
www.allitebooks.com

http://www.allitebooks.org

ADVANCED

Visual Basic® 2010
F IFTH EDIT ION

Kip Irvine
Florida International University

Tony Gaddis
Haywood Community College

Addison Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

www.allitebooks.com

http://www.allitebooks.org

Editorial Director: Marcia Horton
Editor in Chief: Michael Hirsch

Acquisitions Editor: Matt Goldstein
Editorial Assistant: Chelsea Bell
Managing Editor: Jeffrey Holcomb

Senior Production Project Manager: Marilyn Lloyd
Media Producer: Dan Sandin

Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti

Production/Operations Manager: Pat Brown
Text Designer: Joyce Cosentino Wells

Cover Designer: Suzanne Duda
Cover Image: Shutterstock Images

Project Management/Composition: Jogender Taneja / Aptara®, Inc.
Printer/Binder: Bind-Rite Graphics
Cover Printer: Lehigh-Phoenix Color

Credits and acknowledgments borrowed from other sources and reproduced, with permis-
sion, in this textbook appear on appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in
the U.S.A. and other countries. Screen shots and icons reprinted with permission from the
Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the
Microsoft Corporation.

The interior of this book was set in the application QuarkXpress 6.52 with Basal text font
Sabon 10/12.5.

Copyright © 2012, 2007 Pearson Education, Inc., publishing as Addison-Wesley. All rights
reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and seller to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Irvine, Kip R.,
Advanced visual basic 2010 / Kip Irvine, Tony Gaddis.—5th ed.

p. cm.
ISBN-13: 978-0-13-231674-3
ISBN-10: 0-13-231674-9
1. Microsoft Visual BASIC. 2. BASIC (Computer program language)
I. Gaddis, Tony. II. Title.
QA76.73.B3G32 2012
005.13’3—dc22 2011000246

10 9 8 7 6 5 4 3 2 1—BRR—15 14 13 12 11

ISBN 10: 0-13-231674-9
ISBN 13: 978-0-13-231674-3

www.allitebooks.com

www.pearsonhighered.com
http://www.allitebooks.org

This book is dedicated to the memory of Barry Brosch,
my teacher and mentor.

—Kip Irvine

This book is dedicated to the memory of Ruth Young,
an inspiration and a role model for all who knew her.

—Tony Gaddis

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

v

Brief Contents

Preface xiii

Chapter 1 Classes 1

Chapter 2 Input Validation and User Interfaces 51

Chapter 3 Collections 111

Chapter 4 Using SQL Server Databases 165

Chapter 5 Database Applications 237

Chapter 6 Advanced Classes 289

Chapter 7 LINQ to SQL 341

Chapter 8 Creating Web Applications 371

Chapter 9 Programming Web Forms 425

Chapter 10 Web Applications with Databases 491

Chapter 11 Web Services and Windows Presentation Foundation 555

Chapter 12 Reports, MDI, Interfaces, and Polymorphism 597

Appendix A Answers to Checkpoints 639

Appendix B Optional Reference Topics 647

Index 663

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents

Preface xiii

Chapter 1 Classes 1

1.1 Classes and Objects . 1
1.2 Creating Your Own Classes . 7
TUTORIAL 1-1: Creating a Student class . 15
TUTORIAL 1-2: Adding a parameterized constructor to the Student class 20
1.3 Enumerated Types . 23
TUTORIAL 1-3: Enumerated Account type . 25
1.4 Focus on Program Design and Problem Solving: Bank Teller Application 26
TUTORIAL 1-4: Building the Bank Teller application . 31
1.5 Manual Software Testing . 34
TUTORIAL 1-5: Manually testing integer input . 35

Chapter 2 Input Validation and User Interfaces 51

2.1 Input Validation . 51
TUTORIAL 2-1: Using the ErrorProvider control . 56
2.2 Exception Handling . 59
2.3 ListBox, ComboBox, and CheckedListBox . 66
2.4 Dates and Times . 70
2.5 ToolStrip Control . 73
TUTORIAL 2-2: Building the Coffee Shop application . 76
2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl 80
TUTORIAL 2-3: Creating a simple image album . 82
TUTORIAL 2-4: Completing a Web browser application . 86
2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard 91
TUTORIAL 2-5: Completing the Kayak Tour Wizard application 94

Chapter 3 Collections 111

3.1 ArrayLists . 111
TUTORIAL 3-1: ArrayList of test scores . 114
3.2 ArrayLists of Custom Objects . 118
TUTORIAL 3-2: Building an ArrayList of Student objects . 123
3.3 List and Dictionary Classes . 126
TUTORIAL 3-3: Creating a text concordance . 133
3.4 Language Integrated Query (LINQ) . 139
TUTORIAL 3-4: Performing LINQ queries on a list . 143

Chapter 4 Using SQL Server Databases 165

4.1 Database Basics . 165
4.2 SQL SELECT Statement . 170

vii

www.allitebooks.com

http://www.allitebooks.org

viii Contents

4.3 Using the DataGridView Control . 174
TUTORIAL 4-1: Showing a database table in a DataGridView control 177
4.4 Selecting DataSet Rows . 185
TUTORIAL 4-2: Filtering rows in the SalesStaff table . 191
4.5 Data-Bound Controls . 193
TUTORIAL 4-3: Displaying the Members table in a ListBox . 199
TUTORIAL 4-4: Inserting rows in the Karate Payments table 204
TUTORIAL 4-5: Adding a total to the Insert Karate Payments application 207
4.6 Focus on Problem Solving: Karate School Manager Application 208
TUTORIAL 4-6: Creating the Karate School Manager startup form 212
TUTORIAL 4-7: Karate School Manager: Listing all members 213
TUTORIAL 4-8: Karate School Manager: Adding new members 216
TUTORIAL 4-9: Karate School Manager: Finding members by name 218
TUTORIAL 4-10: Karate School Manager: Listing all payments 221
TUTORIAL 4-11: Karate School Manager: Showing payments by one member 224

Chapter 5 Database Applications 237

5.1 Creating Databases . 237
TUTORIAL 5-1: Creating a SQL Server Express database . 239
TUTORIAL 5-2: Adding the Appointments table to the RepairServices database 242
TUTORIAL 5-3: Adding the RepairTypes table to the RepairServices database 243
TUTORIAL 5-4: Creating relationships between the RepairTypes, Appointments,

and Customers tables . 247
TUTORIAL 5-5: Changing the database connection from the SQL Express server

to a database file . 250
5.2 DataTables . 251
5.3 Updating Databases Using SQL . 253
5.4 Focus on Problem Solving: Home Repair Services Application 256
TUTORIAL 5-6: Adding the Appointments class to the middle tier 256
TUTORIAL 5-7: Creating the main startup form . 259
TUTORIAL 5-8: Adding classes to the middle tier . 261
TUTORIAL 5-9: Adding controls to the New Appointment form 263
TUTORIAL 5-10: Searching for appointments . 267
TUTORIAL 5-11: Modifying existing appointments . 271
TUTORIAL 5-12: Selecting appointments to modify . 275
TUTORIAL 5-13: Deleting an appointment . 277
TUTORIAL 5-14: Displaying a joined appointment list . 281

Chapter 6 Advanced Classes 289

6.1 Structures . 289
6.2 Components . 291
TUTORIAL 6-1: Creating a component and referencing it from

another application . 293
TUTORIAL 6-2: Adding an Advisor class to the RegistrationLib component 297
TUTORIAL 6-3: Using the Advisor and Student classes . 299
6.3 Unit Testing . 302
TUTORIAL 6-4: Creating a Unit Test project . 306

www.allitebooks.com

http://www.allitebooks.org

Contents ix

TUTORIAL 6-5: Creating more unit tests for the IntArray class 308
TUTORIAL 6-6: Testing the Advisor.MaxCredits method . 317
6.4 Events . 322
TUTORIAL 6-7: The WeatherStation Events application . 323
6.5 Inheritance . 325
TUTORIAL 6-8: Student Inheritance application . 330

Chapter 7 LINQ to SQL 341

7.1 Using LINQ to Select Data . 341
TUTORIAL 7-1: Displaying the Karate Members table . 347
TUTORIAL 7-2: Displaying the Karate class schedule . 351
7.2 Updating Tables . 355
TUTORIAL 7-3: Using a BindingSource to update the Members table 356
TUTORIAL 7-4: Using LINQ queries to add schedule entries 360

Chapter 8 Creating Web Applications 371

8.1 Programming for the Web . 371
8.2 Creating ASP.NET Applications . 375
TUTORIAL 8-1: Creating the Click application . 381
8.3 ASP.NET Controls . 385
TUTORIAL 8-2: Student Picnic application . 388
TUTORIAL 8-3: Tracking server events . 391
8.4 List-Type Controls . 393
TUTORIAL 8-4: Signing up for a Kayak Tour . 399
8.5 Designing Web Forms . 402
TUTORIAL 8-5: College Advising Wizard . 403
8.6 State Management . 408

Chapter 9 Programming Web Forms 425

9.1 Working in Source (XHTML) Mode . 425
TUTORIAL 9-1: Designing a Vacation Rentals application . 427
TUTORIAL 9-2: Adding tables to the Vacation Rentals application 431
9.2 Cascading Style Sheets . 435
9.3 Custom Error Handling . 442
9.4 Uploading Files and Sending Email . 445
9.5 Data Validation Controls . 454
9.6 Working with Multiple Web Forms . 465
TUTORIAL 9-3: Moving between Web forms . 469
9.7 Focus on Problem Solving: Vacation Rentals Application 471
9.8 Browser Cookies . 477

Chapter 10 Web Applications with Databases 491

10.1 Master-Detail Pages . 491
TUTORIAL 10-1: Creating an application with a master page 494
10.2 Using the GridView Control . 500

www.allitebooks.com

http://www.allitebooks.org

x Contents

TUTORIAL 10-2: Displaying the Karate Members table in a GridView control 503
TUTORIAL 10-3: Formatting the Karate Members columns . 506
10.3 Using the DetailsView Control . 508
TUTORIAL 10-4: Karate member details . 509
TUTORIAL 10-5: Selecting members by ID . 513
10.4 Data Binding with ListControls . 516
10.5 Interacting with the GridView Control . 518
TUTORIAL 10-6: Displaying the Courses table in a GridView 521
TUTORIAL 10-7: Using graphical command buttons in the Courses grid 522
TUTORIAL 10-8: Displaying class rolls . 525
TUTORIAL 10-9: Displaying the class roll on a separate page 529
10.6 Using JavaScript . 531
TUTORIAL 10-10: Receiving user input in JavaScript . 536
10.7 Using Microsoft Ajax Controls . 538
TUTORIAL 10-11: Displaying the Web server time with Ajax controls 540
TUTORIAL 10-12: Using the UpdateProgress Control . 542

Chapter 11 Web Services and Windows Presentation
Foundation 555

11.1 Introducing XML Web Services . 555
11.2 BookService Web Service . 561
TUTORIAL 11-1: Creating the BookService Web Service . 561
TUTORIAL 11-2: Consuming BookService from a Web application 565
TUTORIAL 11-3: Consuming BookService from a Windows Forms application 567
11.3 Windows Presentation Foundation (WPF) . 573
TUTORIAL 11-4: Creating the Kayak Tour Reservations application 575
TUTORIAL 11-5: Adding Images to the Kayak Tour Reservations application 579
TUTORIAL 11-6: Publishing the Kayak Tour Reservations application 583
TUTORIAL 11-7: Publishing the Kayak Tour Reservations application to the Web . . . 586

Chapter 12 Reports, MDI, Interfaces, and Polymorphism 597

12.1 Creating Microsoft Reports . 597
TUTORIAL 12-1: Creating a Sales Order Detail Report . 601
TUTORIAL 12-2: Formatting and adding totals to the Sales Details report 606
TUTORIAL 12-3: Displaying the Sales Details report in a Web page 609
TUTORIAL 12-4: Grouping the Sales Details report by product name 611
TUTORIAL 12-5: Adding group totals to the Sales Details report 613
TUTORIAL 12-6: Adding a page heading to the Sales Details report 614
12.2 Multiple Document Interface (MDI) . 616
TUTORIAL 12-7: Creating the Class Registration MDI interface 618
12.3 Interfaces . 622
TUTORIAL 12-8: Defining and Implementing the IPayable Interface 624
12.4 Abstract Classes and Polymorphism . 629

Appendix A Answers to Checkpoints 639

Contents xi

Appendix B Optional Reference Topics 647

B.1 TimeSpan and DateTime Formatting . 647
B.2 ListView Control . 649
TUTORIAL B-1: Filling a ListView control with contact information 652
B.3 Guide to SQL Queries . 656
B.4 Writing to the Application Log File . 662

Index 663

This page intentionally left blank

Preface

Advanced Visual Basic® 2010, Fifth Edition, offers instruction in Visual Basic .NET
programming to those who have completed a semester course or equivalent in the

same topic. After studying the book and completing the programming exercises (called Pro-
gramming Challenges), students should be able to create small- to medium-size Windows
and Web applications that use databases. They will also gain essential concepts in object-
oriented programming, event-driven programming, and test-driven development.

Effective programmers must combine theory with practice in order to adapt to changing
computing environments. This book does not cover the breadth of topics found in some pro-
fessional reference books, but it provides a practical approach to programming and problem
solving. The following features make it helpful in the classroom:

• A step-by-step learning method in which new ideas and concepts build on existing ones
• Tutorials in which students gain hands-on experience by working with the chapter topics
• Review questions (called Checkpoints) at the end of each chapter section
• Tips that provide advice for solving programming problems, sprinkled throughout the

chapters
• A list of key terms at the end of each chapter
• Review questions and exercises at the end of each chapter
• Programming projects at the end of each chapter that reinforce the chapter material
• A companion website that contains sample programs and other support materials

Changes in the Fifth Edition
This edition of Advanced Visual Basic 2010 offers many improvements. We place much
more emphasis on object-oriented programming principles and software design than we did
in the previous edition. The multi-tier application model (data, business objects, user inter-
face) is a strong influence, as is programming with collections and components. Overall, the
fifth edition provides an enhanced approach to designing, implementing, and testing well-
constructed, maintainable, and extensible applications. Of particular note are the new sec-
tions on strongly typed collections, LINQ to Objects, LINQ to SQL, Unit Testing, Windows
Presentation Foundation (WPF), and Windows Communication Foundation (WCF). The
example programs were written in Visual Studio 2010.

Additional Materials
A primary selling point of a textbook lies in the quality of support given by the authors to
adopting professors. The publisher makes excellent resources for this book available at
www.pearsonhighered.com/irvine. The following materials are available to students and
instructors:

• Online VideoNotes, narrated by Kip Irvine, which explain concepts and examples from
the chapters

• A PowerPoint slide presentation for each chapter
• Example programs
• Online list of corrections to errors in the book

In addition, the following are available for professors:

• Answers to Review Questions and Exercises
• Solutions to Programming Challenges xiii

www.pearsonhighered.com/irvine

Learning Objectives
Following are the learning objectives for this book, indicating the skills and knowledge that
students may expect to attain:

• Master the use of .NET controls to create rich user interfaces
• Master the design and implementation of object-oriented multi-tier applications
• Master the design of manual and automated tests for desktop applications
• Master the use of .NET controls and exception handling to trap errors at the user inter-

face level
• Master the displaying and updating of data in related database tables
• Master the creation of ASP.NET applications that contain multiple Web pages and

databases
• Master the use of page-level state and session state in ASP.NET programs
• Be familiar with database constraints and database security
• Be familiar with creating and consuming Web services
• Be familiar with creating database-driven reports

Sequencing the Chapters
If your Advanced Visual basic course emphasizes Windows applications, we recommend that
you complete Chapters 1 through 7 in sequence. For courses that cover Web programming,
continue to Chapters 8 through 11. Chapter 12 (Reports, MDI, Interfaces, and Polymor-
phism) can be introduced any time after Chapter 4.

Chapter Descriptions

Chapter 1: Classes. Chapter 1 begins with basic concepts of classes and objects. Next, we
show how to define classes, and enumerated types and structures, and how they are used in
applications. We build a two-tier Bank Teller application that uses classes to simulate the
basic operations of a software teller machine. The concept of multi-tier application design
will continue to be a central theme throughout the book. We also introduce manual software
testing as an important tool for validating program output.

Chapter 2: Input Validation and User Interfaces. Chapter 2 provides in-depth cov-
erage of input validation and error handling. The ErrorProvider control is introduced as an
ideal tool for input validation. Next, we review the ListBox, ComboBox, and
CheckedListBox controls, and we show how to write code that deals with multiple selec-
tions. Following that, we show how to use the FlowLayout, WebBrowser, SplitContainer,
and TabControl controls to create more creative user interfaces. The chapter finishes with
the design and development of a software wizard and shows some of the power and flexi-
bility of this type of application.

Chapter 3: Collections. Chapter 3 introduces some of the most useful and powerful col-
lection classes in the .NET library, with the idea that collections of objects help to build con-
cepts that can later be applied to databases. We show how to create and use ArrayLists, as
well as strongly typed Lists and Dictionaries. The chapter finishes with examples that show
how to search lists of objects, using Microsoft’s new Language Integrated Query (LINQ)
technology.

Chapter 4: Using SQL Server Databases. Chapter 4 focuses on the basics of displaying
and updating databases using .NET controls. It shows how Visual Studio enables data bind-
ing, which is the connecting of the user interface directly to database components. The chap-
ter also stresses basic database concepts; how to execute SQL queries; how to sort and filter
database data; how to display data in a grid; and how to bind individual controls to database

xiv Preface

tables. After reading this chapter, students should be able to display and update database
tables rapidly with almost no programming.

Chapter 5: Database Applications. Chapter 5 focuses on database programming, using
the ADO.NET library. Students can think of it as an extension of the database concepts and
database binding from Chapter 4. In Chapter 5, students can integrate their knowledge of multi-
tier application design with objects and databases. The chapter concludes with an extended
example application that schedules appointments for a home repair services company.

Chapter 6: Advanced Classes. Chapter 6 introduces structures, which are simple con-
tainers for variables, properties, and methods. Then the chapter demonstrates the building
of components, also known as class libraries. Then the chapter introduces unit testing, the
industry standard for automated testing of individual units of code. This is followed by a
brief introduction to defining and using custom event types in classes. The chapter ends with
inheritance, a fairly large topic that is a core topic in object-oriented programming.

Chapter 7: LINQ to SQL. Chapter 7 introduces LINQ to SQL, a powerful tool for query-
ing and updating database data. LINQ to SQL offers the opportunity to use object-oriented
programming techniques to view and update databases. Essentially, students work with
databases in the same way that they did with in-memory collections in Chapter 3. They learn
how to create entity classes that model database tables. They learn how to create selection
queries that join multiple entity classes, using common linking properties. Students learn
how to insert, update, and delete table entries.

Chapter 8: Creating Web Applications. Chapter 8 introduces the ASP.NET runtime
environment and shows how to use Visual Studio to create Web sites. Students learn what
happens when an ASP.NET page is processed by a Web server. Students learn about runtime
events and about the different categories of controls available in ASP.NET applications, and
they learn differences between HTML controls and ASP.NET controls. The chapter describes
application and configuration files required by ASP.NET applications. Finally, the chapter
shows how to create a simple Web application containing various types of buttons, labels,
headings, and text boxes.

Chapter 9: Programming Web Forms. Chapter 9 introduces students to programming
techniques in ASP.NET applications. They also learn about XHTML, cascading style sheets,
menus, and validation controls. Students learn how to upload files to a Web site and send
email from a Web site. They learn how to save page state information and how to save infor-
mation when users switch between pages. Finally, the chapter shows how application cook-
ies are created.

Chapter 10: Web Applications with Databases. Chapter 10 introduces master-detail
pages, which let students create a consistent look across a Web site. Following that, the chap-
ter shows how to use data-bound controls with databases. It examines some advanced use
of the GridView control. The chapter shows a few basic techniques available in JavaScript,
and finishes with a brief introduction to the Microsoft Ajax extension controls.

Chapter 11: Web Services and Windows Presentation Foundation. Chapter 11
helps students understand the basic technologies behind Web services and the types of appli-
cations that use them. Students learn how to create and consume Web services. Next, the
chapter introduces Microsoft’s exciting new Windows Presentation Foundation (WPF). WPF
programs can be run from both the desktop and the Web. We show how to use ClickOnce
technology, which greatly simplifies application deployment and installation.

Chapter 12: Reports, MDI, Interfaces, and Polymorphism. Chapter 12 introduces
several important topics. First, its shows how to create reports for the desktop and Web,

Preface xv

xvi Preface

using Microsoft Report templates and the ReportViewer control. Next, it shows how to cre-
ate Multiple Document Interface (MDI) applications, which manage multiple client win-
dows under a single parent window. Then we introduce advanced topics in object-oriented
programming: interface types, abstract classes, and polymorphism. Although these topics are
not heavily emphasized in Visual Basic applications, they can be important as programs
grow in size and complexity.

Appendix A: Answers to Checkpoints. Students may test their progress by comparing
their answers to the review questions at the end of each chapter section. These lists of review
questions are called Checkpoints. Appendix A provides all the Checkpoint answers.

Appendix B: Optional Reference Topics. Appendix B contains a collection of optional
reference topics. It shows how to calculate TimeSpan objects and how to format dates and
times. It shows how to use the ListView control. Next is a guide to SQL Queries (SELECT,
INSERT, DELETE, and UPDATE). Finally, it shows students how to write messages to the
application log file. This can be a powerful tool for diagnostic and error reporting.

Acknowledgments
We wish to thank the following individuals for their contributions to this book:

• Matt Goldstein, Acquisitions Editor at Addison-Wesley, who was the driving force
behind this book

• Chelsea Bell, Editorial Assistant at Addison-Wesley
• Jogender Taneja, my project manager at Aptara, did a great job of keeping the pro-

duction moving, with quality work all the way and Marianne L’Abbate, the excellent
copy editor

We wish to thank the following individuals who reviewed the current edition:

Evans Adams, Fort Lewis College
Patricia McDermott-Wells, Florida International University
David S. McDonald, Georgia State University
Rudy Lee Martinez, Austin Community College

We also wish to thank the following professors who reviewed earlier editions of this book:

Jeffery Allen, Indiana University Purdue University Indianapolis
Chuck Bailey, Kenai Peninsula College
Anthony Basilico, Community College of Rhode Island
Joni Catanzaro, Louisiana State University
Ronald Del Porto, Penn State University, Behrend
William Dorin, Indiana University Northwest
Dana Johnson, North Dakota State University
Melody Kiang, California State University, Long Beach
Bruce LaPlante, University of Wisconsin, Green Bay
Astrid Lipp, Georgia State University
Thomas McCullough, Hillsborough Community College
David McDonald, Georgia State University
Sally Field Mullan, College of DuPage
Theresa Nagy, Northern Virginia Community College
Adam Peck, Ohlone College
Anita Philipp, Oklahoma City Community College
Andre Poole, Florida Community College at Jacksonville
Ed Schott, Walsh University
Craig Van Lengen, Northern Arizona University

Preface xvii

Lori Walljasper, Scott Community College
Sandy Wells, Gadsden State Community College

Kip Irvine
Tony Gaddis

About the Authors
Kip Irvine holds a Master of Science degree in Computer Science from University of Miami.
He taught computer programming at Miami-Dade College for seventeen years, and he has
taught at Florida International University since 2000. He has written programming textbooks
for Addison-Wesley and Prentice-Hall, covering subjects such as Assembly Language, C++,
Visual Basic, and COBOL. His books have been translated into Russian, Korean, Chinese,
Polish, Spanish, and French. He briefly worked as a software developer in the industry.

Tony Gaddis taught computer programming languages, operating systems, and physics at
Haywood Community College in North Carolina. He was selected as the North Carolina
Community College Teacher of the Year in 1994, and received the Teaching Excellence
award from the National Institute for Staff and Organizational Development in 1997. Tony
has also provided training to companies and agencies, including NASA’s Kennedy Space Cen-
ter. He is a best-selling author of numerous computer programming textbooks for Addison-
Wesley, covering topics such as Alice, Java, C++, C#, Visual Basic, and algorithms.

This page intentionally left blank

TOPICS

Classes1

1.1 Classes and Objects

1.2 Creating Your Own Classes

Tutorial 1-1: Creating a Student class

Tutorial 1-2: Adding a parameterized
constructor to the Student class

1.3 Enumerated Types

Tutorial 1-3: Enumerated Account type

1.4 Focus on Program Design and Problem
Solving: Bank Teller application

Tutorial 1-4: Building the Bank Teller
application

1.5 Manual Software Testing

Tutorial 1-5: Manually testing integer
input

1

C
H

A
P

T
E

R

This chapter begins with basic concepts of classes and objects. Next, we demonstrate how
to define classes and enumerated types, showing how they are used in applications. We build
a two-tier Bank Teller application that uses classes to simulate the basic operations of a soft-
ware teller machine. The concept of multi-tier application design will continue to be a central
theme throughout the book. Finally, we introduce manual software testing as an important
tool for validating program output.

1.1 Classes and Objects

CONCEPT: Classes are the basic elements of object-oriented programming, which in
turn makes it possible for programmers to build rich, robust applications.

Object-oriented programming (OOP) is a way of designing and coding applications that
focuses on the objects and entities in real-world applications. In this chapter, we present
objects from a programmer’s point of view. The more abstract concepts of object-
oriented program and how they relate to the real-world of applications will not be
emphasized here.

An object is a container for members such as properties, fields, methods, and events. It usu-
ally represents some entity in a problem that the application is designed to solve. If you were
creating an automobile dealership application, for example, the entities might have names like
vehicle, customer, salesperson, manager, and vehicle inventory. If you were creating a graphi-
cal user interface, the objects might be button, text box, list box, label, and radio button.

2 Chapter 1 Classes

An object has attributes that may be thought of as common characteristics that apply to all
objects of the same type. For example, a vehicle object might have attributes such as make,
model, and color. An object also has behaviors, which represent the actions that can be car-
ried out on the object. A vehicle object might have behaviors such as start, stop, and turn.
An object may be able to raise events, which represent responses by the object to external
actions. A Button object in .NET, for example, raises a Click event when the user clicks the
button.

If you have already programmed in Visual Basic, you have used objects many times. In fact,
buttons, check boxes, list boxes, and other controls are objects. But what you may not have
known was that all of these objects were originally defined using classes.

Classes
A class defines which properties and methods can be applied to its objects. A class is defined
using the Class keyword. For example, every form that you add to an application is defined
by a class, such as the following:

Public Class Form1
End Class

Each control in the Visual Studio Toolbox window was defined by a class. The Button class,
for example, contains definitions of properties, methods, and events that make it different
from other classes. A TextBox control has properties named Name, Text, Visible, and
ForeColor. All TextBox objects have these properties.

The Microsoft .NET Framework contains a large library of classes that make it possible to
write applications for desktop computing, mobile applications, and the Web. The classes are
grouped by similarity into namespaces to make it easier to find them. A namespace is a log-
ical container that holds classes of similar types. For example, the System.Collections name-
space contains classes related to building collections (arrays, lists, dictionaries, sets). The
System.Windows.Forms namespace contains classes related to building desktop applications
for Windows.

Creating Objects
If a class has been defined, you can create one or more objects of the class type. We some-
times call them instances of the class, or class instances. The following statement does
this:

Dim freshman As New Student

The New operator tells VB to create an object in memory, and is required when creating
an object (String objects are the exception to this rule). Or, you can separate this into two
statements. For example, you might want to declare the variable at the class level in a
Form:

Private freshman As Student

This variable does not reference any object at this point—it only has a data type. Then at
some other point in the program’s execution, you could create an instance of the class and
assign it to the variable:

freshman = New Student

The = operator assigns the new object to the variable. We say that the variable contains a
reference to the object.

1.1 Classes and Objects 3

Visual Studio Controls
Visual Studio creates instances of controls when you drag them from the ToolBox onto a
form. For example, the following code was written to a form’s designer file when a button
was created and certain properties were set in the designer window:

Me.btnOk = New Button()
Me.btnOk.Location = New System.Drawing.Point(43, 48)
Me.btnOk.Name = ''btnOk''
Me.btnOk.Size = New System.Drawing.Size(75, 23)
Me.btnOk.Text = ''OK''

Notice how the first line uses the New operator to create an instance of the Button class.
Then various property values are assigned to the button (Location, Name, Size, and Text).

The Nothing Keyword

The Nothing keyword indicates a null value, which results when a reference type variable has
not been initialized. You cannot call a method or reference a property of an object that
equals Nothing. The following statements, for example, would cause a runtime error:

Dim freshman As Student
freshman.PrintCourses()

If your code needs to know whether a variable has been initialized, you can compare the
variable to the keyword Nothing.

If freshman Is Nothing Then
' must initialize the variable
freshman = New Student

End If

Value Types and Reference Types
There are two general categories of Visual Basic data types: value types and reference types. A
variable declared as a value type contains its own data in a single memory location. Value types
include all the number types, such as Integer and Decimal, as well as Boolean. These types use
a standard-size storage location.

A variable declared as a reference type does not directly hold its data. Instead, it points to
(references) an object somewhere else in memory. Classes are reference types, as are Arrays.
A reference variable is a variable declared using a reference type. When an object is created
by invoking the New operator, the .NET runtime reserves space in memory for the object.
The address of the object is stored in a reference variable. Doing this takes more processing
time than for value types, but it allows .NET to reclaim the storage used by the object when
it is no longer needed by the program.

Value Types

Value types do not require any initialization. As soon as you declare them, they have imme-
diate storage. Variables of type Integer, Doubles, Boolean, and other standard types are value
types. They are easy to use, consume little memory, and are the simplest to understand when
using the assignment operator (=).

When you assign one value type to another using the assignment operator (=), a copy is
made of the data in the variable on the right-hand side. The data is copied into the variable
on the left-hand side. In the following example, mCount is copied to temp:

Dim mCount As Integer = 25
Dim temp As Integer = mCount

4 Chapter 1 Classes

If a new value is later assigned to temp, mCount is not affected:

temp = 40 ' mCount still equals 25

However, not all variables work this way. When an object variable is assigned to another
object, it’s a little more complicated.

Reference Types

Whenever you create an instance of a class and assign it to a variable, your variable is a ref-
erence type. For example, the following code creates a Person object, assigns its reference
to P, and assigns a value it its Name property:

Dim P As New Person
P.Name = ''Fred Smith''

Figure 1-1 shows the relationship between P and the data it references. The data contained
in the Person object is located in a special area of memory called the managed heap. P con-
tains a reference to the data, not the data itself. If at any time in the future, the Person object
is no longer needed, we can assign a value of Nothing to P:

P = Nothing

Figure 1-1 A reference type variable links to an object in memory

Assuming that no other references to the same Person object existed, a special utility in the
.NET runtime called the garbage collector would eventually remove the object from memory.

In addition to objects, arrays are also reference types. Let’s see what happens when reference
objects are assigned to each other.

Strings

String objects are reference types, but they are a special case because their declarations do
not require the New operator. Following are examples of String object declarations:

Dim strName As String
Dim strCity As String = ''Miami''

Assigning Objects
The assignment operator (=) assigns an expression on its right side to a variable on its left
side. It is common to use the assignment operator to assign one object to another. When you
assign integers, for example, the value of the expression on the right side is copied into the
variable on the left:

Dim Y As Integer = 25
Dim X As Integer
X = Y

Memory

P
(reference)

“Fred Smith”

(Person object)

1.1 Classes and Objects 5

After the above lines execute, X equals 25. But what if the variables X and Y are objects (ref-
erence types)?

Dim Y As New Account
Dim X As Account
X = Y

In this example, the contents of Y are not copied into X. Instead, the reference contained in
Y is copied into X. Essentially, the variables X and Y now reference the same object.

Array Example

The following code creates an array of integers named tests, fills the array, and assigns the
array to the variable named scores:

Dim scores() As Integer
Dim tests() As Integer = {80, 95, 88, 76, 54}
scores = tests

After this code executes, the same array is referenced by both scores and tests, as shown in
Figure 1-2. The following code can be used to show that the two arrays share the same
memory. By assigning a new value to scores(2), we automatically assign the same value to
tests(2):

scores(2) = 11111
MessageBox.Show(tests(2).ToString()) ' displays ''11111''

Figure 1-2 One array referenced by both variables

The message box shows that tests(2) equals 11111, as does scores(2). This type of dual ref-
erence can lead to a common type of programming error known as a side effect. Much like
a medication that causes unwanted effects to a person, a software side effect changes vari-
ables in a way that can fool a programmer. Code containing side effects is very difficult to
debug.

Using a Loop to Copy an Array

If you want to copy the contents of one array to another, you can use a loop to copy the indi-
vidual elements. First, you reserve space in the scores array. Then you copy the data:

Dim scores(tests.Length - 1) As Integer
For i As Integer = 0 To tests.Length - 1

scores(i) = tests(i)
Next

Figure 1-3 shows the result after copying the array. The following code shows that the two
arrays do not share the same memory. When a new value is assigned to scores(2), the value
of tests(2) is unchanged:

scores(2) = 11111
MessageBox.Show(tests(2).ToString()) ' displays ''88''

80, 95,88,76,54
tests

scores

Memory

6 Chapter 1 Classes

Figure 1-3 Results after copying an array

Using Object.Clone to Copy Data

Not all reference variables are arrays, so we need a more general way to copy the data
from one reference type to another. This is where the Object.Clone method is useful. The
Clone method copies the data from one reference variable to another. Using the same
tests and scores arrays from the previous example, the following statement copies the
array:

scores = CType(tests.Clone(), Integer())

Clone returns an Object, so the return value must be cast into an Integer array when Option
Strict is in effect. The copy returned by Clone is called a shallow copy because it doesn’t deal
with the possibility that the elements in the array might be objects containing other refer-
ence types.

Here’s another example, using two Person objects:

Dim P As New Person
P.Name = ''George Smith''
Dim S As Person
S = CType(P.Clone(), Person)

Comparing Objects
All standard .NET objects can be compared for equality by calling the Equals method or by
using the = operator. This is the case for strings:

Dim A As String = ''abcde''
Dim B As String = ''abcde''
If A = B Then ... ' result: True
If A.Equals(B) Then ... ' result: True

Another type of comparison is the CompareTo method, which compares two values X
and Y:

• If X < Y, CompareTo returns a negative value
• If X = Y, CompareTo returns zero
• If X > Y, CompareTo returns a nonzero positive value

CompareTo is very useful because it is called automatically when you sort an array. You can
call it yourself, as shown in the following examples.

CompareTo Examples

In the following example, result is assigned a negative value:

Dim A As String = ''abcde''
Dim B As String = ''abd''
Dim result As Integer = A.CompareTo(B)

80,95,88,76, 54

80,95,88,76, 54

Memory

tests

scores

1.2 Creating Your Own Classes 7

In the following example, result is assigned a positive value:

Dim A As String = ''abf''
Dim B As String = ''abd''
Dim result As Integer = A.CompareTo(B)

In the following example, result is assigned zero:

Dim A As String = ''abd''
Dim B As String = ''abd''
Dim result As Integer = A.CompareTo(B)

Comparing Your Own Class Types

Your own classes, by default, will not use Equals and CompareTo effectively. For example,
the following comparison of two Student objects is not useful. The call to Equals will return
False, even though the students apparently have the same ID number:

Dim s1 As New Student(1001)
Dim s2 As New Student(1001)
If s1.Equals(s2) Then ...

Similarly, calling s1.CompareTo(s2) below is not meaningful:

Dim result As Integer = s1.CompareTo(s2)

This means that you cannot effectively sort an array of Students, at least not yet. In Chapter
3, you will learn how to implement the Equals and CompareTo methods in your own classes.

Checkpoint

1. What is a class, according to the definition in this chapter?

2. What is the term for an object that is declared using a class type?

3. A(n) ___ is a procedure or function that belongs to a class.

4. Unlike reference types, a variable declared with a(n) ___ type contains its own data
and has immediate storage as soon as it is declared.

5. Assigning one reference type to another using the = operator leads to what type of
potential error?

1.2 Creating Your Own Classes
In future discussions, we will refer to a user-defined class (or a custom class) as a class that
you design and build from scratch. In contrast, the .NET Framework already contains its
own set of classes. You create a class in Visual Basic by coding a class definition. We will use
the following general format when writing class definitions:

Public Class ClassName
‘ class members here

End Class

ClassName is the name of the class. The keyword Public is called an access specifier. The
Public specifier tells VB that the class will be visible from all parts of your application. By
visible, we mean that it will be possible to create objects that use this class name.

Follow these steps to add a class definition to a project:

1. Select Project on the menu bar, then select Add Class. The Add New Item dialog box,
shown in Figure 1-4, should appear. Make sure that Class is selected in the Templates

8 Chapter 1 Classes

pane. Notice that in the figure, the name Class1.vb appears in the Name text box. In
this example, Class1.vb is the default name for the file that contains the code for the
class, and Class1 is the default name for the class.

Figure 1-4 Adding a class to a project

TIP When adding a class to a project, the default class name will vary depending on the
number of classes already in the project.

2. Change the default name displayed in the Name text box to the name you wish to give
the new class file. For example, if you wish to name the new class Student, enter
Student.vb in the Name text box.

3. Click the Add button. A new, empty class definition will be added to your project. The
empty class definition will be displayed in the Code window, and an entry for the new
class file will appear in the Solution Explorer window.

Adding a Class in Solution Explorer

You can also add a class to a project inside the Solution Explorer window. To do that, right-
click on the Project name, select Add, and select Class. This is shown in Figure 1-5.

Class-Level Variables
A class-level variable is a variable that is declared inside a class but outside any methods in
the class. This makes it visible to all methods in the class. A local variable, on the other hand,
is declared inside a method and is visible only inside the method. You declare a class-level
variable using the following general format:

AccessSpecifier name As DataType

1.2 Creating Your Own Classes 9

Figure 1-5 Adding a class to a project inside the Solution Explorer window

AccessSpecifier determines the accessibility of the variable. Fields declared with the Private
access specifier may be accessed only by statements inside methods belonging to the same
class. This is the normal way to declare a variable.

Name is the name of the variable, and DataType is the variable’s data type. For example, the
following code declares a class named Student. The class contains the variables mIdNumber,
mLastName, and mTestAverage:

Public Class Student
Private mIdNumber As String
Private mLastName As String
Private mTestAverage As Double

End Class

A class definition does not, by itself, create an instance of the class. It establishes a blueprint
for the class’s organization, which makes it possible for you to write other code that creates
an object of this type.

Information Hiding

In object-oriented programming, the encapsulation principle says that you should bundle
attributes and behaviors inside a class. Think of a class as a container that encapsulates
everything inside for easy transporting and usage. The information hiding principle,
which is closely related to encapsulation, says that certain class members should be visi-
ble only to methods inside the class. Usually, this applies to variables, which are labeled
as Private. Many software engineers consider encapsulation and information hiding to be
the same.

Hidden (private) members can be accessed only by other methods in the same class. This is
a good idea because it leads to more reliable programs that are easier to debug.

A class-level variable could be declared Public, so code anywhere in an application could
access it directly. But doing so would violate the information hiding principle. Instead, we
use public methods and properties to define an interface, or public view of a class. Other
information, such as variables, remain hidden by using the Private keyword.

10 Chapter 1 Classes

Methods
A method is an action that implements some behavior of a class. You call a method by prefix-
ing it with the name of a class instance. For example, a class named Account might have a
method named ReadFromFile. First, we would have to create an instance of the Account class:

Dim savings As New Account

Then we would be able to call the ReadFromFile method:

savings.ReadFromFile(''accounts.dat'')

This is how the method could be declared in the Account class:

Public Class Account
.
.
Public Sub ReadFromFile(ByVal fileName As String)

'(code that reads the file here)
End Sub

End Class

Shared Methods

Special methods, called shared methods, can be called using the name of the class. An exam-
ple is the Array.Sort method that .NET provides for sorting an array:

Dim scores() As Integer = {62, 45, 89}
Array.Sort(scores) ' now: 45, 62, 89

Event handlers are also methods, but they have a special role—to respond to event messages
passed to your application from the operating system. Every method in a class can access the
class-level variables in the class.

ToString Method

All .NET classes support the ToString method, which returns a string representation of the
data within the current class object. ToString is defined in the Object class, and all other classes
inherit certain basic methods from the Object class. The method signature for ToString is:

Public Overridable Function ToString As String

Although we will provide a complete discussion of the concept of inheritance in Chapter 6,
we can say here that inheritance is a basic concept of object-oriented programming. It means
that one class can inherit attributes and behaviors from another class. In humans, for exam-
ple, offspring inherit characteristics from their parents.

The Overridable keyword lets us know that we can override, or replace, the behavior of
ToString by creating a version of this method in our own class. Here’s how we would do that
in the Student class:

Public Overrides Function ToString() As String
Return mIdNumber & '', '' & mLastName _

& '', Test average = '' & mTestAverage
End Function

Notice that the Overrides keyword must be used to let VB know that we want to override
the ToString method that already exists in the Object class.

Properties
In Visual Basic, a property is a special type of method that uses the same member name for
getting and setting a value. Whereas methods are the implementation of class behaviors,
properties are implementations of class attributes. Button objects, for example, have a number

1.2 Creating Your Own Classes 11

of properties that are listed in the Properties window in Visual Studio. You have used
properties since you began programming in Visual Basic. Now, you will learn how to add prop-
erties to your own classes. This is the standard format for a property definition:

Public Property PropertyName() As DataType
Get

'(code that returns data)
End Get
Set(value As DataType)

'(code that assigns value to a class variable)
End Set

End Property

PropertyName is the name of the property procedure and therefore the name of the prop-
erty that the procedure implements. The parentheses following PropertyName are optional.
DataType indicates the type of data, such as Integer or String. Notice that the procedure has
two sections: a Get section and a Set section. The Get section holds the code that is executed
when the property value is retrieved, and the Set section holds the code that is executed when
a value is stored in the property. Properties are almost always declared with the Public access
specifier so they can be accessed from outside their enclosing class module.

The following code defines a private field and its corresponding public property in the Stu-
dent class:

class Student
Private mLastName As String

Public Property LastName As String
Get

Return mLastName
End Get
Set(ByVal value As String)

mLastName = value
End Set

End Property
End Class

Auto-Implemented Properties

An auto-implemented property is a property that is defined by only a single line of code. You
do not have to create a private member field to hold the property data. There are two gen-
eral formats:

Public Property PropertyName As DataType
Public Property PropertyName As DataType = InitialValue

You can follow each property name with optional parentheses:

Public Property PropertyName() As DataType
Public Property PropertyName() As DataType = InitialValue

InitialValue is an optional value that you can assign to the property when it is created. When
you declare an auto-implemented property, Visual Studio automatically creates a hidden pri-
vate field called a backing field that contains the property value. The backing field’s name is
the property name preceded by an underscore character. For example, if you declare an auto-
implemented property named ID, its backing field is named _ID.

The following are examples of auto-implemented properties that could be used in the Stu-
dent class:

Public Property IdNumber As String
Public Property LastName As String
Public Property TestAverage As Double = 0.0

www.allitebooks.com

http://www.allitebooks.org

12 Chapter 1 Classes

After learning about auto-implemented properties, why would anyone want to create the
longer property definitions? In fact, the longer property definitions permit you to include
range checking and other validations on data assigned to the property.

A ReadOnly property must be fully coded—it cannot be auto-implemented.

Getting and Setting Property Values

Before accessing a property, you must declare an instance of the class that contains the property.
We could place the following statement anywhere in the program outside the Student class:

Dim freshman As New Student

The Set section of the property procedure executes when a value is assigned to the property.
The following statement sets the value of LastName:

freshman.LastName = ''Smith''

Therefore, the following statement inside the property procedure would execute:

mLastName = value

Conversely, the Get section of a property procedure executes when a program needs to have
a copy of the LastName. Suppose that outside the Student class, we wrote the following
statement, which copies the student’s LastName value to a TextBox:

txtLastName.Text = freshman.LastName

Then the following statement inside the property procedure would execute:

Return mLastName

Input Validation in Properties

A property can be very useful when validating values assigned to it. In the following exam-
ple, which implements the TestAverage property, the value assigned to the property must be
between 0.0 and 100.0:

1: Public Property TestAverage As Double
2: Get
3: Return mTestAverage
4: End Get
5: Set(ByVal value As Double)
6: If value >= 0.0 And value <= 100.0 Then
7: mTestAverage = value
8: Else
9: MessageBox.Show(''Invalid test average.'', ''Error'')
10: End If
11: End Set
12: End Property

Line 6 checks the range of the input value being assigned to the property. If line 6 equals
True, line 7 assigns the input value to mTestAverage, the private class-level variable. If the
input value is too large or too small, the mTestAverage variable remains unchanged, and line
9 displays an error message.

Object Initializers
Visual Basic provides a simple tool for declaring an object and assigning values to its prop-
erties. It is called an object initializer, and it is used in a couple of standard formats:

Dim VarName As New ClassName With {
.Property = value [,.Property = value]...}

1.2 Creating Your Own Classes 13

VarName = New ClassName With {
.Property = value [,.Property = value]...}

VarName is the name of the variable. Dim can be replaced by Public, Private, or similar qual-
ifiers. ClassName is the name of the class. Property is the name of a property. There is no
rigid format as far as line breaks or property order.

The following statement declares and initializes a new Student object using literal values:

Dim aStudent As New Student With {
.IdNumber = ''1234'',
.LastName = ''Smith'',
.TestAverage = 85.4 }

The following assigns a new object to an existing variable:

aStudent = New Student With {
.IdNumber = ''1234'',
.LastName = ''Smith'',
.TestAverage = 85.4 }

The following statement creates and initializes a Student object using control values:

Dim aStudent As New Student With {
.IdNumber = txtIdNumber.Text,
.LastName = txtLastName.Text,
.TestAverage = CDbl(txtAvg.Text) }

Assigning Object Variables
In our book Starting Out in Visual Basic 2010, we discussed well-defined rules for assign-
ing values of standard data types to each other. You can assign an Integer expression to a
Double variable, for example, because VB automatically expands the integer expression to
type Double. There are similar rules for assigning class objects to each other, but they are
definitely more restrictive. You can assign one object variable directly to another under the
following specific circumstances:

1. The two variables have the same class type. A Student object, for example, can be
assigned to another Student variable:
Dim stu As New Student
Dim Y As Student = stu

2. The two variables are of different types, but the variable on the left side is type Object. This
is permitted because Object is a very general type that accepts any type of assignment:
Dim stu As New Student
Dim obj As Object = stu

In nearly all other cases, you must perform a cast from one type to another.

It is important to realize that the expression on the right side of the = operator might not be
a variable; it might be a property name or method call. For example, a method named Get-
Student returns a Student object, which cannot be assigned directly to a String variable:

Dim temp As String = GetStudent(''12345'') 'error

On the other hand, if we call the Student object’s ToString method, it can be assigned to a
string variable:

Dim temp As String = GetStudent(''12345'').ToString() ' ok

Converting any object to a string is easy because all classes implicitly contain a ToString
method. But if you want to convert to some other type, you will probably have to call the
CType function.

14 Chapter 1 Classes

Using the CType Function

The CType function casts (converts) an expression into a different type. This is the general
format of CType:

CType(ObjectVal, TypeName) As TypeName

ObjectVal is a variable or expression that is to be converted. TypeName is the name of the
type we wish to convert ObjectVal into. For example, the ListBox control’s SelectedItem
property returns an object. If you want to assign this object to a Student variable, you must
call the CType function:

Dim selStudent As Student = CType(lstStudents.SelectedItem, Student)

The following, in contrast, would not compile (assuming that Option Strict is turned on):

Dim selStudent As Student = lstStudents.SelectedItem

Not all expressions can be converted. Suppose we were to try to assign a Student object to
a BankAccount variable. No standard conversion exists for that, so VB throws an Invalid-
CastException.

Dim stu As New Student
Dim bank As BankAccount = CType(stu, Student) 'error

Student objects and BankAccount objects have nothing in common, so we should not have
been assigning them to each other anyway. Sometimes this type of error can be solved eas-
ily by calling a property or method in the class that returns the correct type of object. Per-
haps the Student class contains a property that returns the student’s bank account:

Dim bank As BankAccount = stu.SavingsAccount

There is more to learn about object assignments and conversions than we have introduced
in this brief discussion. Once we have introduced the concept of inheritance in Chapter 6,
we will revisit this topic.

Three-Tier Application Model
Most business applications today follow a basic design called the three-tier application model.
Each tier contains classes that call methods in the tier below it, as shown in Figure 1-6.

Figure 1-6 Three-Tier Application Model

Presentation
Tier

calls methods in

calls methods in

Data Access
Tier

Middle Tier

1.2 Creating Your Own Classes 15

The presentation tier, also known as the user services layer, consists of all objects that inter-
act with the user. Visual Basic uses a class to define a form, as well as the various controls
on a form. When you write code inside the form of an application, your code belongs to the
user interface tier. This includes, for example, all the event handler procedures, class-level
variables, and other subprocedures in the form class.

The middle tier, also known as the business logic tier or business services layer, consists of
classes that provide core information to the application, such as essential calculations and
decision making. They often embody the business rules of an organization, which include
operational principles that are common to multiple applications. These classes do not inter-
act with the user. Instead, they contain methods and properties that are called by classes in
the presentation tier.

The data access tier, also know as the data services layer, contains classes that interact
directly with a data source. In later chapters, we will create classes for this tier that read and
write to databases.

In Tutorial 1-1, you will create a two-tier application that uses a Windows form to call
methods and properties in a class named Student. It contains a presentation tier and a mid-
dle tier.

Tutorial 1-1:
Creating a Student class

In this tutorial, you will create a two-tier application that uses a form to pass inputs
by the user to the Student class. The form’s class belongs to the presentation tier, and
the Student class belongs to the middle tier. You will add controls to a form that per-
mit the user to input a Student ID, last name, and test average. When the user clicks
a button, your code will assign the input values to Student class properties. Finally,
you will redisplay the Student object in a label. Figure 1-7 shows the form after the
user clicks the Save button. Figure 1-8 shows the same form after the user clicks the
View button.

Figure 1-7 After clicking the Save button

16 Chapter 1 Classes

Tutorial Steps

Step 1: Create a new Windows application named Student Class Example.

Step 2: Next, add a class named Student to the project. Right-click on the Project
name, select Add, and select Class. In the dialog window, select Code, select
Class, and enter the class name as Student.vb. The items are marked in Fig-
ure 1-9 with arrows.

Step 3: Open the Student.vb file and replace its contents with the following class definition:

Public Class Student
Public Property IdNumber As String

Figure 1-8 After clicking the View button

Figure 1-9 Adding a Student class to the project

1.2 Creating Your Own Classes 17

Public Property LastName As String
Private mTestAverage As Double

Public Property TestAverage As Double
Get

Return mTestAverage
End Get
Set(ByVal value As Double)

If value >= 0.0 And value <= 100.0 Then
mTestAverage = value

Else
MessageBox.Show(''Invalid test average.'', ''Error'')

End If
End Set

End Property

Public Overrides Function ToString() As String
Return IdNumber & '', '' & LastName _

& '', Test average = '' & TestAverage
End Function

End Class

The class contains auto-implemented properties named IdNumber and Last-
Name. Because the TestAverage property requires range checking, it is imple-
mented with explicit Get and Set sections.

Step 4: Open the startup form in design mode and add the named controls shown in
Table 1-1. Also, add the labels shown earlier in Figure 1-7.

Next, you will write code in the startup form that copies the user’s inputs to
Student properties.

Step 5: Declare a Student variable at the class level:

Private objStudent As New Student

Step 6: Create the following Click handler for the Save button. You can omit the
parameters from the btnSave_Click procedure because they are optional:

Private Sub btnSave_Click() Handles btnSave.Click
objStudent.IdNumber = txtIdNumber.Text
objStudent.LastName = txtLastName.Text
objStudent.TestAverage = CDbl(txtTestAverage.Text)
lblStudent.Text = ''(student information saved)''

End Sub

Table 1-1 Student Class example: named controls

Control Type Control Name Property Settings

TextBox txtIdNumber

TextBox txtLastName

TextBox txtTestAverage

Label lblStudent BorderStyle = Fixed3D,
AutoSize = False

Button btnSave Text = Save

Button btnView Text = View

18 Chapter 1 Classes

This code copies values from the TextBox controls into the properties of
the objStudent object. The additional label is added to provide a hint to the
user.

Step 7: Create a Click handler for the View button that uses the Student.ToString
method to display the Student object:

Private Sub btnView_Click() Handles btnView.Click
lblStudent.Text = objStudent.ToString()

End Sub

Step 8: Save the project, and run the application with the following test:

TIP A feature in Visual Basic named relaxed delegates lets you omit
parameters in event handlers if the parameters are not being used inside the
body of the handler.

Test

Input Expected output

Enter an ID number such as You should see the same ID
“001234” and a student’s last number and name that you
name, and click the Save button. entered. The test average will
Then click the View button. display as value 0.

Constructors
A constructor is a method that runs automatically when an instance of the class is created.
In Visual Basic, a constructor is always named New. Constructors typically initialize class
member variables to default values, but they can also be used to perform any required class
initialization. If a class is connected to a network connection, for example, the constructor
could be used to open a connection to a remote computer.

A default constructor is a constructor with no parameters. Let’s create a simple one for the
Student class that assigns a default values to the mIdNumber data member:

Public Sub New()
mIdNumber = ''999999''

End Sub

With this constructor in place, if a client program creates a new Student object, we know for
certain what value the object’s mIdNumber will contain.

Parameterized Constructor

A class may contain more than one constructor, so in addition to a default constructor,
you may want to create a parameterized constructor (a constructor with parameters).
Here is a parameterized constructor that assigns values to each of the Student class-level
variables:

Public Sub New(ByVal pIdNumber As String, ByVal pLastName As String,
ByVal pTestAverage As Double)

1.2 Creating Your Own Classes 19

COMMON BUG: Reversing the asignment order in constructors
Beginners often have trouble writing assignment statements in constructors. Can you spot
the errors in this code?

Public Sub New(ByVal pIdNumber As String, ByVal pLastName As String,
ByVal pTestAverage As Double)

pIdNumber = IdNumber
pLastName = LastName
pTestAverage = TestAverage

End Sub

The code compiles correctly, but the operands in the assignment statements are reversed.
They copy the values from the properties to the parameters. The result is that the con-
structor does not work properly: The values passed to the constructor are not assigned
to the class properties.

mIdNumber = pIdNumber
mLastName = pLastName
mTestAverage = pTestAverage

End Sub

Notice the arbitrary naming convention used here. Each parameter name has a “p” prefix
and each class-level variable begins with “m”.

When coding a constructor, do not use the same name for the parameters that you use for
class properties. For example:

Public Sub New(ByVal IdNumber As String, ByVal LastName As String,
ByVal TestAverage As Double)

IdNumber = IdNumber
LastName = LastName
TestAverage = TestAverage

End Sub

The parameter names in this example hide the matching public property names. Always
choose names for your constructor parameters that are different from the names of class-
level variables and properties.

How Visual Basic Creates Constructors

If your class does not contain any constructors, Visual Basic creates an invisible empty
default constructor for you. This is for convenience, so you can declare an object like this:

Dim sophomore As New Student

But if you add a parameterized constructor to the class, a default constructor is not created
automatically for you. Suppose this were the only one we had in the Student class:

Public Sub New(ByVal pIdNumber As String, ByVal pLastName As String,
ByVal pTestAverage As Double)
' (lines omitted)

End Sub

Then the following statement would not compile:

Dim objStudent As New Student

20 Chapter 1 Classes

You might have a good reason for not permitting an object to be constructed unless it
was assigned meaningful values. Decisions such as this one are based on the needs of the
application. If your class has a parameterized constructor, and you also wish to create
objects without passing any parameters, you must add a default constructor.

Constructors with Optional Parameters
An optional parameter does not require the calling method to pass a corresponding argument
value. Sometimes you will want to create instances of a class using varying amounts of infor-
mation. You can declare optional parameters in any method (including constructors) using
the Optional keyword, as long as you assign each a default value. In the following example,
the pLastName and pTestAverage parameters are optional:

Public Sub New(ByVal pIdNumber As String,
Optional ByVal pLastName As String = '''',
Optional ByVal pTestAverage As Double = 0.0)

IdNumber = pIdNumber
LastName = pLastName
TestAverage = pTestAverage

End Sub

Now, because the second and third parameters are optional, all of the following are valid
ways of declaring Student objects:

Dim A As New Student(''200103'')
Dim B As New Student(''200103'', ''Ramirez'')
Dim C As New Student(''200103'', ''Ramirez'', 86.4)

There are two important rules to follow. Once a parameter is labeled optional, all subse-
quent parameters in the method’s parameter list must also be labeled the same way. Second,
all optional parameters must be assigned default values.

When the Visual Studio editor’s Intellisense tool displays a method’s parameter, optional
parameters appear inside square brackets. Here is an example:

Tutorial 1-2:
Adding a parameterized constructor to the Student class

In this tutorial, you will add a constructor with three parameters to the Student class.
The application will ask the user to input values, which are then passed to the Student
constructor. Then the application will display the values stored inside the Student
object.

Step 1: In Windows Explorer, make a copy of the folder containing the Student Class
Example project you wrote for Tutorial 1-1. Open the new project.

Step 2: Change the caption in the form’s title bar to Student Class with Constructors.

Step 3: Add the following constructor to the Student class:

Public Sub New(ByVal pIdNumber As String,
Optional ByVal pLastName As String = '''',
Optional ByVal pTestAverage As Double = 0.0)

1.2 Creating Your Own Classes 21

IdNumber = pIdNumber
LastName = pLastName
TestAverage = pTestAverage

End Sub

Notice that the second and third parameters are optional.

Step 4: Edit the form’s source code. First, change the declaration of objStudent to the
following:

Private objStudent As Student

This statement declares a Student variable, but it does not create a student
Object.

Step 5: Modify the btnSave_Click event handler so it contains the following code:

1: Private Sub btnSave_Click() Handles btnSave.Click
2: Dim testAverage As Double
3: If Double.TryParse(txtAverage.Text, testAverage) Then
4: objStudent = New Student(txtIdNumber.Text,
5: txtLastName.Text, testAverage)
6: lblStudent.Text = ''(student information saved)''
7: Else
8: lblStudent.Text = ''Test average is not a valid number''
9: End If
10: End Sub

Line 4 calls the Student constructor, assigning values to the three class vari-
ables. If Double.TryParse fails to convert the test average, line 8 displays an
error message in the lblStudent label.

Step 6: Save the application and test it twice, as follows:

Input Expected output

Enter 200032, Johnson, 92.3 in The output should appear as in
the three text boxes and click Figure 1-10.
the Save button.

Enter 100011, Adams, XX in the The output should appear as in
three text boxes and click the Figure 1-11.
Save button.

Figure 1-10 Sample output from Test 1

22 Chapter 1 Classes

ReadOnly Properties
A ReadOnly property allows methods outside the class to get the current property value but
not to change it. The ReadOnly qualifier must be added to the property declaration, and the
Set statement in the property is omitted. For example:

Public ReadOnly Property Count As Integer
Get

Return mCount
End Get

End Property

A ReadOnly property can prevent a client program from modifying the variable behind the
property. Also, the value returned by a property might be calculated from internal data. A
good example is the Count property in the Collection class, which returns a value indicat-
ing how many items are in the collection. You cannot directly change the value. You must
either add or remove items from the collection before the value of Count changes. Here is
an example:

Dim coll as New Collection
coll.Add(''Joe'')
coll.Add(''Sam'')
MessageBox.Show(coll.Count) ' displays ''2''
coll.Count = 20 ' Error!

Example

Let’s revisit the TestAverage property in the Student class that we have been using. Rather
than letting callers set its value, we can calculate the value as the sum of all tests divided by
the number of tests. To do this, we introduce a new class-level variable:

Private mTestGrades As New Collection

We then create a method that lets callers add test scores to the collection:

Public Sub AddTestGrade(ByVal grade As Double)
mTestGrades.Add(grade)

End Sub

Now we rewrite the TestAverage property, making it ReadOnly. The For Each loop iterates
through the collection, adding each test grade to testSum. Then the property returns
testSum divided by the number of tests (contained in mTestGrades.Count):

Figure 1-11 Sample output from Test 2

1.3 Enumerated Types 23

TIP ReadOnly properties must be fully coded; they cannot be auto-implemented.

Public ReadOnly Property TestAverage As Double
Get

Dim testSum As Double = 0.0
For Each grade As Double In mTestGrades

testSum += grade
Next
Return testSum / mTestGrades.Count

End Get
End Property

The result is a more useful implementation of the student’s test average than we had in the
previous version of the Student class.

Shared Properties
A shared property belongs to the class in which it was declared, not to individual instances
of the class. To put it another way, each instance of the class does not contain a separate
copy of the property. Only one storage area is reserved for the property, and that storage
area is shared by all instances of the class. For example, we can declare a shared property
named CollegeName in the Student class:

Public Shared Property CollegeName As String

Having declared this property, a program could set the college name with a statement that
uses the class name, followed by the property name:

Student.CollegeName = ''Gaddis Technical Institute''

You can also create shared class-level variables. For example, the following variable
could contain an integer that indicates the maximum credits for which any student can
enroll:

Private Shared smMaxCredits As Integer

Checkpoint

6. List examples of access specifiers that were mentioned so far in this chapter.

7. How is a class-level variable different from a local variable?

8. Explain the principle of information hiding.

9. Which type of property only contains a Get section?

10. What two sections are contained in a property?

11. What is the name of a constructor without any parameters?

12. What are the three components of the three-tier application model?

1.3 Enumerated Types
An enumerated type is a list of symbolic names associated with integer constants. Its great-
est value is in making a program more readable by giving names to what would otherwise
be integers. Suppose, for example, that an application worked with four different account

24 Chapter 1 Classes

types, numbered 0, 1, 2, and 3. It might be difficult, when looking at program code, to recall
which integer corresponded to each type of account. Instead, we could define an enumerated
type that would provide this information:

Enum AccountType
Checking
Savings
Trading
Annuity

End Enum

The enumerated type defines, and therefore restricts, the set of values that can be assigned
to variables of its type. Internally, the list of AccountType values are assigned the integer val-
ues 0, 1, 2, and 3.

TIP When you press the dot after an Enum variable, Visual Studio’s Intellisense tool
shows a list of all the Enum values the variable can hold.

