height;
 _width = width;
 }

The ChangeFocusPoint function is used for focusing the camera to the touch point
received from the user. First, we must lock the AVCaptureDevice configurations before
making any changes.

When we make changes to the AVCaptureDevice configurations, we
must first call LockForConfiguration to notify the device that we are
making changes and then, once we are finished, call
UnlockForConfiguration for the changes to take effect.

Then we check to see if the FocusPointOfInterestSupported is true and set the
FocusPointOfInterest to a new CGRect point. We also do the same with exposure by
first checking the ExposurePointOfInterestSupported is true and setting the
ExposurePointOfInterest to a new CGRect point:

 public void ChangeFocusPoint(Point fPoint)
 {
 NSError err;

 if (_cameraAvailable && _device != null)
 {
 try
 {
 _device.LockForConfiguration(out err);

 var focus_x = fPoint.X / Bounds.Width;
 var focus_y = fPoint.Y / Bounds.Height;

 // set focus point
 if (_device.FocusPointOfInterestSupported)

Building a Camera Application

[420]

 _device.FocusPointOfInterest =
 new CGPoint(focus_x, focus_y);
 if (_device.ExposurePointOfInterestSupported)
 _device.ExposurePointOfInterest =
 new CGPoint(focus_x, focus_y);

 _device.UnlockForConfiguration();
 }
 catch (Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "SwitchFlash() Failed to adjust focus \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }
 }

Our next function is InitializeCamera, which we use to set up the AVCaptureDevice.
We set the focus mode to ContinuousAuto and create a new AVCaptureDeviceInput
using the instance of the AVCaptureDevice. We then create a new
AvCaptureStillImageOutput object. Both the AVCaptureDeviceInput and
AvCaptureStillImageOutput objects are assigned to the input/output of the
AVCaptureSession, respectively. After this, the new NSDictionary is created with a key
to set the video CODEC to JPEG (all still images taken will be in this format). Finally, the
Connection object from the _previewLayer is retrieved, the starting orientation is set
accordingly, and we call the StartRunning method on the AVCaptureSession:

 public void InitializeCamera()
 {
 try
 {
 NSError error;
 NSError err;

 _device.LockForConfiguration(out err);
 _device.FocusMode = AVCaptureFocusMode.ContinuousAutoFocus;
 _device.UnlockForConfiguration();

 _input = new AVCaptureDeviceInput(_device, out error);
 _captureSession.AddInput(_input);

 _output = new AVCaptureStillImageOutput();

Building a Camera Application

[421]

 var dict = new NSMutableDictionary();
 dict[AVVideo.CodecKey] = new NSNumber((int)
AVVideoCodec.JPEG);
 _captureSession.AddOutput (_output);

 InvokeOnMainThread(delegate
 {
 // capture connection used for rotating camera
 _captureConnection = _previewLayer.Connection;
 SetStartOrientation();
 // set orientation before loading camera
 _captureSession.StartRunning ();
 });
 }
 catch (Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "InitializeCamera() Camera failed to initialise \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }

 Available?.Invoke(this, _cameraAvailable);

 _log.WriteLineTime(_tag + "\n" + "RetrieveCameraDevice() Camera
initalised \n ");
 }

Our next function is SetWidths, which will assign the local
_cameraButtonConatinerWidth property accordingly. This local property is used as an
extra reduction on the camera stream width to ensure that the camera stream does not fall
behind the black button panel on the CameraPage:

 public void SetWidths(float cameraButtonContainerWidth)
 {
 _cameraButtonContainerWidth = cameraButtonContainerWidth;
 }

Next, the last function is HandleOrientationChange, which will be called from the
CustomRenderer every time an orientation occurs because we must update the
VideoOrientation property of the AVCaptureConnection object.

Building a Camera Application

[422]

Even though Xamarin.Forms automatically handles the orientation
changes of the views for you, with this CustomRenderer view, the video
stream from the AVCaptureVideoPreviewLayer does not rotate unless
we change the underlying CALayers.

public void HandleOrientationChange(Orientation orientation)
 {
 if (_captureConnection != null)
 {
 switch (orientation)
 {
 case Orientation.Portrait: _captureConnection.VideoOrientation =
AVCaptureVideoOrientation.Portrait;
 break;
 case Orientation.LandscapeLeft: _captureConnection.VideoOrientation =
AVCaptureVideoOrientation.LandscapeLeft;
 break;
 case Orientation.LandscapeRight: _captureConnection.VideoOrientation =
AVCaptureVideoOrientation.LandscapeRight;
 break;
 }
 }
 AdjustPreviewLayer(orientation);
 }

Finally, we have the StopAndDispose method. This will be called from the Dipose method
of the CustomRenderer. It is responsible for freeing up all the resources involved with the
camera stream, and switching off the flash if it is on:

public void StopAndDispose()
 {
 if (_device != null)
 {
 // if flash is on turn off if (_device.TorchMode == AVCaptureTorchMode.On)
 {
 SwitchFlash(false);
 }
 }
 _captureSession.StopRunning();
 // dispose output elements _input.Dispose();
 _output.Dispose();
 }
 #endregion
 }

Well done! Now we have built the native camera control, we are going to use this as the
control for our CustomRenderer.

Building a Camera Application

[423]

Building the iOS CameraRenderer
Now let's create the actual CustomRenderer that will use this custom iOS object. Add a
new file into Renderers | CameraView, call it CameraViewRenderer.cs, and implement
the following:

public class CameraViewRenderer : ViewRenderer<CameraView, CameraIOS>
 {
 #region Private Properties

 private CameraIOS bodyshopCameraIOS;

 #endregion

 #region Protected Methods

 protected override void
OnElementChanged(ElementChangedEventArgs<CameraView> e)
 {
 base.OnElementChanged(e);

 if (Control == null)
 {
 bodyshopCameraIOS = new CameraIOS();

 bodyshopCameraIOS.Busy += Element.NotifyBusy;
 bodyshopCameraIOS.Available += Element.NotifyAvailability;
 bodyshopCameraIOS.Photo += Element.NotifyPhoto;

 SetNativeControl(bodyshopCameraIOS);
 }

 if (e.OldElement != null)
 {
 e.NewElement.Flash -= HandleFlash;
 e.NewElement.OpenCamera -= HandleCameraInitialisation;
 e.NewElement.Focus -= HandleFocus;
 e.NewElement.Shutter -= HandleShutter;
 e.NewElement.Widths -= HandleWidths;

 bodyshopCameraIOS.Busy -= Element.NotifyBusy;
 bodyshopCameraIOS.Available -= Element.NotifyAvailability;
 bodyshopCameraIOS.Photo -= Element.NotifyPhoto;
 }

 if (e.NewElement != null)
 {

Building a Camera Application

[424]

 e.NewElement.Flash += HandleFlash;
 e.NewElement.OpenCamera += HandleCameraInitialisation;
 e.NewElement.Focus += HandleFocus;
 e.NewElement.Shutter += HandleShutter;
 e.NewElement.Widths += HandleWidths;
 }
 }

 #endregion

}

The first part of our CustomRenderer shows the OnElementChanged override. In all
custom renderers, the OnElementChanged function may be called multiple times, so care
must be taken to avoid any memory leaks that can lead to performance impact. Following is
the approach that should be taken:

protected override void OnElementChanged
(ElementChangedEventArgs<NativeListView> e)
{
base.OnElementChanged (e);

if (Control == null) {
// Instantiate the native control
}

if (e.OldElement != null) {
// Unsubscribe from event handlers and cleanup any resources
}

if (e.NewElement != null) {
 // Configure the control and subscribe to event handlers
 }
}

Now back to the OnElementChanged implementation, we instantiate a new CameraiOS
and register the EventHandlers to the Xamarin.FormsCameraView functions. This will fire
another event that will be handled on our CameraPage. We then call SetNativeControl
to assign the CameraiOS object to the CustomRenderer control, so when CameraView
object is displayed on a ContentPage, a CameraiOS view will appear on top. We then
register events and unregister events in both the if blocks to correctly dispose and assign the
CameraView EventHandlers.

Building a Camera Application

[425]

Let's add the next override for OnElementPropertyChanged as follows:

 protected override void OnElementPropertyChanged(object sender,
System.ComponentModel.PropertyChangedEventArgs e)
 {
 base.OnElementPropertyChanged(sender, e);

 if (Element != null && bodyshopCameraIOS != null)
 {
 if (e.PropertyName ==
VisualElement.HeightProperty.PropertyName ||
 e.PropertyName ==
VisualElement.WidthProperty.PropertyName)
 {
 bodyshopCameraIOS.SetBounds((nint)Element.Width,
(nint)Element.Height);
 }
 }
 }

This function will be called for every property change on the CameraView. We will call the
SetBounds method on the CameraiOS object so that our AVCapturePreviewVideoLayer
always retains the latest height and width update.

Now we must add the EventHandler functions as follows:

 #region Private Methods

 private void HandleWidths (object sender, float e)
 {
 bodyshopCameraIOS.SetWidths (e);
 }

 private async void HandleShutter (object sender, EventArgs e)
 {
 await bodyshopCameraIOS.TakePhoto ();
 }

 private void HandleOrientationChange (object sender, Orientation e)
 {
 bodyshopCameraIOS.HandleOrientationChange (e);
 }

 private void HandleFocus (object sender, Point e)
 {
 bodyshopCameraIOS.ChangeFocusPoint (e);
 }

Building a Camera Application

[426]

 private void HandleCameraInitialisation (object sender, bool args)
 {
 bodyshopCameraIOS.InitializeCamera();

 Element.OrientationChange += HandleOrientationChange;
 }

 private void HandleFlash (object sender, bool args)
 {
 bodyshopCameraIOS.SwitchFlash (args);
 }

 private void HandleFocusChange (object sender, Point args)
 {
 bodyshopCameraIOS.ChangeFocusPoint (args);
 }

 #endregion
 }

All these functions will respond to events fired from the CameraView and call their respect
native functions to handle control on the native camera.

Now that we have implemented control over the iOS camera, let's do the same for Android.

Integrating the Android Camera2 framework
The new Camera2 framework was introduced in API 21 (5.0 Lollipop) and provides a wide
featured framework for controlling camera devices connected to any Android device.

Start by setting up the folder structure Renderers | CameraView inside the Camera.Droid
project. Inside the CameraView folder, add a file called CameraCaptureListener.cs and
implement the following:

public class CameraCaptureListener : CameraCaptureSession.CaptureCallback
 {
 public event EventHandler PhotoComplete;

 public override void OnCaptureCompleted(CameraCaptureSession
session, CaptureRequest request,
 TotalCaptureResult result)
 {
 PhotoComplete?.Invoke(this, EventArgs.Empty);
 }
 }

Building a Camera Application

[427]

All we need to do is fire an event every time the OnCaptureCompleted function is called.
This function is called after all the image capture processing is completed.

Next, we have to create a callback for receiving updates about the state of a camera capture
session. We will listen for both the OnConfigured and OnConfigureFailed and fire two
different events so that we can handle any errors that may occur with the configuration of
the capture session:

public class CameraCaptureStateListener :
CameraCaptureSession.StateCallback
 {
 public Action<CameraCaptureSession> OnConfigureFailedAction;

 public Action<CameraCaptureSession> OnConfiguredAction;

 public override void OnConfigureFailed(CameraCaptureSession
session)
 {
 if (OnConfigureFailedAction != null)
 {
 OnConfigureFailedAction(session);
 }
 }

 public override void OnConfigured(CameraCaptureSession session)
 {
 if (OnConfiguredAction != null)
 {
 OnConfiguredAction(session);
 }
 }
 }

Our next class is another callback for receiving updates about the state of the camera device.
Here we will be firing events for camera availability so that we can pass down the
availability state of the native camera to our CameraView view in the Xamarin.Forms
project:

public class CameraStateListener : CameraDevice.StateCallback
 {
 public CameraDroid Camera;

 public override void OnOpened(CameraDevice camera)
 {
 if (Camera != null)
 {
 Camera.cameraDevice = camera;

Building a Camera Application

[428]

 Camera.StartPreview();
 Camera.OpeningCamera = false;

 Camera?.NotifyAvailable(true);
 }
 }

 public override void OnDisconnected(CameraDevice camera)
 {
 if (Camera != null)
 {
 camera.Close();
 Camera.cameraDevice = null;
 Camera.OpeningCamera = false;

 Camera?.NotifyAvailable(false);
 }
 }

 public override void OnError(CameraDevice camera, CameraError
error)
 {
 camera.Close();

 if (Camera != null)
 {
 Camera.cameraDevice = null;
 Camera.OpeningCamera = false;

 Camera?.NotifyAvailable(false);
 }
 }
 }

All the new Camera2 callback objects provide excellent control with error
handling.

The CameraDroid class will be rendered on top of the CustomRenderer, which is
equivalent to the CameraiOS object. We want to pass an instance of the CameraDroid class
to the CameraStateListener, when the state of the camera changes, we update the
availability status on the CameraDroid instance.

Building a Camera Application

[429]

Next, we must add another callback instance for handling image availability. This is where
the raw image bytes will come from. Add a new file called ImageAvailableListener.cs
and implement the following:

public class ImageAvailableListener : Java.Lang.Object,
ImageReader.IOnImageAvailableListener
 {
 public event EventHandler<byte[]> Photo;

 public void OnImageAvailable(ImageReader reader)
 {
 Image image = null;

 try
 {
 image = reader.AcquireLatestImage();
 ByteBuffer buffer = image.GetPlanes()[0].Buffer;
 byte[] imageData = new byte[buffer.Capacity()];
 buffer.Get(imageData);

 Photo?.Invoke(this, imageData);
 }
 catch (Exception ex)
 {
 }
 finally
 {
 if (image != null)
 {
 image.Close();
 }
 }
 }
 }

When the OnImageAvailable function is called, this means we have the raw image
available. We call AcquireLatestImage on the ImageReader object to acquire the last
image taken, pull the raw bytes into a ByteBuffer, and convert the ByteBuffer into an
array of bytes.

A ByteBuffer comes from the Java.Lang framework, which we use
when we want to implement fast low-level I/O.

