
www.allitebooks.com

http://www.allitebooks.org

Xamarin Mobile Application
Development for iOS

If you know C# and have an iOS device, learn to use
one language for multiple devices with Xamarin

Paul F. Johnson

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Xamarin Mobile Application Development for iOS

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1181013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-918-3

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Paul F. Johnson

Reviewers
Yaroslav Bigus

John Goodwin

Andri Yadi

Acquisition Editor
Kevin Colaco

Commissioning Editor
Shaon Basu

Copy Editors
Alisha Aranha

Dipti Kapadia

Kirti Pai

Lavina Pereira

Laxmi Subramanian

Technical Editors
Nikhita K. Gaikwad

Menza Mathew

Project Coordinator
Akash Poojary

Proofreader
Lawrence A. Herman

Indexer
Monica Ajmera Mehta

Production Coordinators
Nitesh Thakur

Manu Joseph

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Paul F. Johnson has been writing about software since the days of the old 8-bit
micros in the 1980s, with his first piece on software being published in 1984 for
BBC Micro. From there, his passion to learn and develop increased, along with his
love for chemistry. For many years, he married the two at the University of Salford,
culminating in commercial work for RiscStation Ltd. as well as working on the
award winning Scribus desktop publishing application.

For many years, he contributed a great amount of time to the Fedora Project (a
community-based Linux distribution sponsored by RedHat) and, in 2002, he started
becoming interested in the Mono project from Ximian. That was the beginning of the
end of his time in the field of education and, over the next 10 years, he learned how
to code in VB.NET. and C#. Ximian was sold to Novell, which was in turn bought
out, and from that, Xamarin was born. The rest is history.

With the advent of a workable .NET system that can be used in a non-Windows
environment, the stage was set for the hard work to begin. When Xamarin released
monodroid, he could see that his years of learning could now be turned into a profit.
He started developing code full-time for the platform. Shortly afterwards, he began
working on iOS devices as well.

At the start of 2013 he, along with Andrei and his good friend Scott, formed Sporkish,
the objective being to produce unbeatable software for the mobile world.

This is his first foray into the world of books, though he has had many articles
published in the Overload and C Vu journals of Association of C and C++
Users (he edited the latter for over a year). He is currently developing mobile
applications for Farmtrack Pty (Australia) and HelloU (London, UK), and is in
discussions with Packt Publishing on the publication of another book, this time
on AI and Expert Systems.

Paul is 42, lives with his wife, dog, cats, and son, and drinks way too much coffee!

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

There are many people I have to thank for their assistance with this book. My biggest
thanks has to go to my wife Becki and son Richard, who have had to put up with
me working three jobs at once in order to get this done. I should also mention my
daughter Ashleigh, for bringing me biscuits and fizzy drinks while I worked.

I'd like to thank my parents for the great lesson that the best way to get ahead in life
is to get off your backside and do it. Without them getting me my first computers,
this book would never have been written and I'd still be in some awful FE College
somewhere, teaching the same things day after day.

Jock and William at Farmtrack have been a great source of inspiration, without
whom this book would probably have not been written by me—they really gave me
my iOS break; so thanks guys, this is down to you and your belief in me.

I must also thank Scott. He probably doesn't know how much of an influence he has
been on me in these last five years. His hand has guided, shaped, and smacked me
when I needed to be and without his encouragement I would have never have left
education. All this, when I have never even met him. I will one day, and until then,
our 5-hour Skype calls shall continue.

Have I missed anyone? Well, in no particular order…

Willow, John King (Southport College), Dr. Derek Bloor (University of Salford;
sadly, no longer with us), Dr. Trevor Crowley, Roger Darlington, Dr. Andrew Hill,
Trevor Green (HelloU), Neil Hewitt (South Cheshire College), Yogesh and Akash at
Packt Publishing for being patient, and Steve Hopley and Chris Ignatius (St Helens
College). Roy Heslop at CTA Direct deserves a big mention for helping me out when
my computer decided to die. And not forgetting Andrei either!

This book is dedicated to anyone who wants to learn and wants to progress.

Enjoy!

Paul

Newton-le-Willows, 10th Sept 2013

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Yaroslav Bigus is an expert in building cross-platform web and mobile apps. He
has over four years experience in development and has worked for companies in
Leeds and New York. He has been using the .NET Framework stack for developing
back-end systems, JavaScript for front-end systems, and Xamarin for mobile devices.

He has also worked at CTN Systems (New York, USA) and Fluid Four (Leeds, GB).
He is now working for an Israeli startup called yRuler.

I'd like to thank my mother Lesya for all the love and attention that
she showered on me to make me a good human being. Also, my dear
friends and my lovely woman for being with me during hard times.

www.allitebooks.com

http://www.allitebooks.org

John Goodwin was born in 1979 on South Korean soil as an American citizen to
US Army parents. He moved a lot with his family, eventually spending much of his
youth in Washington State.

After meeting his wife Jane, he moved to California, where he soon became
employed as a professional software developer for a company in Canoga Park, CA,
known as Cyberspace Headquarters, LLC. While working there for several years,
he progressed from the the new guy to Lead Software Developer, in charge of two
or sometimes three other software developers as well as off-shore development
projects. The economic downturn of IT companies post 9/11 eventually took its toll,
and he moved with his wife further out of the city to look elsewhere for employment.

Next, he took up some teaching opportunities in the rural northern Los Angeles
County, and was also a short-term employee at a Simi Valley factory, looking to
improve worker efficiencies. Soon, he heard of an opening in the city of Los Angeles
as a contract software developer; he was interviewed and started work.

During the housing boom from 2002 to 2006, it was very clear that Southern
California's bubble was about to burst. He and his wife sold their home in favor
of moving to Lake Royale, where he continued to work for the City of Los Angeles
by telecommuting.

After working for seven years for the City of Los Angeles, he started working at
CareAnyware, developing healthcare related software for home health and hospice.

CareAnyware was soon after purchased by Brightree, where he continues to work,
writing post-acute healthcare software with a great team.

His passion for bringing technology to bear on creating value in the lives of others is
mysteriously tolerated by his loving wife.

Unable to find a normal way to work out and keep fit, he participates in local sprint
triathlons (and maybe he will participate in a half triathlon in 2014), which motivates
his workout schedule.

His brother, mother, and stepfather all contribute to his family support structure.

www.allitebooks.com

http://www.allitebooks.org

Andri Yadi is a developer, entrepreneur, influencer, and educator in the IT
industry, especially the mobile apps field. As a developer, he has been developing
in many well-known programming languages since he was 16. Since iOS SDK was
first released in 2008, he's been one of the early adopters of Objective-C and iOS SDK.
As an entrepreneur, he has founded four software companies since 2003. The last
one is PT. Dycode Cominfotech Development (DyCode), where he put all his heart,
time, thoughts, and passion for the last 6 years. As an influencer, he has been actively
influencing the mobile apps industry and the developer community in Indonesia.
He co-founded four developer communities; one of them is the ID-Objective-C
community, Indonesia's first and biggest iOS developer community, where he also
serves as the president. For his technical expertise and community influence, he's
received the Microsoft Most Valuable Professional (MVP) award 6 years in a row.
As an educator, he has been delivering more than 100 speeches and training. Lately,
he's been actively talking about iOS and the Microsoft Windows Azure development,
and delivering regular iOS app development training.

This book is dedicated to knowledge seekers; ones who always stay
hungry and stay foolish.

I'm very thankful to my future wife, Gina Rizka Ariany, for her
incredible support. I also thank my parents for their unconditional
love and everything else. Thanks to DyCoders, for supporting me
when reviewing this book, my fellow community for sharing, and
fellow professionals for challenging me.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of
books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

For Becki,

This book is for you. You have stood by me through this, kept me on track and loved
me throughout. I can never thank you enough for what you have done and for that,

this work is for you. Thank you my love.

Table of Contents
Preface	 1
Chapter 1: Installing the Xamarin Product Range for
Android and iOS	 5

Installing Xamarin.iOS and Xamarin.Android	 5
Downloading the software	 6
Installing the software	 6

Enabling Visual Studio to build and run iOS applications	 6
On the Mac	 7
On the PC	 7

Installing additional code for Android development	 10
For iOS users	 10

Summary	 11
Chapter 2: The User Interface	 13

Creating the User Interface with Xcode	 13
Screen origins and sizes	 18

MonoTouch.Dialog (MT.D)	 18
Changing the keyboard type 	 20

Using ShouldReturn	 20
Using ResignFirstResponder	 21
Adding a toolbar to the keyboard	 21

Creating your own Pickers on MT.D	 25
UITableView and UITableViewCell	 29
Colors, buttons, and labels	 29

Ensuring you have the correct size bounding boxes	 30
UIColor	 30
UIButton	 31
UIControlStates	 33

Summary	 33

Table of Contents

[ii]

Chapter 3: Views and Layouts	 35
Selection of the project type	 35

Application types and their view types	 36
The iOS layout	 36

The Canvas model	 36
How to avoid some of these problems	 37

Views and View Controllers	 37
Other Views	 38

Activity Indicator and Progress View	 39
UIImageView	 40
UICollectionView	 41
UIWebView	 42
MapView	 44
UIScrollView	 44
AdBannerView	 45

Implementing a view with multiple View Controllers	 45
Summary	 46

Chapter 4: Controllers	 47
UITableView and UITableViewCell	 47

Creating a read-only table	 49
UITableViewCell	 51

Reusable cells within a table	 52
Sections and Rows	 52
Indexes on a TableView	 53

Navigation with UITableView	 53
Within code	 53
With Xcode	 54

Navigation using UITableView	 56
Returning to the RootView	 57

TabBars	 57
Handling the Tab Bar in code	 58

PageControl	 59
GLKit	 59
Summary	 59

Chapter 5: UI Controls	 61
Controls and widgets	 61
UI Controls	 62

Control selection	 62
UIButton	 63

UIStepper	 65
The other controls	 66

Comparing Android to iOS UI controls	 67
Summary	 68

Table of Contents

[iii]

Chapter 6: Events	 69
Handling events	 69

Delegates	 69
Attaching an event to multiple controls	 70

Synchronous versus asynchronous event handling	 71
Synchronous walk	 71
Asynchronous walk	 71
In a programming context	 71

Events and controls reference	 73
Other significant control events	 73

AVAudioPlayer and AVRecordClass	 74
AVAudioSession	 74
ABAddressBook	 75
ABNewPersonViewController	 75
ABPeoplePickerNavigationController	 75
ABPersonViewController	 76
ABUnknownPersonViewController	 76
AudioConverter	 76
AudioSession	 76
InputAudioQueue	 77
OutputAudioQueue	 77
AUGraph and AudioUnit	 77
AudioConverter	 77
CAAnimation	 77
CBCentralManager	 78
CBPeripheral	 78
CBPeripheralManager	 79
CFSocket	 80
CFStream	 80
CLLocationManager	 80
MidiClient	 81
MidiEndpoint and MidiPort	 81
Monotouch.Dialog	 81
BadgeElement, BaseBooleanImageElement, GlassButton, LoadMoreElement,
MessageElement, and StringElement	 82
BoolElement	 82
DateTimeElement	 82
DialogViewController	 82
EntryElement	 83
StyledStringElement	 83
EKCalendarChooser	 83
EKEventEditViewController and EKEventViewController	 83
EAAccessory	 84

The NS classes	 84
NSCache	 84
NSKeyedArchiver	 84
NSKeyedUnarchiver	 85
NSNetService	 85

Table of Contents

[iv]

NSNetServiceBrowser	 85
NSStream	 86
GLKView	 86
GK classes	 86
GKAchievementViewController, GKFriendRequestComposeViewController,
and GKLeaderboardViewController	 86
GKGameCenterViewController	 86
GKMatch	 87
GKMatchmakerViewController	 87
GKSession	 87
MKMapView	 88
MPMediaPickerController	 89
MFMailComposeViewController and MFMessageComposeViewController	 89
PKAddPassesViewController	 89
QLPreviewController	 89

SK classes	 89
SKProductsRequest	 90
SKRequest	 90
SKStoreProductViewController	 90

UIClasses	 90
UIAccelerometer	 90
UIActionSheet and UIAlertView	 91
UIButtonBarItem	 91
UIImagePickerController	 91
UIPageViewController	 91
UIPopoverController	 92
UIPrintInteractionController	 92
UIScrollView	 92
UISearchBar	 93
UISplitViewController	 93
UITabBar	 93
UITabBarController	 94
UITextField	 94
UITextView	 94
UIView	 95
UIWebView	 95

Ad classes	 95
AdBannerView	 96
AdInterstitialAd	 96
OpenTK	 96
IGameWindow	 96
IPhoneOSGameView	 97

Summary	 97
Chapter 7: Gestures	 99

Gestures	 99
Gesture code	 101
Types	 102

Table of Contents

[v]

Adding a gesture in code	 102
Continuous types	 102

Other UIGestureRecognizerState values	 104
Handling drag-and-drop	 104
Summary	 105

Chapter 8: Threading	 107
Threading Concepts	 107
The main UI thread	 108

Deadlocking	 108
Avoiding deadlocks for synchronized accessors	 109

Starting a new thread from the main UI thread	 109
Using locks	 112

The AppDelegate class	 114
Summary	 114

Chapter 9: Threading Tasks	 115
A brief introduction to threading	 115

Using background threading within your app	 116
BackgroundWorker	 116
ThreadPool.QueueUserWorkItem	 119

Using System.Threading.Tasks	 120
Problems while using Tasks on threads	 120

Using Asynchronous code	 121
Tasks and EventHandlers	 121
A more practical example	 121

Summary	 122
Chapter 10: Animation	 123

Handling bitmaps	 123
Scaling the image	 123
Rotating the image – Part 1	 124

Underpinning bindings	 125
Analysis of the code	 125

Freeing memory after use	 126
Rotating the image – Part 2	 128

Summary	 128
Chapter 11: Handling Data	 129

Using SQLite	 129
Installing and setting up SQLite	 129
Database basics	 130

A simple database class	 130
Create a connection to the database	 131

Table of Contents

[vi]

Setting up an SQLite helper class	 132
Writing helper class methods	 133
Adding data to the database	 134

Data manipulation using LINQ	 135
LINQ – a whistle-stop tour	 136

SELECT and WHERE in LINQ – a common cause of confusion	 137
Using Select in LINQ	 137
Replacing SQL with LINQ	 138

Summary	 138
Chapter 12: Peripherals	 139

Using the camera	 139
Accessing the camera (Xamarin.Mobile)	 140
Accessing the camera (Native)	 140
Saving to the Photo album (Native)	 141

GPS and Mapping	 141
GPS with Xamarin.Mobile	 141

Calculating your speed	 143
Using Core Location	 143

Setting up Core Location and delegate	 143
Finding where the user is	 145
Adding a map	 147
Adding a pin	 150

Storage on the phone	 150
Making a phone call	 150
Sending and receiving a text message	 151
Accessing the Internet	 152
Multimedia	 155

Playing a video	 155
External URL	 155
Internal source	 155
From the photo library	 156

Recording a video	 156
To record a video	 156
Saving the video	 157

The audio system	 157
Playback	 157

Recording Audio	 158
Setting up the audio NSDictionary	 159

Summary	 160
Chapter 13: User Preferences	 161

The built-in system	 162
Reading and writing to the .plist file	 163

Table of Contents

[vii]

Rolling your own settings system	 164
Serializing and deserializing data	 164
Setting up the Settings file	 165

The handler class	 165
The data class	 167

Summary	 168
Chapter 14: Testing and Publishing	 169

Provisioning and signing your app	 169
TestFlight	 170

Provisioning	 170
Registering the app	 171
Creating the developer profile	 172
Creating your certificate	 173
Back to registering your app	 174
Enabling TestFlight within Xamarin Studio	 174

Registering on TestFlight	 175
Inviting and registering devices	 176
Building to TestFlight	 178
Releasing your app	 179

App checklist	 180
Icon sizes	 180

Preparing to package	 181
Packaging your app	 182
Creating the build configuration	 182

The App Store Submission Process	 184
Creating an archive	 184
Submission via Xcode	 185
The submission wizard	 185

Summary	 185
Index	 187

Preface
Welcome to this book! What you will find between the covers of this book will
hopefully set you on your way to producing your own iOS applications; not only that,
it will also help you to start writing code that can be moved with the minimum fuss to
Android and Windows 8 mobile phones and tablets. Hold on to your hats folks!

What this book covers
Chapter 1, Installing the Xamarin Product Range for Android and iOS, explains how to set
up your PC or Mac to develop apps for your iOS device.

Chapter 2, The User Interface, deals with creating a user interface and its key components.

Chapter 3, Views and Layouts, explains how creating a user interface isn't just about
putting buttons on a screen; you also need to start with the right application type.

Chapter 4, Controllers, gives the basics of the two most used forms of Navigation and
View. iOS uses an MVC system (Model, View, Controller). We've had the first two,
now let's see about controllers.

Chapter 5, UI Controls, explains how the controls are more than just buttons and
textboxes; we can really go to town on how these bad boys look.

Chapter 6, Events, explains how, without events, your iOS device is nothing more
than a lump of plastic. iOS is rich in events, and they're all here.

Chapter 7, Gestures, covers the operations that iOS makes a big play on, such as being
able to pinch, sweep, and move around the screen. These operations are called
gestures and they're very simple to use!

Chapter 8, Threading, deals with iOS as a multithreaded system. How these threads
interact determines how an app will behave.

Preface

[2]

Chapter 9, Threading Tasks, deals with task scheduling as well as asynchronous tasks.
It explains how Android works with these tasks.

Chapter 10, Animation, gives an insight into animation, as it is an important part of
any app.

Chapter 11, Handling Data, explains how it is surprisingly easy to handle and
manipulate large amounts of complex data within C# and iOS.

Chapter 12, Peripherals, explains how to code to take advantage of the calling and
texting feature on your phone as well as use the GPS system.

Chapter 13, User Preferences, explains how to store your settings for the built-in system
as well as create your own cross-platform settings code. Storing your settings is a
very important part of any app.

Chapter 14, Testing and Publishing, deals with how to test and publish the app after
you have finished developing it.

What you need for this book
A Mac (running OS.X Lion or Mountain Lion) with Xcode installed and a copy of
Xamarin.iOS (you can use the free download version from www.xamarin.com).
If you're using a PC, you'll need to be running Windows 7. It will need a Mac
somewhere on the network to deploy and use Xcode from.

An iPhone or iPad is also useful.

Who this book is for
This book is for those who already code in C#; it is the basic assumption used. You
need not have ever written anything for a mobile device or have coded in Objective
C. If you're interested in developing code for iOS, then you're in the right place.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "A UIImageView has no events attached
to it, so if you need an image that can be clicked on, they can be planted onto a
UIButton class "

Preface

[3]

A block of code is set as follows:

var r = new UIButton();
r.Frame = new RectangleF(0, 0, 100f, 100f);
 // button 100 x 100 at 0, 0
var i = new UIImageView(new RectangleF(15f, 2f, 70f, 70f));
i.Image = UIImage.FromFile("path/toimage.png")
 Scale(new SizeF(70f, 70f));
var l = new UILabel(new RectangleF(2f, 78f, 96f, 20f));
l.Text = "Hello world";
r.AddSubview(i);
r.AddSubview(l);

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The class
needs to be defined in the connector as both an outlet and action (with the Event
selected to be Value Changed)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Installing the Xamarin
Product Range for

Android and iOS
The Xamarin product range covers iOS, OS X, and Android development. This enables
the .NET Framework development on devices that do not natively support it via the
respected and mature Mono framework.

In this chapter we will cover the following topics:

•	 Installing Xamarin.iOS, Xamarin.Android, and Xamarin Studio
•	 Setting up a Windows machine to develop apps for iOS

Installing Xamarin.iOS and Xamarin.
Android
Installing Xamarin for Windows and OS X is a very similar and simple process.
Before you download, you will need to ensure that your computer has the following
requirements as the minimum specifications:

Windows Mac
•	 Windows 7 or Windows 8
•	 Visual Studio 2010 or 2012

•	 OS X Lion or Mountain Lion
•	 Xcode v4.6 or above

For both, the general rule is the more memory you have the better. You also need to
have a live network connection.

Installing the Xamarin Product Range for Android and iOS

[6]

Downloading the software
The website is able to check the operating system you are using and, when you select
download, the correct version for your operating system will be downloaded.

You will need to give Xamarin some basic information before you are allowed to
download the evaluation copy. The evaluation will allow you to develop and deploy
apps for 30 days, after which you will need to purchase a copy. If you have placed
any apps on the Apple store or Google Play, they will no longer function.

On a PC, double-click on the XamarinInstaller.exe file (Windows 8 users should
run this file as an administrator). For Mac users, double-click on the installer.

Installing the software
Depending on your network connection, this can take anywhere up to an hour as
each package is downloaded in turns and then installed. The installation process
is automatic, and anything required for the software to work is installed with the
exception of Xcode—it is simple to check whether you have this installed on your
Mac: click on the Applications directory and look near the bottom for the icon.
If it's not there, go to the App Store and type in Xcode. The download is free.
Unless you have a reason to change the defaults, accept the default setup options
by clicking on Next each time an option is presented.

Enabling Visual Studio to build and run
iOS applications
For Windows to create, build, and deploy iOS applications, it must be connected
to a Mac somewhere on a network. The Mac must also have Xamarin.iOS installed.
This is a two-part process.

Chapter 1

[7]

On the Mac
1.	 Click on the Apple icon and select System Preferences.

2.	 Then you need to select the Security & Privacy preference option.

3.	 Then the firewall will need to be switched off. While this is not normally a
good idea, a majority of internal networks have a sufficiently good firewall at
any router. If you are not happy with this, leave the setting—you just won't
be able to run or develop for iOS under Windows.

On the PC
When Xamarin.iOS for Visual Studio is installed, it also installs a small listener
service called Bonjour. When you try to create an iOS application, Bonjour will
attempt to automatically find a Mac on your network. This may fail, and if it does
you will see the following screenshot:

Installing the Xamarin Product Range for Android and iOS

[8]

You don't need to worry about the error. Click on Dismiss. You will be presented
with a window that allows you to enter the IP address of your Mac.

In this example, the IP address from the Mac on my network has the address shown
in the preceding screenshot. When you click on OK, Bonjour will attempt to attach to
Mac. If it is successful, you will be presented with the following screenshot:

As soon as you see the window shown in the preceding screenshot on your screen,
you are nearly there. The next step is to click on the host machine (highlighted in the
preceding screenshot) and click on Connect. Once done, you're set up on the PC to
develop for iOS under Windows.

All of the tools for development (like the Simulator—a simulated iOS device) can be
either on one of the iPhone or iPad ranges).

Chapter 1

[9]

If the Bonjour service was unable to automatically determine the Mac, you may
need to manually set up the service. This can be performed very easily.

Assuming you're on Windows 7, the following steps will help you set up the
Bonjour service:

1.	 Click on the Start button and select Control Panel.
2.	 On the Control Panel, click on Administrative Tools and from there

select Services. You will be presented with a window, as shown in the
following screenshot:

3.	 Ensure that the status is Started and the startup type is Automatic.
(This will start the Bonjour service when Windows is restarted.)

When using a PC to develop iOS applications, ensure that both the PC
and Mac are running the same version of Xamarin.iOS—if they are out
of step, you will need to install a newer version of Xamarin.iOS on the
device that is out of step.

www.allitebooks.com

http://www.allitebooks.org

Installing the Xamarin Product Range for Android and iOS

[10]

Installing additional code for Android
development
This is different under iOS and PC but the end effect is the same.

When Xamarin.Android is installed on either platform, the compiler and the minimal
set of the Android Software Developers Kit (SDK) is installed. This will let you
get going with the development but not allow you to target a range of devices. It is,
therefore, important to install the SDK for other versions of the Android operating
system. This is preformed using the Android SDK Manager.

To access SDK Manager on a PC, select Start and on the All Programs menu there
is a menu option called Android SDK Tools under which is the Android SDK
Manager. Select the SDK Manager and you will be presented with a new window
that allows you to select the SDK you want.

For iOS users
A part of the installation process on a Mac installs the Xamarin IDE (Integrated
Development Environment)—Xamarin Studio. This is similar in many ways to
Visual Studio and performs a very similar job.

To access the SDK Manager on Xamarin Studio, select Tools followed by Open
Android SDK Manager.

Chapter 1

[11]

In both cases, you will be presented with the following screenshot from the SDK
Manager. It is simplest to select all the SDKs and click on the Install packages...
button to start the process. Depending on your network connection speed, this
process may take a while.

Summary
That's it—you're set up on both a Mac and PC to create amazing applications for
Android and iOS. Your development environments are set up. For the rest of this
book, though, I will concentrate solely on the development of iOS applications and
leave Android to the companion book.

The User Interface
A user interface is the primary method of communication between a device and
the user. The design and appearance is what differentiates a good app from an
amazing one.

In this chapter, we will be covering some of the essential features of the
user interface:

•	 Canvas
•	 MonoTouch.Dialog
•	 Incorporating external views into your user interface
•	 Colors
•	 Labels
•	 Images

Creating the User Interface with Xcode
With the exception of MonoTouch.Dialog, the user interface for any iOS application
is created using Xcode.

When considering how to create a user interface and the positioning of any of the
available widgets, you need to think along the lines of fuzzy felt placed on a canvas.
You are able to place any iOS widget anywhere on the felt.

The User Interface

[14]

To create a simple user interface, create a new iOS application. Click on File then
New. You will be presented with a window as follows:

Click on Single View Application, enter a filename in the Name field, and click on OK
once it is done. Xamarin.iOS will create a directory containing all of the folders and files
required to get you started. Unchecking the Create directory for solution box will still
create the application, but the files will not be held in a directory structure, but instead
wherever the Location path points to. The application can still be edited and worked
on, but there is a good chance that files will be lost or overwritten (for example, if you
work on multiple projects, each project will create an AppDelegate.cs file. When one
is created, the new version will overwrite the old one.)

Chapter 2

[15]

Once the application structure is set up, you will be presented with a new text
editing window shown as follows:

At the bottom of the solution explorer, there are three files that need attention:

•	 testappViewController.cs: This is the file for creating the C# code for
your application

•	 testappViewController.designer.cs: This is a designer file created by
Xamarin.iOS and is based on the user interface created with Xcode

•	 testappViewController_iPad.xib and testappViewController_iPhone.xib:
Any file with a .xib extension is an Xcode designer file

To start Xcode, simply double-click on the .xib file. To edit the .xib
file, you must double-click on either the testappViewController_
iPad.xib or testappViewController_iPhone.xib file depending on the
view controller user interface you wish to edit.

The User Interface

[16]

Xcode is quite a simple designer, but in that simplicity is a very powerful piece of
software. On startup, you will see the following screen:

The Xcode designer is a very complex piece of software. However, because there
are books written on how to use it to its maximum potential, and due to space
constraints, I will limit the discussion here to the minimum.

Chapter 2

[17]

To add a widget, simply select and drop it into the main view. You can drop any
widget more or less anywhere. However, your application won't know anything
about it at all as it needs to be connected. Connecting a widget is simple. The
preceding screenshot shows a button called Connector. Click on this icon and
another frame will appear to the left of the properties frame. To connect a widget,
click on Ctrl and drag it to the Connector frame.

From this point, you have to decide the type of the button: Outlet, Action, or Outlet
Collection. Each is very different and their names are sometimes confusing.

An Outlet button would be normally considered for displaying information and not
accepting events. However, actions, say, click events, are handled in Outlet. If you
connect a button as Outlet, it is considered an interface. It is open to all modifiers
and events available for that object. Outlet Collection is a collection of outlets.
Action is just that—it is a specific action (or event) linked to that object.

There is a major difference, though, between them. If you have a button connected as
Outlet, events have to be specifically added. If you don't do anything with the button
at all, the application will run on your device, but the button will do nothing. If you
have the button connected as Action, the code for the action must be written before
the application is run. Failure to do so will result in the application crashing.

Events will be dealt with in a later chapter.

The User Interface

[18]

Screen origins and sizes
All screens and views start with 0,0 at top left. To obtain the screen size (remember,
this is going to be different for different versions of iPhones and iPads), consider the
following lines of code:

var window = new UIWindow(UIScreen.MainScreen.Bounds);
float ScreenX = window.Screen.CurrentMode.Size.Width;
float ScreenY = window.Screen.CurrentMode.Size.Height;

MonoTouch.Dialog (MT.D)
iOS screens usually contain a lot of data in a list form (think of how Facebook or
Twitter looks). On iOS, these are constructed using UITableView. This is a very
flexible piece of the UI, but can be tricky to code for. To alleviate the problems with
UITableView, Xamarin created the MonoTouch.Dialog class. The benefit of MT.D
is that Xcode is not required for designing the interface so it can just as simply be
created under Windows as well as Mac.

MonoTouch.Dialog views are very simple to create and work on a three-tier system
for design:

•	 Elements: These contain the likes of on/off Boolean switches, strings,
images, and anything else you would normally see in a user interface.

•	 Sections: These hold any number of elements.
•	 Roots: These hold the sections. An MT.D class must have at least one root

element.

There are many different types of elements. In the following example, a simple user
interface is constructed (this code is autogenerated from Xamarin Studio when you
ask it to create an MT.D class):

public partial class Login : DialogViewController{
 public Login() : base (UITableViewStyle.Grouped, null){
 Root = new RootElement(“Login”){
 new Section (“First Section”){
 new StringElement (“Hello”, () => {
 new UIAlertView (“Hola”, “Thanks for tapping!”, null,
 “Continue”).Show();
 }),
 new EntryElement(“Name”, “Enter your name”, string.Empty)
 },
 new Section (“Second Section”){
 },

Chapter 2

[19]

 };
 }
}

When compiled, the code produces the following (the first view is the initial display;
the second view is displayed when the Hello entry is clicked on):

Image A

We would get the following image after clicking:

Image B

The User Interface

[20]

The keyboard does not have to be a standard QWERTY keyboard. It can be one
specific for e-mail addresses, phone numbers, or just numbers. This is defined
using UIKeyboardType.