You do not use the New keyword when declaring an enumerated object:

Dim acct As AccountType

If you declare an AccountType object, only values from the prescribed list should be assigned
to it:

acct = AccountType.Checking
acct = AccountType.Trading

The following statement is illegal because integers are not assignment-compatible with Enum
types:

acct = 1

In specialized cases, you can assign an integer into an AccountType, but you should do that
only when no other option is available. For example, suppose you were to read an integer
from a TextBox, and the integer was supposed to indicate a type of account. The CType
function must be used to cast the integer into AccountType:

Dim acct As AccountType
Dim N As Integer = CInt(txtAccountType.Text)
acct = CType(N, AccountType)

No cast is required to assign an enumerated type to an integer:

Dim N As Integer = acct

Using Boolean Expressions

Enumerated types are particularly useful when used in Boolean expressions that involve
comparisons. For example, suppose we want to take a particular action if an account is an
annuity:

If acct = AccountType.Annuity Then
taxDeferred = True

End If

Such a statement is clearly easier to read than something like this:

If acctCode = 3 Then
taxDeferred = True

End If

1.3 Enumerated Types 25

Similarly, the Select Case statement can go through a list of enumerated values and take a
separate action for each possible value:

Select Case acct
Case AccountType.Annuity

lblResult.Text = ''Plan payments for retirement''
Case AccountType.Checking

lblResult.Text = ''Write checks to pay bills''
' etc.

End Select

In Tutorial 1-3, you will examine an application that uses an Enumerated type.

Tutorial 1-3:
Enumerated Account type

In this tutorial, you will examine and test an application that lets the user select an
account type from a list box. Each time the user’s selection changes, the selected index
of the list box is converted into an AccountType object. Then, using a Select Case state-
ment, a method selects an appropriate description to display for the account type. Sam-
ple program output is shown in Figure 1-12.

Step 1: Open the AccountType Enum Example project in the example program’s
folder for this chapter. In the code window of the startup form, notice the
AccountType declared at the end of the file:

Enum AccountType
Checking
Savings
Trading
Annuity

End Enum

Step 2: Examine the remaining code, which is shown here:

1: Public Class Form1
2: Private typeNames() As String = {''Checking'', ''Savings'',
3: ''Trading'', ''Annuity''}
4:
5: Private Sub Form1_Load() Handles MyBase.Load
6: lstTypes.DataSource = typeNames
7: End Sub
8:
9: Private Sub ShowDescription(ByVal acct As AccountType)
10: Select Case acct

Figure 1-12 AccountType Enum Example program

26 Chapter 1 Classes

Checkpoint

13. What is the primary advantage of using an enumerated type?

14. Can an integer be converted into an enumerated type?

15. Can an enumerated value be cast into an integer?

16. Why does the Select Case statement work well with enumerated type variables?

1.4 Focus on Program Design and Problem
Solving: Bank Teller Application
In this section, we will create a short two-tier application that simulates an electronic bank
teller by letting the user look up an account, deposit funds, withdraw funds, and view the
current balance.

Let’s begin the design with a list of essential requirements:

1. Existing Account information (ID, account name, and account balance) will be stored
in a data file.

2. The user must be able to input an account number and initiate a search for a match-
ing account. If the account is found in the data file, the application will retrieve the
name of the account holder and the account balance.

11: Case AccountType.Annuity
12: lblResult.Text = ''Plan payments for retirement''
13: Case AccountType.Checking
14: lblResult.Text = ''Write checks to pay bills''
15: Case AccountType.Savings
16: lblResult.Text = ''Save money for large purchases''
17: Case AccountType.Trading
18: lblResult.Text = ''Speculate in the stock market''
19: End Select
20: End Sub
21:
22: Private Sub lstTypes_SelectedIndexChanged() _
23: Handles lstTypes.SelectedIndexChanged
24: Try
25: Dim index As Integer = lstTypes.SelectedIndex
26: ShowDescription(CType(index, AccountType))
27: Catch ex As Exception
28: lblResult.Text = ex.Message
29: End Try
30: End Sub
31: End Class

Line 2 declares a string array containing the AccountType member names.
Line 6 assigns this array to the list box when the form first loads. When the
user makes a selection, the SelectedIndexChanged handler (lines 22–30) exe-
cutes. The index of the selected item is cast into an AccountType object on
line 26 and passed to the ShowDescription method (lines 9–20). The Select
Case statement shows each of the enumerated values in a way that is easy to
understand.

Step 3: Run and test the application by selecting different account types in the list box.

1.4 Focus on Program Design and Problem Solving 27

3. The user must be able to enter an amount of money to deposit. The application will
show the updated account balance.

4. The user can enter an amount to withdraw, and the application will show the updated
account balance.

In this version of the application, the updated account balance will not be written to the file.
We will offer that task as one of the chapter Programming Challenges.

Background Information
Before we start to design this application, let’s look at some helpful techniques.

Relative File Paths

The following code shows how to call the File.OpenText method to open a file for input,
passing it a path to the file:

Dim infile As StreamReader = OpenText(''c:\temp\accounts.dat'')

An example of a file path could be just a file name (such as accounts.dat); or it might
include a full path, such as c:\temp\accounts.dat; or it might contain a relative path such
as ..\accounts.dat. The ..\ notation indicates that we must back up one directory level to find
the data file. A compiled VB program is stored in either the bin\Debug folder or the
bin\Release folder of a project. Therefore, if we place the accounts.dat file in the project’s
root directory, the path that we pass to the OpenText method must back up two direc-
tory levels. This is how the file path will be declared:

Private ReadOnly FILEPATH As String = ''..\..\accounts.dat''

Reading Delimited Fields from a Text File

The StreamReader class has a method named ReadLine, which reads an entire line of input
into a String variable:

Dim infile As StreamReader = OpenText(FILEPATH)
Dim entireLine As String = infile.ReadLine()

The data file in the Bank Teller application contains three items of information on each line,
delimited by commas. Here is an example of a single line:

11111,George Baker,825.50

A lot of data files use this comma-delimited format. Usually, programs need to divide such a
string into separate fields, each as its own string. Fortunately, the String.Split method divides
a string such as this into an array of strings, using any delimiter character you choose. Let’s
assume that the string produced by calling ReadLine is stored in a string named entireLine.
This is how we could call the Split method, passing it a delimiter character:

Dim infile As StreamReader = OpenText(mFilePath)
Dim entireLine As String = infile.ReadLine()
Dim fields() As String = entireLine.Split(”,”c)

As a result, the fields array contains the account ID (11111) in the first position, the account
name (George Baker) in the second position, and the account balance (825.50) in the third
position:

11111 George Baker 825.50

28 Chapter 1 Classes

Incidentally, the notation '',''c creates a single character constant containing a comma. In
fact, any character constant can be coded this way, such as the letter A: ''A''c.

Detecting End of File

When reading from an InputStream, the easiest way to check for the end of a file is to inspect
the EndOfStream property. This property will equal True if the end of the file has been
reached. It is usually coded as the condition of a While loop:

Dim infile As StreamReader = OpenText(mFilePath)
While Not infile.EndOfStream

infile.ReadLine()
'etc.

End While

Account Class
The Bank Teller application will contain a class named Account that holds an account ID,
account holder name, and the account balance. A property named LastError will contain a
description of the last error that occurred while calling methods in the class. In addition, the
class will have the following methods:

• New(accountId)—a constructor that receives an account ID and creates a new
Account object.

• GetData()—opens the data file and searches for the account ID. If the ID is found, the
method reads the account name and balance from the file and returns True. If the ID is
not found, the method assigns a message to the LastError property and returns False.

• Deposit(amount)—deposits an amount of money in the account.
• Withdraw(amount) As Boolean—attempts to withdraw an amount from the account.

If the balance is at least as large as the amount being withdrawn, the method subtracts
the amount from the account balance and returns a value of True. If the balance is too
low, the method assigns an error message to the LastError property and returns a value
of False.

Form1 Class
In the application’s startup form, you will create the following event handlers:

• btnFind_Click—opens the account data file and searches for a record containing a
matching account number. If a match is found, this method copies the account name
and balance to Label controls on the form.

• btnDeposit_Click—reads the deposit amount from a TextBox control and passes it to
the Account.Deposit method. Displays the account’s updated balance in a Label.

• btnWithdraw_Click—reads the withdrawal amount from a TextBox control and
passes it to the Account.Withdraw method. If the latter method returns True, this
method displays the account’s updated balance in a Label. If the Withdraw method
returns False, an error message is displayed in a Label.

• btnClose_Click—closes the form.

User Interface Design
The user will interact with a single window containing text boxes, labels, and buttons.
We wish to control the user’s actions by disabling buttons until the appropriate account

1.4 Focus on Program Design and Problem Solving 29

Figure 1-14 Bank Teller application after user’s successful search for an account

Figure 1-13 Bank Teller application startup window

information has been located. Figure 1-13 shows the application’s startup window, in which
the user can enter an account number and click the Find button. The Deposit and Withdraw
buttons are disabled. Figure 1-14 shows the same window after the user has entered an
account number and clicked the Find button. Because the account was found in the input
file, the account name and balance are displayed, and the Deposit and Withdraw buttons are
enabled.

Figure 1-15 shows the result when the user searches for an account that was not found in
the input file. Any existing account information is cleared from the form, and the Deposit
and Withdraw buttons are disabled. In Figure 1-16, the user has made a deposit into the
account by entering a value into the text box and clicking the Deposit button. Notice that
the account balance has changed.

In Figure 1-17, the user has made a withdrawal from the account by entering a value into
the text box and clicking the Withdraw button. Notice that the account balance has
changed. Table 1-2 lists the named controls on the startup form.

30 Chapter 1 Classes

Figure 1-17 Bank Teller application showing a withdrawal from the account (arrow
added for clarity)

Figure 1-16 Bank Teller application showing a deposit into the account (arrow added
for clarity)

Figure 1-15 Bank Teller application after user’s unsuccessful search for an account

1.4 Focus on Program Design and Problem Solving 31

Table 1-2 Named controls in the Bank Teller application

Control Type Control Name Property Values

Form Form1 Text = Bank Teller Application

PictureBox PictureBox1 Image = logo.png

GroupBox GroupBox1 Text = Select an action:

TextBox txtAccountNum

TextBox txtAmount

Label lblAccountName BorderStyle = Fixed3D, AutoSize = False

Label lblBalance BorderStyle = Fixed3D, AutoSize = False

Button btnFind Text = Find

Button btnDeposit Text = Deposit

Button btnWithdraw Text = Withdraw

Button btnClose Text = Close

Tutorial 1-4:
Building the Bank Teller application

In this tutorial, you will complete the Bank Teller application. It consists of a class named
Account and a single startup form.

Step 1: Open the project named Bank Teller Start from the chapter examples folder.
The startup form has been created for you.

Step 2: Add a class named Account to the project.

Step 3: Add the following Imports statements to the Accounts.vb file, just above the
class declaration:

Imports System.IO ' StreamReader class
Imports System.IO.File ' OpenText method

Step 4: Insert the following variable into the Account class that will contain the cur-
rent account balance. In addition, create a read-only property that returns the
value of mBalance.

Private mBalance As Decimal

Step 5: Insert the following auto-implemented properties:

Public Property AccountId As String
Public Property AccountName As String
Public Property FilePath As String
Public Property LastError As String

AccountName holds the name of the person who is the account holder. FilePath
holds a string containing the location of the input file. LastError holds a string
that contains the most recently generated error message by methods in this class.

Step 6: Insert the following constructor, which receives an account ID number:

Public Sub New(ByVal pAccountId As String)
AccountId = pAccountId
AccountName = String.Empty
mBalance = 0.0D

End Sub

www.allitebooks.com

http://www.allitebooks.org

32 Chapter 1 Classes

Step 7: Insert the GetData method, which reads the data file and attempts to find
a data set containing a certain account ID. If the ID is found, the method
returns True:

1: Public Function GetData() As Boolean
2: Dim infile As StreamReader = Nothing
3: LastError = String.Empty
4: Try
5: infile = OpenText(FilePath)
6: While Not infile.EndOfStream
7: Dim entireLine As String = infile.ReadLine()
8: Dim fields() As String = entireLine.Split('',''c)
9: If fields(0) = AccountId Then
10: AccountName = fields(1)
11: mBalance = CDec(fields(2))
12: Return True
13: End If
14: End While
15: LastError = ''Account '' & AccountId & '' not found''
16: Return False
17: Catch ex As Exception
18: LastError = ex.Message
19: Return False
20: Finally
21: If infile IsNot Nothing Then infile.Close()
22: End Try
23: Return False
24: End Function

Line 5 opens the input file, using the file name and path in the FilePath prop-
erty. If the file is found, OpenText returns a StreamReader that can be used to
read all data from the file. Line 7 reads one line from the file, and Line 8 splits
the line into an array of strings named fields. Line 9 compares the first field to
mAccountId, which contains the ID we are looking for. If the IDs match, lines
10–11 assign the field values to AccountName and mBalance. Line 12 returns
immediately with a value of True. On the other hand, if the While loop ends
by reaching line 15, we assume that a matching Account ID was not found.

Notice in the code above that a Finally block is used to hold a statement that
closes the input file (line 21). We know that the code in a Finally block is guar-
anteed to execute, even if an exception is thrown somewhere within the Try
block. Even when a Return statement executes, the Finally block is still exe-
cuted before control leaves the GetData function.

Step 8: Add the Deposit and Withdraw methods to the class:

1: Public Sub Deposit(ByVal amount As Decimal)
2: ' Deposit the amount in the account by adding it
3: ' to the balance.
4: mBalance += amount
5: End Sub
6:
7: Public Function Withdraw(ByVal amount As Decimal) As

Boolean

8: ' Withdraw <amount> if the existing balance
9: ' is at least as large as the amount.
10: ' Return False if balance is less than <amount>.

1.4 Focus on Program Design and Problem Solving 33

11: If amount <= mBalance Then
12: mBalance -= amount
13: Return True
14: Else
15: LastError = ''Balance is too low to withdraw the

requested amount''

16: Return False
17: End If
18: End Function

On line 11, if the Withdraw method finds that the requested amount is greater
than the account balance, it sets the value of LastError and returns False (lines
15–16). Later, when writing code for the user form, we will display the error
message in LastError when the Withdraw method returns False. On the other
hand, if Withdraw returns True, we know that the balance was updated so we
can display the new value.

The Form1 Class

Next, you will write code inside the application’s startup form.

Step 9: Open the code window for the startup form and insert the following code.
The btnFind_Click handler is activated when the user clicks on the Find but-
ton after having entered an account number in a text box:

1: Private currAccount As Account
2: Private ReadOnly FILEPATH As String =

''..\..\accounts.dat''
3:
4: Private Sub btnFind_Click() Handles btnFind.Click
5: ' User clicked Find button to find an account.
6: currAccount = New Account(txtAccountNum.Text)
7: currAccount.FilePath = FILEPATH
8: If currAccount.GetData() Then
9: lblAccountName.Text = currAccount.AccountName
10: lblBalance.Text = currAccount.Balance.ToString(''c'')
11: btnDeposit.Enabled = True
12: btnWithdraw.Enabled = True
13: Else
14: MessageBox.Show(currAccount.LastError, ''Error'')
15: Clear()
16: End If
17: End Sub

Lines 6–7 create a new Account and set its file path. Line 8 calls the GetData
method to open the data file and attempt to locate the account information
that matches the Account number entered by the user. If GetData returns
True, lines 9–10 display the account name and balance. Lines 11–12 enable
the Deposit and Withdraw buttons. If GetData returns False, line 14 displays
the error message in the LastError property.

Step 10: Add the following Clear method, which removes the account name and bal-
ance and disables the Deposit and Withdraw buttons. It is called when the
user enters an account number that cannot be found in the input file:

Private Sub Clear()
lblAccountName.Text = String.Empty
lblBalance.Text = String.Empty

34 Chapter 1 Classes

btnDeposit.Enabled = False
btnWithdraw.Enabled = False

End Sub

Step 11: Add the following Click handler for the Deposit button. It passes the amount
entered by the user (in txtAmount) to the Account.Deposit method, and it
retrieves and displays the account balance:

Private Sub btnDeposit_Click() Handles btnDeposit.Click
' The user has clicked the Deposit button
Try

currAccount.Deposit(CDec(txtAmount.Text))
lblBalance.Text = currAccount.Balance.ToString(''c'')

Catch
MessageBox.Show(''Please enter a numeric deposit amount'',
''Error'')

End Try
End Sub

Step 12: Add the following Click handler for the Withdraw button. It calls the
Account.Withdraw method, passing it the amount entered by the user into the
text box (txtAmount):

1: Private Sub btnWithdraw_Click() Handles btnWithdraw.Click
2: ' The user has clicked the Withdraw button
3: Try
4: If currAccount.Withdraw(CDec(txtAmount.Text)) Then
5: lblBalance.Text = currAccount.Balance.ToString(''c'')
6: Else
7: MessageBox.Show(currAccount.LastError, ''Error'')
8: End If
9: Catch
10: MessageBox.Show(''Please enter a numeric withdrawal" _

& " amount", "Error")

11: End Try
12: End Sub

This code must deal with two kinds of errors. If the user enters a nonnumeric
value, line 4 throws an exception and line 10 reminds the user to enter a
numeric value. Or, if the user tries to withdraw more than the account balance,
line 7 displays the error message stored in the LastError property.

Step 13: Add the following Click handler for the Close button:

Private Sub btnClose_Click() Handles btnClose.Click
' The user has clicked the Close button
Me.Close()

End Sub

1.5 Manual Software Testing
We cannot stress enough how important it is to create programs that perform in the way
they were intended. We all like to use reliable software, and often our lives depend on it. For
example, the flight navigation system for an aircraft must not fail, nor should medical
devices. There is a well-known case of software failure in a radiation therapy device, lead-

1.5 Manual Software Testing 35

ing to severe consequences. (Look up Therac-25 at http://www.wikipedia.org to read about
this famous software failure.)

In this chapter, we divide software testing into two general categories: manual testing and
automated testing. Manual testing is performed by a person (a tester) who manually enters
a variety of inputs into an application. The tester compares the actual outcomes produced
by the software to a set of expected outcomes. Manual testing is often associated with the
term black box testing, where the tester is concerned only with the program’s input and out-
puts. The tester cannot see the code inside.

Manual testing requires a lot of human labor, and therefore is expensive. Automated testing
is performed by a computer program, which executes part or all of an application in a way
that requires no manual intervention. This chapter will focus on manual testing, and
Chapter 6 will introduce automated testing.

A testing plan is a list of tests that are to be run on an application to verify that the appli-
cation works as expected. For each given user action or input value, the testing plan lists the
expected output or action produced by the application. This chapter shows how to create
manual testing plans for VB applications.

Requirements Specification

Before creating an application, we usually want to know what it is supposed to do. A
requirements specification is a complete description of the behavior of an application. It
should include a description of inputs and actions by the user, and how those inputs and
actions affect the program’s behavior. Here is a sample requirements specification for a pro-
gram that inputs an integer and displays a corresponding color:

• The application prompts the user with a range of acceptable integer values.
• The user inputs an integer N.
• If the user inputs a noninteger value, the application displays an error message.
• If N is outside the range of acceptable values, the application displays an error

message.
• If N is within the range of acceptable values, the application displays the name of a

color that matches N from the following list: 0 = white, 1 = yellow, 2 = green, 3 = red,
4 = blue, 5 = orange.

This requirements specification will be used in Tutorial 1-5.

Tutorial 1-5:
Manually testing integer input

Software testing can get complicated when applications have a lot of inputs and out-
puts. In this tutorial, you will learn some basic techniques for creating manual tests.
You will examine an application that asks the user to input an integer. The application
will display a string by using the integer as a subscript into an array of strings. Then
you will examine a manual testing plan for the application. The user interface is shown
in Figure 1-18.

Step 1: Open the project named Manual Test from the chapter examples folder.

Step 2: Run the application, enter an integer, and click the OK button.

http://www.wikipedia.org

36 Chapter 1 Classes

Step 3: Close the application and open the startup form’s code window. Here is the
source code:

1: Public Class Form1
2: Private ReadOnly colors() As String = {"white",
3: "yellow", "green", "red", "blue", "orange"}
4:
5: Private Sub Form1_Load() Handles MyBase.Load
6: lblPrompt.Text = "Please enter an integer " _
7: & "between 0 and " _
8: & colors.GetUpperBound(0).ToString
9: End Sub
10:
11: Private Sub btnOk_Click() Handles btnOk.Click
12: Dim colorIndex As Integer
13: If Integer.TryParse(txtInput.Text, colorIndex) Then
14: If colorIndex < 0 OrElse colorIndex >
15: colors.GetUpperBound(0) Then
16: lblPrompt.Text = "The value is out of range"
17: Else
18: lblPrompt.Text = "You selected the color " _
19: & colors(colorIndex)
20: End If
21: Else
22: lblPrompt.Text = "Please enter an integer"
23: End If
24: End Sub
25: End Class

In Form_Load, line 6 initializes a Label control with a prompt that tells the user
the range of values to be entered. You may recall that the GetUpperBound func-
tion returns the highest permissible subscript for a given array. In the OK but-
ton’s Click handler, line 13 uses TryParse to convert the text box to an integer.
If it fails, line 22 displays an error message. Line 14 checks colorIndex against
a range of acceptable values. If colorIndex is within a valid range, line 19 uses
colorIndex as a subscript into the colors array, to get the name of the color, as
a string.

The requirements specification provides the basic structure of our testing plan
because it mentions error handling for user input. Therefore, it is necessary to
test the range of values entered by the user, and we must check for noninteger
input. Each of the tests, shown in Table 1-3, has a specific output that we
expect the application to produce.

Figure 1-18 Application that uses an integer to find a color

1.5 Manual Software Testing 37

Step 4: Run the application and perform the tests shown in Table 1-3 in sequence.

Table 1-3 Testing plan for the Manual Test application

Input Expected output

“xx” or a blank string Please enter an integer

�1 The value is out of range

0 You selected the color white

1 You selected the color yellow

2 You selected the color green

3 You selected the color red

4 You selected the color blue

5 You selected the color orange

6 The value is out of range

Example: Calculating Weekly Pay
Suppose you are about to create an application that calculates weekly pay. The requirements
specification for this application is:

• The user enters the hours worked and the pay rate.
• Error messages are displayed if: (1) the user’s inputs are nonnumeric, (2) the number

of hours worked is less than or equal to 0 or greater than 60, or (3) the pay rate is less
than 0 or greater than 999.

• The application displays weekly pay as the product of hours worked multiplied by the
pay rate.

This is a fairly simple application to write, so we will leave that step as an exercise. But we do
want to create a testing plan. When selecting inputs, we use values that should produce spe-
cific results. In the following table, the prompts to the user indicate valid ranges for the inputs.
We begin by hand-calculating reasonable inputs and expected outputs for the testing plan.

Input Expected output

hours = 10, rate = 45 weekly pay = $450.00
hours = 20.2, rate = 40.6 weekly pay = $820.12
hours = 60, rate = 999 weekly pay = $59,940.00
hours = 1.0, rate = 1.0 weekly pay = $1.00

You should also test the application with invalid inputs to make sure the correct error mes-
sages are generated. In our current example, inputs might be blank, nonnumeric, or out of
range. Of course, the program must not throw an unhandled exception. The following
entries should be added to the testing plan:

Input Expected output

hours � abc, rate = 50.0 Hours worked must be numeric
hours � 22.5, rate = xxx Pay rate must be numeric
hours � 0, rate = 40.6 Hours worked is out of range
hours � �20, rate = �40.6 Hours worked and pay rate are out of range
hours � 10, rate = �40.6 Pay rate is out of range
hours � 60, rate � 999.5 Pay rate is out of range
hours � 60.1, rate � 40.6 Hours worked is out of range

38 Chapter 1 Classes

Summary

We cannot overemphasize the importance of testing your applications. Although you are not
currently writing any flight navigation or medical equipment software, you might do that
type of work in the future. Also, your current course grade might be improved if your pro-
gramming assignments work correctly!

Checkpoint

17. What type of testing is performed by an actual person interacting with an
application?

18. What type of testing is performed by a computer program, with no human
intervention?

19. Explain the purpose of a requirements specification.

20. What is the term used in this section for a table containing a list of user inputs and
expected outputs?

Summary

1.1 Classes and Objects

• Object-oriented programming (OOP) is a way of designing and coding applications so
that interchangeable software components can be used to build larger programs.

• A class is a program structure that defines an abstract data type. You create a class, and
then create instances of the class. All class instances share common characteristics.

• Each control in the Visual Studio is a class. By that, we mean that it contains the prop-
erties, methods, and visual appearance that make it different from other controls.

• Each instance of a class can contain unique values in its class properties. For example,
if you have two Button objects, each will have its own unique Name, Text, Width, and
Height property values.

• A variable declared with a value type contains its own data, in a single location.
• A variable declared as a reference type does not directly contain its own data. Instead,

it points to some other object in memory.

1.2 Creating Your Own Classes

• You create a class in Visual Basic by coding a class definition. It includes the Class key-
word, the name of the class, an access specifier (such as Public), and a list of class mem-
bers.

• A class-level variable is always declared inside a class, but outside any class methods
or properties.

• The principle of information hiding says that most variables and even some methods
must be hidden inside classes. The hidden variables and methods can be accessed only
by other methods in the same class.

• Creating an instance of a class is a two-step process. First, declare an object variable;
then create an instance of the class and assign it to the variable.

• A property procedure is a class member that defines a property. It has two sections: Get
and Set. The Get section holds the code that is executed when the property value is
retrieved, and the Set section holds the code that is executed when a value is stored in
the property.

Key Terms 39

• Many desktop applications follow a basic design used widely in industry called the Two-
Tier Application Model. Each tier consists of one or more classes. The presentation tier
consists of classes that interact with the user. The middle tier, also known as the busi-
ness logic tier, consists of classes that provide essential calculations and decision mak-
ing. The data access tier contains classes that interact directly with data sources.

1.3 Enumerated Types

• An enumerated type is a named list of integer constants. It defines, and therefore lim-
its, the set of values that can be assigned to variables of its type. You use the Enum key-
word to define an enumerated type.

• When you press the dot after an enumerated variable, Visual Studio’s Intellisense tool
shows a list of values that the variable can hold.

• You can cast an integer value into an enumerated type, but you should do that only
when no other option is available.

1.4 Focus on Program Design and Problem Solving: Bank Teller Application

• The Bank Teller application is a two-tier application that simulates an electronic bank
teller by letting the user look up an account, deposit funds, withdraw funds, and view
the current balance.

• Existing account information is stored in a data file. The user can input an account
number and initiate a search for a matching account. The user can deposit funds and
withdraw funds. If funds are withdrawn, the updated account balance is displayed.

• The application contains a class named Account that holds an account ID, account
holder name, and the account balance.

1.5 Manual Software Testing

• Software testing can have critical importance, particularly when lives and finances are
at stake.

• Manual testing is performed by a person (called a software tester) who manually enters
a variety of inputs into an application. This person compares the actual outcomes pro-
duced by the software to a set of expected outcomes. Automated testing is performed
by a computer program and requires no human input.

• A testing plan is a list of tests that are to be run on an application to verify that the
application works as expected. For each given user action or input value, the testing
plan lists the expected output or action produced by the application.

• A requirements specification is a complete description of the behavior of an applica-
tion. It should include a description of inputs and actions by the user, and how those
inputs and actions affect in the program’s behavior.

Key Terms
access specifier
assignment operator (=)
attributes
auto-implemented property
automated testing
behaviors
class
class definition
class instance

class-level variable
constructor
data access tier
default constructor
encapsulation principle
enumerated type
information hiding principle
inheritance
instance

local variable
manual testing
method
middle tier
Microsoft .NET Framework
namespace
New operator
object
object behaviors
object initializer
object-oriented programming (OOP)
optional parameter
parameterized constructor
presentation tier

property
property procedure
ReadOnly property
reference type
reference variable
requirements specification
shared property
side effect
testing plan
three-tier application model
ToString method
user-defined class
value type

Review Questions and Exercises

True or False

Indicate whether each of the following statements is true or false.

1. Strings are value types.

2. Private methods may be referenced only by other methods in the same class.

3. If a class named Account has a single constructor containing two required parameters,
the following line will compile:

Dim act As New Account()

4. A shared class-level variable must always be marked Private.

5. If the Employee class had a public property named IDSize, you would have to write an
expression such as Employee.IDSize to access the property.

6. The controls in the Visual Studio toolbox represent classes.

7. When you drag a control onto a form, you are creating a class.

8. Integer is not a value type.

9. Instances of classes are reference types.

10. When you initialize a reference variable, use the New operator.

11. When the assignment operator (=) assigns one reference variable to another, the vari-
ables point to two different objects.

Short Answer

1. Suppose isFullTime is a Boolean variable. Is the following the best way to use it in an
expression?

If isFullTime = True Then ...

2. Which tier in a two-tier application is responsible for interacting with the user?

3. How are class behaviors implemented in Visual Basic?

4. In a two-tier Student Registration application, which tier would contain rules that decide
if a student’s grade average is high enough to enroll in classes during the current term?

40 Chapter 1 Classes

Review Questions and Exercises 41

5. How is a shared class variable different from a non-shared class-level variable?

6. Write code that creates a shared property named Color for a class named Window.

7. Show an example of declaring a method named MyMethod with a single reference
parameter of type String. The method should not return a value.

8. What is the name of the principle that advocates keeping class-level variables private?

9. If a class-level variable is declared private, how can users of the class get and set the vari-
able’s value?

10. Create a constructor for a class named Hero that receives two Integer parameters:
pStrength and pIntelligence. Make the parameters optional. The corresponding class
properties are named Strength and Intelligence.

11. Which section (Set or Get) is omitted from a ReadOnly property?

12. Which Object method makes a shallow copy of a reference variable?

13. One way to create a class is to add a new class to a project from the Project menu. What
is the other way to create a class?

14. Show how to declare a private, shared, class-level String variable named smDefaultColor.

15. What is the name of the type of constructor that permits callers to pass arguments?

16. Write a statement that opens a text file named myfile.dat for input, and returns a
StreamReader.

17. Write a statement that reads a line of text from a StreamReader object named reader.

18. Which StreamReader property lets you know when there is no more data to read in the
input stream?

What Do You Think?

1. Rather than using a loop with a subscript to copy one array to another, is it possible to
use a For Each loop? If your answer is yes, write code that demonstrates your technique.

2. Why is it necessary to call the CType function when calling Object.Clone?

3. Why are shared properties useful in programs? Give an example.

4. Why do you think a middle tier class should not provide a user interface?

5. Why is it inconvenient for constructor parameters to have the same names as class-level
properties or variables?

6. Why is a default constructor sometimes omitted in classes?

7. In the Bank Teller application in this chapter, how does the Account.Withdraw method
let the caller know that the amount being withdrawn is larger than the balance? Can you
think of a better way to signal this type of error?

Algorithm Workbench

1. Create a property that gets and sets a person’s date of birth. Include appropriate error
checking.

2. Create a constructor for a class named Investment that contains one required parame-
ter and two optional parameters. You may choose any parameter names that seem
appropriate.

42 Chapter 1 Classes

3. Create an enumerated type named WindowColor that contains five colors. Then write
a function that has a WindowColor input parameter. The function should display the
color as a string in a Label control named lblWindowColor.

4. Suppose a string named inputLine contains “95.1\86.5\72.4.” Write a single statement
that divides this string into an array of three strings named scores.

Programming Challenges
1. Bank Teller with Totals

Use the Bank Teller application shown in this chapter as a starting point for this exer-
cise. Implement the following properties in the Account class:

• TotalDeposits—the total amount deposited in this account
• TotalWithdrawals—the total amount withdrawn from this account

Add a button to the form that displays a message box containing the total deposits and
total withdrawals, as shown in Figure 1-19. Display the two values in currency format.
Reset the totals to zero when a new account is displayed.

2. Aircraft Takeoff Calculations

As we all know, conventional aircraft such as jets must reach a certain speed before they
can take off. The required speed, known as velocity, enables lift, maneuverability, and
safety requirements to be satisfied. Your job is to write an application that calculates
how much time it will take for certain aircraft to reach their required takeoff velocity.
You will also calculate how many feet of runway will be required. (Ignore the extra run-
way space normally required to allow an aircraft to safely abort a takeoff.)

For each aircraft, you are given (1) its name, (2) its required takeoff velocity (feet/
second), and (3) how quickly it accelerates (feet/second2). Use the following arrays:

Private ReadOnly Names() As String = {''A-747'',''A-737'',''C-150'',''D-240''}
Private ReadOnly TakeoffVelocity() As Double = {250, 264, 270, 240}
Private Acceleration() as Double = {33.5, 44.2, 37.1, 51.9}

The names and values are, of course, fictitious. Create an Aircraft class that holds the
corresponding information for one aircraft. It should have a ToString method that
returns the aircraft name.

In your startup form, create and fill an array of Aircraft objects. Then insert the array
in a ListBox control. When the user selects an aircraft, your program should calculate
and display the required takeoff velocity, the acceleration constant, the time required
to take off, and the number of feet the aircraft will travel on the runway before leav-
ing the ground. Format the output as a sentence, in the manner shown in Figure 1-20.

Figure 1-19 Showing total deposits and withdrawals in a message box.

Programming Challenges 43

In the Aircraft class, create a property for each the following calculations:

TakeoffTime: Calculate the time it will take for the aircraft to reach takeoff velocity
(t = time in seconds), a = acceleration, and v = velocity in ft/sec), using the following
formula:

t = v/a

TakeoffDistance: Calculate the distance (d) traveled (in feet) before takeoff, using the
following formula:

d = at2

3. Training Workshops

Your company likes to present training workshops that help people in the information
technology industry improve their skills. Your task is to write an object-oriented appli-
cation that will let the company display and edit workshops.

There are several workshop categories: (1) application development, (2) databases, (3)
networking, and (4) systems administration. You will create an enumerated type that
matches these categories. A workshop consists of: (1) title, (2) length in days, (3) cate-
gory, and (4) cost. Create a class named Workshop that holds this information, with a
complete set of properties and a ToString method. It should also contain a public shared
string array such as the following:

Public Shared CategoryNames() As String = {''Application development'',
''Databases'', ''Networking'', ''System administration''}

Data File

When the application starts, it must read a list of workshops from a data file and store
them in an array or collection. Each line in the file will be a different workshop, with
the fields separated by the \ (backslash) character. Here is a sample line from the file:

0\3\800\Programming in Java

(Category = 0, Days = 3, Cost = $800, Title = Programming in Java)

Create a user interface that lets the user complete the following tasks:

1. Display all workshops in a list in the startup form, as shown in Figure 1-21.
2. Select a single workshop to display in detail format in a separate window, as shown

in Figure 1-22. A combo box control should display a list of categories, with the
workshop’s actual category as the current selection. This window permits the user to
modify the workshop fields and save all changes. If the user modifies a workshop,
clicks the Save and Close button, and returns to the startup form, the workshop
changes should appear in the list box.

Figure 1-20 Aircraft Takeoff Calculations, sample output

44 Chapter 1 Classes

Implementation Suggestions

You can create a property of type Workshop in the Workshop Details form. Before dis-
playing this form, assign the selected workshop (from the list box) to the Workshop
Details form’s Text property. When the form loads, copy the workshop property values
into the text boxes and combo box.

Here are some suggestions for workshop titles, although you may add more of your own:
Programming in Java, Programming in Visual Basic, Programming in C#, Advanced Java,
Advanced Visual Basic, Advanced C#, Web Application Programming, Intro to Networking,
Advanced Networking, Mobile Networks, Intro to Databases, Database Administration,
Intro to Unix/Linux, Advanced Unix/Linux, and Windows Administration.

4. Investment Tracking

Create an application that tracks investments. Let the user type a ticker symbol into a
text box, enter the number of shares, and set the purchase date. A sample is shown in
Figure 1-23. In the example, the price per share was obtained from a data file that was
read when the application started. The combo box contains a list of investment types.

Figure 1-21 List of training workshops

Figure 1-22 Viewing and editing a single workshop

None of the changes are permanent because you are not required to save the modified
workshop list back to the data file.

Programming Challenges 45

Figure 1-23 After clicking the confirm button

A ticker symbol is a short abbreviation that uniquely identifies the name of an invest-
ment such as a stock. The term ticker refers to the noise made by ticker tape machines
that were once used to print stock prices.

Implementation

Define a class named PriceType with two properties: Ticker (string), and Price (Double).

Define an enumerated type named InvestmentType that lists four types of investments:
stock, mutual fund, commodity, and money market.

Define a class named Investment containing the following public properties:

• Ticker symbol
• Investment type
• Purchase date
• Price per share
• Number of shares purchased
• Purchase amount (read-only)

The class should contain a shared collection of PriceType objects. Also, create a shared
method in the Investment class that loads PriceType information from a comma-delim-
ited text file (in real life, we would expect these values to change constantly). Each line
in the text file should look like the following, in which the first value is the ticker sym-
bol, and the second value is the current price:

AMB, 32.2

The file should contain at least ten lines like this, each with a different ticker symbol and
price.

Create a method in the Investment class that receives a ticker symbol and returns the
price of the investment associated with that ticker symbol.

User Interface Notes

As the user begins to type the ticker symbol into a text box, the application should search
for the symbol and display the price per share. As soon as the ticker symbol matches an

When the user selects an investment type and clicks the Confirm button, the total pur-
chase amount displays in the bottom right corner of the form.

46 Chapter 1 Classes

existing symbol in the collection, the price should appear in a label on the form. We sug-
gest that you write an event handler for the TextChanged event of the TextBox control.
When the user clicks the Confirm button, its click handler should create an Investment
object and initialize its properties with values in the controls on the form.

5. Client Billing

Write an application that tracks the amount of billable time that the user spends on con-
sulting projects. The application reads an input client file and appends information to a
billing file, which it creates the first time it runs.

Startup Form

Figure 1-24 shows a sample of the main window. When the user begins working on
a project, the client name is selected from a ComboBox control. In Figure 1-25, the
user has clicked the Start button, so the billing timer is running. Notice that the Start
button is disabled. In Figure 1-26, the user has clicked the Stop button. At that
moment, the application shows the amount of elapsed time and writes a record to the
billing file.

Figure 1-24 Client selected, before starting the billing timer

Figure 1-25 While the billing timer is running

Programming Challenges 47

Coordinate the command buttons carefully to make sure the user cannot click out of
sequence. The following table shows the two possible program states that affect the but-
tons. The program is in State 1 when it starts; after clicking the Start button, the pro-
gram enters State 2. When the Stop button is clicked, the program returns to State 1.

State Start Stop Exit

1 Enabled Disabled Enabled

2 Disabled Enabled Disabled

When the user clicks the Start button, display a status message Billing in Progress ... to
show that the clock is running. Do not permit the user to select a different client while
the clock is running. When the Stop button is clicked, display the stop time and the num-
ber of billable hours and minutes. The name of the selected client should appear in the
window caption.

TimeClock Class

Create a class named TimeClock that encapsulates the time-related calculations per-
formed by the program. Use a TimeSpan object to hold the difference between two Date-
Time values. The following table lists the TimeClock properties:

Name Type Attributes Description

StartTime DateTime ReadOnly

StopTime DateTime ReadOnly

Elapsed TimeSpan ReadOnly Duration between the starting and ending times

ClientName String

The following table lists the TimeClock methods:

Name Return Type Attributes Description

StartClock none public Begins the timing sequence

StopClock none public Ends the timing sequence

Figure 1-26 After stopping the billing timer

48 Chapter 1 Classes

BillingData Class

Create a class named BillingData to handle the client and billing files. Use the Visual Stu-
dio editor to create the client file. Insert at least five records in the client file before run-
ning the program. Each record in the client file contains a client name. Your program
will create the billing file the first time it runs. Subsequent runs will append to the file.
Each record in the billing file contains the following fields: billing date, client name, start
time, stop time, and elapsed time. The following is a sample record:

02-01-2003,Jones and Smith,21:51,22:10,1:19

6. Elevator Simulation

Write an application that simulates the movement of a passenger elevator. Create a class
named Elevator that holds the following information: current floor number, number of
passengers on the elevator, and direction (up or down). Declare an enumerated type to
represent the elevator direction. Most of your other code will be located in the startup
form.

The simulated building contains eight floors. The elevator starts at the first floor and
moves upward until it reaches the top floor; it then pauses for one cycle, and begins
moving downward until it reaches the first floor. After one cycle, it begins moving up
again. Each floor of the building is initialized with a random number of passengers
(between 0 and 5). As the elevator stops at each floor and picks up passengers, the num-
ber of passengers inside the elevator increases. When the elevator reaches the end of its
trip, all passengers leave the elevator, and the list of floors is filled with a new set of ran-
dom passenger counts.

Use a Timer control to move the elevator to the next floor every two seconds. On each
floor, display the number of people waiting for the elevator, as shown in Figure 1-27.
Before moving to the second floor, the single passenger on the first floor will enter the
elevator. In Figure 1-28 (a different simulation run), the elevator has arrived at the
fourth floor with six passengers. After the three passengers on the fourth floor enter the
elevator, it will contain nine passengers when it reaches the fifth floor.

Use a Panel control to display the elevator as it is moving up and down. To move the
Panel up and down in the window, create a new Point object using x and y coordinates,
and assign it to the Panel’s Location property.

Figure 1-27 Beginning position of the elevator on the first floor

Programming Challenges 49

Figure 1-28 Elevator arrives at the fourth floor

This page intentionally left blank

TOPICS

Input Validation and
User Interfaces2

2.1 Input Validation

Tutorial 2-1: Using the ErrorProvider
control

2.2 Exception Handling

2.3 ListBox, ComboBox, and
CheckedListBox

2.4 Dates and Times

2.5 ToolStrip Control

Tutorial 2-2: Building the Coffee Shop
application

2.6 FlowLayoutPanel, WebBrowser,
SplitContainer, and TabControl

Tutorial 2-3: Creating a simple image
album

Tutorial 2-4: Completing a WebBrowser
application

2.7 Focus on Problem Solving: Kayak Tour
Scheduling Wizard

Tutorial 2-5: Completing the Kayak
Tour Wizard application

51

C
H

A
P

T
E

R

This chapter provides in-depth coverage of input validation and error handling. The Error-
Provider control is introduced as an ideal tool for input validation. Next, we review the
ListBox, ComboBox, and CheckedListBox controls, which shows you how to write code
that deals with multiple selections. Following that, we show how to use the FlowLayout,
WebBrowser, SplitContainer, and TabControl controls to develop creative user interfaces.
The chapter finishes with the design and development of a software wizard to illustrate some
of the power and flexibility of this type of application.

2.1 Input Validation
Whenever possible, applications should do their best to detect and handle errors resulting
from user input. Most of a programmer’s efforts are often directed toward error detection
and recovery. In our book Starting Out with Visual Basic 2010, we showed how to use Try-
Parse, Try-Catch, and If statements to handle user input errors. In this chapter, we show two
basic approaches to notifying the user when an error is detected:

• The StatusStrip control can display error messages in a label at the bottom of the form.
• The ErrorProvider control can use flashing icons to alert the user of an error. Then the

user can see a more detailed error message when hovering over the control with the
mouse.

52 Chapter 2 Input Validation and User Interfaces

Later in the chapter, we will review the topic of exception handling, and provide detailed
information on how to handle multiple exception types.

The Char Data Type
The Char data type holds some useful tools for string manipulation and validation. Inter-
nally, a Char holds a single 16-bit Unicode character. The Unicode character format can rep-
resent a variety of international characters in most world languages.

A character constant is encoded between quotes, followed by a lowercase letter C. The fol-
lowing code stores the letter A in the variable named letter:

Dim letter As Char = ''A''c ' the capital letter A

The String class has a Chars property that you can use to get a single character from a given
index position in a string. The following lines, for example, place the letter A in the variable
named ch:

Dim temp As String = ''ABC''
Dim ch As Char = temp.Chars(0)

Chars is a default property, so you can write the following equivalent statement:

Dim ch As Char = temp(0)

The Chars property is ReadOnly, so you cannot use it to modify a string. The following
statement is not valid:

temp(0) = ''X''c

The String class has a ToCharArray method to convert that builds a character array from a
string:

Dim temp As String = ''ABCDEFG''
Dim chars() As Char = temp.ToCharArray()

Shared Methods

Following is a list of the shared methods belonging to the Char class that you are likely
to use:

• GetNumericValue(Char ch) As Double—returns the numeric value of ch
• IsControl(Char ch)—returns True if ch is a control character, such as a backspace,

cursor arrow, Home, End, etc.
• IsDigit(Char ch)—returns True if ch is a decimal digit (0 to 9)
• IsLetter(Char ch)—returns True if ch is a letter
• IsLetterOrDigit(Char ch)—returns True if ch is a letter or digit
• IsLower(Char ch)—returns True if ch is a lowercase letter
• IsUpper(Char ch)—returns True if ch is an uppercase letter
• IsPunctuation(Char ch)—returns True if ch is a punctuation mark, such as a comma,

semicolon, or period
• IsSymbol(Char ch)—returns True if ch is a symbol character, such as +, –, and *
• IsWhiteSpace(Char ch)—returns True if ch is a tab, newline, or space
• ToLower(Char ch)—returns the lowercase equivalent of ch
• ToUpper(Char ch)—returns the uppercase equivalent of ch

The classification of individual characters as punctuation and symbols varies from one lan-
guage to another, but those values are generally known for the English language.

A shared method is called using the class name before the dot (.). For example, the follow-
ing expression converts the contents of the Char variable named letter to lowercase:

Char.ToLower(letter)

2.1 Input Validation 53

The following code displays a message if the Char variable named input contains a decimal
digit:

If Char.IsDigit(input) Then
lblStatus.Text = ''The character is a digit''

End If

Char methods can check for certain classes of characters. For example, the following code
counts the number of letters and digits in a string:

Dim count As Integer = 0
For Each ch As Char in inputString

If Char.IsLetterOrDigit(ch) Then
count += 1

End If
Next

You can use Char methods to validate keyboard input, as we show in the next section.

Working with TextBoxes and Strings
The TextChanged event associated with the TextBox control fires every time the user
changes its contents. The event can also fire if a program statement modifies the Text prop-
erty. For example, you might write code in a TextChanged handler to enable a button (the
OK button) if the length of the Text is a certain size:

Private Sub txtPatientID_TextChanged() _
Handles txtPatientId.TextChanged
btnOk.Enabled = txtPatientId.Text.Length = 6

End Sub

There are many other ways you can filter or process the input string. You might convert all
characters to uppercase, for example:

txtPatientId.Text = txtPatientId.Text.ToUpper()

KeyPress Event

The TextBox control also fires a KeyPress event each time the user presses a key while the
input focus is on the control. You can use this event to filter out certain characters. For
example, in the following event handler, we reject any character that is not a letter or digit:

Private Sub txtPatientID_KeyPress(ByVal sender As System.Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs) _
Handles txtPatientID.KeyPress

If Not Char.IsLetterOrDigit(e.KeyChar) Then
e.Handled = True

End If
End Sub

By default, the e.Handled property equals False. This value means that the key will be
processed and displayed normally. If you want to reject an input character, you must set
e.Handled parameter to True. Then the character will not appear in the text box and it will
not be added to the Text property.

Usually, when filtering a user’s input, we permit him or her to press control characters such
as the Backspace key or arrow keys. In the following code, line 5 exits immediately if a con-
trol character is found. This prevents any further filtering of the input:

1 Private Sub txtPatientID_KeyPress(ByVal sender As System.Object,
2 ByVal e As System.Windows.Forms.KeyPressEventArgs) _
3 Handles txtPatientID.KeyPress
4

54 Chapter 2 Input Validation and User Interfaces

5 If Char.IsControl(e.KeyChar) Then Exit Sub
6
7 If Not Char.IsLetterOrDigit(e.KeyChar) Then
8 e.Handled = True
9 End If
10 End Sub

If line 7 is reached, we assume that e.KeyChar is a displayable character. Then the character
is filtered out if it is neither a letter nor a digit.

Displaying Messages with the StatusStrip Control
When signaling user input errors, it is possible to call the MessageBox.Show method. But
this way of handling errors interrupts the user and forces her to close the message box. Gen-
erally, this approach should be avoided unless the error is so critical that it absolutely can-
not be ignored.

A better way to display error messages is to alert the user without interrupting his actions.
For example, you can display an error message in a label on a StatusStrip control. The user
will see the error message, make a mental note, and fix the error when it is convenient.

You can find the StatusStrip control inside the Menus & Toolbars section of the Visual Stu-
dio Toolbox, as shown here:

By default, the StatusStrip control docks along the bottom of the form. When you select the
control with the mouse, as in Figure 2-1, an insert tool appears at the first available posi-
tion. Click the arrow pointing downward to add a control to the strip. Although several
types of controls are available, you will only need to add a ToolStripStatusLabel control to
the strip in order to display messages for the user. A sample message, shown at runtime,
appears in Figure 2-2. By changing its Dock property, you can attach the StatusStrip to any
side of the form.

Figure 2-1 StatusStrip control, in design mode

2.1 Input Validation 55

Figure 2-2 Message displayed in StatusLabel at runtime

ErrorProvider Control
The ErrorProvider control provides a visual cue to the validation status of input fields on a
form. It does not perform the actual validation—you must do that in your own code. But it
displays a bright red icon next to fields that have been found to contain invalid data. In
Figure 2-3, for example, the icon next to the text box was displayed by an ErrorProvider
control. When the user hovers the mouse over the icon, a popup message appears much in
the same way as a tool tip.

Figure 2-3 ErrorProvider control, with icon and popup message

A single ErrorProvider control can validate all controls on the same form. The control can be
found in the Components section of the Visual Studio Toolbox. The ErrorProvider is not visible
on the form in Design mode, so when it is added to a form, it appears in the form’s component
area.

The best approach to using ErrorProvider is to write code in an input field’s event handler
that checks for invalid data. If an error is discovered, call the ErrorProvider’s SetError
method, passing it a reference to sender (the control being validated) and an error message
string. This is the general format of SetError:

Provider.SetError(ControlName, Message)

Provider is the name of the ErrorProvider control. ControlName is the name of the control
being validated, and Message is a string that will pop up when the user hovers the mouse
over the error icon.

Last Name Input Example

The following example code is from the TextChanged event handler for a TextBox named
txtLastName. If the box is blank, we pass an error message to the SetError method:

Private Sub txtLastName_TextChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles txtLastName.TextChanged

56 Chapter 2 Input Validation and User Interfaces

If txtLastName.Text.Length = 0 Then
errProvider.SetError(DirectCast(sender, Control),

''Last name cannot be blank'')
End If

In the code above, the sender parameter is type Object, so it must be cast into a Control
object before it can be passed to the SetError method.

The ErrorProvider’s GetError method returns the current error message associated with a
control:

Dim st As String = errProvider.GetError(txtLastName)

Choosing Event Handlers

When implementing the ErrorProvider control, determine how and when you want the error
checking to take effect. The Leave event is fired when the user moves the focus away from
any type of input control. Examples are text boxes, list boxes, check boxes, and combo
boxes. In a TextBox, if you want an event to fire each time the user types a character, write
a handler for the TextChanged event.

You might implement the two types of checking by providing separate methods that handle
both the Leave event and the TextChanged event. That would result in unwanted duplicate
code. Instead, you can write a single event handler for multiple events. The following exam-
ple handles both TextChanged and Leave events for the same control. Both event types use
the same parameter list:

Private Sub txtLastName_Validate() _
Handles txtLastName.TextChanged, txtLastName.Leave

In Tutorial 2-1, you will create an application that demonstrates the use of the ErrorProvider
control.

Tutorial 2-1:
Using the ErrorProvider control

In this tutorial, you will create an application that prompts the user for his or her name
and age. Your program will verify that the name field is not empty, and that the age field
is numeric. An ErrorProvider control will be used to signal the user and display an error
message on demand.

Step 1: Create a Windows application named ErrorProvider Test.

Step 2: Add an ErrorProvider control to the form and name it errProvider.

Step 3: Add a StatusStrip control to the form. Edit the control and insert a Tool-
StripStatusLabel named lblStatus.

Step 4: Add the remaining controls listed in Table 2-1 to the form. The startup form
is shown at runtime in Figure 2-4.

Step 5: At the top of the form’s code window, use ReadOnly strings to define error
messages:

Private ReadOnly mNameMsg As String = ''Name cannot be blank''
Private ReadOnly mAgeMsg As String = ''Age must be a number''
Private ReadOnly mValidMsg As String = ''All user input is valid''

Step 6: Create the following methods that validate the age and last name fields:

Private Sub ValidateAge(ByVal ctrl As Control)
If Not IsNumeric(txtAge.Text) Then

errProvider.SetError(ctrl, mAgeMsg)
txtAge.Focus()

Else
errProvider.SetError(ctrl, String.Empty)

End If
End Sub

Private Sub ValidateLastName(ByVal ctrl As Control)
If txtLastName.Text.Length = 0 Then

errProvider.SetError(ctrl, mNameMsg)
txtLastName.Focus()

Else
errProvider.SetError(ctrl, String.Empty)

End If
End Sub

The methods shown above check to make sure the age is numeric and the last
name is not blank. If an error is found, they call the ErrorProvider’s SetError

2.1 Input Validation 57

Table 2-1 Controls in the ErrorProvider Test application

Control Type Control Name Properties

Form (default) Text: ErrorProvider Test
Font.Size: 10pt

ErrorProvider errProvider

TextBox txtLastName Text: String.Empty

TextBox txtAge Text: String.Empty

Button btnOK Text: OK

Button btnClose Text: Close

Label (default) Text: Last name:
TextAlign: MiddleRight

Label (default) Text: Enter your age:
TextAlign: MiddleRight

StatusStrip (default)

ToolStripStatusLabel lblStatus Text: String.Empty

Figure 2-4 ErrorProvider Test user interface

58 Chapter 2 Input Validation and User Interfaces

TIP When an ErrorProvider’s message string is blank, the ErrorProvider
icon disappears. This is a useful visual cue to the user that the input error
has been corrected.

method, passing to it the control that caused the error along with an error
message. They also call the Focus method, which sets the input focus to the
input field that needs to be fixed.

Step 7: Create event handlers for the txtAge and txtLastName controls. Each one
handles both Leave and TextChanged events. And each one calls an appro-
priate validation method, passing to it a reference to sender, cast into a Con-
trol object:

Private Sub txtLastName_Validate(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtLastName.Leave,

txtLastName.TextChanged
ValidateLastName(CType(sender, Control))

End Sub

Private Sub txtAge_Validate(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtAge.Leave,

txtAge.TextChanged
ValidateAge(CType(sender, Control))

End Sub

Step 8: Create Click event handlers for the OK and Cancel buttons. The btnOK han-
dler calls ValidateAge, in case the user has clicked the OK button without hav-
ing visited the txtAge text box. The btnOK_Click event handler makes sure
both error messages are blank before allowing the form to close:

Private Sub btnOK_Click() Handles btnOK.Click
' Enforce validatation of the Age input field
' in case the user tries to skip it.
ValidateAge(txtAge)
With errProvider

If .GetError(txtLastName).Length <> 0 Then
lblStatus.Text = mNameMsg

ElseIf .GetError(txtAge).Length <> 0 Then
lblStatus.Text = mAgeMsg

Else
lblStatus.Text = mValidMsg

End If
End With

End Sub

Private Sub btnClose_Click() Handles btnClose.Click
Me.Close()

End Sub

Step 9: Save the project and run the application. Here are some suggestions for test-
ing the application.

• Press the Tab key to move between the two blank text boxes. The Error-
Provider icon will appear as soon as you move away from a blank text box.
Hover the mouse over the icon to read its message.

• While the two text boxes are still blank, click the OK button. A message
should inform you that the last name cannot be blank. Fix the last name

2.2 Exception Handling 59

and click the OK button again. This time, the error message should say that
age must be numeric.

• Type a name into the last name box and note that the ErrorProvider icon
disappears.

• Enter a non-numeric value into the Age text box. Fix the error and watch
the red icon disappear.

• Click the Cancel button, even when the input fields are empty. The form
closes without performing any validation.

Summary

The ErrorProvider control offers a flexible way to deal with input errors, particularly
because you can write your own methods to perform advanced types of validation.

Checkpoint

1. How many bits are used to represent a Char type object?

2. Which shared method in the Char class returns a specific character in a string?

3. Which shared method in the Char class tells you if a character is either a letter or a
number?

4. How do you convert a character to uppercase?

5. How do you find out if a character is a control character, such as Backspace?

2.2 Exception Handling
In general terms, when any program encounters an error while running, we say that a run-
time error occurred. In .NET and other environments like it, we can also say that the appli-
cation threw an exception. The phrase throwing an exception seems a bit unusual, but it has
always meant that some part of a program used the Throw statement to signal that it
detected an error. Then another part of the program used the Catch statement to catch the
exception.

Exceptions are objects. In other words, a program that throws an exception is really throw-
ing an instance of one of the exception classes. All exception classes are related to the
System.Exception class.

An exception is thrown when a program encounters an error severe enough to cause the pro-
gram’s behavior to become unreliable. The error must be resolved before the program can
continue. If the exception causes the program to stop, we call it an unhandled exception or
an uncaught exception.

Visual Basic performs what is known as structured exception handling. One part of a pro-
gram detects and responds to specific exceptions. When an exception is thrown, the program
may be able to recover from the exception and continue executing, or it may close in a con-
trolled manner.

Handling Exceptions
Your programs will most often handle exceptions that were caused (thrown) because of
invalid input by a user. A typical example is when you ask the user to enter a number, and

60 Chapter 2 Input Validation and User Interfaces

Figure 2-5 Syntax of the Try—Catch —Finally Statement

Try
try-block

Catch [optional filters]
catch-block

[additional Catch blocks]
catch-block

[Finally
finally-block]

End Try

instead he or she leaves the input field blank or types invalid characters. A statement such
as the following can cause an exception to be thrown:

Dim age As Integer = CInt(txtAge.Text)

An exception can also be thrown when a program tries to open a data file that cannot be
found, or when a program tries to divide by zero. Of course, these types of errors can often
be avoided by calling TryParse, or checking a denominator’s value before performing divi-
sion. But other types of errors may be caused by circumstances outside the programmer’s
control.

Try—Catch—Finally Statement

Handling an exception is accomplished using a Try—Catch—Finally statement. An optional
statement, Finally, is often used, too (see Figure 2-5). We will discuss the exception-type
parameter in the next section. A structured exception handler begins with Try and ends with
End Try. There are three blocks:

Try block

Catch block

Finally block
exception not thrown

exception
thrown

Figure 2-6 Alternate execution paths

1. The Try block starts with Try and ends just before the Catch keyword. The Try block
contains code that might cause an exception to be thrown.

2. The Catch block starts with the Catch keyword and ends before the Finally keyword,
or at the beginning of a new Catch block. The code in the Catch block executes when
an exception is thrown. The Catch block is known as the exception handler.

3. The Finally block (optional) begins with Finally and ends at End Try. If no exceptions
are thrown, the Finally block executes immediately after the last statement in the Try
block. If an exception is thrown, the Finally block executes immediately after the last
statement in the appropriate Catch block.

Figure 2-6 shows the alternate paths that may be taken through a Try—Catch—Finally
statement, depending on whether an exception was thrown. Use the optional Finally
block to release resources created inside the Try block or to perform any other type of
cleanup.

2.2 Exception Handling 61

Integer Conversion Example

The following code attempts to convert the contents of a TextBox to an integer. It displays
an appropriate message depending on the outcome:

Try
Dim n As Integer = CInt(txtInput.Text)
stsMessage.Text = ''OK''

Catch
stsMessage.Text = ''That's not an Integer!''

End Try

Figure 2-7 shows the result when the user enters “xxx” into the text box and clicks the OK
button.

Figure 2-7 Handling the exception

Catch Block—Optional Filters

What would happen in our exception test example if the user entered an integer outside
the range �2,147,483,648 to 2,147,483,647? The message That’s not an Integer would
display, which is not quite appropriate. A preferred approach would be to catch two types
of exceptions:

• InvalidCastException: Input string cannot be converted to an integer
• OverflowException: Conversion yields an integer that is either too large or too small

To do that, we create multiple catch blocks. And we create catch blocks that look for spe-
cific exception types by adding a filter expression to the Catch statement. Here is the gen-
eral syntax:

Catch ObjectVar As ExceptionType

ExceptionType is the name of a class that is derived from the System.Exception class.
ObjectVar is the name of a variable that references the exception object being caught. You
can use the object variable to call System.Exception properties and methods. The most com-
mon ones are listed here:

• Message—Gets a message string describing the current exception
• StackTrace—Gets a string representation of the call stack when the exception was

thrown, enabling you to trace the error through several method calls
• ToString—Returns a string representation of the exception, including the Message and

StackTrace property values
• GetType().ToString—Returns a string containing the exception type

62 Chapter 2 Input Validation and User Interfaces

Examples

The following Catch block names a specific exception type and displays the Exception
object’s Message property:

Catch ex As InvalidCastException
MessageBox.Show(ex.Message)

Let’s return to our earlier integer conversion example and create Catch blocks for two spe-
cific exception types: InvalidCastException and OverflowException. We will also display the
exception object’s Message property in a label on a StatusStrip control:

Try
Dim n As Integer
n = CInt(txtInput.Text)
stsMessage.Text = ''OK''

Catch ex As InvalidCastException
stsMessage.Text = ''Please enter only digits''

Catch ex As OverflowException
stsMessage.Text = ''The number was out of range''

End Try

You may notice in the code above that the same object variable name (ex) was used in more
than one Catch block. That is permitted because each variable is separate from the other. Fig-
ure 2-8 shows how the sample program responds when the user enters either “xxx” or a very
large integer into the text box. Each message is customized to the particular type of error.

Figure 2-8 Handling specific exceptions

Using StackTrace and GetType

The following code displays a message box containing the Exception object’s StackTrace
property, with the name of the exception type in the title bar of the message box. The sam-
ple output is shown in Figure 2-9.

Try
Dim n As Integer = CInt(txtInput.Text)

Catch ex As Exception
MessageBox.Show(ex.StackTrace, ex.GetType().ToString)

End Try

Throwing Exceptions
When you create methods and properties that are called from other methods, you have the
opportunity to throw exceptions. Throwing an exception is a powerful technique because
it lets you signal that some data value is missing, inconsistent, out of range, or invalid. By
throwing the exception, you are saying that you do not have enough information about the

2.2 Exception Handling 63

Figure 2-9 Displaying a stack trace

overall context of the application to resolve the issue fully. Suppose, for example, when
working in an ice cream store, you discover that all the ice cream scoops are missing.
Assuming that you cannot resolve the issue, you alert the manager. Essentially, you have
thrown an exception. When the manager locates a scoop and gives you one, she has caught
the exception. Now you can start eating ice cream again (and occasionally serve some to
the customers).

You are likely to throw only two standard exception types from your own class code. Their
names are self-explanatory:

• IndexOutOfRangeException
• ArgumentOutOfRangeException

It is possible to define your own exception classes, but that would be necessary only in appli-
cations more advanced than the ones presented in this book.

Payroll Example

Let’s create a Payroll class with a property named HoursWorked, which should contain val-
ues between 0 and 80 (for a single week). If a value outside that range were to be assigned
to the property, any other calculations based on this property would probably be incorrect.
In those cases, we throw an ArgumentOutOfRangeException object:

Class Payroll
Private mHoursWorked As Double

Public Property HoursWorked() As Double
Get

Return mHoursWorked
End Get
Set(ByVal value As Double)

If value < 0 OrElse value > 80 Then
Throw New ArgumentOutOfRangeException

Else
mHoursWorked = value

End If
End Set

End Property
End Class

We assume that the Payroll class does not directly interact with the user because it is a mid-
dle tier class. Therefore, catching the exception and displaying a message for the user can-
not be done by the Payroll class. Instead, the exception would be caught and handled by a
class in the presentation tier (a form).