Building a Camera Application

[430]

Now it's time to implement the CameraDroid class. Add in a new file called
CameraDroid.cs and implement the following:

public class CameraDroid : FrameLayout, TextureView.ISurfaceTextureListener
 {
 #region Static Properties

 private static readonly SparseIntArray ORIENTATIONS = new
SparseIntArray();

 #endregion

 #region Public Events

 public event EventHandler<bool> Busy;

 public event EventHandler<bool> Available;

 public event EventHandler<byte[]> Photo;

 #endregion

}

The CameraDroid class inherits FrameLayout and
TextureView.ISurfaceTextureListener. The static ORIENTATIONS property is a
SpareIntArray, which works similar to a HashMap, but it can only map integers to
integers. This will be used when a picture is taken. We must rotate images based upon
screen orientation for the picture orientation to appear correctly.

We also have three event handlers like our CameraiOS these, are used to track whether the
camera has taken a photo, is busy or is available.

Next, we have the following private properties:

#region Private Properties

 private readonly string _tag;

 private readonly ILogger _log;

 private CameraStateListener mStateListener;

 private CaptureRequest.Builder _previewBuilder;

 private CameraCaptureSession _previewSession;

Building a Camera Application

[431]

 private SurfaceTexture _viewSurface;

 private TextureView _cameraTexture;

 private MediaActionSound mediaSound;

 private Android.Util.Size _previewSize;

 private Context _context;

 private CameraManager _manager;

 private bool _mediaSoundLoaded;

 private bool _openingCamera;

 #endregion

The _tag and _log properties are used for logging like our other classes. We are also going
to include an instance of all our callbacks.

Then we have the public properties. Every time the OpeningCamera property is assigned,
it will fire a Busy event. Now we can track the busy state of the camera inside the
CameraPage containing the CameraView. We also have an instance of the CameraDevice,
which represents the actual device:

 #region Public Properties

 public bool OpeningCamera
 {
 get
 {
 return _openingCamera;
 }
 set
 {
 if (_openingCamera != value)
 {
 _openingCamera = value;
 Busy?.Invoke(this, value);
 }
 }
 }

 public CameraDevice cameraDevice;

 #endregion

Building a Camera Application

[432]

Next, we have the constructor. We must first pass in the context, since we will be using this
locally through the class. Then the LoadShutterSound function is called, which will return
a Boolean once the sound has been loaded. We then assign _log from the IoC container and
set _tag using the C# 6 method GetType. Using the LayoutInflator, we create a new
CameraLayout and set the local _cameraTexture object. The SurfaceTextureListener
property of the _cameraTexture must be set to the CameraDroid instance itself. This is
why the CameraDroid class implements the TextureView.ISurfaceTextureListener
framework. We then instantiate a new CameraStateListener and set the Camera
property to the CameraDroid instance using the this keyword, and, add the orientation to
rotation mappings:

 #region Constructors

 public CameraDroid (Context context) : base (context)
 {
 _context = context;
 _mediaSoundLoaded = LoadShutterSound ();

 _log = IoC.Resolve<ILogger>();
 _tag = $"{GetType()} ";

 var inflater = LayoutInflater.FromContext (context);

 if (inflater != null)
 {
 var view = inflater.Inflate(Resource.Layout.CameraLayout,
this);

 _cameraTexture =
view.FindViewById<TextureView>(Resource.Id.CameraTexture);
 _cameraTexture.SurfaceTextureListener = this;

 mStateListener = new CameraStateListener() { Camera = this
};

 ORIENTATIONS.Append((int)SurfaceOrientation.Rotation0, 90);
 ORIENTATIONS.Append((int)SurfaceOrientation.Rotation90, 0);
 ORIENTATIONS.Append((int)SurfaceOrientation.Rotation180,
270);
 ORIENTATIONS.Append((int)SurfaceOrientation.Rotation270,
180);
 }
 }

 #endregion

Building a Camera Application

[433]

Now let's move on to the private methods. We are going to start with UpdatePreview.
This is responsible for starting the video stream through the surface texture. If we have both
a session and camera object in play, we use the CameraRequest.Builder instance to set
the capture request mode to auto. The Handler object that is created is required to run the
CameraPreview on the main UI thread:

 #region Private Methods

 private void UpdatePreview()
 {
 if (cameraDevice != null && _previewSession != null)
 {
 try
 {
 // The camera preview can be run in a background
thread. This is a Handler for the camere preview
 _previewBuilder.Set(CaptureRequest.ControlMode, new
Java.Lang.Integer((int)ControlMode.Auto));
 HandlerThread thread = new
HandlerThread("CameraPreview");
 thread.Start();
 Handler backgroundHandler = new Handler(thread.Looper);

 // Finally, we start displaying the camera preview
_previewSession.SetRepeatingRequest(_previewBuilder.Build(), null,
backgroundHandler);
 }
 catch (CameraAccessException error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "UpdatePreview() Camera access exception. \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 catch (IllegalStateException error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "UpdatePreview() Illegal exception. \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }
 }

Building a Camera Application

[434]

Our next function is responsible for loading the click sound. The LoadShutterSound
method is used above in the constructor. When it returns true, this means we have
successfully loaded the MediaActionSoundType.ShutterClick, so every time a user
takes a photo, the shutter sound will play:

 private bool LoadShutterSound()
 {
 try
 {
 mediaSound = new MediaActionSound ();
 mediaSound.LoadAsync (MediaActionSoundType.ShutterClick);

 return true;
 }
 catch (Java.Lang.Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "LoadShutterSound() Error loading shutter sound \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }

 return false;
 }

 #endregion

Now we move on to the public methods. Our first function OpenCamera will be called
when the CameraPage appears:

 #region Public Methods

 public void OpenCamera()
 {
 if (_context== null || OpeningCamera)
 {
 return;
 }

 OpeningCamera = true;

 _manager =
(CameraManager)_context.GetSystemService(Context.CameraService);

 try

Building a Camera Application

[435]

 {
 string cameraId = _manager.GetCameraIdList()[0];

 // To get a list of available sizes of camera preview, we
retrieve an instance of
 // StreamConfigurationMap from CameraCharacteristics
 CameraCharacteristics characteristics =
_manager.GetCameraCharacteristics(cameraId);
 StreamConfigurationMap map =
(StreamConfigurationMap)characteristics.Get(CameraCharacteristics.ScalerStr
eamConfigurationMap);
 _previewSize =
map.GetOutputSizes(Java.Lang.Class.FromType(typeof(SurfaceTexture)))[0];
 Android.Content.Res.Orientation orientation =
Resources.Configuration.Orientation;
 if (orientation ==
Android.Content.Res.Orientation.Landscape)
 {
 _cameraTexture.SetAspectRatio(_previewSize.Width,
_previewSize.Height);
 }
 else
 {
 _cameraTexture.SetAspectRatio(_previewSize.Height,
_previewSize.Width);
 }

 // We are opening the camera with a listener. When it is
ready, OnOpened of mStateListener is called.
 _manager.OpenCamera(cameraId, mStateListener, null);
 }
 catch (Java.Lang.Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "OpenCamera() Failed to open camera \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 Available?.Invoke(this, false);
 }
 }

Before opening the camera, we first check if the _context is null and that we are not
already opening the camera. We then flag OpeningCamera to true and retrieve the camera
device from the context using the GetSystemService method.

Building a Camera Application

[436]

The GetSystemService method can be used to retrieve all hardware
services.

Now that we have our CameraManager object, we call the GetCameraIdList method and
retrieve the first camera ID from the list. We use this camera ID to retrieve the camera's
characteristics that will be used for retrieving camera output sizes. We first use the camera
output size to set the aspect ratio of the _cameraTexture and then we call OpenCamera,
where we pass in the cameraId and CameraStateListener.

Now we have to add a function for taking photos. We start by checking if the _context
and cameraDevice is not null. We then invoke a Busy event to communicate to our
CameraView and check if the shutter click sound has been loaded, then play if it has loaded
successfully.. Then we use the camera's characteristics to retrieve JPEG output sizes.

On every Android device, a camera will have supported output sizes for
video streams and picture sizes. When we assign height, width, and ratio
properties of camera display, they must be mapped to supported sizes.

We then set the first output size to the function's width and height properties. If the
characteristics fail to show any JPEG output sizes, we start with the default width and
height (640, 480).

Next, we use an ImageReader to retrieve and image from the _cameraDevice. We start
with creating a new instance of an ImageReader and pass in our required width and height
properties. An ImageRenderer also requires a surface, which is mapped to the output of a
camera. When we take a picture, the ImageReader knows it will be reading from the
output of the camera. We create a new CaptureRequest.Builder, which is created from
the CreateCaptureRequest method of the _cameraDevice. Then we set the surface
target to the surface we created earlier. Now the builder knows we are mapped to the
output of the camera. We also set the capture request to auto, so most of the setup is taken
care of. We then get the current orientation of the window from the WindowManager
property (this is another service pulled from the _context using the GetSystemService
method), and using the current orientation, set the rotation of the image accordingly.

Why do we have to change the orientation of the image? If we take an image on the current
orientation, why is the image in a different orientation?

Building a Camera Application

[437]

This is something we cannot control; the current orientation of the camera display does not
map exactly how the image is interpreted when we take a picture, so we have to apply
some minor rotation to bring the image into the same orientation as the camera surface.

This is a lot of work for the camera to do to prepare for capturing an image,

It takes a lot of work to prepare a capture session

how do we know when an image is actually taken?

All the work we have done so far is all for preparing the camera to take an image. We use
our ImageAvailableListener for letting us know when the image is ready. Since we set
up an event to hand us the image bytes, we can assign a delegate that will fire the
CameraDroid so that the image bytes are passed back to the CameraView object.

Notice the use of the Handler?

The handler is used to handle the resulting JPEG in a background thread.

We then create an instance of our CameraCaptureListener to let us know capture
operations have completed and assign a delegate function to restart the camera stream
when the PhotoComplete event has been invoked. A new
CameraCaptureStateListener object is passed into the CreateCaptureSession
method to start the capture session and we assign a delegate to the OnConfiguredAction
that will store the current CameraCaptureSession. We call the Capture method on the
session and then call the Build method on the captureBuilder we created earlier. This
occurs every time the Capture method is called.

The captureListener object and the handler are passed into the Capture method so that
all capture processing is done on a background thread.

This means that when a picture is taken, the processing time in between
preparing a photo will not lock the UI thread.

 public void TakePhoto ()
 {
 if (_context != null && _cameraDevice != null)
 {
 try
 {
 Busy?.Invoke(this, true);

 if (_mediaSoundLoaded)

Building a Camera Application

[438]

 {
_mediaSound.Play(MediaActionSoundType.ShutterClick);
 }

 // Pick the best JPEG size that can be captures with
this CameraDevice
 var characteristics =
_manager.GetCameraCharacteristics(_cameraDevice.Id);
 Android.Util.Size[] jpegSizes = null;
 if (characteristics != null)
 {
 jpegSizes =
((StreamConfigurationMap)characteristics.Get(CameraCharacteristics.ScalerSt
reamConfigurationMap)).GetOutputSizes((int)ImageFormatType.Jpeg);
 }
 int width = 640;
 int height = 480;

 if (jpegSizes != null && jpegSizes.Length > 0)
 {
 width = jpegSizes[0].Width;
 height = jpegSizes[0].Height;
 }

 // We use an ImageReader to get a JPEG from
CameraDevice
 // Here, we create a new ImageReader and prepare its
Surface as an output from the camera
 var reader = ImageReader.NewInstance(width, height,
ImageFormatType.Jpeg, 1);
 var outputSurfaces = new List<Surface>(2);
 outputSurfaces.Add(reader.Surface);
 outputSurfaces.Add(new Surface(_viewSurface));

 CaptureRequest.Builder captureBuilder =
_cameraDevice.CreateCaptureRequest(CameraTemplate.StillCapture);
 captureBuilder.AddTarget(reader.Surface);
 captureBuilder.Set(CaptureRequest.ControlMode, new
Integer((int)ControlMode.Auto));

 // Orientation
 var windowManager =
_context.GetSystemService(Context.WindowService).JavaCast<IWindowManager>()
;
 SurfaceOrientation rotation =
windowManager.DefaultDisplay.Rotation;

 captureBuilder.Set(CaptureRequest.JpegOrientation, new

Building a Camera Application

[439]

Integer(ORIENTATIONS.Get((int)rotation)));

 // This listener is called when an image is ready in
ImageReader
 ImageAvailableListener readerListener = new
ImageAvailableListener();

 readerListener.Photo += (sender, e) =>
 {
 Photo?.Invoke(this, e);
 };

 // We create a Handler since we want to handle the
resulting JPEG in a background thread
 HandlerThread thread = new
HandlerThread("CameraPicture");
 thread.Start();
 Handler backgroundHandler = new Handler(thread.Looper);
 reader.SetOnImageAvailableListener(readerListener,
backgroundHandler);

 var captureListener = new CameraCaptureListener();

 captureListener.PhotoComplete += (sender, e) =>
 {
 Busy?.Invoke(this, false);
 StartPreview();
 };

 _cameraDevice.CreateCaptureSession(outputSurfaces, new
CameraCaptureStateListener()
 {
 OnConfiguredAction = (CameraCaptureSession session)
=>
 {
 try
 {
 _previewSession = session;
 session.Capture(captureBuilder.Build(),
captureListener, backgroundHandler);
 }
 catch (CameraAccessException ex)
 {
 Log.WriteLine(LogPriority.Info, "Capture
Session error: ", ex.ToString());
 }
 }
 }, backgroundHandler);

Building a Camera Application

[440]

 }
 catch (CameraAccessException error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "TakePhoto() Failed to take photo \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 catch (Java.Lang.Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "TakePhoto() Failed to take photo \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }
 }

It takes a lot of work to prepare a capture session on an Android camera using the Camera2
framework, but the advantage is we have is the ability to control every single step
separately, and handle any exceptions that occur at any point during the capture operation.