Changing the keyboard type
Consider the following line of code:

var entryExample = new EntryElement(“Caption”,
 “Type a number here”, string.Empty);

When the preceding line of code is attached to an MT.D class view, tapping the
element will bring up a standard alphanumeric keyboard. For standard entry, this
is fine; in this example, though, a different type of keyboard is required. To set this,
either of the following can be used:

entryElement.KeyboardType = UIKeyboardType.DecimalPad
entryElement.KeyboardType = UIKeyboardType.NumberPad

There is an issue, though, with these keyboards and that is dismissing them. For
the likes of a standard alphanumeric keyboard, a return key can be added to the
keyboard itself using:

entryElement.ReturnKeyType = UIReturnKeyType.Done

The likes of the numeric keyboards do not have a return key, even if ReturnKeyType
is added. There are three ways to sort this:

•	 ShouldReturn

•	 ResignFirstResponder

•	 Add a toolbar to the keyboard with a done button that dismisses the
keyboard

Using ShouldReturn
This is a simple method to use but relies on a return key being on the keyboard:

entryElement.ShouldReturn += delegate {
 adminPhone.ResignFirstResponder(true); // animated
};

Chapter 2

[21]

Using ResignFirstResponder
Unless it is defined in the designer or in code, the FirstResponder method is
whatever control is clicked on first. When something else is clicked (say another
EntryElement but this also applies to any other control), that needs to become
the FirstResponder control. By issuing a ResignFirstResponder method, the
keyboard for that control is closed. Clicking onto a new control should issue a
BecomeFirstResponder control and its keyboard appears (assuming that a keyboard
is associated with the control).

Adding a toolbar to the keyboard
Toolbars are not actually part of the keyboard but can be attached to the keyboard to
provide additional or missing functionality to the keyboard. Adding the keyboard is
different for an MT.D class than for a standard UITextField or UITextView control.

For an MT.D
Here, a subclass of the EntryElement class will be needed to implement the
InputAccessoryView method. While the cell being used can be found by looking at
the TableView from the Root constructor, the InputAccessoryView from this is a
read-only parameter so it cannot be set.

An example of the subclass would be as follows:

public class ToolbarKeyboardEntryElement : EntryElement{
 private UITextField textField;
 public ToolbarKeyboardEntryElement(string caption,
 string placeholder, string value) :
 base(caption, placeholder, value) {
 }

 protected override UITextField CreateTextField(
 System.Drawing.RectangleF frame) {
 textField = base.CreateTextField(frame);
 UIToolbar toolHigh = new UIToolbar() {
 BarStyle = UIBarStyle.Black, Translucent = true
 };
 toolHigh.SizeToFit();
 UIBarButtonItem doneHigh = new UIBarButtonItem(“Done”,
 UIBarButtonItemStyle.Done, (ss, ea) => {

The User Interface

[22]

 textField.ResignFirstResponder();
 }
);
 toolHigh.SetItems(new UIBarButtonItem[] { doneHigh }, true);
 textField.InputAccessoryView = toolHigh;
 return textField;
 }
 private NSString key = new NSString(“CustomEntryElement”);
 protected override NSString CellKey {
 get {
 return key;
 }
 }
 }
}

The EntryElement class in the main code would need to be altered to read.

var entry = new ToolbarKeyboardEntryElement(“Caption”,
 “Enter a number”, string.Empty);

For this example, I have not included the password parameter.

For a standard UITextField
Here, the toolbar (as described in the preceding section) is created but without the
action sheet, and then added to the UITextField method using:

var txtField = new UITextField();
txtField.InputAccessoryView = toolBar;

Image B (section MonoTouch.Dialog (MT.D)) shows the UIAlertView control.
This is a customizable alert box that is usually used for information (for example,
errors, during a slow process to stop the user from getting worried, or if a user
choice is required).

The real beauty of MT.D is that it removes the tedium associated with the
UITableView control. It gives the developer the majority of the facilities required
from the UITableView control without having to mess about. Also, if you need
something special (such as a standard interface button), these can be achieved simply
by creating a subclass of an element type.

Chapter 2

[23]

The basic element types supported in an MT.D class are as follows:

Element Uses Caveats to use
ActivityElement Used to show

that something is
happening (it's a
spinner)

BadgeElement Image with text next
to it

BaseBooleanImageElement Base type for the Booleans,
cannot be used directly
(abstract class)

BooleanElement Simple on/off switch
BooleanImageElement Simple on/off switch

that allows for two
different images to be
displayed

BoolElement Cannot be used directly
(abstract class)

CheckboxElement Tick next to a string
when selected

DateElement Displays a date picker This is a two-part element.
Part one looks like a
standard StringElement
element but with a >
symbol next to the value
on the right. When clicked,
a UIDatePicker element
is displayed. The selected
value is returned in the
value element.

DateTimeElement Displays a date/time
picker

Essentially is the same as
DateElement, except that
it includes the time. The
time can be set in the 12 or
24 hour clock

Element Base element

The User Interface

[24]

Element Uses Caveats to use
EntryElement Allows for data entry The optional fourth

parameter in the
constructor allows for
the entry to be used for
passwords (set as true for
password). The constructor
takes three strings: caption,
placeholder, and value.
Placeholder and value can
be string or Empty, but
caption must have a value.

FloatElement Slider bar Values are float
HtmlElement Caption that leads to

an HTML view
This is a crossover element
in that the originator is just
an Element, but gives a
UIWebView element when
clicked.

ImageElement Produces an image
ImageStringElement Produces an image

with a string next to it
JsonElement Allows for the loading

of content from a local
or remote URL

LoadMoreElement Allows users to add
more items to the list
on screen

MessageElement Consider this as the
sort of message you
find on Twitter

MultilineElement Allows multiple lines
of text to be displayed

Cannot be styled

OwnerDrawnElement Not used directly Must be subclassed.
The Height and Draw
methods must be
overridden

RadioElement A radio element that
allows for a single
option to be chosen
from multiple choices.

Requires a radio group to
be specified in the element

RootElement Base element for the
root

Chapter 2

[25]

Element Uses Caveats to use
StringElement A simple caption on

the left with a value on
the right

This element can also
be used as a button by
providing an anonymous
delegate as the second
parameter (as in the
example above)

StyledMultilineElement Essentially the same as
MultilineElement
except can by styled

StyledStringElement Allow for strings to
be shown using the
built-in styles (such as
colors, fonts, and sizes)
and custom formats.

TimeElement Displays a time picker Same as DateElement,
but for time.

UIViewElement UIView that can be
displayed

Design UIView using
Xcode.

Creating your own Pickers on MT.D
I've decided to demonstrate this using UIPickerView with UIToolBar added to
the top and incorporate it within UIActionSheet.

To start off with, we need two things: an event to latch onto and the model
(containing the information that UIPickerView requires). It's then a case of
wiring the two together.

1.	 First the event:
public class PickerChangedEventArgs : EventArgs {
 public string SelectedValue { get; set; }
}

Actually, this can return anything, not just a string. But for my purposes, I'll
keep it as a string.

2.	 Next is the model:
public class PickerModel : UIPickerViewModel {
 private Ilist<string> myValues;
 public event EventHandler<PickerChangedEventArgs>
 PickerChanged;

The User Interface

[26]

 public PickerModel(IList<string> values)
 {
 myValues = values;
 }
 public override int GetComponentCount(
 UIPickerView picker) {
 return 1;
 }

 public override int GetRowsInComponent(
 UIPickerView picker, int component) {
 return myValues.Count;
 }

 public override string GetTitle(UIPickerView picker,
 int row, int component) {
 return myValues[row];
 }

 public override float GetRowHeight(
 UIPickerView picker, int component) {
 return 40f;
 }

 public override void Selected(UIPickerView picker,
 int row, int component) {
 if (PickerChanged != null) {
 PickerChanged(this, new PickerChangedEventArgs {
 SelectedValue = myValues[row] });
 }
 }
}

Not rocket science—the only important part is that the Selected() method
from the parent class is being overridden to send back the value from the row
selected; everything else overrides the default class settings.

3.	 To wire this into the main MT.D class, EntryElement is used:
EntryElement myElement = null;

4.	 A UIActionSheet element is also needed:
UIActionSheet action = new UIActionSheet();

Chapter 2

[27]

5.	 We then create UIPickerView:
List<string> data = new List<string>() {“Hello”,
 “This is a”, “test”};
Ilist<string> iData = data;
var myPickerViewModel = new PickerModel(iData);
var MyPickerView = new UIPickerView() {
 Model = myPickerViewModel,
 ShowSelectionIndicator = true,
 Hidden = false,
 AutosizeSubviews = true,
};
myPickerView.Frame = new RectangleF(0, 100, 320, 162);
// 320 = screen x size for an iPhone 4

6.	 Next, create UIToolbar and UIBarButtonItem
var toolBar = new UIToolbar() {
 BarStyle = UIBarStyle.Black,
 Translucent = true,
};
toolBar.SizeToFit();
var doneButton = new UIBarButtonItem(“Done”,
 UIBarButtonItemStyle.Done, (s, e) => {
 action.DismissWithClickedButtonIndex(0, true);
 myElement.ResignFirstResponder(true);
});
toolBar.SetItems(new UIBarButtonItem[] { doneButton },
 true);

myPickerViewModel.PickerChanged += (object sender,
 PickerChangedEventArgs e) => {
 myElement.Value = e.SelectedValue;
};

7.	 Create the EntryElement object:
myElement = new EntryElement(“Hello”, string.Empty,
 string.Empty);

8.	 Now it is just a case of using the EntryStarted event to call the picker:

myElement.EntryStarted += (object ss, EventArgs ee) => {
 action.Style = UIActionSheetStyle.BlackTranslucent;
 action.ShowInView(View);
 action.AddSubview(toolBar);

The User Interface

[28]

 action.AddSubview(myPickerView);
 action.Frame = new RectangleF(0, 100, 320, 500);
 myPickerView.Frame = new RectangleF(action.Frame.X,
 action.Frame.Y – 25, action.Frame.Width, 216);
};

When this is all coded in, the result is as follows:

9.	 Subclassing an element is equally simple. The subclass EntryElement allows
only a specific number of characters to be entered:

public class MaxNumberEntryElement : EntryElement {
 private UITextField textField;
 public int MaxLength { get; set; }

 public MaxNumberEntryElement(string caption,
 string placeholder, string value, int maxLength) :
 base(caption, placeholder, value) {
 MaxLength = maxLength;
 }

 protected override UITextField CreateTextField(
 System.Drawing.RectangleF frame) {
 textField = base.CreateTextField(frame);

Chapter 2

[29]

 textField.ShouldChangeCharacters = (UITextField t,
 NSRange range, string replacementText) => {
 int newLength = t.Text.Length + replacementText.Length
 - range.Length;
 return (newLength <= MaxLength);
 };
 return textField;
 }

 private NSString key = new NSString(“CustomEntryElement”);

 protected override NSString CellKey {
 get { return key; }
 }
}

You are still free to use UITableView and UITableViewCell of course.

UITableView and UITableViewCell
The UITableView method is the workhorse of the iPhone. Most, if not all, list data
of whatever description is displayed using the TableView and TableViewCell
methods. If you are a user of Facebook, Twitter, the standard iPhone text message
application, or any form of configuration on the iPhone, you will have used these
two components—this gives you an idea of how much they are used.

The topic is a massive one to cover and will be dealt with further in
Chapter 4, Controllers.

Colors, buttons, and labels
UILabel is the simplest method of putting text onto a screen. It has a very limited
range of actions associated with its use (for example, you cannot use it as something
that is clickable). The color and text of the label can be set, as can the formatting. For
example, consider the following lines of code:

label.Text = “text”; // sets the text label to be “text”
label.TextColor = UIColor.Blue; // sets the text color to be blue
label.BackgroundColor = UIColor.FromRGB(255,255,200);
// sets the background to be yellow

label.TextAlignment = UITextAlignment.Center;
// centres the text in the label

www.allitebooks.com

http://www.allitebooks.org

The User Interface

[30]

The UILabel method has five constructors, of which two are of great use:

•	 UILabel()

UILabel(new RectangleF(x_pos, y_pos, width, height))

The second constructor can be replicated using the Frame property as follows:

•	 UILabel lbl = new UILabel();
lbl.Frame = new RectangleF(x_pos, y_pos, width, height);

One of the main issues with using UILabel is ensuring that the bounding frame is
large enough. There is a way to get around this:

1.	 Make the label much larger than required.
2.	 Calculate the length of the string and, using the Frame property, alter the

size of the label.
3.	 Reduce the font size of the string to ensure it fits.

Both of these approaches have their benefits and disadvantages. The first is that text
will always fit but only if the font size is the system default. The second is that you
will always have the correct size-bounding box, but that you will have to calculate
the size, and that will take time.

Ensuring you have the correct size bounding boxes
This assumes that a label has already been created using Xcode. The label in this case
has a width of 96 (enough to write “More text to”):

string test2 = “More text to fit and boy, does it fit!”;
lblTestLabel.AdjustsFontSizeToFitWidth = true;
lblTestLabel.Text = test2;

UIColor
iOS comes with a number of preset colors (such as red, green, blue, black, and
white). It is also possible to create your own using UIColor.FromRGB[A] as well
as FromHSB[A] (where HSB is hue, saturation, and brightness and [A] is the alpha
channel). Think of the latter as being the colors' opacity. The color can also be set
from a pattern (this is useful, as it creates a color based on an image that can then
be used as a brush to paint the image), CoreImage and CoreGraphicsColor (CI and
CGColor), and FromWhiteAlpha (a gray-scale color based on the current color space).

Chapter 2

[31]

Using CIColor and CGColor requires a lot more legwork but does allow for greater
flexibility in the colors.

The simplest to use, though, is FromRGB. This allows the values to be entered as byte,
int, and float. The caveat here, though, is that the float values go from 0 to 1 rather
than 0 to 255, so the value for 82, 184, 33 would be 0.32, 0.72, 0.13 (that is,
82/255, 184/255, and 33/255).

UIButton
A button is not just a button; it can have a whole range of interesting effects applied
to it (such as the addition of graphics, a gradient color, text, and graphics). Let's
assume a button (btn) has been created in Xcode and we wish to apply a gradient
color to it.

var gradient = new CAGradientLayer();
gradient.Colors = new MonoTouch.CoreGraphics.CGColor[] {
 UIColor.FromRGB(115, 181, 216).CGColor,
 UIColor.FromRGB(35, 101, 136).CGColor
};
gradient.Locations = new NSNumber[] { .5f, 1f };
gradient.Frame = btn.Layer.Bounds;
btn.Layer.AddSublayer(gradient);
btn.Layer.MasksToBounds = true;

CAGradientLayer come from the CoreAnimation namespace.

Adding an image is also quite trivial, though the important point here is to
remember that, when placing anything on a button, you have to treat that button
as a new view with the origin set at the top left of the button. Remember also that
a button can have a foreground and background image.

Typically, a background image will cover the entire button.

btn.SetBackgroundImage(UIImage.FromFile(“Path/ToImage.png”),
 UIControlState.Normal);

The second parameter here (UIControlState) is the state the button (or control) is
in. Normal is when it has not been selected. When the button is depressed, the state
becomes Highlighted and when released, it is Normal again. This means you can
have different images depending on the state of the button.

The User Interface

[32]

The foreground image will typically not cover the entire button, but will be of a
particular size. For example, say the button is 92 x 92. To fill most of the button, a
gap of 4 on each side would be good; this makes the dimension 84 x 84 (left and
right gaps, as well as for both the height and width). To create this image for the
button is a two-step process: create the image and add the image. This time, though,
ImageView is initially used and then fed into the SetImage method:

UIImageView btnImage = new UIImageView (new RectangleF(
 new PointF(4, 4), new SizeF(84, 84)));
btnImage.Image = UIImage.FromFile (“Path/ToImage.png”).Scale (
 new SizeF(84, 84));
btn.SetImage(btnImage.Image, UIControlState.Normal);

An alternative is to add ImageView as a subview to the button.

btn.AddSubview(btnImage);

The UIButton can also just have a color assigned to it.

btn.BackgroundColor = UIColor.Gray;

The button also comes with a default piece of text on it called Title. As with any
text element, this can be set:

btn.SetTitle(“Some text”, UIControlState.Normal);

A more interesting effect is to have both text and graphics on a button. The simplest
way to consider the placement is as follows:

Let a and b be the position of the top left and right of the image (in our previous
example, that would be 4, 4). For ease, the same gap is on the right.

Let c be the offset from the top (a + “image height” + “some gap”).

The trick here, though, is to ensure there is enough of a gap at the bottom so it
doesn't look messy.

Adding the image is a two- or three-step process.

1.	 If Title is set, clear it (this can be one in or out of the designer).
2.	 Add the image (see previous example).
3.	 Create and add a UILabel.

// step 1
if (!string.IsNullOrEmpty(btn.CurrentTitle))

Chapter 2

[33]

 btnTitle.SetTitle(string.Empty, UIControlState.Normal);

// step 3
UILabel myLabel = new UILabel(new RectangleF(4, 78),
 new SizeF(84,10));
myLabel.Text = “some text”;
btn.AddSubview(myLabel);

UIControlStates
There are (as previously mentioned) a number of UIControlStates:
Application, Disabled, Highlighted, Normal, Reserved, and Selected.
For most day-to-day considerations, Disabled, Highlighted, and Normal
are the ones used most commonly.

If the Enabled property is false, the button is Disabled. The only problem is that
this is the only way to tell if a button is disabled using the system defaults. It is
probably a better idea to set the background color as well as the text when disabled.

A button does not have to be a rounded rectangle. There are four predefined buttons
(ContactsAdd, DetailDisclosure [the > arrow], InfoDark, and InfoLight [the info
icon with either a dark or light background]). There is also a custom UIButtonType
type. This by default gives no border to the button, but allows for interesting buttons
where a .png file could be the button shape. So if you want an octagonal button, you
would have a .png file of an octagon and then write the following code:

btn.ButtonType = UIButtonType.Custom;
btn.SetBackgroundImage(UIImage.FromFile(“octagon.png”,
 UIControlState.Normal));
btn.SetBackgroundImage(UIImage.FromFile(
 “octagon-selected.png”,UIControlState.Highlighted));

Summary
As you can see from this whistle-stop tour, iOS gives you a massively rich and varied
number of different objects usable within the UI. In later chapters, we will see how
these can be extended and how to get the most from them.

Views and Layouts
In terms of the iPhone and the iPad, a view can be thought of as what you see, but
the types of views you see depend (to an extent) on the application type you select
when you create your application.

In this chapter we will be covering the following topics:

•	 Projects and their types of layouts
•	 Ensuring that your design fits all iOS devices
•	 UI controls

Selection of the project type
When you first decide to create an iOS application, you will be presented with the
view shown in the following screenshot:

Views and Layouts

[36]

Application types and their view types
The project types require a bit of an explanation, which has been provided in the
following table:

Project type View type
Master-Detail A table based layout.
Single View The simplest form of view. The name does not mean that

you have an app with just one page, but that views don't
propagate through (so view 1 may have tabs that go to
view 2. View 2 could be a MT.D).

Tabbed A standard view with a number of persistent tabs at the
bottom of the screen. The view changes, but the tabs stay.

OpenGL Fast, responsive, used for high resolution gaming. I won't
be covering this here, as it is outside the scope of this book.

A more complete explanation of the project types can be found at
http://oleb.net/blog/2013/05/xcode-project-templates-difference/.

The iOS layout
When dealing with the layout of the iPhone (and the iPad) user interface, a number
of factors have to be taken into consideration; the most important is probably the
physical size of the screen. While it is easy to create a user interface using Xcode,
unlike Android devices, iOS does not really auto-resize. The UI is partially due to
the way layouts are created in iOS.

The Canvas model
When I was growing up, I was given a "fuzzy felt" kit at school. For those who
don't know what it is, a fuzzy felt kit consists of a large background piece of felt
onto which you stick other pieces of felt; this enables you to create lots of pictures.
Designing for iOS is the same. You can drag-and-drop any piece of the user interface
into the main view and leave it there. This is what gives iOS a part of the richness it
enjoys; it is up to the designer to create, rather than have strict rules on what goes
where. For the application, the UI elements all have an absolute position on the
screen, rather than being relative to any other objects. Here, though, is the problem.

If you increase the screen size, those positions stay the same. So, what may look
good on an iPhone 4 has bits missing on the 3G and has gaps on the iPhone 5—don't
start thinking about the iPad—as the view would be just in the middle of the screen,
usually squashed up.

Chapter 3

[37]

How to avoid some of these problems
The simplest method is, when using Xcode to design your UI, you check the
Use AutoLayout checkbox on the UI View. This does the moving around for you.

The problem here though is that you need to set this Use AutoLayout on every view,
and it is also not supported on the iPhone 3GS. However, the 3GS is now so old that
it is probably not worth going through the hoops required to auto-scale on it. The
3GS supports iOS 6, but only by hacking. iOS 5 is nearing the end of its life (at the
time of writing).

Views and View Controllers
They sound similar, but they're not. The simplest way to think of a View Controller
and a View is like a web page. A typical web page is a piece of information served up
from a server. The content may be created dynamically (say from a database query),
but for the user it's just data. This would be considered as a View. It has things on it,
but no real user interaction.

A View Controller is closer to a web page constructed using ASP.net, or some other
form of language that feeds back to a server (such as PHP). The website has a button
on it. The button has an event, which is then fed back to the code (known as the
handler code) behind the button. The View created using Xcode is the web page,
and the source file with a connection is the server.

As outlined in the previous chapter, the objects on UIViewController are connected
to the code behind the control by clicking on the control (as well as pressing the Ctrl
key) and dragging the widget to the connector entry window.

Views and Layouts

[38]

Other Views
Outside of the View choice, there are a number of other views that are available, as
shown in the following table:

View name Description
Activity Indicator
View

It is a modal indicator that shows that something
(an activity) is occurring. This can be the loading of
a web page or the rendering of a map.

Progress View It shows the progress of time for an activity—gives the user
a better idea of how long something is going to take.

Collection View It displays a collection of cells (CollectionViewCells).
Each cell can be defined.

Collection Reusable
View

A reusable collection works as follows: say you have a
group of cells which, for argument's sake, occupies the
screen. In a standard collection, when the cells go off
screen, they are still held in the collection. While this makes
rendering faster when they return, they take up memory
space. The reusable collection stores a pointer to the cell
and then refreshes when back on the screen—the collection
is then reused.

Table View It will be covered in Chapter 4, Controllers.

ImageView Think of this as a picture view. It has no click events and
displays images. It can, however, play animations within it.

Text View It displays multiple lines of text. Can be a read only as well
as a read/write.

Web View It is a view used to render HTML. The HTML file can be
held on the phone or remotely.

Map View It displays a map with various options. Maps are covered
later in this book.

Scroll View It is a view designed to allow more content to be
accommodated on a screen than the screen size actually
allows.

Picker View It is a user-definable picker.

AdBanner View It is an advertising banner bar for in-app advertising.
GLKit View It is used for OpenGL-ES rendering.

I will deal with the views not covered here elsewhere in this book. As with all
views, these too need to be dragged onto the view in Xcode and then linked to
the main code.

Chapter 3

[39]

Activity Indicator and Progress View
The UIActivityIndicatorView class is a very simple view to implement.

var aiActivity = new UIActivityIndicatorView()
{
ActivityIndicatorViewStyle = UIActivityIndicatorViewStyle.Gray,
 HidesWhenStopped = true,
};
// start the indicator
aiActivity.StartAnimating();
// stop the indicator
aiActivity.StopAnimating();

The UIProgressView class is a little more complex, but still quite simple. This works
on a thread system to keep track of the indicator. Let's start by setting one up:

var pvActivity = new UIProgressView()
{
BackgroundColor = UIColor.Red,
 Style = UIProgressViewStyle.Bar,
};
pvActivity.SetProgress(0, true);

Next is to construct the thread routine. The NSAutoreleasePool class is used as
a temporary block of memory that is released once the code within the braces has
been executed. In the following code, it allows access to the InvokeOnMainThread
method:

private void myTestRoutine()
{
 int n = 5;
 for (int i = 0; I < n; ++i)
 {
 Thread.Sleep(1000);
 using (var pool = new NSAutoreleasePool())
 {
 InvokeOnMainThread(delegate
 {
 pvActivity.Progress = (float)(i + 1) / n;
 });
 }
 }
}

Views and Layouts

[40]

And finally, link it to the Progress View:

Thread t = new Thread(myTestRoutine);
t.Start();

UIImageView
A UIImageView class can bring an image in from UIImage, which in turn brings
images in from a number of places:

•	 FromFile: a file held within the structure of the application (for example, if
the application has a directory called Graphics, the FromFile would point to
Graphics | image.png).

•	 FromImage: loads from CoreImage files.
•	 FromResource: loads from the Resources directory. These are embedded

from within the application.
•	 FromBundle: loads an image relative to the main application bundle and

caches it.
•	 LoadFromData: an image created from within the app.

To load a file into UIImageView:

var myImage = new UIImageView()
{
 ContentMode = UIViewContentMode.ScaleAspectFit;
 Image = UIImage.FromFile("Graphics/helloXamarin.png"),
 Frame = new RectangleF(new PointF(20, 20), new SizeF(100, 100)),
};

The UIImageView class can also display animations. The main prerequisite for doing
this is that you should have a number of images to animate. In my example, I have
six images of a tractor. The wheels are the only parts that move.

Chapter 3

[41]

To start the animation, use the following code:

UIImageView animation = new UIImageView()
{
 Frame = new RectangleF(new PointF(20, 20), new
 SizeF(100,100)),
 AnimationDuration = 0.5,
 AnimationRepeatCount = 0,
 Center = new PointF(animation.Center.X + 115,
 animation.Center.Y + 65),
};
animation.AnimationImages = new UIImage[]
{
 UIImage.FromFile("Graphics/track-1.png"),
 UIImage.FromFile("Graphics/track-2.png"),
 UIImage.FromFile("Graphics/track-3.png"),
 UIImage.FromFile("Graphics/track-4.png"),
 UIImage.FromFile("Graphics/track-5.png"),
 UIImage.FromFile("Graphics/track-6.png")
};
animation.StartAnimating();

To stop the animation, use:

animation.StopAnimating();

Animation is covered in Chapter 10, Animation.

UICollectionView
The simplest Collection View that you're likely to see is an image gallery. Think of
the Collection View as being a grid view that can be extended. Each Collection View
is made up of three different items; cells, supplementary views (data-driven views),
and decoration views.

Views and Layouts

[42]

Cells
Each UICollectionView class will contain UICollectionViewCells.

These cells have a main Content View (where you see something, be it a picture or
the data derived within the app), and surrounding the Content View is one of the
two background views: normal or selected. If the content part is not smaller than the
background, the background won't be seen.

Supplementary Views
These are views that present information linked to each section of
UICollectionView. They are data driven. Where the cells are from a data source, the
Supplementary View presents that section's data (for example, the main view could
be the front covers of books, the Supplementary View could be the table of contents).

Decoration View
These are not data generated and are there purely for aesthetic purposes.

Data source
The UICollectionView class gets its data via the UICollectionViewDataSource
class. This class provides information, such as the cells (from GetCell),
supplementary views (from GetViewForSupplementaryElement), number
of sections (from NumberOfSections or 1 if not implemented), and the number
of items per section (from GetItemsCount).

Cell Reuse
The UICollectionView class will only call the data source to get cells for items that
are on the screen. Items that are not on the screen are placed in a queue to be reused.

UIWebView
The UIWebView class effectively transforms your device into a web browser with
JavaScript capabilities as well as the usual web facilities, such as move back, forward,
and typing a URL in the text field when extended with UITextField.

To load a web page is simple enough, as shown in the following code:

var web = new UIWebView();
NSUrl url = new NSUrl("http://www.bbc.co.uk");
web.LoadRequest(new NSUrlRequest(url));

Chapter 3

[43]

There are a number of factors to remember with web page loading. The first factor is
that it is typically an asynchronous task; in other words, some parts are completed
before others and it is quite possible that the application flow will return to the main
thread before the task is completed. The second factor is the speed. I'll not concern
myself with the second factor for now.

•	 To overcome the problem caused by asynchronous tasks, there are a number
of events that can be used:

°° LoadStarted

°° LoadFinished

°° LoadError

°° The boolean IsLoading

The IsLoading boolean is a flag that can be checked at any point to
determine if something is loading (true) or has completed loading
(false).

For example:

web.LoadStarted += delegate {
 // start ActivityIndicator here, stops anything else happening
};
web.LoadFinished += delegate {
 // stop ActivityIndicator
};
web.LoadError += delegate {
 UIAlertView error message
};

•	 To move back and forward, the following methods can be used:
°° web.GoBack()

°° web.GoForward()

These methods have a simple boolean test

°° web.CanGoBack

°° web.CanGoForward

•	 For refreshing a webpage, the following method can be used:
web.Reload();

•	 It is also possible to include zoom support and fitting the page

web.ScalesPageToFit = true;

Views and Layouts

[44]

MapView

These are the iOS maps, not Google Maps (Apple moved from
using Google to their own maps with iOS 6).

Maps under iOS require the use of CoreLocations and MapKit. Mapping
and location services are dealt with later in Chapter 12, Peripherals.