Figure 2-10 shows what would happen if the calling code did not catch the exception we
have thrown. The error message shown in the figure is a bit vague, so we might improve it

64 Chapter 2 Input Validation and User Interfaces

Figure 2-10 Unhandled Exception as a result of an exception thrown by
Payroll.HoursWorked

by passing two parameters to the exception’s constructor: the property name and a helpful
message. The following code shows just the Set section of the revised property procedure:

Set(ByVal value As Double)
If value < 0 OrElse value > 80 Then

Throw New ArgumentOutOfRangeException(''HoursWorked'',
''Must be between 0 and 80'')

Else
mHoursWorked = value

End If
End Set

Figure 2-11 Improved error message from the exception thrown by
Payroll.HoursWorked

Now if the exception is not caught, the output shown in Figure 2-11 is more descriptive than
in the previous figure.

Handling a Thrown Exception

A method that assigns a value to the HoursWorked property can handle the potential
thrown exception. The following is an example of how to do this:

Public Class PayrollForm
Private myPayRoll As New Payroll

Private Sub bntOk_Click() Handles bntOk.Click
Try

myPayRoll.HoursWorked = CDbl(txtHours.Text)
Catch ex As Exception

lblResult.Text = ex.Message
End Try

End Sub
End Class

You can see in this code that it is not necessary to be specific about the exception class
because catching a basic Exception object will catch all other types of exceptions. When the

2.2 Exception Handling 65

Figure 2-12 Exception caught in the PayrollForm class

code catches an exception, the message displayed in the label is easy to understand (see
Figure 2-12). In our current example, the average user doesn’t care that the property name
is HoursWorked, but the name bears a close resemblance to the input field that the user was
using at the time. We recommend that you customize your messages when throwing excep-
tions to make them more understandable to the user.

Summary

Think about exception handling from two points of view—how you throw exceptions in one
part of your application, and how you handle them in another part. Understanding the
appropriate places to do these two tasks will take some time, but it is well worth the effort.
Here are a few guidelines that you may find helpful when using exception handling:

• Middle tier classes can detect errors, but they should not display any messages to the
user. They tend to throw exceptions more often than they catch them.

• Presentation tier classes often execute other code that might throw exceptions. A form
class will usually catch an exception and alert the user.

• If possible, try to prevent exceptions before they are thrown. The TryParse and
IsNumeric methods are helpful in this regard.

• When a Try block contains multiple statements (and it usually does), not all statements
in the block may be able to execute. If an exception is thrown partway through the exe-
cution of the block, control immediately transfers to the appropriate Catch block. The
remaining statements in the Try block are skipped.

• Catch blocks should always begin with the most specific exception types and end with
the most general. Once a Catch block is entered, no other Catch block can execute. In
the following example, the Catch block for the Exception class is last. It catches all
exceptions that have not yet been caught by the specific Catch blocks:

Catch ex As OverflowException
...
Catch ex As FormatException
...
Catch ex As Exception ' catches all exceptions

• Throw predefined .NET exception types whenever possible. You can customize the
Message property by passing a string to the exception’s constructor.

Checkpoint

6. What type of exception causes a program to halt?

7. What action related to exceptions does a program take when it encounters invalid
user input that might cause the program’s behavior to be unreliable?

66 Chapter 2 Input Validation and User Interfaces

8. How can an application continue to run when an exception has been thrown?

9. Must a Catch block include an exception object variable?

10. Does the code in a Finally block execute regardless of whether an exception was
thrown?

2.3 ListBox, ComboBox, and CheckedListBox
The ListBox, ComboBox, and CheckedListBox are not considered advanced controls. But
there are techniques for using them that one might consider to be advanced. For example,
we will show how you can use just one line of code to assign an array directly to the Items
collection of a ComboBox control. We will also show how you can insert custom objects
into a ListBox control.

To make this discussion as general as possible, we will use the term list-type control to
include the ListBox, ComboBox, and CheckedListBox controls. As you are aware, these con-
trols have many characteristics in common.

CheckedListBox Control

The CheckedListBox control has the same properties and behavior as a ListBox, except that
it displays a check box next to each item (see Figure 2-13). Ordinarily, clicking once on an
item selects it, and clicking a second time places a check in the item’s check box. But if you
set the CheckOnClick property to True, only a single mouse click is needed to check and
uncheck each item.

Figure 2-13 CheckedListBox control

Multiple check boxes may be checked at the same time. The CheckedListBox has a property
named CheckedIndices, which is a collection of the indexes of the checked items. Similarly,
the CheckedItems collection contains the items that are checked.

Selecting Items

The SelectedIndex property returns the index position of the most recently selected item of
a list-type control. Here’s an example:

Dim index As Integer = lstNames.SelectedIndex

You can also use code to set the value of this property at runtime.

lstNames.SelectedIndex = 0 ' selects the first item

The SelectedItem property returns a reference to the item selected by the user.

Dim name As String = lstNames.SelectedItem

2.3 ListBox, ComboBox, and CheckedListBox 67

Selecting Multiple Items

The SelectionMode property of a ListBox can be configured to allow the user to make mul-
tiple selections. You can set it to each of the following:

• None—no items can be selected.
• One—only a single item can be selected.
• MultiSimple—multiple individual items can be selected by clicking the mouse on each item.
• MultiExtended—multiple individual items can be selected by holding down the Ctrl

key, and a range of items can be selected by holding down the Shift key.

If a ListBox or CheckedListBox control allows multiple selections, the SelectedIndices prop-
erty contains a collection of the indexes of the selected items. The following example loops
through SelectedIndices:

For Each index As Integer in lstNames.SelectedIndices
Next

Similarly, the SelectedItems property is a collection containing all currently selected ListBox
items:

For Each item As String in lstNames.SelectedItems
Next

The CheckedListBox control also has a CheckedItems property that is a collection contain-
ing all items checked by the user.

For Each item As String in lstNames.CheckedItems
Next

Items.AddRange

To insert an array into a list-type control, pass the array to the Items.AddRange method. For
example, the following statement declares an array of strings named colors and adds it to a
list box:

Dim colors() As String = {''Red'',''Blue'',''Green''}
lstColors.Items.AddRange(colors)

The same technique works with ComboBox and CheckedListBox controls.

Adding and Inserting Single Items

To append an item to the end of the Items collection in a list-type control, call the Items.Add
method. For example:

lstColors.Items.Add(''Purple'')

To insert an item into the beginning or middle of a list-type control, call its Items.Insert
method. Pass the index position where you want to insert. This is the general format:

ControlName.Items.Insert(index, item)

ControlName is the name of the control. For example, the following inserts “Yellow” into
index 0 (at the beginning):

lstColors.Items.Insert(0, ''Yellow'')

Removing Items

The Items.Remove and Items.RemoveAt methods both erase one item from a list-type con-
trol. This is the general format for both methods:

ControlName.Items.Remove(item)
ControlName.Items.RemoveAt(index)

68 Chapter 2 Input Validation and User Interfaces

ControlName is the name of the control. Item is an object that exactly matches one of the
items in the Items collection. Index is the index position where you wish to remove an
item. For example, the following statement removes the color “Yellow” from the lstCol-
ors list box:

lstColors.Items.Remove(''Yellow'')

The following statement removes the item at index position 2:

lstColors.Items.RemoveAt(2)

If you pass an item to the Remove method that is not in the Items collection, nothing is
removed. If you pass an index to the RemoveAt method that is out of range, an exception is
thrown.

The Items.Clear method removes all items from the collection.

Inserting Objects into List-Type Controls
As we have shown, it is easy to insert an array into a list-type control. However, applications
often use parallel arrays with related information. For example, you might have an array of
drink names as strings that parallels an array of prices for those drinks. How could you
insert both into a ListBox?

You can create a class that defines the objects to be inserted in the list. The class must have
properties to hold the data, as well as a ToString method. For example, DrinkType is a class
that contains the name and price of a drink:

Class DrinkType
Public Name As String
Public Price As Double
Public Overrides Function ToString() As String

Return Name
End Function

End Class

DrinkType must contain a ToString method, which is called by the ListBox control when dis-
playing the drink names.

To demonstrate, imagine a simple application that displays a list box containing the
names of drinks. When the user selects a drink, the price of the drink appears. In Fig-
ure 2-14, the user interface shows how the price changes when the user selects different
drinks.

First, let’s define a couple of arrays of drink names and their corresponding prices:

Private ReadOnly Names() As String = {''Espresso'', ''Cappucino'',
''Latte'', ''Cortadito'', ''Cafe au Lait'', ''Chai Tea''}

Private ReadOnly Prices() As Double = {2.0, 3.5, 3.4, 1.5, 2.2, 1.5}

We certainly could have inserted only the drink names into a ListBox, and used its
SelectedIndex to reference data in other parallel arrays. Let us consider, however, the
advantages of using the DrinkType class. First, DrinkType objects can be passed easily as
parameters between methods. Second, parallel arrays often become unsynchronized
when new values are added or removed. We will not have that problem with an array or
collection of DrinkType objects. Finally, DrinkType objects can easily be inserted into a
database table.

Next, let’s define an array named drinks that holds DrinkType objects:

Private drinks(5) As DrinkType

2.3 ListBox, ComboBox, and CheckedListBox 69

Figure 2-14 Displaying a list of drinks and prices

Next, the Form_Load event handler loops through the Names and Prices arrays and assigns
their values to the objects in the drinks array:

1 Private Sub Form1_Load() Handles MyBase.Load
2 For i As Integer = 0 To Names.Count – 1
3 drinks(i) = New DrinkType
4 drinks(i).Name = Names(i)
5 drinks(i).Price = Prices(i)
6 Next
7 lstDrinks.Items.AddRange(drinks)
8 End Sub

Line 3 creates a new DrinkType object and assigns it to the current array position. Lines 4–5
assign the DrinkType properties, and line 7 copies the drinks array into the list box when
the application starts.

In the SelectedIndexChanged event handler for the ListBox, we get the selected DrinkType
object and copy its price to a label:

1 Private Sub lstDrinks_SelectedIndexChanged() _
2 Handles lstDrinks.SelectedIndexChanged
3
4 Dim aDrink As DrinkType = CType(lstDrinks.SelectedItem, DrinkType)
5 lblPrice.Text = aDrink.Price.ToString(''c'')
6 End Sub

The SelectedItem property of a list box returns a plain object, so it was cast it into a Drink-
Type object on line 4. Then, on line 5, we were able to access the drink’s Price field.

Summary

It is safe to say that connecting an object array to a list-type control can make your pro-
gram code simpler. This is because each object may contain a number of fields, allowing
you to keep all the information together. It is true that you have to invest some time in
creating a class to hold the data. But as your programs become more object-oriented, this
task will become natural, and you will find that classes make it easier to write advanced
applications.

70 Chapter 2 Input Validation and User Interfaces

Checkpoint

11. What is the purpose of the CheckOnClick property in the CheckedListBox
control?

12. Which property of a ListBox contains the indexes of all the selected items?

13. Which ListBox property controls the way multiple items are selected?

14. Which ComboBox method fills the list from an array?

15. Which ComboBox method removes the item at index position 2?

2.4 Dates and Times
Many applications use date and time information. Some do scheduling of meetings, projects,
appointments, and events. Other applications store information about events, such as when
a stock was purchased or when a home was sold. The .NET framework provides several
classes that make date and time manipulation very easy:

• DateTime
• TimeSpan
• DateTimePicker

First, we will start with the DateTimePicker control, which provides an easy-to-use interface
for collecting or displaying date and time information. Then we will show some easy tech-
niques for doing arithmetic with dates and times.

DateTimePicker Control
The DateTimePicker control provides an attractive and intuitive way to display and ask for
date information from the user. You can use it to display either a date or a time, depending
on how it is configured. Normally, when the user clicks the dropdown arrow, a month cal-
endar drops down, as shown in Figure 2-15.

Figure 2-15 Dropdown month calendar in the DateTimePicker control

The DateTimePicker uses very little screen space until it is activated. The Format property
controls the appearance of the date or time. Choices for the Format property are Long,
Short, Time, or Custom. If Custom is selected, another property named CustomFormat is
assigned a custom format string. Figure 2-16 shows examples of each of the standard for-
mats, plus a custom format.

2.4 Dates and Times 71

Figure 2-16 Sample formats for the DateTimePicker control

Table 2-2 Sample date (June 27, 2006, 4:05 P.M.) displayed in custom DateTime formats

Custom Format String Sample Display

dd MMM, yyyy 27 Jun, 2006
MM/dd/yyyy, dddd 06/27/2006, Tuesday

dd.mm.yy 27.06.06

H:mm 16:05
h:mm tt 4:05 PM

Custom Date/Time Formats

Custom date/time formats are somewhat hard to remember, but you can find ample docu-
mentation by looking for Custom DateTime Format String in MSDN help. Table 2-2 shows
several sample custom format strings for displaying June 27, 2006, at 4:05 P.M.

Other Properties

• The MinDateTime property limits the earliest date and time the user can select. The
MaxDateTime property limits the latest date and time the user can select. In most appli-
cations, you will set these values to prevent the user from entering unreasonable dates.

• The Value property gets or sets the date and time assigned to the control. By default,
the control displays the current date and/or time. You can set it to any value between
MinDateTime and MaxDateTime. When the user selects a new date or time, the Value
property tells you what the user selected.

• The ShowUpDown property, when set to True, prevents the dropdown month calen-
dar from showing. Instead, the user must use the mouse to select individual parts of
the date or time. He or she can type numbers or click on spin button arrows to change
the values.

• The ShowCheckBox property determines whether to display a check box in the control.
By selecting the check box, the user can indicate that the control has been selected. Use
the Checked property set or get the value of the check box. A sample is shown here:

Date and Time Arithmetic
If you need to add a value to a DateTime object, there are couple of ways to do it. You can
add individual months, days, hours, minutes, and seconds. None of these methods modifies
the current DateTime object:

Function AddMonths(Integer) As DateTime
Function AddDays(Double) As DateTime
Function AddHours(Double) As DateTime
Function AddMinutes(Double) As DateTime
Function AddSeconds(Double) As DateTime

72 Chapter 2 Input Validation and User Interfaces

Most of these parameters are doubles; for example, you can add 1.5 hours to a DateTime
object.

Examples

The following adds 133 days to the current DateTime and returns a new value:

Dim later As DateTime = Today.AddDays(133)

The following adds 3.5 hours to the current DateTime and returns a new value:

later = Today.AddHours(3.5)

The following adds 60 minutes to the current DateTime and returns a new value:

later = Today.AddMinutes(60)

The following adds 30 seconds to the current DateTime and returns a new value:

later = Today.AddSeconds(30)

TimeSpan Objects

Another way to add or subtract from a DateTime is to use a TimeSpan object. You can add
and subtract TimeSpan objects from a DateTime object:

Function Add(TimeSpan) As DateTime
Function Subtract(TimeSpan) As DateTime

A TimeSpan object can be constructed in a number of different ways. Here are four examples:

New TimeSpan(ticks As Long)
New TimeSpan(hours As Integer, minutes As Integer,

seconds As Integer)
New TimeSpan(days As Integer, hours As Integer,

minutes As Integer, seconds As Integer)
New TimeSpan(days As Integer, hours As Integer, minutes As Integer,

seconds As Integer, milliseconds As Integer)

In the first version of the constructor, you pass the number of 100-nanosecond ticks. You are
more likely to use the second and third versions. For example, the following creates a TimeSpan
of 5 hours, 22 minutes, and 3 seconds:

Dim duration As New TimeSpan(5, 22, 3)

A TimeSpan can be added to a Date or DateTime object. Suppose an airline flight is due to
take off on April 11, 2011, at 10:30 P.M. (22:30 military time). If the duration of the flight
is 6 hours and 22 minutes, the following statements calculate the date and time of the flight’s
arrival:

Dim takeoff As New DateTime(2011, 4, 11, 22, 30, 0)
Dim duration As New TimeSpan(6, 22, 0)
Dim arrival As DateTime = takeoff.Add(duration)

Therefore, the arrival time equals 4/12/2011, at 4:52 A.M., assuming that the arrival airport
is in the same time zone as the departure location.

Checkpoint

16. Which DateTimePicker property controls whether a date or time is displayed?

17. Which DateTimePicker properties limit the earliest and latest date and time the user
can select?

2.5 ToolStrip Control 73

18. Which method adds N days to a DateTime object?

19. Declare a TimeSpan object named duration that equals 2 hours, 30 minutes, and
5 seconds.

2.5 ToolStrip Control
The ToolStrip control is a customizable container that holds various types of other controls.
You can use it to give your applications the look and feel of Microsoft software, such as
Windows 7 or Microsoft Office. You can use it to create custom toolbars that support
advanced layout features such as rafting, docking, and dragging by users. The ToolStrip
replaces the older ToolBar control, with many improved editing features. Most important,
you can insert buttons and other controls interactively at design time.

Adding Controls
When you add a ToolStrip control to a form, it attaches itself to the top of the form. Using
the Dock property, you can cause the strip to attach to the top, bottom, left side, or right
side of the form.

Controls placed on a ToolStrip respond to the same events they would respond to if they
were placed anywhere on a form. To create a Click handler for a ToolStripButton, for exam-
ple, just double-click the control in design mode.

In design mode, a dropdown list appears when you select the ToolStrip control with the
mouse. An example is shown in Figure 2-17, with a list of available control types. You can
insert buttons, labels, separators, combo boxes, text boxes, and progress bars to a ToolStrip.
Once controls are in the ToolStrip, you can drag them to new locations with the mouse. If
the AllItemReorder property of a ToolStrip equals True, the user can press the Alt key and
drag an item from one ToolStrip to another at runtime. See an example in Figure 2-18. Each
type of control has a corresponding .NET class (see Table 2-3).

Figure 2-17 Ready to add items to a ToolStrip control

Figure 2-18 The user can press Alt and drag an item to another ToolStrip

74 Chapter 2 Input Validation and User Interfaces

Table 2-3 ToolStrip Control types and their corresponding classes

Control Type Class

Button ToolStripButton

Label ToolStripLabel

SplitButton ToolStripSplitButton

DropDownButton ToolStripDropDownButton

Separator ToolStripSeparator

ComboBox ToolStripComboBox

TextBox ToolStripTextBox

ProgressBar ToolStripProgressBar

Figure 2-19 ToolStrip with ComboBox selection

Figure 2-20 Selecting from a DropDownButton

Choosing Between a MenuStrip or a DropDownButton

It can be argued that lists of actions to be carried out should be placed in menus rather than
DropDownButton controls. This is a well-accepted point of view. On the other hand, Tool-
Strips permit you to combine menu-like actions with lists of items, buttons, text boxes, and
other controls. By making a variety of controls available in ToolStrips, Microsoft has implic-
itly endorsed a flexible approach to menu and toolbar design. Also, it can be pointed out that
when lists of choices must be modified at runtime, it is much easier to change the contents of
a DropDownButton or ComboBox control than to dynamically create and delete menu items.

When you first insert a ToolStripButton into a ToolStrip, the button is configured to display
a graphic image. If you would rather have it display text only, change its DisplayStyle prop-
erty to Text. If you prefer a combination of an image and text, set DisplayStyle to
ImageAndText.

To change the image displayed by the button, select the Image property. The dialog window
shown in Figure 2-21 will display. Click on the Import button to select a graphic image file
and import it into your application. If your application already has a project resource file
(containing strings, bitmaps, and so on), you can use items from it. Standard types of image
files, including BMP, GIF, JPEG, WMF, and PNG, are supported.

Let’s look at a few examples of ToolStrips that contain different types of controls. In
Figure 2-19, the ToolStrip contains a ComboBox. It also contains a Label that displays the
current date. To right-justify a control, set its Alignment property to Right. In Figure 2-20,
the user is selecting from a DropDownButton.

2.5 ToolStrip Control 75

Scaling the Button Images
Each ToolStripButton has an ImageScaling property that determines whether the button
image will be scaled (resized) to a standard image size. This property helps you create uni-
form button sizes in a toolbar. If you set ImageScaling to None, the button will expand to
fit the size of the image you insert. In the ToolStrip control, the ImageScalingSize property
controls the default image size for all buttons. Its default value is 16 pixels by 16 pixels,
which is the typical size of a small toolbar button.

Figure 2-22 shows the Items Collection Editor window that lets you add and edit individ-
ual ToolStrip controls. All the controls are saved in the ToolStrip’s Items property. Another
way to edit a single control is to select it with the mouse and modify values in the Proper-
ties window.

Figure 2-21 Selecting a resource for a ToolStripButton’s Image property

TIP A good way to find out which images are available on your computer is to open
Windows Explorer, click the Search button, and search for Pictures and Photos.

Figure 2-22 Adding items to a ToolStrip control

76 Chapter 2 Input Validation and User Interfaces

Design Tips
If you want to display a static list of selections that cause immediate actions, use a MenuStrip
control. If you want to select from a list of items without necessarily causing an action, use a
combo box (on the form or in a ToolStrip). In Microsoft Word, for example, ToolStrip combo
boxes are used to select fonts and paragraph styles. The DropDownButton control is perhaps
less common because it is a hybrid between a list and a button. For good examples on how
to use toolbars, look at Visual Basic Express, Visual Studio, or Microsoft Office.

It’s a good idea to assign a descriptive message to the ToolTip property of a ToolStripBut-
ton. The message appears when users hover the mouse over the control.

Each ToolStrip control should contain items relating to a single category. You can offer
options to let the user hide and display individual toolbars. Visual Studio, for example, does
this with the View | Toolbars menu command.

Tutorial 2-2:
Building the Coffee Shop application

In this tutorial, you will create a short application that lets the user purchase coffee. The
application uses a ToolStrip control with various types of buttons and lists. Here is a
simple description of the steps taken by the user to log in, purchase a drink, and log out:

1. The user logs in
2. The user selects a type of drink.
3. The cost of the drink, including tax, is displayed.
4. The user clicks the Purchase button.
5. The application confirms the purchase. The user can return to Step 2, or continue

on to the next step.
6. The user logs out.

The focus in this application is on the user interface, so you will use program code to
coordinate the visibility of various controls. Controls should appear only when their use
is appropriate to the application needs.

Running the Application

The following sequence helps to show how the application coordinates the visibility of
each control.

1. When the application starts up, only the Account dropdown button is visible
(Figure 2-23).

Figure 2-23 Application startup

2. When the user selects Log in from the Account button’s menu, the login controls
on the right panel appear (Figure 2-24).

3. When the user clicks the OK button, the login controls disappear and the Drink
Type combo box appears. In Figure 2-25, the user has selected a drink, so the price
appears.

4. In Figure 2-26, the user clicks the Purchase button, causing a confirmation dialog
to appear.

5. When the user selects Log out from the Account button list, the application
returns to its original appearance (the same screen as when it started).

2.5 ToolStrip Control 77

Figure 2-24 User logs in

Figure 2-25 User selected a drink type and is ready to purchase

Figure 2-26 User has clicked the Purchase button

Hands-on Steps

Follow these steps to create the Coffee Shop application.

Step 1: Create a new project named Coffee Shop.

Step 2: You will find an image file named purchase.gif in the examples folder for this
chapter. Copy it into your project folder.

Step 3: Add a ToolStrip control to the form.

Step 4: Add two Panel controls to the form, one on the left, the other on the right.

Step 5: Add a DropDown button to the ToolStrip and name it btnAccount. Set its
DisplayStyle property to Text, and set its Text property to Account. Add the
following values to its Items property: Log In, Log Out.

Step 6: Figure 2-27 is a guide to the locations of the controls. There are two Panel
controls—the one on the left is named pnlCost, and the one on the right is
named pnlLogin. Table 2-4 lists all controls and their properties. Using this
information, add the remaining controls to the form.

Step 7: Add the following code to the form class:

' Array to hold the prices of drinks.
Private ReadOnly mPrices As Double() = {1.75, 2.5, 3.5, 3.75}
Private ReadOnly mSalesTaxRate As Double = 0.065

Private Sub btnPurchase_Click() Handles btnPurchase.Click
' User has clicked the Purchase button.
MessageBox.Show(''Thank you!'')

End Sub

Private Sub btnOk_Click() Handles btnOk.Click
' User has clicked the OK button to log in.
pnlLogin.Visible = False
cboDrinkType.Visible = True

End Sub

Notice in these lines that you can show or hide a group of controls that are
located inside a Panel control. All you have to do is set the panel’s visible prop-
erty to True or False. Continue to add the following code to the form’s class:

Private Sub mnuAccountLogin_Click() Handles
mnuAccountLogin.Click

' User has selected Log in from the menu.
pnlLogin.Visible = True

End Sub

78 Chapter 2 Input Validation and User Interfaces

Figure 2-27 Coffee Shop application in design mode

2.5 ToolStrip Control 79

Table 2-4 Controls in the Coffee Shop application main form

Control Type Name Property Values

Form CoffeeShopForm FormBorderStyle = FixedSingle

Text = Kip & Tony’s Coffee
Express

ToolStrip

ToolStripDropDownButton btnAccount Text = Account
DisplayStyle = Text

Items = Log In, Log Out
ToolStripSeparator

ToolStripComboBox cboDrinkType Text = Drink Type
Items = Daily Brew, Espresso,
Cappuccino, Latte

Visible = False

ToolStripButton btnPurchase Alignment = Right

DisplayStyle = Image

Visible = False

Image = (purchase.gif)

Panel pnlCost Visible = False

Panel pnlLogin Visible = False

Label lblCost

Label lblTax

Label lblTotal

TextBox txtUserName

TextBox txtPassword

Button btnOk Text = OK

Label (default) Text = Beverage cost:

Label (default) Text = Tax:

Label (default) Text = Total:

Label (default) Text = Username:

Label (default) Text = Password:

Private Sub mnuAccountLogout_Click() Handles
mnuAccountLogout.Click

' User has logged out from the menu.
cboDrinkType.Visible = False
pnlLogin.Visible = False
pnlCost.Visible = False
btnPurchase.Visible = False

End Sub

Step 8: Next, add the SelectedIndexChanged handler for the Drink Type combo box:

1 Private Sub cboDrinkType_SelectedIndexChanged() _
2 Handles cboDrinkType.SelectedIndexChanged

80 Chapter 2 Input Validation and User Interfaces

3 ' User has selected a drink from the combo box
4
5 Dim cost As Double = mPrices(cboDrinkType.SelectedIndex)
6 Dim tax As Double = cost * mSalesTaxRate
7 Dim total As Double = cost + tax
8
9 lblCost.Text = cost.ToString(''n'')
10 lblTax.Text = tax.ToString(''n'')
11 lblTotal.Text = total.ToString(''c'')
12
13 ' Show drink cost panel and enable Purchase button.
14 pnlCost.Visible = True
15 btnPurchase.Visible = True
16 End Sub

In the lines above, line 5 uses the selected index from the drink type combo
box as a subscript into the mPrices array. That gives us the cost of the selected
drink. On line 14, the panel showing the drink cost, tax, and total is made vis-
ible. On line 15, the purchase button is displayed.

Step 9: Save and run the application. Test it by logging in, selecting a drink, confirm-
ing the purchase, and logging out.

Checkpoint

20. Name all the control types you can insert in a ToolStrip control.

21. Which ToolStripButton property determines whether the button will display an
image, text, or both?

22. Once a button has been added to a ToolStrip, what property identifies the image to
be displayed on the button?

23. Which ToolStripButton property determines whether the button image will be sized
to the button’s default size?

24. Which type of tool strip button displays a dropdown list when the button is clicked?

2.6 FlowLayoutPanel, WebBrowser, SplitContainer,
and TabControl
In this section, we feature four specialized controls that were selected because of the unique
features they bring to applications. The FlowLayoutPanel control is a general-purpose con-
tainer into which you can insert any type of controls. The WebBrowser control lets users
view HTML pages either on their local computer or from the Web. The SplitContainer con-
trol lets users change the sizes of panels at runtime, letting them use space on a form in the
most effective way. The TabControl lets you create a form containing multiple pages, with
only one page visible at a time. It is a great tool for creating software wizards.

FlowLayoutPanel Control
When you insert controls in a FlowLayoutPanel control, you do not position the controls
with x and y coordinates. Instead, you treat the panel like a document that flows from one

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl 81

end to the other. When items reach the end of a line, they wrap around to the next line. Web
pages follow this model, as do text editors. Normally, lines flow from left to right, but you
can change that. Here are some essential properties:

• Controls—Collection of controls that have been added to the panel.
• AutoScroll—When this property equals True, scroll bars will appear when the panel

content exceeds the displayable area.
• FlowDirection—Sets the flow direction to one of the following: LeftToRight, Right-

ToLeft, TopDown, or BottomUp.
• WrapContents—Determines whether long lines are wrapped around or clipped at the

boundary.

You can insert controls in a FlowLayoutPanel in design mode, of course. But the real value
of this control is its ability to hold controls created dynamically, at runtime.

Creating Controls Dynamically
Sometimes you do not know what types of controls or how many controls you will need
before an application runs. In such a situation, you need to be able to create controls dynam-
ically (at runtime). For example, you could ask the user how many TextBoxes to create, or
read an input file that determines the number of check boxes to display. You might want to
create a photo album consisting of N PictureBox controls, where N is determined by the
number of images in a disk directory.

You create a control at runtime by creating an instance of the control and setting any desired
properties. All controls have default properties (which you can see in the Properties win-
dow), so you need to set only those properties that differ from the defaults.

First, you should create a panel to hold all controls you plan to create at runtime. The
FlowLayoutPanel control is the easiest to use because you don’t have to position the indi-
vidual controls inside it. The following code, for example, creates a button and adds it to a
FlowLayoutPanel named LayoutPanel:

Dim btn As New Button()
btn.Text = ''Click here''
LayoutPanel.Controls.Add(btn)

If you also want to create a Click handler (or some other type of event handler) for your
control, you can use the AddHandler statement to identify the address of a method in your
program:

AddHandler btn.Click, AddressOf btn_Click

The Click handler itself would look something like this:

Private Sub btn_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)
' (your code here)

End Sub

In this example, btn_Click must be declared with the standard parameter list for a but-
ton Click handler. In a Click handler, the sender parameter is a reference to the control
that raised the Click event. But its data type is Control, so you may have to cast it into
the type of control that generated the Click. For example, we assume our control to be
type Button:

Private Sub btn_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Dim aButton As Button = CType(sender, Button)

End Sub

www.allitebooks.com

http://www.allitebooks.org

82 Chapter 2 Input Validation and User Interfaces

But it might just as easily have been a PictureBox or any control that is capable of generat-
ing a Click event.

If you would rather use a Panel control than a FlowLayoutPanel, you need to assign a Point
object to the button’s Location property that will determine the location of the control on
the Panel’s surface:

btn.Location = New Point(100, 50)

In Tutorial 2-3, you will create an application that builds an image album by creating Pic-
tureBox controls at runtime and adding them to a panel.

Tutorial 2-3:
Creating a simple image album

In this tutorial, you will create and display an image album by loading all images from
a directory that is selected by the user. Because the number of images is not known at
compile time, you will create a PictureBox array at runtime and insert the array items
into a FlowLayoutPanel. Figure 2-28 shows a sample of the application while running.
(The photos were taken by the authors.)

FolderBrowserDialog

In this tutorial, we introduce the FolderBrowserDialog control. It displays a list of fold-
ers and lets the user select one, as in Figure 2-29. Similar to the FileOpenDialog con-
trol, it does not appear until you call its ShowDialog method. This method returns an
enumerated type that lets you know which button was clicked by the user. If it returns
DialogResult.Cancel, the Cancel button was clicked. If it returns DialogResult.OK, the
Open button was clicked. (There is no DialogResult.Open enumeration value.)

Figure 2-28 Image Album example

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl 83

If you set the dialog’s SelectedPath property to a folder path before calling ShowDialog,
the dialog will position itself on the folder. After the user closes the dialog, you can
query the SelectedPath property to find out what folder the user selected. Incidentally,
the Directory.GetCurrentDirectory function returns the complete path to the applica-
tion’s EXE file directory.

Tutorial Steps

Step 1: Create a new application named Image Album.

Step 2: Create a folder inside your project directory that contains image files that are
small enough so you can fit five to ten of them on a single window. If you
want, you can use the images folder inside the Chapter 2 examples directory.

Step 3: Add a MenuStrip control with the following entries:

&File
&Open
E&xit

Step 4: Add a FlowLayoutPanel control named FlowPanel to the form, set its Dock
property to Fill, and set AutoScroll = True.

Step 5: Add a FolderBrowserDialog control named folderBrowser to the form. This
control will display a list of folders and let the user select a folder containing
images.

Step 6: In the code window, add an Imports statement:

Imports System.IO

Step 7: Add the following declarations at the top of the class:

Private folderPath As String
Private pics() As PictureBox

The second variable is an array of PictureBox controls.

Figure 2-29 FolderBrowserDialog example

84 Chapter 2 Input Validation and User Interfaces

Step 8: Begin to create a Click handler for the File | Open command in the menu:

Private Sub mnuOpenFile_Click() Handles mnuFileOpen.Click
' The user clicked on the File | Open menu item.

folderBrowser.SelectedPath = Directory.GetCurrentDirectory
If folderBrowser.ShowDialog() = DialogResult.Cancel Then

Return
End If
folderPath = folderBrowser.SelectedPath()

If the user cancels the dialog, the Return statement bypasses all remaining
code in this method. The SelectedPath property of the FolderBrowserDialog
control is set to the application’s current directory before opening the dialog.
Then after the dialog closes, the same property returns the directory path
selected by the user.

Step 9: Get a list of files from the selected directory and store them in the fileNames array:

Dim fileNames As String() = Directory.GetFiles(folderPath)
If fileNames.Length = 0 Then

MessageBox.Show(''Unable to find any image files'')
Return

End If

Step 10: Next, your code will display the image directory name in the window title bar
and set the PictureBox array size based on the number of image files in the
directory:

Me.Text = folderPath
ReDim pics(fileNames.Length - 1)

Step 11: Now you are ready to write code that loads the images into the PictureBox
controls and inserts the controls into the panel. This will complete the
mnuOpenFile_Click method:

1: For i As Integer = 0 To fileNames.Length - 1
2: pics(i) = New PictureBox()
3: With pics(i)
4: .Size = New System.Drawing.Size(300, 200)
5: .SizeMode = PictureBoxSizeMode.Zoom
6: .Image = New Bitmap(fileNames(i))
7: FlowPanel.Controls.Add(pics(i))
8: End With
9: Next
10: End Sub

Line 2 creates a new PictureBox object. Line 4 sets the size (width, height),
and line 5 sets the SizeMode property. The value named PictureSizeMode.Zoom
causes the image to zoom to the size of the control. Line 6 uses the image file
to create a Bitmap object and assigns the Bitmap to the Image property of the
PictureBox. Line 7 adds the PictureBox to the FlowLayoutPanel’s Controls
collection.

Step 12: Save the project and run the application. When you load the images, resize the
window and notice how the photos rearrange themselves within the FlowLay-
outPanel.

This application runs out of memory when it tries to load a large number of
full-size images. An improvement (requested in the end-of-chapter Program-
ming Challenges) is to show only thumbnail images and let the user click an
image to expand it to full size.

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl 85

Figure 2-30 Using the WebBrowser control

WebBrowser Control
You can use the WebBrowser control to view online Web pages or HTML documents on a
local computer. In Figure 2-30, for example, the control is displaying the publisher’s Web
folder for books by Tony Gaddis.

Methods and Properties

To load an HTML page into the WebBrowser control, call the Navigate method. Pass it a
fully formed URL, beginning with a protocol specifier such as http://, file://, or ftp://. If you
are using the file://protocol, include the complete path of the file.

Several other WebBrowser methods might easily be incorporated into a simple browser toolbar:

• GoBack—returns to the previously displayed page in the browser’s history. Before call-
ing it, check the CanGoBack property to see if moving backward is possible.

• GoForward—moves forward in the browsing history. Before calling it, check the value
of the CanGoForward property.

• Stop—stops loading the current page.
• Refresh—reloads the current page.
• Print—sends the contents of the browser’s document to the default printer.

The DocumentText property (a String) gets or sets the HTML content of the current Web
page. The Document property (read only) returns an HtmlDocument object representing the
Web page currently displayed in the WebBrowser control. You can use this object to access
many HtmlDocument properties. Examples are images and links collections, all of the con-
trols on the Web page (via the Forms collection), background and foreground colors, docu-
ment title, and Url.

86 Chapter 2 Input Validation and User Interfaces

Events

The WebBrowser control fires some useful events that relate to browsing and moving
between Web pages and HTML documents. The Navigating event fires just before the Web-
Browser navigates to a new document. You can use this event handler to prevent the docu-
ment from being opened or to redirect to a different document. The Navigated event fires
when the WebBrowser has located a new document and has begun to load it. You can ini-
tialize a progress bar during this event handler and show the name of the page being loaded.
The DocumentCompleted event fires when the WebBrowser has finished loading a docu-
ment. You can use it to scan the contents of the page. A parameter named e gives you access
to the page’s URL (address):

lblStatus.Text = ''Finished loading '' & e.Url.ToString()

The FileDownload event fires when the WebBrowser has just finished downloading a file.

In Tutorial 2-4, you will create a simple Web browser application.

Tutorial 2-4:
Completing a Web browser application

In this tutorial, you will complete an application that contains a WebBrowser control.
The user will be able to open other Web pages by clicking on the links that appear on
the startup page. Also, the user will be able to open up HTML and GIF files on his or
her local computer. Figure 2-31 shows an example of the finished application when it
starts up. A home page is displayed in the WebBrowser control. The content shown in
the browser is from an HTML file named index.htm.

Tutorial Steps

Step 1: Open the WebBrowser Demo application from the chapter examples folder.

Step 2: The ToolStrip contains three controls: a button named btnOpen, a button named
btnBack, and a label named lblPageName. The latter is currently empty, and
because its AutoSize property equals True, you cannot see it in the ToolStrip.

Figure 2-31 Starting up the WebBrowser demo application

Step 3: Open the startup form’s code window and add the following code to the class:

Private Sub Form_Load() Handles MyBase.Load
browser.Navigate(My.Application.Info.DirectoryPath & _
''\..\..\index.htm'')

End Sub

Private Sub browser_DocumentCompleted(ByVal sender As Object, _
ByVal e As _

System.Windows.Forms.WebBrowserDocumentCompletedEventArgs) _
Handles browser.DocumentCompleted
lblPageName.Text = ''URL: '' & e.Url.ToString()

End Sub

In this code, the DocumentCompleted event occurs after the WebBrowser has
loaded the requested page. The code copies the page URL into a label on the
ToolStrip.

Step 4: Continue by adding the following Click handler for the Open button on the
toolbar:

1 Private Sub btnOpen_Click() Handles btnOpen.Click
2 With ofdOpenPage
3 .Filter = ''HTML files | *.htm;*.html | GIF files | *.gif''
4 .FileName = String.Empty
5 .InitialDirectory = My.Application.Info.DirectoryPath
6 If .ShowDialog() = Windows.Forms.DialogResult.OK Then
7 browser.Navigate(.FileName)
8 End If
9 End With
10 End Sub

Line 2 identifies an OpenFileDialog object named ofdOpenPage. Lines 3–5 set
the Filter, FileName, and InitialDirectory properties. Line 6 displays the dia-
log, so the user can browse through HTML and GIF files on the local com-
puter. If a file is selected, it is displayed in the WebBrowser control on line 7.

Step 5: Add the following Click handler to the class:

Private Sub btnBack_Click() Handles btnBack.Click
' The user has clicked the Back button. Move backward one
' step in the browser history.
browser.GoBack()

End Sub

Step 6: Save and run the application. Click on the hyperlinks in the homepage. If you
are connected to the Internet, you should be able to navigate to the pages
behind the three hyperlinks. Click the back button to return the previous
page.

Step 7: Click the Open button, navigate, and select any HTML, JPEG, or GIF file on
your computer. The file should display in the WebBrowser control.

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl 87

SplitContainer Control
Some controls, like WebBrowsers, DataGridViews, and ListBoxes, occupy a great deal of
space on forms. When you have more than one of these controls, you can use the
SplitContainer control to divide the display area into separate panels. At runtime, the user
can move the splitter bar between the panels to make one smaller and the other larger.

88 Chapter 2 Input Validation and User Interfaces

Figure 2-32 shows a simple mail client application that contains a SplitContainer. The left
panel contains a TextBox, and the right panel contains two ListBoxes and a button. When
the user passes the mouse pointer over the splitter bar, the cursor changes to indicate that
the bar can be moved. Figure 2-33 shows the same mail client after the user has resized the
window and moved the splitter bar.

Figure 2-33 User has resized the window and moved the splitter bar

When inserting controls in each panel, the Anchor and Dock properties are important. Here
are some guidelines to use, assuming the splitter moves in the horizontal direction:

• To attach a control to the bottom of the panel, set Dock to Bottom. You can still leave
room at the top for other controls.

Figure 2-32 Mail client with SplitContainer control

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl 89

• To attach a control to the top of the panel, set Dock to Top. You can still leave room
at the bottom for other controls.

• To place a control somewhere in the middle of a panel (neither top nor bottom), set
the Anchor property to Left, Right.

• If the window is resizable, set Anchor to Bottom for any controls that need to move or
expand downward when the bottom of the window is stretched.

You can do some other interesting things with splitters. There can be a minimum size for
each panel. You can freeze the splitter bar. The Orientation property can be changed from
Vertical (the default) to Horizontal.

SplitContainer with WebBrowser

The SplitContainer control opens up possibilities for designing forms in creative ways. In
Figure 2-34, for example, a form contains a WebBrowser control in the upper pane of a
SplitContainer. The lower pane contains a RichTextBox control, into which the user can
write his or her notes and comments about the Web page shown at the top. The Save but-
ton can be used to write the notes to a file or database. The BackColor property of the
lower pane was set to gray to make it easier for the user to see the location of the split-
ter bar.

Figure 2-34 Showing a WebBrowser and RichTextBox in a SplitContainer

TabControl
The TabControl control provides a convenient way for you to divide a form into separate
pages. Each page (a TabPage object) belongs to a TabPageCollection that is referenced by the
control’s TabPages property. Figure 2-35 shows the TabControl in design view, just after
having been placed on a form. Two pages are placed in the control by default, but you can
add more pages in design mode. To do that, open the TabControl Tasks menu, or select
TabPages in the Properties window.

90 Chapter 2 Input Validation and User Interfaces

Only one page can be visible at a time. Each page is a container, so any controls on the page
exist only when the page is visible. At runtime, if the user switches away from a page and
returns to it later, the control settings on the page are retained.

The SelectedIndex property tells you the index of the tab that is currently visible. You can
also make a particular page visible by setting the value of the SelectedIndex property to an
integer between 0 and TabPages.Count – 1. The SelectedIndex property has built-in range
checking, so if you attempt to assign to it a value that is out of range, no exception is thrown
and no action occurs.

Another way to make a particular page visible is to call the SelectedTab method, which has
three versions:

• SelectTab(String)—selects a page using the name displayed in the page’s tab
• SelectTab(Integer)—selects a page using an index position (starting at 0).
• SelectTab(TabPage)—makes the specified TabPage the current tab.

The tabs appearing at the top of the control are part of the TabControl, but they are not part
of the individual TabPage controls.

A SelectedIndexChanged event fires when the SelectedIndex property changes, indicating
that a different page is visible.

TabPage Class

The TabPage class has a constructor that you can use to create a new page and add it to the
TabPages collection. For example, the following statement adds a new page to myTabCon-
trol, with the caption Events:

myTabControl.TabPages.Add(New TabPage(''Events''))

The text appearing in the tab above each page is set using the TabPage’s Text property. The fol-
lowing statement, for example, changes the text for the first page in the TabPages collection:

myTabControl.TabPages(0).Text=''Step 1''

Each TabPage fires an Enter event when it receives the focus, and a Leave event when the
focus switches to another page. If you want, you can write an event handler for the Enter
event that initializes the values of controls on the page.

Checkpoint

25. Which WebBrowser control method opens a Web site?

26. Which WebBrowser method returns to the previously displayed Web page?

27. If you want to get a list of all the images on a Web page, which property must you
access first?

Figure 2-35 TabControl, in design view

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard 91

28. Which event fires when the WebBrowser has finished loading a Web page document?

29. Which control can be used to divide the display area into two parts and allows the
user to change the sizes of the two parts at runtime?

2.7 Focus on Problem Solving: Kayak Tour
Scheduling Wizard
We would like to build a software wizard that guides customers of an imaginary kayaking
outfitter company through the process of selecting one or more kayaking tours. An impor-
tant aspect of selecting a kayaking tour is to make sure that the customer’s level of skill and
endurance are matched to the type of tour. This application asks questions that gather basic
information from the user. Appropriate types of tours are suggested in a list, which the user
can select according to his or her preferences. Finally, a list of available tours is displayed,
allowing the user to select multiple tours. After the application is written, we will develop a
manual testing plan that checks the inputs and outputs for consistency.

A software wizard (or software assistant) is a user interface that leads the user through a
series of predescribed steps. In each step, the user may be given choices that influence sub-
sequent steps. Wizards are particularly useful when completing tasks that are complicated or
need to be completed in a specific sequence. One example that you have probably used is the
Database Connection Wizard in Visual Studio.

In addition, wizards can be educational when they provide supplemental information and
assistance at each step. Most wizards work best when they are short and simple and are lim-
ited to about five steps or fewer. Wizards with multiple execution paths may become too
complex for the average person to follow.

The easiest way to construct a wizard is to use a TabControl. Each tab page represents a dif-
ferent step in the wizard. In Tutorial 2-5, you will create a wizard that helps the user select
kayaking tours.

Walkthrough
When the application starts, the About window shown in Figure 2-36 is briefly displayed as
a splash screen. This window can be redisplayed at any time by clicking a LinkLabel control
at the bottom right side of the wizard window.

Figure 2-36 About window

92 Chapter 2 Input Validation and User Interfaces

In Step 1 of the wizard, shown in Figure 2-37, the user is asked about his or her experi-
ence level. In Step 2 (Figure 2-38), the user is asked about paddling endurance. In Step 3
(Figure 2-39), the user is shown a list of suitable types of kayaking tours. The user has
selected three types of tours, and is about to click the Next button to continue. The user
can also return to previous steps without losing any previous selections. If he or she
returned to Step 1, for example, the 2 to 4 times list box entry would still be selected.

Figure 2-37 Kayak Tour Wizard, Step 1 (experience level)

Figure 2-38 Kayak Tour Wizard, Step 2 (endurance level)

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard 93

In Step 4 (Figure 2-40), the user is shown a list of upcoming tours that match his or her
selected tour types. In our sample, the user has selected three tours and is about to click the
Next button. In the final step (Figure 2-41), the user is shown a list of the tours he or she
selected and asked to pay a deposit for each one.

Figure 2-39 Kayak Tour Wizard, Step 3 (recommended tour types)

Figure 2-40 Kayak Tour Wizard, Step 4 (available tours)

94 Chapter 2 Input Validation and User Interfaces

Figure 2-41 Kayak Tour Wizard, final step (selected tours)

In Tutorial 2-5, you will complete the Kayak Tour Wizard application.

Tutorial 2-5:
Completing the Kayak Tour Wizard application

In this tutorial, you will complete the Kayak Tour Wizard application. The user inter-
face controls have been created for you so you can focus on the programming aspects.

Step 1: Open the project named Kayak Tour Wizard—Start from the chapter exam-
ples folder.

Step 2: Open the input data file, named Tours.txt. The first integer N identifies the
number of tours, and also indicates the number of lines to follow. Each sub-
sequent line begins with an integer, identifying the type of tour (0..5). Fol-
lowing each comma is the name of the tour:

14
0,Beginning Kayak Class
1,Garden Cove
1,Pennecamp Park
1,Rattlesnake Key
2,Garden Cove to Pennecamp
2,Largo Sound
3,Sunset Cove
3,Flamingo Park
3,Deer Key
2,Blackwater Sound
4,Little Blackwater Sound
4,Butternut Key Overnight
4,Whaleback Key Overnight
5,Multi-Day Ten Thousand Islands

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard 95

When you look at the code listing later, you will see how the integer tour type
relates to array variables in the program.

Step 3: Open the Design window for the main form. Click on each tab of the Tab-
Control to examine its individual pages. Each page contains a Label and
either a CheckedListBox or ListBox control. The ListBox on the last tab
page (named Finish) has no border, and its SelectionMode property has been
set to None. This was done because the user will not be called on to make
a selection.

Step 4: Open the code view of the main form. Notice first that a class named
TourType contains a tour name and a tour type. The variable named Type
holds an integer between 0 and N � 1, assuming that there are N different
types of tours:

Class TourType
Public Name As String
Public Type As Integer
Public Overrides Function ToString() As String

Return Name
End Function

End Class

The class contains a ToString method because we plan to insert TourType
objects in list boxes. When the items display in the list box, their ToString
method is called automatically.

Next you will see three arrays of strings. The first array, ExperienceDescrip,
contains the entries for the list box that asks for the user’s level of experience.
The second array, EnduranceDescrip, contains the entries for the list box that
asks for the user’s endurance level:

Private ReadOnly ExperienceDescrip() As String = {''Never'',
''One time'', ''2 to 4 times'', ''5 to 6 times'', ''7 to 9 times'',
''10 times or more''}

Private ReadOnly EnduranceDescrip() As String = {''Unknown'',
''A few minutes'', ''15 minutes'', ''30 minutes'', ''60 minutes'',
''120 minutes or more''}

The third string array contains descriptions of the various types of tours.

Private ReadOnly TourTypes() As String = {''Beginning class'',
''Two hour'', ''Half day'', ''Full day'', ''Overnight'',
''Multi-day backcountry''}

The next two arrays, MinExperience and MinEndurance, are aids to decision
making. At some point, we will have to write code that determines which
types of tours are appropriate to which experience and endurance levels. The
integers in these two arrays indicate the minimum acceptable levels for the
tour types at the same index positions.

You may wonder why we did not insert these lists into list boxes in
design mode. The choice was made to do it this way because it is easier
to modify string array variables if the values change in the future. Later,
we will show an easy way to insert these arrays into their appropriate
list boxes.

96 Chapter 2 Input Validation and User Interfaces

Private ReadOnly MinExperience() As Integer = {0, 1, 2, 3,
4, 5}

Private ReadOnly MinEndurance() As Integer = {0, 2, 3, 4, 4, 5}

Table 2-5 shows how TourTypes, MinExperience, and MinEndurance are par-
allel arrays. For a customer to be advised to go on a half-day tour, for exam-
ple, his or her experience must equal level 2 or higher, and his or her
endurance must equal level 3 or higher.

To understand the numeric experience and endurance levels, refer to the
ExperienceDescrip and EnduranceDescrip arrays declared earlier. Table 2-6
shows how the level numbers match the descriptions in the ExperienceDescrip
array. This array contains experience levels based on the number of times a
person has been kayaking before.

Returning to the program listing, the last two variables to be declared are
FilePath and Tours. FilePath identifies the path to the data file. (We discussed
relative file paths in Section 1.5 of Chapter 1.) The Tours array holds a list of
all the tours read from the input data file.

Private ReadOnly FilePath As String = ''..\..\Tours.txt''
Private Tours() As TourType

Step 5: Create the ReadTourList method, which opens the data file and reads all the
tour names into an array. (Omit the line numbers.)

1: Public Function ReadTourList() As Boolean
2: Dim infile As StreamReader = Nothing
3: Try
4: infile = OpenText(FilePath)
5: Dim count As Integer = CInt(infile.ReadLine)

Table 2-5 Parallel arrays: TourTypes, MinExperience, MinEndurance

TourTypes MinExperience MinEndurance

Beginning class 0 0

Two hour 1 2

Half day 2 3

Full day 3 4

Overnight 4 4

Multi-day backcountry 5 5

Table 2-6 Experience levels

Experience Level Description

0 Never

1 One time

2 2 to 4 times

3 5 to 6 times

4 7 to 9 times

5 10 times or more

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard 97

6: ReDim Tours(count - 1)
7: For i As Integer = 0 To count - 1
8: Dim entireLine As String = infile.ReadLine()
9: Dim fields() As String = entireLine.Split('',''c)
10: Tours(i) = New TourType
11: Tours(i).Type = CInt(fields(0))
12: Tours(i).Name = fields(1)
13: Next
14: Return True
15: Catch ex As Exception
16: Return False
17: Finally
18: If infile IsNot Nothing Then infile.Close()
19: End Try
20: End Function

Line 5 gets the number of kayak tours (named count) from the first line of the
input file, and line 6 uses that value to resize the Tours array. Line 9 splits the
input line into two array values (the fields array). Each element in the Tours
array is a TourType object, so lines 11 and 12 assign values to its two fields
(Type and Name).

Step 6: Next, create the Load event handler for the form by typing in the following code;
1: Private Sub MainForm_Load() Handles MyBase.Load
2: lstEndurance.Items.AddRange(EnduranceDescrip)
3: lstExperience.Items.AddRange(ExperienceDescrip)
4: If Not ReadTourList() Then
5: MessageBox.Show(''Cannot open file containing list of '' _
6: & ''tours. Ending program now.'', ''Error'')
7: Me.Close()
8: End If
9: End Sub

Lines 2 and 3 fill the lstEndurance and lstExperience list boxes by passing the
array variables to the Items.AddRange method. Lines 5–7 display an error
message and close the application if the data file cannot be read.

Step 7: Insert the following Click handlers for the Next and Back buttons. They per-
mit the user to move forward and backward through the pages of the Tab-
Control by incrementing and decrementing its SelectedIndex property.
1: Private Sub btnNext_Click() Handles btnNext.Click
2: If btnNext.Text = ''&Done'' Then
3: Me.Close()
4: Else
5: tabCtrl.SelectedIndex += 1
6: End If
7: End Sub
8:
9: Private Sub btnBack_Click() Handles btnBack.Click
10: tabCtrl.SelectedIndex -= 1
11: End Sub

On lines 2–3, the form is closed if the user has reached the last tab page (when
the caption of the Next button becomes Done).

Step 8: Next, you will create the UpdateTourTypes method. First, let’s design the logic
for this method in pseudocode:
clear the list box
if either the user’s experience or endurance is missing, exit

98 Chapter 2 Input Validation and User Interfaces

for each type of tour, do:
if the user’s experience >= minimum required for the tour

and the user’s endurance >= minimum required for the tour,
add the tour to the tour types list box

endif
next

Now you can write the code. In lines 6–10, it gathers the experience level and
endurance level from the list boxes in the first two pages:
1: Private Sub UpdateTourTypes()
2: ' based on the customer attributes, create the list of
3: ' eligible tour types (lstTourTypes).
4:
5: lstTourTypes.Items.Clear()
6: Dim experience As Integer = lstExperience.SelectedIndex
7: Dim endurance As Integer = lstEndurance.SelectedIndex
8: If experience < 0 OrElse endurance < 0 Then
9: Return
10: End If
11:
12: For i As Integer = 0 To TourTypes.Count - 1
13: If experience >= MinExperience(i) _
14: AndAlso endurance >= MinEndurance(i) Then
15: Dim tour As New TourType ' add object to the listbox
16: tour.Name = TourTypes(i) ' name of the tour type
17: tour.Type = i ' tour type ID
18: lstTourTypes.Items.Add(tour)
19: End If
20: Next
21: End Sub

Line 12 begins a loop that determines which members of the TourTypes array
can be inserted into the list box named lstTourTypes. Lines 13–14 verify that
the user has sufficient experience and endurance to qualify for the type of tour
located in the current position of the TourTypes array. Notice in particular a
useful trick in lines 15–18, where a TourType object is inserted directly into the
list box. Normally we insert strings into list boxes, but here we need to save
both the name of the tour type as well as its tour type (an integer) for later use.

Step 9: Create a single SelectedIndexChanged event handler for both the lstExperi-
ence and lstEndurance list boxes. This event fires whenever the user selects a
different experience or endurance level, so we have to update the list of tour
types (on the third page of the TabControl).

Private Sub lstExperience_SelectedIndexChanged() _
Handles lstExperience.SelectedIndexChanged,

lstEndurance.SelectedIndexChanged

UpdateTourTypes()
End Sub

Step 10: Next, you will create the BuildTourList method. Before writing the actual
code, let’s design the pseudocode for this method:

for each tour type selected by the user, do:
for each actual tour, do:

if the actual tour matches the tour type,
add it to the list of possible tours

endif
next

next

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard 99

This method loops through the list of items that the user has checked inside
the lstTourTypes list box. The CheckedItems collection indicates which items
were selected by the user. Now you can write the code:

1: Private Sub BuildTourList()
2: lstPossibleTours.Items.Clear()
3: For Each item As TourType In lstTourTypes.CheckedItems
4: For Each tour As TourType In Tours
5: If tour.Type = item.Type Then
6: lstPossibleTours.Items.Add(tour)
7: End If
8: Next
9: Next
10: End Sub

A loop beginning on line 3 examines each member of the CheckedItems col-
lection. As each item is examined, line 4 starts another loop that goes through
the Tours array. Line 5 examines each tour to see if its type matches the tour
type of the current member of the CheckedItems collection. Each matching
tour is inserted into the lstPossibleTours list box.

Step 11: Create the ShowSelectedTours method. In the last page of the TabControl, it
displays the list of tours selected by the user:

1: Private Sub ShowSelectedTours()
2: lstSelectedTours.Items.Clear()
3: For Each tour As TourType In lstPossibleTours.CheckedItems
4: lstSelectedTours.Items.Add(tour)
5: Next
6: End Sub

Lines 3–5 copy each checked item from the lstPossibleTours list box to the lst-
SelectedTours list box. Notice that each entry in the lstPossibleTours list is a
TourType object.

Step 12: Next, you will create the SelectedIndexChanged event handler for the Tab-
Control. This event fires when the user navigates from one page to another,
either by clicking the tabs at the top of the control, or by clicking the Next
and Back buttons at the bottom of the form:

1: Private Sub tabCtrl_SelectedIndexChanged() _
2: Handles tabCtrl.SelectedIndexChanged
3: 'The user has moved to a new tab page
4: btnBack.Enabled = tabCtrl.SelectedIndex > 0
5: If tabCtrl.SelectedTab.Text <> ''Finish'' Then
6: btnNext.Text = ''&Next''
7: End If
8: End Sub

On line 5, if the current tab is not the last tab, the caption (Text) is set to
&Next.

Step 13: Create a handler for the lstAvailableTours list box. In other words, when the
user changes the selection of the types of tours he or she wants to see, we
rebuild the list of actual tours:

Private Sub lstTourTypes_SelectedIndexChanged() _
Handles lstTourTypes.SelectedIndexChanged
BuildTourList()

End Sub

100 Chapter 2 Input Validation and User Interfaces

Step 14: Create a Click handler for the Cancel button:

Private Sub btnCancel_Click() Handles btnCancel.Click
Me.Close()

End Sub

Step 15: Create an Enter event handler for the last tab page. Its job is to build the
list of selected tours and change the button at the bottom of the form to
Done.

Private Sub Finish_Enter() Handles Finish.Enter
' If the user is on the last panel, build
' the list of selected tours.
ShowSelectedTours()
btnNext.Text = ''&Done''

End Sub

Notice how several wizard pages were filled according to user selections on
previous pages. In this application, for example, the list of tour types in Step 3
depended on the user’s selections in Steps 1 and 2. This was accomplished by
the UpdateTourTypes method. Similarly, the list of available tours in Step 4
depended on which tour types were selected by the user in Step 3. This was
accomplished by the BuildTourList method.

Finally, verify that a Click handler exists for the About this wizard LinkLabel
control:

Private Sub lnkAbout_LinkClicked() Handles lnkAbout.LinkClicked
AboutForm.ShowDialog()

End Sub

Testing Plan

Step 16: Next, you will conduct the first series of manual tests of the Kayak Tour Wiz-
ard application. Carry out the following manual tests and verify the operation
of the navigation buttons.

Step 17: Carry out the second series of manual tests (shown in the table below) and
verify the results.

Input Expected output

Start the application. In the Step 1 Step 2 is displayed.
tab page, click the Next button.

Click the Next button. Step 3 is displayed.

Click the Next button. Step 4 is displayed.

Click the Next button. The Finish step is displayed, and
the Next button’s caption has
changed to Done.

Click the Back button. Step 4 is displayed, and the Done
button’s caption has changed to
Next.

Click the Cancel button. The application ends.

Chapter Summary 101

Input Expected output

In Step 1, select Never, and go to The recommended tour type is
Step 2. Select Unknown, and go Beginning class.
to Step 3.

Select Beginning class and go to Step 4 displays Beginning
Step 4. Kayak Class.

Select Beginning Kayak Class and Beginning Kayak Class is listed,
go to the step Finish step. and the Next button’s caption has

changed to Done.

Go to Step 1, select One time, go to The recommended tour types are
Step 2 and select 15 minutes, Beginning class and Two hour.
and go to Step 3.

Select Two hour and go to Step 4. The list of tours contains Garden
Cove, Pennecamp Park, and
Rattlesnake Key.

Select any two tours and go to the The tours selected in Step 4 are
Finish step. listed.

Go to Step 1, select 2 to 4 times, go The recommended tour types are
to Step 2 and select 30 minutes, Beginning class, Two hour, and
and go to Step 3. Half day.

Select Half day and go to Step 4. The list of three tours contains
Garden Cove to Pennecamp, Largo
Sound, and Blackwater Sound.

Go to Step 1, select 5 to 6 times, The recommended tour types are
go to Step 2 and select 60 minutes, Beginning class, Two hour,
and go to Step 3. Half day, and Full day.

Select Half day and Full day and Six tours are listed: Garden Cove
go to Step 4. to Pennecamp, Largo Sound,

Blackwater Sound, Sunset Cove,
Flamingo Park, and Deer Key.

Select all tours and go to the All tours you selected are listed.
Finish step.

Click the Done button. The application ends.

Summary

Software wizards such as the one presented in this tutorial are useful for end users because
they simplify and organize tasks. At the same time, programming a wizard can entail quite
a bit of debugging because you must control and organize the visible choices as the user
moves from one step to another.

Chapter Summary

2.1 Input Validation

• Applications should do their best to detect and handle errors resulting from user input.
• When performing input validation, you will often use methods from the Char class.

One use for Char methods is when scanning a string to look for certain classes of char-
acters. Another way to use Char methods is when you are validating keyboard input.

102 Chapter 2 Input Validation and User Interfaces

• The TextChanged event associated with the TextBox control fires each time the user
changes its contents. The TextBox control also fires a KeyPress event every time the
user presses a key while the input focus is on the control.

• The StatusStrip control is the ideal container for displaying status and error messages
to the user.

• The ErrorProvider control provides a simple way to validate input fields by displaying
an icon and error message for any field containing invalid data.

2.2 Exception Handling

• When a program encounters an error while running, we say that an exception was
thrown. Sometimes, the error is severe enough to cause the application’s behavior to
become unreliable.