Our next function will be responsible for changing the focus point of the camera, when a
touch on the CameraView occurs, this function will be called to change the focus point of
the native camera:

 public void ChangeFocusPoint(Xamarin.Forms.Point e)
 {
 string cameraId = _manager.GetCameraIdList()[0];

 // To get a list of available sizes of camera preview, we
retrieve an instance of
 // StreamConfigurationMap from CameraCharacteristics
 CameraCharacteristics characteristics =
_manager.GetCameraCharacteristics(cameraId);

 var rect =
characteristics.Get(CameraCharacteristics.SensorInfoActiveArraySize) as
Rect;
 var size =
characteristics.Get(CameraCharacteristics.SensorInfoPixelArraySize) as
Size;

Building a Camera Application

[441]

 int areaSize = 200;
 int right = rect.Right;
 int bottom = rect.Bottom;
 int viewWidth = _cameraTexture.Width;
 int viewHeight = _cameraTexture.Height;
 int ll, rr;

 Rect newRect;
 int centerX = (int)e.X;
 int centerY = (int)e.Y;

 ll = ((centerX * right) - areaSize) / viewWidth;
 rr = ((centerY * bottom) - areaSize) / viewHeight;

 int focusLeft = Clamp(ll, 0, right);
 int focusBottom = Clamp(rr, 0, bottom);

 newRect = new Rect(focusLeft, focusBottom, focusLeft +
areaSize, focusBottom + areaSize);
 MeteringRectangle meteringRectangle = new
MeteringRectangle(newRect, 500);
 MeteringRectangle[] meteringRectangleArr = { meteringRectangle
};
 _previewBuilder.Set(CaptureRequest.ControlAfTrigger,
(int)ControlAFTrigger.Cancel);
 _previewBuilder.Set(CaptureRequest.ControlAeRegions,
meteringRectangleArr);
 _previewBuilder.Set(CaptureRequest.ControlAfTrigger,
(int)ControlAFTrigger.Start);

 UpdatePreview();
 }

The ChangeFocusPoint function starts with retrieving the cameraId from the
CameraManager. We then call the Get method of the camera characteristics to retrieve a
rectangle and size of the active region of the camera sensor (that is, the region that actually
receives light from the scene). We then retrieve the right and bottom bounds of this region
and get the width and height of the _cameraTexture. When a user touches to focus, the
point coordinate (x, y) passed into this function is used as the center of the focus region. As
we have the middle point, we calculate the left and bottom points and we also use the
Clamp function to make sure these points are within the width and height bounds of the
_cameraTexture. We then create a new Rect representing the new active region for the
camera sensor. Then, to perform the actual focus on the camera device, we must first disable
the autofocus by calling the line:

Building a Camera Application

[442]

_previewBuilder.Set(CaptureRequest.ControlAfTrigger,
(int)ControlAFTrigger.Cancel);

Then assign the camera sensor's active region by calling:

_previewBuilder.Set(CaptureRequest.ControlAeRegions, meteringRectangleArr);

And finally, reset the autofocus by calling:

_previewBuilder.Set(CaptureRequest.ControlAfTrigger,
(int)ControlAFTrigger.Start);

The operation works by disabling the autofocus, setting the active region, and then recalling
autofocus. When the autofocus is started again, we have a new focus point in which the
camera will adjust its focus point too.

We also call the UpdatePreview function for resetting the camera control to auto.

Next, we have the Clamp function, which is responsible for forcing the value passed in to be
between a range. We use the following function:

 private int Clamp(int value, int min, int max)
 {
 return (value < min) ? min : (value > max) ? max : value;
 }

Now for the StartPreview function, this will be responsible for starting the camera stream
through the TextureView. We won't call this unit the camera has been opened previously:

 public void StartPreview()
 {
 if (cameraDevice != null && _cameraTexture.IsAvailable &&
_previewSize != null)
 {
 try
 {
 var texture = _cameraTexture.SurfaceTexture;

 texture.SetDefaultBufferSize(_previewSize.Width,
_previewSize.Height);
 Surface surface = new Surface(texture);

 _previewBuilder =
cameraDevice.CreateCaptureRequest(CameraTemplate.Preview);
 _previewBuilder.AddTarget(surface);

 // Here, we create a CameraCaptureSession for camera
preview.

Building a Camera Application

[443]

 cameraDevice.CreateCaptureSession(new List<Surface>() {
surface },
 new CameraCaptureStateListener()
 {
 OnConfigureFailedAction = (CameraCaptureSession
session) =>
 {
 },
 OnConfiguredAction = (CameraCaptureSession
session) =>
 {
 _previewSession = session;
 UpdatePreview();
 }
 },
 null);

 }
 catch (Java.Lang.Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "TakePhoto() Failed to start preview \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }
 }

The function starts with configuring the size of the default buffer to be the size of the
camera preview. Then we want to create a new Surface object for the output surface of the
camera, which is then assigned to a new CaptureRequest.Builder.

Don't forget we have another function to control the flash of the camera. We simply adjust
the flash mode through CaptureRequest.Builder object and, based upon the flashOn
bool passed in, we assign either FlashMode.Torch or FlashMode.Off:

 public void SwitchFlash(bool flashOn)
 {
 try
 {
 _previewBuilder.Set(CaptureRequest.FlashMode, new
Integer(flashOn ? (int)FlashMode.Torch : (int)FlashMode.Off));
 UpdatePreview();
 }
 catch (System.Exception error)

Building a Camera Application

[444]

 {
 _log.WriteLineTime(_tag + "\n" +
 "TakePhoto() Failed to switch flash on/off \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }

Next we have a public function to invoke the Available event, which we need for the
CmaptureStateListener callback so that we keep track of the camera availability during
a capture session:

 public void NotifyAvailable(bool isAvailable)
 {
 Available?.Invoke(this, isAvailable);
 }

Next we have the ConfigureTransform function, which is responsible for transforming
the texture view. Here we are handling surface orientations and matrix rotations:

 public void ConfigureTransform(int viewWidth, int viewHeight)
 {
 if (_viewSurface != null && _previewSize != null && _context !=
null)
 {
 var windowManager =
_context.GetSystemService(Context.WindowService).JavaCast<IWindowManager>()
;

 var rotation = windowManager.DefaultDisplay.Rotation;
 var matrix = new Matrix();
 var viewRect = new RectF(0, 0, viewWidth, viewHeight);
 var bufferRect = new RectF(0, 0, _previewSize.Width,
_previewSize.Height);

 var centerX = viewRect.CenterX();
 var centerY = viewRect.CenterY();

 if (rotation == SurfaceOrientation.Rotation90 || rotation
== SurfaceOrientation.Rotation270)
 {
 bufferRect.Offset(centerX - bufferRect.CenterX() ,
centerY - bufferRect.CenterY());
 matrix.SetRectToRect(viewRect, bufferRect,
Matrix.ScaleToFit.Fill);

Building a Camera Application

[445]

 matrix.PostRotate(90 * ((int)rotation - 2), centerX,
centerY);
 }

 _cameraTexture.SetTransform(matrix);
 }
 }

Then we have the functions that are required by every TextureView:

 public void OnSurfaceTextureAvailable (SurfaceTexture surface, int
w, int h)
 {
 _viewSurface = surface;

 ConfigureTransform(w, h);
 StartPreview();
 }

The OnSurfaceTextureAvailable function will call configure the texture's
transformation matrix based upon the current window's orientation and call
StartPreview to start the video stream through the texture view:

 public bool OnSurfaceTextureDestroyed (SurfaceTexture surface)
 {
 return true;
 }

 public void OnSurfaceTextureSizeChanged (SurfaceTexture surface,
int width, int height)
 {
 ConfigureTransform(width, height);
 StartPreview();
 }

We also want to configure the texture's transformation matrix when the surface size
changes:

 public void OnSurfaceTextureUpdated (SurfaceTexture surface)
 {
 }

Wow! That was one huge implementation. Configuring the camera is not an easy task; it
involves a lot of step-by-step procedures that must be taken correctly for starting the
camera stream and creating a capture session. Those are the two most important operations
of any camera implementation.

Building a Camera Application

[446]

Building the CameraViewRenderer in
Android
Now we must add the CustomRenderer for the Android camera. In the Renderers folder,
add a new file called CameraViewRender.cs and implement the following:

public class CameraViewRenderer : ViewRenderer<CameraView, CameraDroid>
 {
 #region Private Properties

 private CameraDroid Camera;

 #endregion
}

Our renderer contains only one private instance of the CameraDroid class. Then we
override the OnElementChanged method:

 #region Protected Methods

 protected override void
OnElementChanged(ElementChangedEventArgs<CameraView> e)
 {
 base.OnElementChanged(e);

 if (Control == null)
 {
 Camera = new CameraDroid(Context);

 SetNativeControl(Camera);
 }

 if (e.NewElement != null)
 {

 Camera.Available += e.NewElement.NotifyAvailability;
 Camera.Photo += e.NewElement.NotifyPhoto;
 Camera.Busy += e.NewElement.NotifyBusy;

 e.NewElement.Flash += HandleFlashChange;
 e.NewElement.OpenCamera += HandleCameraInitialisation;
 e.NewElement.Focus += HandleFocus;
 e.NewElement.Shutter += HandleShutter;
 }
 }

Building a Camera Application

[447]

Inside Android CustomRenderers, there is a bug with disposal using the
OnElementChanged method. In some cases, this method is not called
when the view is disposed, so we are going to override the Dispose
method.

Here we follow the correct structure in the OnElementChanged method and instantiate the
new control when the Control property is null. We also register our events when the new
element is not null (events are registered on both the CameraDroid and CameraView
objects).

Now let's add the override to handle the disposal:

protected override void Dispose(bool disposing)
 {
 Element.Flash -= HandleFlashChange;
 Element.OpenCamera -= HandleCameraInitialisation;
 Element.Focus -= HandleFocus;
 Element.Shutter -= HandleShutter;

 Camera.Available -= Element.NotifyAvailability;
 Camera.Photo -= Element.NotifyPhoto;
 Camera.Busy -= Element.NotifyBusy;

 base.Dispose(disposing);
 }

Here we simply unregister the events for both the CameraView and CameraDroid objects.
Next, we have the private event delegate methods for calling the native camera methods:

 #region Private Methods

 private void HandleCameraInitialisation (object sender, bool args)
 {
 Camera.OpenCamera();
 }
 private void HandleFlashChange (object sender, bool args)
 {
 Camera.SwitchFlash (args);
 }

 private void HandleShutter (object sender, EventArgs e)
 {
 Camera.TakePhoto();
 }

 private void HandleFocus (object sender, Point e)
 {

Building a Camera Application

[448]

 Camera.ChangeFocusPoint(e);
 }

 #endregion
 }

Great! We have completed our camera implementations for both iOS and Android. Now we
have to create another renderer for the FocusView.

Handling native touch events through the
FocusView
Since our camera implementation is handling focus changes from touch events, we are
required to receive these touch events from the native side. Xamarin.Forms does not have
touch events that give (x, y) coordinates, so we have to do some more custom rendering on
the FocusView. Let's start with the Android implementation this time, inside the
Renderers folder, add a new folder called FocusView, and add a new file called
FocusViewGestureDetector.cs, and implement the following:

public class FocusViewGestureDetector :
GestureDetector.SimpleOnGestureListener
 {
 #region Events

 public event EventHandler<MotionEvent> Touch;

 #endregion

 #region Public Methods

 public override void OnLongPress(MotionEvent e)
 {
 base.OnLongPress(e);
 }

 public override bool OnDoubleTap(MotionEvent e)
 {
 return base.OnDoubleTap(e);
 }

 public override bool OnDoubleTapEvent(MotionEvent e)
 {
 return base.OnDoubleTapEvent(e);
 }

Building a Camera Application

[449]

 public override bool OnSingleTapUp(MotionEvent e)
 {
 return base.OnSingleTapUp(e);
 }

 public override bool OnDown(MotionEvent e)
 {
 if (Touch != null)
 {
 Touch(this, e);
 }

 return base.OnDown(e);
 }

 public override bool OnFling(MotionEvent e1, MotionEvent e2, float
velocityX, float velocityY)
 {
 return base.OnFling(e1, e2, velocityX, velocityY);
 }

 public override bool OnScroll(MotionEvent e1, MotionEvent e2, float
distanceX, float distanceY)
 {
 return base.OnScroll(e1, e2, distanceX, distanceY);
 }

 public override void OnShowPress(MotionEvent e)
 {
 base.OnShowPress(e);
 }

 public override bool OnSingleTapConfirmed(MotionEvent e)
 {
 return base.OnSingleTapConfirmed(e);
 }

 #endregion
 }

The preceding class is very similar to the gesture detector we created for the CarouselView
in the last chapter. We only use this object to retrieve the MotionEvent object from the
OnDown method.

Building a Camera Application

[450]

Let's add in another file called FocusViewRender.c and implement the following:

public class FocusViewRenderer : ViewRenderer<FocusView, LinearLayout>
 {
 #region Private Methods

 private FocusViewGestureDetector _gestureDetector;

 private GestureDetector _detector;

 private LinearLayout _layout;

 #endregion
}

The FocusViewRenderer will contain an instance of our FocusViewGestureDetector
and GestureDetector for handling touches on the FocusView. We also have a
LinearLayout, which is going to be the control assigned to the FocusView. This
LinearLayout will be blank and will only be used to receive the native touch events.

Then we add the override to the OnElementChanged function:

 #region Protected Methods

 protected override void
OnElementChanged(ElementChangedEventArgs<FocusView> e)
 {
 base.OnElementChanged(e);

 if (Control == null)
 {
 SetGestureDetectorListener();
 _layout = new LinearLayout(Context);

 SetNativeControl (_layout);
 }

 if (e.NewElement != null)
 {
 _layout.Touch += HandleTouch;
 }
 }

 #endregion

Building a Camera Application

[451]

When the Control is null, before we call the SetNativeControl method, we set up the
gesture detectors.

Now we must handle disposal as follows:

protected override void Dispose(bool disposing)
 {
 _layout.Touch -= HandleTouch;

 base.Dispose(disposing);
 }

Then we add the remaining:

 #region Private Methods

 private int ConvertPixelsToDp(float pixelValue)
 {
 return (int) ((pixelValue)/Resources.DisplayMetrics.Density);
 }

 private void SetGestureDetectorListener()
 {
 _gestureDetector = new FocusViewGestureDetector ();
 _detector = new GestureDetector (_gestureDetector);

 Observable.FromEventPattern<MotionEvent> (_gestureDetector,
"Touch")
 .Window (() => Observable.Interval (TimeSpan.FromSeconds
(0.7)))
 .SelectMany (x => x.Take (1))
 .Subscribe (e => Element.NotifyFocus (new Point
(ConvertPixelsToDp (e.EventArgs.GetX ()), ConvertPixelsToDp
(e.EventArgs.GetY ()))));
 }

 private void HandleTouch (object sender, TouchEventArgs e)
 {
 _detector.OnTouchEvent (e.Event);
 }

 #endregion
 }

Building a Camera Application

[452]

Using RX to handle events
Have a look at the SetGestureDetectorListener function where we are using the
FromEventPattern method from the Observable framework. The function must be typed
with a particular object (that is, MotionEvent) that contains an EventHandler property, in
this case Touch. Every time a Touch event is fired, using the Window method, we wait 0.7
seconds before doing anything (this ensures that we only respond to the first event taken
every period set in the Window method). Once this period is reached, SelectMany is called
and the first Touch event is retrieved from the observable sequence via the Take method.
Then we call Subscribe to assign the NotifyFocus method, and pass in the MotionEvent
object taken from the SelectMany method.