UIScrollView
There are times when too much information will be displayed on screen
(for example, if you are dynamically generating content or creating some
form of a drawing application). In such cases, UIScrollView can be used
to ensure that the user can see everything.

The view (when combined with PageEnabled = true;) works by calculating
the size of the page.

Assuming that the Scroll View has been created in Xcode (and is called scrollView),
the code will be as follows:

private List<UIView> viewPages = new List<UIView>();
private int numPages = 4;
private float pad = 10, height =400, width = 300;
public override void ViewDidLoad()
{
 scrollView.Frame = View.Frame;
 scrollView.PagingEnabled = true;
 scrollview.ContentSize = new SizeF(numPages * width + pad +
 2 * pad * (numPages – 1), View.Frame.Height);

We now have an effective page system. The problem is tracing which page
the user is on. This is handled with UIPageControl. In the previous example,
tracking would be performed as follows:

private UIPageControl pageNumber;

In the ViewDidLoad() method, tracking would be performed as follows:

scrollView.Scrolled += delegate {
 pageNumber.CurrentPage = (int)Math.Round(scrollView.X / width);
};

Chapter 3

[45]

AdBannerView
You have seen these on many different apps. These are the bars at the top that
advertise anything, from cars to fast food, and normally are targeted on the app type
(for example, if you design an application that gives statistics on a car performance,
the ad banner will typically get adverts for car magazines, car games, and so on). It is
simply a way of generating income for the application developer. Advert support is
a part of the AdSupport namespace.

The simple way to consider these views is as a form of web view with a number
of key events:

•	 AdLoaded: until the ad is loaded, the view isn't shown. This makes the
experience less obtrusive for the user.

•	 FailedToReceive: the advert failed to download.

Implementing a view with multiple View
Controllers
It is simple enough to implement a view with more than one View Controller. Say
we have two views. One occupies the top 130 pixels of the screen; the other is 250
pixels in height. It is added by adding the second view as a subview to the first.

secondView v2 = new secondView();
v2.Frame = new RectangleF(new PointF(0, 130), new
 SizeF(320, 250));
View.AddSubview(v2);

The events from both the View Controllers will still work as they do normally
(so say the second view is a web view and the first has some buttons, the buttons
will still respond to the the Touch events and the web view will still respond to
the Web events).

The issue, though, comes when view 1 (the parent) wants to act on the events of
view 2. This too is not that difficult to do. In fact, when dealing with the MT.D class
in Chapter 2, The User Interface, the SubView event was acted on in the parent by
overriding the Selected event with a delegate in another class (as demonstrated
in the following code examples).

public class PickerChangedEventArgs : EventArgs
{
 public string SelectedValue { get; set; }

}

Views and Layouts

[46]

And within the class handling UIPickerViewModel, the Selected method has to be
overridden to support PickerChangedEventArgs as shown in the following code:

public override void Selected(UIPickerView picker, int row,
 int component)
{
 if (PickerChanged != null)
 {
 PickerChanged(this, new PickerChangedEventArgs {
 SelectedValue = myValues[row] });
 }
}

Finally within the main app, code that calls the class UIPickerView needs to fire on
the new event.

myPickerViewModel.PickerChanged += (object sender,
 PickerChangedEventArgs e) =>
{
 myElement.Value = e.SelectedValue;
};

Summary
It is a little wonder that the iPhone is such an adaptable device for displaying
various forms of data with all of these Views and View types available, despite
its complexity; it is actually a simple enough system to code for.

In the next chapter, we will delve deeper into controllers.

Controllers
In iOS app development there has to be some form of a controller, as the iOS app
development framework implements the Model View Controller (MVC) design
pattern. Controllers in iOS are split into one of the two categories: tables or not
tables. While I have touched upon the TableView methods when I discussed
MonoTouch.Dialog, I've not actually given that much detail about them, which,
given their importance with iOS, is rather disingenuous to say the least!

In this chapter, we will cover the following topics:

•	 UITableView and UITableViewCell
•	 UINavigationController
•	 UITabBar
•	 UIPageControl
•	 GLKit View Controller

UITableView and UITableViewCell
A TableView method is the main workhorse for iOS. If you consider the likes of
Facebook, e-mail, messages, Twitter, and many other applications, they display
their data through a list-based interface. It may contain different attributes (such
as images, header text, date and time, colors, and a range of other widgets), but
at the end of the day, it's a table of data.

Controllers

[48]

When setting up a table, there are two formats it can take: plain and grouped.
The grouped view is depicted in the following image:

The plain view can be viewed as follows:

Chapter 4

[49]

The grouped approach is better suited to username/password or settings
style information, while the plain view is best for purely list-based information
(such as city names, chemical elements, or tweets).

As the table requires data to propagate the view, it is usual for a delegate (or source)
class to be defined as well.

Each of the elements in the preceding screenshot (such as Brea, Burlingame,
and Canoga Park) uses UITableViewCell. The data can be entered or edited
in these cells.

Creating a read-only table
Within Xcode, I've created a table, and into this I created another table and added
a number of English Premiership teams. The simplest way to do this is through
a list.

private List<string> premTeams;

public override void ViewDidLoad() {
 base.ViewDidLoad();
 premTeams = new List<string>(){"Liverpool","Everton",
 "Arsenal","Swansea","Cardiff","Newcastle"};
 tvTableView.Source = new myViewSource(premTeams);
}

private class myViewSource : UITableViewSource {
 private List<string>dupPremTeams;
 public myViewSource(List<string>prems) {
 dupPremTeams = prems;
 }

 public override int RowsInSection(UITableView table,
 int section) {
 return dupPremTeams.Count;
 }

 public override UITableViewCell GetCell(UITableView tableView,
 NSIndexPath index) {
 UITableViewCell theCell = new UITableViewCell();
 theCell.TextLabel.Text = dupPremTeams[index.Row];
 return theCell;
 }
}

Controllers

[50]

This simple code results in the following image. All that the code has done is taken
the view created in Xcode and displayed the data. This is the simplest form the table
can take:

Liverpool has been selected (in blue), but we're not doing anything with it.
The beauty of the UITableView class is the power behind it. When a cell has been
selected, it can be used to navigate elsewhere, have data entered in it, or just simply
put a checkmark next to the selected cell value!

Chapter 4

[51]

To enable the code to react to a cell being selected, another override has to be added
to myViewSource, namely:

public override void RowSelected(UITableView tv,
 NSIndexPath index)
{}

On top of RowSelected, the UITableView control provides a
DetailDisclosureButton—this button allows multiple actions to occur within a
cell. (So let's say that we have a periodic table of elements with a picture and a book
icon next to the name: clicking on the name gives the atomic details and a picture
of what the element looks like, and the book icon gives the history.) To enable this
within the GetCell method, consider the following line of code:

theCell.Accessory = UITableViewAccessory.DetailDisclosureButton;

Other options available for UITableViewAccessory are Checkmark (single
or multiselection within a table), Disclosure (a gray arrow indicating that
touching the cell results in navigation), and DetailDisclosure (a white arrow).
UITableViewAccessory also has a None option that has a placement position but
nothing in it.

UITableViewCell
TableViewCell is plain to look at by default. As with everything in iOS, the cells can
be altered in a number of ways. Cells always start off as UITableViewCellStyle.
Default. This supports a TextLabel component with an optional image on its left
side. The other styles are:

UITableViewCellStyle What it does
Subtitle Gives two left-aligned fields: TextLabel and

DetailTextLabel. An image can be optionally added
to the left of both of these. DetailTextLabel is in
gray and has a smaller font size than TextLabel.

Value1 In this, TextLabel is right-aligned and blue.
DetailTextLabel is black and left-aligned. No
optional images are available.

Value2 In this, TextLabel is left-aligned and black.
DetailTextLabel is right-aligned and blue. No
optional images are available.

Controllers

[52]

Reusable cells within a table
As with CollectionView, the TableView methods also reuse cells. The reuse is
simply to prevent the app from running out of memory and slowing down. To this
end, the default is for only 10 cells to be displayed at any one time (though this
number may vary depending on the cells and the UITableView height).

To enable this reuse, the cell in my example needs to be instantiated using a different
one of the overloads.

UITableViewCell theCell = new UITableViewCell(
 UITableViewStyle.Default, "reuseID");

In the preceding code, reuseID is the identifier that the table uses to identify the cell
to be reused.

To fully demonstrate this, I have extended the list of teams in our original example
and amended the GetCell method. All other code remains the same.

premTeams=newList<string>() {"Arsenal", "Aston Villa",
 "Cardiff City", "Chelsea","Crystal Palace", "Everton",
 "Fulham", "Hull City", "Liverpool", "Man City", "Man United",
 "Newcastle", "Norwich", "Southampton", "Stoke City",
 "Sunderland", "Swansea", "Tottenham", "WBA", "West Ham"
};

private class myViewSource : UITableViewSource {
 public override UITableViewCell GetCell(UITableView tableView,
 NSIndexPath index) {
 UITableViewCell theCell = tableView.DequeueReusableCell(
 "reuseID");
 if (theCell == null) {
 theCell = new UITableViewCell(
 UITableViewCellStyle.Default, "reuseID");
 // nothing to reuse, so create a cell
 }
 theCell.TextLabel.Text = dupPremTeams[index.Row];
 return theCell;
 }
}

Sections and Rows
Grouped data is made simpler to handle with UITableView as they use a Section
and Row system to identify cells (these are the two parameters of NSIndexPath).

Chapter 4

[53]

Indexes on a TableView
By overriding SectionIndexTitles, an index table can be added to the right side of
a table. Clicking on an item on the index table will jump the table to that value.

public override string[] SectionIndexTitles(UITableView tableView)
{
 // add the index labels you want [letters are good]
 return sectionTitles.ToArray();
}

Customizing a UITableViewCell component can be performed in or out of Xcode.
To be honest, the simplest way is doing it in Xcode. Drag a cell to an empty view and
add the widgets you want in there.

Navigation with UITableView
Navigation with tables is provided by UINavigationController. Simply put,
NavigationController allows you to move between table views with the standard
back button at the top of the screen. The navigation controller can be set up using
Xcode or purely with code.

Within code
Setting up the NavigationController is performed within the AppDelegate.cs file.

UIWindow window = new UIWindow(UIScreen.MainScreen.Bounds);
var viewController = new mainController();
UINavigationController rootNavigationController =
 new UINavigationController();
rootNavigationController.PushViewController(viewController,
 false);
window.RootViewController = rootNavigationController;
window.MakeKeyAndVisible();

This places the navigation bar at the top of the screen. When a new view is shown,
the back button becomes visible. The back button can be hidden using the following
line of code:

NavigationItem.HidesBackButton = true;

The NavigationController can also be hidden using the following:

NavigationController.NavigationBarHidden = true;

Controllers

[54]

The problem here is that as you go forward to a view and back again, the bar will no
longer be hidden. The code that has to be called is the ViewWillAppear method.

With Xcode
There are a couple of ways of using NavigationController within Xcode.
However, they can be quite painful to use.

Image A	 Image B

Navigation Controller (Image B) creates a view with the controller bar at the top. It
has the big advantage of having both the navigation section and an area for a view
controller to be loaded into (Image A). To use this, simply create a view controller
as you would. Within the RootViewController source, the following will load the
other ViewController into the RootViewController:

var myViewController = new MyViewController();
myViewController = "My View";
// sets the title and gives a back button

NavigationController.PushViewController(myViewController, true);

Chapter 4

[55]

Each navigation controller requires a bar with an optional navigation
controller button.

The title bar can also be placed into a typical view and connected in the standard
way. Navigation Item is not what it seems. By the looks of the item, it would be
presumed that the button can be used for the likes of a back button, menu button,
or the buttons that can be placed on the title bar. It isn't! For that, ButtonBarItem
has to be added to the title bar directly and the Navigation Item should be connected
to the bar, which can be seen as follows:

Image C	 Image D

Controllers

[56]

Drag the Navigation Item (Image D) to the bar so that it is under the View icon
(Image C). Drag the Bar Button Item onto a title bar already on the view. This will
give you a bar with a button on the left (assuming you placed it on the left). The next
stage is to connect the Navigation Item to the button on the bar. To do this, press the
Shift button and drag the Navigation Item onto the Bar Button Item. When that has
been done, you will see a menu giving you the option of what that item represents,
shown as follows:

Selecting backBarButtonItem will give the back button. If you select
leftBarButtonItem or rightBarButtonItem, these will give a button that can be used
for other purposes (such as icons for an address book, or menu). To check whether
the connection has been made, the outlet's connection on the right will confirm it:

To access the backBarButtonItem within the code, something akin to the following
can be used:

NavigationItem.BackBarButtonItem.Clicked += delegate {
 NavigationController.PopViewControllerAnimated(true);
 // sends back to the previous view on the stack
};

Navigation using UITableView
At this point, I will assume that the view already has a valid table with some data in
it. One of the key points of the UITableView is that the user can select a table cell and
that cell can be moved to another view.

Chapter 4

[57]

For the following line of code:

RowSelected(UITableView tableView, NSIndexPath indexPath)

To start a new ViewController, we need to do the following:

var newController = new myNextTableViewController(ref_to_data,
 rows[indexPath.Row]);
newController.Title = rows[indexPath.Row];
parent_controller.NavigationController.PushViewController(
 myController, true);
tableView.DeselectRow(indexPath, true);

This will start a new view, and when the back button is selected the view reappears.
The backBarButtonItem title will show the title of the view that started the new
view. DeselectRow removes the blue selection color from the view. If it is not called
when the back button is pressed, the selection will still show as being selected.

Returning to the RootView
To return to the top level of the view, use the following method:

NavigationController.PopToRootViewController(true);

TabBars
Another simple method of navigation is through UITabBar. Typically, the bars are at
the bottom of the screen, but there is nothing to stop a view having a UITabBar at the
top of the screen as well.

Controllers

[58]

Placing a tab bar on a view is the same as placing any other view onto a screen;
drag it onto the screen. By default, two TabBarItem items are added to TabBar.
You can add more by dragging the Tab Bar Item widget onto the bar.

Each TabBarItem has a Title and Image property that can be set; however, these
buttons must be set as Custom type within Xcode.

The two Space Bar Button Item components allow for button items to be added
to a view with space between them. Fixed has a finite amount of space between
buttons, while Flexible allows more buttons to be added but for them to be kept
at equidistant.

The TabBar components are not the same as the other mechanisms for navigation.
While a TabBarItem can certainly start a new view, it is more common that the same
view is used all the time but the new view controller is loaded into the blank frame
between the navigation bar (or whatever you have at the top of the screen and the
TabBarItem at the bottom).

The TabBarItem components are also good if a view containing the TabBar is
generating the view dynamically and displaying on screen.

Handling the Tab Bar in code
Within your code, it is not the Tab Bar Item that needs to be handled with events
but the Tab Bar itself. The Tab Bar Item components will still need connecting,
so they can be handled within the main controller source.

tabBar.ItemSelected += TabBarSelected;

Possibly the simplest method of determining which Tab Bar Item has been
selected is to set the Tag property on each (either in Xcode or in controller
source). In TabBarSelected, the correct TabBarItem can then be found.

private void TabBarSelected(object s, EventArgs e)
{
 UITabBar item = (UITabBar)s;
 UITabBarItem item = tb.SelectedItem;
 switch(item.Tag)
 {
 // do something;
 }
}

Chapter 4

[59]

PageControl
The UIPageControl method is a handy mechanism to mark that we have multiple
pages on a single view. It is typically used with a UIScrollView to display the index
of the page in UIScrollView.

They can also be used for navigation. When you click on the left or right side of
the page, an event is thrown for page movement. The number of dots indicates the
number of pages. This number can always be altered in the code.

GLKit
A GLKit view enables the use of OpenGL for Embedded Systems (OpenGL ES) in
an application. Animation and graphics are outside the scope of this book, but there
are a large number of Xamarin.iOS examples available that can demonstrate how to
use OpenGL ES.

Summary
This chapter has given you the basics of the two most used forms of Navigation and
View. While UITableView is undoubtedly extremely powerful, it is cumbersome
when you have the ability to use the much simpler MonoTouch.Dialog class.

UI Controls
To paraphrase Edmund Blackadder: "A UI without a control is like a pencil
without a nib—pointless."

The range of controls, while not that large, is very flexible in what you can do with
them. All controls can be created within Xcode or dynamically within the code.

In this chapter we will be covering the following topics:

•	 Controls and widgets
•	 Control selection
•	 Control customization
•	 Control reference (Android and iOS cross reference)

Controls and widgets
When we refer to a widget, I use it interchangeably with a UI Control. In old terms,
a widget stands for a WInDow gadGET. The screen on an iOS device is classed as a
window, so it's fair enough to call anything on screen a widget.

UI Controls

[62]

UI Controls
The UI Controls are directly available from Xcode. For creating within code, the
control name is preceded with UI and all/any spaces removed (except Round Rect
Button which is just UIButton). The Fixed Space Bar Button Item and Flexible
Space Bar Button Item are accessed from UIBarButtonItem.

Control selection
Most of the controls shown in the previous screenshot are obvious for what they
do, and are easy enough to just add and connect to the UI. However, there are
some controls that need to be considered differently from the others, most notably
UIButton and UIStepper. The UIButton class is very flexible in what it can do,
while UIStepper really needs to be used as an action rather than an outlet. This
means they have to be handled in a different way.

Chapter 5

[63]

UIButton
A UIImageView has no events attached to it. So, if you need an image that can
be clicked on, they can be planted onto a UIButton class.

var r = new UIButton();
r.ImageView = UIImage.FromFile("path/toimage.png");

It is completely possible to add text as well as an image to the button by adding a
UILabel to the button, but it is a two step process. The important thing to remember
is that, when placing anything on another view, the size of the parent has to be taken
into consideration, as shown in the following code:

var r = new UIButton();
r.Frame = new RectangleF(0, 0, 100f, 100f);
 // button 100x100 at 0, 0
var i = new UIImageView(new RectangleF(15f, 2f, 70f, 70f));
i.Image = UIImage.FromFile("path/toimage.png")
 Scale(new SizeF(70f, 70f));
var l = new UILabel(new RectangleF(2f, 78f, 96f, 20f));
l.Text = "Hello world";
r.AddSubview(i);
r.AddSubview(l);

You can add as many images and labels to a button. The button can also have a
background image added to it, as shown in the following code:

r.SetBackgroundImage(UIImage.FromFile("path/toimage.png"),
 UIControlState.Normal);

Alternatively, the background can have a gradient fill added, as shown in the
following code:

var gradient = new CAGradientLayer();
gradient.Colors = new MonoTouch.CoreGraphics.CGColor[]
{
 UIColor.FromRGB(115, 181, 216).CGColor,
 UIColor.FromRGB(35, 101, 136).CGColor
};
gradient.Locations = new NSNumber[]
{
 .5f,
 1f
};
gradient.Frame = r.Layer.Bounds;
r.Layer.AddSublayer(gradient);
r.Layer.MasksToBounds = true;

UI Controls

[64]

Say, the UILabel class we added before was too small for the text coming in (it's no
longer Hello world, but I love drinking hot coffee), the font size within the
label will need to be changed. The resizing is performed by creating a bounding box
(textSize), and fitting the text inside of it by setting the font size so that the text fits
the height—not the width—of the bounding box.

RectangleF textSize = new RectangleF(i.X, i.Y, i.Width, i.Height);
l.Font = UIFont.SystemFontOfSize(textSize.Height);
l.Text = "I love drinking hot coffee";

The button doesn't have to have a rounded shape—a custom shape can be also
applied. Let's look at the following code for a circular button:

r.Frame = CGPath.EllipseFromRect(new RectangleF
 (135f, 180f, 40f, 40f));
//width and height should be same value
r.ClipsToBounds = true;
r.Layer.CornerRadius = 20;//half of the width
r.Layer.BorderColor = UIColor.Red.CGColor;
r.Layer.BorderWidth = 2.0f;

For this to work, the Monotouch.CoreGraphics namespace has to be included.

There are other types of buttons also available (ContactAdd, Custom,
DetailDisclosure, InfoDark, InfoLight, RoundedRect, and System). While
RoundedRect is the most common form used, the others can be created either in
Xcode or as code in your app.

var myButton = new UIButton(UIButtonType.Custom);

The preceeding code creates a button of type Custom. The other types of buttons look
as shown in the following screenshot:

From left to right (System, Custom, DetailDisclosure, InfoLight, InfoDark, ContactAdd)

Chapter 5

[65]

UIStepper
The UISteppers class needs to be defined in the connector as both an outlet and
action (with the Event selected to be Value Changed). A typical action is shown in
the following screenshot:

public override void ViewDidLoad()
{
 base.ViewDidLoad();
 uiStepper.MinimumValue = 0;
 uiStepper.MaximumValue = 10;
 uiStepper.AutoRepeat = true;
 lblCounter.Text = uiStepper.Value.ToString();
}
partial void stepper(NSObject sender)
{
 UIStepper step = (UIStepper)sender;
 lblCounter.Text = step.Value.ToString();
}

When the Stepper control is clicked on, the partial void method is called, which
updates the counter as shown in the preceding code. If you just have one without the
other, the app will die when it comes to a View Controller with a UIStepper class on.

UI Controls

[66]

The other controls
The following table will give you an indicative list of what each control does,
and any caveats for the use of the control:

Control Used for Caveats

Label Simple labels Does not respond to touch
events

SegmentedControl A multiple button
on a single view.
Frequently used on
MapViews for the
different types of map
available

TextField Text entry Set SecureTextEntry =
true for passwords

Slider Selecting a volume or
color

Uses float values

PageControl A simple method
of showing how
many pages are on a
scrollview area

DatePicker A date picker Can also be used for Time as
well

NavigationBar A navigation bar for
the top of the screen

Requires a navigation item

NavigationItem A navigation item for
the navigation bar

Needs a Navigation
Controller to be added for
the item type to be defined
within Xcode

SearchBar A search bar Needs both an action and
outlet defined

ToolBar A bar used for adding
buttons to, as tools

Use this for the event and in
the handler use Item for the
BarButtonItem.

BarButtonItem A button for use on a
toolbar. Comes with
an image and label
already on the button

Don't catch the event from
this; use the toolbar

Chapter 5

[67]

Control Used for Caveats

Fixed/
FlexibleBarButtonItem

Provides space
between buttons
on the toolbar

TabBar Used for tabviews Use a Toolbar controller to
define which nib file, pressing
a tab, will call

TabBarItem A button for use on a
TabBar, similar to a
BarButtonItem

Comparing Android to iOS UI controls
The following table is a comparison list and is intended for those wishing to port to
or from Android:

Android iOS Android responds
to events

iOS responds
to events

Button UIButton Yes Yes
Text UILabel Yes No
ListView TableView Yes Yes

TableViewCell Yes
CheckBox Switch Yes Yes
CheckedTextView Switch with UILabel Yes Yes
ProgressBar ActivityIndicatorView Yes No
RadioButton MTD.RadioElement Yes Yes
RadioGroup MTD.RadioGroup Yes No
SeekBar Slider Yes Yes
TextView (multiple
types)

TextField Yes Yes

FrameLayout,
LinearLayout,
RelativeLayout,
TableLayout

Yes

GridView ComponentView Yes Yes
ScrollView Scrollview Yes Yes
SlidingDrawer ActionBar Yes

UI Controls

[68]

Android iOS Android responds
to events

iOS responds
to events

TabHost TabBar No Yes
TabWidget TabBarItem Yes No
WebView Webview Yes Yes
Gallery ImageGallery Yes Yes

ImageButton Button Yes Yes

ImageView ImageView Yes No

MediaController AudioView
Controller

Yes Yes

VideoView VideoView
Controller

Yes Yes

DatePicker DatePicker Yes Yes

TimePicker DatePicker Yes Yes

DialerFilter UIKeyboard Yes Yes

GestureOver
layView

Gestures
(approx)

Yes Yes

SurfaceView View Yes Yes

TwoLineListItem MTD.MultipleLineElement Yes Yes

View View Yes Yes

Zoom Button Stepper Yes Yes

Zoom Controls SegmentedControl Yes Yes

Although there are other views/controls on Android that are not on iOS and vice
versa, these are the most common ones.

Summary
With the wealth of UI Controls to play around with and the degree of customization
that can be achieved on just about everything, it is little wonder that people enjoy
using their iOS devices; they can be made to look good!

Events
Events are an essential aspect of any iOS application. In fact, without them, your
phone will just sit there like a useless lump of plastic! Every time something
happens, an event is raised. For the developer, events are everything.

In this chapter we will be covering the following topics:

•	 Handling events
•	 Event reference
•	 Control event reference

Handling events
Events are handled using one of the following types:

•	 Delegates
•	 Handlers

Delegates
You can think of a delegate event as an inline event. They can be anonymous or can
use the event as follows:

•	 When the delegate is anonymous, the code will be as follows:
var uiButton = new UIButton();
uiButton.TouchUpInside += delegate {…};

•	 When the delegate is using an event, the code will be as follows:
var uiButton = new UIButton();
uiButton.TouchUpInside +=
 (object sender, EventArgs e) => {…};

Events

[70]

If the button doesn't have anything that requires either the sender or the event, the
anonymous event can be used.

Xamarin.iOS delegates all Events to use EventArgs e when not using a handler.

Attaching an event to multiple controls
For arguments sake, I will assume that a View Controller has four buttons. There is
nothing wrong with assigning each button its own event handler, but it is a waste
of memory if one event can handle multiple events. For sanity reasons though, this
should be restricted so that the TouchUpInside events are handled together rather
than everything on a view (or View Controller) that accepts the TouchUpInside event.

A simple solution is to have a single event for all of the buttons. However, the
issue is how to recognize and act on the correct button in the event handler itself.

Possibly the simplest method is to set the Tag property with a number, as shown
in the following code:

private void setup()
{
 UIButton btn1 = new UIButton()
 {
 // set up the properties
 Tag = 1,
 };
 UIButton btn2 = new UIButton()
 {
 // set up the properties
 Tag = 2,
 };
 UIButton btn3 = new UIButton()
 {
 // set up the properties
 Tag = 3,
 };
 btn1.TouchUpInside += HandleButtonPressedEvent;
 btn2.TouchUpInside += HandleButtonPressedEvent;
 btn3.TouchUpInside += HandleButtonPressedEvent;
}

Chapter 6

[71]

private void HandleButtonPressedEvent(object sender, EventArgs e)
{
 UIButton theButton = (UIButton)sender;
 switch(theButton.Tag)
 {
 // do what is needed
 }
}

Synchronous versus asynchronous event
handling
Events come in two flow methods: synchronous and asynchronous. The difference
between them is as important as understanding their uses. To understand the
differences, you need to think of two people taking a walk.

Synchronous walk
The two people walk together and come to a traffic light at a road; both stop, and
when the traffic light turns green they set off together. At the end of the walk, they
are still together and sit down for a beer in the sun.

Asynchronous walk
The two people start off together to the pub but when they come to the traffic light,
one of the two stops to wait for the signal while the other crosses. Once the signal
allows a safe crossing, the one who stopped walks across and carries on. The
one who just crossed has been stopped by the police for jaywalking. There is no
guarantee that the pair will reach the pub at the same time; it depends on other
factors slowing them down.

In a programming context
Consider a simple messenger application, it consists of two parts: grabbing the
messages and displaying them. The synchronous event would be for calling the
address View Controller. Here, clicking on a button can be thought of as two
people walking together and coming to a stop.

Events

[72]

The asynchronous part is the downloading of the messages; here, the slow part is
grabbing the messages from the server. If this was to be performed by a synchronous
event, the messages would be requested and the thread would be frozen while a
return request from the server was obtained. While that happens the UI is created,
but how can the UI be created with no data? In a nutshell, it can't and the app dies.
As it is being performed in an asynchronous way, the creation of the UI doesn't
happen until the server has sent everything. When that happens, the next stage
can be performed.

For example, consider the following code (this has been taken directly from the
Xamarin ZXing component and is released through the creative commons license):

buttonCustomScan.TouchUpInside += async (sender, e) =>
{
 //Create an instance of our custom overlay
 customOverlay = new CustomOverlayView();
 //Wireup the buttons from our custom overlay
 customOverlay.ButtonTorch.TouchUpInside += delegate {
 scanner.ToggleTorch();
 };
 customOverlay.ButtonCancel.TouchUpInside += delegate
 {
 scanner.Cancel();
 };

 //Tell our scanner to use our custom overlay
 scanner.UseCustomOverlay = true;
 scanner.CustomOverlay = customOverlay;
 var result = await scanner.Scan();
 HandleScanResult(result);
};

The important part of the code is the line var result = await scanner.Scan();
until that has returned, the HandleScanResult method will not be called. The
TouchUpInside events within the async handler are synchronous and once clicked
on, they either terminate the handler or start another piece of code—they both act
immediately.

Asynchronous calls are supported by Xamarin.iOS (and Xamarin.Android) due to
the support for it within Mono 3.

Chapter 6

[73]

Events and controls reference
Not every type of widget has events attached to it by default (there is nothing to
stop you from writing an event and adding it to a widget though), for example,
UIImageView doesn't have anything attached.

The iOS makes a big play over its touch system, which is reflected in the number
of events given over to touches. Unless the widget has no events attached to it, the
following table applies to all the widgets:

Name of event What it does and when
TouchCancel It is called when cancelling the current touches for a control

(any control that handles the TouchCancel event).
TouchDown This is the touch-down event on a widget.
TouchDownRepeat This is a repeated touch-down event. For this event to be

triggered the UITouch tapCount value must be >1.
TouchDragEnter It is called when a finger is dragged into the bounds of the

control.
TouchDragExit It is called when a finger is dragged outside the bounds of

the control.
TouchDragInside It is called when a finger is dragged inside the bounds of

the control.
TouchDragOutside It is called when a finger is dragged just outside the bounds

of the control.
TouchUpInside It is called when a finger is inside the bounds of the control.
TouchUpOutside It is called when the finger is outside the bounds of the

control.