• An exception is usually handled by alerting the user, retrying the operation that caused
the error, or by terminating the application.

• Exceptions are objects. In other words, a program that throws an exception is really
throwing an instance of one of the .NET exception classes.

• Most often, a program handles exceptions that were caused by a user’s invalid input.
When possible, try to prevent exceptions by checking all input.

• Handling an exception is accomplished using a Try—Catch—Finally statement.
• When a Try block contains multiple statements (and it usually does), not all statements

in the block may be able to execute.

2.3 ListBox, ComboBox, and CheckedListBox

• ListBox, ComboBox, and CheckedListBox are collectively known as list-type controls.
• The CheckedBoxList control has the same properties and behavior as a ListBox, except

with added check boxes next to each item.
• The CheckedListBox.CheckedIndices property contains a collection of the indexes of the

checked items. Similarly, the CheckedItems collection contains the items that were
checked.

• The SelectedIndex property returns the index position of the most recently selected item
of a list-type control. The SelectedItem property returns the item selected by the user.

• The SelectionMode property of a ListBox can be configured to allow the user to make
multiple selections.

• The SelectedItems collection contains all selected items. The SelectedIndices collection
contains the indexes of all selected items.

• You can define a class and insert instances of the class into the Items collection of a
list-type control.

2.4 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl

• The FlowLayoutPanel control is a general-purpose container into which you can insert
any type of control.

• The WebBrowser control displays online Web pages and local HTML document files.
To load an HTML page into a WebBrowser control, call the Navigate method.

• The SplitContainer control divides a form into panels. At runtime, the user can change
the sizes of panels by dragging a splitter bar.

• The TabControl is a control that provides a convenient way for you to divide a form
into separate pages. Each page (a TabPage object) belongs to a TabPageCollection
stored in the property named TabPages.

2.5 Focus on Problem Solving: Kayak Tour Scheduling Wizard

• This application uses a software wizard to guide customers of the Kayaking Outfitter
Company through the process of selecting one or more kayaking tours.

Review Questions 103

Review Questions

True or False

Indicate whether each of the following statements is true or false.

1. If an exception is thrown midway through a Try block, the appropriate Catch block exe-
cutes immediately.

2. The IsDigit method is a shared method in the Char class.

3. After a Catch block executes, any remaining statements in the Try block are executed.

4. The Finally block always executes, whether or not an exception was thrown.

5. An exception must be caught inside the same method as the method throwing the
exception.

6. Catch blocks should be sequenced so the most specific types of exceptions occur first,
followed by more general exception types.

7. A Catch block does not have to declare an exception variable.

8. Only the first Catch block (in a series of Catch blocks) is permitted to catch an Appli-
cationException.

9. A separate ErrorProvider control is required for each TextBox on a form.

10. A Char data type holds a 16-bit Unicode character.

11. To convert a string to a Char array, call the MakeArray method.

12. The SetError method of the ErrorProvider method has a single parameter, which is a
string.

13. The Leave event fires when the input focus moves away from a control.

Key Terms
catching an exception
Char data type
CheckedListBox control
DateTimePicker control
ErrorProvider control
Finally block
FolderBrowserDialog control
Input validation
KeyPress event
ListBox control
List-type control
ProgressBar control

RichTextBox control
software wizard
SplitContainer control
StatusStrip control
structured exception handling
System.Exception class
TabControl control
TextChanged event
throwing an exception
uncaught exception
unhandled exception
WebBrowser control

• A software wizard is an application that leads the user through a series of predescribed
steps. In each step, the user may be given choices that influence subsequent steps. Wiz-
ards are particularly useful when completing tasks that are complicated or need to be
completed in a specific sequence.

• In the Kayak Tour Scheduling wizard, the user is asked for his or her experience and
endurance levels. A list of appropriate tour categories is displayed. The user selects one
or more categories, and based on these selections, the wizard displays a list of matching
tours. The user then selects individual tours, and a final report lists the selected tours.

104 Chapter 2 Input Validation and User Interfaces

14. An uncaught exception always causes an application to stop.

15. If an exception is thrown inside a Try block, all statements in the Try block execute
anyway.

16. If an exception is thrown inside a Try block, all statements in the Finally block execute
anyway.

17. When a Catch block finishes executing, execution resumes in the Try block where the
exception was thrown.

18. The Finally block is optional.

19. The Items.Remove method of a ListBox receives an integer index parameter.

20. You cannot directly add a DateTime object to another DateTime object.

Short Answer

1. What do we call an exception that is never caught?

2. What type of exception should be thrown by methods in your own classes?

3. What type of exception is thrown when the format of an argument passed to a method
does not match the format of the formal parameter?

4. Which exception property returns a string containing the sequence of method calls that
led up to the exception being thrown?

5. Which control lets you divide a form into separate pages?

6. Which ErrorProvider method must be called to create a pop-up error message for a par-
ticular control?

7. Which Char method checks if a character is a member of the alphabet?

8. Which Char method converts a character to uppercase?

9. Which event handler is created when you double-click a TextBox control in design
mode?

10. Which TextBox event fires each time the user presses a keyboard key?

11. Which control automatically docks at the bottom of a form and often contains a Label
control?

12. Which control provides a visual cue to the validation status of an input field?

13. Which exception is thrown when an array subscript is out of bounds?

14. Which collection in the CheckedListBox control contains a list of the indexes of all
checked items?

15. Which ListBox property must be modified to permit the user to select multiple items?

16. If you insert your own type of objects in a ListBox, which method in your class must be
implemented?

17. Which control is shown in this chapter as a way for the user to select a date from a
calendar-like display?

18. If you want to add 10 days to the current date, which DateTime method should you
call?

19. What types of buttons can be added to a ToolStrip control?

20. If you want to display text in a ToolStripButton, which property must be set to Text?

Programming Challenges 105

21. Which control lets the user drag a vertical or horizontal bar between two panels?

22. Which WebBrowser method must you call when displaying a Web page?

What Do You Think?

1. Why might the user prefer to have all fields on a form validated at the same time?

2. Do you prefer that applications prevent you from making input mistakes, or would you
rather make the mistakes and be notified later?

3. Do you think an OutOfMemoryException should be caught by application programs?

4. How might the Finally block be useful in a program that reads from a file?

5. What characteristics define a wizard-type application?

Algorithm Workbench

1. Suppose you want to create a wizard application to help the user set up a sprinkler sys-
tem with a timer that would turn off and on at the same time each day. Make a list of
the questions the wizard would ask the user.

2. Write a sequence of statements that set e.Cancel to True if a TextBox control named
txtZip does not contain five decimal digits.

3. Write a statement that passes an error message to an ErrorProvider control named
errProvider under the following condition: txtName.Text does not contain two words.

4. Show an example of creating a TimeSpan object from 3 hours, 10 minutes, and 0 seconds.

5. Get the current date and time, and add 3 hours and 10 minutes using the Date.Add
method.

Programming Challenges
1. Bank Teller with Totals

Extend the solution program you wrote for the Bank Teller with Totals program in the
Programming Challenges for Chapter 1. Add the following error checking:

• The Account.Deposit method must throw an ArgumentException if the amount
parameter is less than zero. Pass a string containing “Deposit must be a positive
value.”

• The Account.Withdraw method must throw an ArgumentException if the amount
parameter is less than zero. Pass a string containing “Withdrawal must be a positive
value.”

• The Account.Withdraw method must throw an ArgumentException if the amount
parameter is greater than the current account balance. Pass a string containing
“Insufficient funds for withdrawal.”

All exceptions must be caught by the main form, which displays the exception messages.

2. Club Committee Organizer

Your student computer club needs to keep a record of which club members have joined
committees. Your task is to write an application that will make the process easy. In
Figure 2-42, the user is about to select the name of a committee from a combo box. Then
in Figure 2-43, the user has selected several members from the general members list on
the left side. The user is about to click the button containing an arrow pointing to the
right, which will copy the selected member names into the Current Members list box. In
Figure 2-44, the members have been copied, and automatically unselected from the list

106 Chapter 2 Input Validation and User Interfaces

box on the left side. If the user should try to select and copy a member who already
belongs to the committee list on the right side, nothing will happen. In Figure 2-45 the
user has selected two committee members and is about to click the button with the
arrow pointing leftwards. These members will be removed from the committee.

Both list boxes permit multiple items to be selected. Insert the following list of commit-
tees into the combo box: Activities, Community Services, Executive, Membership, Pro-
gramming Team, Scholarship, Sports, Travel, Volunteer Tutoring. Make up your own
list of at least ten names for the list box containing the general membership.

Error checking: Make sure the user selects a committee name before you permit mem-
bers to be copied into the list box on the right side.

Figure 2-42 Club Committee Organizer, selecting a committee

Figure 2-43 Club Committee Organizer, selecting several members

Programming Challenges 107

Figure 2-45 Club Committee Organizer, two members about to be removed from the
committee

3. Winter Sports Rentals

A winter sports rentals store needs an application that will let the user (a store clerk)
enter information about each customer’s rental. The user should be able to select multi-
ple equipment items, a rental duration, and insurance. Figure 2-46 shows a sample
design, after the user has selected all items and clicked the Calculate button. Include a
check box showing that a liability waiver was signed, and let the user input the deposit
amount. Use a combo box to list the rental durations, but do not let the user type in an
arbitrary duration. When the user clicks the Calculate button, the application should
calculate the subtotal, tax, and balance due. Also, use a LinkLabel control (Weather
forecast) to display a second form containing a WebBrowser control.

Figure 2-44 Club Committee Organizer, membership committee contains four people

108 Chapter 2 Input Validation and User Interfaces

The form containing the WebBrowser control, shown in Figure 2-47, should display a
series of links to weather forecasts for the area near the winter sports rental store. Place
a ToolStrip container at the top of the form; it should contain a text box (for entering a
Web address), a Go button to navigate to the address typed into the text box, and a
Close button that closes the browser window. Note: We do not endorse any particular
Web search engine, so you may substitute another of your choosing.

Error Checking: When the user clicks the Calculate button, make sure that at least one
item has been selected from the equipment list box. Also, a rental duration must have
been selected, and the Deposit amount must be a positive number. Use the ErrorProvider
control to display all error messages.

The following rental durations should appear in the combo box: 1 day, 2 days, 3 days,
1 week, 2 weeks.

Calculations: Each equipment item has a rental rate based on different durations. Cre-
ate a two-dimensional array containing all possible rental rates. Each row should contain

Figure 2-46 Winter Sports Rentals, prices calculated

Figure 2-47 Winter Sports Rentals, showing weather forecast links

Programming Challenges 109

the rental rates for a single item, using the different rental durations. The following first
row of the array, for example, contains rental rates for Skis, beginner:

35,45,80,150,280

For this equipment, the rates are $35.00 for 1 day, $45.00 for 2 days, $80.00 for 3 days,
$150.00 for a week, and $280.00 for 2 weeks. Damage insurance costs 10 percent of
the total rental charge before taxes.

4. Winter Sports Rentals Classes

Using the Winter Sports Rentals program from Programming Challenge 3 as a starting
point, make the following improvements:

• Create a class that holds all the rental rates. This class should contain a function
named GetRentalPrice that returns a single rental price if passed the type of equip-
ment and the rental duration. Inside the class, define an enumerated type for the type
of duration (1 day, 2 days, etc.), and another enumerated type for the equipment type
(skis, snowboard, boots, etc.). Use these enumerated types to define the parameter
types for GetRentalPrice. For example:

Public Function GetRentalPrice(ByVal duration As DurationType,
ByVal equip As EquipmentType) As Double

• Also, create a readonly property that returns the cost of damage insurance (10 per-
cent of the total rental charge before taxes):

Public Shared ReadOnly Property InsuranceCost(
ByVal rentalAmount As Double) As Double

5. Calculating Flight Times

Imagine that you plan to apply for a programming position at an airline. Before inter-
viewing, you need to have a good idea of how airlines calculate flight arrival times. There-
fore, you will create a simple application that explores this concept. Your application will
calculate the arrival time of any airline flight. The user selects the local departure date and
time, the departure airport, and the arrival airport. Then the application calculates the
local arrival date and time. It displays this information, along with the trip duration.

It is reasonable to assume that airlines use Coordinated Universal Time (UTC) when cal-
culating departure and arrival times. (Appendix B explains how to convert between local
time and UTC time, with examples.) Figure 2-48 shows information for a flight from
Miami to Honolulu. The departure date is selected in a DateTimePicker control, and the

Figure 2-48 Information for a flight from Miami to Honolulu

110 Chapter 2 Input Validation and User Interfaces

departure time is entered into a text box. When the user selects a departure airport,
arrival airport, date, and time and clicks the Continue button, the arrival date and time
appear on the right side of the form. Figure 2-49 shows information for an overnight
flight from Honolulu to Miami. Notice that the arrival date is one day later than the
departure date.

Implementation Notes

If the user clicks the Continue button without selecting departure and arrival airports,
use an ErrorProvider control to signal the error. Do not let the program calculate dates
and times until airports are selected. Create some application data, similar to the fol-
lowing:

Private airports As String() = {''MIA'', ''JFK'', ''HNL'', ''LAX'', ''DFW''}
Private utcOffsets As Integer() = {-4, -4, -10, -7, -5}
Private travelTimes As Double(,) = {{0, 3, 12, 8, 2.5}, _

{3, 0, 14, 8.5, 3.5}, {12, 14, 0, 4.5, 8.5}, _
{8, 8.5, 4.5, 0, 3.5}, {2.5, 3.5, 8.5, 3.5, 0}}

The airports array holds several airport identification codes. The utcOffsets array holds
the UTC offsets of the corresponding airports. The travelTimes array holds the esti-
mated travel time, in hours, between two airports and all the other airports. It is a two-
dimensional array. Row 0, for example, represents the time to travel between MIA
(Miami) and the following airports: MIA, JFK, HNL, LAX, and DFW. Row 1 represents
the time to travel between JFK (New York) and the following airports: MIA, JFK, HNL,
LAX, and DFW. The times listed here may very well be incorrect, so feel free to change
them.

A suggested approach is to use three steps in your calculations: (1) Convert the local
departure time into UTC time; (2) add the trip’s duration, resulting in the UTC arrival
time; and (3) convert the UTC arrival time into the arrival airport’s local time.

6. Simple Image Album

The Simple Image Album application in Tutorial 2-3 has a fatal flaw—it runs out of
memory when more than a small number of images are load into its array of PictureBox
controls. Your challenge is first to display the images as thumbnails. Then, when the user
clicks a thumbnail, your application will display the full-size image in a separate win-
dow. This means that you will have to add a click handler to each PictureBox control,
but fortunately you can use the same handler for all the buttons.

Figure 2-49 Information for a flight between Honolulu and Miami

TOPICS

Collections3

3.1 ArrayLists

Tutorial 3-1: ArrayList of test
scores

3.2 ArrayLists of Custom Objects

Tutorial 3-2: Building an ArrayList of
Student objects

3.3 List and Dictionary Classes

Tutorial 3-3: Creating a text
concordance

3.4 (Language Integrated Query (LINQ)

Tutorial 3-4: Performing LINQ queries
on a list

111

C
H

A
P

T
E

R

This chapter introduces some of the most useful and powerful collection classes in the .NET
library, with the idea that collections of objects help to build concepts that can be applied
later to databases. We show how to create and use ArrayLists, strongly typed Lists, and Dic-
tionary objects. The chapter finishes with examples that show how to use Microsoft’s new
Language Integrated Query (LINQ) technology to search lists of objects.

3.1 ArrayLists
In the most general terms, a collection is any sequenced or unsequenced group of values. In
a sequenced collection known as a list, the values retain their relative positions to each other.
For example, we might refer to a list of temperature samples taken every hour during the
day. Arrays can be considered lists. Another type of collection is a set, which does not have
any particular sequence. We might refer to the set of all people with green eyes, for exam-
ple, with the understanding that there is no particular ordering within that group. Another
type of collection is often called a Dictionary or map, which associates keys with corre-
sponding values. If you wanted to look up a student’s academic transcript, for example, you
would use his or her student ID as what is known as a key. The value associated with each
key in the dictionary would be the student’s transcript.

The .NET Framework has classes that implement different types of collections. In this chap-
ter, we will present a few, such as ArrayList, List, and Dictionary.

112 Chapter 3 Collections

There is a Visual Basic data type named Collection that was introduced in early versions
of Visual Basic. It addresses a need for an array-type structure that can expand when new
items are added. Also, it allows items to be stored with associated key values, which can
be used in searches. In that sense, a Visual Basic Collection object is a dictionary. But the
Collection type continues to have some drawbacks and has been overshadowed by newer
classes in the .NET framework. For that reason, we will not use the Visual Basic Collec-
tion type from this point onward.

ArrayList Class
The most fundamental .NET collection is the ArrayList class, an expandable list-type col-
lection that contains references to objects. ArrayList belongs to the System.Collections
namespace. Like arrays, ArrayLists also permit subscripts to randomly access their elements.
ArrayLists are more powerful and flexible than arrays in the following aspects:

• An ArrayList expands as new items are inserted, whereas an array does not.
• An ArrayList contains methods to find, insert, and remove items, whereas an array

does not.
• You can insert different types of objects into the same ArrayList object.

Figure 3-1 helps to show some of the relationships between an ArrayList and the items it
contains. Table 3-1 lists some of the most common ArrayList properties and methods.

Figure 3-1 Overview of ArrayLists

ArrayList

grows
contains

finds
items by

which
are

Index

Items Class Types

Matching Value

Dynamically

Table 3-1 Selected ArrayList properties and methods

Property or Method Description

Add(element As Object) Adds a new item to the end of the list

Clear() Removes all items from the list

Contains(element As Object) As Boolean Returns True if the list contains the given item

Count() As Integer Returns a count of the number of items in the list

Insert(index As Integer, element as Object) Inserts an item into the list at a specified index
position.

Item(index As Integer) As Object Returns a reference to the list item at a specified
index position

Remove(element As Object) Removes the first occurrence of a specified item
from the list

RemoveAt(index As Integer) Removes the item at a specified index position

3.1 ArrayLists 113

Creating an ArrayList
Use the New operator to create an instance of the ArrayList class. For example:

Dim customers As New ArrayList

You can also pass an array, an ArrayList, or any other object type that implements the
ICollection interface to the ArrayList constructor. In the following code, for example, the
ArrayList receives a copy of the scores array:

Dim scores() As Integer = {80, 66, 75}
Dim scoreList As New ArrayList(scores)

Adding and Inserting Items
One way to add items to an ArrayList is by calling the Add method. Here’s an example:

customers.Add(''Baker'')

You can also use the Insert method to put an item into the list at a specified index:

scoreList.Insert(1,''Ramirez'')

There is no limitation on inserting duplicate items, so if your application requirements dis-
allow duplicate items, you should first test to see if the item is in the list.

Removing Items
The RemoveAt method removes an ArrayList item. You pass to it the index position of the item
you want to remove. The following statement removes the customer at index position 2:

customers.RemoveAt(2)

The Remove method removes the first item that matches the item you pass as an input
parameter. The following statement removes “Baker” from the customers ArrayList:

customers.Remove(''Baker'')

Finding Items
The Contains method returns a Boolean value indicating whether a certain value exists in
an ArrayList. In the following example, the found variable will equal True if the value 66
exists in the ArrayList named scoreList:

Dim found As Boolean = scoreList.Contains(66)

The IndexOf method returns an integer that identifies the index position of an item. If the
item is not found, the return value is �1. The following code calls IndexOf and displays a
message if the customer name is not found:

Dim index As Integer = customers.IndexOf(''Baker'')
If index = -1 Then

lblStatus.Text = ''Customer not found''
End If

Retrieving and Replacing Items
The Item property returns a reference to an ArrayList element. You pass to the Item prop-
erty an integer index between 0 and ArrayList.Count – 1. For example, the following code
retrieves the value stored at index position 2 in the customers ArrayList:

Dim name As String = CStr(customers.Item(2))

Because the customers.Item(2) expression returns a plain Object data type, we must convert
it into a String type before assigning it to the name variable.

114 Chapter 3 Collections

Item is known as a default property, so the following statement implicitly gets the element
at index position 2:

Dim name As String = CStr(customers(2))

You can use the Item property to replace an item in an ArrayList. The following lines show
two ways to replace the item at index 2 with “Johnson”:

customers.Item(2) = ''Johnson''
customers(2) = ''Johnson''

IndexOutOfRangeException
An IndexOutOfRangeException is thrown if you pass an index to the Item property that
does not match the index of any item in an ArrayList. The following code example shows
how to handle the exception:

Try
Dim index As Integer = CInt(txtIndex.Text)
Dim cust As String = CStr(customers.Item(index))

Catch ex As IndexOutOfRangeException
MessageBox.Show(ex.Message)

End Try

The same rule applies when you call the RemoveAt method, which also must receive a valid
index.

The Count Property
The Count property indicates the number of items stored in an ArrayList. The following
code uses the Count property to display the size of the customers list:

lblInfo.Text = ''The collection size is '' & customers.Count

Loops
The preferred way to loop through an ArrayList is to use a For Each statement. During each
loop repetition, the variable declared in the loop represents the current item value. The fol-
lowing code, for example, loops through scoreList and adds each score to a list box:

For Each score As Integer In scoreList
lstBox.Items.Add(score)

Next

Similarly, the following code loops through the customers ArrayList and adds each element
to a list box:

For Each cust As String In customers
lstBpx.Items.Add(cust)

Next

In Tutorial 3-1, you will examine an application that builds an ArrayList of test scores.

Tutorial 3-1:
ArrayList of test scores

In this tutorial, you examine and test an application that has a Student class containing
an ArrayList of test scores. As each test score is entered by the user, it is added to the
list. A read-only property in the class calculates the test average. The class also contains
a shared variable that holds the college name, with a corresponding shared property.

3.1 ArrayLists 115

Figure 3-2 shows the application’s output after the user has entered a student ID and
name, and has clicked the Save button. Then, when the user enters a few test scores and
clicks the View button, the sample output is the same as that shown in Figure 3-3. The
user can continue to enter more test scores and click the View button as many times as
necessary.

Figure 3-2 After clicking the Save button

Figure 3-3 After adding two scores and clicking the View button

Tutorial Steps

Step 1: Open the ArrayList of Test Scores project in the chapter examples folder. The
named controls used in this application are:

• TextBox controls: txtIdNumber, txtGrade, txtLastName
• Label controls: lblTestAverage, lblStudent, lblCollege
• Buttons: btnAdd, btnSave, btnView

Step 2: Open the Student class in the code editor and view the following code:

1: Public Class Student
2: Public Property IdNumber As String
3: Public Property LastName As String
4: Public Shared Property CollegeName As String
5: Private mTestScores As New ArrayList
6:
7: Public ReadOnly Property TestAverage() As Double
8: Get
9: Dim testSum As Double = 0.0

116 Chapter 3 Collections

10: For Each grade As Double In mTestScores
11: testSum += grade
12: Next
13: If mTestScores.Count > 0 Then
14: Return testSum / mTestScores.Count
15: Else
16: Return 0.0
17: End If
18: End Get
19: End Property

The ArrayList is declared on line 5. Line 13 checks the value of mTest-
Grades.Count, to avoid accidentally dividing by zero when no test scores
have been added to the collection. Line 14 calculates and returns the test
average.

The remaining methods consist of a constructor, a method to add a single test
grade to the collection, and a ToString method:

Public Sub New(ByVal pIdNumber As String,
Optional ByVal pLastName As String = '''')
IdNumber = pIdNumber
LastName = pLastName

End Sub

Public Sub AddTestGrade(ByVal grade As Double)
mTestScores.Add(grade)

End Sub

Public Overrides Function ToString() As String
Return IdNumber & '', '' & LastName

End Function
End Class

Step 3: Open the code window for MainForm.vb and inspect the following code:

Public Class MainForm
Private objStudent As Student

The Form_Load event handler sets the value of the CollegeName shared prop-
erty in the Student class.

Private Sub Form_Load() Handles MyBase.Load
Student.CollegeName = ''My University''

End Sub

Step 4: Find the Click handler for the Save button:

Private Sub btnSave_Click() Handles btnSave.Click
objStudent = New Student(txtIdNumber.Text,

txtLastName.Text)

lblStudent.Text = ''(student information saved)''
btnAdd.Enabled = True

End Sub

This method creates a new Student object from the two text boxes. Notice
how the Add button is enabled only after the user clicks the Save button. This
is necessary to prevent the program from trying to add a test score before a
Student object has been created. The Add button lets the user add test grades
to the student’s collection of scores.

3.1 ArrayLists 117

Step 5: Find the Click handler for the View button, which displays the student (ID
and last name), the college name, and the student’s test average:

Private Sub btnView_Click() Handles btnView.Click
lblStudent.Text = objStudent.ToString
lblCollege.Text = Student.CollegeName
lblTestAverage.Text = objStudent.TestAverage.ToString(''n'')

End Sub

Step 6: The Click handler for the Add button takes the test grade from the txtGrade
text box and calls the Student.AddTestGrade method. This method adds the
grade to the student’s collection of grades.

Private Sub btnAdd_Click() Handles btnAdd.Click
Dim testGrade As Double
If Double.TryParse(txtGrade.Text, testGrade) Then

objStudent.AddTestGrade(testGrade)
Else

MessageBox.Show(''Test grade must be a number'', ''Error'')
End If

End Sub

Step 7: Test the application using the following testing sequence. Restart the applica-
tion for each test.

Test 1

Input Expected output

Enter 200032, Johnson, and The ID and name should appear
click the Save button. Next, in the label, and the test average
click the View button. should appear as 0.0. The college

name should appear as My
University on all tests.

Test 2

Input Expected output

Enter any ID and name, and The ID and name should appear
click the Save button. Enter a in the label, and the test average
single test score (92.3), click the should appear as 92.3.
Add button, and click the View
button.

Test 3

Input Expected output

Enter any ID and name, and The ID and name should appear
click the Save button. Enter the in the label, and the test average
test scores 92.3 and 85.1, click should appear as 88.70.
the Add button, and click the
View button.

118 Chapter 3 Collections

Test 4 was included to show how an unsuspecting user might click the Save button with-
out realizing that it would erase all the test scores. For practice, decide how you would
warn the user before erasing the scores.

Test 4

Input Expected output

Enter any ID and name, and The ID and name should appear
click the Save button. Enter the in the label, and the test average
test scores 92.3 and 85.1, click should appear as 0.00. (By clicking
the Add button, click the Save the Save button, you created a new
button, and click the View button. Student and erased the existing

collection of test scores.)

Summary
The ArrayList class is a lightweight, powerful, and easy alternative to using arrays. It is the
ideal container to use when a list must expand at runtime, or when you must search for items.
So far, we have shown only how to create ArrayLists containing standard data types. In the
next section, we will show how to create ArrayLists containing user-defined class types.

Checkpoint

1. What is the subscript of the first element in an ArrayList object?

2. Which type of collection can more easily delete an element: an ArrayList or an
Array?

3. Yes or no: Do ArrayList entries have key values?

4. Which ArrayList property returns a member of a collection at a given index
position?

5. What type of exception is thrown if you pass an invalid index value to the Item
method?

6. What is the preferred type of loop to use on an ArrayList?

3.2 ArrayLists of Custom Objects
You have seen how to create ArrayLists of standard data types, such as Strings and Doubles.
Before long, you will also want to create lists containing instances of your own classes. Sup-
pose we want to build a list of Student objects. The following tasks are commonly performed
on lists:

• Loop through the list and display each student
• Search for a student
• Sort the list
• Remove a student from the list

We must create a new instance of the Student class each time we insert a new object, to avoid
creating an ArrayList in which all items reference the same object. Also, the Student class
needs to implement the Equals and CompareTo methods.

3.2 ArrayLists of Custom Objects 119

References and Copies
When an item in an ArrayList is a value type such as Integer or Single, the Item method
returns a copy of the item. For example, the following code inserts an integer into an
ArrayList named numbers:

Dim numbers As New ArrayList
numbers.Add(10)

Next, the following code retrieves the integer stored at index 0 and modifies its value:

Dim intNum As Integer = CType(numbers.Item(0), Integer)
intNum = 99

But intNum is only a copy of the item in the collection, so the item stored in the ArrayList
at index 0 still equals its original value, 10.

But when an ArrayList item is a reference type, the Item method returns a reference to the
object. The reference can be used to modify the object inside the list. To illustrate, we can
create an ArrayList named students and insert a Student object:

Dim students As New ArrayList
students.Add(New Student(''Johnson''))

Next, we use the Item method to obtain a reference to the same student:

Dim studentRef as Student = CType(students.Item(0), Student)

Next, we assign a new last name to the student reference:

studentRef.LastName = ''Griffin''

By doing this, we have also modified the name of the Student object inside the ArrayList.
That is because the Item method always returns a reference to an object in an ArrayList.

Common Error: Multiple References to the Same Object

Understanding how references work can really help you to avoid a common error when
working with collections—that of storing multiple references to the same object. The fol-
lowing code (located inside the Click handler for a button named Add) shows the correct
way to insert an object into an ArrayList:

1: Private AllStudents As New ArrayList
2:
3: Private Sub btnAdd_Click() Handles btnAdd.Click
4: Dim objStudent As New Student(txtIdNumber.Text,
5: txtLastName.Text, CDbl(txtAverage.Text))
6: AllStudents.Add(objStudent)
7: End Sub

Line 4 creates a new Student object, using values from the text boxes. Line 6 adds the stu-
dent to the ArrayList. Next, let’s look at similar code that contains a common bug:

1: Private AllStudents As New ArrayList
2: Private objStudent As New Student
3:
4: Private Sub btnAdd_Click() Handles btnAdd.Click
5: objStudent.IdNumber = txtIdNumber.Text
6: objStudent.LastName = txtLastName.Text
7: objStudent.TestAverage = CDbl(txtAverage.Text)
8: AllStudents.Add(objStudent)
9: End Sub

Can you see the error? A single Student object is created on line 2. Then, on lines 5–7, its
properties are assigned values from text boxes. On line 8, the object is added to the

120 Chapter 3 Collections

ArrayList. But each time the loop repeats, line 8 adds the same Student object to the
ArrayList again and again. The ArrayList entries end up referencing the same object, as
shown in Figure 3-4. So the lesson to be gained from this example is this: You must create
a new instance each time you insert an object into an ArrayList.

Figure 3-4 When ArrayList members reference the same object

Comparing Objects with CompareTo
When you sort an array or ArrayList of custom objects, you must define how they will be
compared, using a method named CompareTo method. This method has the following
parameter list and return type:

Function CompareTo(ByVal obj As Object) As Integer

Given two objects A and B, CompareTo is called like this:

Dim result As Integer = A.CompareTo(B)

The return value of CompareTo when comparing two objects A and B is as follows:

• If A is less than B, A.CompareTo(B) returns a negative integer.
• If A is equal to B, A.CompareTo(B) returns zero.
• If A is greater than B, A.CompareTo(B) returns a positive nonzero integer.

If a class does not contain a CompareTo method, a list of instances of the class cannot be
sorted. In common terminology, the objects are not comparable. To demonstrate, let’s create
the following Student class:

Class Student
Public Property Id As String
Public Property Name As String
Public Sub New(ByVal pId As String, ByVal pName As String)

Id = pId
Name = pName

End Sub
End Class

Next, we insert the students in an ArrayList and attempt to sort it:

Dim list = New ArrayList()
list.Add(New Student(''2001'', ''Jones''))
list.Add(New Student(''1004'', ''Thomas''))
list.Add(New Student(''1050'', ''Adams''))
list.Sort()

All Students (1)

references

references

references

references

ObjStudent

All Students (2)

All Students (3)

All Students (4)

3.2 ArrayLists of Custom Objects 121

Upon running the application, an unhandled exception like the one shown in Figure 3-5
says: Failed to compare two elements in the array. To put it another way, we failed to include
a CompareTo method in the Student class. But before showing how to create a CompareTo
method, we need to explain about Interfaces in .NET.

Figure 3-5 Attempting to sort an ArrayList

Interfaces

An interface defines a set of methods and properties that can be implemented by other
classes. The classes that implement the interface are guaranteed to contain these methods
and properties. When a class implements an interface, we learn something important about
the class: We learn what it can do.

An interface is declared in much the same way as a class. For example, this is how .NET
defines the IComparable interface:

Interface IComparable
Function CompareTo(ByVal obj As Object) As Integer

End Interface

Notice that the CompareTo method does not contain a body—only the method signature,
we call it, which is the line you see here. A method signature consists of the word Sub or
Function, followed by the method name, parameter list, and return type (if it is a function).

If a class implements the IComparable interface, the class must contain a CompareTo
method with the same signature as the one defined in the IComparable interface. Also, the
CompareTo method in the implementing class must contain a body. Next, we’ll show how
the Student class can implement the IComparable interface.

CompareTo Example

Suppose we have created a Student class, and we want to compare Student objects by their
ID numbers. Then our Student class will implement the IComparable interface. The
shaded areas of the following code listing show which parts relate to the IComparable
interface:

1: Class Student
2: Implements IComparable
3: Public Property Id As String
4: Public Property LastName As String
5: Public Sub New(ByVal pId As String, ByVal pName As String)
6: Id = pId
7: LastName = pName
8: End Sub
9:

122 Chapter 3 Collections

10: Public Function CompareTo(ByVal obj As Object) As Integer _
11: Implements IComparable.CompareTo
12: Dim S As Student = CType(obj, Student)
13: Return Me.Id.CompareTo(S.Id)
14: End Function
15: End Class

Line 2 states that this class implements the IComparable interface. Line 11 states that the
CompareTo method in this class implements the CompareTo method specified in the ICom-
parable interface. Line 12 casts the obj parameter into a Student object, allowing us to refer
to the Id field on line 13. On that line, the Id value of the current student (identified by Me)
is compared to the Id value of the student who was passed as the parameter to this method.
(The Me qualifier is not required, but it helps to clarify which object is which.)

The CompareTo method looks very similar in every class that implements it. Only a few lines
of code refer specifically to the type of objects being compared. For example, if we compared
two Account objects by their balances, CompareTo would look like this:

Public Function CompareTo(ByVal obj As Object) As Integer _
Implements IComparable.CompareTo
Dim A As Account = CType(obj, Account)
Return Me.Balance.CompareTo(A.Balance)

End Function

The shaded lines identify the code lines that are specific to this class.

If you think you will need to sort an ArrayList, every type of object you put into that
ArrayList should be an instance of a class that implements IComparable. The same is true
for an Array of objects. But IComparable is easy to implement and it’s a great convenience.
Although you rarely need to do so, it is also possible to define your own interface types.
(Refer to Appendix B for details about interfaces.)

Related Topic: IList and IListSource Interfaces

It is possible to assign an Array, ArrayList, or List object to the DataSource property of a
ListBox, but you cannot do it with most other types of objects. Any object assigned to the
DataSource property must implement either the IList or IListSource interface. As it happens,
the Array, ArrayList, and List classes implement IList, which contains methods named
Contains, Add, IndexOf, Insert, Remove, and RemoveAt.

You can also assign a DataTable to the DataSource property of a ListBox because the DataT-
able class implements the IListSource interface. It turns out that IListSource is just a con-
venient wrapper for the IList interface. If you would like to see this information for yourself,
open the Object Browser window from the View menu in Visual Studio, and search for IList,
ArrayList, List, and IListSource.

Comparing Objects with the Equals Method
You learned in Chapter 1 that the Equals method compares all standard .NET types. It
returns a value of True if the objects contain equal values. For the two strings shown below,
the expression A.Equals(B) is True:

Dim A As String = ''abcde''
Dim B As String = ''abcde''
A.Equals(B) 'True

But the Equals method is not automatically configured for your own custom classes. The fol-
lowing code examples compare two Student objects. Assuming that we have not created a
custom version of the Equals method in the Student class, the expression s1.Equals(s2) is
False.

3.2 ArrayLists of Custom Objects 123

TIP: If your class also implements the IComparable interface, it’s a good idea for the
Equals and CompareTo methods to use the same property for comparisons.

Dim s1 As New Student(1001)
Dim s2 As New Student(1001)
s1.Equals(s2) 'False

Naturally, it would be helpful to compare Student objects or other custom types in a useful
way. We might want to search for Student objects in an ArrayList by calling the Contains or
IndexOf methods, for example. In order to do that, we will have to override the Equals
method in the Student class.

Overriding the Equals Method

To override the Equals method means to create an Equals method in your own class that has
the same signature as the Equals method in the Object class. The signature of the Equals
method is shown here.

Public Overrides Function Equals(ByVal obj As Object) As Boolean

The following Student class contains an Equals method that compares students by their ID
numbers:

1: Class Student
2: Public Property Id As String
3: Public Property LastName As String
4:
5: Public Overrides Function Equals(ByVal obj As Object) As Boolean
6: Return Me.Id.Equals(CType(obj, Student).Id)
7: End Function
8: End Class

Line 6 casts the obj variable into a Student object, and gets the object’s Id property value.
This value is compared to Me.Id, the ID of the current Student object. This Equals method
returns True if two students have the same ID number.

You can select any properties, variables, or calculated values to be compared when imple-
menting the Equals method. In general, you should choose a property or combination of
properties that will uniquely identify each object. It is important that the class properties
compared by the Equals method are either standard .NET types, or types that have them-
selves implemented the Equals method.

In Tutorial 3-2, you will examine an application that inserts Student objects into an
ArrayList. The Student class contains an Equals method that compares ID numbers.

Tutorial 3-2:
Building an ArrayList of Student objects

In this tutorial, you will examine an application that creates an ArrayList of Student
objects. The Student class will implement the Equals method.

Tutorial Steps

Step 1: Open the project named ArrayList of Students from the chapter examples folder.

Step 2: Run the application, input the following values into the text boxes, and click
the Add to Collection button:

124 Chapter 3 Collections

Step 3: Enter two more students, using the following data, and click the Add to
Collection button after each set of data has been entered:

10022, Jones, 90
20000, Ramirez, 79.5

Step 4: Click the View All button. Figure 3-6 shows the expected output.

Step 5: Next, you will search for a student by ID number. Enter 10022 into the TextBox
in the lower left corner, and click the Find by ID button. The program should
find the matching student and display it in the ListBox, as shown in Figure 3-7.

Step 6: Enter a nonexistent student ID into the textbox at the bottom left corner of
the form and click the Find by ID button. A message should say that the stu-
dent was not found.

Figure 3-6 After inserting three Students into the collection

Figure 3-7 After searching for a student ID

Student ID 10000

Last name Smith

Test average 82.5

3.2 ArrayLists of Custom Objects 125

Step 7: Examine the source code for the Student class. It has Id, LastName, and
TestAverage properties, a constructor, a ToString method, and an Equals
method.

Public Class Student
Public Property Id As String
Public Property LastName As String
Public Property TestAverage As Double

Public Sub New(ByVal pId As String,
Optional ByVal pLastName As String = '''',
Optional ByVal pTestAverage As Double = 0.0)
Id = pId
LastName = pLastName
TestAverage = pTestAverage

End Sub

Public Overrides Function ToString() As String
Return Id & '', '' & LastName _

& '', Test average = '' & TestAverage.ToString(''n2'')
End Function

Public Overrides Function Equals(ByVal obj As Object) _
As Boolean
Dim other As Student = CType(obj, Student)
Return Id = other.Id

End Function
End Class

Step 8: Examine the source code for the MainForm Class. The btnAdd_Click method
creates a Student and adds it to the collection. The btnView_Click method
loops through the collection and inserts each item into a ListBox. The
btnFind_Click method searches for a student ID and displays the matching
Student in the ListBox.

1: Public Class MainForm
2: Private allStudents As New ArrayList
3:
4: Private Sub btnAdd_Click() Handles btnAdd.Click
5: Try
6: Dim objStudent As New Student(txtIdNumber.Text,
7: txtLastName.Text, CDbl(txtAverage.Text))
8: allStudents.Add(objStudent)
9: Catch
10: MessageBox.Show(''Invalid test average'', ''Error'')
11: End Try
12: End Sub

Lines 6–7 create a student from the contents of the text boxes, and line 8
inserts the student into the allStudents ArrayList.

Step 9: Continuing in the same class, find the Click handler for the View button.

1: Private Sub btnView_Click() Handles btnView.Click
2: lstStudents.Items.Clear()
3: For Each stu As Student In allStudents
4: lstStudents.Items.Add(stu.ToString)
5: Next
6: End Sub

126 Chapter 3 Collections

This method clears the list box and uses a For Each statement to traverse the
ArrayList. Each student is inserted into the lstStudents list box.

Step 10: View the Click handler for the Find button.

1: Private Sub btnFind_Click() Handles btnFind.Click
2: lstStudents.Items.Clear()
3: Dim S As New Student(txtFindId.Text)
4: Dim index As Integer = allStudents.IndexOf(S)
5: If index <> -1 Then
6: S = CType(allStudents(index), Student)
7: lstStudents.Items.Add(allStudents(index).ToString)
8: ' update the text boxes, to be consistent
9: txtIdNumber.Text = S.Id
10: txtAverage.Text = S.TestAverage.ToString(''n'')
11: txtLastName.Text = S.LastName
12: Else
13: lstStudents.Items.Add(''Student ID was not found'')
14: End If
15: End Sub

Let’s look at some details in this code. Line 3 creates a Student object from the
ID number in the txtFindId text box, and line 4 calls IndexOf to search for
the student in the ArrayList. If the index returned by IndexOf is not equal to
1, line 6 gets a reference to the matching Student object in the list. Because
the value returned by allStudents(index) is type Object, we must cast it into a
Student type. Then, line 7 adds the student to the list box. Lines 9–11 copy
the student’s property values into the three text boxes on the form, so they will
show the same data as the list box.

Summary

A great many applications build, search, and maintain lists of objects. The ArrayList class is
an ideal tool for storing objects because of its rich set of methods and properties. Remem-
ber, if you want to call the Contains or IndexOf methods to search for objects, the class
defining the items in the collection must override the Equals method.

Checkpoint

7. If you plan to call the IndexOf method on an ArrayList containing custom objects,
the class defining the objects must contain which method?

8. If you plan to sort an ArrayList containing custom objects, the class defining the
objects must implement which interface?

9. True or false: In an ArrayList containing objects, the IndexOf method returns �1 if
an item is not found.

10. In the tutorial that builds an ArrayList of students, how were the objects uniquely
identified?

3.3 List and Dictionary Classes
The ArrayList class does not limit the types of items that may be inserted in a single list.
Therefore, we say that ArrayList is a weakly typed collection. Although this may seem like
an advantage because it offers the flexibility to create a collection containing various types

3.3 List and Dictionary Classes 127

of objects, it can lead to unintended runtime errors. For example, an application might
throw an exception if a reference to one of the ArrayList members turned out to be a dif-
ferent type than expected. In that case, a call to the CType method could generate an invalid
cast exception.

Invalid Cast Example

Let’s look at an example of how the weak typing in an ArrayList can cause problems. In the fol-
lowing code, Student and Employee objects are inserted in the same ArrayList named myList:

Class Student
'...

End Class
Class Employee

'...
End Class

Sub Test()
Dim myList As New ArrayList
myList.Add(New Student)
myList.Add(New Employee)

' The next line throws an exception.
For Each item As Student In myList

lstItems.Add(item.ToString())
Next

End Sub

But when the code loops through the list with the For Each statement, an InvalidCastException
is thrown. Figure 3-8 shows the resulting error message. Runtime conversion errors like this are
difficult to catch during manual testing. The application might appear to work correctly during
numerous tests. But at a later time, a certain sequence of inputs could cause the application to
fail. There are workarounds, of course. You could surround every For Each statement with Try
and Catch statements that would catch this type of conversion error. But doing so would require
the inconvenience of extra work and planning. To avoid the type of conversion error we have
been talking about, modern programming languages support strongly typed collections.

Figure 3-8 InvalidCastException

Strongly Typed Collections
A strongly typed collection is a collection that contains only a single type of object. The most
common way to implement such a collection is through the use of generic classes, which can
be found in the .NET Systems.Collections.Generic namespace. A generic class is a class that
takes on a specific data type only when an instance of the class is created. From that point
on in the application, the class is bound to the data type of its elements. (Another type of
object can be inserted only if there exists an automatic conversion from that type to the type
declared in the collection.)

128 Chapter 3 Collections

List(Of Type)
List(Of Type) is a class that holds strongly typed sequential collection of items. It is a useful
substitute for the ArrayList class. It has nearly identical methods and properties as ArrayList,
and it enforces strict type checking on the items you insert into it. Table 3-3 lists some of the
more commonly used List properties and methods.

Table 3-2 Selected classes in the System.Collections.Generic namespace

Class or Structure Description

List(Of Type) A sequential list containing objects of the
same type.

Dictionary(Of KeyType, ValueType) A class that represents a collection of keys and
values. The keys must all be unique. Each
value is associated with a single key.

SortedDictionary(Of KeyType, ValueType) A Dictionary class in which the keys are kept
in sorted order.

KeyValuePair(Of KeyType, ValueType) Represents a single Dictionary entry.

Table 3-2 describes a few generic classes related to lists and dictionaries, which we demon-
strate in this chapter. The .NET Library contains other generic classes, which you can read
about in the online MSDN documentation at http://msdn.microsoft.com.

Table 3-3 Selected ArrayList properties and methods

Property or Method Description

Add(item As Type) Adds a new item to the end of the list.

Clear() Removes all items from the list.

Contains(item As Type) As Boolean Returns True if the list contains the given item.

Count() As Integer Returns a count of the number of items in the list

Insert(index As Integer, item As Type) Inserts an item into the list at a specified index
position.

Item(index As Integer) As Type Returns a reference to the list item at a specified
index position.

Remove(item As Type) Removes the first occurrence of a specified item
from the list.

RemoveAt(index As Integer) Removes the item at a specified index position.

Sort() Sorts the list.

ToArray() As Array(of Type) Returns a strongly typed array of objects from
the ArrayList

Example: List of Integers

The following code declares a List(Of Integer) object and adds three integers to the list:

Dim intList As New List(Of Integer)
intList.Add(30)
intList.Add(10)
intList.Add(20)

http://msdn.microsoft.com

3.3 List and Dictionary Classes 129

The Clear method removes all items.

intList.Clear()

The Item property retrieves a reference to a list item, using an index to identify the item’s position.

Dim X As Integer = intList.Item(1)

The For Each statement loops through a List. The following lines copy the List items to a ListBox:

For Each M As Integer In intList
lstBox.Items.Add(M)

Next

The Contains method returns True if a matching value is found.

Dim found As Boolean = intList.Contains(20)

The IndexOf method returns the index position of a matching item, or �1 if the item is not found.

Dim index As Integer = intList.IndexOf(20)

The Remove method removes a matching item. If the value is not found, the statement has no
effect.

intList.Remove(30)

The RemoveAt method removes an item at a given index position.

intList.RemoveAt(0)

The Sort method sorts the elements in ascending order.

intList.Sort()

The ToArray method returns an array containing the list items.

intList.ToArray()

The List class contains many other methods, which you can read about in the online MSDN
documentation.

If You Want to Know More:
Sorting with a Comparator
Sometimes, you may want to sort a List in a nonstandard way, such as sorting in descend-
ing order. Or, you might want to sort on some other property than the one used by the Com-
pareTo method. To do so, you need to define a method called a comparator, which compares
any two list elements based on your needs. The method must have this general format:

Public Function MethodName(ByVal val1 As Type,
ByVal val2 As Type) As Integer

You can use any identifiers you like for MethodName, val1, and val2. The two parameters
represent any pair of values that are compared during the sorting process. The Type in this
general format must match the type of objects in the List.

Sorting functions always perform comparisons between pairs of arrays or list items. A com-
parator by itself, does not sort a list—you must still call the Sort method from the List class.
You just need to tell the Sort method how you want the list items to be compared.

Student Comparator Example

Suppose we want to sort a list of Student objects. We will assume that the Student class
already contains a CompareTo method that compares Students by their ID numbers. We
might create the following list of Students and call the Sort method:

Dim stuList As New List(Of Student)
stuList.Add(New Student(1234, ''Jones''));

130 Chapter 3 Collections

stuList.Add(New Student(4023, ''Baker''));
stuList.Add(New Student(5612, ''Gonzalez''));
stuList.Add(New Student(1001, ''Chong''));
stuList.Sort()

The list would now be sorted in ascending order by ID number:

1001 Chong
1234 Jones
4023 Baker
5612 Gonzalez

But we might also want to sort the list in ascending order by last name. To accomplish that, we
would first create a comparator method that compares the LastName properties of the objects:

Public Function CompareNames(ByVal X As Student,
ByVal Y As Student) As Integer
Return X.LastName.CompareTo(Y.LastName)

End Function

Then we would sort the list by passing the address of the comparator to the Sort method:

studentList.Sort(AddressOf CompareNames)

After sorting, the list of students would be sorted in ascending order by last name:

4023 Baker
1001 Chong
5612 Gonzalez
1234 Jones

Dictionary(Of KeyType, ValueType)
The Dictionary(Of KeyType, ValueType) class maps a set of keys to a set of values. In other
words, each key in the dictionary has a single value associated with that key. The keys must
be unique, but the values need not be unique. A Dictionary is optimized for searching
through a large number of keys. If you had 20 million items in a Dictionary, for example,
the key of a single item would be found instantly. If you were to search for an item in an
ArrayList, the search would take a good deal longer. We say that each Dictionary entry is a
pair, consisting of a key and a value.

It’s important to select a suitable property in your class to use as a Dictionary key. Look for
a property whose value will be unique for every item you insert in the Dictionary. If you were
inserting employees, for example, the ID property of the Employee class would probably be
a good choice for a key. On the other hand, the LastName property would not make a good
key because two employees might have the same last name.

The classes of dictionary keys must implement the IComparable interface, and they must
override the Equals method. Therefore, it is easiest to use a standard .NET data type as a
Dictionary key. Common choices are Integer and String. The associated values can be any
data type, with no special restrictions.

Creating a Dictionary

When you declare a Dictionary object, supply the types of its key and value pair. The gen-
eral format is:

Dim varName As New Dictionary(Of keytype, valuetype)

For example, the following code declares a Dictionary named salaries, using integers as keys
and Decimals as the values associated with the keys:

Dim salaries As New Dictionary(Of Integer, Decimal)

3.3 List and Dictionary Classes 131

Adding Entries to a Dictionary

The Add method adds a key/value pair to a Dictionary. The following lines, for example,
add several employee IDs and salary values to the salaries Dictionary:

salaries.Add(3001, 50000D)
salaries.Add(2020, 45000D)
salaries.Add(3125, 64500D)
salaries.Add(2501, 32800D)

When inserting key/value pairs, their data types must match the data types used when declaring
the Dictionary. That is why we call the Dictionary a strongly typed collection. The following
statement would be incorrect because it tries to insert a string key and a salary of type Double:

salaries.Add(''1002'', 34000.2)

On the other hand, we can pass an integer as the second argument because integers are auto-
matically converted to Decimals:

Dim N As Integer = 35000
salaries.Add(''1002'', N)

So to be more precise, the argument types must be assignment-compatible with the param-
eter types of the Add method.

The Count property indicates the number of Dictionary entries. The following statement
assigns the count to a Label:

lblCount.Text = ''There are '' & salaries.Count & '' entries''

The Clear method removes all entries from a Dictionary.

Looping Through Dictionary Entries

Each entry in a Dictionary is a KeyValuePair object, containing two properties: Key and
Value. When you declare a KeyValuePair, you must be specific about the types of the key
and the value. This is how we must declare it for the salaries Dictionary:

Dim entry As KeyValuePair(Of Integer, Decimal)

Then we can use the entry variable when coding a For Each statement. It holds the key and
value of each Dictionary entry. The following code adds several entries to the salaries dic-
tionary and then copies the entries to a ListBox:

salaries.Add(3001, 50000D)
salaries.Add(2020, 45000D)
salaries.Add(3125, 64500D)
salaries.Add(2501, 32800D)

For Each entry In salaries
lstBox.Items.Add(entry.Key & ''-->'' & entry.Value)

Next

The loop produces the following output:

3001-->50000
2020-->45000
3125-->64500
2501-->32800

Finding, Modifying, and Removing Entries

You cannot use an integer index to access a particular position in a dictionary. To find a Dic-
tionary entry, you must pass the key you want to find to the Item property. The following
statement returns 45,000, the salary of the employee whose ID number is 2020:

Dim salary As Decimal = salaries.Item(2020)

132 Chapter 3 Collections

If you try to get the value associated with a nonexistent key, the Item property throws a
KeyNotFoundException.

If you assign a value to the Item property and reference an existing key, the Dictionary
replaces the value associated with the key. For example, the following statement replaces the
salary of employee 3001:

salaries.Item(3001) = 62000D

If you assign a value to the Item property and reference a key that is not in the Dictionary,
a new entry is created and inserted. The following statement inserts a new entry in the Dic-
tionary, assuming that the key 2025 does not already exist:

salaries.Item(2025) = 72000D

The Remove method removes the entry whose key matches the method’s input parameter. Its
general format is:

dictionaryName.Remove(key) As Boolean

If the key is found and the item is removed, Remove returns True. Otherwise, Remove
returns False. For example, the following statement removes the entry whose key is 3125:

salaries.Remove(3125)

Extension Methods

Extension methods are a feature in .NET that let developers add new methods to existing classes.
The Dictionary class has a large number of such methods associated with its Keys and Values col-
lections. A few of the most common ones are listed in Table 3-4. Here are a few examples:

Dim average As Decimal = salaries.Values.Average()
Dim sum as Decimal = salaries.Values.Sum()
Dim minVal As Decimal = salaries.Values.Min()

Table 3-4 Sample extension methods in a Dictionary entry

Extension Method Description

Values.Average Returns the average of the values

Values.Sum Returns the sum of the values

Values.ToArray Returns an array containing the values

Values.Max Returns the largest value

Values.Min Returns the smallest value

Keys.Max Returns the largest key

Keys.Min Returns the smallest key

SortedDictionary Class

A SortedDictionary is a dictionary that maintains its keys in a specific order. Here is an example:

Dim orderedSalaries As New SortedDictionary(Of Integer, Decimal)

All of the methods and properties we discussed for the Dictionary class apply equally well
to the SortedDictionary class.

You can pass an existing Dictionary object to the constructor of a SortedDictionary, as long
as their key and value types are the same. For example, the following statement makes a
copy of the salaries Dictionary when creating orderedSalaries:

Dim orderedSalaries As New SortedDictionary(Of Integer, Decimal)
(salaries)

3.3 List and Dictionary Classes 133

Tutorial 3-3:
Creating a text concordance

In this tutorial, you will create an application that builds a concordance, which is a cat-
alog of words found in a document. The input file will be a text file containing words
separated by spaces. The set of words will be saved as the keys collection in a Dictio-
nary object, and each value associated with a key will be a List(Of Integer) containing
the line numbers where the word was found in the input file. The Dictionary will be
declared like this:

Private wordDict As New Dictionary(Of String, List(Of Integer))

When the application starts, the user will be able to select the Open command from the
File menu, as shown in Figure 3-9. An OpenFileDialog control will appear and let the
user select the input file. The file is read into a string list, and each word from the file
is inserted into the dictionary. In Figure 3-10, the application is now ready to let the user
search for a word. The user types in a single word and clicks the Find button to view a
list of all lines from the file that contain the word (Figure 3-11). The file we have used
as a sample contains the first ten chapters of Moby Dick by Herman Melville, available
from the Project Gutenberg foundation (www.gutenberg.org). The performance of the
program is excellent: It catalogs 4,256 words with no noticeable time delay. Searching
for a single word is also instantaneous. If the user clicks the All button, the entire list of
dictionary words appears in a multicolumn list box (Figure 3-12).

Before starting to create the application, we will briefly review the OpenFileDialog con-
trol, which was covered in our Starting Out with Visual Basic 2010 book.

Figure 3-9 On startup, the user will select the input file

Figure 3-10 Input file loaded and ready to search for a word

www.gutenberg.org

134 Chapter 3 Collections

Figure 3-11 Displaying lines containing the selected word whale

Figure 3-12 Displaying the entire dictionary

OpenFileDialog Control

The OpenFileDialog control lets the user select a file in a standard Windows dialog. It
has an InitialDirectory property that allows the dialog to point to a particular direc-
tory when it opens. Let’s assume that the control is named ofdOpenFile. The follow-
ing statement assigns to it the application’s current directory value, returned by the
GetCurrentDirectory method:

ofdOpenFile.InitialDirectory = Directory.GetCurrentDirectory()

In addition, we can ask the dialog to display only certain types of files by setting the
Filter property to a description, separated by a vertical bar from a wildcard name
(*.txt):

ofdOpenFile.Filter = ''Text files|*.txt''

3.3 List and Dictionary Classes 135

The ShowDialog method displays the dialog window. The user clicks either the Open
or Cancel button to close the dialog window. The method returns a DialogResult value
that we can use to find out which button was clicked.

Dim result As DialogResult = ofdOpenFile.ShowDialog()

A simple If statement checks for the Open button (listed as DialogResult.OK).

If result = DialogResult.OK Then

If a file has been selected, the dialog’s FileName property will now contain a complete
path to the file.

The OpenFileDialog has an OpenFile method that opens the file selected by the user
and returns a System.IO.Stream object. We can pass that object to the constructor for
the StreamReader class, so the application can use the infile variable to read lines from
the file.

Dim infile As StreamReader = New StreamReader(ofdOpenFile.
OpenFile())

Filtering a String

When reading words from the input file in this tutorial, we want to remove any trailing
punctuation marks such as commas and periods. We can define a string containing com-
mon punctuation characters and convert the string to a character array.

Dim filterOut As Char() = (''?':;.,!'''''').ToCharArray()

Later, when we have read a word from the file, we can call the TrimEnd method, pass-
ing it the character array that holds all characters that we want to trim from the
string.

word = word.TrimEnd(filterOut)

So, a word like “Street;” would be converted to “Street”.

We can also convert the input word to lowercase letters, making it easier to find match-
ing words later on.

word = word.ToLower()

When examining a word, we might want to know if the first character is a letter. The
Char class has a convenient method that returns either True or False.

If Char.IsLetter(word(0)) Then ...

Tutorial Steps

Step 1: Create a new application named Concordance Builder.

Step 2: Copy the file named moby.txt from the chapter examples folder into your
project folder.

Step 3: Add the controls listed in Table 3-5 to the form. Refer again to Figure 3-9 for
the control locations. The DropDownButton on the tool strip contains a File
menu with two subitems: Open and Exit. The tool strip also contains a few
separators, which are optional.

136 Chapter 3 Collections

Step 4: Open the startup form’s code window and add an Imports statement above
the class, as follows:

Imports System.IO

Step 5: Inside the class, insert the following declarations:

Private infile As StreamReader
Private wordDict As New Dictionary(Of String, List(Of Integer))
Private rawText As New List(Of String)

The rawText variable holds all input lines from the file, so we can display
these lines later in the list box when the user searches for a word.

Step 6: Add the OpenInputFile function, which returns True if a file was selected by
the user. We have already discussed the mechanics of the OpenFileDialog.

1: Private Function OpenInputFile() As Boolean
2: ' Displays an OpenFileDialog control and lets the user
3: ' select the input file.
4: With ofdOpenFile
5: .InitialDirectory = Directory.GetCurrentDirectory()
6: .FileName = ''*.txt''
7: Dim result As DialogResult = .ShowDialog()
8: If result = DialogResult.OK Then
9: infile = New StreamReader(.OpenFile())
10: lblFileName.Text = ''Filename: '' _
11: & Path.GetFileName(.FileName)
12: Return True
13: Else
14: Return False
15: End If
16: End With
17: End Function

Line 10 copies the filename from the OpenFileDialog control into a label on
the tool strip. The call to Path.GetFileName returns just the filename after
stripping off the long directory path.

Table 3-5 Controls in the Concordance Builder application

Control Type Control Name Properties

Form Text: Searching Text

ToolStrip

ListBox lstBox ColumnWidth: 100

ToolStripLabel lblFileName Text: (no file)

ToolStripTextBox txtSearchWord

ToolStripDropDownButton

ToolStripMenuItem mnuFileOpen Text: Open

ToolStripMenuItem mnuFileExit Text: Exit

ToolStripButton btnFind Text: Find

ToolStripButton btnAll Text: All

OpenFileDialog ofdOpenFile

3.3 List and Dictionary Classes 137

Step 7: Next, add the following Click handler for the File | Open menu command:

1: Private Sub mnuFileOpen_Click() Handles mnuFileOpen.Click
2: ' The user has clicked the File | Open menu item.
3: If Not OpenInputFile() Then Return
4:
5: ' Read each line and insert each new word into the
6: ' dictionary. For each existing word, add its line
7: ' number to the list for that word entry.
8: Dim linenum As Integer = 0
9: Dim filterOut As Char() = (''?':;.,!'''''').ToCharArray()
10:
11: Do While Not infile.EndOfStream()
12: Dim temp As String = infile.ReadLine()
13: If temp.Trim().Length = 0 Then Continue Do
14:
15: rawText.Add(temp)
16: Dim words() As String = temp.Split('' ''c)
17:
18: For Each word As String In words
19: word = word.TrimEnd(filterOut).ToLower()
20: If word.Length > 0 AndAlso Char.IsLetter(word(0)) Then
21: If Not wordDict.ContainsKey(word) Then
22: wordDict.Add(word, New List(Of Integer))
23: End If
24: wordDict(word).Add(linenum)
25: End If
26: Next
27: linenum += 1
28: Loop
29: End Sub

This is a long method, so let’s go through the code carefully. Line 3 calls
OpenInputFile, and exits if the user canceled the dialog. Line 8 creates a vari-
able named linenum, which will keep track of the line read most recently from
the file. Line 11 repeats the loop until the end of the input file. Line 12 reads
a complete line of input from the file, and line 15 adds the line to the rawText
list we declared earlier. Line 13 skips the rest of the loop if a blank line is
found and goes right back to line 11. Line 16 splits the input line into an array
of words.

Line 18 begins a new loop whose job is to take each word in the array, trim it
and convert it to lowercase (line 19), and make sure it is not blank and it begins
with a letter (line 20). Then on line 21, we check if the word is already in the
dictionary. If it is not, we add the word to the dictionary (line 22) and give it
a new empty line number list. On line 24, we add the current line number to
the list associated with the current word. Line 27 increments the line number,
and the loop goes back to read another line from the file (line 12).

Step 8: Add a Click handler for the All button, which displays all words in the dictionary.

Private Sub btnAll_Click() Handles btnAll.Click
lstBox.MultiColumn = True
lstBox.Items.Clear()
For Each entry As KeyValuePair(Of String,

List(Of Integer)) In wordDict
lstBox.Items.Add(entry.Key)

Next
End Sub

138 Chapter 3 Collections

Notice how the code sets the MultiColumn property in the list box to display
as many words as possible at the same time.

Step 9: Create a Click handler for the Find button. Its job is to look for the user’s
word in the dictionary and then pull out all matching lines from the rawText
list.