To summarize, the FromEventPattern method is very useful for controlling multiple
events and responding with specific actions. We have applied this technique with touch
events because we want to make sure only one touch event is processed every 0.7 seconds.
If we used a simply delegate function, a user could very fast, and for every touch event, the
camera would run through the ChangeFocusPoint operation every time before the
previous has finished, eventually crashing the application.

Now turn attention to the ConvertPixelsToDp method. We have to translate the pixel
points into DPI when translating position coordinates (x, y) between native Android and
Xamarin.Forms views. This will be called for every touch event for both x and y before we
pass the coordinate to the CameraView.

1 DP equals 1.5 physical pixels.

Building a VisualElementRenderer for iOS
To handle native touch events on iOS, we are going to build a VisualElementRenderer.
These work similar to CustomRenderers, but instead of rendering and replacing the entire
control, we are able to render specific attributes, so we are able to attach native attributes to
a Xamarin.Forms view.

Let's start with adding a new folder inside the Renderers folder called FocusView. Add in
a new file called FocusViewRendererTouchAttribute.cs and implement the following:

public class FocusViewRendererTouchAttribute :
VisualElementRenderer<FocusView>

Building a Camera Application

[453]

 {
 public override void TouchesBegan (NSSet touches, UIEvent evt)
 {
 base.TouchesBegan (touches, evt);

 FocusView focusView = ((FocusView)this.Element);

 UITouch touch = touches.AnyObject as UITouch;

 if (touch != null)
 {
 var posc = touch.LocationInView (touch.View);
 focusView.NotifyFocus (new Xamarin.Forms.Point(posc.X,
posc.Y));
 }
 }
 }

Don't forget to add the assembly line above the namespace like the following:

[assembly: Xamarin.Forms.ExportRendererAttribute
(typeof(Camera.Controls.FocusView),
typeof(Camera.iOS.Renderers.FocusView.FocusViewRendererTouchAttribute))]

When the element is rendered, we will now have the access to the TouchesBegan override.
Inside this function, we have access to the render object (FocusView), where we can call the
NotifyFocus function and pass the current touch (x, y) coordinate back to the FocusView.

That's all for our FocusView renderers. Let's now move on to the CustomImageRenderer
so that we can apply color tinting to an image.

Building the CustomImageRenderers
We are going to start with the iOS implementation of the CustomImage. Inside the
Renderers folder, add a new folder called CustomImage, add a new file called
CustomImageRenderer.cs, and implement the following:

public class CustomImageRenderer : ViewRenderer<CustomImage, UIView>
 {
 #region Private Propertie

 private readonly string _tag;

 private ILogger _log;

Building a Camera Application

[454]

 private UIImageView _imageView;

 private int _systemVersion = Convert.ToInt16
(UIDevice.CurrentDevice.SystemVersion.Split ('.') [0]);

 #endregion

 #region Constructors

 public CustomImageRenderer()
 {
 _log = IoC.Resolve<ILogger>();
 _tag = string.Format("{0} ", GetType());
 }

 #endregion
}

Looking at our private properties, we have the logging objects again, an integer property
to hold the current system version (that is, iOS version), and an UIImageView to use as the
native control. Next we have to override the OnElementChanged method:

 protected override void OnElementChanged
(ElementChangedEventArgs<CustomImage> e)
 {
 base.OnElementChanged (e);

 if (Control == null)
 {
 _imageView = new UIImageView();

 SetNativeControl(_imageView);
 }

 if (e.OldElement != null)
 {
 e.OldElement.CustomPropertyChanged -=
HandleCustomPropertyChanged;
 }

 if (e.NewElement != null)
 {
 LoadImage();

 e.NewElement.CustomPropertyChanged +=
HandleCustomPropertyChanged;
 }
 }

Building a Camera Application

[455]

Remember we have to follow the same structure for instantiating the control, and
registering and deregistering EventHandlers. In this renderer, we are going to apply event
handling a little differently. Instead of registering multiple events in the
OnElementChanged method, we only have to register and deregister the
CustomPropertyChanged event. In our CustomImage view, with each custom binding,
when a property is changed, we assigned a delegate that would fire this event with the
property name for every property. Therefore, we add one delegate function on the renderer
side called HandleCustomPropertyChanged, and in this function, we will check what
property has changed and respond with an action:

 private void HandleCustomPropertyChanged (object sender, string
propertyName)
 {
 switch (propertyName)
 {
 case "TintColorString":
 case "TintOn":
 UpdateControlColor();
 break;
 case "Path":
 InvokeOnMainThread(() => LoadImage());
 break;
 }
 }

Much cleaner than handling multiple events right?

Every time the Path property is changed, we call a new method called LoadImage. Before
we add this function in, we are going to add a private method for setting the image aspect
ratio:

private UIViewContentMode SetAspect()
 {
 if (Element != null)
 {
 switch (Element.Aspect)
 {
 case Aspect.AspectFill:
 return UIViewContentMode.ScaleAspectFill;
 case Aspect.AspectFit:
 return UIViewContentMode.ScaleAspectFit;
 case Aspect.Fill:
 return UIViewContentMode.ScaleToFill;
 default:
 return UIViewContentMode.ScaleAspectFit;
 }

Building a Camera Application

[456]

 }

 return UIViewContentMode.ScaleAspectFit;
 }

This will take a Xamarin.Forms image aspect ratio value and return the related native
image aspect ratio. This value will then be used for the aspect of the UIImageView.

Let's now add the LoadImage method as follows:

 private void LoadImage()
 {
 try
 {
 if (Element != null)
 {
 if (!string.IsNullOrEmpty(Element.Path))
 {
 _imageView.Image = ReadBitmapImageFromStorage
(Element.Path);

 if (_imageView.Image != null)
 {
 if (_systemVersion >= 7 && Element.TintOn)
 {
 _imageView.Image =
_imageView.Image.ImageWithRenderingMode
(UIImageRenderingMode.AlwaysTemplate);
 }

 UpdateControlColor();

 _imageView.ContentMode = SetAspect();
 }
 }
 }
 }
 catch (Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "LoadAsync() Failed to load view model. \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }

Building a Camera Application

[457]

This function is responsible for using the Path property to load an image into the
UIImageView. Inside this function, we also use the systemVersion property to handle
backward compatibility with color tinting. Only if the iOS device is using an iOS version
greater than or equal to iOS 7, we apply the following line:

_imageView.Image = _imageView.Image.ImageWithRenderingMode
(UIImageRenderingMode.AlwaysTemplate);

This tells the UIImageView that its Image should always draw as a template image,
ignoring its color information. We have to do this before we can apply a tinted color.

Next we have to add the ReadBitmapImageFromStorage function:

private UIImage ReadBitmapImageFromStorage(string fn)
 {
 var docsPath = Environment.GetFolderPath
(Environment.SpecialFolder.MyDocuments);
 string filePath = Path.Combine(Environment.CurrentDirectory,
fn);

 try
 {
 using (Stream stream = File.OpenRead(filePath))
 {
 NSData data = NSData.FromStream (stream);
 return UIImage.LoadFromData (data);
 }
 }
 catch (Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "LoadAsync() Failed to load view model. \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }

 return UIImage.FromFile (Path.Combine
(Environment.CurrentDirectory, "loading.png"));
 }

Using the File.OpenRead method, we retrieve the files stream and load it into a new
NSData object, and then from this NSData we load this into a new UIImage and return it to
the caller (that is, the LoadImage function).

Building a Camera Application

[458]

We must also add the UpdateControlColor function for assigning the tint color to the
UIImageView:

private void UpdateControlColor()
 {
 if (Element.TintOn &&
!string.IsNullOrEmpty(Element.TintColorString))
 {
 var color = UIColor.Clear.FromHex (Element.TintColorString,
1.0f);

 _imageView.Image =
UIImageEffects.GetColoredImage(_imageView.Image, color);
 }
 }

Here we are using another static class, which will take a color and the image and return a
new image tinted to the color passed in.

Building the UIImageEffects class
Our final part to the image tinting on iOS is implementing the class that will return a tinted
image from a template image and color. Create a new folder in the iOS project called
Helpers, add a new file called UIImageEffects.cs, and implement the following:

public static class UIImageEffects
 {
 public static UIImage GetColoredImage(UIImage image, UIColor color)
 {
 UIImage coloredImage = null;

 UIGraphics.BeginImageContext(image.Size);

 using (CGContext context = UIGraphics.GetCurrentContext())
 {
 context.TranslateCTM(0, image.Size.Height);
 context.ScaleCTM(1.0f, -1.0f);

 var rect = new CGRect(0, 0, image.Size.Width,
image.Size.Height);

 // draw image, (to get transparancy mask)
 context.SetBlendMode(CGBlendMode.Normal);
 context.DrawImage(rect, image.CGImage);

Building a Camera Application

[459]

 // draw the color using the sourcein blend mode so its only
draw on the non-transparent pixels
 context.SetBlendMode(CGBlendMode.SourceIn);
 context.SetFillColor(color.CGColor);
 context.FillRect(rect);

 coloredImage =
UIGraphics.GetImageFromCurrentImageContext();
 UIGraphics.EndImageContext();
 }

 return coloredImage;
 }
 }

The function starts with creating a new UIImage and setting it to null. We then create a new
image context by calling BeginImageContext and passing in the image size from the
UIImage we pass in to the function. We then wrap the current context in a using statement
to make sure we free memory taken from image processing in the context. We use the
current context to assign correct (x, y) translation and scale to match the UIImage passed in.
After this, we create a new Rect to match the bounds of the UIImage we passed into the
function. We then call SetBlendMode to assign the image's transparency and call
DrawImage to draw the image. Now that we have drawn the image within the context, we
then call SetBlendMode again to using the CGBlendMode.SourceIn so that it only draws
on the nontransparent pixels. We then set the fill color of the context to the color we passed
into the function, which will be the tint color. The image context will then fill the bounds of
the Rect we created earlier. Finally, we end the image processing by calling
EndImageContext and return the new colouredImage to the caller.

Fantastic! We have now used the native UIGraphics framework to perform image tinting
for iOS; let's do the same for Android.

Building the CustomImageRenderer for
Android
Add a new folder into the Renderers folder called CusotmImage, add a new file called
CustomImageRenderer.cs, and implement the following:

public class CustomImageRenderer : ViewRenderer<CustomImage, ImageView>
 {
 #region Private Properties

Building a Camera Application

[460]

 private readonly string _tag;

 private ImageView _imageView;

 private CustomImage _customImage;

 private ILogger _log;

 private Bitmap _bitmap;

 #endregion

 #region Constructors

 public CustomImageRenderer()
 {
 _log = IoC.Resolve<ILogger> ();
 _tag = string.Format ("{0} ", GetType ());
 }

 #endregion

We are going to use an ImageView as the native control. We also have a local
CustomImage, which will reference the element we are rendering on. We also have a local
Bitmap, which will be the image we are tinting. Then we have the _log and tag properties
again for logging any exceptions.

Let's now add the OnElementChanged method:

 #region Protected Methods

 protected override void OnElementChanged
(ElementChangedEventArgs<CustomImage> e)
 {
 base.OnElementChanged (e);

 if (Control == null)
 {
 _imageView = new ImageView(Context);

 SetNativeControl(_imageView);
 }

 if (e.NewElement != null)
 {
 _customImage = e.NewElement;

Building a Camera Application

[461]

 SetAspect();

 Android.App.Application.SynchronizationContext.Post(state
=>
 {
 UpdateControlColor();
 }, null);

 LoadImage().ConfigureAwait(false);

 e.NewElement.CustomPropertyChanged +=
HandleCustomPropertyChanged;
 }
 }

 #endregion

Here we create a new ImageView as the control. When the NewElement is not null, we
assign it to _customImage, set the aspect ratio of the ImageView, add the tint color, and
load the image.

Now we have to handle disposal by overriding the Dispose method:

protected override void Dispose(bool disposing)
 {
 if (_bitmap != null)
 {
 _bitmap.Recycle();
 _bitmap.Dispose();
 }

 Element.CustomPropertyChanged -= HandleCustomPropertyChanged;

 base.Dispose(disposing);
 }

Then we add the private methods. We are going to start with the SetAspect function.
Like our iOS implementation, we will map the Xamarin.Forms image aspect value to the
native ImageViewScaleType:

 private void SetAspect()
 {
 if (Element != null)
 {
 switch (Element.Aspect)
 {
 case Aspect.AspectFill:

Building a Camera Application

[462]

 _imageView.SetScaleType (ImageView.ScaleType.FitXy);
 break;
 case Aspect.AspectFit:
 _imageView.SetScaleType
(ImageView.ScaleType.FitCenter);
 break;
 case Aspect.Fill:
 _imageView.SetScaleType (ImageView.ScaleType.FitXy);
 break;
 default:
 _imageView.SetScaleType
(ImageView.ScaleType.FitCenter);
 break;
 }
 }
 }

Then we have the delegate function for handling all our property changes:

 private void HandleCustomPropertyChanged (object sender, string
propertyName)
 {
 switch (propertyName)
 {
 case "TintColorString":
 case "TintOn":
Android.App.Application.SynchronizationContext.Post(state =>
 {
 UpdateControlColor();
 }, null);
 break;
 case "Path":
 LoadImage().ConfigureAwait(false);
 break;
 }
 }

Our LoadImage is a bit better than the iOS version because it loads the image
asynchronously:

 private async Task LoadImage()
 {
 try
 {
 _bitmap = await ReadBitmapImageFromStorage(Element.Path);

 if (_imageView != null && _bitmap != null)
 {

Building a Camera Application

[463]

Android.App.Application.SynchronizationContext.Post(state =>
_imageView.SetImageBitmap(_bitmap), null);
 }
 }
 catch (Exception error)
 {
 _log.WriteLineTime(_tag + "\n" +
 "LoadAsync() Failed to load view model. \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }
 }

We only call the SetImageBitmap on the ImageView if the ImageView and Bitmap is not
null.