Other significant control events
The events listed in the following table are found on many of the controls in iOS:

Name of event What it does and when
ValueChanged It allows access to the changed value on a control when

the value of the control has changed (for example, a
UITextField having the text altered).

EditingDidBegin It is a touch starting an edit session within a
UITextField class.

EditingChanged It is emitted when the value of a UITextField class has
changed.

Events

[74]

Name of event What it does and when
EditingDidEnd It is a touch ending an edit session of a UITextField

class by leaving the bounds.
EditingDidEndOnExit It is a touch ending an edit session of a UITextField

class.
AllTouchEvents It intercepts all touch events.
AllEditingEvents It intercepts all edit events.
AllEvents It intercepts all events (including system events).

TouchesBegan, Moved, Ended, and Cancelled as well as the gesture recognizer
events are covered in the next chapter.

AVAudioPlayer and AVRecordClass
Playing and recording audio and video is a key feature of the iOS experience.
The following table lists the events you will need to hook onto for playing and
recording to go smoothly:

Name of event What it does and when
BeginInterruption It is raised when the audio player is interrupted

(say by a phone call).
DecodeError It is raised when a file cannot be decoded.
EndInterruption It is raised when an interruption has finished.
FinishedPlaying It is raised when a file has finished playing.

AVAudioSession
The audio session is the physical act of playing a piece of audio or video. A number
of events can interrupt a video or audio that is being played. The following table lists
the events you need to know:

Name of event What it does and when
BeginInterruption It is raised when an audio session is interrupted.
CategoryChanged It is raised when an audio session category is changed.
EndInterruption It is raised when an interruption to the audio session is

completed.
InputAvailability
Changed

It is raised when the availability of an audio input
changes on a device.

InputChannelsChanged It is raised when the number of input channels are
changed.

Chapter 6

[75]

Name of event What it does and when
OutputChannelsChanged It is raised when the number of output channels are

changed.
SampleRateChanged It is raised when the sample rate is altered.

ABAddressBook
The address book within the iOS can be altered from both the address book facility
and from outside of the facility.

Name of event What it does and when
ExternalChange It is raised when something external to the address book

(such as a user application that alters the address book)
has changed something within the address book.

ABNewPersonViewController
As with all the views, a View Controller is there for the UI to be placed on.
The address book NewPersonViewController is no different.

Name of event What it does and when
NewPersonComplete It is called when the user clicks on the Save or Cancel

button. If Save is clicked on, the new contact is saved to
the address book database.

ABPeoplePickerNavigationController
The ABPeoplePickerNavigationController acts in the same way as a normal
navigation controller, but with a couple of extras added in, as shown in the
following table:

Name of event What it does and when
Cancelled It is sent when the Cancel button is clicked on.
PerformAction It is raised when an object on the person picker is selected.
SelectPerson It is raised when a person is selected.

Events

[76]

ABPersonViewController
The Person View Controller displays the selected person with a single
event attached.

Name of event What it does and when
PerformDefaultAction It is sent when the user selects a property value for a

person in the Person View Controller.

ABUnknownPersonViewController
Unknown Person View Controllers display the information about a person
prior to being accepted into the ABAddressBook class. Its events are listed on
the following table:

Name of event What it does and when
PerformDefaultAction It is sent when the user selects a property value for a

person in the Person View Controller.
PersonCreated It is called when the user clicks on the Save or Cancel

button. If Save is clicked on, the new contact is saved
to the address book database.

AudioConverter
The AudioConverter class is used for converting audio formats.

Name of event What it does and when
InputData It is raised when data is being given as input through

a port.

AudioSession
The AudioSession class is similar to the AVAudioSession class but it is exclusively
for audio.

Name of event What it does and when
AudioRouteChanged It is raised when the route for the output changes

(for example, speaker to headphones).
Interrupted It is raised when the audio session is interrupted.
Resumed It is raised when the interruption to the audio session

has completed.

Chapter 6

[77]

InputAudioQueue
The input queue is used when audio is being fed into the device.

Name of event What it does and when
InputCompleted It is raised when the input has completed.

OutputAudioQueue
The ouput queue is for audio output.

Name of event What it does and when
OutputCompleted It is raised when the audio output has completed.

AUGraph and AudioUnit
Both AUGraph and AudioUnit share this event, which has the same effect for both.

Name of event What it does and when
RenderCallback It is the callback used for rendering during audio

graphing.

AudioConverter
The callback event is used to callback an object to/from an event.

Name of event What it does and when
EncoderCallback It is the callback created for the converter encoder.

CAAnimation
Animation has two key events; start and end.

Name of event What it does and when
AnimationStarted It is called when the animation starts.
AnimationEnded It is called when the animation ends.

Events

[78]

CBCentralManager
The CoreBluetoothCentralManager is the class that handles the adding or removing
of bluetooth devices. The handling events have been listed in the following table:

Name of event What it does and when
ConnectedPeripheral It is raised when a connection is successfully

made.
DisconnectedPeripheral It is raised when a connection is successfully

disconnected.
DiscoveredPeripheral It is raised when a connection is discovered.
FailedToConnectPeripheral It is raised when a connection to a peripheral

fails.
RetrievedConnectedPeripheral It is raised after a connected peripheral

information is retrieved.
RetrievedPeripherals It is raised after requesting a list of all stored

peripherals.
UpdatedState It is called after the state of a connection

changes.

CBPeripheral
Each bluetooth device has characteristics and descriptors attached to them.
The events have been listed in the following table:

Name of event What it does and when
DiscoverCharacteristic It discovers the characteristics of a service for

the peripheral.
DiscoveredDescriptor It discovers the descriptors of a characteristic.
DiscoveredIncludedService It discovers the specified included services for

the peripheral.
DiscoveredService It is called after discovery of the specified

service for the peripheral has completed the
connection.

InvalidatedService It is raised when the peripheral services
change.

RssiUpdated It is raised when the value for the peripheral's
current RSSI while connected to the
CoreBluetooth central manager.

UpdatedCharacteristicValues It is raised after the value for a characteristic
has been updated.

Chapter 6

[79]

Name of event What it does and when
UpdatedName It is raised when the peripheral name is

changed.
UpdatedNotificationState It is raised when the peripheral notification

state is changed.
UpdatedValue It is raised when the peripheral characteristic

descriptor value is changed.
WroteCharacteristicValue It is raised after the value for a characteristic

has been written.
WroteDescriptorValue It is raised after the value for a descriptor has

been written.

CBPeripheralManager
The CBPeripheralManager class manages the peripherals attached to the
bluetooth manager.

Name of event What it does and when
AdvertisingStarted It is raised when the peripheral advertising its

presence has started.
CharacteristicSubscribed It is raised when a remote device subscribes to

a characteristic's value.
CharacteristicUnsubscribed It is raised when a remote device unsubscribes

to a characteristic's value.
ReadRequestReceived It is raised after a read request has been

received.
ReadyToUpdateSubscribers It is invoked when a local peripheral is ready

to send a characteristic's updated value.
ServiceAdded It is raised after a service has been added.
StateUpdated It is raised after a peripheral state has been

updated.
WriteRequestsReceived It is raised after a write request has been

received.

www.allitebooks.com

http://www.allitebooks.org

Events

[80]

CFSocket
The CoreFoundation socket covers the connection to a remote socket
(typically online).

Name of event What it does and when
AcceptEvent It is invoked when CoreFoundation is set to

accept events from a socket.
ConnectEvent It is raised when a client connects to a remote

socket it called.

CFStream
Similar to an IOStream, the CFStream deals with data to and from a socket.

Name of event What it does and when
CanAcceptBytesEvent It is raised when the stream has information

available for writing.
ClosedEvent It is raised when a close operation on the stream

completes.
ErrorEvent It is raised when an error occurs on the stream.
HasBytesAvailableEvent It is raised when the stream has information

available for reading.
OpenCompletedEvent It is raised when an open operation on the stream

completes.

CLLocationManager
The CoreLocation LocationManager class is the control class for the location
manager on the iOS device.

Name of event What it does and when
AuthorizationChanged It is called when the user allows or prevents the

use of CoreLocation functions.
DeferredUpdatesFinished It is raised when the deferred updates time is

over.
DidStartMonitoringForRegion It informs the delegate that a new region is being

monitored.
Failed It is raised when CLLocationManager fails to

start.
LocationUpdatesPaused It pauses updating the location.
LocationUpdatesResumed It restarts paused location updates.
LocationsUpdated It updates the GPS position.

Chapter 6

[81]

Name of event What it does and when
MonitoringFailed It is raised when CLLocationManager fails to

monitor (no communication with the satellite is
a usual cause).

RegionEntered It is called when entering a region.
RegionLeft It is called when a region has been left.
UpdatedHeading It is called when a heading is updated.
UpdatedLocation It is called when the location has been updated.

MidiClient
Possibly not that useful on an iPhone (though it is on an iPad), iOS has a rich
MIDI layer.

Name of event What it does and when
IOError It is raised when the MIDI client suffers an

input/output error.
ObjectAdded It is called when a MIDI device is added.
ObjectRemoved It is called when a MIDI device is removed.
PropertyChanged It is invoked when a MIDI property for a

device is changed.
SerialPortOwnerChanged It is invoked when the serial port owner has

changed (effectively called when a device is
switched).

SetupChanged It is raised when the client setup has changed.
ThruConnectionsChanged It is raised when the MIDI daisy chain

connection alters.

MidiEndpoint and MidiPort
Both of these classes have the same named event and it does exactly the
same in both!

Name of event What it does and when
MessageReceived It is raised when the MIDI subsystem receives a

message from the device.

Monotouch.Dialog
MonoTouch.Dialog is an extremely powerful class that takes much of the trouble
out of creating and using UITableViews in your app.

Events

[82]

BadgeElement, BaseBooleanImageElement,
GlassButton, LoadMoreElement, MessageElement,
and StringElement
These classes all have the Tapped event in. It acts when the option is tapped.
Be aware that it sends an NSAction event rather than a typical object sender /
EventArgs e combo, which means that you cannot use the same handler for
multiple instances of a class.

Name of event What it does and when
Tapped It is emitted when the Element has been tapped.

BoolElement
This is a simple on/off element.

Name of event What it does and when
ValueChanged It is emitted when the Boolean has changed.

DateTimeElement
When invoked, a standard DateTime Picker View is produced.

Name of event What it does and when
DateSelected It is called when the date has been selected.

DialogViewController
The DialogViewController is the View Controller the MT.D is placed in.

Name of event What it does and when
OnSelection It is invoked when an object within a DVC is selected.
RefreshRequested It is called when a refresh of the MT.D is called.
SearchTextChanged It is called when the search Text Field text has changed.
ViewAppearing It is raised when MT.D view is being created.
ViewDisappearing It is raised when MT.D view is being disposed.

Chapter 6

[83]

EntryElement
An entry element allows for data entry into a UITextField held within a MT.D cell.

Name of event What it does and when
Changed It is called when the EntryElement content has

been changed.
ShouldReturn It asks if the Text Field should process the

Return button.

StyledStringElement
The StyledStringElement class is the same as a StringElement class, except that
you can add styles to it.

Name of event What it does and when
AccessoryTapped It is emitted when the element is tapped.

EKCalendarChooser
The CalendarChooser class of EventKit allows the user access to a calendar.

Name of event What it does and when
Cancelled It is called when the user cancels choosing.
Finished It is called when the user selects Done.
SelectionChanged It is called when the date selected is changed.

EKEventEditViewController and
EKEventViewController
Both of these EventKit View Controllers have the same named event that has the
same effect for both.

Name of event What it does and when
Completed It is emitted when the control has finished its action.

Events

[84]

EAAccessory
The external accessory class deals with any accessory not part of the phone
or bluetooth.

Name of event What it does and when
Disconnected It is issued when an external accessory has

been disconnected.

The NS classes
NS stands for NextStep. They are a bunch of classes that formed a part of the lineage
when Apple bought NeXT after Steve Jobs returned from the wilderness. While there
are not that many events attached to them, they are vital. Many of the NS classes are
required by the bindings between Xamarin.iOS and the Objective C underlayer.

NSCache
NSCache is an internal cache system used for many different jobs.

Name of event What it does and when
WillEvictObject It is called when an object is about to be removed

from the cache.

NSKeyedArchiver
The KeyedArchiver class encodes data with a key.

Name of event What it does and when
EncodedObject It is called when an object has been encoded.
Finished It is raised when the encoding has finished.
Finishing It is raised when the encoding is about to finish.
ReplacingObject It informs the delegate that a given object is

going to be replaced by another object.

Chapter 6

[85]

NSKeyedUnarchiver
The KeyedUnarchiver class performs the reverse of the KeyedArchiver class.

Name of event What it does and when
Finished It is raised when the decoding has finished.
Finishing It is raised when the decoding is about to finish.
ReplacingObject It informs the delegate that a given object is

going to be replaced by another object.

NSNetService
This is the class used for network services.

Name of event What it does and when
AddressResolved It is emitted when the address has been resolved.
PublishFeature It informs that a service feature was published successfully.
Published It informs that a service was published successfully.
ResolveFailed It is emitted when the address can't be resolved.
Stopped It informs that a request to publish or resolve was stopped.
UpdatedTxt
RecordData

It notifies that a TXT record for a service has been updated.

WillPublish It informs that the network is ready to publish a service.
WillResolve It informs that the network is ready to resolve a service

NSNetServiceBrowser
The NetServiceBrowser class is used for connection to the outside world.

Name of event What it does and when
DomainRemoved It informs when a domain has disappeared or is no longer

available.
FoundDomain It is raised when the sender has found a domain.
FoundService It is raised when the sender has found a service.
NotSearched It is raised when the search was not successful.
SearchStarted It is raised when a search has begun.
SearchStopped It is raised when a search has been stopped.
SearchRemoved It is raised when a search has been removed from the browser.

Events

[86]

NSStream
This is similar to a standard .NET Stream.

Name of event What it does and when
OnEvent It is called when a given event occurs on a given stream.

GLKView
The GL KitView is a view used for OpenGL graphics.

Name of event What it does and when
DrawInRect It draws the view's content within a given

rectangle.

GK classes
Games are an important part of any user experience. It's fine if you just want a phone
to be a phone, but if you have the capabilities to play Angry Hedgehogs or a football
manager game, then why not use them?

GKAchievementViewController,
GKFriendRequestComposeViewController, and
GKLeaderboardViewController
These three classes have the same named event.

Name of event What it does and when
DidFinish It is called when the view has been

dismissed.

GKGameCenterViewController
This View Controller is the main game view controller.

Name of event What it does and when
Finished It is called when the player has stopped

interacting with the view controller.

Chapter 6

[87]

GKMatch
The GKMatch class deals with connections from players.

Name of event What it does and when
DataReceived It is raised when data is received from the player.
Failed It is called when the match cannot connect to other

players.
StateChanged It is raised when the player connects or disconnects

from a match.

GKMatchmakerViewController
The MatchMaker View Controller deals with matches between devices.

Name of event What it does and when
DidFailWithError It is raised when the View Controller suffers an

unrecoverable error.
DidFindMatch It is raised when a peer-to-peer match is found.
DidFindPlayers It is called when a hosted match is found.
ReceivedAccept
FromHostedPlayer

It is raised when a player accepts an invite to a hosted
match.

WasCancelled It is raised when the user cancels the matchmaking
request.

GKSession
The GKSession class can be both local or external to the device.

Name of event What it does and when
ConnectionFailed It is raised when an attempt to connect to

another peer fails.
ConnectionRequest It is raised when attempting to connect to

another peer.
Failed It is sent when a serious error occurred in the

session.
PeerChanged It is received when a peer changes state.
ReceiveData It is raised when data is received from the peer.

Events

[88]

MKMapView
The MapView class of MapKit deals with the creation and display of maps and the
addition of pointers onto the view (such as the user or places of interest).

Name of event What it does and when
CalloutAccessory
ControlTapped

It is raised when the user taps one of the annotation
view accessories such as buttons.

ChangedDragState It is raised when the state of one of the annotation
views has changed.

DidAddAnnotation
Views

It is called when one or more annotation views are
added to a map.

DidAddOverlayViews It is called when one or more overlay views are added
to a map.

DidChangeUser
TrackingModel

It is raised when the user tracking mode changes.

DidDeselect
AnnotationView

It is called when an annotation view has been
deselected.

DidFailToLocateUser It is raised when an attempt to find a user's position
fails.

DidSelect
AnnotationView

It is called when one of the annotations has been
selected.

DidStopLocatingUser It is called when the locate user service has been
stopped.

DidUpdateUserLocation It is raised when the location of the user has been
updated.

LoadingMapFailed It is called when the map loading fails (typically
caused by no GPS connection).

MapLoaded It is raised when the map has loaded.
RegionChanged It is raised when the region has changed.
RegionWillChange It is raised when the region is changing.
WillStartLoadingMap It is raised when the map is about to start loading.
WillStartLocatingUser It is raised when the user is about to be located.

Chapter 6

[89]

MPMediaPickerController
These events are attached to the MediaPickerController View Controller.

Name of event What it does and when
DidCancel It is called when the user clicks on the Cancel button.
ItemsPicked It is called when the user has selected a number of

media items.

MFMailComposeViewController and
MFMessageComposeViewController
The MFMailComposeViewController and MFMessageComposeViewController both
have this event. It is used for composing either an e-mail or a message.

Name of event What it does and when
Finished It is emitted when the composition has

finished.

PKAddPassesViewController
The passkit view controller is used for the storage of passwords.

Name of event What it does and when
Finished It is raised after the add-passes view

controller has completed.

QLPreviewController
The QuickLook preview controller allows for a quick look at a file.

Name of event What it does and when
DidDismiss It is called after the preview controller is closed.
WillDismiss It is called prior to the preview controller being

closed.

SK classes
The StoreKit classes deal with the app store and online purchases from the app store.

Events

[90]

SKProductsRequest
This class deals with requesting a product from the app store.

Name of event What it does and when
ReceivedResponse It is called when the App Store responds to the

product request.
RequestFailed It is raised when the request to the App Store fails.
RequestFinished It is raised when the product request is closed.

SKRequest
This class is used for dealing with requests to the store.

Name of event What it does and when
RequestFailed It is raised when the request to the App Store fails.
RequestFinished It is raised when the product request is closed.

SKStoreProductViewController
The StoreProductViewController is the main View Controller used for the app
store content.

Name of event What it does and when
Finished It is raised when the product request is closed.

UIClasses
These classes deal exclusively with user interface events, and without them very
little can be done.

UIAccelerometer
The accelerometer detects the movement of the device.

Name of event What it does and when
Acceleration It is raised when a movement is detected.

Chapter 6

[91]

UIActionSheet and UIAlertView
Both of these classes share these named events with the same effect in both.

Name of event What it does and when
Cancelled It is raised when the Cancel button is clicked on.
Clicked It is raised when a control is selected.
Dismissed It is raised when ActionSheet or AlertView is closed.
Presented It is raised when ActionSheet or AlertView is shown.
WillDismiss It is raised when ActionSheet or AlertView is about to

be closed.
WillPresent It is raised when ActionSheet or AlertView is about to

be shown.

UIButtonBarItem
The Button Bar Item has to be connected to a ButtonBar to work.

Name of event What it does and when
Clicked It is called when the item is clicked.

UIImagePickerController
This class is used for picking images from the camera roll.

Name of event What it does and when
Cancelled It is raised when the picker has been cancelled.
DidShowViewController It is raised when the View Controller has been shown.
FinishedPickingImage It is raised when the user has finished picking image(s).
FinishedPickingMedia It is raised when the user has finished picking media.
WillShowViewController It is raised prior to the View Controller being displayed.

UIPageViewController
This class is used as a form of the "virtual" page counter.

Name of event What it does and when
DidFinishAnimating It is raised after the page scroll transition has

completed.
WillTransition It is raised before the page scroll transition has started.

Events

[92]

UIPopoverController
This class is only available on the iPad.

Name of event What it does and when
DidDismiss It is raised when the controller has been dismissed.

UIPrintInteractionController
Used for printing from the device.

Name of event What it does and when
DidDismiss It is raised when the controller has been dismissed.
DidFinishJob It is raised when the printer has finished a job.
DidPresentPrinterOptions It is raised when the printer options have been

displayed.
WillDismissPrinterOptions It is raised when the printer options have been closed.
WillPresentPrinterOptions It is raised when the printer options are about to be

displayed.
WillStartJob It is raised when the print job is about to start.

UIScrollView
The scroll view allows more content on a page that would not fit on the page
without it.

Name of event What it does and when
DecelerationEnded It is called when the scroll deceleration has stopped.
DecelerationStarted It is called when the scroll deceleration has started.
DidZoom It is called once the zoom has occurred.
DraggingEnded It is called when a drag has stopped (finger removed

from phone).
DraggingStarted It is called when a drag has started (finger dragging

on phone).
ScrollAnimationEnded It is called after a scroll has completed.
Scrolled It is called when a scroll has completed.
ScrolledToTop It is raised when a scroll to the top of a view has

been completed.
WillEndDragging It is raised when the user is about to end a drag.
ZoomingEnded It is raised when the zoom has completed.
ZoomingStarted It is raised when the zoom has started.

Chapter 6

[93]

UISearchBar
This is a search method for finding information either within an app or on the device.

Name of event What it does and when
BookmarkButtonClicked It is called when the Bookmark button is clicked on.
CancelButtonClicked It is called when the Cancel button is clicked on.
ListButtonClicked It is called when the List button is clicked on.
OnEditingStarted It is called when the UITextField view bounds are

entered.
OnEditingStopped It is called when the UITextField view bounds are left.
SearchButtonClicked It is called when the Search button is clicked on.
SelectedScope
ButtonIndexChanged

It is called when the scope button selection has changed.

TextChanged It is called when the UITextField text has been changed.

UISplitViewController
The split view allows for a view to be split into parts (for example, a menu on the left
appears when a menu button is pressed on a button bar).

Name of event What it does and when
WillHideViewController It is raised prior to the View Controller being hidden.
WillPresentViewController It is raised prior to the View Controller being presented.
WillShowViewController It is raised prior to the View Controller being shown.

UITabBar
A simple method of navigation using tabs can be used in association with the
TabBarController controller.

Name of event What it does and when
DidBeginCustomizingItems It is raised after the customizing modal view is

displayed.
DidEndCustomizingItems It is raised after the customizing modal view is

dismissed.
ItemSelected It is called when a tab bar item is selected.
WillBeginCustomizingItems It is raised before the customizing modal view is

dismissed.
WillEndCustomizingItems It is raised before the customizing modal view is

dismissed.

Events

[94]

UITabBarController
This is a convenient method of controlling the NIBs called when a tab bar item
is clicked.

Name of event What it does and when
FinishedCustomizingViewController It is raised when the tab bar

customization sheet is dismissed.
OnCustomizingViewController It is raised when the customization

has begun.
OnEndCustomizingViewController It is raised when customization has

ended.
ViewControllerSelected It is called when the user selects an

item on the tab bar.

UITextField
The UITextField class is a simple, editable textbox.

Name of event What it does and when
Ended It is raised when editing of the TextField has ended.
Started It is raised as soon as the content of the TextField is edited.

UITextView
The UITextView class displays text. It also inherits from the ScrollView view to
enable more text than within the frame.

Name of event What it does and when
Changed It is raised when the text has changed.
DecelerationEnded It is called when the scroll deceleration has stopped.
DecelerationStarted It is called when the scroll deceleration has started.
DidZoom It is called once the zoom has occurred.
DraggingEnded It is called when a drag has stopped (finger removed

from phone).
DraggingStarted It is called when a drag has started (finger dragging

on phone).
Ended It is called after a scroll has been completed.
ScrollAnimationEnded It is called when a scroll has been completed.
Scrolled It is raised when the text view is scrolled.

Chapter 6

[95]

Name of event What it does and when
ScrolledToTop It is raised when a scroll to the top of a view has been

completed.
SelectionChanged It is raised when the selection of text within the text

view has changed.
Started It is raised when a scroll has started.
WillEndDragging It is raised when a user is about to end a drag.
ZoomingEnded It is raised when a zoom has completed.
ZoomingStarted It is raised when a zoom has started.

UIView
The UIView is a generic view that can be added to any View Controller.

Name of event What it does and when
AnimationWillEnd It is raised when an animation is about to end.
AnimationWillStart It is raised when an animation is about to start.

UIWebView
A view for displaying HTML (either from a website or generated within an app).

Name of event What it does and when
LoadError It is raised when URL loading has failed.
LoadFinished It is raised when URL has finished loading.
LoadStarted It is raised when URL loading has begun.

Ad classes
Typically, advertisements within applications are a convenient method of generating
income for the developer (it's known as a click-through).

Events

[96]

AdBannerView
The AdBannerView View is the view containing ads.

Name of event What it does and when
ActionFinished It is raised when the banner view finishes its

execution of an action that covered the UI.
AdLoaded It is raised when an ad is loaded.
FailedToReceiveAd It is raised when an ad retrieval has failed

(typically a network connection error).
WillLoad It is raised when an ad is about to load.

AdInterstitialAd
These are full-screen advertisements. They act in the same way as AdBannerView.

Name of event What it does and when
ActionFinished It is raised when the banner view finishes its execution of

an action that covered the UI.
AdLoaded It is raised when an ad is loaded.
AdUnloaded It is called after a full-screen ad disposes its content.
FailedToReceiveAd It is raised when the ad retrieval has failed (typically a

network connection error).
WillLoad It is raised when the ad is about to load.

OpenTK
OpenTK is an open graphics layer used commonly among mobile and desktop
application developers.

IGameWindow
This is an interface class rather than a class and deals with the game window itself
rather than the game.

Name of event What it does and when
Load It is raised before a window is displayed for the first time.
RenderedFrame It is raised when the time to render has arrived.
Unload It is raised when a window is destroyed.
UpdateFrame It is called when it's time to update a frame.

Chapter 6

[97]

IPhoneOSGameView
This is the GameView held by the OpenTK classes.

Name of event What it does and when
Closed It is called when the game view has been closed but

not disposed
Disposed It is called when the game view has been disposed
Load It is raised before the run loop starts.
RenderedFrame It is raised as part of the run-loop processing for

when a frame should be rendered.
Resize It is called when a view is resized.
TitleChanged It is called when a view title is changed.
Unload It is raised when a run-loop is terminated.
UpdateFrame This is raised when a frame is updated as part of the

runloop.
VisibleChanged It is called when the visibility of a view is changed.
WindowStateChanged It is raised when a window state changes.

Summary
It is safe to say that events are what make your iPhone the device it is. It is very
unlikely that you'll ever need most of these listed here, but if you're like me and
hate having to search, this chapter should really help you in the future.

Gestures
While there are ongoing arguments in the courts of America at the time of writing
over who invented the likes of dragging images, it is without a doubt that a key
feature of iOS is the ability to use gestures. To put it simply, when you tap the
screen to start an app or select a part of an image to enlarge it or anything like
that, you are using gestures.

We will be covering the following topics in this chapter:

•	 What is a gesture?
•	 Adding gestures to the UI
•	 Handling gestures
•	 Handling drag-and-drop

Gestures
A gesture (in terms of iOS) is any touch interaction between the UI and the device.
With iOS 6, there are six gestures the user has the ability to use. These gestures,
along with brief explanations, have been listed in the following table:

Class Name and type Gesture

UIPanGesture
Recognizer

PanGesture;
Continuous type

Pan images or over-sized views
by dragging across the screen

UISwipeGesture
Recognizer

SwipeGesture;
Continuous type

Similar to panning, except it is a
swipe

UITapGesture
Recognizer

TapGesture;
Discrete type

Tap the screen a number of times
(configurable)

Gestures

[100]

Class Name and type Gesture

UILongPress
GestureRecognizer

LongPress
Gesture;
Discrete type

Hold the finger down on the
screen

UIPinchGesture
Recognizer

PinchGesture;
Continuous type

Zoom by pinching an area and
moving your fingers in or out

UIRotationGesture
Recognizer

RotationGesture;
Continuous type

Rotate by moving your fingers in
opposite directions

Gestures can be added by programming or via Xcode. The available gestures are
listed in the following screenshot with the rest of the widgets on the right-hand side
of the designer:

Chapter 7

[101]

To add a gesture, drag the gesture you want to use under the view on the View
bar (shown in the following screenshot):

Design the UI as you want and while pressing the Ctrl key, drag the gesture to
what you want to recognize using the gesture. In my example, the object you want to
recognize is anywhere on the screen. Once you have connected the gesture to what
you want to recognize, you will see the configurable options of the gesture.

The Taps field is the number of taps required before the Recognizer is triggered, and
the Touches field is the number of points onscreen required to be touched for the
Recognizer to be triggered.

When you come to connect up the UI, the gesture must also be added.

Gesture code
When using Xcode, it is simple to code gestures. The class defined in the Xcode design
for the tapping gesture is called tapGesture and is used in the following code:

private int tapped = 0;
public override void ViewDidLoad()
{
 base.ViewDidLoad();
 tapGesture.AddTarget(this, new Selector("screenTapped"));
 View.AddGestureRecognizer(tapGesture);
}

Gestures

[102]

[Export("screenTapped")]
 public void SingleTap(UIGestureRecognizer s)
{
 tapped++;
 lblCounter.Text = tapped.ToString();
}

There is nothing really amazing to the code; it just displays how many times the
screen has been tapped.

The Selector method is called by the code when the tap has been seen. The method
name doesn't make any difference as long as the Selector and Export names are
the same.