1: Private Sub btnFind_Click() Handles btnFind.Click
2: lstBox.MultiColumn = False
3: lstBox.Items.Clear()
4: If wordDict.ContainsKey(txtSearchWord.Text) Then
5: For Each lineNum As Integer In wordDict(
6: txtSearchWord.Text)
7: lstBox.Items.Add(lineNum & ":" & vbTab _
8: & rawText(lineNum))
9: Next
10: Else
11: lstBox.Items.Add("(word not found)")
12: End If
13: End Sub

Line 4 calls ContainsKey to find out if the word (in txtSearchWord.Text)
exists in the dictionary. This type of search executes very quickly. If the word
is found, the following expression returns a List(Of Integer) object containing
the line numbers where the word was found in the input file:

wordDict(txtSearchWord.Text)

Line 5 loops through the list of line numbers. Line 7 uses each line number as
an index into the rawText List object, and inserts the text line into the list box.
Finally, if the user’s word is not found, line 11 displays a failure message in
the list box.

Step 10: Finally, insert a Click handler for the File | Exit menu item.

Private Sub mnuFileExit_Click() Handles mnuFileExit.Click
Me.Close()

End Sub

Step 11: Save the project and run the application. Open the moby.txt file from your
project directory. Click the All button to display all words found in the file.

Step 12: Input a word into the text box that you would like to find, and click the Find
button. You should see a list of the lines from the file that contain your word.

If you have another file you would like to search, repeat the process shown in
Steps 11 and 12.

Summary
There is no limit to the ways in which lists and dictionaries can be combined. For example,
you could create a list of dictionary objects. Each dictionary object might contain a key and
an associated list (as we did in Tutorial 3-3). Each member of that list could be a Dictionary
that holds yet another list.

The Dictionary class offers outstanding performance when you have a large number of
items, or when you want to perform advanced operations on its data. Also, it does not
require you to implement the Equals method in the class defining values inserted in the dic-
tionary. The Dictionary keys, on the other hand, must be comparable.

3.4 Language Integrated Query (LINQ) 139

Checkpoint

11. What is a weakly typed collection?

12. What is a generic class?

13. Which generic classes were described in this chapter?

14. When calling the List.Contains method, what restriction is placed on the class that
defines the list elements?

15. Why is a comparator useful?

3.4 Language Integrated Query (LINQ)
Language Integrated Query (LINQ), is a query language built into .NET that can be used to
display information from different types of data sources. For example, LINQ can query col-
lections of objects (arrays, Lists, ArrayLists) in memory, databases, XML files, Excel spread-
sheets, and so on.

A group of smart people at Microsoft had a good idea: If SQL is such a powerful language
for searching (querying) databases, why not invent a similar type of language in .NET that
can query many types of data, not just databases? And so, LINQ was born. In this chapter,
we introduce a simple type of LINQ known as LINQ for Objects.

The simplest LINQ query revolves around four clauses: From, Where, Select, and Order By

• From—Identifies the data source, which can be object such as an array or List
• Where (optional)—Holds a Boolean expression that selects which values will be copied

from the data source
• Select—Identifies the name of the field(s) that will be returned by the query
• Order By (optional)—Indicates how the results of the query will be ordered

The From and Select clauses are required.

Array Example
We will show how to use LINQ to query an array of integers. Let’s begin with the following
array declaration:

Dim intNumbers() As Integer = {4, 104, 2, 102, 1, 101, 3, 103}

The following LINQ statement returns all array values that are greater than 100:

Dim query = From item In intNumbers
Where item > 100
Select item

Let’s take a closer look at the statement. First, notice that the statement begins with Dim
query. We are declaring an object named query that defines a LINQ query, but we have not
specified a data type. Visual Basic automatically determines the data type for the object, a
technique known as type inference.

On the right side of the = operator is the query definition, which examines each item in the
intNumbers array to see if the value is greater than 100, and if it is, to select the value.

From item In intNumbers
Where item > 100
Select item

Once the query has been defined, you can use it in different ways. You can loop through it,
you can build another query from it, or you can pass the query to another method.

140 Chapter 3 Collections

For example, the following code segment loops through the query (executing it) and adds
each value to a list box named lstResults:

For Each intNum As Integer In query
lstResults.Items.Add(intNum)

Next

Because the intNumbers array contains {4, 104, 2, 102, 1, 101, 3, 103}, our query will show
the values 104, 102, 101, and 103 in the list box, in that order.

To sort the results of the LINQ query in ascending order, we can use the Order By operator,
as shown here:

Dim query = From item In intNumbers
Where item > 100
Select item
Order By item

LINQ uses operators such as Where, Select, and Order By, which are similar to operators in
the SQL database query language. The operators are part of Visual Basic and can be checked
by the compiler before the application runs. This makes it easier to know if you have made
a mistake.

TIP: Anonymous types are data types that are not explicitly declared anywhere in a
program. Some expressions, particularly those created by LINQ queries, have types that
can be determined only at runtime. So Visual Basic uses type inference to figure out the
expression’s type at runtime. You can create an anonymous type yourself, as we do in the
following code:

Dim aCustomer = New With {.Name = ''Joe Smith'',
.Age = 22, .City = ''Miami''}

Example: Selecting Even Integers from an Array

In this example, we query an array of integers, looking for the even values (evenly divisible
by 2). Also, we sort them in ascending order:

Dim numbers() As Integer = {4, 3, 2, 1, 6, 9, 7}

Dim evensQuery = From num In numbers
Where (num Mod 2 = 0)
Order By num
Select num

The expression num Mod 2 returns the remainder after dividing num by 2. If the
remainder equals zero, the number must be even. The values produced by evensQuery
are {2, 4, 6}.

You can modify a query after it has been created. For example, the following statement
reverses the order of the values generated by evensQuery:

evensQuery = evensQuery.Reverse()

What type of variable is evensQuery? It is defined as a strongly typed interface named
IOrderedEnumerable(Of Integer). The important point here is that the elements produced
by this query “know” that they are Integers. We’ll see how that matters when we start pro-
ducing queries from lists of more complex objects, such as Students or Accounts.

3.4 Language Integrated Query (LINQ) 141

Building a Query from an Existing Query

The evensQuery produced the even numbers {2, 4, 6}. We can build a second query that
further limits the values produced by evensQuery. The following query named evensLarge
produces just one value, 6:

Dim evensLarge = From num in evensQuery
Where num > 4
Select num

Extension Properties and Methods

An extension method is a method that returns a modified version of the output from a LINQ
query. One such extension method is named Count.

evensQuery.Count()

It is important to realize that evensQuery does not contain actual data—instead, it is a vari-
able that contains a query. You can modify the query, pass the variable as a parameter, or
assign it to another variable. LINQ uses deferred execution, which means that a LINQ query
does not execute until we actually use it. That might be when we fill a list box with the val-
ues or use the items in some other way.

In the following code, we copy the list of output values generated by evensQuery to a List-
Box and then display the average value of the integers produced by evensQuery:

For Each number In evensQuery
lstBox.Items.Add(number.ToString())

Next

' Display the average value of evensQuery.
lblAverage.Text = ''Average = '' & evensQuery.Average()

Querying a List of Objects
LINQ makes it easy to query lists and dictionaries of objects. In particular, you can refer to
object properties by name. To show how this works, we will create a List(Of Student) and
design LINQ queries that work with the list. We will assume that the following Student class
has been defined, and it has a constructor with parameters:

Public Class Student
Public Property Id As String
Public Property LastName As String
Public Property Status As Integer 'values: 1,2,3,4
Public Property Gpa As Double 'grade point average
Public Property Major As String
'etc.

End Class

We can populate a List with Student objects, as follows:

Dim studentList As New List(Of Student)
With studentList

.Add(New Student(''1241'', ''Jones'', 1, 3.2, ''BIO''))

.Add(New Student(''1641'', ''Baker'', 2, 3.9, ''ENG''))

.Add(New Student(''1001'', ''Charles'', 1, 2.6, ''BIO''))

.Add(New Student(''2205'', ''Smith'', 2, 3.1, ''MTH''))

.Add(New Student(''1961'', ''Davis'', 2, 2.2, ''ENG''))

.Add(New Student(''2210'', ''Chong'', 3, 2.4, ''BIO''))

.Add(New Student(''1975'', ''Perez'', 3, 4.0, ''ENG''))
End With

142 Chapter 3 Collections

The following LINQ query selects all students from studentList and sorts the results in
ascending order by the Student.Id property:

Dim query = From aStudent In studentList
Select aStudent
Order by aStudent.Id

The following query selects all students from the list and sorts by Last name:

Dim query = From aStudent In studentList
Select aStudent
Order by aStudent.LastName

You can very easily assign a query’s output to a DataGridView control, as shown in Figure 3-13.
Just convert the query’s output to a List and assign it to the DataSource property of the grid.

dgvStudents.DataSource = query.ToList()

If you want to display only some of each object’s properties, you can list them in the Select
clause, as follows:

Dim query = From aStudent In studentList
Select aStudent.Major, aStudent.LastName
Order By Major

dgvStudents.DataSource = query.ToList()

The result is a convenient listing of students by major, as shown in Figure 3-14.

Figure 3-13 Displaying a LINQ query in a DataGridView control

Figure 3-14 Listing of students by major

3.4 Language Integrated Query (LINQ) 143

Filtering the Rows
The Where operator in a LINQ query provides the filtering, or selecting of rows from a data
source. You can use any combination of object properties, comparison operators, method
calls, and compound operators. Let’s look at some examples.

The following query selects only students with a grade point average (GPA) over 3.0 and
sorts the results in descending order:

Dim query = From aStudent In studentList
Select aStudent
Where aStudent.Gpa > 3.0
Order By aStudent.Gpa Descending

The following query selects only students with a GPA under 3.2 who are biology (BIO) majors:

Dim query = From aStudent In studentList
Select aStudent
Where aStudent.Gpa < 3.2 And aStudent.Major = ''BIO''
Order By aStudent.Gpa Descending

Rather than using constant values for comparison, you can use values in text boxes:

Dim query = From aStudent In studentList
Select aStudent
Where aStudent.Gpa < CDbl(txtGpa.Text) And

aStudent.Major = txtMajor.Text
Order By aStudent.Gpa Descending

We could write code that loops through studentList and perform the comparisons ourselves,
of course. But LINQ does this type of work so much more easily. In Tutorial 3-4, you will
look at various ways to query a list of students and to calculate useful statistics on the list.

Tutorial 3-4:
Performing LINQ queries on a list

In this tutorial, you will examine an application that uses LINQ queries to display, sort,
filter, and calculate statistics on a list of students. The startup form has a menu with
selections that let the user choose different sorts and filters. The results of the queries
are displayed in a DataGridView control. Figure 3-15, for example, shows the output
from a LINQ query that sorts by last name in descending order.

Figure 3-15 Sorting students by last name in descending order

144 Chapter 3 Collections

The Statistics form in Figure 3-16 displays statistics gathered from the list, using
LINQ queries and extension methods. It shows the average GPA of all students, the
range of GPA values from smallest to largest, and the average GPA of the major that
was selected by the user from a list box. The list box itself is populated by a LINQ
query.

Figure 3-16 Statistics form displays information about the student list

Tutorial Steps

Step 1: Open the sample project named LINQ List of Students.

Step 2: Examine the main menu items.

Sort by
ID, ascending
Last name, descending

Select
Students with GPA > 3.0
BIO majors with GPA < 3.2

View
Statistics

Step 3: Open the code window and examine the following code:

Dim studentList As New List(Of Student)

Private Sub Form_Load() Handles MyBase.Load
With studentList

.Add(New Student(''1241'', ''Jones'', 1, 3.2, ''BIO''))

.Add(New Student(''1641'', ''Baker'', 2, 3.9, ''ENG''))

.Add(New Student(''1001'', ''Charles'', 1, 2.6, ''BIO''))

.Add(New Student(''2205'', ''Smith'', 2, 3.1, ''MTH''))

.Add(New Student(''1961'', ''Davis'', 2, 2.2, ''ENG''))

.Add(New Student(''2210'', ''Chong'', 3, 2.4, ''BIO''))

.Add(New Student(''1975'', ''Perez'', 3, 4.0, ''ENG''))
End With

End Sub

The studentList variable is declared as a List of Student objects.

Step 4: Examine the Click handler for the Sort by / ID, ascending menu item:

Private Sub mnuSortById_Click() Handles mnuSortById.Click
' Sort by ID, ascending
Dim query = From aStudent In studentList

Select aStudent
Order By aStudent.Id

' Convert to List(Of Student)
dgvStudents.DataSource = query.ToList()

End Sub

3.4 Language Integrated Query (LINQ) 145

Step 5: Examine the Click handler for the Sort by / Last name, descending menu item:

Private Sub mnuSortByName_Click() Handles mnuSortByName.Click
' Sort by last name, descending
Dim query = From aStudent In studentList

Select aStudent
Order By aStudent.LastName Descending

dgvStudents.DataSource = query.ToList()
End Sub

Step 6: Examine the Click handler for the Select / Student with GPA > 3.0 menu
item:

Private Sub mnuSelectHighGpa_Click() _
Handles mnuSelectHighGpa.Click
' Students with GPA greater than 3.0
Dim query = From aStudent In studentList

Select aStudent
Where aStudent.Gpa > 3.0
Order By aStudent.Gpa Descending

dgvStudents.DataSource = query.ToList()
End Sub

Step 7: Examine the Click handler for the Select / BIO majors with GPA < 3.2 menu
item:

Private Sub mnuSelectBIO_Click() Handles mnuSelectBIO.Click
' BIO majors with GPA less than 3.2
Dim query = From aStudent In studentList

Select aStudent
Where aStudent.Gpa < 3.2 And aStudent.Major = ''BIO''
Order By aStudent.Gpa Descending

dgvStudents.DataSource = query.ToList()
End Sub

Step 8: Examine the Click handler for the View / Statistics menu item:

StatisticsForm.StudentList = studentList
StatisticsForm.ShowDialog()

Step 9: Run the application and verify that all queries based on menu items work cor-
rectly. Then stop the application.

Statistics Form

Step 10: Open the code window for the Statistics form. It contains a property that
holds a reference to the list of students that was created in the MainForm
class:

Public Class StatisticsForm
Public Property StudentList As New List(Of Student)

Step 11: Examine the Form_Load event handler, which calculates the average GPA.
Because we want only GPA values, the Select clause specifically identifies
aStudent.Gpa:

Private Sub StatisticsForm_Load() Handles MyBase.Load
'Calculate the average GPA.
Dim GpaQuery = From aStudent In StudentList

Select aStudent.Gpa
lblAverageGpa.Text = GpaQuery.Average().ToString(''n'')

146 Chapter 3 Collections

The extension method named Average returns the average value of all the val-
ues found by GpaQuery.

Continuing in the same event handler, extension methods are applied to the
GpaQuery object to get the smallest (Min) and largest (Max) values returned
by the query:

'Calculate the min and max GPAs.
lblGpaRange.Text = GpaQuery.Min().ToString(''n'') _

& '' - '' & GpaQuery.Max().ToString(''n'')

Finally, the code fills the ListBox control with a single instance of each major.
This is done first with a query (named majors) and then by calling the exten-
sion method named Distinct.

'Fill the list box with major names.
Dim majors = From aStudent In StudentList

Select aStudent.Major
Order By Major

lstMajors.DataSource = majors.Distinct().ToList()
End Sub

Step 12: Examine the SelectedIndexChanged event handler for the ListBox.

Private Sub lstMajors_SelectedIndexChanged() _
Handles lstMajors.SelectedIndexChanged

This method calculates the average GPA of students having the selected major,
in two steps: First, it assigns a list of students who match the selected major
to majorQuery.

Dim majorQuery = From aStudent In StudentList
Select aStudent
Where aStudent.Major = lstMajors.SelectedItem.ToString

Then, it uses majorQuery as the source for a second query that selects just the
Gpa property of each student.

Dim gpaQuery = From aStudent In majorQuery
Select aStudent.Gpa

Finally, when gpaQuery is assigned to the Label control, the Average exten-
sion method calculates the average GPA.

lblAvgGpaSelected.Text = gpaQuery.Average().ToString(''n'')

It is possible to combine the foregoing queries into a single nested query.

gpaQuery = From aStudent In (From aStudent In StudentList
Select aStudent Where aStudent.Major =
lstMajors.SelectedItem.ToString)
Select aStudent.Gpa

Summary

This tutorial presented a few of the simplest types of queries available in LINQ for objects.
It is worth noting that the types of operations performed on the data (min, max, average,
select, sort) would require quite a bit of coding if LINQ were not used. Notice how easy it
was to assign the results of the queries to a DataGridView control, just as you might do with
an SQL Server DataTable.

3.4 Language Integrated Query (LINQ) 147

Querying a Dictionary
You can perform LINQ queries on a Dictionary. Using the same Student class that we used
in the previous examples, the following code fills the Dictionary with the same entries that
we used for a List:

Dim studentColl As New Dictionary(Of Integer, Student)
With studentColl

.Add(1241, New Student(''1241'', ''Jones'', 1, 3.2, ''BIO''))

.Add(1641, New Student(''1641'', ''Baker'', 2, 3.9, ''ENG''))

.Add(1001, New Student(''1001'', ''Charles'', 1, 2.6, ''BIO''))

.Add(2205, New Student(''2205'', ''Smith'', 2, 3.1, ''MTH''))

.Add(1961, New Student(''1961'', ''Davis'', 2, 2.2, ''ENG''))

.Add(2210, New Student(''2210'', ''Chong'', 3, 2.4, ''BIO''))

.Add(1975, New Student(''1975'', ''Perez'', 3, 4.0, ''ENG''))
End With

Writing a LINQ query to process a Dictionary is a little different from writing a query for a List.
Each entry in a Dictionary is of type KeyValuePair, which has two properties named Key and
Value. The Select operator in a LINQ query needs to reference the Value property of the pair.

The following query selects all students from the Dictionary and sorts them by ID number:

Dim query = From aPair In studentColl
Select aPair.Value
Order By Value.Id

Because the expression aPair.Value returns a Student object, the Order By operator needs to
use Value.Id to indicate the specific Student property for sorting the query results.

A simple alternative is to run the LINQ query on the Values collection of the Dictionary,
which is itself a List. An example is shown here.

Dim query = From aStudent In studentColl.Values
Select aStudent
Order By aStudent.Id

Classes Containing Other Lists
One of the most powerful features of LINQ is its ability to access and search a list that may
be inside another class. Suppose, for example, that a program declares a list of Account
objects, as follows:

Dim accountList As List(Of Account)

Each Account contains an ID and a list of stocks.

Class Account
Public Property ID As Integer
Public Property Stocks As List(Of Stock)

End Class

A Stock object contains a Ticker symbol and a price.

Class Stock
Public Property Ticker As String
Public Property Price As Double

End Class

First, we can write a LINQ query that selects a single account that matches the ID number
stored in a variable named AcctIdToFind.

Dim queryOne = From acct In accountList
Where acct.ID = AcctIdToFind
Select acct

148 Chapter 3 Collections

Now that queryOne contains the selected Account object, we can call the ElementAt exten-
sion method to return a reference to the Account object and get its list of stocks.

Dim stockList As List(Of Stock) = queryOne.ElementAt(0).Stocks

Many programmers save space by combining all of this into a single query. Notice how
parentheses must surround the first query before calling ElementAt:

stockList = (From acct In accountList
Where acct.ID = AcctIdToFind
Select acct).ElementAt(0).Stocks

Summary

LINQ has assumed an increasing level of importance in the .NET world over the past few
years. Its greatest appeal is that it is designed to work directly with objects. Objects tend to
be hierarchical in nature, so that a Student might reference a list of courses, each of which
might then reference course catalog information. LINQ can save you a lot of coding time
with its huge set of operators and extension methods.

Checkpoint

16. What does LINQ stand for?

17. What are the three basic keywords in LINQ queries?

18. What data type is used when declaring a variable that holds a LINQ query?

19. What is an extension method?

20. When does a query execute?

Summary

3.1 ArrayLists

• The most fundamental .NET collection is the Collections.ArrayList class. It is the best
replacement for the older Visual Basic Collection type, which has many limitations.

• The ArrayList class defines an expandable collection of references to objects.
• ArrayLists let you find, insert, and remove items; arrays do none of these tasks.
• The Add and Insert methods add new items to an ArrayList.
• The Remove and RemoveAt methods remove items.
• The Contains and IndexOf methods search for items.
• The Item property retrieves and replaces items.
• The Count property returns the number of items.

3.2 ArrayLists of Custom Objects

• When filling an ArrayList with instances of your own user-defined class, be sure to
override the Equals method and implement the CompareTo method in your class.

• Always create a new instance of the user-defined class each time you insert a new
object. You don’t want to build an ArrayList in which all the items reference the same
object.

• When an item in an array or ArrayList is a value type such as Integer or Single, the
Item method returns a copy of the item.

• A reference to an item in an ArrayList can be used to modify the object that it references.

Key Terms 149

• An interface defines a set of methods and properties that can be implemented by other
classes. The classes that implement the interface are guaranteed to contain these meth-
ods and properties.

• To override the Equals method means to create an Equals method in your own class
that has exactly the same method signature as the Object.Equals method. You can
select any property, variable, or method return value in your class to be compared
when overriding Equals.

3.3 List and Dictionary Classes

• A strongly typed collection is a collection that contains only a single type of object.
• The most common way to create a strongly typed collection is through the use of generic

classes, which can be found in the .NET Systems.Collections.Generic namespace.
• A generic class is a class that takes on a specific data type only when an instance of the

class is created. From that point on in the application, the class is bound to the data
type of its elements.

• The List(Of ValueType) class is a strongly typed List class.
• A comparator is a method that compares two list elements in a specific way.
• The Dictionary class maps a set of keys to a set of values. In other words, for each key

in the dictionary, there is a single value associated with that key. The keys must be
unique, but the values need not be unique.

• When you declare a Dictionary object, you supply the types of its key and value pair.
• Each entry in a Dictionary is a KeyValuePair object. It has two properties: Key and Value.
• A SortedDictionary is a dictionary that maintains its keys in a specific order.

3.4 Language Integrated Query (LINQ)

• LINQ, which stands for Language Integrated Query, is a query language built into Visual
Basic that can be used to display information from different types of data sources.

• A query variable uses type inference to get its type based on the data returned by the
query on the right side of the assignment operator.

• LINQ uses operators such as Where, Select, and Order By, which are similar to oper-
ators in the SQL database query language.

• LINQ operators are part of .NET and can be checked by the compiler before the appli-
cation runs.

• LINQ provides many useful extension properties and extension methods that perform
additional operations on queries.

• The Where operator in a LINQ query provides filtering, or selecting of rows from the
data source.

Key Terms
anonymous types
ArrayList class
collection
comparator
CompareTo method
Dictionary(Of KeyType, ValueType) class
extension method
generic class
IComparable interface
interface
KeyValuePair
Language Integrated Query (LINQ)

LINQ for objects
list
List(Of Type)
map
method signature
override the Equals method
SortedDictionary
strongly typed collection
type inference
weakly typed collection

150 Chapter 3 Collections

Review Questions

True or False

Indicate whether each of the following statements is true or false.

1. You must declare the size of an ArrayList when it is created.

2. An ArrayList can contain duplicate items.

3. If the ArrayList.IndexOf method does not find a matching item, it returns a value of zero.

4. If the ArrayList.Item property does not find a matching item, it throws an exception.

5. The ArrayList.Add method always adds the item at the end of the list.

6. When an item in an array or ArrayList is a value type such as Integer or Single, the Item
method returns a copy of the item.

7. The CompareTo method in the Student class always has two Student parameters.

8. An interface defines a set of methods and properties that can be implemented by other
classes.

9. The IComparable interface contains two methods.

10. The CompareTo method returns a Boolean result.

11. The Equals method always has a single Object parameter.

12. The Equals method always uses the Overrides keyword.

13. The List class can be used to create a strongly typed collection.

14. A generic class is often used to create a weakly typed collection.

15. The values in a Dictionary must be instances of a class that implements the CompareTo
method, but the keys have no such restriction.

16. In a Dictionary, the values must be unique, but the keys need not be unique.

17. If you assign a value to the Item property and reference a key that is not in the Dictio-
nary, a new entry is created and inserted.

18. The Dictionary class does not contain a Sort method.

19. A Dictionary automatically stores its keys in sorted order.

20. The OpenFileDialog control’s OpenFile method returns a StreamReader object.

21. To get the application’s current directory, call the Directory.GetCurrentDirectory method.

22. To get just the name of a file from a complete directory path, call the My.Applica-
tion.GetFileName method.

23. To find out if a Dictionary has a certain key value, call the Contains method.

24. When you use LINQ to query a Dictionary of objects, you can refer to the object prop-
erties by name.

Short Answer

1. Why is it easier to insert a new item into index position 5 of an ArrayList than to do the
same with an array?

2. If you want to sort an ArrayList containing Account objects, which interface must be
implemented in the Account class?

Review Questions 151

3. If you want to call the Remove method in an ArrayList containing Account objects,
which method must be implemented in the Account class?

4. Of the ArrayList methods and properties discussed in this chapter, which ones can throw
an IndexOutOfRangeException?

5. What is the preferred way to loop through an ArrayList?

6. What common error is caused if you forget to use the New operator to create a separate
object each time an object is inserted in an ArrayList?

7. Consider the following call to the CompareTo method:
Dim result As Integer = A.CompareTo(B)

What does result equal when object A is found to be less than B?

8. What happens if you call the Sort method on an ArrayList of Students, but there is no
CompareTo method in the Student class?

9. Which generic class in this chapter has two data types in its definition?

10. Show how to declare a new List(of Student) objects named stuList.

11. What type of object is in each item of a Dictionary?

12. Show how to convert a List named stuList to an array of Student objects.

13. What type of method must you create if you want to sort a List of objects in a way that
is different from the ordering implied by the objects’ CompareTo method?

14. Write a definition of a Dictionary object named myAccounts in which the keys are
strings and the values are Accounts.

15. Write a statement that adds a new entry to the Dictionary you created in Short Answer
question 14.

16. What are the two properties of an item in a Dictionary?

17. If a String named myLine contains words separated by commas, show how to split it
into an array of Strings named words.

18. Which Directory class method returns True when a certain key value is contained in its
Keys collection?

Algorithm Workbench

Assume the following class declaration:

Public Class Account
Public Property Id As String
Public Property Name As String
Public Property Balance As Double
Public Property CreationDate As DateTime
Public Property BalanceHistory As List(Of Double)

End Class

Assume that the following List contains a set of Account objects:

Dim accountList As New List(Of Account)

1. Write a LINQ statement that lists the accounts in ascending order by ID.

2. Write a LINQ statement that lists accounts created before 1/1/2005.

3. Write a LINQ statement that returns only the Name and Balance of the items in accountList.

4. Write LINQ statements that obtain the BalanceHistory of the account whose ID equals
“10021.” Assign the BalanceHistory property to a List variable.

152 Chapter 3 Collections

Programming Challenges
1. Accounts Dictionary

Create an application that lists accounts from a Dictionary object. Create an Account
class that contains an ID, name, and balance. Display the accounts in a ListBox, as
shown in Figure 3-17. If the user enters new values, she or he can click on the Add but-
ton to add a new account to the dictionary. Or if the user clicks the Replace button, she
or he can replace a dictionary item. Use exception handlers to catch errors caused by
invalid input values, or an attempt to add a duplicate Account ID to the dictionary.

Figure 3-17 Adding an Account to the dictionary

2. Stock Comparators

Write an application that sorts a List of Stock objects three different ways: by their
ticker symbols (such as MSFT), their prices, and their price-to-earnings (P/E) ratios.
The user can ask to sort in both ascending and descending order. Figure 3-18 shows
the output after the user has clicked the Sort by Ticker button. In Figure 3-19, the
list is sorted in descending order by stock price. In Figure 3-20, the list is sorted in
ascending order by the P/E ratio.

Create a class named Stock, with the following properties: Ticker (String), Price (Dou-
ble), Earnings (Double). Create a constructor that initializes these three values. Also, cre-
ate a ReadOnly property named PeRatio that returns the stock’s price divided by
earnings.

In your startup form, create comparator methods and pass them to the List.Sort
method.

Figure 3-18 Sorting in ascending order by ticker symbol

Programming Challenges 153

Figure 3-19 Sorting in descending order by price

Figure 3-20 Sorting in ascending order by P/E ratio

3. Bank Teller Transaction Collection

Using the Bank Teller application presented in this chapter, build a list of transactions
that you can display in a separate window. You should create a Transaction object and
add it to a List or ArrayList inside the startup form class for the times when a user ini-
tiates a deposit or withdrawal. Add a button to the startup form that displays the trans-
actions in a separate window called the Transaction Log form, shown in Figure 3-21.

Figure 3-21 Transaction Log window

154 Chapter 3 Collections

Create a Transaction class that holds information about a single transaction. It should
contain the following properties: Account Number (String), TransactionDateTime,
Amount (Decimal), and Balance (Decimal). The Balance property holds the account
balance after the transaction was processed. A positive transaction amount indicates
that a deposit was made. A negative amount indicates a withdrawal. The Transaction
class should contain a constructor that initializes all properties, and a ToString method.

TIP: Pass the transaction list to the Transaction Log form before calling the Form.Show-
Dialog method.

4. Bank Teller Transaction Log

Using the solution program you wrote for Programming Challenge 3 as a starting point,
modify it as follows. Log all transactions to a file. Transaction logging can be useful in
a number of ways—when producing monthly account statements, for example, or when
verifying and auditing account transactions. The log file should contain a separate
printed line for each deposit and withdrawal transaction on customer accounts.

Replace the list of Transaction objects in the program’s startup form with a single Trans-
actionLog object. Continue to display the list of transactions in a separate window as
before. But in the same button click handler, save the transaction log to a file by calling
the TransactionLog.Save method.

TransactionLog Class

Create a TransactionLog class that is responsible for collecting transaction information
and writing it to a text file. It should contain the following properties and methods:

Declaration Description

ReadOnly Property Items() As Collection Returns the collection of transactions stored
inside the class.

Property FilePath() As String Gets and sets the file path for the transaction
log file.

ReadOnly LastError() As String Displays the most recent error message that
was generated by the class.

Sub Add(ByRef trans As Transaction) Adds a new transaction to the log.

Function Save() As Boolean Appends all logged transactions to the
transaction file. Returns True if successful.

Internally, the TransactionLog class should use a List or ArrayList to hold the logged
transactions. The Save method iterates over the collection and writes each transaction
to a file. It must catch exceptions and set the LastError property if an exception is
thrown.

5. Club Committee Collections

Using the Club Committee Organizer application that you wrote for Programming
Challenge 2 in Chapter 2, make the following improvements:

• Create a class named Committee that contains a list of the students who are members
of a single committee. The class should have a ReadOnly property that returns a ref-
erence to the class’s internal collection variable.

• When the user selects different committees from the combo box, the application must
remember which people were assigned to each committee. The only way to do this is

Programming Challenges 155

to store each list of names in a collection. Suppose the user adds Adams, Baker, and
Chong to the Community Services committee, as in Figure 3-22. Next, the user selects
another committee and adds some people to that one. If the user then returns to the
Community Services committee, he or she should see Adams, Baker, and Chong in the
list of current members.

In the startup form class, create a list of Committee objects. (Initialize the list with a loop
in the Form_Load event handler.) When members are selected and copied into the com-
mittee list box, your code must add these members to the appropriate Committee object.
Use the Committee list box’s SelectedIndex property as a subscript that points to an ele-
ment in the list of Committee objects.

Figure 3-22 Community Services contains three people

6. FirstPlay Sports Rental

Create an application named FirstPlay Sports Rental that keeps track of the inventory
for a sports rental store.

Requirements Specification

• The user can input a new rental item and add it to the store inventory.
• The user can select an item’s ID Number from a list and remove the item from the

inventory.
• The user can select an item’s ID Number from a list and display the item’s properties.
• When the application starts, it reads an inventory list from a file (text format).
• When the application ends, it writes the inventory list back to the same file.

User Interface Details

Display a single sports rental item in a window, as shown in Figure 3-23. Each item has
an ID number; a description; daily, weekly, and monthly rental rates; and the quantity
on hand. When the application starts, it reads all item information from a file into a col-
lection (implemented as a Dictionary) and copies the item ID numbers into a combo box
on the form. The user can select an ID number from the combo box, and display or
remove existing items. The user can also add new items to the collection. When the pro-
gram ends, it writes the collection to the same file.

156 Chapter 3 Collections

Figure 3-23 Preparing to add a new item

Startup Form

The application’s startup form displays inventory items and lets users carry out each of
the following actions:

• Input fields for a new rental item, and add that item to the inventory.
• Select an item’s ID Number and remove the item from the inventory.
• Select an item’s ID Number and display the item’s properties.

When the form loads, the combo box should contain a list of all inventory ID Numbers.

Returning to Figure 3-23 for a moment, we see that it shows a new item about to be added
to the store inventory. When the Add Current Item button is clicked, the button’s handler cre-
ates a new Item object and passes it to the class that handles the store inventory. Figure 3-24
shows an example of searching for an item by ID Number. When the user clicks the Display
Item button, the remaining item fields are filled in. When the user clicks the Remove Current
Item button, the program confirms the operation with the user, as shown in Figure 3-25. If
the answer is yes, the program removes the item identified by the ID Number.

Figure 3-24 Searching for an item selected by ID Number

Programming Challenges 157

Figure 3-25 Confirm before removing an item

Classes

We suggest that the application define three classes: Item, Inventory, and InventoryFile.

• The Item class encapsulates a single inventory item.
• The Inventory class represents a collection that contains all items and provides meth-

ods for adding, finding, and removing items. Internally, it should hold the items in a
Dictionary object.

• The InventoryFile class is responsible for reading the inventory data from a text file,
and writing all Inventory data back to the file.

7. Student Course Collection

Create an application that collects information about students and the courses they have
completed, and holds this information in collection, implemented as a List or ArrayList
object. You can use Tutorial 3-2 as a starting point for this project. The main form, dis-
played when the application starts, should have the same fields as shown in the tutorial.
A sample of the main form is shown in Figure 3-26.

In addition, do the following:

• Create a class named Course with the following properties: CourseId As String, Cred-
its As Integer, Grade As Double.

• Add a class-level variable to the Student class that holds a list of courses.
• Create a new form named Course Information that contains the following input

fields: course ID, credits, and grade. A sample is shown in Figure 3-27. The list box
displays all courses in the student’s transcript.

Figure 3-26 The main form, with the new Course Information button

158 Chapter 3 Collections

Figure 3-27 Sample Course Information form

• On the main form, add a Course Information button. Use this button to display the
Course Information form. The button should initially be disabled; it is enabled when
the user clicks either the Add to Collection button or the Find by ID button.

Figure 3-28 shows the relationships between the classes and objects in this application.

Figure 3-28 Concept view of Student Course Collection

Input Requirements

The following input requirements are designed to prevent the program from throwing
an exception or storing invalid data:

1. No two Student IDs can be the same.

2. No input fields can be blank.

3. The Grade field must be a positive numeric value between 0.0 and 4.0.

4. The course credits field must be a positive integer between 0 and 6.

5. A duplicate course number cannot be added to the list of courses.

6. Error messages must be specific, identifying exactly which field has a missing or
incorrect value.

Each of these requirements is included in the testing steps that we have outlined for this
programming challenge.

references

displays

contains

contains

contains

Course Information form

Student

Main Form

Course Collection

Student Collection

Programming Challenges 159

Suggestions

1. In the main form, create a class-level variable of type Student so it can be accessible
to different event handlers. This will affect the event handlers for both the Add and
Find buttons.

2. The Student class should have a ReadOnly property that exposes its ArrayList. This
will be useful when your program needs to display the courses in a list box or add a
new course to the list.

3. The Form_Load event handler for the Course Information form should fill the list
box with the list of courses belonging to the current student. It should also clear all
text boxes on the form.

4. Use the ErrorProvider control to display error messages.

Testing Steps

Bugs can be hidden in this application in quite a few ways. That is why we have created
a detailed testing plan to help you verify that your application has satisfied the project
requirements. The following table contains a sequence of manual testing steps that
should (eventually) be completed without closing or restarting the program. If your pro-
gram produces a response that does not match the expected output, you will probably
need to halt the program, fix the error, and restart the test.

Input On the main startup form, leave all fields blank and click the Add to
Collection button.

Expected output A message box says: Student ID cannot be blank.

Input Enter 10000 as the Student ID and click the Add to Collection button.
Expected output A message box says: Last name cannot be blank.

Input Enter Smith as the last name value and click the Add to Collection
button.

Expected output A message box says: Test average must be numeric.

Input Enter 82.5 as the test average and click the Add to Collection button.

Expected output The Course Information button becomes enabled.

Input Click the Course Information button.

Expected output The Course Information window appears, showing the student ID
and last name that you just entered. All input fields are blank.

Input Input the following values for Course number, Credits, and Grade,
respectively: ENC1101, 3, 3.5. Then click the Save button.

Expected output The course information appears in the Existing Courses list box.

Input Click the Save button, leaving all input fields blank.

Expected output A red ErrorProvider icon blinks next to the course number input
field. When you hover the mouse over the icon, the following
message appears: Course number cannot be blank.

Input Enter COP3350 as the course number; leave the other input fields
blank.

Expected output A red ErrorProvider icon blinks next to the course credits input
field. When you hover the mouse over the icon, the following
message appears: Credits must be an integer between 0 and 6.

Input Enter –2 as the course credits and click the Save button.

Expected output The following message appears: Credits must be an integer between
0 and 6.

160 Chapter 3 Collections

Input Enter 4 as the course credits and click the Save button.

Expected output A red ErrorProvider icon blinks next to the course grade input field.
When you hover the mouse over the icon, the message says: The
grade must be a numeric value between 0.0 and 4.0.

Input Enter 6.0 as the grade value and click the Save button.

Expected output An error message says: The grade must be a numeric value between
0.0 and 4.0.

Input Enter 3.0 as the grade value and click the Save button.

Expected output The Existing Courses list box contains the two courses you added.

Input Click the Save button again.

Expected output A red ErrorProvider icon blinks next to the Save button. The error
message says: Cannot add a duplicate course. The contents of the
list box do not change.

Input Click the Close button.

Expected output The Course Information window closes, and you are now back in
the main startup form.

Input On the main form, click the Add to Collection button.

Expected output A message box pops up and says: Cannot add a duplicate Student
ID to the collection.

Input In the Student ID, Last name, and Test average fields, enter 20000,
Jones, 87.2, respectively, and click the Add to Collection button.
Then, click the View All button.

Expected output Both students (Smith and Jones) appear in the list box, with the
same data values you have already entered.

Input Click the Course Information button.

Expected output The Course Information window opens, containing the following
student ID and name values: 20000, Jones. All input fields are blank.

Input Input the following values for course number, credits, and grade,
respectively: COP2210, 4, 2.5. Then click the Save button.

Expected output The course information appears in the Existing Courses list box.

Input Click the Close button.

Expected output The Course Information window closes, and you are now back in
the main startup form.

Input In the text box at the lower left corner of the window, enter 19999
and click the Find by ID button.

Expected output In the list box, a message says: Student ID was not found.

Input In the text box at the lower left corner of the window, enter 10000
and click the Find by ID button.

Expected output The text boxes fill with the following values: 10000, Smith, 82.50.
The student also appears in the list box.

Input Click the Course Information button.

Expected output The Course Information window appears, showing student ID
10000 and last name Smith. All input fields are blank. The list box
displays information about the student’s two saved courses:
ENC1101, 3, 3.5, and COP3530, 4, 3.0.

Input Input the following values, respectively, for Course number, Credits,
and Grade: MTH2005, 5, 3.0. Then click the Save button.

Programming Challenges 161

8. Students and Course Lists (LINQ)

Use a LINQ query to fill a DataGridView with a list of students. When the user selects
a student in the grid, display all courses taken by the student in a separate grid. Use
another LINQ query to fill the second grid. A sample is shown in Figure 3-29, in which
Student 1001 (Charles) was selected when the user clicked the button on the left side of
his row. The grid on the right fills with the list of courses taken by the selected student.

Figure 3-29 Displaying courses taken by a selected student

The two DataGridView controls should be inserted into panels belonging to a SplitCon-
tainer control. The user can drag the divider between the two panels to adjust their size.
The SplitContainer’s Dock property equals Fill, so the user can expand the form and cre-
ate more space for the two grids. In the grid on the left, the RowHeadersVisible property
should equal True, but in the grid on the right, the same property should equal False.

The Student class contains the following properties: Id (Integer), LastName (String), Sta-
tus (Integer), Major (String), Courses (List(Of Course)). The Course class contains the
following properties: Id (String), Credits (Integer), Grade (Double). All the student data
must be read from a data file named Students.txt, supplied for you in the example pro-
grams folder for this chapter.

When the user selects a DataGridView row, a SelectionChanged event is fired. You can
write code in the handler that gets the contents of the first column of the selected row,
using the following expression: dgvStudents.SelectedRows(0).Cells(0).Value.
Note, however, that the DataGridView fires SelectedItemChanged events when the form
is being loaded, before the grid becomes visible. You will have to find a way to avoid
responding to those events.

9. Cruise Selection Wizard

Selecting a cruise vacation can be tricky. We all have different preferences when it comes to
details like the location of the cruise, the size of the ship, the average age of the passengers,
and so on. Your job is to make this selection process easier. Create a wizard application that

Expected output The new course you entered has been added to the courses in the list
box.

Input Click the Close button.

Expected output The Course Information window closes, and you are now back in
the main startup form.

Input Close the main startup form.

Expected output The application closes.

162 Chapter 3 Collections

guides the user through selecting a cruise that suits his or her preferences. Create a class
named Cruise that contains properties that represent the characteristics of a single cruise.
Use the following: (1) size of ship, (2) geographical region, (3) formal versus informal attire,
and (4) average passenger age. Next, create a class that contains a strongly typed List(Of
Cruise) object. Use the constructor of this class to fill the list with cruise information.

User Interface

Ask the user for the relative importance of each cruise criterion, as shown in Figure 3-30.
Next, ask the user for his or her individual preferences for each of the criteria. For exam-
ple, in Figure 3-31 the user is asked for the ideal ship size; in Figure 3-32, the user is
asked for an ideal geographical region; in Figure 3-33, the user is asked about the aver-
age age of the passengers with whom they would prefer to sail. In Figure 3-34, the user
is shown a list of cruises, with a percentage next to each that shows the percentage sim-
ilarity of the cruise to the user’s preferred criteria. The user can select different radio but-
tons to filter the display so it shows cruises that meet various thresholds.

Figure 3-30 Cruise Selection Wizard, startup form

Figure 3-31 Cruise Selection Wizard, ship size

Programming Challenges 163

Figure 3-32 Cruise Selection Wizard, geographical region

Figure 3-33 Cruise Selection Wizard, average age of passengers

Figure 3-34 Cruise Selection Wizard, summary

164 Chapter 3 Collections

Use weighted criteria to help find the cruises that best match the user’s preferences. Here
is an example of the types of variables we used in our solution program:

NumPassengersWt As Single ' Number of passengers
RegionWt As Single ' Geographical region
FormalWt As Single ' Formal attire expected?
AverageAgeWt As Single ' Average passenger age

The algorithm for determining the percentage match of a cruise to the user’s preferences
must take into account the percentages the user assigned to the individual criteria. Let’s
call these percentages pc1, pc2, pc3, and pc4. The user’s actual preferences can be called
r1, r2, r3, and r4. For each cruise, let’s say that it has characteristics c1, c2, c3, and c4.
We will call tp the total percentage match value for this cruise:

tp = 0
if c1 = r1 then tp = tp + pc1
if c2 = r2 then tp = tp + pc2
if c3 = r3 then tp = tp + pc3
if c4 = r4 then tp = tp + pc4

Let’s use an example, and the following table. Suppose the user has assigned the fol-
lowing values to the four preferences:

Preference
User’s Preferred
Value

Percentage Weight for
Each Preference

size of ship (r1) 1500 pc1 = .25

geographical region (r2) Alaska pc2 = .45

formal versus informal (r3) informal pc3 = .20

average age (r4) 45 pc4 = .10

This sample user seems mainly concerned with the geographical region (45 percent) and
the size of the ship (25 percent). We’ll say that the ship size matches if it is within 500
feet of the user’s preferred value. The age matches if it is within five years of the user’s
preferred age for the passengers. Next, let’s look at a couple of sample cruises:

Cruise X holds 1,700 passengers, goes to Alaska, emphasizes formal wear, and has an
average passenger age of 55. Its percentage match is 70 percent:

.25 + .45 + 0 + 0 = .70

Cruise Y holds 2,500 passengers, goes to the Caribbean, emphasizes informal wear, and
has an average passenger age of 45. Its percentage match is only 30 percent:

0 + 0 + .20 + .10 = .30

Based on these two sample cruise evaluations, this user would be advised to select Cruise
X because it has a higher percentage match value. But another user might place more
emphasis on different criteria and produce a different set of percentages.

Suggested Classes

Cruise class—contains information about a single cruise, which in turn contains the fol-
lowing properties:

NumPassengers As Integer ' number of passengers
Region As String ' geographical region
Formal As Boolean ' formal attire expected?
AverageAge As Single ' average passenger age

CruiseCollection class—contains a List(Of Cruise) object, a constructor, and a read-only
property that returns the list of available cruises.

TOPICS

Using SQL Server
Databases4

4.1 Database Basics

4.2 SQL SELECT Statement

4.3 Using the DataGridView Control

Tutorial 4-1: Showing a database table
in a DataGridView control

4.4 Selecting DataSet Rows

Tutorial 4-2: Filtering rows in the
SalesStaff table

4.5 Data-Bound Controls

Tutorial 4-3: Displaying the Members
table in a ListBox

Tutorial 4-4: Inserting rows in the
Karate Payments table

Tutorial 4-5: Adding a total to the
Insert_Karate_Payments application

Tutorial 4-6: Creating the Karate
School Manager startup form

Tutorial 4-7: Karate School Manager:
Listing all members

Tutorial 4-8: Karate School Manager:
Adding new members

Tutorial 4-9: Karate School Manager:
Finding members by name

Tutorial 4-10: Karate School Manager:
Listing all payments

Tutorial 4-11: Karate School Manager:
Showing payments by one member

4.6 Focus on Problem Solving: Karate
School Manager Application

165

C
H

A
P

T
E

R

This chapter focuses on the basics of displaying and updating databases using .NET con-
trols. We show how Visual Studio enables data binding, which is the connecting of the user
interface directly to database components. We also discuss some basic database concepts,
and show how to execute SQL queries, sort and filter database data, display data in a grid,
and bind individual controls to database tables. After reading this chapter, you should be
able to display and update database tables rapidly and with almost no programming.

4.1 Database Basics
A database is a collection of one or more tables, each containing data related to a particu-
lar topic. A table is a logical grouping of related information. For example, a database might
have a table containing information about employees. Another table might list information
about weekly sales. Another table might contain a store inventory. Let’s look at a table
named Departments, shown in Table 4-1, which contains information about departments
within a company. Each row of the table corresponds to a single department. The sample
table contains the ID number, name, and number of employees in each department.

166 Chapter 4 Using SQL Server Databases

Table 4-1 Table of departments

dept_id dept_name num_employees

1 Human Resources 10

2 Accounting 5

3 Computer Support 30

4 Research and Development 15

Table 4-2 Departments table design

Field Type

dept_id int (primary key)

dept_name varchar (30)

num_employees int

Each row of the table is also called a record. In the Departments table, the first row contains
1, Human Resources, 10. When discussing a table, we refer to their columns by name. In the
Departments table, the columns are named dept_id, dept_name, and num_employees. Table
columns are also called fields. Each table has a design that specifies the column’s name, data
type, and range or size. Table 4-2 describes the design of the Departments table. The SQL
data types used in the table are int (integer) and varchar (string). The varchar type always
has a maximum length count.

Primary Key
In the Departments table, the dept_id column is called a primary key because it uniquely
identifies each department. In other words, no two departments can ever have the same
dept_id value. Primary keys can be either numbers or strings, but numeric values are
processed by the database software more efficiently. In the Departments table, the primary
key is a single column. Sometimes a primary key will consist of two or more combined
columns, called a compound primary key. The primary key’s value is often generated auto-
matically by the database server each time a new row is added to the table. This type of field
is called an auto-generated field, or identity field. Generally, each new row’s key value is gen-
erated by adding an integer to the value in the previous row.

SQL Server Data Types
We will be using Microsoft SQL Server databases. When you use Visual Basic to read a data-
base, you must select variable types that match the type of data in the table. Fortunately,
Microsoft SQL Server data types, .NET data types, and Visual Basic data types are similar.
Table 4-3 shows a partial list of SQL Server data types, which are recognized by SQL Server
when you pass parameters to database queries.

Designing Database Tables

Choosing Column Names and Types

A database schema is the design of tables, columns, and relationships between tables. Let’s
look at some of the elements that belong to a schema, beginning with tables. Suppose you
want to create a database to keep track of club members. We might want to store each

4.1 Database Basics 167

Table 4-3 Comparison of common SQL Server and .NET data types

SQL Server Data Type Compatible .NET Data Type

bit Boolean. An unassigned numeric value that can be 0, 1, or a null
reference. Can be assigned the values true and false.

datetime DateTime. Date and time data ranging in value from January 1,
1753 to December 31, 9999 to an accuracy of 3.33 milliseconds.

float Double. A floating point number in the approximate range
±10308.

int Int32. Large signed integer. Visual Basic data type: Integer.

money Decimal. Precise monetary values in the approximate range
±263.

nvarchar String. A variable-length stream with a maximum length of
4,000 Unicode characters.

real Single. Floating-point number, in the approximate range ±1038.

smalldatetime DateTime. Date and time data from 1/1/1900 through 6/6/2079,
with an accuracy of 1 minute.

smallint Int16. A signed integer between –32,768 and +32,767; Visual
Basic data type: Short.

text String. A variable-length stream of nearly unlimited size.

varchar String. A variable-length stream with a maximum length of
8,000 non-Unicode characters.

Table 4-4 Sample design for the Members table

Column Name Type

First_Name varchar (40)

Last_Name varchar (40)

Phone varchar (30)

Email varchar (40)

Date_Joined DateTime

Meetings_Attended smallint

Officer bit (Boolean)

TIP: Although you can embed spaces in a column name, avoid doing so because it
causes SQL queries to be more complicated.

member’s first and last names, phone number, email address, date joined, number of meet-
ings attended, and a field indicating whether the person is a club officer. Table 4-4 contains
a possible design. Choosing the lengths of text fields involves some guesswork because we
do not want to risk truncating individual field values. When in doubt, it is best to make fields
a little larger than necessary.

Suggestions on Choosing Column Types

Table 4-5 contains some of the more common types of data you might be likely to insert in
database tables. The table suggests types of database columns to use for each type of data.

168 Chapter 4 Using SQL Server Databases

Table 4-5 Recommended database column types

Type of Data Recommended Column Type

Primary keys, unique identifiers such as ID numbers int or smallint

Variable-length strings, such as names of people,
departments, countries, companies, book titles,
descriptions, and street addresses

varchar for 8-bit ANSI characters,
or nvarchar for Unicode
characters

Fixed-length strings, such as account numbers, and
Social Security numbers

char or nchar (Unicode) type. This
type pads all trailing positions in
the field with blanks.

ANSI strings longer than 8,000 bytes, documents
and other extended text

text

Financial values decimal or money type, to avoid
loss of decimal precision

Measured values as real numbers; ratios float

True/False (logical) values bit

Dates and/or times datetime or smalldatetime,
depending on how accurate you
want to be

Image and document files image

Avoiding Redundancy by Using Linked Tables

Well-designed databases keep redundant data to a minimum. When designing a table of
employees, for example, it might be tempting to include the complete name of the depart-
ment in which an employee works. A few sample rows are shown in Table 4-6. There are
problems with this approach. We can imagine that the same department name appears many
times within the Employee table, leading to wasted storage space. Also, someone typing in
employee data might easily misspell a department name. Finally, if the company decided to
rename a department, it would become necessary to find and correct every occurrence of the
department name in the Employee table (and possibly other tables).

Table 4-6 Employee table with department names

Emp_Id First_Name Last_Name Departments

1000 Ignacio Fleta Accounting

1001 Christian Martin Computer Support

1002 Orville Gibson Human Resources

1003 Jose Ramirez Research and Development

1004 Ben Smith Accounting

1005 Allison Chong Computer Support

Rather than inserting a department name in each employee record, a good designer would
store a department ID number in each row of the Employee table, as shown in Table 4-7. A
data entry clerk would require less time to input a numeric department ID, and there would be
less chance of a typing error. Then one would create a separate table named Departments con-
taining all department names and IDs, which is shown in Table 4-8. When looking up the name
of an employee’s department, we can use the department ID in the Employee table to find the
same ID in the Departments table. The department name will be in the same table row. Data-
bases make it easy to create links between tables such as Employees and Departments.

4.1 Database Basics 169

Table 4-7 Employee table with department ID numbers

Emp_Id First_Name Last_Name Dept_Id

1000 Ignacio Fleta 2

1001 Christian Martin 3

1002 Orville Gibson 1

1003 Jose Ramirez 4

1004 Ben Smith 2

1005 Allison Chong 3

Table 4-8 Departments table

Dept_Id Dept_Name Num_Employees

1 Human Resources 10

2 Accounting 5

3 Computer Support 30

4 Research and Development 15

One-to-Many Relationship

• Databases are often designed using the relational model of data. In the relational data-
base model, relationships exist between tables. A relationship consists of a common
field value to connect rows from two different tables. In the relationship diagram
shown in Figure 4-1, Dept_Id is the common field that links the Departments and
Employee tables.

Figure 4-1 One-to-many relationship between Departments and Employee tables

• In the Departments table, Dept_Id is the primary key. In the Employee table, Dept_Id is
called a foreign key. A foreign key is a column in one table that references a primary
key in another table. The column can contain duplicate values. Along the line connect-
ing the two tables, the 1 and 8 symbol indicate a one-to-many relationship. A particu-
lar Dept_Id (such as 4) occurs only once in the Departments table, but it can appear
many times (or not at all) in the Employee table. At first, we will work with one table
at a time. Later, we will show how to pull information from two related tables.

Checkpoint

1. How is a table different from a database?

2. In a table of employees, what column makes a good primary key?

170 Chapter 4 Using SQL Server Databases

3. Which .NET type is equivalent to the bit column type in SQL Server?

4. Why would we not want to spell out the name of each person’s department name in
a table of employees?

5. How is a foreign key different from a primary key?

4.2 SQL SELECT Statement
Structured Query Language (SQL) was developed as a universal language for creating,
updating, and retrieving data from databases. The American National Standards Institute
(ANSI) has ratified different levels of standard SQL, which are followed to a greater or lesser
degree by database vendors. ANSI standards are identified by their year of ratification and
a level number. In this section, we introduce the most important of all SQL statements—
SELECT. It is used to retrieve rows from database tables.

SELECT Statement
The SELECT statement retrieves rows from one or more database tables. The most basic for-
mat for a single table is as follows:

SELECT column-list
FROM table

The members of column-list must be table column names separated by commas. The fol-
lowing statement selects the ID and Salary from the SalesStaff table:

SELECT ID, Salary
FROM SalesStaff

In a Visual Basic program, the DataSet produced by this query would have two columns, ID
and Salary. There is no required formatting or capitalization of SQL statements or field
names. The following queries are equivalent:

SELECT ID, Salary FROM SalesStaff
select ID, Salary from SalesStaff
Select id, salary from salesstaff

As a matter of style and readability, you should try to use consistent capitalization. If field
names contain embedded spaces, they must be surrounded by square brackets, as in the fol-
lowing example:

SELECT [Last Name], [First Name]
FROM Employees

The * character in the column list selects all columns from a table.

SELECT *
FROM SalesStaff

Aliases for Column Names

Column names can be renamed, using the AS operator. The new column name is called an
alias, as in the following example that renames the Hire_Date column to Date_Hired:

SELECT
Last_Name, Hire_Date AS Date_Hired

FROM
SalesStaff

4.2 SQL SELECT Statement 171

Renaming columns is useful for two reasons. First, you might want to hide the actual col-
umn names from users. Second, column headings in reports can be made more user-friendly
if you substitute your own names for the column names used inside the database.

Creating Alias Columns from Other Columns

A query can create a new column from one or more existing columns in the same table. For
example, we might want to combine Last_Name and First_Name from a table named
Members. We can insert a comma and space between the columns, as shown here:

SELECT Last_Name + ', ' + First_Name AS Full_Name
FROM Members

Now the Full_Name column can be inserted into a ListBox or ComboBox. In general, when
strings occur in queries, they must always be surrounded by single quotes. The + operator
concatenates strings.

Calculated Columns

You can create new columns whose contents are calculated from existing column values.
Suppose a table named Payroll contains columns named employeeId, hoursWorked, and
hourlyRate. The following statement creates a new column named payAmount, using
hoursWorked and hourlyRate:

SELECT employeeId, hoursWorked * hourlyRate AS payAmount
FROM PayRoll

Setting the Row Order with ORDER BY
The SELECT statement has an ORDER BY clause that lets you control the display order of
the table rows. In other words, you can sort the data on one or more columns. The general
form for sorting on a single column is the following:

ORDER BY columnName [ASC | DESC]

ASC indicates sorting in ascending order (the default) and DESC indicates sorting in
descending order. Both are optional, and you can use only one at a time. The following
clause orders the SalesStaff table in ascending order by last name:

ORDER BY Last_Name ASC

We can do this more simply as follows:

ORDER BY Last_Name

The following sorts the table in descending order by Salary:

ORDER BY Salary DESC

You can sort on multiple columns. The following statement sorts in ascending order first by
last name; then within each last name, it sorts in ascending order by first name:

ORDER BY Last_Name, First_Name

For a more complete example, the following SELECT statement returns the first name, last
name, and salary, sorting by last name and first name in the Members table of the Karate
database:

SELECT
First_Name, Last_Name, Date_Joined

FROM
Members

ORDER BY Last_Name, First_Name

172 Chapter 4 Using SQL Server Databases

Selecting Rows with the WHERE Clause
The SQL SELECT statement has an optional WHERE clause that you can use to filter, or
select zero or more rows retrieved from a database table. The simplest form of the WHERE
clause is as follows:

WHERE columnName + value

In this case, columnName must be one of the table columns and value must be in a format
that is consistent with the column type. The following SELECT statement, for example,
specifies that Last_Name must be equal to Gomez:

SELECT First_Name, Last_Name, Salary
FROM SalesStaff
WHERE Last_Name = 'Gomez'

Character comparisons are case-insensitive by default, so the following WHERE clause is
equivalent to the previous one:

WHERE Last_Name = 'gomeZ'

Because Last_Name is a string-type column, it must be assigned a string literal enclosed in
single quotes. If the person’s name contains an apostrophe (such as O’Leary), the apostro-
phe must be repeated:

SELECT First_Name, Last_Name, Salary
FROM SalesStaff
WHERE Last_Name = 'O''Leary'

Relational Operators

Table 4-9 lists the operators that can be used in WHERE clauses. The following expression
matches last names starting with letters B . . . Z.

Table 4-9 SQL relational operators

Operator Meaning

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

BETWEEN between two values (inclusive)

LIKE similar to (wildcard match)

WHERE Last_Name >= 'B'

The following expression matches nonzero salary values:

WHERE Salary <> 0

Bit Field (Boolean) Values

SQL Server stores Boolean values in columns that use the bit type. You can compare this
type of column to bit constants such as 1, 0, ‘True’, and ‘False’. A value of 1 indicates True,
and 0 indicates False. Here are examples:

WHERE Full_Time = 1
WHERE Full_Time = 'True'

4.2 SQL SELECT Statement 173

WHERE Full_Time = 0
WHERE Full_Time <> 'False'

Numeric and Date Values

Numeric literals do not require quotation marks. The following expression matches all rows
in which Salary is greater than $30,000:

WHERE (Salary > 30000)

DateTime literals must be enclosed in single quotation marks:

WHERE (Hire_Date > '12/31/2005')

The following expression matches rows containing hire dates falling between (and including)
January 1, 2005 and December 31, 2009:

WHERE (Hire_Date BETWEEN '1/1/2005' AND '12/31/2009')

Following is a complete SELECT statement using the WHERE clause that selects rows
according to Hire_Date and orders them by last name:

SELECT First_Name, Last_Name, Hire_Date
FROM SalesStaff
WHERE (Hire_Date BETWEEN '1/1/2005' AND '12/31/2009')
ORDER BY Last_Name

LIKE Operator

The LIKE operator can be used to create partial matches with string column values. When
combined with LIKE, the underscore character matches a single unknown character. For
example, the following expression matches all Account_ID values beginning with X and
ending with 4:

WHERE Account_ID LIKE 'X_4'

The percent sign (%) matches multiple unknown characters. We also call % a wildcard
symbol. For example, the following matches all last names starting with the letter A:

WHERE Last_Name LIKE 'A%'

You can combine wildcard characters. For example, the following matches all First_Name
values in the table that have d and r in the second and third positions, respectively:

WHERE First_Name LIKE '_dr%'

The character comparisons are case-insensitive.

Compound Expressions (AND, OR, and NOT)

SQL uses the AND, NOT, and OR operators to create compound expressions. In most cases,
you should use parentheses to clarify the order of operations. The following expression
matches rows in which a person was hired after 1/1/2005 and the salary is greater than
$40,000:

WHERE (Hire_Date > '1/1/2005') AND (Salary > 40000)

The following expression matches rows in which a person was hired before 2005 or after
2010:

WHERE (Hire_Date < '1/1/2005') OR (Hire_Date > '12/31/2010')

The following expression matches rows in which a person was hired after 2005 and before
2010:

WHERE (Hire_Date > '12/31/2005') AND (Hire_Date < '1/1/2010')

174 Chapter 4 Using SQL Server Databases

The following expression matches two types of employees: (1) those who were hired after
1/1/2005 and whose salary is greater than $40,000, and (2) employees who are not full-time:

WHERE (Hire_Date > '1/1/2005') AND (Salary > 40000)
OR (Full_Time = False)

The following expression matches rows in which the hire date was either earlier than 1/1/2008
or later than 12/31/2010:

WHERE (Hire_Date NOT BETWEEN '1/1/2008' AND '12/31/2010')

The following expression matches rows in which the last name does not begin with the letter A:

WHERE (Last_Name NOT LIKE 'A%')

Checkpoint

6. Write a SELECT statement that retrieves the pay_rate, employee_id, and
hours_worked columns from a table named Payroll, and sorts the rows in
descending order by hours_worked.

7. Write a SELECT statement that creates an alias named Rate_of_Pay for the existing
column named pay_rate in the Payroll table.

8. Write a SELECT statement for the Payroll table that creates a new output column
named gross_pay by multiplying the pay_rate column by the hours_worked
column.

9. Write a SELECT statement for the Payroll table that returns only rows in which the
pay_rate is greater than 20,000 and less than or equal to 55,000.