Next we have the UpdateControlColor function for tinting the image. Android offers a
much simpler solution for tinting using the SetColorFilter function. We must pass in a
PorterDuff.Mode, which the SetColorFilter will use to determine how to compose the
image based on the alpha value:

 private void UpdateControlColor()
 {
 try
 {
 if (_customImage.TintOn &&
!string.IsNullOrEmpty(_customImage.TintColorString))
 {
 var color =
Android.Graphics.Color.ParseColor(_customImage.TintColorString);
 _imageView.SetColorFilter (color,
PorterDuff.Mode.SrcAtop);
 }
 }
 catch (Exception e)
 {
 _log.WriteLineTime ("CustomImageRenderer: " + e);
 }
 }

Next we have the ReadBitmapImageFromStorage function, where we will be loading a
Bitmap from the Path property of the CustomImage. We use the GetIdentifier function
from the Resources framework to retrieve the integer ID of the image resource we want to
load.

Building a Camera Application

[464]

Remember, the image must be inside our drawable or mipmap folder for
the image to be found.

We then open the raw file as a stream using the OpenRawResource function, and using the
BitmapFactory framework, we can use the raw resource stream to decode a Bitmap object
that will be returned:

 private async Task<Bitmap> ReadBitmapImageFromStorage(string fn)
 {
 try
 {
 if (!string.IsNullOrEmpty(fn))
 {
 var file = fn.Split('.').FirstOrDefault();

 var id = Resources.GetIdentifier(file, "drawable",
Context.PackageName);

 using (Stream stream = Resources.OpenRawResource(id))
 {
 if (stream != null)
 {
 return await
BitmapFactory.DecodeStreamAsync(stream);
 }
 }
 }
 }
 catch (Exception error)
 {
 _log.WriteLineTime(
 "MyCareManager.Droid.Renderers.CustomImageRenderer; \n"
+
 "ErrorMessage: Failed to load image " + fn + "\n " +
 "Stacktrace: Login Error \n " +
 error);
 }

 return null;
 }

 #endregion
 }

Building a Camera Application

[465]

Great! We have now built all our CustomRenderers for the solution. Let's see how we use
these with our user interface screens.

Triggers
The first page will consist of two buttons, an image, a label, and extra additional UI
functionality known as triggers. Triggers are declarative objects used in XAML, which
contain actions executed when certain conditions or events occur. The main advantage of
triggers is we can box up these handle actions for as many UI elements that need to perform
the same actions. We have the option of the following four different types of triggers:

Property trigger: This is executed when a property on a control is set to a
particular value.
Data trigger: This is same as the property trigger but uses data binding.
Event trigger: This is occurs when an event occurs on the control.
Multi trigger: This is allows multiple trigger conditions to be set before an action
occurs.

In our solution, we are going to add two event triggers for button click events.

Let's start with adding a new folder called Triggers into the Camera project, add a new
file called ButtonClickTrigger.cs, and implement the following:

 public class ButtonClickedTrigger : TriggerAction<Button>
 {
 #region Protected Methods

 protected override void Invoke(Button sender)
 {
 sender.TextColor = Color.Blue;
 sender.BackgroundColor = Color.Aqua;
 }

 #endregion
 }

Our first trigger is for handling the Clicked event on the CameraButton. When this button
is clicked, the background and text color of the button will change. We must override the
Invoke function to claim the Button performing the action.

Building a Camera Application

[466]

Now let's add another folder for the Pages, add a new file called MainPage.xaml, and
implement the following:

 <?xml version="1.0" encoding="UTF-8"?>
<ui:ExtendedContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:ui="clr-namespace:Camera.UI;assembly=Camera"
 xmlns:t="clr-namespace:Camera.Triggers;assembly=Camera"
 x:Class="Camera.Pages.MainPage"
 BackgroundColor="White"
 Title="Welcome">

 <ui:ExtendedContentPage.Content>
 <Grid x:Name="Grid" RowSpacing="10" Padding="10, 10, 10, 10"
VerticalOptions="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Image x:Name="Image" Source="camera.png" HeightRequest="120"
WidthRequest="120"
 Grid.Row="0" Grid.Column="0"/>

 <Button x:Name="CameraButton" Text="{Binding CameraTitle}"
 Command="{Binding CameraCommand}" Style="{StaticResource
BaseButtonStyle}" Grid.Row="2" Grid.Column="0">
 <Button.Triggers>
 <EventTrigger Event="Clicked">
 <t:ButtonClickedTrigger/>
 </EventTrigger>
 </Button.Triggers>
 </Button>
 <Button x:Name="ExitButton" Text="{Binding ExitTitle}"
 Command="{Binding ExitCommand}" Style="{StaticResource
ButtonStyleWithTrigger}"
 Grid.Row="3" Grid.Column="0"/>
 </Grid>
 </ui:ExtendedContentPage.Content>
</ui:ExtendedContentPage>

Building a Camera Application

[467]

We must include the namespace reference to location of the Triggers folder. Then turn
attention to the CameraButton, where we will attach the ButtonClickedTrigger. When
the button is touched, the Invoke method of the trigger will be called.

The next trigger we add will perform a nice warping animation to a button when it is
clicked. Let's add another file called VisualElementPopTriggerAction.cs and
implement the following:

public class VisualElementPopTriggerAction : TriggerAction<VisualElement>
 {
 #region Public Properties

 public Point Anchor { set; get; }

 public double Scale { set; get; }

 public uint Length { set; get; }

 #endregion

 #region Constructors

 public VisualElementPopTriggerAction()
 {
 Anchor = new Point(0.5, 0.5);
 Scale = 2;
 Length = 500;
 }

 #endregion

 #region Protected Methods

 protected override async void Invoke(VisualElement visual)
 {
 visual.AnchorX = Anchor.X;
 visual.AnchorY = Anchor.Y;
 await visual.ScaleTo(Scale, Length / 2, Easing.SinOut);
 await visual.ScaleTo(1, Length / 2, Easing.SinIn);
 }

 #endregion
 }

Building a Camera Application

[468]

The Anchor property is used for the point (x, y) in which the ScaleTo function will
reference. Since the reference points X and Y are 0.5, when animate an expansion on the
button, it will expand evenly on both the left/right and top/bottom. The Invoke method
will be called when the button is clicked to begin the animation. We are also using the Sin
easing for each animation:

Easing.SinIn
Starts slow and speeds:

Easing.SinOut
Starts fast and slows down:

Let's have a look at how we will use the VisualElementPopTriggerAction inside a style.
Add in the App.Xaml file and implement the following styles:

 <Style x:Key="BaseButtonStyle" TargetType="Button">
 <Setter Property="TextColor">

Building a Camera Application

[469]

 <Setter.Value>
 <OnPlatform x:TypeArguments="Color"
 Android="Navy"
 WinPhone="Black"
 iOS="Black">
 </OnPlatform>
 </Setter.Value>
 </Setter>
 <Setter Property="FontSize" Value="20" />
 <Setter Property="FontFamily" Value="Arial" />
 <Setter Property="BackgroundColor" Value="Silver" />
 </Style>
 <Style x:Key="ButtonStyleWithTrigger" TargetType="Button"
 BasedOn="{StaticResource BaseButtonStyle}">
 <Style.Triggers>
 <EventTrigger Event="Clicked">
 <t:VisualElementPopTriggerAction/>
 </EventTrigger>
 </Style.Triggers>
 </Style>

Can you see what technique we are using here?

This is known as style inheritance. The ButtonStyleWithTrigger style inherits all the
styling properties of the BaseButtonStyle by using the BasedOn property.

Wait! Aren't we missing the DescriptionLabel from the MainPage?

We still have one more element to add to the MainPage. But first we are going to talk about
another object used in XAML known as PlatformEffects.

Platform effects
Platform effects are used to simplify native control customization, reducing the need to
create CustomRenderers for small styling changes. This means we don't have to create a
custom renderer every single time we want native customization. To implement a
PlatformEffect, we first create a class that subclasses the PlatformEffect framework.
Then we have to write platform-specific implementations for each.

Building a Camera Application

[470]

Following is a small overview of how the rendering process will look among the different
projects:

Let's add a new folder called Effects inside the Camera project, add in a new file called
LabelShadowEffect.cs, and implement the following:

public class LabelShadowEffect : RoutingEffect
 {
 #region Public Properties

 public float Radius { get; set; }

 public Color Color { get; set; }

 public float DistanceX { get; set; }

 public float DistanceY { get; set; }

 #endregion

 #region Constructors

 public LabelShadowEffect() : base("Camera.LabelShadowEffect")
 {
 }

 #endregion
 }

Our LabelShadowEffect must inherit the PlatformEffect framework. The Radius
property is responsible for the corner radius of the shadow. Then we have the Color
property that will set the color of the shadow. Finally, we have the DistanceX and
DistanceY properties for assigning the position of the shadow.

Building a Camera Application

[471]

Now we must create the platform implementations. Let's start with iOS, add in a new folder
called Effects, add in a new file called LabelShadowEffectiOS.cs, and implement the
following:

public class LabelShadowEffectiOS : PlatformEffect
 {
 #region Protected Methods

 protected override void OnAttached()
 {
 try
 {
 var effect =
(LabelShadowEffect)Element.Effects.FirstOrDefault(e => e is
LabelShadowEffect);

 if (effect != null)
 {
 Control.Layer.CornerRadius = effect.Radius;
 Control.Layer.ShadowColor = effect.Color.ToCGColor();
 Control.Layer.ShadowOffset = new
CGSize(effect.DistanceX, effect.DistanceY);
 Control.Layer.ShadowOpacity = 1.0f;
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Cannot set property on attached control.
Error: ", ex.Message);
 }
 }

 protected override void OnDetached()
 {
 }

 #endregion
 }

Building a Camera Application

[472]

All PlatformEffects must override the OnAttached and OnDetached methods. The
OnAttached method is where we set up all native shadow effects. We start with retrieving
the first PlatformEffect from the Effects list of the Element object. Like our
CustomRenderers, we have access to the original Xamarin.Forms element that we are
customizing. In the OnDetached method, we would normally dispose any objects that are
no longer required.

We must also add assembly lines above the namespace block like the following:

[assembly: Xamarin.Forms.ResolutionGroupName("Camera")]
[assembly:
Xamarin.Forms.ExportEffect(typeof(Camera.Droid.Effects.LabelShadowEffectiOS
), "LabelShadowEffect")]

We must add a ResolutionGroupName to specify the namespace for the effects; this
prevents collisions with other effects of the same name. We also add the ExportEffect
attribute to register the effect with a unique ID that is used by Xamarin.Forms, along with
the group name, to locate the effect prior to applying it to a control.

Now let's add the equivalent for Android. Add a new folder in the Camera.Droid project,
add a new file called LabelShadowEffectDroid.cs, and implement the following:

public class LabelShadowEffectDroid : PlatformEffect
 {
 #region Protected Methods

 protected override void OnAttached()
 {
 try
 {
 var control = Control as Android.Widget.TextView;

 var effect =
(LabelShadowEffect)Element.Effects.FirstOrDefault(e => e is
LabelShadowEffect);

 if (effect != null)
 {
 control.SetShadowLayer(effect.Radius, effect.DistanceX,
effect.DistanceY, effect.Color.ToAndroid());
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Cannot set property on attached control.
Error: ", ex.Message);

Building a Camera Application

[473]

 }
 }

 protected override void OnDetached()
 {
 }

 #endregion
 }

In our Android implementation, we start with retrieving the control as a native TextView.
We then retrieve the first LabelShadowEffect object from the list of effects from the
Element. We then use the method SetShadowLayer to create native shadowing on the
TextView.

Great! Now we have our native implementations, let's add the DescriptionLabel object
to the MainPage:

<Label x:Name="DesciptionLabel" Text="{Binding DescriptionMessage}"
TextColor="Black"
 HorizontalOptions="Center" Font="Arial, 20"
Grid.Row="1" Grid.Column="0">
 <Label.Effects>
 <e:LabelShadowEffect Radius="5" DistanceX="5"
DistanceY="5">
 <e:LabelShadowEffect.Color>
 <OnPlatform x:TypeArguments="Color" iOS="Black"
Android="Blue" WinPhone="Red" />
 </e:LabelShadowEffect.Color>
 </e:LabelShadowEffect>
 </Label.Effects>
 </Label>

Here we are able to attach the effect inside our XAML. We must also add the namespace to
the Effects folder:

xmlns:e="clr-namespace:Camera.Effects;assembly=Camera"

This is how the MainPage will look once complete:

Building a Camera Application

[474]

Building the CameraPage
Now for the final page of the solution, the CameraPage introduces some new tricks to
handle orientation changes with Grid positions. We will be using Converters to change
rows and columns on the Grid to reposition elements when we change orientation.

We are going to start with adding some converters to the project. Let's create a new folder in
the Camera project, add a new file called NotConverter.cs, and implement the following:

public class NotConverter : IValueConverter
 {
 #region Public Methods

 public object Convert(object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 var b = value as bool?;

 if (b != null)

Building a Camera Application

[475]

 {
 return !b;
 }

 return value;
 }

 public object ConvertBack(object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }

 #endregion
 }

Our first converter is responsible for taking a Boolean value and returning the opposite.
Next we have the OrientationToBoolConverter. Add a new file and implement the
following:

public class OrientationToBoolConverter:IValueConverter
 {
 #region Public Methods

 public object Convert (object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 try
 {
 var str = parameter as string;

 if (str != null)
 {
 // split string by ',', convert to int and store in
case list
 var cases = str.Split(',').Select(x =>
bool.Parse(x)).ToList();

 if (value is Orientation)
 {
 switch ((Orientation)value)
 {
 case Orientation.LandscapeRight:
 case Orientation.LandscapeLeft:
 return cases[0];
 case Orientation.Portrait:
 return cases[1];
 case Orientation.None:

Building a Camera Application

[476]

 return 0;
 }
 }
 }
 }
 catch (Exception error)
 {
IoC.Resolve<ILogger>().WriteLineTime("OrientationToBoolConverter \n" +
 "Convert() Failed to switch flash on/off \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }

 return 0;
 }

 public object ConvertBack (object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException ();
 }

 #endregion
 }

This converter uses the Orientationenum we created at the start of the chapter. It will
receive an Orientation value and a string as the parameter like the following:

'false, true'

Converters can take parameters as well as values, so passing a string
containing multiple cases allows us to use a set of specific return values to
map to the values passed in.