Types
When the gesture types were originally described, they were given a type. The
type reflects the number of messages sent to the Selector method. A discrete one
generates a single message. A continuous one generates multiple messages, which
requires the Selector method to be more complex. The complexity is added by the
Selector method having to check the State of the gesture to decide on what to do
with what message and whether it has been completed.

Adding a gesture in code
It is not a requirement that Xcode be used to add a gesture. To perform the same
task in the following code as my preceding code did in Xcode is easy. The code
will be as follows:

UITapGestureRecognizer t'pGesture = new UITapGestureRecognizer()
{
 NumberOfTapsRequired = 1
};

The rest of the code from AddTarget can then be used.

Continuous types
The following code, a Pinch Recognizer, shows a simple rescaling. There are a couple
of other states that I'll explain after the code. The only difference in the designer code
is that I have UIImageView instead of a label and a UIPinchGestureRecognizer
class instead of a UITapGestureRecognizer class.

Chapter 7

[103]

public override void ViewDidLoad()
{
 base.ViewDidLoad();
 uiImageView.Image =UIImage.FromFile("graphics/image.jpg")
 Scale(new SizeF(160f, 160f);
 pinchGesture.AddTarget(this, new Selector("screenTapped"));
 uiImageView.AddGestureRecognizer(pinchGesture);
}
[Export("screenTapped")]
 public void SingleTap(UIGestureRecognizer s)
{
 UIPinchGestureRecognizer pinch = (UIPinchGestureRecognizer)s;
 float scale = 0f;
 PointF location;
 switch(s.State)
 {
 case UIGestureRecognizerState.Began:
 Console.WriteLine("Pinch begun");
 location = s.LocationInView(s.View);
 break;
 case UIGestureRecognizerState.Changed:
 Console.WriteLine("Pinch value changed");
 scale = pinch.Scale;
 uiImageView.Image = UIImage
 FromFile("graphics/image.jpg")
 Scale(new SizeF(160f, 160f), scale);
 break;
 case UIGestureRecognizerState.Cancelled:
 Console.WriteLine("Pinch cancelled");
 uiImageView.Image = UIImage
 FromFile("graphics/image.jpg")
 Scale(new SizeF(160f, 160f));
 scale = 0f;
 break;
 case UIGestureRecognizerState.Recognized:
 Console.WriteLine("Pinch recognized");
 break;
 }
}

Gestures

[104]

Other UIGestureRecognizerState values
The following table gives a list of other Recognizer states:

State Description Notes

Possible Default state; gesture hasn't
been recognized

Used by all gestures

Failed Gesture failed No messages sent for this state

Translation Direction of pan Used in the pan gesture

Velocity Speed of pan Used in the pan gesture

In addition to these, it should be noted that discrete types only use Possible and
Recognized states.

Handling drag-and-drop
Drag-and-drop can be handled using a gesture or by using the TouchesBegan,
TouchesMoved, and TouchesEnded handlers. Essentially, a custom UIImageView
class can be used, as shown in the following code:

public class myDragImage : UIImageView
{
 private PointF myLoc, myStartLoc;
 private bool TouchedOnce = false;

 public myDragImage (RectangleF frame)
 {
 this.Frame = frame;
 myStartLoc = this.Frame.Location;
 }
 public override void TouchesBegan(NSSet touches, UIEvent e)
 {
 myLoc = Frame.Location;

 var touch = (UITouch)e.TouchesForView(this).AnyObject;
 var bounds = Bounds;

 myStartLoc = touch.LocationInView(this);
 Frame = new RectangleF(Location,bounds.Size);
 }

Chapter 7

[105]

 public override void TouchesMoved(NSSet touches, UIEvent e)
 {
 var bounds = Bounds;
 var touch = (UITouch)e.TouchesForView(this).AnyObject;

 myLoc.X += touch.LocationInView(this).X - myStartLoc.X;
 myLoc.Y += touch.LocationInView(this).Y - myStartLoc.Y;

 Frame = new RectangleF(myLoc, bounds.Size);
 TouchedOnce = true;
 }

 public override void TouchesEnded(NSSet touches, UIEvent e)
 {
 myStartLoc = myLoc;
 }
}

This is used as a simple way to handle drag-and-drop. For a gesture, a Continuous
type should be used.

Summary
Gestures certainly can add a lot to your apps. They can enable the user to
speed around an image, move about a map, enlarge and reduce, as well as
select areas of anything on a view. Their flexibility underpins why iOS is
recognized as being an extremely versatile device for users to manipulate
images, video, and anything else on-screen.

Threading
iOS is what is known as a multithreading system, and understanding how threads
can be used within an app can be advantageous.

We will be covering the following topics in this chapter:

•	 A brief introduction to threading
•	 The main UI thread
•	 A Daughter thread
•	 The AppDelegate class

Threading Concepts
Let's discuss an easy way to learn threading.

A single-thread environment can be considered in the same way as going to your
local college. There are a number of routes you can take, but you end up there at
some point and the process will take a finite amount of time; you set off, you travel,
you arrive.

A multithreaded environment needs to be thought of as the college itself with each
thread being a student. All students start off at 9 a.m. and go until 12 p.m. What they
do in between that time may or may not interfere with each other; they will all be
doing a task or co-operating on a task to speed up the delivery of an answer. Thirty
different threads, all working at once and at different speeds, but at 12 p.m., they all
manage to converge and terminate their activities with the jobs done. They repeat
the process from 1 p.m. to 4 p.m., and again, there is organized chaos between those
hours, but at 4 p.m. everything converges. The lecturer is the one controlling who
does what, and in terms of the threading model, is the control thread. Simple!

Threading

[108]

In terms of iOS development, the lecturer would be classed as the UI thread; it
is the one that can start new threads and, at the end of the day, the one where all
information needs to be fed back.

The main UI thread
As the name suggests, the UI thread controls the UI. It is usually the hungriest in
terms of resources and processor time. Not everything runs on the UI thread. For
example, if the UI calls a method and that method cannot be run on the UI thread
(such as the SQLite example listed in Chapter 11, Handling Data), then that is what
will happen. The code is executed and the flow continues once the method has
returned.

The UI thread should not be mistaken as a single task; it's not. A single task would
prohibit any other application running, which we know is not the case (for example,
you could be playing Angry Worms and still receive a text message).

Xamarin.iOS allows non-UI calls to simply jump back onto the UI thread.

InvokeOnMainThread(delegate () {…});

Or, if a reference to the thread can't be found (such as being out of scope or in a non-
UI thread class), use the following line of code:

using (var pool = new NSAutoreleasePool()) {
 pool.InvokeOnMainThread(delegate() {
 // do something on the UI thread
 });
}

Deadlocking
Something may have crossed your mind over the description of the multithreaded
system. What happens if all the students don't come back when they should? What
happens then? It's a good question as it's something that if you're not careful can
hit when dealing with a multithreaded environment. It is known as a deadlock and,
literally, it can lock the app and potentially the device (though this is rare). Another
problem is threads overwriting the same memory location (think of this as two or
more people talking to the lecturer at once; only one voice will be remembered).

Chapter 8

[109]

In this example, if the two threads are run within a second of each other, they will
both have time to grab the first lock before anyone gets to the inner lock. Without the
Sleep() call, one of the threads would most likely have time to get and release both
locks before the other thread even got started.

// thread 1
lock(typeof(int)) {
 Thread.Sleep(1000);
 lock(typeof(float)) {
 Console.WriteLine("Thread 1 got both locks");
 }
}

// thread 2
lock(typeof(float)) {
 Thread.Sleep(1000);
 lock(typeof(int)) {
 Console.WriteLine("Thread 2 got both locks");
 }
}

Avoiding deadlocks for synchronized
accessors
A simple way to avoid this form of deadlock is for each holding class to have its own
private deadlock. The problem along with its solution is described well on MSDN
(http://msdn.microsoft.com/en-us/library/orm-9780596516109-03-18.aspx).

Starting a new thread from the main UI
thread
A new thread coming from an existing thread is known as a daughter thread.

Threading

[110]

A very simple way to add a daughter thread on an iOS device is like this. I have first
created a simple UI to show what is happening. The top label is called thread 1, the
bottom label is called thread 2.

The code also shows InvokeOnMainThread in action—without it the app fails:

using System.Threading;
...
private int i = 0;

public override void ViewDidLoad() {
 base.ViewDidLoad();
 var first = new Thread(new ThreadStart(firstThread));
 var second = new Thread(new ThreadStart(secondThread));
 btnStart.TouchUpInside += delegate {
 first.Start();
 Thread.Sleep(10);
// causes a 10ms delay between starting the next thread

 second.Start();
 };
}

private void firstThread() {
 string text = string.Empty;
 while (i < 10) {
 text = string.Format("1st thread going i from {0} to {1}",
 i, ++i);

Chapter 8

[111]

 InvokeOnMainThread(delegate() {
 thread1.Text = text;
 });
 Thread.Sleep(100);
 }
}

private void secondThread() {
 string text = string.Empty;
 while (i < 10) {
 text = string.Format("2nd thread going i from {0} to {1}",
 i, ++i);
 InvokeOnMainThread(delegate() {
 thread2.Text = text;
 });
 Thread.Sleep(100);
 }
}

And when run, the simulator gives the following output:

Threading

[112]

Run this a number of times and you get a number of different results. The threads
are performing operations on the UI at different times; this shows the problem with
threading quite well. If the UI was waiting for thread 1 to finish but thread 2 finishes,
then it's not going to know what is going on.

In this case, the code can be sanitized by using a lock.

Using locks
Be careful when using locks is probably the first thing that needs to be said.
A lock is used to synchronize the threads and obtain a far saner output.

private int i = 0;
private object lock_i = new object();
public override void ViewDidLoad() {
 base.ViewDidLoad();
 var first = new Thread(new ThreadStart(firstThread));
 var second = new Thread(new ThreadStart(secondThread));
 btnStart.TouchUpInside += delegate {
 first.Start();
 Thread.Sleep(10);
 // causes a 10ms delay between starting the next thread

 second.Start();
 };
}
private void firstThread() {
 string text = string.Empty;
 do {
 lock(this.lock_i) {
 if (i >= 10) return;
 text = string.Format("1st thread going i from {0} to {1}",
 i, ++i);
 InvokeOnMainThread(delegate() {
 thread1.Text = text;
 });
 }
 Thread.Sleep(100);
 }
 while(true);
}

Chapter 8

[113]

private void secondThread() {
 string text = string.Empty;
 do {
 lock(this.lock_i) {
 if (i >= 10) return;
 text = string.Format("2nd thread going i from {0} to {1}",
 i, ++i);
 InvokeOnMainThread(delegate() {
 thread2.Text = text;
 });
 }
 Thread.Sleep(100);
 }
 while(true);
}

This time when the app is run, the threads are synchronized and the result is always
the same. Using this locking system, the app is free to use as many threads as it needs
to get whatever done off the UI thread.

Threading

[114]

The AppDelegate class
It may seem odd having the AppDelegate class described here, but it fits.
The AppDelegate class is known as a singleton class. It's used once and once
only with everything coming from it. Consider it as the über thread; without it,
nothing else happens.

I've given the AppDelegate class a more thorough handling in Chapter 5, UI Controls
and, after reading this chapter, you should have a clearer idea of its importance.

Summary
Threading within an iOS application can make up for a more responsive user
experience, but at the same time, for the developer it can be the reason for many
a late nights trying to figure out why something is crashing at random times or
just seizes up for no real reason. Be careful with threads, they can be both a pain
and a pleasure.

Threading Tasks
In the previous chapter, we took a look at the basics of using threads within an iOS
application and the pitfalls that may confront you if you use them. In this chapter,
I'll be carrying it on and we'll have a look at the other aspects of threading as well as
asynchronous calls.

In this chapter we will be covering the following topics:

•	 Using background threading and System.Threading.Tasks within
your code

•	 Using asynchronous code
•	 Problems that using tasks may have on the threading model

A brief introduction to threading
Threading moved on from its humble beginnings when developers discovered its
power, and with that created background threading and task threading. Background
threads are just that—you set something running in the background and look in on
it sometimes, or when it's finished it will report back to you. On the college analogy
I used in the previous chapter, the background threads are the admin staff—they're
there in the background working away and report when they are done.

Threading Tasks

[116]

Threading tasks need to be thought of as almost miniature applications in
themselves. They start, end, and can continue with the next task on the list—all
this time, the app is free to be working on other tasks. There is an overhead to
be considered with any threading operation, but unless you're doing something
insanely complex, it's not going to be horrible.

Using background threading within your app
Background threading comes from the System.ComponentModel namespace
and is known as a BackgroundWorker thread. Alternatively, ThreadPool.
QueueUserWorkItem()does the same thing (as ThreadPool is from System.
Threading).

BackgroundWorker
The BackgroundWorker thread is recommended when you don't want to tie up
the UI, so creating large files or sending a large amount of data to a server can be
considered to be used with BackgroundWorker. When the thread is complete, the
WorkerCompleted event is raised. During the operation of BackgroundWorker,
the UI can be updated with the ProgressChanged event. A background lasts for
a finite amount of time. It is important to remember that BackgroundWorker is an
asynchronous task.

When you use a BackgroundWorker thread, you need to write a code using three
events (ProgressChanged can be omitted if you don't want to use it).

DoWork(object sender, DoWorkEventArgs e);
RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e);
ProgressChanged(object sender, ProgressChangedEventArgs e);

The preceding code demonstrates using BackgroundWorker within an app.
It's simple enough; it puts a counter on the screen, which will carry on counting
while it downloads a picture that is then displayed when the RunWorkerCompleted
event is raised.

private UIImage downloadedImage;
private BackgroundWorker bgWorker;
private Timer t;
private int counter = 0;

public override void ViewDidLoad()

Chapter 9

[117]

{
 base.ViewDidLoad();
 bgWorker = new BackgroundWorker();
 bgWorker.DoWork += HandleDoWork;
 bgWorker.RunWorkerCompleted += HandleRunWorkerCompleted;
 btnStart.TouchUpInside += delegate
 {
 t = new Timer(1000); // 1 second
 t.Elapsed += delegate
 {
 counter++;
 InvokeOnMainThread(delegate()
 {
 lblCountValue.Text = counter.ToString();
 });
 };
 t.Start();
 bgWorker.RunWorkerAsync();
 };
}

private void HandleRunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e)
{
 uiImageView.Image =
 UIImage.FromImage(downloadedImage.CGImage).Scale(new
 SizeF(240f, 240f));
 t.Stop();
}

private void HandleDoWork(object sender, DoWorkEventArgs e)
{
 NSUrl url = new NSUrl("http://edmullen.net/test/rc.jpg");
 NSData data = NSData.FromUrl(url);
 downloadedImage = new UIImage(data);
}

Threading Tasks

[118]

The preceding code is simple enough to follow, it creates the BackgroundWorker
object and it also creates the handles and a click event for the button. Inside
the button, it sets up a timer to update the counter every second and start
BackgroundWorker. When BackgroundWorker DoWork thread is completed,
the image is displayed and scaled. The result of the preceding code is shown
in the form of the following image:

Remember though, this is a background task—the UI can't act on the data until the
data is ready. When you run the application, the counter value will differ as well,
depending on if you're on a wireless network or outside, using 3G or 4G.

Chapter 9

[119]

ThreadPool.QueueUserWorkItem
Having seen how the background worker operates, let us consider using
ThreadPool.QueueUserWorkItem for the same task:

private UIImage downloadedImage;
private System.Timers.Timer t;
private int counter = 0;

public override void ViewDidLoad()
{
 base.ViewDidLoad();
 btnStart.TouchUpInside += delegate
 {
 t = new Timer(100);
 t.Elapsed += delegate
 {
 counter++;
 InvokeOnMainThread(delegate()
 {
 lblCountValue.Text = counter.ToString();
 });
 };
 t.Start();
 ThreadPool.QueueUserWorkItem(delegate
 {
 ProcessFile();
 });
 };
}

private void ProcessFile()
{
 NSUrl url = new NSUrl("http://edmullen.net/test/rc.jpg");
 NSData data = NSData.FromUrl(url);
 downloadedImage = new UIImage(data);
 InvokeOnMainThread(delegate()
 {
 uiImageView.Image =
 UIImage.FromImage(downloadedImage.CGImage).Scale(new
 SizeF(240f, 240f));
 });
 t.Stop();
}

Threading Tasks

[120]

The callback is a piece of code passed as an argument, which needs to be executed
at some point in time. In threading terms, it is typically executed within the thread
being called or created. The callback tells the thread when it has called the thread
back to the main thread. The end result is the same, but the QueueUserWorkItem
method can be used for both foreground and background tasks.

Using System.Threading.Tasks
The System.Threading.Tasks namespace sets up tasks within a thread, so a
thread can perform a type of mini program and then report back. It can also be
used to start a task.

var scheduler = TaskScheduler.FromCurrentSynchronizationContext();
Task.Factory.StartNew(() => GetMessage(currentPosition))
 .ContinueWith(ShowResults, scheduler);

The call starts a new thread task that calls GetMessage. Once that has returned, the
task continues with ShowResults. The scheduler prevents the timing from getting
out of hand.

While the code available at http://www.gregshackles.
com/2011/04/using-background-threads-in-mono-
for-android-applications/ is for Android, the same code
can (more or less) be used in Xamarin.iOS and gives a fantastic
cover of the different types of threading and how they're used.

Problems while using Tasks on threads
Whenever an additional task is created, the processor has to start swapping between
the tasks themselves, which slows the code down. You have the additional problem
of tracking the tasks and how they work with the main UI thread. In general, they
shouldn't cause a problem, but you also have to consider that unless you explicitly
program the threads to run synchronously, they run asynchronously. To prevent
the code from getting out of hand, locks or callbacks need to be used. Locks may
lead to deadlock conditions, so be careful! Refer back to Chapter 8, Threading, for an
overview of deadlocks and avoiding them.

Chapter 9

[121]

Using Asynchronous code
Async is one of the big changes to .NET and was released in .NET v4, but has only
quite recently landed within the Mono framework, and therefore within Xamarin.
Android and Xamarin.iOS. As I explained in a previous chapter, asynchronous code
can be a bit of a handful, but thankfully that bit of a handful is simple to understand.

Tasks and EventHandlers
Take the following code as an example:

var webView = new UIWebView();
webView.LoadStarted += HandleLoadStarted;
…
private void HandleLoadStarted (object sender, EventArgs e)
{}

The handler for LoadStarted is a synchronous process—in other words, it is like
a walk to the pub in a straight line. The problem is that while webView is loading a
page, everything is being held up—so if it's a slow page or you need something else
to be running (say a piece of music to play), there are going to be sticking points.
This is where an asynchronous LoadStarted event can be used.

var webView = new UIWebView();
webView.LoadStarted += async(object sender, EventArgs e) =>
 {HandleLoadStarted(sender, e);};

The async method looks different from a normal method as shown in the
following code:

private async void HandleLoadStarted(object sender, EventArgs e)

A more practical example
Prior to the async method being implemented, a system of events had to be
implemented so that once the data had been returned it can be handled by the
method (say, from a web data download). For example (the following is a psuedo
code, so you get the idea):

login.name = "nodoid201213";
login.password = "312102diodon";
login.DataReturned += HandleDataReturned;
callLoginService(login);
private void HandleDataReturned { … }

Threading Tasks

[122]

The preceding code can now be handled in a single async method, as shown in the
following code:

private async Task<bool> LogUserIn()
{
 login.name = "nodoid201213";
 login.password = "312102diodon";
 bool loginResult = await callLoginService(login);
 return loginResult;
}

The key here is await—this prevents the next line from executing until
callLoginService has returned. This greatly improves responsiveness—less
code, fewer events to listen to, and far less messing about.

If a method returns a value, the Task<T> parameter needs to be used prior to the
method name. If there isn't a return value (as, when responding to a button click),
void needs to be used.

Summary
There are many uses for background threads as well as asynchronous calls, and
the general recommendation is that if a process takes a long time, throw it at the
background. Be careful when using threads. While for the majority of the time they
are fine, you still need to test all apps on a real device to ensure the threads are
working. Remember, the simulator is buggy (for example, the simulator works
on a Just In Time processor model rather than Ahead Of Time, which the phone
uses—the results are that web services may not work as planned) and doesn't work
the same way as a phone.

Animation
Animation is the illusion of movement of static (still) images. To do this, typically
something has to move roughly every 1/25th of a second. The more the steps
used for moving something, the smoother the motion and the easier it is to fool
the brain. We've already seen Chapter 6, Events, how animation can be achieved
using UIAlertView. Now we need to see how we can do this normally using
the CoreAnimation and CoreGraphics namespaces. This is not going to be an
exhaustive study but it will give you a grounding in the basics.

In this chapter, we will be covering the following:

•	 Handling bitmaps (scaling and rotation)
•	 Freeing memory after use

Handling bitmaps
A bitmap image can be created either inside or outside of an app. External bitmaps
are rendered to UIImageView as shown in the following code:

uiImageView = UIImage.FromFile("path/tofile.ext");

We can get the image in, so let's do something with it.

Scaling the image
Scaling can be achieved by setting the scale factor.

uiImageView = UIImage.FromFile("path/tofile.ext").Scale(
 new SizeF(float w, float h), float scaleFactor);

If scaleFactor is not specified, it is 1.0f by default.

Animation

[124]

Therefore, you could create a kind of animation as follows:

float w = 10f, h = 10f;
for (int i = 0; i < 100; ++i) {
 uiImageView = UIImage.FromFile("path/tofile.ext").Scale(
 new SizeF(w, h));
 w += (float)i + 5f;
 h += (float)i + 5f;
}

This gives the impression of the image growing. It's not very good, but gives you
an idea. To get further than this (such as rotation), we need to start looking at
CoreGraphics and CoreAnimation.

Rotating the image – Part 1
I will assume here that there is a small-enough UIImageView widget set onto a view
(say 122 x 122) in the middle of the screen. As before, the image is loaded in, but this
time the CoreGraphics image is required.

uiImageView.Image = UIImage.FromFile("graphics/image.jpg").Scale(
 new SizeF(122f, 122f));
uiImageView.Transform = CGAffineTransform.MakeRotation(
 (float)Math.PI / 15f);

The image is loaded and rotated. The rotation is static (in other words, instant).

For animation, CoreAnimation needs to be used. However, before doing a rotation
animation, let's start off on something simpler—moving something across the screen
and back. To do this, let's look at some code.

Private PointF startPoint;

public override void ViewDidLoad() {
 base.ViewDidLoad();

 uiImageView.Image = UIImage.FromFile(
 "graphics/image.jpg").Scale(new SizeF(122f, 122f));
 startPoint = uiImageView.Center;

 UIView.BeginAnimations("moveImage");
 UIView.SetAnimationDuration(2);
 UIView.SetAnimationCurve(UIViewAnimationCurve.EaseInOut);
 UIView.SetAnimationRepeatCount(2);

Chapter 10

[125]

 UIView.SetAnimationRepeatAutoreverses(true);
 UIView.SetAnimationDelegate(this);
 UIView.SetAnimationDidStopSelector(new Selector(
 "moveImageStopped:"));
 uiImageView.Center = new PointF(
 UIScreen.MainScreen.Bounds.Right – uiImageView.Frame.Width /
 2, uiImageView.Center.Y);
 UIView.CommitAnimations();
}

[Export("moveImageStopped")]
private void moveImageStopped() {
 uiImageView.Center = startPoint;
}

There are two important points to note about this code.

•	 The code operates on UIView rather than UIImageView
•	 The bindings between Xamarin.iOS and the underpinning Objective-C

become very visible for animation and drawing in general (the binding
is the selector)

Underpinning bindings
In the preceding example, the code is creating an interface layer for the underpinning
Objective-C. The compiler handles this in a slightly different manner compared to
normal code. Adding this sort of Selector code can be used in other ways as well (for
example, to access private API code—though this should be avoided as it will debar
apps from being accepted into the app store). It should be noted that the bindings to
the Objective-C layer may sometimes cause issues with submission to the Apple store.

Analysis of the code
The analysis of the preceding code can be summed up as follows:

•	 startPoint is the position of the image at the start.
•	 To tell the app there is going to be an animation, BeginAnimations needs

to be called.
•	 Duration is the length of the animation and RepeatCount is the number

of times the animation is called.

Animation

[126]

•	 RepeatAnimationCurve defines how the animation is to proceed (in this
case, to repeat the animation curve, a curve does not have to be an arc on a
circle, it can be a straight line).

•	 EaseInOut starts the animation slowly and builds up and slows down.
•	 EaseIn starts the animation slowly.
•	 EaseOut slows it at the end
•	 Linear gives a uniform speed.
•	 The binding resets the image to the center once the animation has ended.
•	 CommitAnimations sets the animation going. Xamarin.iOS provides a very

good example of animation using blocks that will provide further support
on this topic.

Freeing memory after use
Typically, once a class has gone out of scope, the garbage collector (GC) will free up
memory used by the processes within that class. However, as Xamarin.iOS works as a
binding layer to the underpinning Objective-C, there are times when freeing memory
becomes important; this mostly happens when dealing with animation and graphics.

Probably the simplest way to clean up is provided when a new View Controller
is created.

public override void DidReceiveMemoryWarning() {
 // Releases the view if it doesn't have a superview.
 base.DidReceiveMemoryWarning();
 // Release any cached data, images, etc that aren't in use.
}

For example, to release uiImageView do as follows:

uiImageView.Release();

If the code doesn't cause a memory warning, ViewDidDisappear() can also be used
to free the memory in the same way.

Another simple method of freeing memory is to allow the GC to do its job once the
code has gone out of scope. Consider the following (simplistic) code:

private async void doSomething() {
 UIImageView image = new UIImageView(new RectangleF(0, 0, 100,
 100));

Chapter 10

[127]

 string filename = await GetFileName();
 image.Image = UIImage.FromFile(filename);
 // do a lot of bits and pieces
 if (condition)
 return;
 else
 callNewMethod();
}

The code executes and loads UIImageView with the image as directed by the
returned string. If condition is met (that is, it's true), the method returns. If
condition is not met, the method jumps to callNewMethod. Neither of these are
big issues, except that the GC does not get called until the class itself goes out of
scope. So any memory occupied by the UIImageView control is still used, despite
it only being used for three lines in one class. With too many images and too many
manipulations, memory soon vanishes.

If you consider an average animation, there may be 300 images with backgrounds
and so the memory is soon drained.

A simple solution is to only create and use what you need and use code that calls
the GC once it has gone out of scope. The following lines of code demonstrate how
to do this:

private async void doSomething() {
 using (UIImageView image = new UIImageView()) {
 image.Frame = new RectangleF(0, 0, 100, 100);
 string filename = await GetFileName();
 image.Image = UIImage.FromFile(filename);
 };
 // do a lot of bits and pieces
 if (condition)
 return;
 else
 callNewMethod();
}

While this looks similar, the image being created is used and once completed,
the memory being used is freed up again, rather than having to wait until the
class goes out of scope.

Animation

[128]

Rotating the image – Part 2
To get an image to rotate, the CoreGraphics image has to be used followed by
conversion to a bitmap. The following gives you an idea of how to do the rotation.
Altering RotateCTM and TranslateCTM from positive to negative (and vice versa)
should give different results.

public static UIImage rotateImage(UIImage uiImage) {
 UIImage result;
 using (CGImage cgImage = uiImage.CGImage) {
 CGImageAlphaInfo alpha = cgImage.AlphaInfo;
 CGColorSpace colour = CGColorSpace.CreateDeviceRGB();
 if (alpha == CGImageAlphaInfo.None)
 alpha = CGImageAlphaInfo.NoneSkipLast;
 int width = cgImage.Width, height = cgImage.Height;
 CGBitmapContext bitmap = new CGBitmapContext(
 IntPtr.Zero, height,
 width, cgImage.BitsPerComponent, cgImage.BytesPerRow,
 colour, alpha);
 bitmap.RotateCTM((float)Math.PI / 2); // rotate right.
 bitmap.TranslateCTM(0, -height);
 bitmap.DrawImage(new Rectangle(0, 0, width, height), cgImage);
 result = UIImage.FromImage(bitmap.ToImage());
 bitmap = null; // free memory
 }
 return result;
}

Summary
Animation and graphics handling is an extensive topic on iOS. While this chapter has
been a whistle-stop over the subject, I would recommend you have a look at Learning
MonoTouch by Michael Bluestein, Pearson Education, Inc. His book covers the topic in
much greater detail than space allows here.

Handling Data
From time to time it is important for an application to store or manipulate data. With
the advent of LINQ, manipulation is extremely simple now. The problem, though, is
that you need to store the data somehow. Thankfully this too is simple using SQLite.

We will be covering the following topics in this chapter:

•	 Using SQLite
•	 Setting up an SQLite helper class
•	 Using LINQ
•	 Dangers of using LINQ on iOS

Using SQLite
SQLite is a very simple database system that is also extremely powerful. It is outside
the scope of this book to give you a master class on using SQLite, but understanding
how to set up and use the system will help.

Installing and setting up SQLite
Installing can be performed in one of two ways; either you can install from the
Xamarin component market (it is useful as it supplies you with examples and also
the Android version) or you can download and install the software manually. As
there are no additional libraries (SQLite comes as a single C# file) either way is good.

Once you have either copied the C# file or installed the component, the SQLite.
net implementation is ready for use. It is as simple as inserting the following using
directive at the top of the source file, and it's done:

using SQLite;

Handling Data

[130]

Database basics
An easy way to consider a database is like an old card index system (commonly
known as a cardex system). Information (data) can be added, updated, read, or
deleted—and SQLite gives you that facility within the mobile environment. The
data is stored in a file with tables (the table can be considered as the box that holds
the cards) holding the information you want.