10. Write a SELECT statement for the Payroll table that returns only rows in which the
employee_id column begins with the characters FT. The remaining characters in the
employee_id are unimportant.

4.3 Using the DataGridView Control
The DataGridView control is a convenient tool for displaying the contents of database tables
in rows and columns. Data binding is used to link database tables to controls on a program’s
forms. Special objects named components provide the linking mechanism. When you link a
control to a database, a wizard guides you through the process. We will use the following
data-related objects in this chapter:

• Data source—A data source is usually a database, but it can include text files, Excel
spreadsheets, XML data, or Web services. It keeps track of the database name, loca-
tion, username, password, and other connection information. Our data sources will be
Microsoft SQL Server database files.

• TableAdapter—A TableAdapter pulls data from one or more database tables and
copies the data into a DataSet. It can select some or all table rows, add new rows,
delete rows, and modify existing rows. It can also delete, insert, or update table rows.
TableAdapters use SQL queries to retrieve and update database tables.

• DataSet—A DataSet is an in-memory copy of data pulled from database tables. An
application can modify rows in the DataSet, add new rows, and delete rows. Changes
to DataSets become permanent when an application uses a TableAdapter to write the
changes back from the DataSet to the database. DataSets can get data from more than
one data source and from more than one TableAdapter.

• DataTable—A DataTable is a table inside a DataSet. It holds data generated by a
TableAdapter’s SELECT query. DataTables have a Rows collection that corresponds to

4.3 Using the DataGridView Control 175

database table rows. You can loop through the Rows collection and inspect or modify
individual column values within each row.

• BindingSource—A BindingSource object provides a link between a DataSet and one or
more controls on a form. We say that these controls are data-bound controls. If the
user modifies the data in a control, the BindingSource can copy the changes to the
DataSet.

Figure 4-2 shows the relationship among the data source, TableAdapter, DataSet, Binding-
Source, and application. Data from a data source travels across the path implied by these
components to the DataSet and application. The DataSet contents can be modified and
viewed by the application. Updates to the DataSet can be written back to the data source.
The optional BindingSource provides data-binding capabilities to controls on forms.

Binding
Source

Table
Adapter DataSet Application

Data
Source

(Information flows in both directions)

Figure 4-2 Two-way data flow between a data source and an application

Formatting Columns in a DataGridView
To modify the columns in a DataGridView control, open the DataGridView Tasks window,
and select Edit Columns from the popup menu. Figure 4-3 shows the Edit Columns dialog
window. To format a column, select a column name in the Listbox on the left side of the win-
dow, and select the DefaultCellStyle property from the list on the right. This causes the

Figure 4-3 Editing the column properties in a DataGridView

176 Chapter 4 Using SQL Server Databases

CellStyle Builder window to appear, as shown in Figure 4-4. In this window you can select
the column’s alignment (TopLeft, MiddleRight, and so on), padding, format, foreground and
background colors, font, and so on. The preview feature at the bottom of the window shows
standard column attributes, such as the font and foreground and background colors. It does
not show the effect of the Format property.

Selecting Numeric and DateTime Formats

Once you have displayed the CellStyle Builder window (from the DefaultCellStyle property)
of the Edit Columns dialog, you can be specific about the formatting of the column data.
For example, you might want to format a DateTime column as a short date. When you select
the Format property, the Format String dialog window opens, as shown in Figure 4-5.

• For general number formats, select Numeric and select the number of decimal places.
• For currency formats, select Currency and select the number of decimal places.
• For DateTime formats, select Date Time and select from a variety of format samples.
• For scientific formats, select Scientific and select the number of decimal places.

Another option is to create a custom format string. If you would like to learn more about
formatting dates and times, read Section B.1 in Appendix B.

Tutorial 4-1 will lead you through the steps for displaying a database table in a DataGrid-
View control.

Figure 4-4 The CellStyle Builder window

4.3 Using the DataGridView Control 177

Figure 4-5 The Format String Dialog window, activated by the CellStyle Builder

Tutorial 4-1:
Showing a database table in a DataGridView control

In this tutorial, you will display rows and columns from a table named SalesStaff, which
is located in a database named Company. You will see how easy it is for users of your
application to sort on any column, delete rows, and insert new rows. The SalesStaff
table holds information collected about company sales employees. The table design is
shown in Table 4-10, and sample rows are shown in Table 4-11.

Before you begin this tutorial, locate the Company.mdf file, which is located in the chapter
examples folder.

Tutorial Steps

Step 1: Create a new Windows application named SalesStaff 1.

Step 2: Set the Text property of Form1 to Company SalesStaff Table.

Table 4-10 SalesStaff table design

Column Name Type

ID int (primary key)

Last_Name varchar (40)

First_Name varchar (40)

Full_Time bit

Hire_Date smalldatetime

Salary decimal

178 Chapter 4 Using SQL Server Databases

Step 3: Drag a DataGridView control from the Toolbox window onto the form. Click
the smart tag in the upper-right corner of the grid. You should see a small
popup window named DataGridView Tasks, as shown in Figure 4-6.

Figure 4-6 DataGridView Tasks window

Step 4: Click the dropdown arrow next to Choose Data Source. In the dialog that
appears (see Figure 4-7), click on Add Project Data Source.

Figure 4-7 Choosing a data source in Tutorial 4-1

Table 4-11 Sample rows in the SalesStaff table

ID Last_Name First_Name Full_Time Hire_Date Salary

104 Adams Adrian True 01/01/2010 35,007.00

114 Franklin Fay True 08/22/2005 56,001.00

115 Franklin Adiel False 03/20/2010 41,000.00

120 Baker Barbara True 04/22/2003 32,000.00

135 Ferriere Henri True 01/01/2010 57,000.00

292 Hasegawa Danny False 05/20/2007 45,000.00

302 Easterbrook Erin False 07/09/2004 22,000.00

305 Kawananakoa Sam True 10/20/2009 42,000.00

396 Zabaleta Maria True 11/01/2009 29,000.00

404 Del Terzo Daniel True 07/09/2007 37,500.00

407 Greenwood Charles False 04/20/2008 23,432.00

4.3 Using the DataGridView Control 179

Step 5: When the Data Source Configuration Wizard displays (see Figure 4-8), select
the Database icon and click the Next button.

Figure 4-8 Data Source Configuration Wizard

Step 6: The Choose a Database Model step appears next. Keep the default selection
(Dataset) and click the Next button.

Step 7: The wizard asks you to choose your data connection. If you had an existing
data connection, you could select it from the dropdown list. Because this is
your first data connection, click the New Connection button (Figure 4-9).

Step 8: In the Add Connection window, if the Data source entry does not say
Microsoft SQL Server Database File, click the Change button and select that
option.

Step 9: Click the Browse button and locate the Company.mdf database in the chapter
examples folder. Figure 4-10 shows an incomplete path to the Company.mdf
filename because the actual path will be different on each computer.

Step 10: Click the Test Connection button. Assuming that the Test Connection suc-
ceeded message displays, click the OK button two times to return to the wiz-
ard, and then click the Next button.

Step 11: You will see the message shown in Figure 4-11, which asks if you want to
copy the database file to the project directory. By answering yes, you can eas-
ily move your program and its database to another computer. When you hand
in programming projects, having the database stored with the project is a
good idea. Click the Yes button to continue.

180 Chapter 4 Using SQL Server Databases

Figure 4-9 Choosing your data connection

Figure 4-10 Add Connection window

4.3 Using the DataGridView Control 181

Figure 4-11 Option to copy the database file to your project

Step 12: Now you are given the option of saving the connection string to the applica-
tion configuration file (see Figure 4-12). Leave the option checked and click
the Next button to continue.

Figure 4-12 Saving the connection string to the application configuration file

Step 13: Next, you are asked to select which database objects you want in your
DataSet. Expand the entry under Tables, place a check next to SalesStaff, and
change the DataSet name to SalesStaffDataSet (see Figure 4-13). Click the
Finish button to complete the wizard.

182 Chapter 4 Using SQL Server Databases

Figure 4-13 Choosing database objects

Step 14: You should see column headings in the DataGridView control (see Figure 4-14)
that match the SalesStaff columns: ID, Last_Name, First_Name, Full_Time,
Hire_Date, Salary. If the DataGridView Tasks window is still visible, click any-
where outside the window to close it.

Figure 4-14 Column headings in the DataGridView control

4.3 Using the DataGridView Control 183

Step 15: Next, you will center the Hire_Date column. Select the grid’s Columns prop-
erty and open the Edit Columns window, which is shown in Figure 4-15.
Select the Hire_Date column, and select DefaultCellStyle. This will display the
CellStyle Builder window, shown in Figure 4-16. Select the Alignment prop-
erty, and select MiddleCenter from its dropdown list. Click the OK buttons
until the Edit Columns window is closed.

Figure 4-15 The Edit Columns dialog window

Step 16: Open the form’s Code window, and inspect the code Visual Studio inserted
into the form’s Load event handler. It calls the Fill method from the
SalesStaffTableAdapter, passing it the SalesStaff DataTable inside the
SalesStaffDataSet DataSet.

Me.SalesStaffTableAdapter.Fill(Me.SalesStaffDataSet.SalesStaff)

This is how the grid gets its data: The TableAdapter pulls data from the data-
base, using the Fill method. The Fill method holds an SQL query that deter-
mines which columns of which table will be used. The SalesStaff DataTable
is a container that holds the data while it is being displayed by the DataGrid-
View control.

Step 17: Save and run the application. You should see all the rows of the SalesStaff
table, as shown in Figure 4-17.

Step 18: Currently the rows are listed in ascending order by ID number. Click the
Last_Name column and watch the grid sort the rows in ascending order by
last name. Click the Last_Name column again and watch the rows sort in
descending order on the same column.

Step 19: Place the mouse over the border between two columns. When the mouse cur-
sor changes to a horizontal arrow, use the mouse to drag the border to the right
or left. This is how users can change column widths at runtime.

184 Chapter 4 Using SQL Server Databases

Figure 4-16 The CellStyle Builder window

Figure 4-17 Running the application, displaying the SalesStaff table

Step 20: Try deleting a row. Click the button to the left of one of the grid rows. The entire
row is selected (highlighted). Press the Del key and watch the row disappear.
The row has been removed from the in-memory DataSet, but not the database.

4.4 Selecting DataSet Rows 185

Step 21: Next, you will insert a new row. Scroll to the bottom row of the grid and enter
the following information in the empty cells: 847, Jackson, Adelle, (check
Full-time), 6/1/2011, 65000. Press the Enter key to save your changes. (If you
do not check Full-time, the program will throw an exception.)

Step 22: Sort the grid on the Last_Name column, and look for the row you inserted.

Step 23: Close the application and then run it again to verify that the changes you
made to the DataSet were not saved in the database. The grid rows look
exactly as they did when you first displayed the DataSet. Stop the program
again.

Step 24: In Design view, notice the three components placed in the form’s component
tray by Visual Studio when you added the connection to the SalesStaff table.

• SalesStaffDataSet is the object that holds a copy of the database table in
memory.

• SalesStaffBindingSource is the object that moves data from the dataset to
the DataGridView control.

• SalesStaffTableAdapter is the object that copies data from the database into
the dataset. As another option, it can save changes to the database. The
TableAdapter contains the SQL statements that select, update, insert, or
delete database table rows.

After completing Tutorial 4-1, we hope you see how easy it is to display database tables. The
DataGridView control is an ideal tool for giving users a quick view of data. In our example,
the column names and ordering were taken directly from the database table. As you learn more
about the DataGridView control, you will be able to rename columns and change their order.

Checkpoint

11. Using the application you created in Tutorial 4-1, explain how to change the
formatting of the Salary column so it displays values in currency format.

12. The technique called ________ links database tables to controls on Visual Basic
forms.

13. Which component pulls data from a database and passes it to a DataSet?

14. When changes are made to a DataSet at runtime, what happens to the database
that filled the DataSet?

15. Which control displays DataSets in a spreadsheet-like format?

16. What type of component binds data from a DataSet to an application’s controls?

4.4 Selecting DataSet Rows
In the previous section of this chapter, you learned how to display all rows of a DataSet using
the DataGridView control. Applications often must select (or filter) only certain rows for
display. Suppose, for example, you want to display only members of the company sales staff
who are full-time. Or, you might want to display employees hired prior to 2005. You might
want to display only those employees hired within the last five years whose salaries are less
than $40,000. Using SQL queries and the tools in Visual Studio, almost any type of filtering
is possible.

186 Chapter 4 Using SQL Server Databases

SQL
Structured Query Language (SQL) is a standard language for working with databases.
SQL consists of several keywords. You use the keywords to construct statements known
as queries. Queries are instructions submitted to a database, which then executes the
queries.

Modifying the Query in a Data Source
To modify (edit) a query used in a data source, locate its DataSet schema file in the Solution
Explorer window. Suppose you have created a data source named SalesStaffDataSet; then
the DataSet schema file would be named SalesStaffDataSet.xsd. Double-click the filename to
open the Dataset Designer tool, shown in Figure 4-18. The top line shows the table name
(SalesStaff). The next several lines list the columns in the table, identifying the ID column as
the primary key. The SalesStaffTableAdapter appears next, followed by a list of its database
queries. By default, there is one query named Fill, GetData() that fills the DataSet when the
form loads.

Figure 4-18 SalesStaffDataSet, in the Dataset Designer window

If you right-click the DataSet and select Configure from the popup menu, you can modify
the currently selected query using the TableAdapter Configuration Wizard, shown in
Figure 4-19. If the query text is simple enough, you can modify it directly in this window.
If the query is more complicated, click the Query Builder button to display a Query
Builder window. A sample is shown in Figure 4-20.

Query Builder

Query Builder is a tool provided by Visual Studio for creating and modifying SQL queries.
It consists of four sections, called panes, shown in Figure 4-21.

• The diagram pane displays all the tables used in the query, with a check mark next to
each field that will be used in the DataSet.

• The grid pane displays the query in a spreadsheet-like format, which is particularly
well suited to choosing a sort order and entering selection criteria.

TIP: Although SQL is a language, you don’t use it to write applications. It is intended
only as a standard means of interacting with a database. You still need a general pro-
gramming language such as Visual Basic to write applications with user interfaces.

4.4 Selecting DataSet Rows 187

Figure 4-19 TableAdapter Configuration Wizard

Figure 4-20 Query Builder window

188 Chapter 4 Using SQL Server Databases

• The SQL pane displays the actual SQL query that corresponds to the tables and fields
selected in the diagram and grid panes. Experienced SQL coders often write queries
directly into this pane.

• The results pane displays the rows returned by executing the current SQL query. To fill
the results pane, right-click in the Query Builder window and select Run from the
context menu.

To remove and restore panes, right-click the window and select Pane from the popup menu.
The menu allows you to check or uncheck individual panes.

To add a new table to the Query Builder window, right-click inside the diagram pane and
select Add Table from the popup menu. To save the current query and close Query Builder,
click the OK button.

Adding a SELECT Query to a DataGridView
If you want to add a SELECT query to a DataGridView control, the easiest way to do it is
to use the TableAdapter attached to the grid. Suppose that the SalesStaffTableAdapter is
attached to a DataGridView displaying the SalesStaff table from the Company database.
Then in the form’s Design view, you can right-click the TableAdapter icon and select Add
Query. The Search Criteria Builder window appears, as shown in Figure 4-22. You could
modify the query so it reads as follows:

SELECT ID, Last_Name, First_Name, Full_Time, Hire_Date, Salary
FROM SalesStaff
WHERE Salary < 45000

Diagram pane

Grid pane

SQL pane

Result pane

Figure 4-21 Sections of the Query Builder window

4.4 Selecting DataSet Rows 189

If you add a query to a dataset and then later delete the query from the DataSet Designer
window, you may find that your program will not run. If this happens, Visual Studio may
have left behind some extra code that had been added to the designer file when the query
was created. To work around this problem, select the Rebuild <projectName> command
from Visual Studio’s Build menu.

In Tutorial 4-2, you will create several queries that display rows in a DataGridView control.

Figure 4-22 Search Criteria Builder window

TIP: If you dock a grid inside a form and then add a ToolStrip control, the grid’s title
bar is covered up by the ToolStrip. To avoid this problem, set the grid’s Dock property to
None, drag the grid a bit lower on the form with the mouse, and resize it so it fits. Then
set the grid’s Anchor property to Top, Bottom, Left, Right.

Figure 4-23 shows what the window looks like after adding a WHERE clause to the SELECT
statement. You can give a name to the query, such as Salary_query. When you click the OK
button, a ToolStrip control is added to the form, with a query button. When you run the
application and click the Salary_query button on the ToolStrip, the results are shown in
Figure 4-24. Only rows with salaries less than $45,000 are displayed.

190 Chapter 4 Using SQL Server Databases

Figure 4-23 Creating a query in the Search Criteria Builder

Figure 4-24 Dataset rows filtered by Salary_query

4.4 Selecting DataSet Rows 191

Tutorial 4-2:
Filtering rows in the SalesStaff table

In this tutorial, you will create several queries that change the way rows from the
SalesStaff table are displayed in a DataGridView control.

Tutorial Steps

Step 1: Copy the SalesStaff 1 folder you created in Tutorial 4-1 to a new folder named
SalesStaff 2. You may have to close Visual Studio to release its lock on the
database file.

Step 2: Open the project from the SalesStaff 2 folder (the solution file will still be
named SalesStaff 1.sln).

Step 3: Right-click the project name in the Solution Explorer window, and choose
Rename. Rename the project SalesStaff 2.

Step 4: In the Design window for Form1, right-click the SalesStaffTableAdapter con-
trol in the component tray and select Add Query from the popup menu.

Step 5: In the Search Criteria Builder window, name the query Full_Time. Set its
query text to the following:

SELECT ID, Last_Name, First_Name, Full_Time, Hire_Date, Salary
FROM SalesStaff
WHERE (Full_Time = 'True')

Step 6: Click the OK button to close the Search Criteria Builder.

Step 7: If your grid column headers are hidden behind the ToolStrip control, slide the
grid downward to expose the column headers. Anchor it to the four sides of
the form, using the Anchor property.

Step 8: Save the project and run the application. Click the Full_Time button and
observe that only full-time employees are displayed. Close the application and
return to Design mode.

Step 9: Let’s look at the source code generated by Visual Studio when you added the Tool-
StripButton. It calls a method named Full_Time, using the SalesStaffTableAdapter
object. The argument passed to the method is the SalesStaff table inside the
SalesStaffDataSet DataSet:

Private Sub Full_TimeToolStripButton_Click() _
Handles Full_TimeToolStripButton.Click
Try

Me.SalesStaffTableAdapter.Full_Time
(Me.SalesStaffDataSet.SalesStaff)

Catch ex As System.Exception
System.Windows.Forms.MessageBox.Show(ex.Message)

End Try
End Sub

TIP: To copy a folder in Windows Explorer, right-click its name with the
mouse and select Copy from the popup menu; right-click again and select
Paste from the popup menu. The file will be named Copy of <name>,
where <name> is the original folder name. Right-click the copied filename
and select Rename from the popup menu. Type the new folder name and
press Enter. (The same procedure works when copying files.)

192 Chapter 4 Using SQL Server Databases

If an exception is thrown, a popup box displays the exception message. As an
alternative, you can replace the call to MessageBox.Show with a statement
that assigns a value to an ErrorProvider control.

Step 10: Now you will add another button to the ToolStrip that displays all table rows.
Right-click the SalesStaffTableAdapter control, and select Add Query.

Step 11: In the Search Criteria Builder, name the query All_Rows, and keep the exist-
ing Query text. Click the OK button to close the window and create the
query. Notice that a second ToolStrip has been added to the form, as shown
in Figure 4-25.

Figure 4-25 SalesStaff table in a DataGridView, with two query buttons

Step 12: Again, you will need to adjust the top of the grid so the column headings are
visible.

Step 13: Save the project. Run the application and click both query buttons. The dis-
play should alternate between displaying all rows, and rows containing full-
time employees only.

Step 14: End the application and close the project.

In Tutorial 4-2, you saw how easy it was to create queries that select database rows. You can
create any number of queries that filter rows on different columns and values. Later in this
chapter, we will show how to use query parameters to modify search criteria.

It is possible to place both query buttons on the same ToolStrip if you do the following:

1. In Design mode, select one of the buttons and cut it to the Windows Clipboard (press
Ctrl-X).

2. Select the other toolbar and paste the button (press Ctrl-V). Both buttons should be on
the same ToolStrip.

3. Select and delete the empty ToolStrip.

4.5 Data-Bound Controls 193

Figure 4-26 Copying a database file to the project folder

4. Open the Code window and observe that the Handles clause has disappeared from the
Click event handler associated with the button you copied. Add the Handles clause
back to the method header. For example:

Handles All_RowsToolStripButton.Click

Checkpoint

17. What does the acronym SQL represent, in relation to databases?

18. Why do SQL queries work with any relational database?

19. Write an SQL SELECT statement that retrieves the First_Name and Last_Name
columns from a table named Employees.

20. How do you add a query to a TableAdapter in the component tray of a form?

21. Write a WHERE clause in SQL that limits the returned data to rows in which
Salary is less than or equal to $85,000.

4.5 Data-Bound Controls
In this section, you learn how to bind data sources to individual controls such as TextBoxes,
Labels, and ListBoxes. We call such controls data-bound controls because they update their
contents automatically when you move from one row to the next in a DataSet. Data-bound
controls can also update the contents of fields. You will learn how to bind a DataGridView
to an existing DataSet. You will also learn how to use a ListBox control to navigate from
one DataSet row to another.

Visual Studio Copies Database Files
When a new data source is an attached SQL Server file, the dialog window shown in Fig-
ure 4-26 pops up and asks if you want to copy the database file to your project. In general,
making a local copy of the database is a good idea. The second paragraph, easily overlooked,
reminds you that a fresh copy of the database will be copied to your program’s output direc-
tory each time you run the application.

If you answer Yes to the dialog window, Visual Studio copies the database file to your pro-
ject’s root folder. Each time you build the application, the database is automatically copied
to the project’s output directory. This is the database file your application will display and
update. Its location depends on how you run the program.

194 Chapter 4 Using SQL Server Databases

• If you run in Debug mode, the output directory is \bin\Debug.
• If you run without debugging, the output directory is \bin\Release.

Distributing a Compiled Database Application

Visual Basic makes it very easy for you to distribute a compiled application along with its
database. The technique is called xcopy deployment. All you have to do is copy the appli-
cation’s EXE file and database files from the \bin\Debug folder, or from the \bin\Release
folder. In Figure 4-27, for example, the application named Insert Karate Payments is bun-
dled with the karate.mdf database file.

TIP: Before deleting a DataSet, delete all BindingSource controls on your form that
connect to the DataSet.

Figure 4-27 With Visual Basic, you can distribute a compiled application with its
database

Figure 4-28 Modifying a database connection string

Modifying a Database Connection String

To modify a database connection string, right-click the entry named My Project in the
Solution Explorer window. In the Properties window, select the Settings tab. The first line in
the grid will probably be the database connection string. Click the button with the three dots
in the Value column, as shown in Figure 4-28.

Renaming and Deleting Data Sources

You cannot rename a data source, for good reason: A data source represents the name of a
DataSet class generated by Visual Studio. In fact, the DataSet class contains several other
inner classes (classes declared inside classes). Renaming a DataSet class, all its related classes,
and all objects using the class names would be next to impossible. Therefore, choose a name
for your data source that you do not plan to change.

You can delete a data source easily: Select its XSD file in the Solution Explorer window
and press the Delete key. However, if your program has one or more forms that contain
BindingSources connected to the data source, be careful. After deleting the data source, you
will not be able to open any forms in the Designer window that contain BindingSources.
You will encounter an error message similar to the one shown in Figure 4-29. We recom-
mend that you keep a separate backup copy of your project to protect yourself against errors
from which it may be too difficult to recover.

4.5 Data-Bound Controls 195

Binding the Data Source to a DataGridView Control

In Tutorial 4-1, you used the DataGridView Tasks window to guide you through creating a
BindingSource, TableAdapter, and DataSet. If the project already contains a suitable data
source, you can bind it to a DataGridView control just by dragging the SalesStaff table from
the Data Sources window to the open area of a form. Visual Studio adds a custom naviga-
tion bar to the form, as shown in Figure 4-30.

Figure 4-29 Error message generated by Visual Studio after a data source is deleted

Figure 4-30 After dragging the SalesStaff table from the Data Sources window onto
a form

Once the grid has been bound to a DataSet, you can set its Dock property so it will always
fill to the borders of the form. To do this, select the grid, display the Properties window,
select the Dock property, and click the center docking button. The grid expands to fill the
form. Figure 4-31 shows the SalesStaff table in a DataGridView with a toolbar at runtime.

Binding Individual Fields to Controls
If the Data Sources window contains an existing data source, you can easily create an indi-
vidual data-bound control for each column by dragging a table from the data source onto
your form. First, select Details in the dropdown list associated with the table, as shown in
Figure 4-32. (The default control type is DataGridView, which we’ve already used.) When
you drag the table name onto a form, a separate control is created for each field. As shown
in Figure 4-33, a navigation toolbar is also added to the form. (You may have to wait a few
seconds for the controls to appear.)

Sometimes data source column names such as First_Name contain underscore characters.
When you bind the data source to controls, Visual Studio removes the underscores as it gen-
erates labels next to the controls.

196 Chapter 4 Using SQL Server Databases

You may want to modify the appearance or properties of the controls. For example, if you
want the Hire_Date column to display in mm/dd/yyyy format, set its Format property equal
to Short.

By default, Text and Numeric database columns are bound to TextBox controls, Yes/No
fields are bound to check boxes, and DateTime fields are bound to DateTimePicker controls.
If you would prefer not to let the user modify a protected field such as ID, change the bind-
ing control type for individual fields in the Data Source window. For example, if you click

Figure 4-31 After docking the grid in the center of the form (shown at runtime)

Figure 4-32 Selecting a table’s binding control, Data Sources window

Figure 4-33 After dragging a data source onto the form

4.5 Data-Bound Controls 197

the ID field in the SalesStaff table in the Data Source window, a list of control types displays
(see Figure 4-34). If you choose the Label control type, a user can view the field but not mod-
ify its contents.

Figure 4-34 Selecting the control binding type for the ID field in the Data Sources window

Figure 4-35 Displaying one row of the SalesStaff table in bound controls

Figure 4-35 shows a sample of the same form with a Label control for the ID field and with
some customizing of the appearance of the other controls.

If you want to have only one or two bound controls from a data source, drag individual
columns from the Data Sources window onto a form. To run and modify this sample pro-
gram, see the Binding_Example program located in the Chapter 4 examples folder.

Introducing the Karate Database
The database we will use for the next set of examples is called Karate (karate.mdf), designed
around the membership and scheduling of classes for a martial arts school. A table named
Members contains information about members, such as their first and last name, phone
number, and so on. See Table 4-12.

Related to the Members table is the Payments table, shown in Table 4-13. It shows recent
dues payments by members. Each row in the Payments table contains a Member_Id value
that identifies the member (from the Members table) who made a dues payment. The

198 Chapter 4 Using SQL Server Databases

relationship is shown by the diagram in Figure 4-36. The line connects the ID field in the
Members table to the Member_Id field in the Payments table.

Binding Data Sources to List-Type Controls

ListBoxes and ComboBoxes are ideal tools for displaying lists of items and for permitting
users to select individual items. All you have to do is set the following properties:

• The DataSource property identifies a data table that will provide the database data.
• The DisplayMember property identifies the column within the table that displays in the

ListBox or ComboBox.

Table 4-12 The Members table from the Karate database

ID Last_Name First_Name Phone Date_Joined

1 Kahumanu Keoki 111-2222 2/20/2002

2 Chong Anne 232-2323 2/20/2010

3 Hasegawa Elaine 313-3455 2/20/2004

4 Kahane Brian 646-9387 5/20/2008

5 Gonzalez Aldo 123-2345 6/6/2009

6 Kousevitzky Jascha 414-2345 2/20/2010

7 Taliafea Moses 545-2323 5/20/2005

8 Concepcion Rafael 602-3312 5/20/2007

9 Taylor Winifred 333-2222 2/20/2010

Table 4-13 The Payments table

ID Member_Id Payment_Date Amount

1 1 10/20/2009 $48.00

2 2 02/20/2010 $80.00

3 6 03/20/2010 $75.00

4 4 12/16/2009 $50.00

5 5 04/11/2009 $65.00

6 3 02/16/2009 $75.00

7 8 03/20/2010 $77.00

8 8 02/27/2010 $44.00

9 6 04/20/2010 $77.00

10 5 01/16/2010 $66.00

11 8 05/11/2010 $77.00

13 6 02/20/2010 $77.00

14 7 07/16/2009 $77.00

15 1 03/11/2010 $44.00

16 3 03/28/2010 $43.00

17 4 03/27/2010 $44.00

19 9 02/20/2010 $44.00

22 9 03/20/2010 $55.00

4.5 Data-Bound Controls 199

The ValueMember property identifies the column within the table that supplies an
identifying value when an item is selected in the list box. The identifying value is returned in
the SelectedValue property of the list box. Usually, the ValueMember property contains the
name of the table’s primary key field because that field uniquely identifies every table entry.

When you use the mouse to drag a table column from the Data Sources window onto a list
box or ComboBox, Visual Studio automatically creates the necessary data components: a
DataSet, a BindingSource, and a TableAdapter. When you click the smart tag at the top of a
ListBox or ComboBox, a tasks dialog makes it easy to set the data-binding properties. A
sample is shown in Figure 4-37.

Figure 4-36 Relationship between the Members and Payments tables

Figure 4-37 Setting the data-binding options of a ListBox control

The data-bound ListBox or ComboBox is a great navigation tool. When the user selects an
item in the list, the form’s BindingSource repositions itself to the DataSet row that matches
the selected value. All other fields bound to the same DataSet on the form are updated auto-
matically with the current row’s data. Tutorial 4-3 will show how this happens.

Tutorial 4-3:
Displaying the Members table in a ListBox

In this tutorial, you display the last names of members from the Members table in the
Karate database. When the user clicks a member’s name, the program displays the date
when the member joined.

Tutorial Steps

Step 1: Create a Windows desktop application named Member List.

200 Chapter 4 Using SQL Server Databases

Step 2: Click Add New Data Source in the Data Sources window. (If you cannot see
the Data Sources window, select Show Data Sources from the Data menu.)

Step 3: Follow the steps in the Data Source Configuration Wizard to create a con-
nection to the Members table in the karate.mdf database file. Name the
DataSet KarateDataSet.

Step 4: Set the form’s Text property to Member List.

Step 5: Add a ListBox control to the form and name it lstMembers.

Step 6: Add a Label just above the list box and set its Text property to Member
Names. Your form should look like the one shown in Figure 4-38.

Figure 4-38 Member List program with list box

Step 7: Click the ListBox’s smart tag, which causes the ListBox Tasks window to dis-
play, shown in Figure 4-39. Select the Use Data Bound Items check box.

Figure 4-39 The ListBox Tasks window

The ListBox Tasks window, shown in Figure 4-40, now contains several data-
binding fields.

Figure 4-40 ListBox Tasks window

4.5 Data-Bound Controls 201

Step 8: Select the Data Source dropdown list, expand the Other Data Sources group,
expand Project Data Sources, expand KarateDataSet, and select the Members
table (shown in Figure 4-41). Notice that Visual Studio just added three com-
ponents to the form’s component tray: a DataSet, a BindingSource, and a
TableAdapter.

Figure 4-41 Setting the list box’s DataSource property

Step 9: While still in the ListView tasks window, set the list box’s DisplayMember
property to Last_Name.

Step 10: Save and run the application. The list box should contain the last names of mem-
bers, as shown in Figure 4-42. Close the window and return to Design mode.

Figure 4-42 List box filled, at runtime

Step 11: Next, you will add a data-bound label to the form that displays the member’s
phone number. Click the Phone field in the Data Sources window, select Label
from the dropdown list, and drag the Phone field with the mouse onto the
program’s form. Set the label’s BorderStyle property to Fixed 3D.

Step 12: Save and run the program. As you click each member’s name, notice how the
current phone number is displayed. For a sample, see Figure 4-43.

Let’s analyze what’s happening here. When the user selects a name in the list
box, the form’s data-binding mechanism moves to the DataSet row contain-
ing the person’s name. The Label control is data-bound to the phone number
field, so it displays the phone number of the person selected in the list box.

Step 13: For each remaining field in the Data Sources window, select its dropdown list
and choose the Label control type. Then drag each field onto the form. Set the
BorderStyle property of each label to Fixed 3D. When you run the applica-
tion, it should appear as in Figure 4-44.

202 Chapter 4 Using SQL Server Databases

Figure 4-43 Phone number of selected member displays in Label

Figure 4-44 Displaying the other fields in Labels

Step 14: Save the project and run the application. Click on various member names, and
verify that the Label controls change values.

Step 15: Close the application.

Adding Rows to DataTables

Using the NewRow Method

The DataTable class has two methods that help you add rows to tables in DataSets:
NewRow and Add. The NewRow method creates and returns a new, empty row having the
same structure as the other rows in the table. It is declared as follows:

NewRow() As DataRow

Here is a sample call to NewRow, using the Payments table in a DataSet named
PaymentsDataSet:

Dim row As DataRow
row = PaymentsDataSet.Payments.NewRow()

Because NewRow returns a general DataRow type, the return value must be cast into a
PaymentsRow type before we can reference any of the fields in the Payments table. The fol-
lowing lines redefine row and show how the cast is done:

Dim row As PaymentsDataSet.PaymentsRow
row = CType (PaymentsDataSet.Payments.NewRow,

PaymentsDataSet.PaymentsRow)

4.5 Data-Bound Controls 203

Next, you can assign values to columns in the table. The column names are properties in the
PaymentsDataSet.PaymentRow class.

With row
.Member_Id = 5
.Payment_Date = '5/15/2011'
.Amount = 500D

End With

The last step is to add the new row to the table by calling the Add method from the Rows
collection. This is how the method is declared:

Function Add(row As DataRow) As DataRow

Continuing with the same example, the following statement adds row to the Payments table:

PaymentsDataSet.Payments.Rows.Add(row)

Using the Rows.Add Method

The Rows.Add method also adds a row to a DataTable. When calling Rows.Add, pass it
the new column values. The following code adds a new entry to the Members table of
MembersDataSet:

MembersDataSet.Members.Rows.Add(15, Jones, Sam, 111-2222,
'5/15/2010')

If the underlying database table’s primary key is an auto-generated field, you should pass the
value Nothing as the corresponding Add method argument. Here is an example from the
Karate Payments table, in which the first column is auto-generated:

PaymentsDataSet.Payments.Rows.Add(Nothing, 5, '5/15/2011', 50D)

Updating a DataTable

Adding a row to a DataTable does not affect the database from which it was copied. If you
want to copy your changes back into the database, call the Update method of the
TableAdapter associated with the DataTable. The following statement, for example, writes
all pending changes in the Payments table (in the PaymentsDataSet) back to the underlying
database:

PaymentsTableAdapter.Update(PaymentsDataSet.Payments)

Because a DataSet can contain multiple tables, updating a DataSet causes all changes to its
member tables to be updated. The following statement updates all tables inside the Pay-
mentsDataSet:

PaymentsTableAdapter.Update(PaymentsDataSet)

Direct Insert Using a TableAdapter

To add a row to a database table, call a TableAdapter’s Insert method. Pass it the required
column values, ignoring auto-generated fields. In the next example, the PaymentsTableAdapter
adds a new row to the Payments table, passing the ID, date, and payment amount:

PaymentsTableAdapter.Insert(5, '5/15/2011', 50D)

Removing a Row from a DataTable

Removing a row from a DataTable requires two steps. First, get a reference to the row you
want to remove; second, call the Rows.Remove method, passing it the row reference. For

204 Chapter 4 Using SQL Server Databases

example, the following code calls FindByID, passing it the ID of the payment to be removed.
Then, the row object returned by FindByID is passed to the Rows.Remove method:

Dim row As DataRow = PaymentsDataSet.Payments.FindByID(36)
PaymentsDataSet.Payments.Rows.Remove(row)

In Tutorial 4-4, you will write a program that adds rows to a database table.

Tutorial 4-4:
Inserting rows in the Karate Payments table

In this tutorial, you will create an application that adds rows to the Payments table in
the Karate database.

Tutorial Steps

Step 1: Create a new Windows application named Insert Karate Payments.

Step 2: In the Data Sources window, add a new data source, using the Payments table
from the Karate database. Select the karate.mdf file located in the chapter
examples folder. Name the DataSet PaymentsDataSet.

Step 3: When asked if you want to copy the database file to your project, answer
Yes.

Step 4: Add three TextBox controls to the form with appropriate labels. One is
named txtMemberId, another is txtDate, and the third is named txtAmount.
Use Figure 4-45 as a guide.

Figure 4-45 The startup form in the Insert Karate Payments application

txtMemberId

txtAmount

txtDate

4.5 Data-Bound Controls 205

Step 5: Add a Button control named btnInsert and set its Text property to Insert.

Step 6: Add a DataGridView control to the form and set the following properties:
Name = dgvPayments; BorderStyle = None; BackgroundColor = Control;
ReadOnly = True; RowHeadersVisible = False; Anchor = Top, Bottom, Left,
Right.

Step 7: Open the grid’s DataGridView Tasks window and set its DataSource property
to the Payments table of PaymentsDataSet.

Step 8: Select the grid’s Columns property, which opens the Edit Columns window.
Remove the ID column. The remaining columns are shown in Figure 4-46.

Figure 4-46 Editing the Columns property of the dgvPayments grid

Step 9: Still in the Edit Columns window, select the Member_Id column, and open the
DefaultCellStyle property in the right-hand list box. The CellStyle Builder
window should appear.

Step 10: In the CellStyle Builder window, set the following properties: Alignment =
MiddleCenter; ForeColor = Blue. Click the OK button to close the window.

Step 11: In the Edit Columns window, select the Amount column and open its
DefaultCellStyle property.

Step 12: Open its Format property and select Currency. Click the OK button to close
the dialog.

Step 13: Click the OK button to close the CellStyle Builder window.

Step 14: Experiment with the three columns, changing colors and formats as you wish.
When you finish, click the OK button to close the Edit Columns window.

Step 15: Save and run the application. You should see a list of payments in the grid, as
shown earlier in Figure 4-45. Then stop the application.

206 Chapter 4 Using SQL Server Databases

Step 16: Next, you will add code to the Insert button’s Click event handler that lets
the user create and save new payments. In Design mode, double-click the
Insert button and add the following code to the button’s Click event
handler:

Try
PaymentsTableAdapter.Insert(CShort(txtMemberId.Text),

CDate(txtDate.Text), CDec(txtAmount.Text))
Me.PaymentsTableAdapter.Fill(Me.PaymentsDataSet.Payments)

Catch ex As Exception
MessageBox.Show(ex.Message, ''Database Error'')

End Try

We use a Try-Catch statement here to handle exceptions thrown by the database.

The code you added calls the TableAdapter’s Insert method, passing to it the
values of the three columns: member_Id, date, and amount. Each argument
must be converted to a type that matches the appropriate DataSet column
type. Then the Fill command is called so the user can see the new payment in
the grid.

Step 17: Add the following lines to the form's Load event handler. As the comment
says, we want the text box to display today’s date:

' Set the text box to today's date.
txtDate.Text = FormatDateTime(Today, DateFormat.ShortDate)

Step 18: Save the project and run the application. Add a new payment, using a
Member_ID value between 1 and 9. Verify that your payment appears in the
grid after clicking the Insert button.

Step 19: Try to add a payment with a Member_ID equal to 152. This Member_ID does
not exist in the Members table, so you should see an error message (shown in
Figure 4-47) saying that you violated a foreign key constraint. The payment
is not saved.

Figure 4-47 Error message displayed when the user attempts to add a payment
row, using a nonexistent Member_ID

Step 20: Add a payment that uses an invalid date format or a nonnumeric value for the
payment amount. When you click the Insert button, observe the error message
generated by the database. Your programs should recover gracefully when
users enter invalid data.

Step 21: Close the application.

4.5 Data-Bound Controls 207

If you run the program again without building the project, the payments you added
during the previous run should appear. But if you build the project and then run it,
the added payments will be gone. Whenever you build a database project, Visual Studio
copies the database from the project’s root directory to its executable directory,
named bin\debug. When the application executes, it reads and writes the database in
the executable directory.

Tutorial 4-5:
Adding a total to the Insert Karate Payments application

In this tutorial, you will add statements that calculate the total amount of payments
made by students in the karate school.

Tutorial Steps

Step 1: Open the Insert Karate Payments program that you created in Tutorial 4-4.

Step 2: Add a new button to the form. Set its properties as follows: Name = btnTotal;
Text = Total Payments.

Step 3: Double-click the new button and modify its Click handler so that it contains
the following code:

Dim decTotal As Decimal = 0
Dim row As PaymentsDataSet.PaymentsRow
For Each row In PaymentsDataSet.Payments.Rows

decTotal += row.Amount
Next
MessageBox.Show(''Total payments are equal to '' _

& decTotal.ToString(''c''), ''Total'')

Step 4: Save the project and run the application. Click on the Total Payments button
and observe the results. A sample is shown in Figure 4-48. (Your program’s
total may differ from the value shown in the figure.)

Using Loops with DataSets
Techniques you’ve learned about loops and collections in previous chapters also apply to
DataSets. You can iterate over the Rows collection of a DataTable using the For Each
statement. Usually, it’s best to create a strongly typed row that matches the type of rows
in the DataSet.

The following loop iterates over the Payments table of the PaymentsDataSet, adding the
Amount column to a total. The DataSet was built from the Payments table in the Karate
database.

Dim row As PaymentsDataSet.PaymentsRow
Dim decTotal As Decimal = 0
For Each row In PaymentsDataSet.Payments.Rows

decTotal += row.Amount
Next

In Tutorial 4-5, you will modify the Karate Student Payments application.

208 Chapter 4 Using SQL Server Databases

Checkpoint

22. Which Visual Studio window displays the list of data sources belonging to a
project?

23. The _________ Configuration Wizard is a tool you can use to create a connection
to a database and select a database table.

24. If a certain DataTable already exists, what is the easiest way to bind it to a
DataGridView control?

25. How do you bind a single DataTable column to a text box?

26. By default, which control binds to a DateTime field in a DataTable?

27. What is the menu command for adding a new DataSet to the current project?

4.6 Focus on Problem Solving: Karate School
Manager Application
Suppose you are a black belt in the Kyoshi Karate School and you would like to create a
management application with the following capabilities:

1. Displays a list of all members.
2. Permits the user to sort on any column, edit individual rows, and delete rows.
3. Adds new entries to the members table.
4. Finds a member by letting the user enter a partial last name.

Figure 4-48 Calculating the total payments in the Karate Payments table

Step 5: End the application.

4.6 Focus on Problem Solving: Karate School Manager Application 209

5. Displays all payments, sorting on any column.
6. Displays a list of payments by one member.

Techniques for completing some of these tasks have been demonstrated in this chapter. Other
tasks will require new skills that will be demonstrated along the way. Before beginning to
write the application, you should consult with the application’s potential users to clarify
some user interface details. We will assume that users want the following:

• For requirement 1, use a DataGridView control.
• For requirement 2, set options that permit modifying and removing rows—the user

will be able to sort by clicking on column headings.
• For requirement 3, create a data input form with TextBox controls and a Date-

TimePicker control.
• For requirement 4, let the user type a partial last name into a text box. Display a grid

containing all members whose last names begin with the letters entered by the user.
• For requirement 5, join the Members and Payments tables and display the results in a

DataGridView control.
• For requirement 6, display a list of member names (last name, first name) in a Com-

boBox control; when a member is selected by the user, fill a DataGridView control
with payments by the member.

General Design Guidelines
Each form will have a File menu with a Close window option. A startup form will display a
menu and a program logo. Each major task will be carried out on a separate form to allow
for future expansion. When users see how easy the program is to use, they will surely request
more features.

Before we start to create the application, let’s look at the finished version to get a better idea
of how the detailed steps fit into the overall picture. Professional programmers often create
prototypes or demonstration copies of their programs. The prototype stage is where you can
try different versions of the user interface, which requires some reworking, research, and dis-
cussions with customers.

The startup form, named MainForm, displays a program logo and a menu with three main
menu items, shown in Figure 4-49. The startup form should be simple to avoid overwhelming

Figure 4-49 Karate School Manager startup form

210 Chapter 4 Using SQL Server Databases

users with details. The menu makes it clear that our system handles two major types of func-
tions: membership and payments. Here are the menu selections:

File
Exit

Membership
List All
Find Member
Add New Member

Payments
All
One Member

Membership Forms

To let users view a list of all members, we have provided the All Members form, shown in
Figure 4-50. The grid allows users to sort on any column, select and delete rows, and mod-
ify individual cells within each row. If the user wants to save changes they’ve made back into
the database, they select Save changes from the File menu.

Figure 4-50 All Members form

Figure 4-51 Find Member by Last Name form

The Find Member by Last Name form, shown in Figure 4-51, lets the user enter all or part
of a member’s last name. When the user clicks the Go button or presses Enter, a list of
matching member rows displays in the grid. We want name searches to be case-insensitive.

4.6 Focus on Problem Solving: Karate School Manager Application 211

Payments Forms

Now we turn our attention to the Payments subsystem of our application. When the user
selects All from the Payments menu on the startup form, the All Payments form shown in
Figure 4-53 appears. The rows are initially ordered by last name, but the user can sort on
any column by clicking on the column header (once for an ascending sort, twice for a
descending sort).

Figure 4-52 Add New Member form

Figure 4-53 All Payments form

The Add New Member form, shown in Figure 4-52, lets the user add a new person to the
Members table. After entering the fields and choosing a date from the DateTimePicker con-
trol, the user clicks the Save and Close button. If the user wants to close the form without
saving the data, he or she selects Close without saving from the File menu.

The Payments by One Member form, shown in Figure 4-54, lets the user select a member
name from a ComboBox. The grid fills with the person’s payment history.

212 Chapter 4 Using SQL Server Databases

From the user’s point of view, the program should be simple. By the time you finish creating
it, you will know how to design a simple user interface, open multiple windows, create
DataSets and connections, search for database rows in various ways, and perform simple
configurations of the DataGridView control.

In Tutorial 4-6, you will create the startup form for the Karate School Manager application.

Figure 4-54 Payments by One Member form

Tutorial 4-6:
Creating the Karate School Manager startup form

In this tutorial, the form will contain the name of the program, version information, and
a MenuStrip control. This will always be the first form to open and the last form to
close when the application shuts down.

Tutorial Steps

Step 1: Create a new Windows application named Karate School Manager.

Step 2: Rename the startup form to MainForm.vb.

Step 3: Open MainForm and set the following properties: Size = 530, 275; Text =
Karate School Manager; StartPosition = CenterScreen; MaximizeBox = False;
FormBorderStyle = FixedSingle.

Step 4: Insert a Panel control on the form and set its Size property to 390, 115. Insert
another Panel control inside the first one and set its Size property to approx-
imately 360, 80. Set the BorderStyle property of both panels to Fixed3D.

Step 5: Insert a Label control inside the smaller panel and set its Text property to
Kyoshi Karate School. We used 26.25-point, bold, italic Monotype Corsiva
font in the example shown earlier in Figure 4-49.

Step 6: Add another label control near the bottom of the form and set its Text prop-
erty to Management System 1.0. We used 11.25-point, bold Arial font in our
example.

4.6 Focus on Problem Solving: Karate School Manager Application 213

Tutorial 4-7:
Karate School Manager: Listing all members

In this tutorial, you will use a DataGridView control to list all members in the Karate
school. A new data source will be added to the project, and the DataGridView will be
bound to the data source.

Tutorial Steps

Step 1: Open the Karate School Manager project, if it is not already open.

Step 2: Add a new form named AllMembersForm.vb to the project. Set its
MinimizeBox and MaximizeBox properties to False. Set its Text property to
All Members.

Step 3: In MainForm, create a Click handler for the Membership / List All menu item
and insert the following code:

AllMembersForm.ShowDialog()

Step 4: In the Data Sources window, select Add New Data Source. Create a connec-
tion to the Karate database. In the Choose Your Database Objects window,
select the Members table and name the DataSet as KarateDataSet. Click the
Finish button to save the DataSet.

Step 5: Place a DataGridView control on the AllMembersForm and name it
dgvMembers. Anchor the grid to all four sides of the form. Set the following
property values: BackGroundColor = Control, BorderStyle = None, Row-
HeadersVisible = False.

Step 6: On the same form, open the DataGridView Tasks window. In the Choose
Data Source list, select the Members table from KarateDataSet. Check the

Step 7: Add a MenuStrip control to the form and insert the following menu items:

&File
E&xit

&Membership
&List All
&Find Member
&Add New Member

&Payments
&All
&One Member

Step 8: Double-click the File / Exit menu item and insert the following code into its
Click event handler:
Me.Close()

Step 9: Save the project and run the application. Verify that the form closes when you
click the File / Exit menu item.

You’re done for now. Tutorial 4-7 will focus on adding the Membership sub-
system to the application.

214 Chapter 4 Using SQL Server Databases

Using a BindingSource
A BindingSource object creates a connection between a DataSet and the data-bound con-
trols on a form. The BindingSource is attached to the DataSet, and the form’s other controls
are attached to the BindingSource. As the user changes the contents of controls, the Bind-
ingSource updates the DataSet.

Enable Editing and Enable Deleting check boxes only. If the grid’s column
headings do not appear as shown Figure 4-55, edit the grid’s Columns prop-
erty and use the arrow buttons next to the column names list to adjust the col-
umn order.

Figure 4-55 Column layout for the Members table

Step 7: While still editing the Columns property, select the Date_Joined column and
select its DefaultCellStyle property. Enter d into the Format property. (This
format specifies the short date format, in the form m/d/yyyy.) Click the OK
button twice to close the column editor.

Step 8: Add a MenuStrip control to the form. Add a File menu item, with one subitem:
Close. In the Close item’s Click handler, insert the Me.Close() statement.

Step 9: Save the project and run the application. From the startup form menu, select
Membership / List All. You should see a list of members, as shown in Figure 4-56,
which is similar to that shown earlier in Figure 4-50.

Figure 4-56 Listing all members

Step 10: End the application.

4.6 Focus on Problem Solving: Karate School Manager Application 215

The BindingSource class has a DataSource property that exposes the DataSet to which it
is bound. It also has methods that let you add new rows, edit rows, and cancel an editing
operation in progress. Here are some of the more important methods in the Binding-
Source class:

• AddNew—Adds a new row to the list.
• RemoveCurrent—Removes the current row from the list.
• EndEdit—Applies pending changes to the data source.
• CancelEdit—Cancels all changes.

When you bind a control to a data source, a BindingSource object is placed on your form
inside the component tray area (shown in Design view). In Tutorial 4-7, for example, the
DataGridView that displayed the list of members was bound to MembersDataSource. Visual
Studio automatically created a MembersBindingSource object and set the following two
important properties that bound it to the data source:

• DataSource = MembersDataSource
• DataMember = Members

The following are other important BindingSource properties:

• Count—Number of items in the list.
• Current—Returns the object at the current position of the list.
• Filter—An expression that filters the rows.

Let’s look at some examples of these properties and methods. The following statement per-
mits only those members who joined after 1/1/2005 to be displayed:

MembersBindingSource.Filter = ''Date_Joined > '1/1/2005'''

The following statement adds a new empty row to the list of Members:

MembersBindingSource.AddNew()

The following statement removes the current row from the list of members:

MembersBindingSource.RemoveCurrent()

The following statement saves pending changes to the list of members back into Members-
DataSource:

MembersBindingSource.EndEdit()

The following statement cancels all pending changes to the list of members:

MembersBindingSource.CancelEdit()

In Tutorial 4-8, you will add an Add Member form to the Karate School Manager program.

TIP: When you double-click a control in the design window for a form, an event han-
dler procedure is generated for you. It always handles the default event for the control.
But it is possible to write handlers for many other events on the same control. Here’s how
you select a different event so you can create a handler:

1. In the Design window, select the control with the mouse.
2. Select the Events button in the Properties window toolbar. It looks like a lightning

bolt.
3. Double-click on the box to the right of the name of the property for which you wish

to create a handler.

216 Chapter 4 Using SQL Server Databases

Tutorial 4-8:
Karate School Manager: Adding new members

In this tutorial, you will add a new form to the Karate School Manager program that
lets users add new rows to the Members table. The form will use data binding and write
its changes directly to the database.

Tutorial Steps

Step 1: Open the Karate School Manager project.

Step 2: Add a new form to the project named AddMemberForm.vb. Set its Text prop-
erty to Add New Member. Set the following property values: MaximizeBox =
False; MinimizeBox = False; FormBorderStyle = FixedDialog.

Step 3: In MainForm, locate the Membership / Add New Member menu item; double-
click the item and insert the following statement in its Click event handler:
AddMemberForm.ShowDialog()

Step 4: In the Data Sources window, locate the Members table under the KarateDataSet
entry. Using the dropdown arrow to its right, select Details from the list.

Step 5: Drag the Members table onto the form. Visual Studio should automatically cre-
ate data-bound fields and a ToolStrip named MembersBindingNavigator. Set
the Format property of the DateTimePicker control to Short. Use Figure 4-57
as a guide.

Figure 4-57 Add New Member form in Design mode

Step 6: Delete the MembersBindingNavigator component from the form’s component
tray. Open the form’s code window and delete the MembersBindingNaviga-
torSaveItem_Click method.

Step 7: Replace the code in the form’s Load event handler with a statement that calls
AddNew.

MembersBindingSource.AddNew()

The statement clears the form’s input fields and waits for the user to enter data
for a new member.

4.6 Focus on Problem Solving: Karate School Manager Application 217

Using Query Parameters
When SQL queries search for selected records in database tables, you don’t know ahead of
time what values the user might want to find. While it is possible to build a query from an
existing SQL SELECT statement that contains the names of Visual Basic variables, the result
is messy. Suppose, for example, that the user has entered a name in the txtLastName con-
trol, and you want to write a query that would locate all rows in the Members table having
the same last name. You can build the following query:

Dim query As String
query = ''SELECT ID, Last_Name, First_Name, Phone, Date_Joined '' _

& ''FROM Members WHERE Last_Name = ''' & txtlastName.Text & '''''

When typing code such as this, it is easy to make a typing mistake, and it can make your
application more vulnerable to software exploits that attempt to access sensitive database
data. A much better approach is to insert a parameter name directly into the SQL query. In

Step 8: Add a MenuStrip control to the form. Add a File menu item with one
subitem: Close. In the event handler for the first item, insert a Me.Close()
statement.

Step 9: Create a FormClosing event handler for the form and insert the following
statement:

MembersBindingSource.CancelEdit()

This statement cancels any edit operation that might be in progress. The user
might have opened the form, begun to fill in the fields, changed his or her
mind, and decided to close the form.

Step 10: Rename the DateTimePicker control to dtpDate. Also, add the following line
to the form’s Load event handler:

dtpDate.Value = Today

This line is necessary to ensure that the date value will be saved in the data-
base even if the user does not explicitly select a date.

Step 11: Add a button to the form named btnUpdate. Set its Text property to Update.
Create a handler for the button. It calls EndEdit to complete the add new row
operation. Then it calls Update to save the DataSet modifications to the actual
database. Finally, it closes the form, as follows:

Private Sub btnUpdate_Click () Handles btnUpdate.Click
Try

MembersBindingSource.EndEdit()
MembersTableAdapter.Update(KarateDataSet.Members)
Me.Close()

Catch ex As Exception
MessageBox.Show(ex.Message, ''Error'')

End Try
End Sub

Step 12: Save the project and run the application. Click the Membership / Add New
Member menu selection and add a new member. Choose a member ID that
does not appear when you list all members. If you’re not sure, display a list of
all members first.

218 Chapter 4 Using SQL Server Databases

the following example, a parameter named @Last_Name will be assigned a specific value at
runtime:

SELECT ID, Last_Name, First_Name, Phone, Date_Joined
FROM Members
WHERE Last_Name = @Last_Name

When the TableAdapter’s Fill method is called, we pass it a second argument. That argument
value is automatically assigned to the query parameter:

MembersTableAdapter.Fill(Me.FindMemberDataSet.Members,
txtLastName.Text)

If a query contains more than one parameter, the parameter values become additional argu-
ments for the Fill method. The following query, for example, contains two parameters,
@Last_Name and @Date_Joined:

SELECT ID, Last_Name, First_Name, Phone, Date_Joined
FROM Members
WHERE Last_Name = @Last_Name AND Date_Joined <= @Date_Joined

Notice how the call to the Fill method changes accordingly.

MembersTableAdapter.Fill(Me.FindMemberDataSet.Members,
txtLastName.Text, txtDateJoined.Text)

WildCard Matches in SQL Queries
When searching for matching rows in a database table, you may not always know the exact
value you’re trying to find. SQL has a special keyword named LIKE that uses a wildcard
character to perform partial matches. SQL Server uses the percent sign (%) character to
match any string of characters. For example, the following WHERE clause returns all rows
containing a name starting with the letter G:

WHERE Last_Name LIKE 'G%'

The database returns rows containing last names such as Gomez, Gonzalez, Green, and so
on. By default, the LIKE operator is case-insensitive, so names in lowercase characters still
match G%.

In Tutorial 4-9, you will create a form that lets users search using wildcard characters.

Tutorial 4-9:
Karate School Manager: Finding members by name

In this tutorial, you will create a form for the Karate School Manager application that
lets users search for members using their last names. The query that performs the search
will accept a partial string, so if users do not know the exact spelling of a member name,
they can view a list of members with similar names.

Tutorial Steps

Step 1: Open the Karate School Manager project.

Step 2: Add a new form to the project named FindMemberForm.vb. Set its properties as
follows: Text = Find Member by Last Name; MaximizeBox = False; MinimizeBox
= False; StartPosition = CenterScreen; FormBorderStyle = FixedDialog.

4.6 Focus on Problem Solving: Karate School Manager Application 219

Step 3: In MainForm, double-click the Membership / Find Member menu item and
insert the following code in its event handler:

FindMemberForm.ShowDialog()

Step 4: Open FindMemberForm in Design view, add a MenuStrip control to the form,
and create a File submenu with one selection: Close. In its Click event handler,
insert the Me.Close() statement.

Step 5: Add a Label control, a TextBox named txtLastName, and a Button named
btnGo to the form. Use Figure 4-58 as a guide. (The DataGridView control
will be added in a later step.)

Figure 4-58 The Find Member form in Design mode

Step 6: Open the KarateDataSet.xsd file, right-click the MembersTableAdapter, select
Add, and then select Query. Insert the following SQL query:

SELECT ID, Last_Name, First_Name, Phone, Date_Joined
FROM Members
WHERE (Last_Name LIKE @name + '%')

After creating the SQL query, click the Next button. In the Choose Methods
to Generate step shown in Figure 4-59, select only the Fill a DataTable option
and name the method FindMember. After you have finished adding the query,
the MembersTableAdapter should appear as in Figure 4-60.

Step 7: Place a DataGridView control on the form and name it dgvMembers. Set its
properties as follows: BackGroundColor = Control; BorderStyle = None;
Anchor = Bottom, Left, Right; RowHeadersVisible = False.

Step 8: Using the smart tag in the grid’s upper-right corner, set its data source to the
Members table of KarateDataSet. Disable adding, editing, and deleting of
rows.

Step 9: Next, you will add a call to the Fill method in the event handler for the but-
ton that activates the search. Double-click the Go button and insert the fol-
lowing code in its event handler:

' Perform a wildcard search for the last name.
Me.MembersTableAdapter.FindMember(FindMemberDataSet.Members,

txtLastName.Text)

220 Chapter 4 Using SQL Server Databases

Figure 4-59 Selecting the names of the TableAdapter methods

Figure 4-60 The MembersTableAdapter, after adding the FindMember query

Normally, the Fill method has only one parameter—the DataSet’s table. But
here you pass a second parameter, which is the value to be assigned to the
query parameter.

Step 10: Select the form with the mouse and set the Form’s AcceptButton property to
btnGo. This will allow the user to press the Enter key when activating the
search.

Step 11: Remove any statements that might be inside the form’s Load event handler.
(You don’t want the grid to fill with data until a member name has been
entered.)

4.6 Focus on Problem Solving: Karate School Manager Application 221

Step 12: Save the project and run the application. From the startup form, click
Membership / Find Member from the menu. When the Find Member form
appears, enter a partial last name, such as C or Ch, and click the Go button.
Your output should look similar to that shown in Figure 4-61.

Figure 4-61 Finding a member by last name

Step 13: Experiment with other partial last names, checking your results against the
grid that displays all members.

In Tutorial 4-10, you will be able to track payments of membership dues for the Karate school.

Tutorial 4-10:
Karate School Manager: Listing all payments

In this tutorial, you will use the Payments table, which contains dates, member IDs, and
payment amounts. It does not contain member names. You will join the Payments table
to the Members table so you can display the member names along with the payments
they have made. You will create a DataSet that contains the joined tables. The applica-
tion will display the DataSet in a DataGridView control.

Tutorial Steps

Step 1: Open the Karate School Manager program if it is not already open.

Step 2: Add a new form to the project named AllPaymentsForm.vb. Set its properties
as follows: Text = All Payments; MaximizeBox = False; MinimizeBox = False;
StartPosition = CenterScreen.

Step 3: Add a MenuStrip control to the form, and create a File submenu with one
item: Close. In the Close item’s Click handler, insert the Me.Close() statement.

Step 4: In MainForm, double-click the Payments / All menu item and insert the fol-
lowing code in its event handler:

AllPaymentsForm.ShowDialog()

222 Chapter 4 Using SQL Server Databases

Step 5: Next, you will create a TableAdapter that joins the Members and Payments
tables. This TableAdapter will be associated with a DataTable named Payments.
Open the KarateDataSet.xsd file from the Solution Explorer window. Right-click
in an open area of the designer window, select Add, then select TableAdapter.

When the TableAdapter Configuration Wizard starts, keep the same connec-
tion, and click the Next button two times. When you see the step entitled
Specify a SQL Select Statement, insert the following SQL query:

SELECT Payments.ID,
Members.Last_Name + ', ' + Members.First_Name AS FullName,
Payments.Payment_Date, Payments.Amount

FROM Members INNER JOIN Payments
ON Members.ID = Payments.Member_Id

ORDER BY Last_Name

This query joins the Members and Payments tables, using the common ID
value found in the Members.ID and Payments.Member_Id columns. Also, it
concatenates the last and first names of each member, using the following
expression:

Members.Last_Name + ', ' + Members.First_Name AS FullName

Step 6: Click the Query Builder button, and in the Query Builder window, click the
Execute Query button. If an error message appears, check your query’s
spelling and punctuation. Click the OK button to close the Query Builder
window.

Step 7: Click the Advanced Options button. In the dialog window, shown in Figure
4-62, unselect the Generate Insert, Update, and Delete statements option.
We’re doing this because we generally do not update tables when they are
joined together. Click the OK button.