We will then use the Split method to break up the string by the comma character,
meaning we will have two strings that will be parsed in as a Boolean. These will be used as
the return cases for the different orientations.

Now let's add another converter, which will convert a Boolean into a string:

public class BoolToStringConverter:IValueConverter
 {
 #region Public Methods

Building a Camera Application

[477]

 public object Convert (object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 try
 {
 var str = parameter as string;

 if (str != null)
 {
 // split string by ',', convert to int and store in
case list
 var cases = str.Split(',').Select(x => x).ToList();

 if (value is bool)
 {
 return (bool)value ? cases[0] : cases[1];
 }
 }
 }
 catch (Exception error)
 {
 IoC.Resolve<ILogger>().WriteLineTime("BoolToStringConverter
\n" +
 "Convert() Failed to switch flash on/off \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }

 return string.Empty;
 }

 public object ConvertBack (object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException ();
 }

 #endregion
 }

We will use this on the camera page when the flash is turned on/off. If the flash is on, the
string on will be returned. If the flash is off, we will return the string off. We use the same
method as the OrientationToBoolConverter as we pass in a string value for the return
cases.

Building a Camera Application

[478]

Next, add another file called BoolToPartialConverter.cs and implement the following:

public class BoolToPartialConverter:IValueConverter
 {
 #region Public Methods

 public object Convert (object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 try
 {
 var str = parameter as string;

 if (str != null)
 {
 // split string by ',', convert to int and store in
case list
 var cases = str.Split(',').Select(x =>
Double.Parse(x)).ToList();

 if (value is bool)
 {
 return (bool)value ? cases[0] : cases[1];
 }
 }
 }
 catch (Exception error)
 {
IoC.Resolve<ILogger>().WriteLineTime("BoolToPartialConverter \n" +
 "Convert() Failed to switch flash on/off \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +
 error.StackTrace);
 }

 return 0;
 }

 public object ConvertBack (object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException ();
 }

 #endregion
 }

Building a Camera Application

[479]

This will be used for updating opacity based upon the value being true or false. We use a
string for the opacity values being returned for each Boolean value.

Our next converter OrientationToIntConverter is responsible for converting
Orientation values into integers. This is the converter that will be responsible for changing
the rows and columns numbers when the orientation changes:

public class OrientationToIntConverter:IValueConverter
 {
 #region Public Methods

 public object Convert (object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 try
 {
 var str = parameter as string;

 if (str != null)
 {
 // split string by ',', convert to int and store in
case list
 var cases = str.Split(',').Select(x =>
Int32.Parse(x)).ToList();

 if (value is Orientation)
 {
 switch ((Orientation)value)
 {
 case Orientation.LandscapeRight:
 case Orientation.LandscapeLeft:
 return cases[0];
 case Orientation.Portrait:
 return cases[1];
 case Orientation.None:
 return cases[0];
 }
 }
 }
 }
 catch (Exception error)
 {
IoC.Resolve<ILogger>().WriteLineTime("OrientationToIntConverter \n" +
 "Convert() Failed to switch flash on/off \n " +
 "ErrorMessage: \n" +
 error.Message + "\n" +
 "Stacktrace: \n " +

Building a Camera Application

[480]

 error.StackTrace);
 }

 return 0;
 }

 public object ConvertBack (object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException ();
 }

 #endregion
 }

Again, we are using a string to contain the return cases, which we parse into a new integer
using the Int32.Parse method.

Our last converter will be responsible for converting a byte array into an ImageSource.
This is used for the binding created from the CameraViewModel in our Camera.Portable
project. Since we don't have the ImageSource framework in our portable project, we will
use byte arrays to hold the image data received from the camera:

public class ByteArrayToImageSourceConverter : IValueConverter
 {
 #region Public Methods

 public object Convert(object value, Type targetType, object
parameter, CultureInfo culture)
 {
 byte[] bytes = value as byte[];
 var defaultFile = parameter as string;

 if (bytes != null && bytes.Length > 1)
 {
 return ImageSource.FromStream(() => new
MemoryStream(bytes));
 }

 if (defaultFile != null)
 {
 return ImageSource.FromFile(defaultFile);
 }

 return ImageSource.FromFile ("loading.png");
 }

Building a Camera Application

[481]

 public object ConvertBack(object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }

 #endregion
 }

In the Convert method, we check to see if the byte array is not null and contains data, and
if so, we use the FromStream method from the ImageSource framework to create a new
MemoryStream from the byte array.

Now that we have all our converters, we must add these to the App.xaml:

<converters:NotConverter x:Key="notConverter"/>
 <converters:OrientationToBoolConverter
x:Key="orientationToBoolConverter"/>
 <converters:BoolToStringConverter
x:Key="boolToStringConverter"/>
 <converters:BoolToPartialConverter
x:Key="boolToPartialConverter"/>
 <converters:OrientationToIntConverter
x:Key="orientationToIntConverter"/>
 <converters:ByteArrayToImageSourceConverter
x:Key="byteArrayToImageSourceConverter"/>

Excellent! Let's build the interface for the CameraPage. We will see how these converters
are used on each UI element.

Add a new file called CameraPage.xaml and implement the following:

<?xml version="1.0" encoding="utf-8" ?>
<ui:ExtendedContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:Camera.Controls;assembly=Camera"
 xmlns:ui="clr-namespace:Camera.UI;assembly=Camera"
 x:Class="Camera.Pages.CameraPage"
 BackgroundColor="#F2F2F2">

 <Grid x:Name="MainLayout" BackgroundColor="Black"
 RowSpacing="0" ColumnSpacing="0">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="40" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />

Building a Camera Application

[482]

 <RowDefinition Height="*" />
 <RowDefinition Height="60" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="60"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="100"/>
 </Grid.ColumnDefinitions>

 </Grid>
</ui:ExtendedContentPage>

We start with an empty Grid, which has seven rows and six columns. The first element to
add is the CameraView:

<controls:CameraView x:Name="CameraView" BackgroundColor="Black"
Grid.Row="0"
 Grid.RowSpan="{Binding PageOrientation,
Converter={StaticResource orientationToIntConverter},
ConverterParameter='7, 6'}"
 Grid.Column="0" Grid.ColumnSpan="{Binding PageOrientation,
Converter={StaticResource orientationToIntConverter},
ConverterParameter='5, 6'}"/>

Here we can see the use of the OrientationToIntConverter. The PageOrientation
property from the view-model. When this property is set, and the OnPropertyChanged
method is called. The Convert method will return a new integer, changing the number of
rows the CameraView will take up. This is the same on the ColumnSpan property; the
amount of columns taken by the CameraView will change when the orientation changes.

Next we add the FocusView as follows:

<controls:FocusView x:Name="FocusView"
 Grid.Row="0"
 Grid.RowSpan="{Binding PageOrientation, Converter={StaticResource
orientationToIntConverter}, ConverterParameter='7, 6'}"
 Grid.Column="0" Grid.ColumnSpan="{Binding PageOrientation,
Converter={StaticResource orientationToIntConverter},
ConverterParameter='5, 6'}"/>

This will match the entire space of the CameraView. The FocusView will lay on top of the
CameraView to receive the touch events and pass the (x, y) coordinate down to the
CameraView to perform a focus.

Building a Camera Application

[483]

Next, we are going to add another Grid for containing the flash and photo buttons:

 <Grid x:Name="CameraButtonContainerPortrait" ColumnSpacing="5"
 IsEnabled="{Binding PageOrientation, Converter={StaticResource
orientationToBoolConverter}, ConverterParameter='false, true'}}"
 Opacity="0" Grid.Row="6" Grid.Column="0" Grid.ColumnSpan="6">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="35"/>
 <ColumnDefinition Width="45"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="45"/>
 <ColumnDefinition Width="35"/>
 </Grid.ColumnDefinitions>

 <ContentView BackgroundColor="Black"
 Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="5"/>

 <controls:CustomImage x:Name="CameraButtonPortrait"
Path="photo_camera_button.png"
 TintOn="false" WidthRequest="50" HeightRequest="50"
 HorizontalOptions="Center" VerticalOptions="Center"
Grid.Row="0" Grid.Column="2">
 <controls:CustomImage.GestureRecognizers>
 <TapGestureRecognizer Tapped="HandleShutter"/>
 </controls:CustomImage.GestureRecognizers>
 </controls:CustomImage>

 <Label x:Name="FlashLabelPortrait"
 Text="{Binding IsFlashOn, Converter={StaticResource
boolToStringConverter}, ConverterParameter='On, Off'}"
 TextColor="#0ca6df" XAlign="Start" YAlign="Center"
 Grid.Row="0" Grid.Column="1">
 <Label.GestureRecognizers>
 <TapGestureRecognizer Tapped="HandleFlash"/>
 </Label.GestureRecognizers>
 </Label>

 <controls:CustomImage x:Name="FlashImagePortrait"
Path="photo_light.png"
 Margin="10, 0, 0, 0"
 VerticalOptions="Center"
 TintOn="false" WidthRequest="20"
 HeightRequest="35"
 Grid.Row="0" Grid.Column="0">

Building a Camera Application

[484]

 <controls:CustomImage.GestureRecognizers>
 <TapGestureRecognizer Tapped="HandleFlash"/>
 </controls:CustomImage.GestureRecognizers>
 </controls:CustomImage>
 </Grid>

Here we see the use of the CustomImage instead of a button because we want to be able to
show a specific image for each button.

This panel is positioned under the CameraView like the following:

Next we have the LoadingView for displaying status of camera activity for initialization
and taking photos:

 <controls:LoadingView x:Name="LoadingView"
 Grid.Row="0" Grid.RowSpan="7" Grid.Column="0"
Grid.ColumnSpan="6"/>

Building a Camera Application

[485]

We now need to add another element for the camera buttons in landscape mode:

 <Grid x:Name="CameraButtonContainerLandscape" RowSpacing="5"
 IsEnabled="{Binding PageOrientation,
Converter={StaticResource orientationToBoolConverter},
ConverterParameter='true, false'}}"
 Opacity="0" Grid.Row="0" Grid.RowSpan="7"
 Grid.Column="{Binding PageOrientation,
Converter={StaticResource orientationToIntConverter},
ConverterParameter='5, 4'}">
 <Grid.RowDefinitions>
 <RowDefinition Height="45"/>
 <RowDefinition Height="40"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="40"/>
 <RowDefinition Height="45"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <ContentView BackgroundColor="Black"
 Grid.Row="0" Grid.RowSpan="5" Grid.Column="0"/>

 <controls:CustomImage x:Name="CameraButtonLandscape"
Path="photo_camera_button.png"
 TintOn="false" WidthRequest="50"
 HeightRequest="50"
 HorizontalOptions="Center" VerticalOptions="Center"
 Grid.Row="2" Grid.Column="0">
 <controls:CustomImage.GestureRecognizers>
 <TapGestureRecognizer Tapped="HandleShutter"/>
 </controls:CustomImage.GestureRecognizers>
 </controls:CustomImage>

 <Label x:Name="FlashLabelLandscape"
 Text="{Binding IsFlashOn, Converter={StaticResource
boolToStringConverter}, ConverterParameter='On, Off'}"
 TextColor="#0ca6df"
 XAlign="Center" YAlign="Start" Grid.Row="1"
Grid.Column="0">
 <Label.GestureRecognizers>
 <TapGestureRecognizer Tapped="HandleFlash"/>
 </Label.GestureRecognizers>
 </Label>

 <controls:CustomImage x:Name="FlashImageLandscape"

Building a Camera Application

[486]

Path="photo_light.png"
 Margin="0, 10, 0, 0" HorizontalOptions="Center"
 TintOn="false" WidthRequest="30"
 HeightRequest="30"
 Grid.Row="0" Grid.Column="0">
 <controls:CustomImage.GestureRecognizers>
 <TapGestureRecognizer Tapped="HandleFlash"/>
 </controls:CustomImage.GestureRecognizers>
 </controls:CustomImage>
 </Grid>

The following image shows the CameraPage in landscape:

The last element to add is another Grid that will appear when we take a photo:

 <Grid x:Name="PhotoEditLayout" IsEnabled="{Binding PhotoEditOn}"
BackgroundColor="White"
 Opacity="{Binding PhotoEditOn, Converter={StaticResource

Building a Camera Application

[487]

boolToPartialConverter}, ConverterParameter='1, 0'}"
 RowSpacing="0" Grid.Row="0" Grid.RowSpan="7"
Grid.Column="0" Grid.ColumnSpan="6">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="60"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="10"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="10"/>
 </Grid.ColumnDefinitions>

 <Image x:Name="PhotoToEdit"
 Source="{Binding PhotoData, Converter={StaticResource
byteArrayToImageSourceConverter}}"
 Aspect="AspectFit"
 BackgroundColor="White"
 IsOpaque="true"
 Grid.Row="0" Grid.RowSpan="2" Grid.Column="0"
Grid.ColumnSpan="5" />

 <BoxView BackgroundColor="Black" Grid.Row="1" Grid.Column="0"
Grid.ColumnSpan="5"/>
 <controls:CustomImage x:Name="TrashImage"
Path="photo_trash.png"
 TintColorString="#FFFFFF" TintOn="true"
HorizontalOptions="Center"
 WidthRequest="40" HeightRequest="40"
 Grid.Row="1" Grid.Column="1">
 <controls:CustomImage.GestureRecognizers>
 <TapGestureRecognizer Tapped="HandleDelete"/>
 </controls:CustomImage.GestureRecognizers>
 </controls:CustomImage>
 </Grid>

The Grid contains the Image that will be bound to the PhotoData property on the view-
model. This is where we use the ByteArrayToImageSourceConverter. Whenever the
byte array is changed and the OnPropertyChanged method is called, a new image will be
created from the byte array in the view-model. There is also a CustomImage that will add
another button for closing the screen, deleting the image data, and returning to the camera
to take another photo.