Before the cardex system can be used though, the method of storage has to be
defined. The simplest method of doing it is to create a class containing the primitive
types. SQLite can only store certain types of data: integer, real, text, none, and
numeric. No other types are permitted—this includes arrays and collections (such
as List<T>) The types normally used in programming (such as string and double)
are mapped to these internal types.

A table also requires a primary key. This is the main index key which is typically
auto-incremented. In a data class, this would be defined using [PrimaryKey,
AutoIncrement].

A simple database class
As a demonstration, a simple database class can be used:

using SQLite;
public class demoRow
{
 public demoRow ()
 {}
 [PrimaryKey, AutoIncrement]
 public int ID
 {get; set;}
 public string Name
 {get;set;}
 public double Value
 {get;set;}
 public override string ToString()
 {
 return string.Format("[demoRow : ID={0}, Name={1},
 Value={2}]", ID, Name, Value);
 }
}

The demoTable variable can then be brought into the database.

Chapter 11

[131]

Create a connection to the database
Before the database can be used, a connection to the server needs to be set
up. As with any class, the database class needs to be set up. I've called mine
DataManager. SQLite needs a path to the database file.

DataManager dm = new DataManager("path_to_database");
dm.Setup(); // calls the creation of the database code

The preceding code sets up an instance of the DataManager. To enable the database
to be used across the app, the following should be added to the AppDelegate class:

private static DataManager dm
{ get; set; }

Within the DataManager class, a lock is required (in order to prevent more than
one operation occurring on the database at any time), as is a local copy of the
database path.

public DataManager(string path)
{
 dataLock = new object();
 dataBasePath = path;
}

private string dataBasePath;
private object dataLock;

public string DataPath
{
 get
 {
 return dataBasePath;
 }
}

Finally, the table needs to be set up in the database.

public bool Setup()
{
 lock(dbLock)
 {
 try
 {
 using (SQLiteConnection sqlCon = new
 SQLiteConnection(DBPath))

Handling Data

[132]

 {
 sqlCon.CreateTable<demoRow>();
 }
 return true;
 }
 catch (SQLiteException ex)
 {
 throw ex;
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }
}

You'll notice that you will need to define a class with the following constants in it:

public const string DBClauseSyncOff = "PRAGMA SYNCHRONOUS=OFF;";
public const string DBClauseVacuum = "VACUUM;";

The DBClauseVacuum constant is used on the final Execute query. The
DBClauseSyncOff constant is used on the first.

At this point, you may have noticed something about using SQLite. It is being used
as if it is a normal method within a class. This is fine as it is.

Setting up an SQLite helper class
Typically using SQLite would require you to make and store the connection globally
(to save device resources and reduce the possibility of a security problem) and then
for every call to the database set up a set of queries and issues. Even for a trivial
database, this can lead to many lines of repeated code and more the lines of code
you have, the greater is the potential for bugs to crop up.

A helper class encapsulates all of the functionalities you will need and is very
easy to write.

Chapter 11

[133]

Writing helper class methods
As I mentioned at the outset, databases allow you to read/write from/to a table.
To start with, it makes sense to be able to read data. The following are two classes:
the first returns List<demoRow> and the other returns a name for the given ID.

Public List<demoRow> getAllListOfRows()
{
 lock (dbLock)
 {
 using (SQLiteConnection sqlCon = new
 SQLiteConnection(this.DBPath))
 {
 sqlCon.Execute(Constants.DBClauseSyncOff);
 sqlCon.BeginTransaction();
 List<demoRow> toReturn = new List<demoRow>();
 toReturn = sqlCon.Query<demoRow>("SELECT * FROM
 demoRow");
 return toReturn.Count != 0 ? toReturn : new
 List<demoRow>();
 }
 }
}

public string getNameForID(int id)
{
 lock (dbLock)
 {
 using (SQLiteConnection sqlCon = new
 SQLiteConnection(DBPath))
 {
 sqlCon.Execute(Constants.DBClauseSyncOff);
 sqlCon.BeginTransaction();
 string toReturn = string.Empty;
 toReturn = sqlCon.ExecuteScalar<string>("SELECT Name
 FROM demoRow WHERE ID=?", id);
 return !string.IsNullOrEmpty(toReturn) ?
 toReturn : "No name found";
 }
 }
}

Handling Data

[134]

There is very little difference between the two methods except for the database call.
The List version requires a query—this is used when a non-primitive type is used
and the data is expected back out. The ExecuteScalar method expects rows that
are of primitive type to be returned.

Accessing these helper methods would be the same as accessing any other method.

string name = dm.getNameForID(3);

or

List<demoRow> dT = dm.getListOfTables();

Adding data to the database
Data addition comes in the form of inserting or updating, and unlike a read, data
addition needs to be trapped in case the insert or update fails and the database needs
to be rolled back to before the attempt to add data.

Thankfully, an insert or update can be handled in one method.

public void AddOrUpdateTable(demoRow dTRow)
{
 lock (dataLock)
 {
 using (SQLiteConnection sqlCon = new
 SQLiteConnection(DBPath))
 {
 sqlCon.Execute(Constants.DBClauseSyncOff);
 sqlCon.BeginTransaction();
 try
 {
 if (sqlCon.Execute("UPDATE dataRow SET " +
 "ID=?, " +
 "Name=?, " +
 "Value=? WHERE " +
 "ID=?",
 dRow.ID,
 dRow.Name,
 dRow.Value,
 dRow.ID) == 0)
 {
 sqlCon.Insert(dRow, typeof(demoRow));
 }

Chapter 11

[135]

 sqlCon.Commit();
 }
 catch (Exception ex)
 {
 Console.WriteLine("Error in AddOrUpdateTable :
 {0}-{1}", ex.Message, ex.StackTrace);
 sqlCon.Rollback();
 }
 }
 }
}

Again, for the preceding code to work, a single instance of demoRow class needs
to be passed into the method. Using a List of demoRow is simple to handle.

public void AddOrUpdateTables(List<demoRow>rows)
{
 foreach(demoReow row in rows)
 AddOrUpdateTable(row);
}

Data manipulation using LINQ
Accessing a database continually puts a strain onto the system it is sitting on and if
you consider the number of databases being used at any one time, it quickly becomes
clear that the overhead of continually hitting the SQL service will be high.

LINQ allows database style queries to be applied to data and the results come out.
While there are many excellent books out there (quite a few of them are free), I will
cover a couple of convenient methods of using LINQ within an iOS application.

While LINQ is extremely powerful, not everything with LINQ will work without
a problem when coding on iOS. The main reason is how the iPhone works. Quite
simply, iOS wants to know what is going to happen Ahead Of Time (AOT). It
doesn't like surprises and really doesn't like data structures it wasn't aware of.
For example:

List<string> data = new List<string>();

The preceding code should not cause an issue. But think of it another way—how
big is List is going to be? When you're working ahead of time, space allocations are
typically finite. (For example, an array of int values may have 20 values worth of
memory reserved and nothing more, the AOT system likes this—it knows ahead of
time that there will need to be 20 lots of int reserved.)

Handling Data

[136]

With this in mind, when using LINQ within an application, you may encounter
random crashes—it is unlikely, but it may happen and it's worth mentioning it.

LINQ – a whistle-stop tour
For my examples, I'll use the demoRow table already used in this chapter.

List<demoRow> myRow = dm.getListOfRows();

Somewhere in the returned List there is the name Fred Moriarty and I want to
get from List the instance of the class with that name in it. I know there is only one
instance of this name in the list.

var demo = myRow.SingleOrDefault(t=>t.Name == "Fred Moriarty");

The preceding code takes the table and returns the single instance. If the name is not
found, null (or the default value) is returned.

Say my list contains a number of Fred Bloggs instances in the Name field.

var bloggs = myTRow.Where(t=>t.Name == "Fred Bloggs").ToList();

Before LINQ came along, this would have been quite a slow affair and would have
required a code such as follows:

List<demoRow> bloggs = new List<demoRow>();
foreach(demoRow blog in bloggs)
{
 if (blog.Name == "Fred Bloggs")
 bloggs.Add(blog);
}

The previous examples are very simple. LINQ can perform very complex operations
as well, such as:

var res = from inviter in ContactList
 from tester in invites
 where inviter.UserID == tester.UserId
 select tester;

Here we have two lists (ContactList and invites). The LINQ query creates two
loops and selects the instance tester when UserID from the outer loop matches
UserId from the inner loop. The result is pretty much instant.

Chapter 11

[137]

SELECT and WHERE in LINQ – a common cause of
confusion
A very common error that at some point everyone meets with LINQ is mixing the
WHERE syntax up with the SELECT syntax.

The WHERE syntax is a condition (for example, WHERE ID==311 or WHERE A==B).
It only returns the condition set. In the following example, testClass is a list, it
contains a class of which there is a string called Value.

var retString = testClass.Where(t=>t.Value == "fred").ToList();

The retString variable will contain a List<string> of all results from testString
where Value == "fred".

The SELECT syntax returns something for all items in the object passed in it. The result
might be the items themselves but can be something else.

var retString = inString.Select(t=>t.ToUpper()).ToList();

The preceding code transforms the contents of inString to be in upper case and is
output to a list.

var retString = inString.Select(t=>t.Value, Func<inString,
 outString>).ToList();

Here Func<inString, outString> transforms the elements of inString to
outString and outputs the element as an outString list.

Using Select in LINQ
Take the following example and remember Select performs a transform:

string[] teams = {"Liverpool", "Everton", "Oldham", "Leeds"};
var result = teams.Select(t=>t.ToUpper());
foreach (string team in result)
{
 Console.WriteLine(team);
}

This will be the output:

LIVERPOOL
EVERTON
OLDHAM
LEEDS.

Handling Data

[138]

But what is happening? The Select statement is performed on the string array teams.
It then specifies a lambda expression (t=>) which in turn transforms the expression
to be upper case (ToUpper()).

The Select statement (as has been seen in the previous code) has an overloaded
method as well. Again, it is a transforming method.

string[] teams = {"Liverpool", "Everton", "Oldham", "Leeds"};
var trans = teams.Select(teams, index) =>
 new {index, str = teams.Substring(0, index)});

If the code was run and a suitable output was used, you would see E, Ol, Lee—the
index at the start is 0, so no characters are seen.

Replacing SQL with LINQ
Depending on your needs, it may be a better option to replace an SQLite database
with a series of List<T> classes and use LINQ to replace the SQL queries. For
example, if you have a very simple database (such as our demoTable database)
which has a very limited scope for manipulation to be used, it may be a better
idea to use a list of classes, add to them as you would normally do, and perform
the queries using LINQ. Without the hit on the database server, this may yield a
faster response time from the application.

For a more complex table structure where the SQL itself performs a JOIN to another
table or there are complex manipulations involved, using LINQ may not result in a
usable system.

LINQ can perform JOIN conditions as well as most other functions that SQLite can
perform—just not as easily.

Remember though, LINQ on the iPhone may decide to just die whereas SQLite won't.

Summary
Data storage on the iPhone can be simple and can also be fraught with problems.
For safety and reliability, the SQLite option is preferred on the iPhone. For speed,
you can't beat LINQ but you must ensure that you test the LINQ project on a
physical device when using LINQ.

Peripherals
The whole point of having a smartphone is that it is not just a phone, it's a GPS, a
media center, a messenger system, and a video system. In short, that little device in
your pocket is the proverbial "Jack of all trades, but master of all."

In this chapter, we will be covering the following topics:

•	 Using the camera
•	 Maps and GPS
•	 Storage on the phone
•	 Making a phone call
•	 Sending and receiving a text message
•	 Accessing the internet
•	 Multimedia

Using the camera
The camera on the iPhone is capable of recording stills and video. We will be dealing
with video shortly.

The camera can be accessed in one of the two ways. Xamarin has released Xamarin.
Mobile in its component store, which gives a cross platform method to access the
GPS, camera, and address book. For completeness, we will cover both the native and
component versions.

Peripherals

[140]

Accessing the camera (Xamarin.Mobile)
The Xamarin.Mobile component provides an easy way to access a camera. A simple
method would look as follows:

var picker = new MediaPicker ();
if (!picker.IsCameraAvailable)
 Console.WriteLine ("No camera!");
else {
 picker.TakePhotoAsync (new StoreCameraMediaOptions {
 Name = "test.jpg",
 Directory = "MediaPickerSample"
 }).ContinueWith (t => {
 if (t.IsCanceled) {
 Console.WriteLine ("User canceled");
 return;
 }
 Console.WriteLine (t.Result.Path);
 }, TaskScheduler.FromCurrentSynchronizationContext());
}

The issue with the Xamarin component is that it currently doesn't provide a
method for accessing the front camera; however, the preceding code will save
the clicked image.

Accessing the camera (Native)
The camera is accessed using UIImagePickerController. To use it, it's always wise
to first check whether the device actually has a camera (the iPod Touch doesn't have
one nor does the simulator). To do this, check the IsSourceTypeAvailable Boolean.

var myCamera = UIImagePickerControllerSourceType.Camera;
if (UIImagePickerController.IsSourceTypeAvailable(myCamera))
{
 UIImagePickerController myCameraPicker = new
 UIImagePickerController();
 myCameraPicker.SourceType = myCamera;
 myCameraPicker.Delegate = new myImageDelegate(this);
 PresentModalViewController(myCameraPicker, true);
}

Chapter 12

[141]

The delegate deals with dismissing the modal window and any other process you
want (such as displaying the picture or saving the image). A simple delegate would
look something like the following (it can be extended if required):

public class myImageDelegate : UIImagePickerControlDelegate
{
 private UIViewController myController;
 public myImageDelegate(UIViewController control) {
 myController = control;
 }
 public override void FinishedPickingMedia (
 UIImagePickerController thePicker, NSDictionary I) {
 myController.DismissModalViewControllerAnimated(true);
 }
}

Saving to the Photo album (Native)
The following code would be placed in the myCameraPicker.Delegate code
within the FinishedPickingMedia() method, which would save images to
the camera roll natively:

 UIImage myImage = UIImage.FromFile(filename);
 myImage.SaveToPhotoAlbum(delegate (UIImage image, NSError err) {
 Console.WriteLine("Image saved fine"); });

GPS and Mapping
This is also covered by the Xamarin.Mobile component in part (the full functionality
of Core Location is not replicated in the Xamarin.Mobile component, due to
there not being an equivalent method on the other platforms that the component
supports). Thankfully, the component and Core Location work together seamlessly.

GPS with Xamarin.Mobile
The Xamarin.Mobile component allows you to listen to the position of the device
and act when the position has been changed, using the PositionChanged event.
The following code demonstrates how to use it:

var iPhoneLocationManager = new Geolocator();
iPhoneLocationManager.DesiredAccuracy = 5;

Peripherals

[142]

iPhoneLocationManager.StartListening(1, 10);
iPhoneLocationManager.PositionChanged += (object sender,
 PositionEventArgs e) => {
 double geoLocationLong = e.Position.Longitude;
 double geoLocationLat = e.Position.Latitude;
 iPhoneLocationManager.StopListening();
};

While analyzing the preceding lines of code, we come across the following terms:

•	 DesiredAccuracy: It is the distance in meters that is needed before the event
is triggered. This in itself can cause an issue. Anything under that value will
mean that the event is not triggered. Too big a value, the accuracy is hit.

•	 StartListening: It takes two parameters: minimumTime and minDistance.
In this case, it should either return within the first minute, or if the phone is
moved more than 10 m.

•	 StopListening: It stops the listening service.

The Xamarin.Mobile module also provides you with an asynchronous method—
GetPositionAsync, which retrieves your position asynchronously.

private TaskScheduler sched =
 TaskScheduler.FromCurrentSynchronizationContext();
private CancellationTokenSource cancel;
geolocator.GetPositionAsync (timeout: 10000,
 cancelToken: cancel.Token, includeHeading: true).ContinueWith (
 t=> {
 if (t.IsFaulted)
 Console.WriteLine("Position faulted : {0}".((
 GeolocationException)t.Exception.InnerException).Error);
 else if (t.IsCanceled)
 Console.WriteLine("Canceled");
 else {
 Console.WriteLine("Timestamp {0}",
 t.Result.Timestamp.ToString("G"));
 Console.WriteLine("La: {0}", t.Result.Latitude.ToString(
 "N4"));
 Console.WriteLine("Lo: {0}", t.Result.Longitude.ToString(
 "N4"));
 }
 }, sched);

The returned value stored in Result also provides the speed. This is not to be relied
upon. It's far more accurate to use your own method, but to do that you need to know
how far you have traveled.

Chapter 12

[143]

Calculating your speed
The CoreLocation namespace has in it a method named DistanceFrom for
calculating the distance. The method works as follows:

1.	 Gets the new location.
2.	 Gets the old location.
3.	 Creates two instances of CLManager.
4.	 Puts the coordinates of both the locations into the two instances respectively.
5.	 Uses DistanceFrom.

The resulting double value gives you the distance in meters and the time in seconds,
so the speed you have traveled is in meters/seconds (that is, distance/time). The
issue here though is the calculation; it might consider how a bird flies rather than
how you are travelling. For example, if the desired accuracy you have is too low and
the timeout too high, the method with DistanceFrom will still work; however, if the
distance is not 100 m, but apparently 35 m (consider that a bird flies straight across
a field, and does not walk down a road, turn left, turn right, or go roundabout and
then turn left again), the distance is much shorter and therefore will also change the
speed considerably.

Using Core Location
Core Location is the default framework for the GPS. It is a powerful system for
determining the positioning of the device and is far reaching in what it does and how
it does it. As with a number of other facilities within iOS, a delegate is required when
setting up the Core Location framework. A delegate typically handles events.

Setting up Core Location and delegate
Core Location and delegate can be set up and used as demonstrated with the
following code:

private CLLocationManager locManager;
public override void ViewDidLoad() {
 base.ViewDidLoad();
 locManager = new CLLocationManager() {
 DesiredAccuracy = CLLocation.AccuracyBest,
 };
}

Peripherals

[144]

CLLocationManager is set up with the desired accuracy being set to the best it can.
Next, to make it useful, we need to first catch any errors with the following code:

locManager.Failed += (object sender, NSErrorEventArgs e) => {
 UIAlertView alert = new UIAlertView() {
 Title = "Location manager failed",
 Message = string.Format("The following error was encountered –
 {0}", e.Error.ToString())
 }.Show();
 locManager.StopMonitoring();
};

Once the error system has been set, monitoring the changes to the positioning needs
to be handled.

locManager.LocationsUpdated += (object sender,
 CLLocationsUpdatedEventArgs e) => {
 CLLocation[] locs = e.Locations;
 Console.WriteLine("lat = {0},
 long = {1}",
 locs[0].Coordinate.Latitude,
 locs[0].Coordinate.Longitude);
};

If the app is paused, this event will need to be handled:

bool paused = false;
locManager.LocationUpdatesPaused += delegate {
 if (!paused)
 locManager.StopUpdatingLocation();
 else
 locManager.StartUpdatingLocation();
 paused = !paused;
};

To start the checks for update monitoring, use the following line of code:

locManager.StartUpdatingLocation();

To stop the checks for update monitoring, use the following line of code:

locManager.StopUpdatingLocation();

Chapter 12

[145]

The CLLocationManager class also allows you to monitor the direction you are
moving in.

locManager.UpdatedHeading += (object sender,
 CLHeadingUpdatedEventArgs e) => {
 CLHeading heading = e.NewHeading.TrueHeading;
 Console.WriteLine("New heading : {0}", heading.ToString());
};
locManager.StartUpdatingHeading();

Finding where the user is
Having coordinates is all well and good, but who can actually say what they mean?
For example, if I were to give you the longitude/latitude coordinates of 53.431/-2.956,
would you know where that was? Chances are that you wouldn't!

This is where reverse geocoding comes into the picture. The MKReverseGeocoder
class is in the MonoTouch.MapKit namespace.

private MKReverseGeocoder geoCoder;
geoCoder = new MKReverseGeocoder(locManager.Location.Coordinate);
geoCoder.Delegate = new ReverseGeocoder(this);
geoCoder.Start(); // geoCoder.Stop() stops the geoCoder

Unlike locManager, the ReverseGeocoder class has to be placed into a delegate.
MKReverseGeocoder doesn't contain any events to latch on to.

private class ReverseGeocoder : MKReverseGeocoderDelegate {
 UIViewController view;
 public ReverseGeocoder(UIViewController myView) {
 view = myView;
 }

 public override void FoundWithPlacemark(
 MKReverseGeocoder geocoder, MKPlacemark placemark) {
 Console.WriteLine("Address");
 Console.WriteLine("{0}, {1}, {2}, {3}, {4}",
 placemark.SubThoroughfare,
 placemark.Thoroughfare,
 placemark.Locality,
 placemark.AdministrativeArea,
 placemark.Country);
 }
}

Peripherals

[146]

The Xamarin.Mobile component does not contain the ability to perform a
ReverseGeocoder operation. But it's not difficult to write one.

In the original example, the LocationsUpdated method was given as an inline
example. If this is changed to point to a method, the ReverseGeolocation method
can be performed:

private void OnPositionChanged(object sender,
 PositionEventArgs e) {
 double lng = e.Position.Longitude;
 double lat = e.Position.Latitude;
 CLLocation clloc = new CLLocation(lat, lng);
 CLLocation oldLoc = new CLLocation(prevLat,prevLong);
 CLGeocoder geoRevGeo = new CLGeocoder();
 geoRevGeo.ReverseGeocodeLocation(clloc, GetAddressFromLoc);
}

private void GetAddressFromLoc(CLPlacemark[] place,
 NSError error) {
 if (place.Length == 0) {
 Console.WriteLine("Don't know where I am – help!");
 return;
 }
 else {
 Console.WriteLine("Address");
 Console.WriteLine("{0}, {1}, {2}, {3}, {4}",
 place.SubThoroughfare,
 place.Thoroughfare,
 placemark.Locality,
 placemark.AdministrativeArea,
 placemark.Country);
 }
}

Chapter 12

[147]

Adding a map
The final part to the GPS is to add a map. For this, a Map view needs to be used
by adding it in either Xcode or code. For my purpose, I will assume it was added
via Xcode and is called mapViewer. There are three types of maps available, so a
UISegment control is also added.

The mapViewer object needs to be set up:

public override void ViewDidLoad() {
 base.ViewDidLoad();
 mapViewer.ShowsUserLocation = mapViewer.ZoomEnabled = true;
 mapViewer.MapType = MKMapType.Standard;
 mapViewer.Region = new MKCoordinateRegion(
 new CLLocationCoordinate2D(53.431, -2.956),
 new MKCoordinateSpan(0.5, 0.5)
);
 mapViewer.ScrollEnabled = mapViewer.UserInteractionEnabled =
 true;
}

Peripherals

[148]

The resultant location corresponding to the coordinates passed in the preceding code
is shown in the following screenshot:

The next stage is to make the UISegment control go live:

mapType.ValueChanged += delegate {
 switch (mapType.SelectedSegment) {
 case 0: mapViewer.MapType = MKMapType.Standard;
 break;
 case 1: mapViewer.MapType = MKMapType.Satellite;
 break;
 case 2: mapViewer.MapType = MKMapType.Hybrid;
 break;
 }
};

Chapter 12

[149]

In case you didn't know, the geolocation is for Anfield, home of Liverpool FC.

Some of the properties need to be explained in short:

•	 ShowUserLocation: It shows a blue dot to show where the user is
•	 ZoomEnabled: It allows the user to zoom in
•	 ScrollEnabled: It allows the user to scroll the view around
•	 UserInteractionEnabled: It enables a pin placed on the map to respond

(or not) when clicked
•	 MKCoordinateSpan(0.5,0.5): This is the zoom setting— the smaller the

number, the larger the zoom on the initial view

Peripherals

[150]

Adding a pin
When it comes to maps, pins are very useful. While a little blue dot is neat, a pin
really shows you where you are, and information can be added to it.

MKUserLocation loc = new MKUserLocation() {
 Title = "Anfield stadium",
 Coordinate = new CLLocationCoordinate2D(53.431, -2.956),
 Subtitle = "Home of Liverpool FC",
};
mapViewer.AddAnnotationObject(loc);

Finally, it is always good to center the map and pin on the screen

mapViewer.SetCenterCoordinate(loc.Coordinate, true);

The pin does not always work on the simulator.

Storage on the phone
.NET specifies a number of places in the SpecialFolders enumeration (such as
Program Files, My Music, and My Pictures; a full list can be found on the Microsoft
website). Due to security restrictions on the iOS devices, only a few of them are
available. It is safest to restrict saving any user data to My Documents. Within My
Documents, you can create directories of your own and use them the way you like.

Making a phone call
This may sound daft. Why would you want to write code to make a phone call? In
true developer tradition, the answer is why not? It is important to note that a string
number is just that. It cannot contain spaces, hyphens, brackets, or the plus sign (+);
it can only contain numbers.

private void callNumber(string number) {
 string phoneURLString = string.Format("tel:{0}", number);
 NSUrl phoneURL = new NSUrl(phoneURLString);
 UIApplication.SharedApplication.OpenUrl(phoneURL);
}

Moving on...

Chapter 12

[151]

Sending and receiving a text message
The iPhone comes with its own built-in messaging software. However, there are some
rare times when you need to code a message before sending it. Apple, in its wisdom,
though, does not allow you to send a message without it going through its own
message software. This is not to say you can't send a message in another way (such
as through a dedicated web or message service), but for standard users, you can't.

You cannot code in a way that would intercept or block text messages. iOS
provides no publicly available method to intercept and read a text message.
With that in mind, sending a text message is a relatively straightforward affair.
MFMessageComposeViewController is in the MonoTouch.MessageUI namespace.

private void sendTextMessage(string number, double myLat,
 double myLong) {
 if (MFMessageComposeViewController.CanSendText) {
 MFMessageComposeViewController message = new
 MFMessageComposeViewController();
 message.MessageComposeDelegate = new
 CustomMessageComposeDelegate();
 message.Recipients = new string[] { number };
 message.Body = string.Format("Help! I am currently at
 https://maps.google.com/maps?q={0},{1}&z=18 and need
 assistance", myLat, myLong);
 NavigationController.PresentModalViewController(message,
 true);
 }
}
public class CustomMessageComposeDelegate :
 MFMessageComposeViewControllerDelegate {
 public override void Finished(
 MFMessageComposeViewController controller,
 MessageComposeResult result) {
 if (result == MessageComposeResult.Failed ||
 result == MessageComposeResult.Cancelled) {
 UIAlertView alert = new UIAlertView() {
 Title="Message sending error",
 Message="Your message failed to send"
 }.Show();
 }
 controller.DismissViewController(true, null);
 }
}

Peripherals

[152]

Accessing the Internet
Access to the internet is via the UIWebView controller. Prior to trying to access an
internet site, it's a good idea to ensure there is a live network connection. This is
preformed via the NetworkReachability class.

using MonoTouch.SystemConfiguration;
NetworkReachability reach = new NetworkReachability(
 "www.bbc.co.uk");
NetworkReachabilityFlags flags = new NetworkReachabilityFlags();
reach.TryGetFlags(out flags);
Console.WriteLine("Network flag = {0}", flags.ToString());

The WriteLine command will result in one of the following flags:

Flag Value
Reachable The host is reachable
IsWWAN Connection is made through EDGE, 3G, or 4G
IsLocalDevice Connection is made to the local device
ConnectionAutomatic Connection is made automatically. This is an alias

for ConnectionOnTraffic.
ConnectionOnTraffic A combination of Reachable and when data is

requested, a connection is made
ConnectionOnDemand Occurs when the connection starts. The connection

occurs once the socket is connected.
ConnectionRequired The host can be reached, but the connection must

be made
IsDirect The connection is made directly
InterventionRequired When connected to a host, the user must do

something
TransientConnection The host can be reached, but through a system

which starts and stops (such as PPP or any other
nonpersistent network connection)

Assuming there is a network connection, the next stage is to load the web page.

Chapter 12

[153]

I covered loading a web page and some of the settings back in Chapter 3, Views and
Layouts. It is also possible to load a web page from the data you have dynamically
generated. This can be simply demonstrated using the following UI with the code.
Firstly, set up an application structure as shown with UIWebview in the .xib file:

The HTML directory can be named as per your wish. I've kept it simple and just
called it HTML. When generating your own HTML from within your app, you
can either:

•	 Generate your own file from scratch, save, and get the output
•	 Generate your HTML file using StringBuilder and output that string
•	 Mix the preceding two options

In essence, the two generation methods are the same with the difference of generating
the string either using StringBuilder or concatenate strings. Consider the following
lines of code:

string html = "<html>\n";
html += "<title>Hello World</title>\n";
html += "<body>\n";
html += "<h1>Hello World!</h1>\n";
html += "</body>\n";
html += "</html>";

Peripherals

[154]

The preceding lines of code should do what you would expect them to, once passed
to UIWebview using the following code:

webView.LoadHTMLString(string s, NSUrl baseurl);
//The baseurl here would be null.

While these lines of code do their work, creating your web page based on data from
within an app using these lines of code can be time consuming. A simpler method is
to pull the header and footer in from some HTML fragments within the app.