Figure 4-62 Advanced Options window

Step 8: Click the Next button. In the Choose Methods to Generate step, select only
the Fill a DataTable option and name the method AllPayments. Also, unselect
the third check box because you do not want to create methods that send
updates directly to the database. Click the Finish button to close the wizard.

After you have finished adding the query, the PaymentsTableAdapter should
appear as in Figure 4-63.

4.6 Focus on Problem Solving: Karate School Manager Application 223

Figure 4-63 PaymentsTableAdapter, containing the AllPayments method

Step 9: Place a DataGridView control on the form and name it dgvPayments. Set its
properties as follows: BackGroundColor = Control; BorderStyle = None;
Dock = Fill, RowHeadersVisible = False.

Step 10: Click the smart tag of dgvPayments to open the DataGridView Tasks window.
For the data source, choose the Payments table in KarateDataSet. Unselect the
adding, editing, and deleting check boxes.

Step 11: Save the project and run the application. Display the All Payments window.
Sample output is shown in Figure 4-64.

Figure 4-64 All Payments form

For extra practice, you may want to center the ID column and format the
Amount column with two digits after the decimal point.

Step 12: Close the application.

In this tutorial you joined two database tables, using a relationship between
the Members and Payments tables. You have seen how easily a DataSet can
contain multiple TableAdapters. In Tutorial 4-11, you will complete the last
requirement of the Karate School Manager application, which is to display
payments by one member.

224 Chapter 4 Using SQL Server Databases

Tutorial 4-11:
Karate School Manager: Showing payments by one member

In this tutorial, you will create a form that displays a single member’s payment history.
A ComboBox control will present a list of first and last names. When the user selects a
name, a DataGridView control will fill with payments made by the member.

Tutorial Steps

Step 1: Open the Karate School Manager program if it is not already open.

Step 2: Add a new form to the project named MemberPaymentsForm.vb. Set its prop-
erties as follows: Text = Payments by One Member; MaximizeBox = False;
MinimizeBox = False; StartPosition = CenterScreen.

Step 3: Add a MenuStrip control to the form, and create a File submenu with one
selection: Close. In the Close handler, insert the Me.Close() statement.

Step 4: In the MainForm form, double-click the Payments / One member menu item
and insert the following code in its event handler:

MemberPaymentsForm.ShowDialog()

Step 5: Next, you will create a TableAdapter that displays member names. Open the
KarateDataSet.xsd file from the Solution Explorer window. Right-click in an
open area of the designer window, select Add, then select TableAdapter.

When the TableAdapter Configuration Wizard starts, keep the same connect,
and click the Next button two times. When you see the step entitled Specify
an SQL Select Statement, insert the following SQL query:

SELECT ID, Last_Name + ', ' + First_Name AS Name
FROM Members
ORDER BY Last_Name

Step 6: Click the Query Builder button, and in the Query Builder window, click the
Execute Query button. If an error message appears, check your spelling and
punctuation. Click the OK button to close the Query Builder window.

Step 7: Open the Advanced Options window and unselect the Generate Insert, Update,
and Delete statements option. Click the OK button to close the window.

Step 8: Click the Next button. In the Choose Methods to Generate step, unselect the
third check box because you do not want to create methods that send updates
directly to the database. Click the Finish button to close the wizard.

Step 9: Rename the table and TableAdapter as shown in Figure 4-65. You rename by
right-clicking on the gray bar and select Rename from the popup menu.

Figure 4-65 MemberNames DataTable and associated TableAdapter

4.6 Focus on Problem Solving: Karate School Manager Application 225

The next series of steps will be to bind a ComboBox control to the Member-
Names table. When the user selects a member name, we want the member’s
ID to be available in the ComboBox’s SelectedValue property.

Step 10: Add a ComboBox control to the form and name it cboMemberName.

Step 11: Open the ComboBox Tasks window. Select the Use data bound items option.
Set its DataSource property to the MemberNames table in KarateDataSet. Set
its DisplayMember property to Name. Set its ValueMember property to ID.

If you were to run the program now, you would see only a list of first and last
names in this form’s ComboBox. You need to add a grid to the form and use
it to display payments made by the member selected in the ComboBox.

Step 12: First, you will create a query that selects members by ID number. Open the
KarateDataSet.xsd file from the Solution Explorer window. Right-click the
PaymentsTableAdapter, select Add, and then select Query. In the Specify an
SQL Select Statement step, insert the following SQL query:

SELECT Payments.ID,
Members.First_Name + ' ' + Members.Last_Name AS FullName,
Payments.Payment_Date, Payments.Amount

FROM Members INNER JOIN
Payments ON Members.ID = Payments.Member_Id

WHERE (Member_Id = @memberId)
ORDER BY Payment_Date

Step 13: Click the Query Builder button and, in the Query Builder window, click the
Execute Query button. If an error message appears, check your spelling and
punctuation. Click the OK button to close the Query Builder window.

Step 14: Click the Next button. In the Choose Methods to Generate step, select only
the Fill a DataTable option and name the method MemberPayments. Click
the Finish button, which closes the Wizard. You should see a new version of
the PaymentsTableAdapter in the DataSet designer window, as shown in
Figure 4-66.

Figure 4-66 Revised PaymentsTableAdapter

Step 15: Add a Label control to PaymentsOneForm just above the ComboBox and set
its Text property to Select a Member. Add a second Label control below the
ComboBox and set its Text to Payment History.

Next, you will add a grid to the form, and write code in the ComboBox’s
SelectedIndexChanged event handler that fills the grid with payments made
by the selected member.

226 Chapter 4 Using SQL Server Databases

Step 16: Place a DataGridView control on the form and name it dgvPayments. Set its
properties as follows: BackGroundColor = Control; BorderStyle = None;
Anchor = Top, Bottom, Left, Right; RowHeadersVisible = False.

Step 17: Open the DataGridView Tasks window by clicking the grid’s smart tag. Set
the data source to the Payments table in KarateDataSet. Unselect the Adding,
Editing, and Deleting check boxes.

Step 18: Double-click the ComboBox and insert the following code in its SelectedIn-
dexChanged event handler:

If cboMemberName.SelectedIndex = -1 Then Exit Sub
' Get the Member_Id value associated with the selected
' member.

Dim member_Id As Short = CShort(cboMemberName.SelectedValue)
' Fill the payments grid, passing it the member ID.
PaymentsTableAdapter.MemberPayments(KarateDataSet.Payments,

member_Id)

Step 19: Modify the Form_Load event handler so it is as follows:

Private Sub MemberPaymentsForm_Load() Handles MyBase.Load
Me.MemberNamesTableAdapter.Fill(Me.KarateDataSet.
MemberNames)

cboMemberName.SelectedIndex = -1
End Sub

Step 20: Save the project and run the application. Select the Payments / One Member
menu item. Select a member (Kousevitzky). Your output should be similar to
that shown in Figure 4-67.

Figure 4-67 Displaying payments by one member

Summary

It is surprising how many simple steps are involved in creating a nontrivial application. The
Karate School Manager application is tiny by professional standards. But it is expandable,
and it even provides some usability for the customer.

4.6 Focus on Problem Solving: Karate School Manager Application 227

If we continued to expand this application, eventually we would find that the large number of
data sources, queries, and other data components would be overwhelming. For example, main-
tenance would be particularly difficult if the database table structure changed. Every form we
have created has components and queries that match the existing database structure. A major
problem of the application’s design is that we have no clear separation of tiers, or layers, in this
program. We have no separate layers for database access, user interface code, or business objects.

Fortunately, you will learn how to use database objects in Chapter 5. You will learn how to
implement the three-tier approach to application design. As a result, you will be able to cre-
ate applications that are expandable and maintainable.

Complete Source Code

The following is a listing of all the source code in the Karate School Manager application.
Optional parameters have been removed from the event handler methods to preserve read-
ability.

MainForm.vb:

Public Class MainForm
Private Sub ExitToolStripMenuItem_Click() _

Handles ExitToolStripMenuItem.Click
Me.Close()

End Sub

Private Sub ListAllToolStripMenuItem_Click() _
Handles ListAllToolStripMenuItem.Click
AllMembersForm.ShowDialog()

End Sub

Private Sub AddNewMemberToolStripMenuItem_Click() _
Handles AddNewMemberToolStripMenuItem.Click
AddMemberForm.ShowDialog()

End Sub

Private Sub FindMemberToolStripMenuItem_Click() _
Handles FindMemberToolStripMenuItem.Click
FindMemberForm.ShowDialog()

End Sub

Private Sub AllPaymentsToolStripMenuItem_Click() _
Handles AllPaymentsToolStripMenuItem.Click
AllPaymentsForm.ShowDialog()

End Sub

Private Sub OneMemberToolStripMenuItem_Click() _
Handles OneMemberToolStripMenuItem.Click
MemberPaymentsForm.ShowDialog()

End Sub
End Class

AllMembersForm.vb:

Public Class AllMembersForm
Private Sub AllMembersForm_Load() Handles MyBase.Load

Me.MembersTableAdapter.Fill(Me.KarateDataSet.Members)
End Sub

Private Sub CloseToolStripMenuItem_Click() _
Handles CloseToolStripMenuItem.Click
Me.Close()

End Sub
End Class

228 Chapter 4 Using SQL Server Databases

AllPaymentsForm.vb:

Public Class AllPaymentsForm
Private Sub CloseToolStripMenuItem_Click() _

Handles CloseToolStripMenuItem.Click
Me.Close()

End Sub

Private Sub AllPaymentsForm_Load() _
Handles MyBase.Load

Me.PaymentsTableAdapter.AllPayments(Me.KarateDataSet.Payments)
End Sub

End Class

AddMemberForm.vb:

Public Class AddMemberForm
Private Sub AddMemberForm_Load() Handles MyBase.Load

MembersBindingSource.AddNew()
dtpDate.Value = Today

End Sub

Private Sub CloseToolStripMenuItem_Click() _
Handles CloseToolStripMenuItem.Click
Me.Close()

End Sub

Private Sub AddMemberForm_FormClosing() _
Handles MyBase.FormClosing
MembersBindingSource.CancelEdit()

End Sub

Private Sub btnUpdate_Click() Handles btnSave.Click
Try

Me.MembersBindingSource.EndEdit()
MembersTableAdapter.Update(KarateDataSet.Members)
Me.Close()

Catch ex As Exception
MessageBox.Show(ex.Message, ''Error'')

End Try
End Sub

End Class

FindMemberForm.vb:

Public Class FindMemberForm
Private Sub CloseToolStripMenuItem_Click() _

Handles CloseToolStripMenuItem.Click
Me.Close()

End Sub

Private Sub btnGo_Click() Handles btnGo.Click
' Perform a wildcard search for the last name.

Me.MembersTableAdapter.FindMember(KarateDataSet.Members,
txtLastName.Text)

End Sub
End Class

MemberPaymentsForm.vb:

Public Class MemberPaymentsForm
Private Sub MemberPaymentsForm_Load() Handles MyBase.Load

Me.MemberNamesTableAdapter.Fill(Me.KarateDataSet.MemberNames)
cboMemberName.SelectedIndex = -1

End Sub

Summary 229

Private Sub cboMemberName_SelectedIndexChanged() _
Handles cboMemberName.SelectedIndexChanged
If cboMemberName.SelectedIndex = -1 Then Exit Sub
' Get the Member_Id value associated with the selected member.
Dim member_Id As Short = CShort(cboMemberName.SelectedValue)
' Fill the payments grid, passing it the member ID.
PaymentsTableAdapter.MemberPayments(KarateDataSet.Payments,

member_Id)

End Sub

Private Sub CloseToolStripMenuItem_Click() _
Handles CloseToolStripMenuItem.Click
Me.Close()

End Sub
End Class

Checkpoint

28. In the Karate database, which table contains the dates when students joined the
school?

29. In the AllPaymentsForm, which two database tables are required when filling the
grid?

30. Which property of a DataGridView control lets you alter the order in which
columns appear?

31. How does the MemberPaymentsForm obtain the ID number of the member selected
by the user in the ComboBox?

32. What special keyword is used in the WHERE clause of a query when you want to
search for partially matching strings?

Summary

4.1 Database Basics

• A database is a collection of one or more tables, each containing data related to a par-
ticular topic. A table is a logical grouping of related information. Each row of a table
is also called a record. Table columns are also called fields.

• Each table has a design, which specifies each column’s name, data type, and range or size.
A database schema contains the design of tables, columns, and relationships between
tables for the database.

• A primary key column uniquely identifies each row of a table. A primary key will
sometimes consist of two or more combined columns.

• When you use Visual Basic to read a database table, you must select .NET and
Visual Basic variable types that match the type of data in the table. A table at the
beginning of this chapter correlates .NET data types to Microsoft SQL Server data
types.

• Well-designed databases keep redundant data to a minimum. Always try to avoid hav-
ing multiple occurrences of the same field contents in rows of a database.

• A relationship is a link or relationship that relies on a common field value to join rows
from two different tables. The most common type of relationship is a one-to-many
relation.

230 Chapter 4 Using SQL Server Databases

4.2 SQL SELECT Statement

• The SELECT statement retrieves rows from one or more database tables. The most
basic format for a single table is SELECT column-list FROM table. In SELECT state-
ments, column names can be renamed, using the AS operator. The new column name
is called an alias. You can also create new columns whose contents are calculated from
existing column values.

• The SELECT statement has an ORDER BY clause that lets you control the display
order of the table rows.

• The SQL SELECT statement has a WHERE clause that you can use to filter, or select
zero or more rows retrieved from, a database table. The LIKE operator can be used to
create partial matches with Text column values. The NOT, AND, and OR operators
can be used to create compound expressions.

4.3 Using the DataGrid View

• A data source connects a program to a database, text files, Excel worksheet, XML file,
or other type of data.

• A BindingSource provides a link between a DataSet object and data-bound controls on
a form.

• A TableAdapter pulls data from a database (or other data source) and passes it to your
program.

• A DataSet is an in-memory copy of the data pulled from database tables.
• A TableAdapter’s Fill method opens a database connection, reads data from a database

into the DataSet, and closes the connection.

4.4 Selecting DataSet Rows

• Applications often need to filter, or select, certain rows when retrieving data from data
sources. Filtering, or choosing rows to display in a DataSet, is done by creating a query.
In SQL, the WHERE statement limits the rows retrieved from a database table.

• The TableAdapter Configuration Wizard and Search Criteria Builder can be used to
modify queries.

4.5 Data-Bound Controls

• Using a data source, you can bind its fields to individual controls such as text boxes,
labels, and list boxes.

• Data-bound controls update their contents automatically when you move from one
row to the next in a DataSet.

• You can bind an existing data source to a DataGridView control by dragging a table
from the Data Sources window to an open area of a form. Similarly, you can create
separate data-bound controls, such as text boxes and labels, by dragging individual
fields in the Data Sources window onto the open area of a form.

• ListBox and ComboBox controls have two important properties that are required
when using data binding: The DataSource property identifies the table within the
DataSet that supplies the data; the DisplayMember property identifies the column to
be displayed.

4.6 Focus on Problem Solving: Karate School Management System

The Karate School Manager program has the following capabilities:

• Displays a list of all members.
• Permits the user to sort on any column, edit individual rows, and delete rows.
• Adds new rows to the Members table.
• Displays members having similar last names.

Review Questions and Exercises 231

Key Terms
auto-generated field
BindingSource object
components
compound primary key
database
database schema
data binding
data-bound control
DataGridView control
DataSet
DataTable
data source
DataSource property
DisplayMember property

foreign key
identity field
LIKE operator
one-to-many relationship
ORDER BY clause
primary key
query parameter
relational database model
SELECT statement
Structured Query Language (SQL)
TableAdapter
WHERE clause
wildcard symbol
xcopy deployment

Review Questions and Exercises

True or False

Indicate whether each of the following statements is true or false.

1. A TableAdapter’s Fill method receives a DataSet argument.

2. A DataSet may contain only a single TableAdapter.

3. A primary key can involve only a single column of a database table.

4. A DataTable column such as Last_Name can be bound to a TextBox or Label control.

5. The default type of control bound to DateTime fields is the TextBox.

6. The Karate School Manager program joins the Members table to the Payments table
when searching for payments made by a single member.

7. The Karate School Manager program contains special event handling code that makes
sorting in a DataGridView possible.

8. When the user makes changes to a DataSet, the changes are not permanent unless other
measures are taken to write the DataSet back to a database.

9. In SQL Server, query parameter names always begin with the @ sign.

10. Query parameters are passed to DataSets as arguments when calling a TableAdapter’s
Fill method.

11. A DataSet is an in-memory copy of data pulled from one or more database tables.

12. Byte is an SQL Server table column type.

13. A .NET Double data type is equivalent to the SQL server float data type.

14. ValueMember is not a ListBox control property.

15. The MATCH keyword is used by SQL when performing wildcard matches.

• Displays all payments.
• Permits the user to sort on any column.
• Displays a list of payments by a single member.

232 Chapter 4 Using SQL Server Databases

Short Answer

1. Which property of a ComboBox control must be set before a program can use the
SelectedValue property at runtime?

2. What type of relationship existed between the Employee and Departments tables in Sec-
tion 4.1?

3. If the Employees table contains a foreign key named dept_id, is it likely that the values
in this field are unique?

4. What type of string keeps track of the database name, location, username, password,
and other connection information?

5. What happens when you drag a table name from the Data Sources window onto an
open area of a form?

6. Write a statement that lets the SelectedIndexChanged event handler for a ComboBox
exit when an entry has not yet been selected by the user.

7. Which property of a DataGridView control causes the buttons to the left of each row to
appear?

8. Which database design tool describes the design of tables, columns, and relationships
among tables?

9. Which control lets users select dates using the mouse?

10. What is another word for a database table row?

Algorithm Workbench

1. Suppose a database table named Address contains fields named City and State. Write an
SQL SELECT statement that combines these fields into a new field named CityState.

2. Write statements that create and show an instance of a form named AllMembersForm.
Be sure the user can click only in the form you have displayed and not in any other appli-
cation window.

3. Write an SQL query that retrieves the ID, Title, Artist, and Price from a database table
named Albums. The query should sort the rows in ascending order by Artist.

4. Write an SQL query that uses a query parameter to retrieve a row from the Albums table
that has a particular ID value. Retrieve the ID, Title, Artist, and Price.

5. Write a statement that retrieves the value of an item selected by the user from a Com-
boBox named cboMembers.

6. Write a statement that fills a table named Members in a DataSet named
MembersDataSet. Assume that TableAdapter is named MembersTableAdapter.

7. Write an SQL query that retrieves the ID, Last_Name, and First_Name from the Mem-
bers table. You want only those rows having a Date_Joined value greater than or equal
to the value of a query parameter.

Programming Challenges
1. Selecting Sales Staff

Create a program that lets the user select rows from the SalesStaff table. Fill a Com-
boBox control with the names (last, first). When the user makes a selection, the other
controls on the form should display details about the staff member selected. A sample is
shown in Figure 4-68. Hint: See the data-bound list box in Tutorial 4-3.

Programming Challenges 233

Figure 4-68 Selecting Sales Staff

2. Sales Staff Salaries

Using the SalesStaff table in the Company database, let the user choose between lists of
part-time versus full-time employees. Use radio buttons to display the choices. Display
the average salary of the selected group in a label. A sample is shown in Figure 4-69.
When the program starts, the Full time button is automatically selected. Hint: You can
use a parameterized query, or create a separate query for part-time and full-time employ-
ees. When the user selects a radio button, call the Fill method that matches the appro-
priate query.

Figure 4-69 Displaying average salaries of full-time employees

3. Karate Member Dates

Create a program that uses the Members table of the Karate database. Let the user select
a date from a DateTimePicker control. The program must display all members who
joined before the selected date (see Figure 4-70). Use a parameterized query.

234 Chapter 4 Using SQL Server Databases

Figure 4-70 Finding the dates when members joined

4. Advanced Karate Member Dates

Enhance the program you created in Programming Challenge 3 by giving the user a
choice between displaying members who have joined before a given date and members
who have joined on or after the given date. Figure 4-71 shows members who joined
before 6/30/2007. Figure 4-72 displays a list of members who joined on or after the
same date.

Figure 4-71 Showing members who joined before the chosen date

You might want to create two queries, one for each type of search. At runtime, when the
user switches between the radio buttons, the event handlers can call either of the two
Fill methods that you created in the TableAdapter.

5. Filtering the Karate Members Table

Tutorial 4-7 showed how to display the Karate Members table in a DataGridView con-
trol. In that same section of the chapter, a discussion about BindingSources explained
how to assign a value to the Filter property when you want to limit the displayed rows.
Here is the example we used:

MembersBindingSource.Filter = ''Date_Joined > '1/1/2005'''

Create an alternative version of Tutorial 4-7 that displays a text box in a ToolStrip con-
trol just below the menu. When the user types in a filter expression and clicks the Go
button, the filter expression is assigned to the Filter property of MembersBindingSource.

Programming Challenges 235

The rows appearing in the DataGridView change accordingly. An example is shown in
Figure 4-73. Use a Try-Catch statement to prevent unhandled exceptions caused by
incorrect filtering syntax.

Figure 4-73 Letting the user interactively filter the Members table

6. Editing and Deleting Karate Members

The DataGridView that displays all members in the Karate School Manager application
has options checked that let the user edit and delete members. But when you run the
application, these operations do not seem to be enabled. Your task is to enable those
operations and find a way to write the changes to the underlying database. Hint: Call
the TableAdapter’s Update method.

Figure 4-72 Showing members who joined on or after the chosen date

This page intentionally left blank

TOPICS

Database Applications5

5.1 Creating Databases

Tutorial 5-1: Creating an SQL Server
Express database

Tutorial 5-2: Adding the Appointments
table to the RepairServices database

Tutorial 5-3: Adding the RepairTypes
table to the RepairServices database

Tutorial 5-4: Creating relationships
between the RepairTypes, Appointments,
and Customers tables

Tutorial 5-5: Changing the database
connection from the SQL Express
server to a database file

5.2 DataTables

5.3 Updating Databases Using SQL

5.4 Home Repair Services Application

Tutorial 5-6: Adding the Appointments
class to the middle tier

Tutorial 5-7: Creating the main startup
form

Tutorial 5-8: Adding classes to the
middle tier

Tutorial 5-9: Adding controls to the
New Appointment form

Tutorial 5-10: Searching for appointments

Tutorial 5-11: Modifying existing
appointments

Tutorial 5-12: Selecting appointments
to modify

Tutorial 5-13: Deleting an appointment

Tutorial 5-14: Displaying a joined
appointment list

237

C
H

A
P

T
E

R

This chapter focuses on database programming, using the ADO.NET library, which is part
of the .NET Framework. You may think of it as an extension of the database concepts and
database binding from Chapter 4. Here, you are able to integrate your knowledge of multi-
tier application design with objects and databases. The chapter concludes with an extended
sample application that schedules appointments for an imaginary home repair services
company.

5.1 Creating Databases

Server Explorer
The Server Explorer window in Visual Studio lets you view and manage connections to local
and remote databases. From the View menu, select Server Explorer to open the window. In
Figure 5-1, the Server Explorer window contains a connection to the karate.mdf database

238 Chapter 5 Database Applications

file we used in Chapter 4. A connection refers to a way of linking to the database so that
you can modify its design and data. Each folder under a connection contains different types
of objects associated with the database, as follows:

• The Database Diagrams folder contains graphical diagrams that show relationships
between and among tables.

• The Tables folder contains all tables in the database.
• The Views folder contains a list of views, which are alternate ways of viewing the

contents of tables; views often combine columns from different tables into what look
like new tables.

• The Stored Procedures folder contains compiled SQL queries.
• The remaining folders are beyond the scope of this book and will not be discussed.

To add an existing database file to the Server window, right-click on Data Connections,
select Add Connection, and browse to the file’s location. (Server Explorer also lets you con-
nect to a full version of SQL Server, either on the local machine or at a network location.)
You can add multiple database connections to the Server Explorer window. It retains con-
nections you created when other projects were open. You can display this window whether
or not a project is open.

Figure 5-1 Server Explorer window, connected to the Karate database

Creating a New Database

You can create a new database inside the Server Explorer window. Here’s a quick summary
of the basic commands you need to use:

• Open the Server Explorer window, right-click on Data Connections, and select Create
New SQL Server Database.

• To add a table to an existing database, right-click the Tables folder below the database
name and select Add New Table.

• To insert data into an existing table, right-click the table name and select Show Table
Data.

• To modify a table’s structure (called the schema), right-click the table name and select
Open Table Definition.

• To rename a table, right-click its name and select Rename from the popup menu.

In Tutorial 5-1, you will create a database that will be used throughout the chapter.

5.1 Creating Databases 239

Tutorial 5-1:
Creating an SQL Server Express database

Homeowners always need to have something fixed, and many companies offer a variety of
home repair services. Managing appointments is a common task for the company, because
they continuously update their customer list and appointment schedule. The company may
also vary the types of repairs they offer. Therefore, our limited vision of the database needs
of such a company includes a Customers table, a RepairTypes table, and an Appointments
table. The Customers table will keep track of information such as customer ID, name, and
phone. The RepairTypes table will include a description of each type of repair. The Appoint-
ments table will contain information about the type of repair being done, a description of
the repair, licensing requirements, the customer’s ID, and the scheduled date/time. Later in
the chapter, we will create an application that displays and maintains this information.

In this tutorial, you will create the database, add a Customers table, and define a
DataSet containing table adapters that connect to the database. Finally, you will display
the Customers table in a DataGridView control.

Tutorial Steps

Step 1: Create a new Windows Forms project named Repair Services.

Step 2: Open the Server Explorer window. Then right-click on Data Connections and
select Create New SQL Server Database.

Step 3: In the dialog window that appears, select Computername\SQLEXPRESS from
the Server name dropdown list. (Computername is the machine name of your
computer.) Then, name the database RepairServices. An example is shown in
Figure 5-2. Click OK to close this window.

Figure 5-2 Creating a new database in Server Explorer

240 Chapter 5 Database Applications

Step 4: Expand the entries under the RepairServices.dbo entry under Data Connections
in the Server Explorer window. Right-click the Tables folder and select Add
New Table. This will display a table editor window, as shown in Figure 5-3.

Figure 5-3 Adding a table to the RepairServices database

Step 5: Click under the Column Name heading and insert the database columns
shown in Figure 5-4. Right-click the CustId column and select Set Primary
Key from the popup menu.

Figure 5-4 Design of the Customers table

Step 6: Close the designer window and save the table. When prompted for a name, as in
Figure 5-5, name it Customers and click the OK button to save the table name.

Figure 5-5 Naming the Customers table

5.1 Creating Databases 241

Step 7: In the Server Explorer window, right-click the Customers table and select
Show Table Data. In the window that appears, enter the data shown in
Figure 5-6.

Figure 5-6 Customers table rows

Creating a DataSet

Next, you will create a dataset named RepairServicesDataSet.

Step 8: Open the Data Sources window and add a new data source that connects to
the Customers table in your new database. If there is an existing database
connection, use it rather than creating a new one. Name the DataSet as
RepairServicesDataSet.

Step 9: In Solution Explorer, open the RepairServicesDataSet.xsd file. In the designer
window, you should see the Customers table and the CustomersTableAdapter.

Next, you will display the Customers table in a DataGridView control, to verify
that the data source was created correctly.

Step 10: Rename the project’s startup form as CustomersForm.vb.

Step 11: Open the design window for CustomersForm and set its Text property to
Customers.

Step 12: Add a DataGridView control named dgvCustomers to the form and attach it
to the Customers table in RepairServicesDataSet. Set the grid’s Dock property
to Fill, and set other properties as you wish.

Step 13: Run the application. The customers table should appear as in Figure 5-7.

Figure 5-7 Displaying the Customers table in a DataGridView control

242 Chapter 5 Database Applications

Summary

We hope you can see how easy it is to use the database tools in Visual Studio. In just a
few steps, you were able to create a database and a table, and display the data on a form.

TIP: A quick way to add a new TableAdapter to an existing DataSet is to drag a table
from the Server Explorer window onto the DataSet’s design surface. You can also drag
one or more columns from a table in the same manner.

Tutorial 5-2:
Adding the Appointments table to the RepairServices database

Any useful database requires more than one table to represent its data. In this tutorial,
you will add an Appointments form that displays repair appointments in a grid. You will
also add a table named Appointments to the RepairServices database. This table will con-
tain the following information about scheduled repair appointments:

• ApptId—a unique ID number.
• TypeId—identifies the type of repair to be done.
• Description—a description of the repair.
• Licensed—true/false field that indicates whether a licensed repairperson is

required.
• CustId—customer ID number.
• Scheduled—the date and time when the appointment is scheduled.

Tutorial Steps

Step 1: Open the RepairServices Database project from Tutorial 5-1.

Step 2: In the Server Explorer window, right-click the Tables folder under the database
name and select Add New Table. This table will be named Appointments.

Step 3: In the editor window, add the columns shown in Figure 5-8. Then select the
ApptId column and set its (Is Identity) property to True in the lower panel, as
shown in Figure 5-9. Set Identity Seed to 1000, and Identity Increment to 1.
Right-click the ApptId column and make it the primary key. Close the window
and save your changes.

Figure 5-8 Design of the Appointments table

5.1 Creating Databases 243

Figure 5-9 Identity specification for the ApptId column

Step 4: In the Server Explorer window, right-click the Appointments table and select
Show Table Data. Then input the data shown in Figure 5-10.

Figure 5-10 Contents of the Appointments table

Step 5: Add the Appointments table to the RepairServicesDataSet by dragging it
from the Server Explorer window into the designer window for
RepairServicesDataSet.xsd.

Step 6: Add a new form to the project named AppointmentsForm.vb. Set its Text prop-
erty to Appointments. Add a DataGridView control named dgvAppointments
to the form and attach it to the Appointments table in RepairServicesDataSet.
Set the grid’s Dock property to Fill.

Step 7: Change the application’s startup form to AppointmentsForm.vb.

Step 8: Save the project and run the application. You should see the Appointments
table in a DataGridView control. Close the application window.

Summary

The Appointments table is central to this application because we want to be able to dis-
play, create, and edit appointments. Two of the columns (TypeId and CustId) enable us
to link to other tables with supplemental information. Fairly soon in this chapter, we
will show how to create relationships between the tables. In Tutorial 5-3, you will create
a table that lists the Repair types.

Tutorial 5-3:
Adding the RepairTypes table to the RepairServices database

In this tutorial, you will add a new table named RepairTypes to the RepairServices data-
base. It will contain repair ID numbers that link it to the Appointments table.

244 Chapter 5 Database Applications

Figure 5-12 One-to-many relationship between the Customers and Appointments tables

Tutorial Steps

Step 1: Open the Repair Services project from Tutorials 5-1 and 5-2.

Step 2: In the Server Explorer window, right-click the Tables folder under the database
name and select Add New Table.

Step 3: In the New Table window, name the table RepairTypes and add the columns
shown in Table 5-1. Close the window to save your changes.

Step 4: In the Server Explorer window, right-click the RepairTypes table and select
Show Table Data. Then input the data shown in Figure 5-11.

Figure 5-11 Contents of the RepairTypes table

Table 5-1 Design of the RepairTypes table

Column Name Data Type Length Allow Nulls Primary Key

TypeId smallint 2 No Yes

Description nvarchar 20 No No

One-to-Many Relationships
A one-to-many relationship exists between two database tables when the primary key of one
table links to a column called a foreign key in another table. For example, the Customers
and Appointments tables have such a relationship, as shown in Figure 5-12. The infinity sign

5.1 Creating Databases 245

next to the CustId column of the Appointments table implies that the same customer ID can
occur multiple times in this table. It is the many side of the relationship. The key symbol at
the other end of the line touching the Customers table indicates that CustId is the primary
key for that table. It is the one side of the relationship.

When a one-to-many relationship exists between two tables, the table on the one side is
called the parent table. The table on the many side is called the child table. In our current
example, Customers is the parent table and Appointments is the child table.

A one-to-many relationship is useful when applications need to find child table rows that
match the rows in a parent table. Given a certain Customer ID, for example, we could find
all Appointments pertaining to that customer. SQL Server can also join tables together, using
columns defined in one-to-many relationsships.

Many-to-Many Relationships
Another type of relationship that links database tables is called a many-to-many relationship.
This occurs when the linking column is a foreign key in both tables. Imagine, for a moment,
that a table named Employees exists in our RepairServices database. Let us assume that
multiple employees can be assigned to the same appointment, working together to get the job
done. Also, we assume that multiple appointments can be assigned to the same employee.
Clearly, we cannot create a one-to-many relationship between the Employees and Appoint-
ments tables. Therefore, a linking table is created that matches Employees to Appointments.
Suppose employee number 105 has been scheduled to work on appointments 1002, 1004, and
1005. Also, suppose that employees 107 and 108 are scheduled for appointment 1004. We can
create a table named EmployeeAppointments that contains the rows shown in Table 5-2. The
table shows how each employee is assigned to each appointment.

Table 5-2 Design of the EmployeeAppointments table

EmpId ApptId

105 1002

105 1004

105 1005

107 1004

108 1004

We will not add the Employee and EmployeeAppointments tables to our database at this
time. But it should be possible to see that tables such as this can prove very useful in real-
world applications.

Database Constraints
A database constraint is a rule that is inserted into a database by a database designer. A con-
straint helps to preserve the integrity of the data by preventing errors caused by the incor-
rect insertion, modification, and deletion of data. A constraint relieves individual application
programs from having to verify the integrity of the data. Rather than inserting validation
statements into every application that uses a database, it is more efficient to embed con-
straints in the database.

A primary key constraint requires that all values in a primary key are unique. If an attempt
is made to add a table row containing a primary key value that already exists in the table, the

246 Chapter 5 Database Applications

database signals that a primary key constraint has been violated. The row is not added to the
table. For example, if we were to add a new row containing CustId = 1030 to the Customers
table, a primary key constraint would be violated and the message shown in Figure 5-13
would be displayed.

Figure 5-13 Primary key constraint violation

A column check constraint is a rule that defines whether data are valid when adding or
updating an entry in a table. The constraint is applied to each table row. It may involve one
or more column values. For example, values assigned to a Salary column could be required
to be positive. Also the data types of the inserted data must match the data types of the table
columns.

A referential integrity constraint, or foreign key constraint, applies to the relationship
between two tables that have a one-to-many relationship. The parent table is required to
contain a primary key value that matches each foreign key value found in the child table.

In Figure 5-14, for example, customer ID 1020 appears twice in the Appointments table
(CustId column). Suppose an application updated the Customers table, changing 1020 to

Figure 5-14 Customers and Appointments tables

5.1 Creating Databases 247

1022. If no constraints were in effect, the Appointments table would contain two (and pos-
sibly more) rows that could no longer link to the Customers table. In effect, the rows would
become orphan rows. In a large database, errors like this might go undetected and cause seri-
ous data integrity problems. Similarly, if Customer 1020 were deleted from the Customers
table, all rows in the Appointments table that contained CustId = 1020 would become
orphans.

Another way to violate a referential integrity constraint is to add a new row to the Appoint-
ment table that includes a CustId value that does not exist in the Customers table.

Tutorial 5-4:
Creating relationships between the RepairTypes,
Appointments, and Customers tables

In this tutorial, you will add two relationships to the RepairServices database: one
connects RepairTypes to Appointments, and the second connects Customers to
Appointments.

Tutorial Steps

Step 1: In the Server Explorer window, under the RepairServices database name,
right-click the Database Diagrams folder and select Add New Diagram.

Step 2: The Add Table window should appear. Select the Appointments, Repair-
Types, and Customers tables. Click the Add button, then click the Close
button.

Step 3: Drag the mouse from the selection button just to the left of the CustId col-
umn in the Customers table to the selection button next to the CustId col-
umn of the Appointments table. When you release the mouse button, the
Tables and Columns dialog window appears, as shown in Figure 5-15.
Notice that Customers is selected as the Primary key table, and Appoint-
ments is selected as the Foreign key table. The CustId column is selected in
both tables. If any of these values are different in your window, you can cor-
rect them now.

TIP: A message may pop up saying that Visual Studio needs to install an
additional component. You can let it do that.

TIP: You might have to drag the mouse a couple of times before getting
the line to appear between the tables. It’s tricky. If you see a dotted line
following the cursor as you drag the mouse, you are doing it correctly.

248 Chapter 5 Database Applications

Step 4: Click the OK button to save the relationship. That should expose the Foreign
Key Relationship window, shown in Figure 5-16. In here, you can modify spe-
cific options that control the table relationship. For example, the Enforce For-
eign Key Constraint option equals Yes. That means the database will throw an
exception if an application tries to delete a row from a parent table in such a

Figure 5-15 Creating a Relationship between the Customers and Appointments tables

Figure 5-16 Foreign Key Relationship window

5.1 Creating Databases 249

Copying a Database File
Rather than using a database directly connected to a server such as SQLEXPRESS, you may
want to connect to a database file. It is possible, but you need to make a copy of the data-
base first.

SQL Server Express stores its database files in a standard directory. You can find it by
looking for the SQL Server installation directory. For example, on our computer, the
RepairServices.mdf is located here:

C:\Program Files\Microsoft SQL Server\MSSQL.10.SQLEXPRESS\MSSQL\DATA

You can make a copy of the file. First, however, right-click the database in Server Explorer
and select Close Connection. Or, you can close Visual Studio before copying the file.

way that some child table rows would no longer be able to link to the parent
table.

Step 5: Create another relationship between the RepairTypes and Appointments tables,
using the TypeId field as the common link.

Step 6: Save the database diagram and give it a name, such as Relationships.

Step 7: Use the mouse to drag the RepairTypes and Appointments tables into the
DataSet designer window. When you do that, lines indicating relationships
should connect the tables, as shown in Figure 5-17. (The lines do not neces-
sarily line up with the column names they represent.)

Figure 5-17 DataSet designer window

Summary

A database diagram is an essential tool for describing database table relationships and
constraints. Database diagrams also provide a visual reference to the links between
tables, which can help when the database grows beyond a few tables.

250 Chapter 5 Database Applications

In Tutorial 5-5, you will switch the database connection from SQL Server Express to a data-
base file.

TIP: If you’re working in a college computer lab, the directory permissions might pre-
vent you from directly accessing the data directory for SQL server. In that case, your
instructor may be able to give you a copy of the database file.

Tutorial 5-5:
Changing the database connection from the SQL Express
server to a database file

If your application were to continue connecting to SQL Server Express to view and
update the RepairServices database, all changes would be permanent. This could be a
problem, for example, if you delete multiple appointments. For testing purpose, it’s
much better to work with a local database within your project directory, as we did in
Chapter 4 with the Karate database. This tutorial takes you through the steps of fixing
your database connection.

Tutorial Steps

Step 1: Close Visual Studio, so any existing connection to the server will be terminated.

Step 2: Locate the RepairServices.mdf file within your SQL Server data directory.
Most likely, it will be in a path similar to C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data. You may have to ask your lab administrator
or instructor for help. Copy this file to your Repair Services project directory.

Step 3: Open the Repair Services project in Visual Studio.

Step 4: In the Solution Explorer window, right-click the project name, select Add, and
select Existing Item. Select the RepairServices.mdf file (to see the filename,
you may have to change the filename filter to All Files). Click the Add button
to close the dialog window.

Step 5: Double-click My Project in the Solution Explorer window. This will bring up
the Project Properties window.

Step 6: Select the Settings tab and note the single entry in the window. Click inside the
Value column and change it to the following single line:

Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|\RepairServices.mdf;
Integrated Security=True;User Instance=True

We have broken the line to fit on the printed page, but you should keep all
this text in a single line when typing it into the settings.

Step 7: Save your changes to the project properties.

Step 8: Open the Server Explorer window and delete the old connection to the data-
base. Create a new connection to the local database file. From now on, your
project will use the local database file.

5.2 DataTables 251

Checkpoint

1. Which Visual Studio window lets you view and manage connections to databases?

2. How do you create a relationship between two tables?

3. In the RepairServices database, how are the Appointments and Customers tables
related?

4. Which column connects the Appointments and RepairTypes tables?

5. If there were an Employee table in the RepairServices database, what would be the
reason for creating an EmployeeAppointments table that connects the Employee
and Appointments tables?

5.2 DataTables
A DataTable is an object that represents the contents of a table from a data source. The
.NET DataTable class is used as the basis for creating more specialized DataTable types.
When you add a data source to a project, Visual Studio creates a specialized DataTable class,
such as CustomerDataTable or MembersDataTable.

A DataTable class describes a collection of rows and columns and is used to hold data from
a database, XML file, or some other data source. A DataTable object contains a collection
of columns, which describe the type of data in the table. It also has a collection of rows that
contain the actual data.

Here are some of the most common properties in the DataTable class:

• Columns—A collection of DataColumn objects; each describes the name, type, and
other characteristics of a column.

• DefaultView—A DataView object that lets you filter (select) the table rows or sort the
rows on any column.

• PrimaryKey—An array of DataColumn objects that serve as the table’s primary key;
each row is guaranteed to hold a unique value in the column or columns.

• Rows—A collection of DataRow objects, each holding the data in each row of the table.

For a conceptual view, Figure 5-18 describes the Columns and Rows properties of a DataTable.

Figure 5-18 DataTable properties

Data Table properties

Columns DataColumn
objects

DataRow
objects

collection
of

collection
of

Rows

Summary

Visual Studio gives you some flexible options in how you connect to a database. It’s a
good idea for you to develop a practical working knowledge of how to create, delete,
and modify database connections.

From this point on, you will be using the local RepairServices.mdf database file. A fresh
copy of the file will be created every time you build the project. Any tables that were
modified while running the application will be restored to their original values.

252 Chapter 5 Database Applications

Binding Controls to a DataTable

If you want to display the contents of a DataTable on a form, you can bind it to a ListBox,
ComboBox, or DataGridView control. Assign the table reference to the control’s DataSource
property. The following statement, for example, binds a DataTable object named customersTable
to a DataGridView control named dgvCustomers:

dgvCustomers.DataSource = customersTable

Filtering and Sorting DataTable Rows

The DataTable class contains a DefaultView property. This property, in turn, has two impor-
tant subproperties:

• RowFilter property—Holds a comparison expression that is similar to the WHERE
clause in an SQL SELECT statement.

• Sort property—Identifies one or more columns to be used in the sort; also specifies the
order as ASC (ascending) or DESC (descending).

You assign values to these properties in order to filter or sort the rows in a DataTable. The fol-
lowing statement, for example, sorts the rows of customersTable in ascending order by Name:

customersTable.DefaultView.Sort = "Name"

The following statement sorts customersTable in descending order by CustId:

customersTable.DefaultView.Sort = "CustId DESC"

The following statement restricts the table rows to those in which the Name field is greater
than M:

customersTable.DefaultView.RowFilter = "Name > 'M'"

DataRow Objects
A DataRow object describes a row in a DataTable. You can add columns to a DataRow, fill
the row with values, add the row to a table, and remove a row from a table. To construct
an empty DataRow, call a DataTable’s NewRow method:

Dim table As New DataTable
Dim row As DataRow = table.NewRow()

The Item property of a DataRow lets you get and set column values. Assuming that our table
contains a column named Last_Name, the following statement assigns a value to the current row:

row.Item("Name") = "Johnson, Sam"

Item is the DataRow’s default property, so you can shorten the previous statement:

row("Name") = "Johnson, Sam"

You can also refer to columns by their index positions, which begin at 0. The following state-
ment assigns a person’s name to the first column in the row object:

row.Item(0) = "Johnson, Sam"

The ItemArray property returns an Object array containing all the column values:

Dim columns As Object() = row.ItemArray

Strongly Typed DataTables
When you create a DataSet based on a database table, Visual Studio creates a set of cus-
tom classes. The custom classes match the structure of the tables in your DataSet. The

5.3 Updating Databases Using SQL 253

RepairServicesDataSet class, for example, contains an inner class (a class inside another
class) named CustomersDataTable. It contains some useful methods and properties, such as:

• AddCustomersRow—A method that adds a new row to the table.
• NewCustomersRow—A method that returns an empty row having the same columns

as the table.
• RemoveCustomersRow—A method that removes a row from the table.
• FindByCustId—A method that searches for a row using a customer ID number.
• Count—A property that returns the number of table rows.

Another inner class named CustomersRow contains properties that represent the different
columns in the Customers table. You can use these properties to set column values in your
program code:

• CustId As Short
• Name As String
• Phone As String

In addition, this class has a method named GetAppointmentsRows, which returns a collec-
tion of rows from the Appointments table that match the current row’s customer ID number.

You will find, when writing code to view and update the RepairServices database, that hav-
ing classes such as CustomersDataTable and CustomersRow greatly simplifies your work.

Checkpoint

6. Which TableAdapter method usually returns a DataTable object?

7. Which DataTable property returns an object that can be filtered and sorted?

8. What types of objects are stored in the Columns property of a DataTable?

9. Which DataGridView property holds a reference to a DataTable when the table is
displayed in the grid?

5.3 Updating Databases Using SQL
In Chapter 4, you learned how to add, update, and delete rows from database tables, using
data-bound controls. The database was modified by SQL queries working behind the scenes.
Now is the time for you to learn how update operations are done in the SQL language.

• The INSERT INTO statement adds a new row to a table.
• The UPDATE statement modifies one or more existing table rows.
• The DELETE FROM statement deletes one or more rows from a table.

Inserting Table Rows
The SQL INSERT INTO statement inserts a new row into a table, using the following
syntax:

INSERT INTO tablename
(field1[,field2[,...]])
VALUES(value1,[,value2[,...])

The following query inserts a row into a table named Payroll:

INSERT INTO Payroll (EmpId, PaymentDate, HoursWorked, HourlyRate)
VALUES('1002', '1/15/2012', 47.5, 27.50)

254 Chapter 5 Database Applications

All column names should be listed in the same order as the corresponding values. String and
date literals must be enclosed in single quotes.

Query Parameters
INSERT INTO statements do not usually contain literal column values. Instead, query
parameters are used so that values may be passed to the query at runtime. A parameter name
must begin with the @ symbol. If possible, let each parameter name match the name of a
table column.

The following statement inserts a row in the Payments table (Karate database) using three
query parameters:

INSERT INTO Payments(Amount, Member_Id, Payment_Date)
VALUES (@Amount, @Member_Id, @Payment_Date)

The primary key of this table is assumed to be an identity field, so there is no need to include
its value in the INSERT statement. The database will generate a new primary key value each
time a new row is inserted into the table.

Updating Table Rows
The SQL UPDATE statement modifies the contents of one or more rows in a database table.
It has the following basic syntax:

UPDATE tablename
SET fieldname = newvalue
[SET fieldname = newvalue] ...
[WHERE criteria]

UPDATE has the potential to modify every row in a table. For example, the following
query increases the values in the HourlyRate column of all rows in the Payroll table by
5 percent:

UPDATE Payroll
SET HourlyRate = HourlyRate * 1.05

Usually you want to update only certain rows, so you can include a WHERE clause with
selection criteria. The following query, for example, increases the hourly pay rate for
employees who were paid after the date stored in the @PaymentDate parameter:

UPDATE Payroll
SET HourlyRate = HourlyRate * 1.05
WHERE PaymentDate > @PaymentDate

If you want to update a single row, the WHERE clause must uniquely identify the selected
row. Ordinarily, you would use an expression containing the table’s primary key. For exam-
ple, the following increases the hourly pay rate for a single employee whose ID number is
specified by the @EmpId parameter:

UPDATE Payroll
SET HourlyRate = HourlyRate * 1.05
WHERE EmpId = @EmpId

We could also use a query parameter for the rate multiplier:

UPDATE Payroll
SET HourlyRate = HourlyRate * @RateMultiplier
WHERE EmpId = @EmpId

5.3 Updating Databases Using SQL 255

Karate Database Example

The following query updates the Payments table (Karate database). It sets Amount to the
value in the @Amount parameter for the row in which the Payment_Id equals the value in
@Payment_Id:

UPDATE Payments
SET Amount = @Amount
WHERE Payment_Id = @Payment_Id

Deleting Table Rows
The SQL DELETE FROM statement deletes rows from a table. This is the general syntax:

DELETE FROM tablename
[WHERE criteria]

Once a row has been deleted, it cannot be recovered. The following statement deletes all
rows from the Payments table:

DELETE FROM Payments

The WHERE clause selects which rows to delete. The following code deletes all payments
prior to the date in the @Payment_Date parameter:

DELETE FROM Payments
WHERE Payment_Date < @Payment_Date

The following statement deletes a single payment, assuming that Payment_Id is the primary
key column:

DELETE FROM Payments
WHERE Payment_Id < @Payment_Id

Deleting Rows from Related Tables
Be careful when deleting rows from a table that participates in a one-to-many table rela-
tionship. For example, in the RepairServices database, a one-to-many relationship exists
between the Customers and Appointments tables. Customers is the parent, and Appoint-
ments is the child. If we deleted a row from Customers whose CustId value matches any
rows in the Appointments table, we would be left with appointments that had no matching
customer rows. This deletion would violate a referential integrity constraint in the database,
causing an exception to be thrown (see Figure 5-19).

Figure 5-19 Referential integrity constraint was violated

256 Chapter 5 Database Applications

In Tutorial 5-4 we included referential integrity constraints when creating the DataTable
relationships inside the DataSet designer window. Because we would like to be able to delete
customers, we can use one of the following approaches:

1. We could mark the Customer row as inactive without physically deleting it. This would
require us to add another column to the Customers table that might be named Active.
Then we would have to modify all queries that use the Customers table, to make sure they
include only active customers. This approach would require a significant amount of work.

2. An easier approach would be to delete the customer’s appointments from the Appoint-
ments table before deleting the customer from the Customers table. That seems rea-
sonable, although some companies might prefer to copy the affected appointments to
an historical database before deleting them.

The situation for the Appointments table is different. You can delete its rows without any
constraints. It is not the parent of another table, so no other tables depend on its data.

Summary
If you would like to learn more about the SQL language, there are many excellent books on
the subject and many reference sources on the Web. First and foremost, the Microsoft MSDN
library is a great reference. Go to http://msdn.microsoft.com and search for terms like SQL
Insert, or SQL Delete, or SQL Update. Another excellent site is http://w3schools.com/sql.

Checkpoint

10. Which SQL statement is used when adding new rows to a table?

11. Which SQL statement modifies one or more existing rows of a table?

12. If no WHERE clause is given in a DELETE FROM statement, how many rows are
deleted?

5.4 Focus on Problem Solving: Home Repair
Services Application
Through the following series of tutorials (Tutorials 5-6 through 5-14), we will gradually build
an application named Home Repair Services. Its purpose is to enable company personnel to
schedule repair services for residential customers. It will be a three-tier application, with a
presentation tier made of windows forms, a middle tier containing three classes (Appoint-
ments, RepairTypes, and Customers), and a data access tier made up of DataSet classes. It will
permit the customer to display appointments, search for appointments, create appointments,
modify appointments, and display customers. As limited as it is, this application is designed
to be expandable, so that it might include all of the features required by an actual company.

In Tutorial 5-6, you will create a middle tier class for this application.

Tutorial 5-6:
Adding the Appointments class to the middle tier

In this tutorial, you will begin to create the Home Repair Services application. Your first
task will be to create a middle tier class named Appointments containing a method that
inserts new appointments into the database. You will also test this method from a new
form that you add to the project.

http://msdn.microsoft.com
http://w3schools.com/sql

5.4 Focus on Problem Solving: Home Repair Services Application 257

Tutorial Steps

Step 1: Open the RepairServices Database project that you last worked on in Tuto-
rial 5-3.

Step 2: Open RepairServicesDataSet.xsd from the Solution Explorer window.

Step 3: In the DataSet Designer window, right-click the AppointmentsTableAdapter
and select Properties, as shown in Figure 5-20.

Figure 5-20 AppointmentsTableAdapter properties window

Step 4: In the Properties window, find the InsertCommand property and expand it so
you can view its CommandText subproperty. Click on the button containing
three dots to open the Query Builder window.

Step 5: Verify that the SQL query is the following, and change it if necessary:

INSERT INTO Appointments
(TypeId, Description, Licensed, CustId, Scheduled)

VALUES (@TypeId,@Description,@Licensed,@CustId,@Scheduled)

Step 6: Add a middle-tier class named Appointments.vb to the project. In this class,
declare the following class-level variables:

Private adapter As New _
RepairServicesDataSetTableAdapters.AppointmentsTableAdapter

Public Shared Property LastError As String

The variable named adapter is an instance of the TableAdapter that you will
use to carry out actions on the database. LastError will hold error messages
generated by the TableAdapter methods.

Step 7: Create a new method named Insert.

1: Public Function Insert(ByVal typeId As Short,
2: ByVal description As String, ByVal licensed As Boolean,
3: ByVal custId As Short, ByVal Scheduled As DateTime) _

As Boolean

258 Chapter 5 Database Applications

4: ' Insert a new row into the Appointments table. Return
5: ' True if successful. If an exception is thrown,
6: ' LastError will hold an error message.
7: Try
8: LastError = String.Empty
9: adapter.Insert(typeId, description, licensed,
10: custId, Scheduled)
11: Return True
12: Catch ex As Exception
13: LastError = ex.Message
14: Return False
15: End Try
16: End Function

Line 8 clears any error message that might be left over in the LastError vari-
able from a previous operation. Line 9 calls the Insert method from the
AppointmentsTableAdapter class. If no exception is thrown, line 11 returns
True, indicating success. On the other hand, if the call to Insert on line 9
throws an exception, ErrorMessage is assigned a string and the method
returns False.

Step 8: Add a Shared method named CombinedDateTime that receives a date and a
time and returns a combined date/time value.

Public Shared Function CombinedDateTime(ByVal aDate As DateTime,
ByVal aTime As DateTime) As DateTime
Dim ts As New TimeSpan(aTime.Hour, aTime.Minute, 0)
Return aDate.Add(ts)

End Function

It is not possible to directly add a time to a date, but you can add a TimeSpan
object to it. The code above does just that. It is a shared method because it
does not use any class-level variables in the Appointment class, and therefore
does not require the user to create an Appointment object.

New Appointment Form

Next, you will create a New Appointment form, which will test the Appointments.Insert
method. For the moment, we will not create a user interface.

Step 9: Add a new form named NewAppointmentForm.vb to the project. Set its Text
property to New Repair Appointment. Add the following line of code to the
form’s class:

Private mAppointments As New Appointments

This line creates an instance of the middle-tier Appointments class inside the
form, so we can call its Insert method.

TIP: There is one possible outcome that we are ignoring in the code for
the Insert method. The call to adapter.Insert might not throw an excep-
tion, but it might somehow fail to insert a table row. It would complicate
your code to check for this remote possibility, so you can leave the code
as is.

5.4 Focus on Problem Solving: Home Repair Services Application 259

Step 10: Add a button to the form, with the Text equal to Save. Insert the following
code in the button’s Click handler:

mAppointments.Insert(2,"Fix disposal",False,1020,
#10/5/2011 9:00 AM#)

AppointmentsForm.ShowDialog()

The first statement insert a new appointment in the database. The second
statement displays the complete list of appointments in a separate form, so
you can verify that the appointment was created.

Step 11: Set the project’s startup form to NewAppointmentForm and run the applica-
tion. You should see the Appointments table appear in a grid, with the new
appointment added to the end. A sample is shown in Figure 5-21.

Figure 5-21 Appointments table, with new row added

If you should restart the application and click the button again, it would add
another row with the same information to the Appointments table. Each
appointment would have a different value in the ApptId column because that
value is generated automatically by the database.

Step 12: When you’re done, rebuild the project from the Visual Studio Build menu.
That will reset the database to its original values.

Tutorial 5-7:
Creating the main startup form

In this tutorial, you will create a startup form for the Home Repair Services application.
You will create a menu that displays all existing forms.

Tutorial Steps

Step 1: Add a new form named MainForm.vb to the project, and set its Text property
to Home Repair Services.

Modify the project properties to make it the application startup form.

260 Chapter 5 Database Applications

Step 2: Add a MenuStrip control with the following menu structure:

File
Exit

Appointments
New
View
Appointment List

Customers
View

As another option, you may want to rename the menu items to be more
descriptive than the default names assigned by Visual Studio. For example, the
names could be AppointmentsNewMenuItem, AppointmentsViewMenuItem,
and so on.

Step 3: Create a Click event handler for the File / Exit menu item, and insert a
Me.Close() statement.

Step 4: Create a Click event handler for the Appointments / New menu item, and
insert the following statement:

NewAppointmentForm.ShowDialog()

Step 5: Create a Click event handler for the Appointments / View menu item, and
insert the following statement:

AppointmentsForm.ShowDialog()

Step 6: Create a Click event handler for the Customers / View menu item, and insert
the following statement:

CustomersForm.ShowDialog()

Step 7: Run the application and test it as follows:

Summary

It is useful to create a menu on the startup form so you can use it as a branching point
to all the other forms in the application. Then, as you add each new form to the proj-
ect, you will create a click handler for the appropriate menu item. In Tutorial 5-8, you
will add more classes and methods to the application’s middle tier.

Input Select Appointments / New from the menu.

Expected result The New Appointment form displays.

Input Close the New Appointment form, and select Appointments /
View from the menu.

Expected result The Appointments form displays, showing a grid that lists all
appointments.

Input Close the Appointments form, and select Customers / View from
the menu.

Expected result The Customers form displays, showing a grid that lists all
customers.

Input Close the Customers form. Select File / Exit from the menu.

Expected result The startup form closes and the application ends.

5.4 Focus on Problem Solving: Home Repair Services Application 261

Tutorial 5-8:
Adding classes to the middle tier

In this tutorial, you will add the Customers and RepairTypes classes to the Home Repair
Services application’s middle tier. These classes will provide important links to the Cus-
tomersTableAdapter and RepairTypesTableAdapter, which are part of the data access
tier. You will also add methods that retrieve lists of repair types and customer names.

Tutorial Steps

Step 1: Add a new middle-tier class named RepairTypes to the project.

Step 2: Add the following class-level variable to the RepairTypes class:

Private adapter As New _
RepairServicesDataSetTableAdapters.RepairTypesTableAdapter

Step 3: Create a ReadOnly property named Items that returns a DataTable contain-
ing all of the repair types.

1: Public ReadOnly Property Items() As DataTable
2: Get
3: Dim table As DataTable = adapter.GetData()
4: table.DefaultView.Sort = "Description"
5: Return table
6: End Get
7: End Property

A middle-tier class gives you the opportunity to refine the data returned by a
table adapter. In the Item method shown here, line 3 calls the table adapter’s
GetData method, which returns a DataTable containing all the repair types
listed in the RepairTypes database table. Line 4 sorts the data by description,
and line 5 returns the sorted table.

Step 4: Add a new middle-tier class named Customers to the project.

Step 5: Add the following class-level variable to the Customers class:

Private adapter As New _
RepairServicesDataSetTableAdapters.CustomersTableAdapter

Step 6: Create a ReadOnly property named Items that returns a DataTable contain-
ing all of the Customers:

Public ReadOnly Property Items() As DataTable
Get

Dim table As DataTable = adapter.GetData()
table.DefaultView.Sort = "Name"
Return table

End Get
End Property

Summary

Step by step, you are building up the classes in the middle tier. As you may have noticed,
you do not have to invest very much time in these classes at the beginning. It is best to
keep them short and wait until you need some new operation before adding more code.
Building the classes in the middle tier should always be done before finishing the user
interface in the presentation tier. Then the presentation tier will be able to call methods
and properties in these classes. At this point, you have created all the necessary support
for the New Appointments form.

262 Chapter 5 Database Applications

Runtime Data Binding
Runtime data binding means to bind a control to a data source at runtime, using code
statements. One example of this is to assign a DataTable object to the DataSource property of
a DataGridView control. In Chapter 4, you used Visual Studio to create TableAdapter,
BindingSource, and DataSet components on every form. But multi-tier applications automati-
cally separate the presentation layer from the data components. Therefore, the best approach is
not to fill a form with data component objects, but instead to perform runtime data binding.

If you want to fill a grid or list box using runtime data binding, do the following: Declare a
variable in the form’s code that is an instance of a middle-tier class. Then call a method from
that class that returns a DataTable. Assign the DataTable to the DataSource property of a
ListBox, ComboBox, or DataGridView control. In ListBox and ComboBox controls, you
also need to set two other string properties:

• DisplayMember—The name of the DataTable column that will be displayed in the list.
• ValueMember—The name of the DataTable column that will provide a reference value

when the user selects a member of the list. The reference value will be available in the
SelectedValue property at runtime.

For example, let’s assume that the variable mRepairTypes is an instance of the RepairTypes
class. In that class, the Items property returns a DataTable object. We want the Description
column of the table to display in the combo box, and we want the TypeId column to be
returned in the combo box’s SelectedValue property when the user makes a selection. This
is the appropriate setup code, which would be in the Form_Load event handler of the form:

cboRepairType.DataSource = mRepairTypes.Items
cboRepairType.DisplayMember = "Description"
cboRepairType.ValueMember = "TypeId"

Formatting DataGridView Columns at Runtime

A disadvantage to runtime data binding is that it does not give you a chance to format
DataGridView columns in design mode. There is a simple workaround: You can temporarily
bind the grid to an existing data source just long enough to format the columns in design
mode. Then, at runtime, you can still assign a DataTable to the grid’s DataSource property.

On the other hand, if you just need to make only minor formatting changes to grid columns,
you can assign values to each column’s DefaultCellStyle property. This is done at runtime,
usually in the Form_Load event handler. The following lines, for example, set column 2 to
a numeric format, centered, with two decimal places, in a blue color:

With dgvCourses.Columns(2).DefaultCellStyle
.Format = "n"
.ForeColor = Color.Blue
.Alignment = DataGridViewContentAlignment.MiddleCenter

End With

In the MSDN documentation, you can discover the other column formatting properties.

SelectedIndexChanged Event

If your Form_Load event handler assigns a value to the DataSource property of a ListBox
or ComboBox control, a SelectedIndexChanged event is fired immediately, before the grid
has been filled with data. If there is a handler for this event that responds to user selections,
your program code might think that a selection has already been made by the user. Such a
situation can cause an exception to be thrown. Here is a workaround: First, declare a
Boolean variable that is initially set to True. Then set it to False at the end of the Form_Load
event handler. Then in the SelectedIndexChanged event handler, process the event only if the

5.4 Focus on Problem Solving: Home Repair Services Application 263

Boolean variable equals False. Here is an outline of the code we have described, using a
ComboBox named cboCustomers:

Private formLoading As Boolean = True

Private Sub Form_Load() Handles MyBase.Load
cboCustomers.DataSource = mCustomers.Items
.
.
formLoading = False

End Sub

Private Sub cboCustomer_SelectedIndexChanged() _
Handles cboCustomer.SelectedIndexChanged
If Not formLoading Then

' OK to process the event
End If

End Sub

In Tutorial 5-9, you will build the user interface for the New Appointment form.

Tutorial 5-9:
Adding controls to the New Appointment form

In this tutorial, you will add controls to the New Appointment form in the Home
Repair Services application. This form permits the user to input appointment data and
add a new row to the Appointments database table. Your code will call methods from
three middle-tier classes: Customers, Appointments, and RepairTypes.