Building a Camera Application

[488]

Adding native orientation events
Our next step is to add the notifications that are going to fire every time an orientation
occurs. These events will come from the native side, so in order to have these pass down to
our Xamarin.Forms project, we are going to use the static events on the
OrientationPage.

Let's start with the iOS project. Open the AppDelegate.cs file and add the following
function:

 public override void DidChangeStatusBarOrientation(UIApplication
application, UIInterfaceOrientation oldStatusBarOrientation)
 {
 // change listview opacity based upon orientation
 switch (UIApplication.SharedApplication.StatusBarOrientation)
 {
 case UIInterfaceOrientation.Portrait:
 case UIInterfaceOrientation.PortraitUpsideDown:
OrientationPage.NotifyOrientationChange(Orientation.Portrait);
 break;
 case UIInterfaceOrientation.LandscapeLeft:
OrientationPage.NotifyOrientationChange(Orientation.LandscapeLeft);
 break;
 case UIInterfaceOrientation.LandscapeRight:
OrientationPage.NotifyOrientationChange(Orientation.LandscapeRight);
 break;
 }
 }

The DidChangeStatusBarOrientation function is contained in all AppDelegate objects.
When we override this, we reference the exact orientation in the
UIApplication.SharedApplication.StatusBarOrientation property of the
AppDelegate. Every time an orientation occurs, this method will be called and we will then
call the static method NotifyOrientationChange on the OrientationPage to fire the
event back to the Xamarin.Forms page.

Let's do the same for Android. Open the MainActivity.cs file and add the following:

public override void
OnConfigurationChanged(Android.Content.Res.Configuration newConfig)
 {
 base.OnConfigurationChanged(newConfig);

 switch (newConfig.Orientation)
 {
 case Android.Content.Res.Orientation.Portrait:

Building a Camera Application

[489]

OrientationPage.NotifyOrientationChange(Portable.Enums.Orientation.Portrait
);
 break;
 case Android.Content.Res.Orientation.Landscape:
OrientationPage.NotifyOrientationChange(Portable.Enums.Orientation.Landscap
eLeft);
 break;
 }
 }

Unfortunately for Android, we can only gather whether the orientation is
in landscape or portrait. IOS has the ability to determine whether we are
in landscape left or landscape right.

Like the DidChangeStatusBarOrientation function, the Android
OnConfigurationChanged method will be called whenever the orientation changes. We
use a switch statement again to call the static method on the OrientationPage.

Let's now add the logic behind the CameraPage. Here we will be responding to the native
orientation events when they occur.

Open the CameraPage.xaml.cs file and implement the private properties:

public partial class CameraPage : ExtendedContentPage,
INavigableXamarinFormsPage
 {
 #region Private Properties

 private float CAMERA_BUTTON_CONTAINER_WIDTH = 70f;

 private CameraPageViewModel _model;

 #endregion
}

We use the CAMERA_BUTTON_CONTAINER_WIDTH property when we render the camera
stream on iOS, to make sure the stream bounds do not render behind the button container.

When the camera is rendered for iOS, we have to reduce the render bound
width by a certain amount to make sure that the camera bounds don't
render behind the button container. Every time the orientation changes,
we will use this value to reduce the width of the render bounds.

Building a Camera Application

[490]

We also have the CameraPageViewModel to keep locally when we retrieve it from the IoC
container. Let's add the constructor as follows:

 #region Constructors

 public CameraPage(CameraPageViewModel model) : base(model)
 {
 BindingContext = model;
 _model = model;

 InitializeComponent();

 Appearing += HandleAppearing;
 Disappearing += HandleDisappearing;

 CameraView.Photo += HandlePictureTaken;
 CameraView.AvailabilityChange += HandleCameraAvailability;
 CameraView.Loading += HandleLoading;
 CameraView.Busy += HandleBusy;

 FocusView.TouchFocus += HandleFocusChange;
 }

 #endregion

Here we retrieve the CameraPageViewModel from the IoC container. We also register event
functions when the page appears and disappears. We also register event functions on the
CameraView when we take a photo, when the camera initialization occurs, when the
camera is loading, and when the camera is busy. Then, we register one event for the
TouchFocus event on the FocusView. Every time a new point (x, y) is received, we pass
this to the CameraView to perform a focus.

Let's add the EventHandler functions for page appearing and disappearing. Here we will
register and deregister to the orientation OrientationHandler event:

 private void HandleDisappearing(object sender, EventArgs e)
 {
 OrientationHandler -= HandleOrientationChange;

 _model.OnDisappear();
 }

 private void HandleAppearing(object sender, EventArgs e)
 {
 OrientationHandler += HandleOrientationChange;

 _model.OnAppear();

Building a Camera Application

[491]

 }

Let's add the HandleOrientationChange method for updating the button container width
by resizing the width of the ColumnDefinition. After we resize the ColumnDefinition,
we then call Reset on the FocusView object; if the camera is ready to take a photo, we
center the focus point of the camera to the middle of the screen. Then call the
NotifyOrientationChange on the CameraView to update the renderer camera stream
bounds and rotation:

public void HandleOrientationChange(object sender, Orientation arg)
 {
 FocusView.Orientation = CameraView.Orientation =
OrientationPage.PageOrientation = _model.PageOrientation = arg;

 switch (PageOrientation)
 {
 case Orientation.LandscapeLeft:
 case Orientation.LandscapeRight:
 MainLayout.ColumnDefinitions[5].Width = new
GridLength(CAMERA_BUTTON_CONTAINER_WIDTH,
GridUnitType.Absolute);
 break;
 case Orientation.Portrait:
 MainLayout.ColumnDefinitions[4].Width = new
GridLength(CAMERA_BUTTON_CONTAINER_WIDTH,
GridUnitType.Absolute);
 break;
 }

 if (_model.CanCapture)
 {
 FocusView.Reset();
 }

 CameraView.NotifyOrientationChange(arg);
 }

Next, we have the HandleBusy and HandleLoading functions, which simply set the
CameraLoading property on the view-model:

 private void HandleBusy(object sender, bool e)
 {
 _model.CameraLoading = e;
 }

 private void HandleLoading(object sender, bool e)
 {

Building a Camera Application

[492]

 _model.CameraLoading = e;
 }

Then add the HandleShutter, which will call the NotifyShutter method on the
CameraView:

public void HandleShutter(object sender, EventArgs args)
 {
 CameraView.NotifyShutter();
 }

Then we have the HandleFlash function responsible for updating the FlashOn property of
the view-model and calling the NotifyFlash method on the CameraView:

 public void HandleFlash(object sender, EventArgs args)
 {
 _model.IsFlashOn = !_model.IsFlashOn;
 CameraView.NotifyFlash(_model.IsFlashOn);
 }

The HandlePictureTaken function is called every time the camera button is touched and
data is received from the native camera. We then pass the byte array back to the view-
model using the AddPhoto method:

 public void HandlePictureTaken(object sender, byte[] data)
 {
 if (_model.CanCapture)
 {
 _model.AddPhoto(data);
 }

 }

Next we have the HandleCameraAvailability method, which is called when the native
camera availability status changes. If the camera is available, we the set the view-model
properties, assign the starting orientation, and set up IsVisible bindings on the camera
button containers to the PageOrientation property of the view-model.

We must set up the IsVisible bindings after the camera has become
available because a layout pass is not called on items that are invisible
when the page is loaded. We need the height and width to be set on these
items even if the items are invisible.

 public void HandleCameraAvailability(object sender, bool available)
 {
 _model.CanCapture = available;

Building a Camera Application

[493]

 if (available)
 {
 _model.CameraLoading = false;

 // wait until camera is available before animating focus
target, we have to invoke on UI thread as this is run asynchronously
 Device.BeginInvokeOnMainThread(() =>
 {
 // set starting list opacity based on orientation
 var orientation = (Height > Width) ?
Orientation.Portrait : Orientation.LandscapeLeft;
 // set starting orientation
 HandleOrientationChange(null, orientation);

 // these bindings are created after page intitalizes
PhotoEditLayout.SetBinding(VisualElement.IsVisibleProperty, new
Binding("PhotoEditOn"));

 // camera button layouts
CameraButtonContainerLandscape.SetBinding(VisualElement.OpacityProperty,
new Binding("PageOrientation", converter: new
OrientationToDoubleConverter(), converterParameter: "1, 1"));
CameraButtonContainerLandscape.SetBinding(VisualElement.IsVisibleProperty,
new Binding("PageOrientation", converter: new OrientationToBoolConverter(),
converterParameter: "true, false"));
CameraButtonContainerPortrait.SetBinding(VisualElement.OpacityProperty, new
Binding("PageOrientation", converter: new OrientationToDoubleConverter(),
converterParameter: "0, 1"));
CameraButtonContainerPortrait.SetBinding(VisualElement.IsVisibleProperty,
new Binding("PageOrientation", converter: new OrientationToBoolConverter(),
converterParameter: "false, true"));

 FocusView.Reset();
 });
 }

 }

Now we must add the OnNavigatedTo method. Here we will set a new binding on the
IsVisible property of the LoadingView.

Remember, we must set the IsVisible binding after the page has done
the layout so that the LoadingView bounds are set correctly according to
the Grid.

Building a Camera Application

[494]

We must also call the SetFocusPoints on the FocusView to set the starting focus points in
both landscape and portrait. These starting points will be calculated from the height and
width properties to get the center of the screen. Then we call NotifyOpenCamera to begin
the process on the native camera to initialize it and open the camera. On only for iOS do we
call the NotifyWidths method, so the widths of the button container are passed to the iOS
native camera class:

 public void OnNavigatedTo(IDictionary<string, object>
navigationParameters)
 {
 _model.CameraLoading = false;

 LoadingView.SetBinding(VisualElement.IsVisibleProperty, new
Binding("CameraLoading"));

 _model.CanCapture = CameraView.CameraAvailable;

 switch (PageOrientation)
 {
 case Orientation.Portrait:
 FocusView.SetFocusPoints(new Point(Width / 2, Height /
2),
 new Point(Height / 2, Width /
2));
 break;
 case Orientation.LandscapeLeft:
 case Orientation.LandscapeRight:
 FocusView.SetFocusPoints(new Point(Height / 2, Width /
2),
 new Point(Width / 2, Height /
2));
 break;
 }

 CameraView.NotifyOpenCamera(true);

#if __IOS__
 CameraView.NotifyWidths (CAMERA_BUTTON_CONTAINER_WIDTH);
#endif

 this.Show(navigationParameters);
 }

Building a Camera Application

[495]

Lastly, we have the HandleDelete method for removing the photo edit view and clearing
the image bytes to free memory:

 public void HandleDelete(object sender, EventArgs args)
 {
 _model.ResetEditPhoto();
 }

 #endregion
 }

Excellent! We now have implemented our entire CameraPage and native camera
implementation for iOS and Android.

Challenge
We have built almost everything in the Camera.Portable and Camera projects, but there
are still pieces missing. Here is another challenge. Fill in the missing pieces of the solution
and get it compiling The remaining files are the exact same from all our other
Xamarin.Forms solutions, but now it is your turn to finish off the project.

To see the finished version, refer to h t t p s : / / g i t h u b . c o m / f l u s h a r c a d e / c

h a p t e r 8 - c a m e r a.

Summary
In this chapter, we built complete control over the native camera hardware for iOS and
Android. We looked at implementing Grid changes using Converters, and built
CustomRenderers for accessing native tinting features and touch events. We also created
event triggers for buttons and PlatformEffects for creating shadow on a Label on the
MainPage.

Congratulations! We have made it to the end of our Xamarin journey.

https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera
https://github.com/flusharcade/chapter8-camera

Index

A
ALAssetLibrary class 30
Android navigation service
 building 278, 279
Android text-to-speech implementation 68, 69
Android
 IoC, setting up with 70
 MVVMCross, setting up with 159
architectural layers
 application/platform layer 248
 business layer (logic) 248
 common layer 248
 data access layer 248
 data layer 248
 service access layer 248
 user interface layer 248
asynchronous locking 332
audio player application
 Android SoundHandler, implementing with

MediaPlayer framework 179, 180, 181
 AudioPlayerPageViewModel, creating 172, 175,

177, 179
 bindings, creating 152, 153
 IoC, with MVVMCross 148
 iOS SoundHandler, implementing with

AVAudioPlayer framework 161
 MVVMCross, setting up inside Portable Class

Library 155
 MVVMCross, setting up with Android 158
 MVVMCross, setting up with iOS 156, 157
 Mvx IoC container 164
 MvxActivities 184, 186, 187, 190, 191
 NSLayout, using 168, 171
 NSLayoutConstraints 153, 155
 solution setup 147
 SoundHandler interface 160

 user interaface, building to control audio 165,
167

 view-models, with Xamarin native 150
 XML, and Mvx bindings 183
AuthenticationRepository
 AccountController, building 260, 262
 OAuth Authentication, configuring with Web API

262

 setting up 257
 SignalR Hub, building 263, 265
 Web API, configuring 259, 260
authorization server
 creating, OWIN OAuth 2.0 used 254
Autofac
 using 57, 58
AVAudioPlayer framework
 used, for implementing iOS SoundHandler 161

B
Bearer tokens 252
behaviours 377
bindings
 about 65
 creating 152
bitmap functions 26, 27, 28

C
C# 6.0 syntax 339
camera application
 Android Camera2 framework, integrating 426,

427, 429, 430, 432, 433, 434, 436, 437, 440,
441, 442, 443, 444

 CameraPage, building 474, 476, 479, 480, 481,
482, 485

 CameraView, building 405, 406, 407, 408, 409
 CameraViewRenderer, building in Android 446,

447, 448

[497]

 control, building for iOS camera 409, 410, 412,
413, 414, 415, 417, 418, 420, 421

 custom UI objects, creating 395, 397
 CustomImageRenderer for Android, building

459, 460, 461, 462, 463, 464
 CustomImageRenderers, building 453, 455,

457, 458
 Easing.SinIn 468
 Easing.SinOut 468
 event triggers, adding for button click events 465
 FocusView, building 399
 INotifiedPropertyChanged implementation,

improving 388, 390, 391, 392, 393
 iOS CameraRenderer, building 423, 424, 425
 MainPageViewModel class, building 387
 native orientation events, adding 488, 491, 492
 native orientation events, building 490
 native touch events, handling through FocusView