To read the files from within the app, though, a couple of steps have to be taken.
The first is to set the HTML fragments to be built as BundleResource. You will be
loading a file that is part of the bundle rather than a file in the app's writable folder.
The second part is to load the HTML bundles into the source:

var documents = NSBundle.MainBundle.BundlePath;
StringBuilder sb = new StringBuilder();
sb.Append(File.ReadAllText(Path.Combine(documents,
 "HTML/top.html")));

NSBundle.MainBundle.BundlePath is the path to the installed application. The next
step is to add the data; in my example, I am adding a league table:

var leagues = (from t in teams
 from p in t.points
 orderby p
 select t).Take(4).ToList(); // takes top 4 only
sb.Append(@"<table width=100%>");
sb.Append(@"<tr width=100%>");
sb.Append(@"<td width=70%>Team name</td>");
sb.Append(@"<td width=10%>Played</td>");
sb.Append(@"<td width=10%>G Diff</td>");
sb.Append(@"<td width=10%>Points</td>");
for (int i = 0; i < 4; ++i) {
 sb.Append(@"<tr width=100%>");
 sb.Append(@"<td width=30%>" + teams[i].TeamName + "</td>");
 sb.Append(@"<td width="10"%>" + teams[i].TeamPlayed.ToString() +
 "</td>");
 sb.Append(@"<td width="10"%>" + teams[i].TeamGDiff.ToString() +
 "</td>");
 sb.Append(@"<td width="10"%>" + teams[i].TeamPts.ToString() +
 "</td>");
 sb.Append(@"</tr>");
}
sb.Append(@"</table>");
sb.Append(File.ReadAllText(Path.Combine(documents,
 "HTML/bottom.html")));

Chapter 12

[155]

The top table section could as easily be its own HTML fragment. Once the final
append has been made, the HTML is good to go.

webView.LoadHTMLString(sb.ToString(), null);

Remember, what you're doing is creating your own web page within the application.
If you want to include stylesheets, you can. If you want to include JavaScript, you
can; the only caveat is that you can use mobile Safari, which has JavaScript enabled.

Multimedia
This is a very vast topic. Thankfully, using a camera has been covered at the start of
this chapter. Just about everything you need is inside the MonoTouch.MediaPlayer
namespace. As with using a camera, it is important that you first check that the device
has video capabilities in exactly the same way as you do for a camera (in fact, it uses
the same IsSourceTypeAvailable(myCamera) command as used for a camera).

Playing a video
As with webView, a video can be external to the device or internal; if it is internal,
it could be part of the bundle (not a good idea as video takes up a lot of space on a
device, which will result in long download times), or within the My Document area
(downloaded), or in the photo reel.

External URL
The video that I'll use here is on YouTube (you can choose any video of your choice).

var videoPlayer = new MPMoviePlayerController(
 NSUrl.FromString("http://www.youtube.com/watch?v=cVikZ8Oe_XA"));
videoPlayer.Play();

Internal source
Playing from an internal source can be performed in a way similar to that of an
external video file:

var videoPlayer = new MPMoviePlayerController(
 NSUrl.FromFilename("myVideo.mp4"));
videoPlayer.Play();

Peripherals

[156]

From the photo library
Choosing a video from the camera roll is performed in much the same way as
picking an image from the photo library.

UIImagePickerController ipcPicker = new UIImagePickerController()
{
 SourceType = UIImagePickerControllerSourceType.PhotoLibrary,
 MediaTypes = new [] {"public.movie"},
 Delegate = new ImagePickerDelegate(this)
};

The preceding code goes through the photo library looking for any file that returns
the public.movie type. If found, the file is added to the array and can be seen via
the delegate.

Recording a video
This is not substantially different from taking a picture, except that you have a few
additional parameters that can be altered, such as VideoQuality and AllowEditing.

To record a video
Recording a video is a simple task as the following code demonstrates:

var camera = UIImagePickerControllerSourceType.Camera;
UIImagePickerController ipcVideo = new UIImagePickerController()
{
 SourceType = camera,
 MediaTypes = new [] {"movies.public"},
 AllowEditing = true,
 VideoQuality = UIImagePickerControllerQualityType.Medium,
 Delegate = new ImagePickerDelegate(this)
};

In the preceding example, AllowEditing has been set to true, which means that the
user may edit this video. If that is the intention, editing should be performed using
UIVideoEditorController. This controller allows for three events: Failed (the edit
failed for some reason), UserCancelled (speaks for itself), and Saved (the user has
selected to save the edit; the path is returned in the e.Path event).

Chapter 12

[157]

Saving the video
Once the video has been processed, the next step is to save the video:

UIVideo.SaveToPhotoAlbum(videoPath, delegate (string path,
 NSError error) {
 Console.WriteLine("Video saved.");
});

The audio system
The iPhone and iPad range of devices is blessed (as are most Apple devices) with
a fantastic audio system that allows for great playback quality and the ability to
record as well. These facilities are available through the AVAudioPlayer class or
SystemSound. If the file is held within the application bundle, it must be set to
Content when building the app.

Playback
Audio playback can be considered short or long if it is under or over the 30 seconds
mark. In general, SystemSound is best used for audio files with a duration of less
than 30 seconds and also for uncompressed audio formats, such as .wav and .caf
(Core Audio File). MP3 files are not supported in SystemSound.

Short files
The SystemSound method is a quick and easy way to play an audio file with very
little overhead.

var sound = SystemSound.FromFile("myAudio.caf");
sound.PlaySystemSound();

If you need an audio file to play but you are at some place requiring silence (say, a
library), the device can be made to vibrate through the length of the file.

sound.Vibrate.PlaySystemSound();

Long (and compressed) files
Here the AVAudioPlayer class comes into its own, allowing you to alter power levels
(the volume on a channel) effectively, pause, play, and stop an audio file. It also
handles compressed audio formats, such as MP3.

Peripherals

[158]

Setting the power levels
Prior to setting a power level, either or both the AveragePower and PeakPower.
MeteringEnabled Booleans have to be set to true and a method named
UpdateMeters() must be called. It is then just a case of setting AveragePower(uint)
or PeakPower(uint) to the value you want (in dBs).

Playing the audio file
It is not difficult to play an audio file; select the file and tell the device to play. The
following code demonstrates how:

var fileToPlay = AVAudioPlayer.FromUrl(NSUrl.FromFilename("myAudio.
mp3"));
fileToPlay.Play();
fileToPlay.FinishedPlaying += delegate {
 fileToPlay.Dispose(); // clean up
};

Altering the volume
If you don't want Beethoven's ninth blasting out of your iOS device, it's a good idea
to turn down the volume as follows:

using MonoTouch.MediaPlayer
var mpPlayer = new MPMusicPlayerController();
mPlayer.Volume = 0.01f; // max volume – range 0 to 1

A word of caution, though, for setting a volume level: don't set it to zero. This annoys
the iOS device and will then annoy the user as the device will take great pleasure in
reminding you that the volume is set to 0. As the figure is a float value, 0.01 will do
just as well as 0 to mute the device.

Recording Audio
Recording is not as simple as playing. While a lot of the work is done by the
AVAudioRecorder class, quite a bit of work also has to be done by the programmer
to record the audio. The key point to remember is that NSDictionary needs to be
set up before anything can happen. This dictionary contains important information,
such as the type of audio, sample rate, quality, and so on.

Chapter 12

[159]

Setting up the audio NSDictionary
The NSDictionary (along with anything else that starts with NS) is an interface to the
Objective-C bindings that Xamarin.iOS utilizes to allow development with the .NET
framework on iOS and, as such, can't be set up like a normal dictionary. To get around
that obstacle, a generic NSObject object can be used, one for the settings, the other for
the description (which works out to be the same as the values and keys in .NET).

var settings = new NSObject[] {
 NSNumber.FromFloat(22050.0f),
 NSNumber.FromInt32((int)AudioFileType.WAVE),
 NSNumber.FromInt32(2),
 NSNumber.FromInt32((int)AVAudioQuality.Min)
};
var keysToSettings = new NSObject[] {
 AVAudioSettings.AVSampleRateKey,
 AVAudioSettings.AVFormatKey,
 AVAudioSettings.AVNumberOfChannelsKey,
 AVAudioSettings.AVEncoderAudioQualityKey
};
var dict = NSDictionary.FromObjectsAndKeys(settings,
 keysToSettings);

Setting up to record
The next step is to set up the recorder itself and, importantly, the location to
save the audio file to.

var docs = Environment.GetFolderPath(
 Environment.SpecialFolder.Personal);
var audio = NSUrl.FromFilename(Path.Combine(docs,
 "testaudio.wav");
var error = new NSError(); // catch the errors

Recording the audio file
Finally, it's time to record. As the file records, it's also saved to the device.
Once finished with recording, the recorder object needs to be disposed.
Thankfully, we can control how long a recording goes on by using the
RecordFor("float time") method.

var myRecorder = AVAudioRecorder.ToUrl(audio, dict, out error);
myRecorder.FinishedRecording += delegate {
 Console.WriteLine("Audio file created");
 myRecorder.Dispose();
};
myRecorder.RecordFor(10f);

Peripherals

[160]

Summary
It is simple enough to use the subsystems that the iOS devices make use of, as long as
you remember the limitations, such as only being able to send texts and not receive.
The devices offer far more than what the average user sees and it only requires a
small amount of imagination to see how to create a really good application using
the facilities offered to you; from maps to web views to making calls, it's all there for
you. Now play!

User Preferences
From time to time, it is useful for a user to be able to store preferences (such as
ringtones for a contact). Thankfully, iOS provides a built-in preference system.
This is fine if you only ever wish to write an app for iOS, but if the intention is to
have an app that can be built for any platform that can use .NET, then a different
approach is required.

The topics covered in this chapter will be:

•	 Using the built-in preference system
•	 Rolling your own preference system

User Preferences

[162]

The built-in system
To start with, a special folder has to be added to your application called
Settings.bundle that contains a file called Root.plist.

This is not a normal file and the .plist file needs Build Action to be set as Content.

The .plist file is an XML file with entries stored in a regular dictionary
objecting the <key><type> form, where type can be anything (such as string,
int, and double).

For example, for creating a preference displayed as a UISlider class it would be
stored as shown in the following code:

<dict>
 <key>Type</key>

Chapter 13

[163]

 <string>UISlider</string>
 <key>Key</key>
 <string>My slider</string>
 <key>DefaultValue</key>
 <int>40</int>
 <key>MinimumValue</key>
 <int>0</int>
 <key>MaximumValue</key>
 <int>75</int>
</dict>

It is simple to understand, but the file can grow quickly, depending on how much
information is being stored.

Reading and writing to the .plist file
Thankfully, it is simple to read from the .plist file. All that is required is the key to
identify the value and the knowledge of the value type to properly call the related
method.

int read = NSUserDefaults.StandardDefaults.IntForKey
 ("DefaultValue");
string name = NSUserDefaults.StandardDefaults.StringForKey("Key");

Writing to the file can be performed in two ways. The simplest is to just write to
the file, as shown in the following code:

NSUserDefaults.StandardDefaults["DefaultValue"] = 34;
NSUserDefaults.StandardDefaults["Key"] = "Hello mum!";

The other way is to call the NSNotificationCenter class, which broadcasts
notifications to the application. The NSUserDefaults class uses this system to
emit the NSUserDefaultsDidChangeNotifcation notification when the Settings
values change. The good part here is that any NSObject class can be set to act as an
observer for the notification. The observer provides a call back method as shown in
the following code:

public mySettingsClass()
{
 NSNotificationCenter.DefaultCenter.AddObserver
 (
 this, new Selector("updateSettings"),
 new NSString ("NSUserDefaultDidChangeNotification"),
 null

User Preferences

[164]

);

 [Export ("updateSettings:")]
 private void UpdateSettings()
 {
 doSomething();
 }

 private void doSomething()
 {
 // do something here
 }
}

Rolling your own settings system
While using the built-in settings system may seem useful, the point of using the
Xamarin range of products is to be able to use a large amount of the same code on
any platform that now supports .NET. While, at the time of writing, Windows Mobile
is languishing at around three percent of the market share of all smart phones,
Microsoft is unlikely to allow this to continue and will push their massive reserves
into getting people to adopt their smart phones. If you want the pure mathematics,
97 percent of all smart phones can be coded using the .NET platform. (Blackberry has
a port of mono for it, but it is not well supported and so can be discounted.)

This, therefore, requires a different strategy for storing user settings. We could use an
SQLite database to store the details, but, as has been pointed out, each access to the
sub system will cause a performance hit.

The simplest way is to create a settings class and serialize or deserialize the values
as and when required. It is an extremely flexible approach and works wonderfully.

Serializing and deserializing data
The following code is a very simple serializer and deserializer:

public class Serializer
{
 public static void XmlSerializeObject<T>
 (T obj, string filePath)
 {
 using (StreamWriter sw = new StreamWriter(filePath))
 {

Chapter 13

[165]

 XmlSerializer xmlSer = new XmlSerializer(typeof(T));
 xmlSer.Serialize(sw, obj);
 }
 }

 public static T XmlDeserializeObject<T>(string filePath)
 {
 using (StreamReader sr = new StreamReader(filePath))
 {
 XmlSerializer xmlSer = new XmlSerializer(typeof(T));
 return (T)xmlSer.Deserialize(sr);
 }
 }
}

The preceding code will serialize and deserialize any object type that is put through
it. This includes generic types such as List<> and Dictionary<,> objects. Do not
pass in interface members or circular references (like an object that refers to an object
that refers to the original object)—this will cause the serializer to crash.

Setting up the Settings file
Unlike using the NSUserDefaults.plist file, the settings file used here is still an XML
file, but it doesn't need to be set as any particular type. As it is also a simple XML file, it
can be copied and transferred to the same application on a different platform.

So say you're configuring a file for the app on the iPhone and
you want to run it on your Android phone as well. You will
copy the Settings file and run the app on the Android phone
and you instantly have the settings you had on the iPhone.

The Settings file consists of two classes—the handler class and the data class.

The handler class
The handler class handles setting up the Settings file as well as the accessors for the
data class. I've reproduced the important parts in the following code:

public static class myAppData
{
 private static AppSettings appSetting;

User Preferences

[166]

 public static AppSettings appSettings
 {
 get
 {
 if (appSetting == null)
 {
 if (File.Exists(AppSettingsFile))
 appSetting = Serializer.XmlDeserializeObject
 <AppSettings>(AppSettingsFile);
 else
 {
 appSetting = new myAppData.AppSettings();
 Serializer.XmlSerializeObject <AppSettings>
 (appSetting, AppSettingsFile);
 }
 }
 return appSetting;
 }
 set
 {
 if (value == null)
 {
 throw new ArgumentNullException
 ("value is null!");
 }
 appSetting = value;
 if (File.Exists(AppSettingsFile))
 File.Delete(AppSettingsFile);
 Serializer.XmlSerializeObject <AppSettings>
 (appSetting, AppSettingsFile);
 }
 }

 private static string pathAppSettingsFile;
 public static string AppSettingsFile
 {
 get
 {
 if (string.IsNullOrEmpty(pathAppSettingsFile))
 pathAppSettingsFile =
 Path.Combine(Environment.GetFolderPath
 (Environment.SpecialFolder.MyDocuments"),
 "AppSettings.xml");
 return pathAppSettingsFile;
 }
 }

}

Chapter 13

[167]

Adding an accessor
The following code is used for any type of object being passed into the configuration
file:

public static List<string> theAlias
{
 get { return appSettings.TheAlias;}
 set
 {
 AppSettings settings = appSettings;
 settings.TheAlias = value;
 appSettings = settings;
 }
}

The preceding simple accessor can be cut and pasted as many times as required.
The best thing is that the List<> object can be of any type—you can even have
an entire list of classes in there!

The data class
The data class contains nothing except a list of accessors that marry up to the ones
in the data handler class, and its also contains a default constructor as shown in the
following code:

public class AppSettings
{
 public AppSettings()
 {
 }

 public List<string> TheAlias
 {get;set;}
}

With the preceding code, you have possibly the most flexible configuration and
settings system available.

User Preferences

[168]

Summary
User settings are important—who in their right mind wants to have to set up
everything time and again, or worse, for every update of the application? When
updating an application, a file within the application folder will be kept and will
always be available (except if the app is uninstalled). Stored user settings are not
always guaranteed to persist between versions. We have seen in this chapter two
completely different methods of storing configuration settings: the one supplied
and the one created. There are other ways to do the same as I have demonstrated
in this chapter.

Testing and Publishing
Your app is ready and waiting to be released to the entire world. You've sat there,
coded, tested, coded, tested, and finally decided that you've created the most
amazing app in the world and it's time to get it onto the Apple store. The problem
is that only you have tested it. Unlike testing on Android, testing on iOS is not as
straightforward and neither is getting your app into the store.

In this chapter we will cover:

•	 Provisioning and signing your app
•	 Testing your app using TestFlight
•	 Packaging and signing the app
•	 Releasing it on the App Store

Provisioning and signing your app
For normal debugging to your own phone, it isn't usually required for you to sign the
application because a generic developer code is used when you deploy to the phone.
This code is known as a provisioning profile. We're now moving into a bigger league
and the app needs testing. You may wonder why your app needs to be tested by other
people. The answer is easy: to ensure the best possible user experience.

From the developer's perspective, a piece of software follows a set pattern: A goes
to B, B goes to C, C goes to D or E, and so on. When we test our code, this is the path
we take; users don't. They will go from A to C to F to B to C again and finally shout
when the code takes exception and crashes for no reason while they try to go to H
directly from C. The more people test your software before the release, the happier
users are when they download the app from the Mac App Store and the fewer
negative reviews get lodged against you.

Testing and Publishing

[170]

For testing, you have to distribute the app, and it's not as simple as uploading the
app to your personal web space and saying, "Hey, go download and install" as you
would for a typical desktop (or Android) application. Apple, to ensure the quality
of the available apps, has a fairly strict and tight system for distribution, even for
testing. Luckily, there is a way to distribute your app prior to releasing it on the
unsuspecting public: TestFlight.

TestFlight
TestFlight is a platform that allows you to upload the test (or beta) versions of your
software on invited users (iOS devices) or registered iOS devices. It is a free service
that does not break any of Apple's rules or regulations and, moreover, does not
require the device to be jailbroken. Setting up this service is a three-step process:

•	 Provisioning
•	 Inviting
•	 Building and uploading

Provisioning
Provisioning sets up the device to allow for the testing of non-Apple store approved
applications. To start with, you need to set yourself up as an iOS developer at
http://developer.apple.com—the cost is around $100 per year (about £65 at the
time of writing). This is a yearly cost and you do get quite a bit for it. Once done,
you will need to sign in and create an ID for your app.

Chapter 14

[171]

Registering the app
First, select Identifiers: you need to give your app a name. In my example, given
as follows, I have filled in both the bundle name and the app name using a unique
identifier—it's always a good idea to keep your apps apart. You can set up a "catch
all" identifier here if you wish.

The grayed out area (in the preceding screenshot) will be the ID that Apple will
provide you when you first create an account with them.

Testing and Publishing

[172]

Once you're happy with the values (unless you need the likes of push notifications
or in-app purchases, you can just create the ID), you will need to confirm the details.
Once they are confirmed, you will be presented with a page detailing all of your
apps in development.

Creating the developer profile
Once you have created the app ID, you need to create a developer profile for it.

1.	 On the left-side menu, click on Provisioning Profiles and then on
Development. You will get the following screen:

Chapter 14

[173]

2.	 Under Distribution, you need to select Ad Hoc. Click on Continue. The next
couple of screens are simple to navigate.

3.	 From the dropdown, select your app. Once it's done, click on Continue.
4.	 Next, you will be presented with a screen asking you to select the certificate

you wish to sign the apps with. The certificate is unique to you. If you don't
have one, you can now create a new one quickly at this point.

Creating your certificate
Start Xcode and, under the Window option, select Organizer. Next, select the
Devices option. You will see a menu on the left. Scroll down to LIBRARY and
select Provision Profiles. You'll need to enter your Apple ID and password. Once
done, click on the refresh icon. Xcode will inform you if you don't have a developer
profile and give you the option to submit an application for creating one. Click the
button with that option in. As soon as you submit the request, the certificate will be
added to your keychain. Save the key somewhere safe and give it a username and
password. That's it!

Testing and Publishing

[174]

You then need to download and install the certificate. On the left-side menu, click
on Certificates. You will be given an option to load a .cert file—this is the file you
have just created. Upload the file and once you are done, you will see the following
screenshot. Download the file, double-click on it to install, and the job is done. Your
certificate is valid as long as you pay money to Apple, and it's all you need for
development and distribution.

Back to registering your app
Once you have selected your app, you can then select the devices it needs to go
onto. If you have no devices, the page can be skipped and you can download the
certificate. Once downloaded, double-click on it, and the profile is installed.

Enabling TestFlight within Xamarin Studio
Xamarin Studio supports TestFlight, out of the box. To enable a build using
Xamarin Studio, you need to set up the project correctly.

Select your application under Project. Next, it needs to be enabled for AdHoc/
Enterprise distribution. You will find this in the IPA section (check the tick
box to enable it).

Chapter 14

[175]

Finally (for now), select the correct provisioning; here, it is Distribution (Automatic)
and the name of the app certificate:

Registering on TestFlight
Signing up on TestFlight is very easy. Create an account and they will provide
you with an app and team ID. Don't worry about remembering these since Xamarin
Studio will pick up the values when you build out to TestFlight.

Testing and Publishing

[176]

Inviting and registering devices
Once registered, you will be invited to create a team. This is essential so you can
invite people to test your app. Click on the Create a new Team button, type in the
name you want to give that area, and click on Save.

Next, you will be invited to upload a build. This is rather like asking for the car
before you've taken lessons. Uploading a build here is pointless as no one will
be able to install the app! For this to happen, the testers must have their devices
registered on your developer provisioning profile, which only happens once
you've invited them.

Before that, though, you have to create an app. Click on the Apps link at the
top of the page and then on Create an app. You will be presented with the
following screen:

App Name is the common name for the app (for example, mywhizzoapp).
For sanity, keep BundleID the same as you have used on the adhoc provisioning
profile (com.sporkish.mywhizzoapp). You will need to add this to the application
profile in Xamarin Studio (it's under Bundle). Once created and saved, you can start
inviting people.

Chapter 14

[177]

Inviting and registering someone is very simple. On the TestFlight website, click
on the People option at the top. Next, create a new distribution list. These lists are
very useful as it means with one account you can distribute a large number of apps
to a large number of people.

Give the list a name and, as there is only one person available (that is, you), select
your profile, and click on Save.

Next, you need to invite people. On the left-side menu, click on Invitations.
As there are no testers invited, you will be prompted to invite someone.

Testing and Publishing

[178]

If the person you're inviting is also a developer in your team, turn ON the Team
Developer option; otherwise, leave that OFF. Once you click on the Send Invitation
button, an e-mail will be sent to the person, who will in turn, accept the invitation
and register the device. You will receive an e-mail once this has been done.

Copy the device UUID (or if it has been sent by e-mail, you can upload the file sent
containing the device UUID code), and go to the Apple developer website. Log in
and select Devices. Here you can add one or more devices. Once added, go back
to the Developer Provisioning option and enable that device. You will need to
re-download the provisioning file and open it again with Xcode, and then rebuild
the app with the updated profile. Failing to do this will result in the user not being
able to install the app.

Building to TestFlight
Once you have made sure that the BundleID in your project is the same as it is for
the BundleID of TestFlight, things become very easy.

Chapter 14

[179]

After you have completed entering the details (similar to the preceding
screenshot), click on OK and set the build to Ad Hoc. Select Project and
then the TestFlight option.

Initially, this window will be blank. Click on Get your API token and then Get your
team token, which will launch your default web browser. Copy and paste these values
into the API token and Team token fields on the Publish to TestFlight screen (as seen
in preceding screenshot). Next, provide some details of what changes are in the file,
and finally select the distribution lists you've set up. Ensure that the top two tick boxes
are ticked (it helps to let people know when something has been uploaded).

When you're done, click on Publish and, assuming there are no build issues, the app
will be sent to TestFlight and the testers on the notified list.

After a few weeks of testing, you should be ready to submit the app to Apple for
distribution. This is the final step to getting your app approved, but there are some
hurdles you need to be aware of.

Releasing your app
Testing is complete and you've ironed out a majority of the bugs. There may
still be some in there, but for now the app is behaving and you're ready to
release it to the world.

Testing and Publishing

[180]

App checklist
Before you submit your app to Apple for release through their App Store, you must
have the following in place:

•	 The correct number and size of icons (see below for the sizes)
•	 The app needs to be correctly signed
•	 Support for iPhone 5 must be included (this includes the widgets being

correctly placed on the screen for the new larger visible area)

•	 You've not used any private API or forbidden API calls (Apple does not
want you using libraries that it does not control and will throw out apps that
circumvent hardware or software controls, or interfere with the operation of
other software)

Icon sizes
All of the following icons must be present with their correct sizes prior to submitting
your app to Apple. The size of the icons (in pixels) are as follows:

iPhone iPad

App
icons

Normal Retina iPad
Compatibility Normal Retina

57 x 57 114 x 114 72 x 72 72 x 72 144 x 144

Launch
images

Normal Retina (3.5") Retina (4") Normal Retina

320 x 480 640 x 960 640 x 1136 768 x 1024 1536 x
2048

iTunes
artwork

Normal Retina
512 x 512 1024 x 1024

Chapter 14

[181]

Preparing to package
With the icons in place, you next need an App Store provisioning profile. This is set
up in a way similar to a Developer or Ad Hoc provisioning file:

The process for creating the App Store profile is similar to the Ad Hoc profile
generation except that you're not asked which devices you want the test software to
be installed on. Download the provisioning file and install it as you did for the Ad
Hoc profile. You will need to supply a name for the profile, though.

Testing and Publishing

[182]

Packaging your app
Once you have created and installed the provisioning profile, you next need to
package the app for distribution. This is not as straightforward as it may seem.

You have already created a development certificate; you now need to repeat the
process to generate a distribution certificate. The process for doing this is exactly
the same as that for a development certificate. Once you have done this, install the
certificate in your keychain.

Once the certificate is installed, the next stage takes place in Xamarin Studio.

Creating the build configuration
This is the profile you need for creating your iOS application. Load the project that
you wish to submit. Navigate to Project | Solution Profile. On the left-hand side,
click on the Configurations option, shown as follows:

Chapter 14

[183]

To add the profile (assuming it's not there), click on Add. You will be presented with a
New Configuration box. You will need to fill this in as shown. Once you've done this,
click on OK and then click on OK again to remove the Solution Options window.

Testing and Publishing

[184]

If the app you've created is universal (in other words, for iPhone and iPad), the
platform should be universal. Failing that, for an iPad app, it will be just iPad
for the platform.

Next, the application needs to be signed. Navigate to Project | mywhizzoapp (or
whatever your app is called). Under the Build option, select iOS build and choose
your AppStore configuration. After this, select the iOS bundle signing option. For the
Identity drop-down, set this to Distribution (automatic) and the provisioning profile
to the one you created to distribute the app (not the one created for distribution on
TestFlight).

Once this has been done, click on OK to remove the window and set the build type
for the app to AppStore.

For safety, click on Build | Clean All and then Build | Build all. If everything
works, we're in the App Store.

The App Store Submission Process
The first step is to create a record with iTunes Connect (https://itunesconnect.
apple.com). This is a simple process. The description has to reflect what the app can
do (for example, you cannot submit a messenger application that is actually a game).

Assuming that the record has been created correctly, click on the Ready To Upload
binary button. You will be presented with a number of questions, and you can
progress by answering them correctly. The last screen will tell you that the App
Store is ready to upload and you can use the uploader facility. But don't. There is
a simpler method via Xamarin Studio and Xcode, which has fewer issues. The first
part is to create an archive.

Creating an archive
Navigate to Build | Archive. This will build the app and create an archive from
it that is correctly provisioned for distribution. Once the archive has been built,
an Archive tab will appear in the code designer. Here you can look at any of the
archives that you have created.

Chapter 14

[185]

Submission via Xcode
Start Xcode and navigate to Window | Organiser. Click on the Archives tab. You
will be presented with a list of all your apps for distribution. Select the one you wish
to submit and you will see two options: Validate and Submit. Click on Validate.
If there are no issues with the app, proceed to Submit. Typically, validation fails if
there isn't a correct provisioning certificate applied to the app or the certificate can't
be found. Fix the issue, rearchive, and validate again.

The submission wizard
To guide you through the process of submission, Apple has included a very simple-
to-use submission wizard. You must ensure that you have a network connection for
this stage and that the app is ready for upload.

Click on Submit. Xcode communicates with iTunes Connect and retrieves a list of
apps you have submitted for upload. Select the one you want to submit. Xcode will
then upload the archive for you. Once uploaded, if you go back to iTunes Connect,
you will see that the app is now waiting for approval. (Don't worry as this is largely
an automated procedure.) Once approved, you're home and dry and your app is in
the App Store.

Summary
Testing and distribution of iOS applications may seem a waste of time, but at the end
of the day, controlling who is testing your app allows you to pick and choose who
you want to test the code. Moreover, it doesn't allow for versions to be leaked and
in turn giving you a potentially bad name. Yes, it may seem very control-freaky, but
that's the game Apple wants you to play, and if you want to distribute your apps
with them, that's the game you have to play.

Index
Symbols
.caf (Core Audio File) 157
.plist file

about 162
reading from 163
writing to 163

A
ABAddressBook 75
ABNewPersonViewController 75
ABPeoplePickerNavigationController 75
ABPersonViewController 76
ABUnknownPersonViewController 76
Acceleration event 90
AcceptEvent event 80
AccessoryTapped event 83
action 17
ActionFinished event 96
ActivityElement 23
Activity Indicator View 38
AdBanner View 38
AdBannerView 96 45
Ad classes

AdBannerView 96
AdInterstitialAd 96
IGameWindow 96
IPhoneOSGameView 97
OpenTK 96

AddressResolved event 85
AdInterstitialAd 96
AdLoaded event 45, 96
AdUnloaded event 96
AdvertisingStarted event 79
Ahead Of Time (AOT) 135

AllEditingEvents event 74
AllEvents event 74
AllTouchEvents event 74
Android

comparing, to iOS Ui controls 67, 68
Android SDK Manager 10
Android Software Developers Kit. See SDK
animation 123
AnimationEnded event 77
AnimationStarted event 77
AnimationWillEnd event 95
AnimationWillStart event 95
app

checklist 180
packaging 182
registering 171-174
releasing 179

AppDelegate class 114, 131
App Store Submission Process

about 184
archive, creating 184
submission wizard 185
via Xcode 185

Asynchronous code
using 121

asynchronous event handling
versus synchronous event handling 71

asynchronous walk 71
async method 121
audio

NSDictionary, setting up 159
AudioConverter 76, 77
audio file

playing 158
recording 159

AudioRouteChanged event 76

[188]

AudioSession 76
AudioUnit 77
AUGraph 77
AuthorizationChanged event 80
AVAudioPlayer 74
AVAudioSession 74
AVRecordClass 74

B
backBarButtonItem 56, 57
background threading

using, within app 116
BackgroundWorker DoWork thread 118
BackgroundWorker thread 116
BadgeElement 23, 82
BarButtonItem 66
BaseBooleanImageElement 23, 82
BeginAnimations 125
BeginInterruption event 74
bitmaps

bindings, underpinning 125
code, analysis 125, 126
handling 123
image, rotating 124, 125
image, scaling 123, 124

Bonjour 7
BookmarkButtonClicked event 93
BooleanElement 23
BooleanImageElement 23
BoolElement 23, 82
build configuration

creating 182-184
built-in system 162, 163

C
CAAnimation 77
CalendarChooser class 83
callback 120
callLoginService 122
callNewMethod 127
CalloutAccessoryControlTapped event 88
camera

about 139
accessing, UIImagePickerController

used 140

Xamarin.Mobile component 140
CanAcceptBytesEvent event 80
CancelButtonClicked event 93
Cancelled event 75, 83, 91
cardex system 130
CategoryChanged event 74
CBCentralManager 78
CBPeripheral 78
CBPeripheralManager 79
certificate

creating 173, 174
CFSocket 80
CFStream 80
CGColor 31
ChangedDragState event 88
Changed event 83, 94
CharacteristicSubscribed event 79
CharacteristicUnsubscribed event 79
CheckboxElement 23
CIColor 31
Clicked event 91
CLLocationManager 80, 81
Closed event 97
ClosedEvent event 80
Collection Reusable View 38
Collection View 38
CommitAnimations 126
Completed event 83
ConnectedPeripheral event 78
ConnectEvent event 80
ConnectionAutomatic flag 152
ConnectionFailed event 87
ConnectionOnDemand flag 152
ConnectionOnTraffic flag 152
ConnectionRequest event 87
ConnectionRequired flag 152
connector 17
controls

list 66, 67
selection 62

CoreAnimation namespace 123, 124
CoreBluetoothCentralManager 78
CoreGraphics namespace 123
Core Location

about 141, 143
delegate, setting 143, 144

[189]

map, adding 147-149
pin, adding 150
setting 143
users, finding 145, 146
using 143

CoreLocation LocationManager class 80

D
data

adding, to database 134
deserializing 164, 165
manipulating, LINQ used 135
serializing 164, 165

database
basics 130
class 130
connection, creating 131, 132

data class 167
DataManager class 131
DataReceived event 87
DateElement 23
DatePicker 66
DateSelected event 82
DateTimeElement 23, 82
DateTime Picker View 82
DBClauseSyncOff constant 132
DBClauseVacuum constant 132
deadlocking

about 108
avoiding, for synchronized accessors 109

DecelerationEnded event 92-94
DecelerationStarted event 92-94
DecodeError event 74
DeferredUpdatesFinished event 80
delegate event

about 69, 70
attaching, to multiple controls 70

demoTable variable 130
deserializing data 164, 165
DesiredAccuracy 142
DetailDisclosureButton 51
DetailTextLabel 51
developer profile

creating 172, 173
DialogViewController 82
DidAddAnnotationViews event 88

DidAddOverlayViews event 88
DidBeginCustomizingItems event 93
DidCancel event 89
DidChangeUserTrackingModel event 88
DidDeselectAnnotationView event 88
DidDismiss event 89, 92
DidEndCustomizingItems event 93
DidFailToLocateUser event 88
DidFailWithError event 87
DidFindMatch event 87
DidFindPlayers event 87
DidFinishAnimating event 91
DidFinish event 86
DidFinishJob event 92
DidPresentPrinterOptions event 92
DidSelectAnnotationView event 88
DidShowViewController event 91
DidStartMonitoringForRegion event 80
DidStopLocatingUser event 88
DidUpdateUserLocation event 88
DidZoom event 92-94
Disclosure 51
Disconnected event 84
DisconnectedPeripheral event 78
DiscoverCharacteristic event 78
DiscoveredDescriptor event 78
DiscoveredIncludedService event 78
DiscoveredPeripheral event 78
DiscoveredService event 78
Dismissed event 91
Disposed event 97
DomainRemoved event 85
drag-and-drop 104, 105
DraggingEnded event 92, 94
DraggingStarted event 92, 94
DrawInRect event 86
Duration 125

E
EAAccessory 84
EaseIn 126
EaseInOut 126
EaseOut 126
EditingChanged event 73
EditingDidBegin event 73
EditingDidEnd event 74

[190]

EditingDidEndOnExit event 74
EKCalendarChooser 83
EKEventEditViewController 83
EKEventViewController 83
element

about 18, 23
types 18-20

EncodedObject event 84
EncoderCallback event 77
Ended event 94
EndInterruption event 74
EntryElement 24, 83
EntryElement class 21, 22
ErrorEvent event 80
EventArgs e 70
events

handling 69
handling, delegates used 69, 70

ExecuteScalar method 134
ExternalChange event 75

F
Failed event 80, 87
failed, recognizer state 104
FailedToConnectPeripheral event 78
FailedToReceive 45
FailedToReceiveAd event 96
FinishedCustomizingViewController

event 94
Finished event 83-90
FinishedPickingImage event 91
FinishedPickingMedia event 91
FinishedPickingMedia() method 141
FinishedPlaying event 74
Finishing event 84, 85
Fixed/FlexibleBarButtonItem 67
FloatElement 24
FoundDomain event 85
FoundService event 85
FromBundle 40
FromFile 40
FromImage 40
FromResource 40
FromWhiteAlpha 30

G
garbage collector (GC) 126
gestures

about 99-101
adding 100, 101
adding, in code 102
code 101, 102
continuous types 102
drag-and-drop, handling 104, 105
Selector method 102
tapGesture 101
types 102
UILongPressGestureRecognizer class 100
UIPanGestureRecognizer class 99
UIPinchGestureRecognizer class 100
UIRotationGestureRecognizer class 100
UISwipeGestureRecognizer class 99
UITapGestureRecognizer class 99

GetCell method 51, 52
GKAchievementViewController 86
GK classes

GKAchievementViewController 86
GKFriendRequestComposeViewController

86
GKGameCenterViewController 86
GKLeaderboardViewController 86
GKMatch 87
GKMatchmakerViewController 87
GKSession 87

GKFriendRequestComposeViewController
86

GKGameCenterViewController 86
GKLeaderboardViewController 86
GKMatch 87
GKMatchmakerViewController 87
GKSession 87
GlassButton 82
GLKit 59
GLKit View 38
GLKView 86

H
handler class

about 165
accessor, setting up 167

[191]

handler code 37
HandleScanResult method 72
HasBytesAvailableEvent event 80
HtmlElement 24

I
IGameWindow 96
image

adding 32
bitmap image, handling 123
rotating 124, 125, 128
scaling 123, 124

ImageElement 24
ImageStringElement 24
ImageView 38
InputAccessoryView method 21
InputAudioQueue 77
InputAvailabilityChanged event 74
InputChannelsChanged event 74
InputCompleted event 77
InputData event 76
Internet

accessing 152-155
Interrupted event 76
InterventionRequired flag 152
InvalidatedService event 78
InvokeOnMainThread method 39
IOError event 81
iOS Layout

about 36
canvas model 36
issues, avoiding 37

IOStream 80
iOS UI controls

and Android, comparing 67, 68
IPhoneOSGameView 97
IsDirect flag 152
IsLocalDevice flag 152
IsSourceTypeAvailable(myCamera)

command 155
IsWWAN flag 152
ItemSelected event 93
ItemsPicked event 89
iTunes Connect

URL 184

J
JsonElement 24

K
keyboard

toolbar, adding 21
type, changing 20

L
Label 66
leftBarButtonItem 56
LINQ

about 136
SELECT 137
SELECT, using 137, 138
SQL, replacing with 138
used, for manipulating data 135
WHERE 137

ListButtonClicked event 93
Liverpool 50
LoadError event 95
Load event 96, 97
LoadFinished event 95
LoadFromData 40
LoadingMapFailed event 88
LoadMoreElement 24, 82
LoadStarted event 95, 121
LocationsUpdated event 80
LocationUpdatesPaused event 80
LocationUpdatesResumed event 80
locks 112, 113

M
map

adding 147, 148
MapLoaded event 88
Map View 38
MapView 44
mapViewer 147
Master-Detail, project type 36
memory

freeing, after use 126, 127
image, rotating 128

[192]

MessageElement 24, 82
MessageReceived event 81
MFMailComposeViewController 89
MFMessageComposeViewController 89
MidiClient 81
MidiEndpoint 81
MidiPort 81
MKMapView 88
MKReverseGeocoder class 145
Model View Controller (MVC) 47
MonitoringFailed event 81
Monotouch.CoreGraphics namespace 64
MonoTouch.Dialog. See MT.D
MonoTouch.MapKit namespace 145
MonoTouch.MediaPlayer namespace 155
MPMediaPickerController 89
MT.D

about 18-20, 81
keyboard type, changing 20
Pickers, creating 25-29
ResignFirstResponder, using 21
ShouldReturn, using 20
toolbar, adding to keyboard 21
types, supported 23

MT.D views
element 18
root 18
section 18

MultilineElement 24
multimedia

about 155
audio, recording 158
audio system 157
video, playing 155
video, recording 156

multiple view controllers
used, for implementing view 45, 46

N
NavigationBar 66
NavigationController 53-56
NavigationItem 66
NewPersonComplete event 75
NewPersonViewController 75
NextStep (NS) 84
NotSearched event 85

NSAutoreleasePool class 39
NSCache 84
NS classes

NSCache 84
NSKeyedArchiver 84
NSKeyedUnarchiver 85
NSNetService 85
NSNetServiceBrowser 85
NSStream 86

NSKeyedArchiver 84
NSKeyedUnarchiver 85
NSNetService 85
NSNetServiceBrowser 85
NSNotificationCenter class 163
NSObject class 163
NSStream 86
NSUserDefaults class 163

O
ObjectAdded event 81
ObjectRemoved event 81
OnCustomizingViewController event 94
OnEditingStarted event 93
OnEditingStopped event 93
OnEndCustomizingViewController

event 94
OnEvent event 86
OnSelection event 82
OpenCompletedEvent event 80
OpenGL for Embedded Systems

(OpenGL ES) 59
OpenGL, project type 36
OpenTK 96
outlet 17
outlet collection 17
OutputAudioQueue 77
OutputChannelsChanged event 75
OutputCompleted event 77
OwnerDrawnElement 24

P
package

app 182
build configuration, creating 182-184
preparing to 181

[193]

PageControl 66 59
PeerChanged event 87
PerformAction event 75
PerformDefaultAction event 76
PersonCreated event 76
phone

storage 150
phone call

making 150
Pickers

creating, on MT.D 25-29
Picker View 38
pin

adding 150
PKAddPassesViewController 89
playback

about 157
audio file, playing 158
long (and compressed) files 157
power levels, setting 158
short files 157
volume, altering 158

possible, recognizer state 104
power levels

setting 158
Presented event 91
ProgressChanged event 116
Progress View 38
project, types

about 36
Master-Detail 36
OpenGL 36
Single View 36
Tabbed 36
URL 36

PropertyChanged event 81
provisioning 170
provisioning profile 169, 170
Published event 85
PublishFeature event 85

Q
QLPreviewController 89
QueueUserWorkItem method 120

R
RadioElement 24
Reachable flag 152
read-only table

creating 49-51
ReadRequestReceived event 79
ReadyToUpdateSubscribers event 79
ReceivedAcceptFromHostedPlayer event 87
ReceiveData event 87
ReceivedResponse event 90
record

setting up 159
RefreshRequested event 82
RegionChanged event 88
RegionEntered event 81
RegionLeft event 81
RegionWillChange event 88
RenderCallback event 77
RenderedFrame event 96, 97
RepeatAnimationCurve 126
ReplacingObject event 84, 85
RequestFailed event 90
RequestFinished event 90
ResignFirstResponder

using 21
ResolveFailed event 85
Resumed event 76
RetrievedConnectedPeripheral event 78
RetrievedPeripherals event 78
retString variable 137
ReturnKeyType 20
rightBarButtonItem 56
root 18
RootElement 24
RssiUpdated event 78
RunWorkerCompleted event 116

S
SampleRateChanged event 75
ScaleFactor 123
screen

origins 18
sizes 18

ScrollAnimationEnded event 92-94

[194]

Scrolled event 92-94
ScrolledToTop event 92, 95
ScrollEnabled 149
Scroll View 38
ScrollView 94
SDK 10
SearchBar 66
SearchButtonClicked event 93
SearchRemoved event 85
SearchStarted event 85
SearchStopped event 85
SearchTextChanged event 82
section 18
SectionIndexTitles 53
SegmentedControl 66
SELECT

using, in LINQ 137
SelectedScopeButtonIndexChanged

event 93
SelectionChanged event 83, 95
Selector method 102
SelectPerson event 75
serializing data 164, 165
SerialPortOwnerChanged event 81
ServiceAdded event 79
SetImage method 32
Settings.bundle 162
settings file

data class 167
handler class 165
setting up 165

settings system
about 164
file, setting up 165

SetupChanged event 81
ShouldReturn

using 20
ShouldReturn event 83
ShowUserLocation 149
Single View, project type 36
SK classes

SKProductsRequest 90
SKRequest 90
SKStoreProductViewController 90

SKProductsRequest 90
SKRequest 90

SKStoreProductViewController 90
Sleep() call 109
Slider 66
speed

calculating 143
SQL

replacing, with LINQ 138
SQLite

about 129
installing 129

SQLite helper class
about 132
data, adding to database 134
methods 133, 134

Started event 94, 95
StartListening 142
StateChanged event 87
StateUpdated event 79
StopListening 142
Stopped event 85
StringElement 25, 82
StyledMultilineElement 25
StyledStringElement 25, 83
synchronous event handling

versus asynchronous event handling 71
synchronous walk 71
system

built-in settings 164
System.ComponentModel namespace 116
SystemSound method 157
System.Threading.Tasks namespace 120

T
TabBarItem 67
TabBars

about 57, 58, 67
handling, in code 58

Tabbed, project type 36
TableView

about 38
indexes 53

TableViewCell 51
TableView method 47
tapGesture 101
Tapped event 82

[195]

tasks
and EventHandlers 121
using on threads, issues faced 120

Task<T> parameter 122
testappViewController.cs file 15
testappViewController.designer.cs file 15
testappViewController_iPad.xib file 15
testappViewController_iPhone.xib file 15
TestFlight

about 170
app, checklist 180
app, registering 171, 174
app, releasing 179
building to 178, 179
certificate, creating 173, 174
developer profile, creating 172, 173
devices, inviting 176-178
enabling, within Xamarin Studio 174
icon, sizes 180
provisioning 170
registering on 175

TextChanged event 93
TextField 66
TextLabel 51
text message

receiving 151
sending 151

Text View 38
threading

about 107, 115
background threading, using within

app 116
BackgroundWorker thread 116-118
deadlocking 108
locks, using 112, 113
new thread, starting from main

UI thread 109-112
System.Threading.Tasks, using 120
ThreadPool.QueueUserWorkItem 119, 120
UI thread 108

ThreadPool.QueueUserWorkItem 119, 120
ThruConnectionsChanged event 81
TimeElement 25
toolbar

about 66
adding, to keyboard 21

TouchCancel event 73
TouchDown event 73
TouchDownRepeat event 73
TouchDragEnter event 73
TouchDragExit event 73
TouchDragInside event 73
TouchDragOutside event 73
TouchUpInside event 70-73
TouchUpOutside event 73
TransientConnection flag 152
translation, recognizer state 104

U
UIAccelerometer 90
UIActionSheet 91
UIActivityIndicatorView class 39
UIAlertView 91, 123
UIButton 31, 32, 63, 64
UIButtonBarItem 91
UIButton class 62
UIClasses

ScrollView 94
UIAccelerometer 90
UIActionSheet 91
UIAlertView 91
UIButtonBarItem 91
UIImagePickerController 91
UIPageViewController 91
UIPopoverController 92
UIPrintInteractionController 92
UIScrollView 92
UISearchBar 93
UISplitViewController 93
UITabBar 93
UITabBarController 94
UITextField 94
UITextView 94
UIView 95
UIWebView 95

UICollectionView
about 41
cell reuse 42
cells 42
data source 42
decoration view 42

[196]

supplementary views 42
UICollectionView class 42
UIColor 30, 31
UI Controls

about 62
selection 62

UIControlStates 33
UIGestureRecognizerState values

failed state 104
possible state 104
translation state 104
velocity state 104

UIImagePickerController
about 91
used, for accessing camera 140

UIImageView
about 40, 67, 127
FromBundle 40
FromFile 40
FromImage 40
FromResource 40
LoadFromData 40

UILabel 29
UILabel class 64
UILongPressGestureRecognizer class 100
UIPageControl method 59
UIPageViewController 91
UIPanGestureRecognizer class 99
UIPinchGestureRecognizer class 100
UIPopoverController 92
UIPrintInteractionController 92
UIProgressView class 39
UIRotationGestureRecognizer class 100
UIScrollView 92 44
UISearchBar 93
UISplitViewController 93
UIStepper 65
UISwipeGestureRecognizer class 99
UITabBar 93
UITabBarController 94
UITableView

navigation with 53
RootView, returning to 57
used, for navigation 56
within code 53
with Xcode 54-56

UITableViewCell
about 51
cells, reusable within table 52
indexes, on TableView 53
rows 52
sections 52

UITableViewCell method 29
UITableViewCellStyle

Subtitle 51
Value1 51
Value2 51

UITableView method 29
UITapGestureRecognizer class 99
UITextField method 22
UITextView 22, 94
UI thread

about 108
new thread, starting from 110, 111

UIView 95
UIViewElement 25
UIWebView 42, 43, 95
Unknown Person View Controllers 76
Unload event 96, 97
UpdatedCharacteristicValues event 78
UpdatedHeading event 81
UpdatedLocation event 81
UpdatedName event 79
UpdatedNotificationState event 79
UpdatedState event 78
UpdatedTxtRecordData event 85
UpdatedValue event 79
UpdateFrame event 96, 97
UserInteractionEnabled 149
user interface

about 13
creating, Xcode used 13-17

V
ValueChanged event 73, 82
velocity, recognizer state 104
video

recording 156
saving 157

video, playing
about 155

[197]

external URL 155
from photo library 156
internal source 155

view
about 37
Activity Indicator View 38
AdBanner View 38
Collection Reusable View 38
Collection View 38
GLKit View 38
ImageView 38
implementing, with multiple view control-

lers 45, 46
Map View 38
Picker View 38
Progress View 38
Scroll View 38
Table View 38
Text View 38
Web View 38

ViewAppearing event 82
view controller 37
ViewControllerSelected event 94
ViewDidLoad() method 44
ViewDisappearing event 82
VisibleChanged event 97
Visual Studio

enabling, to build iOS applications 6, 7
enabling, to run iOS applications 6
on Mac 7
on PC 7-9

volume
altering 158

W
WasCancelled event 87
Web View 38
WHERE syntax 137
widget

adding 17
connecting 17

WillBeginCustomizingItems event 93
WillDismiss event 89, 91
WillDismissPrinterOptions event 92
WillEndCustomizingItems event 93

WillEndDragging event 92, 95
WillEvictObject event 84
WillHideViewController event 93
WillLoad event 96
WillPresent event 91
WillPresentPrinterOptions event 92
WillPresentViewController event 93
WillPublish event 85
WillResolve event 85
WillShowViewController event 91, 93
WillStartJob event 92
WillStartLoadingMap event 88
WillStartLocatingUser event 88
WillTransition event 91
WInDow gadGET 61
Windows 7

Bonjour service, setting up 9
WindowStateChanged event 97
WorkerCompleted event 116
WriteRequestsReceived event 79
WroteCharacteristicValue event 79
WroteDescriptorValue event 79

X
Xamarin.Android

about 10
installing 5
requisites 5
software, downloading 6
software, installing 6

Xamarin IDE (Integrated Development
Environment) 10

XamarinInstaller.exe file 6
Xamarin.iOS

installing 5
requisites 5
software, downloading 6
software, installing 6

Xamarin.iOS Visual Studio
on Mac 7
on PC 7, 8, 9

Xamarin.Mobile component
about 139-141
GPS with 141, 142

Xamarin Studio
used, for enabling TestFlight 174

[198]

Xcode
about 6
starting 15
used, for creating user interface 13-17

Xcode designer
adding 16

Z
ZoomEnabled 149
ZoomingEnded event 92, 95
ZoomingStarted event 92, 95

Thank you for buying
Xamarin Mobile Application
Development for iOS

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

iOS Development using
MonoTouch Cookbook
ISBN: 978-1-849691-46-8 Paperback: 384 pages

109 simple but incredibly effective recipes for
developing and deploying applications for iOS
using C# and .NET

1.	 Detailed examples covering every aspect
of iOS development using MonoTouch
and C#/.NET

2.	 Create fully working MonoTouch projects
using step-by-step instructions.

3.	 Recipes for creating iOS applications meeting
Apple's guidelines.

HTML5 iPhone Web Application
Development
ISBN: 978-1-849691-02-4 Paperback: 338 pages

An introduction to web-application development for
mobile within the iOS Safari browser

1.	 Simple and complex problems will be covered
with examples and resources that backup the
approach and technique.

2.	 Real world solutions that are broken down
for multiple target audiences; from beginner
developers to technical architects.

3.	 Learn to build true web applications using
the latest industry standards for iOS Safari.

Please check www.PacktPub.com for information on our titles

iPhone User Interface Cookbook
ISBN: 978-1-849691-14-7 Paperback: 262 pages

A concise dissection of Apple's iOS user interface
design principles

1.	 Learn how to build an intuitive interface for
your future iOS application

2.	 Avoid app rejection with detailed insight
into how to best abide by Apple’s interface
guidelines

3.	 Written for designers new to iOS, who may
be unfamiliar with Objective-C or coding
an interface

Teaching with iPad How-To
ISBN: 978-1-849694-42-1 Paperback: 240 pages

Use your iPad creatively for everyday teaching tasks
in schools and universities

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results

2.	 Plan your lessons on iPad and share
notes quickly

3.	 Use exclusive iPad 3D resources for more
engaging learning

4.	 Use your iPad for creating and giving
presentations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing the Xamarin Product Range for Android and iOS
	Installing Xamarin.iOS and Xamarin.Android
	Downloading the software
	Installing the software

	Enabling VisualStudio to build and run iOS applications
	On the Mac
	On the PC

	Installing additional code for Android development
	For iOS users, the process is similar

	Summary

	Chapter 2: The User Interface
	Creating the User Interface with Xcode
	Screen origins and sizes

	MonoTouch.Dialog (MT.D)
	Changing the keyboard type
	Using ShouldReturn
	Using ResignFirstResponder
	Adding a toolbar to the keyboard

	Creating your own Pickers on MT.D
	UITableView and UITableViewCell
	Colors, buttons, and labels
	Ensuring you have the correct size bounding boxes
	UIColor
	UIButton
	UIControlStates

	Summary

	Chapter 3: Views and Layouts
	Selection of the project type
	Application types and their view types

	The iOS Layout
	The Canvas model
	How to avoid some of these problems

	Views and View Controllers
	Other Views
	Activity Indicator and Progress View
	UIImageView
	UICollectionView
	UIWebView
	MapView
	UIScrollView
	AdBannerView

	Implementing a view with multiple view controllers

	Summary

	Chapter 4: Controllers
	UITableView and UITableViewCell
	Creating a read-only table
	UITableViewCell
	Reusable cells within a table
	Sections and Rows
	Indexes on a TableView

	Navigation with UITableView
	Within code
	With Xcode

	Navigation using UITableView
	Returning to the RootView

	TabBars
	Handling the Tab Bar in code

	PageControl
	GLKit
	Summary

	Chapter 5: UIControls
	Controls and widgets
	UI Controls
	Control selection
	UIButton

	UIStepper
	The other controls

	Comparing Android to iOS UI controls
	Summary

	Chapter 6: Events
	Handling events
	Delegates
	Attaching an event to multiple controls

	Synchronous versus asynchronous event handling
	Synchronous walk
	Asynchronous walk
	In a programming context

	Events and controls reference
	Other significant control events
	AVAudioPlayer and AVRecordClass
	AVAudioSession
	ABAddressBook
	ABNewPersonViewController
	ABPeoplePickerNavigationController
	ABPersonViewController
	ABUnknownPersonViewController
	AudioConverter
	AudioSession
	InputAudioQueue
	OutputAudioQueue
	AUGraph and AudioUnit
	AudioConverter
	CAAnimation
	CBCentralManager
	CBPeripheral
	CBPeripheralManager
	CFSocket
	CFStream
	CLLocationManager
	MidiClient
	MidiEndpoint and MidiPort
	Monotouch.Dialog
	BadgeElement, BaseBooleanImageElement, GlassButton, LoadMoreElement, MessageElement, and StringElement
	BoolElement
	DateTimeElement
	DialogViewController
	EntryElement
	StyledStringElement
	EKCalendarChooser
	EKEventEditViewController and EKEventViewController
	EAAccessory

	The NS classes
	NSCache
	NSKeyedArchiver
	NSKeyedUnarchiver
	NSNetService
	NSNetServiceBrowser
	NSStream
	GLKView
	GK classes
	GKAchievementViewController, GKFriendRequestComposeViewController, and GKLeaderboardViewController
	GKGameCenterViewController
	GKMatch
	GKMatchmakerViewController
	GKSession
	MKMapView
	MPMediaPickerController
	MFMailComposeViewController and MFMessageComposeViewController
	PKAddPassesViewController
	QLPreviewController

	SK classes
	SKProductsRequest
	SKRequest
	SKStoreProductViewController

	UIClasses
	UIAccelerometer
	UIActionSheet and UIAlertView
	UIButtonBarItem
	UIImagePickerController
	UIPageViewController
	UIPopoverController
	UIPrintInteractionController
	UIScrollView
	UISearchBar
	UISplitViewController
	UITabBar
	UITabBarController
	UITextField
	UITextView
	UIView
	UIWebView

	Ad classes
	AdBannerView
	AdInterstitialAd
	OpenTK
	IGameWindow
	IPhoneOSGameView

	Summary

	Chapter 7: Gestures
	Gestures
	Gesture code
	Types
	Adding a gesture in code
	Continuous types
	Other UIGestureRecognizerState values

	Handling drag-and-drop
	Summary

	Chapter 8: Threading
	Threading Concepts
	The main UI thread
	Deadlocking
	Avoiding deadlocks for synchronized accessors

	Starting a new thread from the main UI thread
	Using locks

	The AppDelegate class
	Summary

	Chapter 9: Threading Tasks
	A brief introduction to threading
	Using background threading within your app
	BackgroundWorker
	ThreadPool.QueueUserWorkItem

	Using System.Threading.Tasks
	Problems while using Tasks on threads

	Using Asynchronous code
	Tasks and EventHandlers
	A more practical example

	Summary

	Chapter 10: Animation
	Handling bitmaps
	Scaling the image
	Rotating the image – Part 1
	Underpinning bindings

	Analysis of the code

	Freeing memory after use
	Rotating the image – Part 2

	Summary

	Chapter 11: Handling Data
	Using SQLite
	Installing and setting up SQLite
	Database basics
	A simple database class
	Create a connection to the database

	Setting up an SQLite helper class
	Writing helper class methods
	Adding data to the database

	Data manipulation using LINQ
	LINQ – a whistle stop tour
	SELECT and WHERE in LINQ – a common cause of confusion
	Using Select in LINQ
	Replacing SQL with LINQ

	Summary

	Chapter 12: Peripherals
	Using the camera
	Accessing the camera (Xamarin.Mobile)
	Accessing the camera (Native)
	Saving to the Photo album (Native)

	GPS and Mapping
	GPS with Xamarin.Mobile
	Calculating your speed

	Using Core Location
	Setting up Core Location and delegate
	Finding where the user is
	Adding a map
	Adding a pin

	Storage on the phone
	Making a phone call
	Sending and receiving a text message
	Accessing the Internet
	Multimedia
	Playing a video
	External URL
	Internal source
	From the photo library

	Recording a video
	To record a video
	Saving the video

	The audio system
	Playback

	Recording Audio
	Setting up the audio NSDictionary

	Summary

	Chapter 13: User Preferences
	The built-in system
	Reading and writing to the .plist file

	Rolling your own settings system
	Serializing and deserializing data
	Setting up the settings file
	The handler class
	The data class

	Summary

	Chapter 14: Testing and Publishing
	Provisioning and signing your app
	TestFlight
	Provisioning
	Registering the app
	Creating the developer profile
	Creating your certificate
	Back to registering your app
	Enabling TestFlight within Xamarin Studio

	Registering on TestFlight
	Inviting and registering devices
	Building to TestFlight
	Releasing your app
	App checklist
	Icon sizes

	Preparing to package
	Packaging your app
	Creating the build configuration

	The App Store Submission Process
	Creating an archive
	Submission via Xcode
	The submission wizard

	Summary

	Index