448, 449, 450, 451
 platform effects 469, 471
 RX, used for handling events 452
 solution setup 385
 UIImageEffects class, building 458, 459
 VisualElementRenderer, building for iOS 452,

453

chat application
 Android ChatActivity, building 322, 325
 Android TableLayouts 321
 AuthenticationRepository, setting up 257, 259
 ChatPresenter, building 312
 ClientListViewController, creating 302
 clients, running 326
 ClientsListActivity, creating 306
 ClientsListPresenter, implementing 297, 299,

300, 301
 connection, creating between Presenter and

View 287, 288, 290
 Hub proxy callbacks, handling 282
 iOS ChatView, building 314
 ListAdapter, building 309
 LoginActivity, building 292, 294, 295, 297
 LoginPresenter, implementing 284
 OnBackPressed() activity, overriding 308
 server, running 326
 TaskCompletionSource framework 305

 UIColor framework, extending 318, 320
client message handlers 127
CLLocationManager library 90
commands 62
compound animations, Xamarin.Forms 402
core location 76
cross-platform development
 with Xamarin.Forms 42
custom elements
 styles, adding for 235
custom renderers 232

D
data contract 118
data trigger 465

E
event trigger 465
EventHandlers 280
Extensible Application Markup Language (XAML)

42

F
file storage application
 alerts, handling in view-models 344
 AsyncLock, creating 334
 AsyncSemaphore, creating 332, 335
 CarouselView, building with custom layouts 350,

352, 353, 354
 cross-platform logging, implementing 337, 338
 CustomRenderer, building for native gestures

356, 359, 362, 364
 data access layer, creating with SQLite 329,

330, 331
 EditFilePage, building 376
 ExtendedContentPage, building 349
 IMethods interface, building 346, 348
 IoC container, implementing 336
 ISQLiteStorage interface, building 331
 modules, implementing 336
 native setup requirements, implementing for

SQLite 335
 project structure setup 328
 scroll control, adding to CarouselView 354
 SQLiteStorage class, implementing 339

[498]

 SynchronizationContext, using 374, 375
 user interface, building 366, 368, 369, 371, 373

G
gallery application
 ALAssetLibrary, using 29, 31, 32
 Android photo screen, adding 37, 38, 39
 Android project, creating 17
 bitmap processing 26, 27
 cells apperance, customizing 12, 15
 iOS photo screen, adding 33, 34, 36
 iOS project, creating 8
 ListView, creating 17
 row appearance, customizing 21, 22, 23, 24, 25
 shared projects, creating 19, 20, 21
 UITableView, creating 9, 12
 UIViewController, creating 9, 12
 XML interface, creating 18
Google API 119
GPS 76
GPS locator application
 Android, and LocationManager 101, 102, 104
 API key, creating for Android 107, 108, 110
 API key, creating for geocoding 120
 Application class 116, 117
 client message handlers 127
 CLLocationManager library 90, 91, 92, 93
 closest position, calculating 140, 143, 145
 core location services, with Windows Phone 114,

115

 core location, with iOS 90, 91, 92, 93, 109
 core location, with Windows Phone 112
 exit point, creating 105, 107
 GecodingWebServiceController, creating 121,

123, 124
 GeocodingWebServiceController, using 134
 Google Maps, integrating with

Xamarin.Forms.Maps 87, 88
 JSON data, feeding into IObservable framework

130

 location updates, handling 94, 95, 96, 97, 98, 99
 Microsoft HTTP client libraries 126
 ModernHttpClient 127, 128, 130
 navigation control, building 80
 navigation with Xamarin.Forms 78

 Newtonsoft.Json 125
 OnNavigatedTo function 136
 OnShow function 136
 project, setting up 76
 Pythagoras equirectangular projection 139
 Reactive Extensions, importing 89, 132
 Resource (RESX) files 132
 view model navigation 82, 84, 86
 Windows project, creating 110, 111
Grid 66
GZIP 129

H
HttpClientHandler 127
Hub 249
hub proxy 281
Hub proxy callbacks
 handling 282
HubConnection 249
HubProxy 249

I
IGeolocator 88
IoC container 56
IoC
 about 55
 implementing, with Windows Phone 72
 setting up, with Android 70
 with MVVMCross 148
iOS navigation service
 building 277
iOS text-to-speech implementation 59, 60, 61, 62,

65

iOS
 MVVMCross, setting up with 156, 157

L
ListView
 creating 17
locking 332
LoginPresenter
 implementing 284

[499]

M
Microsoft HTTP client libraries 126
mobile projects
 application state 276
 setting up 266
 SignalRClient, creating 267, 268, 269, 270,

271, 272
 WebApiAccess layer, building 272, 274
Model-View-Presenter (MVP) pattern 247
Model-View-View-Model (MVVM) 42
Modules 58, 60
multi trigger 465
MVVMCross
 setting up, in Portable Class Library 155
 setting up, with Android 158
 setting up, with iOS 156, 157
Mvx IoC container 164

N
navigation service
 Android navigation service, building 278, 279
 iOS interface, building 280
 iOS navigation service, building 277
 setting up 276
Newtonsoft 125

O
Open Web Interface for .NET (OWIN)
 about 253
 authorization server, creating with OWIN OAuth

2.0 254
 OAuthAuthorizationServerProvider 254
 UseOAuthBearerAuthentication 256
OWIN OAuth 2.0
 used, for creating authorization server 254

P
platform independent styling 73
Portable Class Library (PCL) 43
Portable Class Library
 MVVMCross, setting up in 155
Presenter 281
property trigger 465
Pythagoras equirectangular projection 139

R
race conditions 332
Reactive Extensions 89
RX framework 89

S
Shared C# App Logic block 43
SignalR
 about 249
 setting up 250, 251, 252
SignalRClient 275
Speech Talk application
 Android text-to-speech implementation 68, 69
 Autofac, using 57, 58, 59
 bindings, setting up 65, 68
 Inversion of Control (IoC), with Xamarin.Forms

56

 IoC, implementing with Windows Phone 72
 IoC, setting up with Android 70
 iOS text-to-speech implementation 59, 60, 61,

62, 65
 platform independent styling 73
 platform projects, setting up 44
 SpeechTalk.Droid project, setting up 49
 SpeechTalk.iOS project, creating 47
 Windows Phone Project, creating 50, 51, 54
 WinPhone text-to-speech implementation 71
SQLite 329
SQLiteStorage object 332
StockItemDetailsPageViewModel
 creating 235
Stocklist application
 API controller, building 197, 199
 ASP.Net Web API 2 project, creating 194, 195,

196

 core mobile projects, building 200
 custom renderer, applying 232
 DataTemplate, adding to global resource

dictionary 225, 226
 further optimization, with XAML 228, 229
 global App.xaml, creating 207
 ListViews, using 218, 219, 221
 MainPageViewModel, updating 213, 214
 mobile projects, setting up 199

 native platform projects, setting up 238, 239
 ObservableCollections, using 218, 219, 221
 performance, improving 201, 202, 203, 205,

206

 StockItemDetailsPage, creating 229, 230
 StockItemDetailsPageViewModel, creating 235
 Stocklist web service controller, creating 216,

218

 styles, adding 226, 227
 styles, adding for custom elements 235
 theming, with ControlTemplates 209
 value converters 224
 Web API project, hosting locally 239, 240, 241
styles
 adding, to custom elements 235

T
triggers
 about 465
 data trigger 465
 event trigger 465
 multi trigger 465
 property trigger 465

U
UITableView
 creating 11
UIViewController

 creating 9, 10, 11
URIs 26

V
value converters 224
view-models
 with Xamarin native 149

W
web service 118
Windows phone version
 building 381
Windows Phone
 IoC, implementing with 72
Windows Presentation Framework (WPF) 42
WinPhone text-to-speech implementation 71

X
Xamarin.Forms animations 400
Xamarin.Forms animations, functions
 FadeTo 400
 LayoutTo 400
 RotateTo 400
 ScaleTo 400
 Translate.To 400
Xamarin.Forms
 compound animations 402

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building a Gallery Application
	Create an iOS project
	Creating a UIViewController and UITableView
	Customizing a cell's appearance
	Creating an Android project
	Creating an XML interface and ListView
	Shared projects
	Custom row appearance
	Bitmap functions
	The ALAssetLibrary
	Adding the iOS photo screen
	Adding the Android photo screen
	Summary

	Chapter 2: Building a SpeechTalk Application
	Cross-platform development with Xamarin.Forms
	So how would this look in Xamarin.Forms?

	Setting up platform projects
	So what is happening here?

	Setting up the SpeechTalk.iOS project
	Setting up the SpeechTalk.Droid project
	Xamarin.Forms, Windows Phone, and Visual Studio
	What can we see here?

	Inversion of Control (IoC) with Xamarin.Forms
	So why should we use it?
	So how do we benefit from this?

	Autofac
	iOS text-to-speech implementation
	Bindings
	Android text-to-speech implementation
	Setting up IoC with Android
	WinPhone text-to-speech implementation
	IoC with Windows Phone
	Platform independent styling
	Summary

	Chapter 3: Building a GPS Locator Application
	Core location and GPS
	Project setup
	Navigation with Xamarin.Forms
	Why would we do this?
	Building the navigation control
	View model navigation
	Integrating Google Maps using Xamarin.Forms.Maps
	Reactive Extensions
	Core location with iOS and the CLLocationManager library

	Handling location updates
	Android and the LocationManager
	Creating an exit point
	Creating an API key for Android
	Creating our Windows project
	Core Location Services with Windows Phone
	The Application class
	Web services and data contracts
	What about data contracts?
	Creating another API key for geocoding
	Creating GeocodingWebServiceController
	Newtonsoft.Json and Microsoft HTTP client libraries
	ModernHttpClient and client message handlers
	Feeding JSON data into the IObservable framework
	More Reactive Extensions
	Resource (RESX) files
	Using GeocodingWebServiceController
	OnNavigatedTo and OnShow
	Pythagoras equirectangular projection
	How are we going to calculate the closest position?

	Summary

	Chapter 4: Building an Audio Player Application
	Solution setup
	Inversion of control with MVVMCross
	View-models with Xamarin native
	Creating the bindings
	NSLayoutContraints
	MVVMCross setup inside the PCL
	Setting up MVVMCross with iOS
	Setting up MVVMCross with Android
	The SoundHandler interface
	Implementing the iOS SoundHandler using the AVAudioPlayer framework
	The Mvx IoC container
	The audio player
	A cleaner code approach to NSLayout
	Creating AudioPlayerPageViewModel
	Implementing the Android SoundHandler using the MediaPlayer framework
	XML and Mvx bindings
	MvxActivities
	Summary

	Chapter 5: Building a Stocklist Application
	Understanding the backend
	Creating an ASP.Net Web API 2 project
	Building an API controller
	Setting up the mobile projects
	Building core mobile projects
	Improving app performance
	Creating a global App.xaml
	Theming with ControlTemplates
	Updating the MainPageViewModel
	Creating the Stocklist web service controller
	ListViews and ObservableCollections
	Value converters
	Adding a DataTemplate to the global resource dictionary
	Styles
	Further optimization with XAML
	Creating StockItemDetailsPage
	Custom renderers
	Adding styles for custom elements
	Creating StockItemDetailsPageViewModel
	Setting up the native platform projects
	Hosting the Web API project locally
	Summary

	Chapter 6: Building a Chat Application
	The Model-View-Presenter (MVP) pattern
	So why bother with this approach?

	Architecture
	How do we determine which layers our project needs?

	SignalR
	Starting with Open Web Interface for .NET (OWIN)
	Creating an authorization server using OWIN OAuth 2.0
	OAuthAuthorizationServerProvider
	Use OAuthBearerAuthentication

	Setting up the AuthenticationRepository
	Configuring the Web API
	Building the AccountController
	Configuring OAuth Authentication with our Web API
	Building the SignalR Hub

	Setting up mobile projects
	Creating the SignalRClient
	Building the WebApiAccess layer
	Application state

	Setting up the navigation service
	Building the iOS navigation service
	Building the Android navigation service
	Building the iOS interface

	Handling Hub proxy callbacks
	Implementing the LoginPresenter
	Creating the connection between Presenter and View
	Building the LoginActivity
	Implementing the ClientsListPresenter
	Creating ClientListViewController
	The TaskCompletionSource framework
	Creating the ClientsListActivity
	Overriding the OnBackPressed activity
	Building the ListAdapter
	Building the ChatPresenter
	Building the iOS ChatView
	Extending the UIColor framework
	Android TableLayouts
	Building the Android ChatActivity
	Running the server and clients
	Summary

	Chapter 7: Building a File Storage Application
	Project structure setup
	Building a data access layer using SQLite
	Building the ISQLiteStorage interface
	Adding additional threading techniques
	How do we solve this problem?

	Creating the AsyncSemaphore
	Creating the AsyncLock
	Implementing native setup requirements for SQLite
	Implementing the IoC container and modules
	Implementing cross-platform logging
	Implementing the SQLiteStorage class
	Introduction to C# 6.0 syntax
	Handling alerts in view-models
	Building the IMethods interface
	Building the ExtendedContentPage
	Why are we implementing two different techniques for showing alerts?

	Building a CarouselView using custom layouts
	Adding scroll control to the CarouselView
	Building a CustomRenderer for native gestures
	Building the user interface
	Using a SynchronizationContext
	How do we know this context is from the main UI thread?

	Building the EditFilePage
	Behaviours
	Challenge
	Building the Windows Phone version
	Summary

	Chapter 8: Building a Camera Application
	Solution setup
	Building the MainPageViewModel class
	Improving the INotifiedPropertyChanged implementation
	Creating the custom UI objects
	Building the FocusView
	Xamarin.Forms animations
	Xamarin.Forms compound animations
	Building the CameraView
	Building a control for the iOS camera
	Building the iOS CameraRenderer
	Integrating the Android Camera2 framework
	Building the CameraViewRenderer in Android
	Handling native touch events through the FocusView
	Using RX to handle events
	Building a VisualElementRenderer for iOS
	Building the CustomImageRenderers
	Building the UIImageEffects class
	Building the CustomImageRenderer for Android
	Triggers
	Easing.SinIn
	Easing.SinOut

	Platform effects
	Building the CameraPage
	Adding native orientation events
	Challenge
	Summary

	Index