Tutorial Steps

Step 1: Open the design window for NewAppointmentForm.vb. Using the example in
Figure 5-22 and the list of named controls in Table 5-3, add the necessary con-
trols to the form.

Figure 5-22 New Appointment form

264 Chapter 5 Database Applications

The two combo boxes are important because they provide lists of customers
and repair types. When the user selects values from these lists, their corre-
sponding ID values will be saved in the new repair appointment. Next, you
will add code to the form that calls methods from the Appointments, Repair-
Types, and Customers classes in the middle tier.

Step 2: Open the form’s code window and add new class-level variables so you now
have the following:

Private mAppointments As New Appointments
Private mRepairTypes As New RepairTypes
Private mCustomers As New Customers

Each object declared here is an instance of a middle-tier class. This is a com-
mon pattern that will repeat itself in nearly every form.

Step 3: Create the following Form_Load event handler:

1: Private Sub NewAppointmentForm_Load() Handles MyBase.Load
2: ' Fill the Repair Types combo box.
3: cboRepairType.DataSource = mRepairTypes.Items
4: cboRepairType.DisplayMember = "Description"
5: cboRepairType.ValueMember = "TypeId"
6:
7: ' Fill the Customers combo box.
8: cboCustomer.DataSource = mCustomers.Items
9: cboCustomer.DisplayMember = "Name"
10: cboCustomer.ValueMember = "CustId"
11: End Sub

Table 5-3 Controls on the New Appointment form

Control Type Control Name Property Settings

Form NewAppointmentForm Text = New Repair Appointment,
AcceptButton = btnSave
CancelButton = btnCancel
FormBorderStyle = FixedDialog
MaximizeBox = False
MinimizeBox = False
Font.Size = 10

TextBox txtTime

TextBox txtDescription MultiLine = True

DateTimePicker dtpDate Format = Short

ComboBox cboCustomer

ComboBox cboRepairType

CheckBox chkLicensed Text = Must be licensed

Label lblStatus AutoSize = False

Button btnSave Text = Save

Button btnCancel Text = Cancel

ErrorProvider errProvider

5.4 Focus on Problem Solving: Home Repair Services Application 265

The purpose of this code is to fill the two combo boxes with lists of cus-
tomers and repair types. Line 3 calls the Items property from the RepairTypes
class, which returns a DataTable that lists all the possible repair types. Lines
8–10 bind another combo box with a DataTable containing customer names
and IDs.

Step 4: Create the following Click handler for the Save button. You may already have
a Click handler, so replace it with this one:

1: Private Sub btnSave_Click() Handles btnSave.Click
2: Dim Scheduled As DateTime
3: Try
4: Scheduled = Appointments.CombinedDateTime(
5: dtpDate.Value.Date, CDate(txtTime.Text))
6: Catch
7: errProvider.SetError(txtTime,
8: "Please enter a valid appointment time")
9: Return
10: End Try
11: Dim typeId As Short = CShort(cboRepairType.SelectedValue)
12: Dim custId As Short = CShort(cboCustomer.SelectedValue)
13: Dim licensed As Boolean = chkLicensed.Checked
14: If mAppointments.Insert(typeId, txtDescription.Text,
15: licensed, custId, Scheduled) Then
16: Me.Close()
17: Else
18: lblStatus.Text = "Cannot Add Appointment. " _
19: & Appointments.LastError
20: End If
21: End Sub

Lines 4–5 call the utility method from the Appointment class that combines
a date and a time, and assigns the result to the Scheduled variable. If the
date conversion throws an exception, it will be caught on line 7, where the
ErrorProvider control will display an error message.

Lines 11–12 get the repair-type ID and the customer ID from the two
combo boxes, and line 13 gets the licensed value from the check box. Line
14 calls the Insert method in the Appointments class, passing all the
required values. If the Insert method returns False, an error message is dis-
played by line 18. Finally, line 16 closes the form as soon as the appoint-
ment is saved.

Step 5: Add the following Click handler for the Cancel button, and save the project.

Private Sub btnCancel_Click() Handles btnCancel.Click
Me.Close()

End Sub

Code Listing

Check the following complete code listing of the NewAppointmentForm.vb class, to
make sure you haven’t left anything out:

Public Class NewAppointmentForm
Private mAppointments As New Appointments
Private mRepairTypes As New RepairTypes
Private mCustomers As New Customers

266 Chapter 5 Database Applications

Private Sub NewAppointmentForm_Load() Handles MyBase.Load
cboRepairType.DataSource = mRepairTypes.Items
cboRepairType.DisplayMember = "Description"
cboRepairType.ValueMember = "TypeId"

cboCustomer.DataSource = mCustomers.Items
cboCustomer.DisplayMember = "Name"
cboCustomer.ValueMember = "CustId"

End Sub

Private Sub btnSave_Click() Handles btnSave.Click
Dim scheduledAt As DateTime
Try

scheduledAt = Appointments.CombinedDateTime(
dtpDate.Value.Date, CDate(txtTime.Text))

Catch
errProvider.SetError(txtTime,

"Please enter a valid appointment time")
Return

End Try
Dim typeId As Short = CShort(cboRepairType.SelectedValue)
Dim custId As Short = CShort(cboCustomer.SelectedValue)
Dim licensed As Boolean = chkLicensed.Checked
If mAppointments.Insert(typeId, txtDescription.Text,

licensed, custId, scheduledAt) Then
Me.Close()

Else
lblStatus.Text = "Cannot Add Appointment. " _

& Appointments.LastError
End If

End Sub

Private Sub btnCancel_Click() Handles btnCancel.Click
Me.Close()

End Sub
End Class

Ready to Test

Step 6: Double-click on My Project in Solution Explorer and verify that the project’s
startup form is MainForm.

Step 7: Run the application. Select Appointments / New from the menu to display the
New Appointment window. Input and save an appointment. From the main
menu, select Appointments / View and verify that the appointment you added
is now visible in the grid.

Step 8: Add a few more appointments and verify that they were saved.

Step 9: Close the application. Then rebuild the project from the Visual Studio Build
menu to erase the appointments you added to the database.

Summary

After writing code for the New Appointment form, we hope that you are beginning
to see how the classes in a three-tier application communicate with each other. For
example, when creating a new appointment, the NewAppointmentForm class calls
the Insert method in the Appointments class. To do that, the form must contain an
Appointment object. Then the Appointments.Insert method calls the Insert method in

5.4 Focus on Problem Solving: Home Repair Services Application 267

the AppointmentsTableAdapter class. To do that, the Appointments class must contain
a TableAdapter object. These steps are shown by a concept diagram in Figure 5-23.

In Tutorial 5-10, you will add the ability for users to search for appointments.

Figure 5-23 Communication between classes when adding a new appointment

NewAppointmentForm
class

Appointments
object

Button Click
handler

Insert
method

Insert
method

AppointmentsTableAdapter
object

contains

has

has

has

contains

calls

calls

Tutorial 5-10:
Searching for appointments

In this tutorial, you will add searching capabilities to the Home Repair Services appli-
cation. You will modify both the Appointments form and the Appointments class.

Tutorial Steps

Step 1: Open the Appointments.vb class and insert the following method, which
returns all the rows of the Appointments table in the database:

Public ReadOnly Property Items As DataTable
Get

Return adapter.GetData()
End Get

End Property

Step 2: Create the GetByCustomerId method, which returns a DataTable containing
appointments for a single customer:

1 Public Function GetByCustomerId(ByVal custId As Short) As
DataTable

2 Dim table As DataTable = adapter.GetData()
3 table.DefaultView.RowFilter = "CustId = " & custId
4 Return table
5 End Function

Line 2 gets all rows from the Appointments table, and line 3 applies a filter
expression that limits the rows to a single customer ID. Line 4 returns the fil-
tered table. This method is a good example of how code in the application’s

268 Chapter 5 Database Applications

middle tier can enhance the methods that already exist in a TableAdapter. It
was not necessary to create a separate query in the TableAdapter class.

AppointmentsForm Class

Step 3: Open the AppointmentsForm.vb class in the design window. Delete the data-
binding components from the form, and delete all event handlers from the
form’s code window.

Step 4: Undock the grid and resize it to make room for a ToolStrip control at the top
of the form.

Step 5: Add a ToolStrip control to the form and add the controls listed in Table 5-4.
Optionally, you can insert separator controls between the ToolStrip items.
Figure 5-24 shows the form at runtime, to give you a guide as to the place-
ment of the buttons.

Figure 5-24 The AppointmentsForm, shown at runtime

Step 6: Open the form’s code window and add the following variable declarations:

Private mAppointments As New Appointments
Private mCustomers As New Customers
Private formLoading As Boolean = True

Table 5-4 Controls on the Appointments Form

Control Type Control Name Property Settings

DataGridView dgvAppointments BackgroundColor = Control
BorderStyle = None

Anchor = Top, Bottom, Left, Right

ToolStrip (default)

ToolStripButton btnAll AutoSize = False

Size.Width = 50

DisplayStyle = Text

Text = All

ToolStripSeparator (default)

ToolStripLabel (default) Text = Customer:

ToolStripComboBox cboCustomer

5.4 Focus on Problem Solving: Home Repair Services Application 269

The first two variables are instances of middle-tier classes. The third variable
will help us avoid responding to combo box events while the form is loading.

Step 7: Create a Click event handler for the All button and insert the following line
of code, which fills the grid with all rows of the Appointments table:

dgvAppointments.DataSource = mAppointments.Items

Step 8: Run the application and test the All button in this form. It should display all
appointments. Stop the application.

Your next task will be to let the user search for appointments by customer
name.

Step 9: Create the following Form_Load event handler, whose job it is to fill the
combo box with a list of customer names; it gets the list from the Items prop-
erty of the Customers object:

1: Private Sub AppointmentsForm_Load() Handles MyBase.Load
2: With cboCustomer.ComboBox
3: .DataSource = mCustomers.Items
4: .DisplayMember = "Name"
5: .ValueMember = "CustId"
6: .DropDownStyle = ComboBoxStyle.DropDownList
7: .SelectedIndex = -1
8: End With
9: formLoading = False
10: End Sub

Lines 3–5 initialize fields that help us display the list of customers in the
combo box. (You wrote the same code in the NewAppointmentForm class.)
Line 6 sets a property in the combo box that prevents the user from directly
typing in a name at random. You can usually set this property in design mode,
but because this combo box is on a ToolStrip, the Visual Studio Property win-
dow does not display the ComboBoxStyle property. Line 7 sets SelectedIndex
to �1 so no customer name will be displayed when the form is first displayed.
Line 9 sets formLoading to False, to indicate that the form has finished the
loading process.

Step 10: Create the following SelectedIndexChanged event handler for the ComboBox
control:

Private Sub cboCustomer_SelectedIndexChanged() _
Handles cboCustomer.SelectedIndexChanged
If Not formLoading Then

Dim custId As Short =
CShort(cboCustomer.ComboBox.SelectedValue)

dgvAppointments.DataSource =
mAppointments.GetByCustomerId(custId)

End If
End Sub

The If statement checks the formLoading variable to see if this event was fired
during the form’s initial loading process. If the variable equals True, we do not
perform any searches for appointments.

Step 11: Run the application, select View from the Appointments menu, and experi-
ment by selecting different customer names from the combo box. An example
is shown in Figure 5-25. Also, click the All button to verify that all appoint-
ments are displayed.

270 Chapter 5 Database Applications

Figure 5-25 Displaying appointments for one customer

Code Listing

Check following complete code listing of the AppointmentsForm class to see if you’ve
left anything out:

Public Class AppointmentsForm
Private mAppointments As New Appointments
Private mCustomers As New Customers
Private formLoading As Boolean = True

Private Sub btnAll_Click() Handles btnAll.Click
dgvAppointments.DataSource = mAppointments.Items

End Sub

Private Sub AppointmentsForm_Load() Handles MyBase.Load
With cboCustomer.ComboBox

.DataSource = mCustomers.Items

.DisplayMember = "Name"

.ValueMember = "CustId"

.DropDownStyle = ComboBoxStyle.DropDownList

.SelectedIndex = -1
End With
formLoading = False

End Sub

Private Sub cboCustomer_SelectedIndexChanged() _
Handles cboCustomer.SelectedIndexChanged

If Not formLoading Then
Dim custId As Short =

CShort(cboCustomer.ComboBox.SelectedValue)
dgvAppointments.DataSource =

mAppointments.GetByCustomerId(custId)
End If

End Sub
End Class

Summary

You are starting to create code that can be reused (with small modifications) through
the application. A great feature of the multi-tier design approach is that your applica-
tion becomes easily expandable, with new types of searches and updates.

Copying a Class Within a Project
In the next tutorial, you will be asked to copy the NewAppointmentForm class and make
changes to the copy. Here are the basic steps for copying a class:

1. Close Visual Studio, to detach it from its project files.

5.4 Focus on Problem Solving: Home Repair Services Application 271

2. In the Solution Explorer window, right-click the name of the class you want to copy,
and select Copy from the popup menu.

3. In the same window, right-click the project name and select Paste from the popup
menu. After doing that, you will see a new file named Copy of original filename.

4. Rename this new file to a different name that matches the name of your new class.
5. Open the copied file in the code editor and change the name of the class.

In Tutorial 5-11, you will make a copy of the New Appointment form and modify the copy
so it permits the user to modify existing appointments.

Tutorial 5-11:
Modifying existing appointments

In the Home Repair Services application, we want to permit the user to modify an exist-
ing appointment. In this tutorial, you will create a form that satisfies that need.

Tutorial Steps

Step 1: In the Dataset Designer window, right-click the AppointmentsTableAdapter
and select Properties. Then expand the UpdateCommand property and select
CommandText. The Query Builder window will appear.

Step 2: Replace the existing update query with the following:

UPDATE Appointments
SET TypeId = @TypeId, Description = @Description,

Licensed = @Licensed, CustId = @CustId, [Scheduled] =
@Scheduled

WHERE (ApptId = @ApptId)

This query updates the Appointments table by assigning new values to each
of the fields in a single row. The ApptId column is not updated because it is
the table’s primary key. (Modifying a primary key could cause a referential
integrity error in the database.) The Scheduled column name conflicts with an
SQL language keyword, so the column name must be enclosed in brackets
when you use it in a query.

Step 3: Open the Appointments.vb file and add the following Update method to the
Appointments class:

Public Function Update(ByVal typeId As Short,
ByVal description As String, ByVal licensed As Boolean,
ByVal custId As Short, ByVal Scheduled As DateTime,
ByVal apptId As Integer) As Boolean

' Update a row into the Appointments table. Return
' True if successful. If an exception is thrown,
' LastError will hold an error message.
LastError = String.Empty
Try

adapter.Update(typeId, description, licensed,
custId, Scheduled, apptId)

Return True
Catch ex As Exception

LastError = ex.Message
Return False

End Try
End Function

272 Chapter 5 Database Applications

This method is very similar to the Insert method you created in Tutorial 5-6.
You may want to copy and paste your old code and change a few lines.
There’s one extra parameter (apptId), and in this version, you are calling the
adapter’s Update method rather than Insert. The comments are different, also.

Step 4: Add the FindByApptId method to the class:

1: Public Function FindByApptId(ByVal apptId As Short) _
2: As RepairServicesDataSet.AppointmentsRow
3:
4: Dim table As RepairServicesDataSet.AppointmentsDataTable
5: table = adapter.GetData()
6: Return table.FindByApptId(apptId)
7: End Function

Line 2 declares the return value as a specific type of DataRow, to enable the
caller to access the database column names as object properties (you will see
this when we create the form). Line 4 also declares a specific DataTable type.
Line 5 calls the GetData method from the AppointmentsTableAdapter, which
returns all rows of the Appointments table. Line 6 calls the FindByApptId
method that was generated by Visual Studio. This method call returns a sin-
gle row of the Appointments table, exactly what we will need when we dis-
play the appointment in a form.

Build the Modify Appointment Form

Now you are ready to create the Modify Appointment form. The easiest way to do
this is to make a copy of the New Appointment form and make a few changes to the
copy.

Step 5: Make a copy of the NewAppointmentForm.vb class file and name it
ModAppointmentForm.vb. Open its code window and rename the class to
ModAppointmentForm. Rebuild the application from the Project menu.

Step 6: In the design window, rename the form’s Text property to Modify Appointment.

Step 7: In the form’s code window, add the following property, which will be initial-
ized by another program just before it displays the Modify Appointment
form:

Public Property AppointmentId As Short

Step 8: Add the following code to the end of the Form_Load event handler, which ini-
tializes the form fields to a single selected appointment:

1: Dim row As RepairServicesDataSet.AppointmentsRow
2: row = mAppointments.FindByApptId(AppointmentId)
3: dtpDate.Value = row.Scheduled.Date
4: txtTime.Text = row.Scheduled.TimeOfDay.ToString
5: chkLicensed.Checked = row.Licensed

TIP: If the Appointments table were large, it could be argued that calling
GetData is inefficient when all you really want is a single table row. In that
case, the solution would be to add a new SQL query to the TableAdapter
that selects only one row. This type of improvement would be easy to do
any time in the future.

5.4 Focus on Problem Solving: Home Repair Services Application 273

6: txtDescription.Text = row.Description
7: cboRepairType.SelectedValue = row.TypeId
8: cboCustomer.SelectedValue = row.CustId

Line 2 gets a single row from the Appointment table by calling the Find-
ByApptId from the middle-tier class. This row is a very specific type of
DataRow object (see line 1). Your code must copy the row fields into the cur-
rent form’s controls. Fortunately, the row contains property names that tell us
how to get the data. Line 3 gets the date portion of the Scheduled column, and
line 4 gets the time portion of the same column. (The Scheduled column con-
tains both a date and a time.)

Line 5 copies the Licensed field value (Boolean) to the chkLicensed check
box. Line 6 copies the appointment description. Lines 7 and 8 copy the
TypeId and CustId values directly into the SelectedValue properties of the
two combo boxes. This will make the boxes display the currently selected
type of repair and customer name, using values from the database row.
For example, if the current row contains a CustId value of 1020, the
customer combo box will select the name of the customer having that ID
number.

Step 9: Modify the shaded lines below in the Click handler for the Save button:

1: Private Sub btnSave_Click() Handles btnSave.Click
2: Dim Scheduled As DateTime
3: Try
4: Scheduled = Appointments.CombinedDateTime(_
5: dtpDate.Value.Date, CDate(txtTime.Text))
6: Catch
7: errProvider.SetError(txtTime, _
8: "Please enter a valid appointment time")
9: Return
10: End Try
11: Dim typeId As Short = CShort(cboRepairType.SelectedValue)
12: Dim custId As Short = CShort(cboCustomer.SelectedValue)
13: Dim licensed As Boolean = chkLicensed.Checked
14: If mAppointments.Update(typeId, txtDescription.Text,
15: licensed, custId, Scheduled, AppointmentId) Then
16: Me.Close()
17: Else
18: lblStatus.Text = "Cannot update the Appointment." _
19: & Appointments.LastError
20: End If
21: End Sub

On line 15, the Update method in the Appointment class has one more param-
eter (AppointmentId) than the Insert method did. Line 16 closes the window
right after the appointment is updated. Basically, as soon as the user clicks the
Save button, the window closes.

Code Listing

Check the following complete code listing of the ModAppointmentForm.vb class to
make sure you haven’t left anything out:

Public Class ModAppointmentForm
Private mAppointments As New Appointments
Private mRepairTypes As New RepairTypes

274 Chapter 5 Database Applications

Private mCustomers As New Customers
Public Property AppointmentId As Short

Private Sub Form_Load() Handles MyBase.Load
' Fill the Repair Types combo box.
cboRepairType.DataSource = mRepairTypes.Items
cboRepairType.DisplayMember = "Description"
cboRepairType.ValueMember = "TypeId"
' Fill the Customers combo box.
cboCustomer.DataSource = mCustomers.Items
cboCustomer.DisplayMember = "Name"
cboCustomer.ValueMember = "CustId"

' Get the selected appointment and display in the form's
' controls.

Dim row As RepairServicesDataSet.AppointmentsRow
row = mAppointments.FindByApptId(AppointmentId)
dtpDate.Value = row.Scheduled.Date
txtTime.Text = row.Scheduled.TimeOfDay.ToString
chkLicensed.Checked = row.Licensed
txtDescription.Text = row.Description
cboRepairType.SelectedValue = row.TypeId
cboCustomer.SelectedValue = row.CustId

End Sub

' The user wants to save the appointment.
Private Sub btnSave_Click() Handles btnSave.Click

Dim scheduledAt As DateTime
Try

scheduledAt = Appointments.CombinedDateTime(_
dtpDate.Value.Date, CDate(txtTime.Text))

Catch
errProvider.SetError(txtTime, _

"Please enter a valid appointment time")
Return

End Try
Dim typeId As Short = CShort(cboRepairType.SelectedValue)
Dim custId As Short = CShort(cboCustomer.SelectedValue)
Dim licensed As Boolean = chkLicensed.Checked
If mAppointments.Update(typeId, txtDescription.Text,

licensed, custId, scheduledAt, AppointmentId) Then
Me.Close()

Else
lblStatus.Text = "Cannot update the Appointment." _

& Appointments.LastError
End If

End Sub

Private Sub btnCancel_Click() Handles btnCancel.Click
Me.Close()

End Sub
End Class

Testing the User Interface

At this point, it is important for you to test the Modify Appointment form. Later, we
will show you how to display this form from the applications main menu.

Step 1: Insert the following line of code at the beginning of Form_Load (it will be
removed later):

AppointmentId = 1004

5.4 Focus on Problem Solving: Home Repair Services Application 275

This line initializes the AppointmentId property to an ID that we know is in
the database. The form will display the data for this appointment.

Step 2: Double-click on My Project in Solution Explorer and change the project’s
startup form to ModAppointmentForm.

Step 3: Run the application. You should see the Modify Appointment window, as
shown in Figure 5-26. Change all of the column values and click the Save but-
ton. The window will close.

Figure 5-26 The Modify Appointment form at runtime

Step 4: Run the application again and verify that all the changes you made were
saved.

Step 5: Remove the line of test code that you inserted in Step 1, and save the project.

This tutorial was an important step in learning how to display and edit a sin-
gle database row. Although this type of editing could have been accomplished
by using data-bound controls, that approach would violate the basic premise
of multi-tier applications: The presentation layer (Windows forms) should not
communicate directly with the database. In fact, the application you’re writ-
ing now will show up as a Web application in a later chapter. A multi-tier
design makes it easy to move an application from the desktop to the Web.

In Tutorial 5-12, you will launch the Modify Appointment window from
another page.

Tutorial 5-12:
Selecting appointments to modify

In this tutorial, you will add a button to the Appointments form that lets the user launch
the Modify Appointment window. You will add a second button that closes the
Appointments window.

276 Chapter 5 Database Applications

Tutorial Steps

Step 1: Open AppointmentsForm.vb in design mode.

Step 2: Set the RowHeadersVisible property of the DataGridView to True. (This will
display a button to the left of each row in the grid, which can be used to select
the row.)

Step 3: Add a ToolStripSeparator to the ToolStrip control. Then add a ToolStripBut-
ton control and set the following property values: Name = btnEdit, Dis-
playStyle = Text, Text = Edit.

Step 4: Add a ToolStripSeparator to the ToolStrip control. Then add a ToolStripBut-
ton control and set the following property values: Name = btnClose, Dis-
playStyle = Text, Text = Close.

Step 5: Create a Click handler for the Close button and insert a Me.Close()
statement.

Step 6: Create a Click handler method for the Edit button and insert code to create
the following method:

1: Private Sub btnEdit_Click() Handles btnEdit.Click
2: If dgvAppointments.SelectedRows.Count > 0 Then
3: Dim apptId As Short = CShort(dgvAppointments.
4: SelectedRows(0).Cells(0).Value)
5: Dim frm As New ModAppointmentForm
6: frm.AppointmentId = apptId
7: frm.ShowDialog()
8: dgvAppointments.DataSource = mAppointments.Items
9: Else
10: MessageBox.Show("Please select the appointment to edit")
11: End If
12: End Sub

This code displays the Modify Appointment form. Line 1 verifies that a row
was selected by the user. Line 4 gets the appointment ID value from the first
cell in the selected row belonging to the grid’s SelectedRows collection. (It
is possible to select more than one row in a grid, although doing so would
not be useful here.) Line 5 creates an instance of the Modify Appointment
form, and line 6 assigns the appointment ID to the form’s AppointmentId
property. Line 7 displays the Modify Appointment form, and line 8 refreshes
the grid with the complete list of appointments (to reflect the changes that
were made).

Step 7: Double-click on My Project in Solution Explorer and change the project’s
startup form to MainForm.

Step 8: Run the application, select the Appointments / View menu item, click the
All button, and select one of the grid rows. An example is shown in Fig-
ure 5-27.

Step 9: Click the Edit button, and the Modify Appointment window should
appear. Make some changes to the appointment, and click the Save
button. You should see the changes you made in the appropriate row of
the grid.

5.4 Focus on Problem Solving: Home Repair Services Application 277

Figure 5-27 Selecting an appointment from the grid in the Appointments form

Summary

The Appointments form offers some interesting possibilities. You could add a
Delete button to the ToolStrip that would let the user delete a single appointment.
Or, you could let the user search for appointments by their repair types. To do that,
you might add another combo box to the tool strip that displays the RepairTypes
table. Then you would write code that is similar to the code for the Customers
combo box.

In Tutorial 5-13, you will add a Delete button to the Appointments form.

Tutorial 5-13:
Deleting an appointment

In this tutorial, you will make it possible for the user delete a selected appointment in
the Home Repair Services application.

Tutorial Steps

Step 1: Open the RepairServices.xsd DataSet in the designer window.

Step 2: Select AppointmentsTableAdapter and open its Properties window.

Step 3: Expand the DeleteCommand property and open its CommandText subprop-
erty. The default SQL query is very long because the code tries to match all of
the columns. Replace it with a much simpler version that only matches the
ApptId column with a single query parameter.

DELETE FROM Appointments
WHERE ApptId = @ApptId

Save your changes.

278 Chapter 5 Database Applications

Step 4: Open the Appointments.vb file and add the following Delete method:

Public Function Delete(ByVal apptId As Integer) As Boolean
Dim rowsAffected As Integer = adapter.Delete(apptId)
Return rowsAffected > 0

End Function

The adapter.Delete method call returns a count of the number of rows affected
by the query. We expect the count to be equal to 1, so the method returns True
if at least 1 row was affected.

Step 5: Open the AppointmentsForm.vb file in the designer window, add separator,
and then a Delete button to the ToolStrip at the top of the form, and name it
btnDelete.

Step 6: Add the following Click handler for the Delete button:

1: Private Sub btnDelete_Click() Handles btnDelete.Click
2: If dgvAppointments.SelectedRows.Count > 0 Then
3: Dim apptId As Short = CShort(dgvAppointments.
4: SelectedRows(0).Cells(0).Value)
5: If mAppointments.Delete(apptId) Then
6: dgvAppointments.DataSource = mAppointments.Items
7: Else
8: MessageBox.Show("Unable to delete this appointment")
9: End If
10: End If
11: End Sub

Lines 2–4 were borrowed from the Click handler that you wrote earlier for
the Edit button. They verify that a grid row was selected, and then they get
the appointment ID from the first cell in the selected row. Line 5 calls the
Delete method from the Appointments class and checks the Boolean return
value. If an appointment was deleted, line 6 refreshes the grid by displaying
all appointments. If the selected appointment was not deleted (because of an
unknown error), line 8 displays an error message.

Step 7: Run the application, open the Appointments form, click the All button,
select an appointment, and click the Delete button. The appointment should
disappear.

Summary

Let’s review the steps that were required to add the Delete operation to the Appointments
window. First, you simplified the query in the TableAdapter’s DeleteCommand property.
Second, you added a Delete method to the Appointments class. Third, you added a
Delete button with a Click handler to the Appointments form. Deleting an appointment
was fairly easy because it is not the parent table in any table relationships. All you had
to do was pass the ID of the appointment to be deleted to the Delete method.

Creating Queries That Join Tables
The columns in a table often hold numeric codes that are difficult for the end user to decipher.
This is certainly the case with the Appointments table, which contains a customer ID and a
repair type ID. No doubt, you have viewed this table more than once, trying to remember the
meaning of these codes. Therefore, it’s good to join tables together so the numeric codes can

5.4 Focus on Problem Solving: Home Repair Services Application 279

be replaced by user-friendly text values. Figure 5-28, for example, shows a join of the Appoint-
ments, Customers, and RepairTypes tables that leaves no doubt in our minds as to which cus-
tomer has scheduled which type of repair. Some of the table columns, such as ApptId, CustId,
TypeId, and Licensed are not shown, but that information is available elsewhere.

Figure 5-28 Tables joined together

When you add a SELECT query to an existing TableAdapter, the query’s columns should
match the columns in the DataTable associated with the TableAdapter. For example, if we
were to add a query to the AppointmentsTableAdapter that omits some columns, the mes-
sage shown in Figure 5-29 would appear. Therefore, we would create a new TableAdapter
with columns that match our query.

Figure 5-29 TableAdapter warning message

INNER JOIN Statement

The INNER JOIN operator in SQL joins two tables, using fields from each table that are
expected to contain matching values. The joining process takes place in the part of the query that
selects which tables will be used. For example, when you use only one table, it looks like this:

SELECT field-1,..., field-n FROM tablename

But if you have two tables, you have to identify which column in each table will link the
tables together. For that, you use the INNER JOIN operator. Here is the general format:

FROM table1 INNER JOIN table2 ON table1.key = table2.key

The ordering of the names table1 and table2 is not important. The items labeled key can be
the primary key or foreign key of the table. The idea is that the two columns contain

280 Chapter 5 Database Applications

essentially the same data. For example, the following query links the Appointments and Cus-
tomers tables, using their common CustId column:

FROM Appointments INNER JOIN Customers
ON Appointments.CustId = Customers.CustId

You may recall that we designed the RepairServices database so that the CustId column in
each appointment matched one of the CustId values in the Customers table. That is how we
could identify which customer had scheduled the appointment.

INNER JOIN returns only those rows in which the two tables have matching values. To
illustrate this idea, let’s use simplified versions of the Appointments and Customers tables,
as follows:

Appointments Table

ApptId Description CustId
1000 Replace frames 1000
1001 Repair wall 1020
1002 Replace tile 1010
1004 Install pipe 1020
1005 Replace breaker 1040

Customers Table

CustId Name
1000 Johnson, David
1010 Smith, Linda
1020 Chong, Susan

Let us consider the following query:

SELECT Description, Name, Customers.CustId
FROM Appointments INNER JOIN Customers
ON Appointments.CustId = Customers.CustId

When the query executes, it returns only rows that contain matching values in the CustId
column:

Replace frames Johnson, David 1000
Repair wall Chong, Susan 1020
Replace tile Smith, Linda 1010
Install pipe Chong, Susan 1020

Notice that the last row of the Appointments table (ApptId = 1005) does not appear in the
output because its CustId value (1040) does not appear in the Customers table.

Nested Join

A nested join is an SQL query that joins three or more tables. The FROM clause in the fol-
lowing query does this:

FROM Appointments INNER JOIN Customers
ON Appointments.CustId = Customers.CustId

INNER JOIN RepairTypes
ON Appointments.TypeId = RepairTypes.TypeId

First, the Appointments table is joined to the Customers table. Then the resulting table is
joined to the RepairTypes table, using TypeId as the linking column.

Although the syntax for inner joins appears complicated, it should not trouble you. Visual
Studio makes it very easy to join tables inside the Query Designer window. In Tutorial 5-14,
you will add a new form to the project that displays a list of appointments, using data that
was joined from three tables.

5.4 Focus on Problem Solving: Home Repair Services Application 281

Tutorial 5-14:
Displaying a joined appointment list

In this tutorial, you will add a new form that displays the appointment list in an easier-
to-read format. To do that, you will create a new TableAdapter that joins the Cus-
tomers, RepairTypes, and Appointments tables.

Tutorial Steps

Step 1: Open the designer window for RepairServicesDataSet.xsd.

Step 2: Right-click in an open area of the window and select Add; then select
TableAdapter. The TableAdapter Configuration Wizard window should
appear.

Step 3: Click the Next button until you reach the Enter a SQL Statement panel. Click
the Query Builder button.

Step 4: The Add Table window should appear. If it does not, right-click in the upper
pane and select Add Table. Add all three tables to the query. Then place a
check mark in each of the following columns, in order: Customers.Name,
Appointments.Description, RepairTypes.Description, Appointments.Scheduled.
The tables are shown in Figure 5-30.

Figure 5-30 Joining the Appointments, RepairTypes, and Customers tables

Step 5: Because there are two columns named Description in the query, you will need
to find the place in the query that says AS Expr1 and change it to AS Repair-
Type. After doing so, the query should be the following:

SELECT Customers.Name, Appointments.Description,
RepairTypes.Description AS RepairType, Appointments.
Scheduled

FROM Appointments INNER JOIN Customers
ON Appointments.CustId = Customers.CustId

INNER JOIN RepairTypes
ON Appointments.TypeId = RepairTypes.TypeId

The formatting of the lines will be different in Query Builder, but that is not
important. This query joins together the Customers, Appointments, and
RepairTypes tables, using columns that are common to each pair of tables.

282 Chapter 5 Database Applications

Step 6: Click the OK button to close the Query Builder window. In the Wizard win-
dow, click the Advanced Options button and unselect the Generate Insert,
Update and Delete statements option. Click OK to save.

Step 7: Click the Finish button to save the query. You have just created a new
TableAdapter.

Step 8: In the DataSet designer window, select the table named DataTable1, right-
click, select Rename, and rename it to AppointmentList. Also, rename the
TableAdapter to AppointmentListTableAdapter.

Add the AppointmentList Property to the Appointments Class

Step 9: Open the Appointments class and add the following AppointmentList property:

Public ReadOnly Property AppointmentList As DataTable
Get

Dim listAdapter As New RepairServicesDataSetTableAdapters.
AppointmentListTableAdapter

Return listAdapter.GetData()
End Get

End Property

In this property procedure, you have declared an instance of your new type of
TableAdapter. When your code calls GetData, it returns a DataTable contain-
ing all appointments.

Let’s review what you have accomplished so far. You created a new
TableAdapter, using an SQL query that joins all three tables in the database.
Then you renamed the DataTable and TableAdapter classes to Appoint-
mentList and AppointmentListTableAdapter. Finally, you added a new prop-
erty to the middle-tier Appointments class that calls the GetData method from
your new TableAdapter.

Add AppointmentListForm to the Project

In the next series of steps, you will add an Appointment List form to the project, insert
a DataGridView in the form, write a Form_Load handler in the form, and then add a
new entry to the Main form’s menu that displays your new form.

Step 10: Add a new form to the project named AppointmentListForm.vb. Set its Text
property to Appointment List.

Step 11: Add a DataGridView to the form and name it dgvAppointments. Set its Dock
property to Fill. Right-click its smart tag and uncheck the Adding, Editing,
and Deleting options.

Step 12: In the form’s code window, add the following Load event handler:

Private Sub Form_Load() Handles MyBase.Load
Dim mAppointments As New Appointments
dgvAppointments.DataSource = mAppointments.AppointmentList

End Sub

Step 13: Open the MainForm class file and add a new entry to the Appointments
menu: Appointment List.

Step 14: Create a click handler for the new menu item, and insert the following code:

AppointmentListForm.ShowDialog()

Summary 283

Step 15: Run the application, and select Appointment List from the Appointments
menu. Your new form should appear as shown in Figure 5-31.

Figure 5-31 Displaying the Appointment List form

By joining tables, you can combine their most useful columns to create an
informative view of the database. Although the SQL JOIN query syntax takes
some practice to master, you can rely on the Query Builder tool in Visual Stu-
dio to make joining an easy task.

Summary

5.1 Creating Databases

• The Server Explorer window in Visual Studio lets you view and manage connections
to local and remote databases.

• When examining a database connection in Server Explorer, the Database Diagrams
folder contains graphical diagrams that show relationships between tables. The Tables
folder contains all tables in the database. The Views folder contains a list of views,
which are alternate ways of viewing the contents of tables; views often combine
columns from different tables into what look like new tables. The Stored Procedures
folder contains compiled SQL queries.

• A one-to-many relationship exists between two database tables when the primary key
of one table links to a column called a foreign key in another table. The table on the
one side is called the parent table. The table on the many side is called the child table.

• A many-to-many relationship occurs between two database tables when the linking
column is a foreign key in both tables. A third linking table must be created that has
a one-to-many relationship with the first two tables.

• Database constraints are rules in a database that help preserve data integrity, prevent-
ing errors caused by the insertion of invalid data.

• A referential integrity constraint, or foreign key constraint, applies to the relationship
between two tables. In a one-to-many relationship, the parent table is required to con-
tain a primary key value that matches each foreign key value found in the child table.

284 Chapter 5 Database Applications

5.2 DataTables

• The Server Explorer window in Visual Studio lets you view and manage connections
to local and remote databases.

• A DataTable is an object that represents the contents of a table from a data source. The
.NET DataTable class is used as the basis for creating more specialized DataTable
types. When you add a data source to a project, Visual Studio creates a specialized
DataTable class, such as CustomerDataTable, or MembersDataTable.

• The Columns property holds a collection of DataColumn objects; each describes the
name, type, and other characteristics of a column.

• The DefaultView property holds a DataView object that lets you filter (select) the table
rows or sort the rows on any column.

• The PrimaryKey property holds an array of DataColumn objects that serve as the table’s
primary key; each table row is guaranteed to hold a unique value in the column or columns.

• The Rows property holds a collection of DataRow objects, each holding the data in
one row of the table.

• A DataRow object describes a row in a DataTable. You can add columns to a DataRow,
fill the row with values, add the row to a table, and remove a row from a table.

5.3 Updating Databases Using SQL

• The INSERT INTO statement adds a new row to a database table.
• The UPDATE statement modifies one or more existing database table rows.
• The DELETE FROM statement deletes one or more rows from a database table.
• Be careful when deleting rows from a table that participates in a one-to-many table

relationship. If you delete a row from the parent table, you may cause a violation of a
referential integrity constraint.

5.4 Home Repair Services Application

• Tutorials 5-4 through 5-14 build the Home Repair Services application, whose purpose
is to enable company personnel to schedule repair services for residential customers.

• Home Repair Services is a three-tier application, with a presentation tier made of win-
dows forms, a middle tier containing three classes (Appointments, RepairTypes, and
Customers), and a data access tier made up of the RepairServicesDataSet classes.

• Runtime data binding describes the assigning of a DataTable to the DataSource prop-
erty of a control at runtime. To perform runtime data binding, you need to declare a
variable in the form’s code that is an instance of a middle-tier class. Then you call a
method from the class that returns a DataTable.

• Many times, database table columns hold numeric codes that are difficult for the end
user to understand. It’s a good idea to join tables together, so numeric codes can be
replaced by more descriptive text values.

• The INNER JOIN operator in SQL joins two tables, using fields from each table that
are expected to contain matching values. INNER JOIN only returns rows in which the
two tables have matching values.

• A nested join operation uses the result of joining two tables together to form another join
expression. Using that principle, almost any number of tables can be joined in a query.

Key Terms
child table
column check constraint
database constraint
database diagram
DataRow object
DataTable

DELETE FROM
foreign key
foreign key constraint
INNER JOIN
INSERT INTO
many-to-many relationship

Review Questions 285

nested join
one-to-many relationship
parent table
primary key constraint

referential integrity constraint
runtime data binding
Server Explorer
UPDATE

Review Questions

True or False

Indicate whether each of the following statements is true or false.

1. Dragging a table from Server Explorer onto a DataSet design surface has no effect on
the DataSet.

2. The ApptId column in the Appointments table uses an identity seed.

3. The Licensed column in the Appointments table holds Boolean values.

4. A database constraint limits the number of rows that can be added to a table.

5. It is possible to create table relationships in a database without enforcing referential
integrity constraints.

6. A table’s primary key must contain only a single column.

7. A DefaultView is an object that lets you filter and sort the rows of a DataTable.

8. The rows of a DataTable are usually a specialized type of DataRow.

9. The Insert method in a TableAdapter returns a Boolean value indicating whether the
row insertion was successful.

10. The Delete method in a TableAdapter returns an Integer value indicating the number of
deleted rows.

11. In the Repair Services application, the presentation-tier classes often called
TableAdapter methods.

12. A SelectedIndexChanged event is fired when the DataSource property of a ComboBox
is assigned at runtime.

13. The default TableAdapter query for deleting a single row from a table has a single query
parameter for the primary key column.

14. When you write a query that joins two tables in a DataSet, you must create a separate
TableAdapter with columns that match the query columns.

Short Answer

1. When you create a database in the Server Explorer window, where is the database data
file stored?

2. How do you create a database in Server Explorer?

3. What type of relationship exists between the Appointments and Customers tables in the
Home Repair Services application?

4. How is the Data Sources window different from the Server Explorer window?

5. Name at least four folders that are grouped under a database name in Server Explorer.

6. Which column joins the Customers and Appointments tables?

7. Which column joins the RepairTypes and Appointments tables?

286 Chapter 5 Database Applications

8. In what type of relationship does a parent table participate?

9. Which table in a relationship contains a foreign key: parent or child?

10. In what type of relationship is a foreign key used as a linking field in both tables?

11. Name three types of database constraints mentioned in this chapter.

12. What types of objects appear in a database diagram?

13. If an application contains RepairServicesDataSet, what will probably be the fully quali-
fied name of the TableAdapter class that holds the Customers table?

14. In the Repair Services application, what are the names of the middle-tier classes?

15. What is the definition of runtime data binding in this chapter?

16. Which ListBox properties are set when performing runtime data binding?

17. Which event fires when you assign a table to the DataSource property of a ComboBox
or ListBox?

18. The DataTable class contains a method that lets you search by the primary key field.
Suppose the primary key were named ID. What would be the name of the correspon-
ding search method?

Programming Challenges
1. Search for Appointments by Repair Type

Modify the Home Repair Services application as follows. In the Appointments form, add
a combo box to the toolbar containing a list of repair types. When the user selects a repair
type, restrict the list of appointments to those that match the selected repair type.

2. Search for Appointments by Date

Modify the Home Repair Services application as follows. In the Appointments form,
find a way for the user to search for appointments by date. For example, you could ask
the user to enter a starting date and the number of days forward from the given date.
Once he or she has made the selection, you can limit the list of appointments displayed
in the grid to the chosen date range. If the ToolStrip seems too small to input all of the
search information, you can use a button on the ToolStrip to display a small dialog win-
dow that gets the date information from the user.

3. Add New Customer

Modify the Home Repair Services application as follows. Create a form that lets the user
input a new customer. The CustId column in the database is not autogenerated, so you
might want to use a query to get the list of IDs, find the highest one, and create a new ID
that is larger. Do not permit any of the customer fields to be blank. Do not permit the
new customer’s phone number to be the same as an existing customer’s phone number.

4. Modify Customer

Modify the Home Repair Services application as follows. Create a form that lets the user
modify an existing customer’s name and phone number. Do not permit the customer ID
field to be modified. When the user clicks a button to save their changes, the form must
call an Update method in the Customers class, which in turn calls the TableAdapter’s
Update method.

5. Training Workshops

Use the Programming Challenge 3 from Chapter 1 as a starting point for this challenge.
This version will be a 3-tier application.

1. Add an ID property to the Workshop class.

Programming Challenges 287

2. Create a database to replace the data file that was used for input in Chapter 1. In it,
create a database table named Workshops that contains the workshop ID, category
ID, number of days, cost of the workshop, and workshop title. Also in the database,
create a Categories table that contains category ID and category description columns.

3. Create a DataSet containing table adapters based on the two database tables. In addi-
tion, create a TableAdapter that joins the two tables and contains the workshop ID,
workshop category name, number of days, cost, and workshop description.

4. The Workshop class represents the middle tier. In this class, declare an instance of the
TableAdapter class so you can call the TableAdapter methods. Provide properties and
methods in the Workshop class that are called by your MainForm and DetailsForm
classes.

5. Display the list of workshops in a DataGridView control, as shown in Figure 5-32.
When the user selects a workshop in the grid, display the Worshop Details form, as
shown in Figure 5-33. The combo box is filled from the Categories TableAdapter. The
user must be able to modify a workshop in this window and save his or her changes.
When the details form closes, the grid must be refreshed, so the user can see the
changes he or she made.

Figure 5-32 Displaying the Training Workshops list

Figure 5-33 Displaying the Workshop Details form

288 Chapter 5 Database Applications

6. Investment Tracking

Use Programming Challenge 4 from Chapter 1 as a starting point for this programming
challenge. In this version, create a database containing the following tables:

• Prices (ticker symbol, price)—holds the current price of each investment, identified by
a unique ticker symbol.

• Investments (ID, ticker symbol, InvestmentType, price per share, purchase date, num-
ber of shares).

Choose column types that seem appropriate to you. The InvestmentType column should
contain an integer that matches one of the enumerated InvestmentType values already
defined in your program.

Create a DataSet that contains TableAdapters for the Prices and Investments tables. The
existing classes named Investment and PriceType will exist as middle-tier classes.

When the user clicks the Confirm button, shown in Figure 5-34, collect the data from the
form and call the Insert method in the Investment class, which will, in return, call the Insert
method in the InvestmentTableAdapter class. In that way, the form’s information will be
inserted into the database. Then when the user clicks the Show list button, another form,
shown in Figure 5-35, displays the current list of investments in a DataGridView control.

Figure 5-34 After clicking the confirm button

Figure 5-35 Showing the list of investments

TOPICS

Advanced Classes6

6.1 Structures

6.2 Components

Tutorial 6-1: Creating a Component
and referencing it from another
Application

Tutorial 6-2: Adding an Advisor class
to the RegistrationLib component

Tutorial 6-3: Using the Advisor and
Student classes

6.3 Unit Testing

Tutorial 6-4: Creating a Unit Test
Project

Tutorial 6-5: Creating more unit tests
for the IntArray class

Tutorial 6-6: Testing the
Advisor.MaxCredits method

6.4 Events

Tutorial 6-7: The WeatherStation
Events application

6.5 Inheritance

Tutorial 6-8: Student Inheritance
application

289

C
H

A
P

T
E

R

In this chapter, we show how to define structures, which are simple containers for variables,
properties, and methods. Then we explain how to create components, which are classes
that are grouped for some common purpose into a library. Components have a valuable
purpose in distributed computing because they can be located on different computers in a
network. Then we introduce unit testing, the industry standard for automated testing of
individual units of code. This is followed by a brief introduction to defining and using cus-
tom event types in classes. The chapter ends with inheritance, an essential topic in object-
oriented programming.

6.1 Structures
A Structure defines a container into which you can include variables, properties, methods,
and events. A structure might be thought of as a lightweight type of class. When you declare
a structure variable, the .NET runtime doesn’t have to allocate a separate area of memory
and return a reference, as it does with classes. Instead, the structure occupies memory “in
place,” much like an Integer or Boolean.

290 Chapter 6 Advanced Classes

Following are some differences between structures and classes:

• You can declare a structure variable without using the New operator.
• When you pass a structure to a method using the ByVal qualifier and the method mod-

ifies the structure’s contents, the changes are not retained when the method returns.
• The assignment operator (=) copies the contents of a structure variable.
• If you compare two structure variables with the Equals method, they are compared

using the values of their fields.

A well-known structure in .NET is Point, defined in the System.Drawing namespace. It
appears in simplified form here:

Structure Point
Public Property X As Integer
Public Property Y As Integer

End Structure

Constructors

Structure types can contain constructors and other methods. Following is a constructor for
the Point structure that initializes the X and Y properties:

Public Sub New(ByVal xVal As Integer, ByVal yVal As Integer)
X = xVal
Y = yVal

End Sub

If you want to call this constructor, you must use the New operator, as follows:

Dim p As New Point(10,20)

Structures as Method Parameters

Structure parameters declared ByVal behave just like integer parameters—in both cases, a
copy of the structure or integer is passed to the called method. The method can modify the copy,
but doing so will not affect the original. Let’s consider the following code example:

Sub DoesNotModify(ByVal pPoint As Point)
pPoint.X = 998
pPoint.Y = 999

End Sub

Sub Example1()
Dim P As New Point(10, 20)
DoesNotModify(P)
lblResult.Text = P.ToString

End Sub

In the code above, the method named Example1 passes a Point object to the
DoesNotModify method. The pPoint parameter is declared with the ByVal keyword, and the
method modifies the X and Y properties of pPoint. When DoesNotModify returns,
Example1 displays P in a Label control. The output displays as 10, 20 because P was passed
by value.

For a contrasting example in the following code, the Example2 method calls the
ModifiesPoint method, which declares pPoint using the ByRef keyword.

Sub ModifiesPoint(ByRef pPoint As Point)
pPoint.X = 998
pPoint.Y = 999

End Sub

Sub Example2()

6.2 Components 291

Dim P As New Point(10, 20)
ModifiesPoint(P)
lblResult.Text = P.ToString

End Sub

At the end of Example 2, P displays as 998,999 because it was passed by reference.

The same ByRef/ByVal behavior is true for Integers, Doubles, Boolean, and all other types
considered to be value types in .NET. But if you were to declare Point as a class, it would be
a reference type, and the variable named P would always be modified, whether or not the
parameter was declared ByRef or ByVal. To test this idea, just change the word Structure to
Class in the declaration of Point and execute the sample code.

Comparing Structure Objects

When you compare two structures using the = operator, they are considered equal if the val-
ues of their fields are equal. The following code, for example, finds the two points to be equal:

Dim p1 As New Point(10, 20)
Dim p2 As New Point(10, 20)
If p1.Equals(p2) Then

lblResult.Text = ''The points are equal''
End If

You cannot compare two structures using the = operator unless you define an overloaded =
operator method inside the structure. Operator overloading is an advanced technique that
will not be covered in this book.

Structure Array

An array of structure objects is declared just as you would any other array. For example:

Dim aShape(10) As Point

As an option, you can initialize each array element by calling its constructor. The following
statement declares and initializes an array of two Point objects:

Dim aLine() As Point = {New Point(0, 5), New Point(2, 10)}

6.2 Components

Assemblies
A .NET assembly is an application building block. It represents a basic unit of deployment,
consisting of types and resources that work together. To see a Visual Basic project’s assem-
bly information, open My Project in the Solution Explorer window, and click the
Application tab. Figure 6-1, for example, shows the assembly information for a project
named ArrayLib in this chapter.

In its simplest form, an assembly consists of a single .dll file, which contains the following parts:

• Assembly manifest—Contains information about the contents of the assembly itself.
• Type metadata—Contains information about the data types defined inside the assembly.
• MSIL code—The result of compiling the application source code.
• Resources—Such as bitmaps, icons, and strings.

You might imagine that a .NET assembly is like a published book. A book contains a table
of contents (assembly manifest), a glossary (type metadata), chapters (MSIL code), and a col-
lection of figures and tables (resources).

292 Chapter 6 Advanced Classes

Figure 6-1 Assembly information for ArrayLib

Components
A component (also known as a class library) is a collection of related classes that belong to a
single assembly and have been compiled and stored so they are easily available to other appli-
cations. Most companies that write software tend to recycle a great deal of their code in multi-
ple applications. The same is true for computer consultants, who adapt and customize the same
software application for multiple clients. In such situations, it would make no sense to insert
duplicate copies of source code into each application. Imagine what would happen if a bug were
found? Every single copy of the source code would have to be examined, fixed, and recompiled.

The primary advantage to using a component is that it makes it easier for you to reuse exist-
ing code. This advantage becomes even more important when a component contains detailed
or tricky logic. If the component is debugged thoroughly, there is no need to write and debug
the same code in every application that needs the same functionality. Over time, when new
features and modifications are added to the component, a new version is distributed to all
applications that use it.

Components fall into two general classes: (1) user interface components, such as Visual Basic
controls, and (2) code components, such as those found in the middle tier or data tier. The
former type of component is known as a Custom Control in .NET and is quite difficult to
create. The latter type is easy to create, so we will demonstrate how in this chapter.

Using a Component in Visual Studio
Visual Studio has excellent support for components. You can create a component as a proj-
ect, and then reference the component from other applications. We show how to do that in
the following steps:

1. Create a Class Library project. In it, define one or more public classes.
2. With the solution name selected in Solution Explorer, add a Windows Forms Applica-

tion project.
3. Add a reference from your new desktop project to the component.

6.2 Components 293

Component Versions

A component is compiled by Visual Studio into a DLL file (filename with .dll extension).
Also known as a dynamic link library, this file could be used by any .NET application. If we
were in the component sales business, we might sell the DLL file to other Visual Basic devel-
opers, who would plug it into their applications.

A component has a version number (such as 1.2.0) associated with it, which is very useful
when it is modified at a future time. The component’s developer increments either the major
version number (first digit), the minor version number (second digit), or the service release
number (third digit).

Given a current version number of 1.2.0, the new version number might be 2.1.0, 1.3.0, or
1.2.1, depending on the importance of the release. Over time, some clients might have mul-
tiple versions of the DLL file on their computer, so they would check each file’s version num-
ber to find the one they wish to use.

TIP: When you add a component reference to your project, its version number will
appear in the Properties window, under the name Runtime Version.

TIP: The same component can be used by both Windows Forms applications and ASP.NET
applications.

Tutorial 6-1:
Creating a component and referencing
it from another application

In this tutorial, you will create a Class Library project containing a single class. Then
you will create a Windows Forms application that references your component. Before
starting this tutorial, make sure that the solution name is visible in the Solution Explorer
window. If it is not, open the Tools menu, select Options, select Projects and Solutions,
and select the Always show solution option.

Tutorial Steps

Step 1: First, you will create a blank Visual Studio solution. From the File menu, select
New, select Project, select Other Project Types, select Visual Studio Solutions,
and select Blank Solution. Save the solution with the name Registration Library.

Step 2: Next, you will create a class library project. From the File menu, select New,
select Visual Basic, select the Class Library template as shown in Figure 6-2,
and assign the name RegistrationLib to the library. Click the OK button to
create the project.

Step 3: A class named Class1.vb is created for you. Rename the file to Student.vb.
Open its code window.

TIP: Any classes in a library that you want to be visible to other appli-
cations should be declared Public.

294 Chapter 6 Advanced Classes

Figure 6-2 Creating a component

Step 4: Replace the code in the Student.vb file with the following:

Public Enum YearLevel
LowerDivision
UpperDivision
Graduate

End Enum

Public Enum AcademicStatus
Honors
Normal
Warning
Probation

End Enum

Public Class Student
Public Property Credits As Integer
Public Property Level As YearLevel
Public Property GradeAverage As Double
Public Property Status As AcademicStatus

Public Sub New(ByVal pCredits As Integer,
ByVal pLevel As YearLevel,
ByVal pGradeAverage As Double, ByVal pStatus As _
AcademicStatus)

Credits = pCredits
Level = pLevel

6.2 Components 295

GradeAverage = pGradeAverage
Status = pStatus

End Sub
End Class

Notice that we have used enumerated type declarations to make the meanings
of the Level and Status properties clearer.

Step 5: Create a Windows Forms application named Registration UI. It will access
the classes in the RegistrationLib library.

Step 6: Next, you will add a reference from this application to the RegistrationLib
project. In the Solution explorer window of the current application, right-
click the project name and select Add Reference from the popup menu. The
Projects tab should be selected as in Figure 6-3, and the names of all projects
in your current Visual Studio solution should be listed there. Select Registra-
tionLib and click the OK button.

Figure 6-3 Adding a reference to a component from an application

Step 7: Verify that the reference was added by opening the My Project window and
selecting the References tab. Notice that the complete path of the file is
displayed.

Step 8: Right-click the RegistrationLib reference and select Properties. Examine the
properties window (shown in Figure 6-4). Notice in particular that it contains
the directory path of the library’s DLL file, and a runtime version number. If
we were to release an update to our library, we would modify the runtime ver-
sion number so programmers using our library would be able to verify that
they were using the correct version.

296 Chapter 6 Advanced Classes

Figure 6-4 Reference properties window

Step 9: Open the code window of the application’s startup form and declare the fol-
lowing Student variable at the class level:

Private aStudent As New RegistrationLib.Student(10,
RegistrationLib.YearLevel.LowerDivision, 2.75,
RegistrationLib.AcademicStatus.Normal)

This statement calls the Student constructor, passing to it the four required
parameters. Notice how the Student class name must be preceded by the Reg-
istrationLib namespace. The same is true for the two enumerated types.
Clearly, this type of coding gets tedious, so you can add an Imports statement
to the form.

Step 10: Insert the following statement on the very first line of the code file:

Imports RegistrationLib

Step 11: Simplify the variable declaration by removing the namespace from each class
and enumerated value.

Private aStudent As New Student(10, YearLevel.LowerDivision, 2.75,
AcademicStatus.Normal)

Summary

This tutorial represented the first step in setting up a component that is accessed from
another application. We simplified the process by creating both applications as projects
within the same Visual Studio solution. You can also reference a component anywhere
on your computer or on a network by connecting to a DLL file. In future tutorials, you
will add another class to this component.

6.2 Components 297

References Outside the Current Solution
Sometimes you may need to reference a component from outside a Visual Studio solution.
In fact, you can reference a library anywhere on your computer or on a network. Here’s
what to do:

1. Create a new Windows Forms application in its own Visual Studio solution.
2. Right-click the project name and select Add Reference. The Add Reference dialog win-

dow will appear, as shown in Figure 6-5. Click the Browse tab. Use the browser tool
to find the RegistrationLib.dll file, most probably located in the bin\Debug folder of
the RegistrationLib project from Tutorial 6-1. Select the file and click the OK button
to close the dialog.

3. Verify that the reference was added by opening the My Project window and selecting
the References tab.

If a component’s location changes, you must remove it from your project’s references list.
Then you can add it again, with the correct location. To remove a component reference from
an application, open the My Projects window, select References, and select the component
name from the list. Click the Remove button, or press the Del key. Then you can click the
Add button to add the new reference.

In Tutorial 6-2, you will add another class to the RegistrationLib component.

Figure 6-5 Adding a reference to a component DLL file

Tutorial 6-2:
Adding an Advisor class to the RegistrationLib component

In this tutorial, you will add a class named Advisor to the RegistrationLib component.
This class will evaluate the number of college credits a student may take, based on cri-
teria such as grade point average, student status, and student year level.

298 Chapter 6 Advanced Classes

Tutorial Steps

Step 1: Open the solution file that you created in Tutorial 6-1. The file should be
named Registration Library.sln. After opening the solution, verify that it con-
tains two projects: (1) RegistrationLib, and (2) Registration UI. If either is
missing, right-click the solution name, select Add, select Existing Project, and
select the project’s .vbproj file.

Step 2: Add a class named Advisor.vb to the RegistrationLib project.

Step 3: Insert the following declarations into the class:

Enum SemesterType
Fall
Spring
Summer_A
Summer_B

End Enum

Private Shared ReadOnly regDates() As String =
{''Aug 15'', ''Dec 10'', ''April 15'', ''May 30''}

You have declared an enumerated type that lists each of the college-year
semesters (these vary from one college to another). Also, you have declared an
array of student registration dates, one for each semester.

Step 4: Insert the following shared method that returns a single registration date,
based on the value of its SemesterType argument:

Public Shared ReadOnly Property RegistrationDate(
ByVal semester As SemesterType) As String

Get
Return regDates(semester)

End Get
End Property

The Shared qualifier is used throughout this class because users will not need
to create an instance of the Advisor class.

Step 5: Create the following method named MaxCredits, which determines the max-
imum number of credits a student can take, depending on the student’s situa-
tion (year in school, academic status, and grade point average):

Public Shared Function MaxCredits(
ByVal aStudent As Student) As Integer
With aStudent

Select Case .Status
Case AcademicStatus.Probation

Return 6
Case AcademicStatus.Warning

If .Level = YearLevel.LowerDivision Then
Return 6

ElseIf .Level = YearLevel.UpperDivision Then
Return 9

ElseIf .Level = YearLevel.Graduate Then
Return 7

End If
Case AcademicStatus.Normal

If .Level = YearLevel.LowerDivision Then
If .GradeAverage > 2.5 Then

Return 12

6.2 Components 299

Else
Return 10

End If
ElseIf .Level = YearLevel.UpperDivision Then

Return 18
ElseIf .Level = YearLevel.Graduate Then

Return 14
End If

Case AcademicStatus.Honors
If .Level = YearLevel.LowerDivision Then

Return 18
ElseIf .Level = YearLevel.UpperDivision Then

Return 22
ElseIf .Level = YearLevel.Graduate Then

Return 22
End If

End Select
End With
Return 0

End Function

The MaxCredits method is a little long because it implements a series of hypo-
thetical college rules regarding the advising of students. (We make no claim as
to the validity of these rules.) In any event, this is precisely the type of code
that we would not want to rewrite in each application related to student reg-
istration. Instead, we put this code in a component, test and debug it once,
and use the component in as many applications as we wish.

If the rules shown in Step 5 were to change in the future, we could modify the
component, test it again, and release it with a new version number.

Step 6: Add the CanRegister method to the class. It receives a Student object and
returns a Boolean value that indicates whether or not the student can register.
The Student object (named aStudent) contains a Credits property that indi-
cates the number of credits the student would like to enroll in during the com-
ing semester.

Public Shared Function CanRegister(
ByVal aStudent As Student) As Boolean
Return aStudent.Credits <= MaxCredits(aStudent)

End Function

The student can enroll in the desired number of credits as long as he or she
does not exceed the maximum number of allowed credits for someone in his
or her situation.

Step 7: Save and build the component.

In Tutorial 6-3, you will add code to the Registration UI application that calls
methods in the Advisor and Student classes.

Tutorial 6-3:
Using the Advisor and Student classes

In this tutorial, you will add code to the Registration UI application that lets it call meth-
ods in the Advisor and Student classes belonging to the RegistrationLib component.

300 Chapter 6 Advanced Classes

Tutorial Steps

Step 1: Open the solution file that you modified in Tutorial 6-2. The file should be
named Registration Library.sln.

Step 2: In the Registration UI project, open the startup form and insert the named
controls listed in Table 6-1 and displayed in Figure 6-6. You will also add
descriptive labels.

Figure 6-6 User interface for the Registration UI application

Step 3: Open the form’s code window and delete the following statement:

Private aStudent As New Student(10, YearLevel.LowerDivision, 2.75,
AcademicStatus.Normal)

Step 4: Create the following Click handler for the Check button:

1: Private Sub btnCheck_Click() Handles btnCheck.Click
2: Try
3: Dim credits As Integer = CInt(txtCredits.Text)
4: Dim level As YearLevel = CType(cboYearLevel.

Table 6-1 Controls in the Registration UI application

Control Type Control Name Properties

Form (default) Text: Registration User Interface
Font.Size: 10pt

ComboBox cboYearLevel Items: Lower division, Upper
division, Graduate

ComboBox cboAcademicStatus Items: Honors, Normal, Warning,
Probation

TextBox txtGradeAverage

TextBox txtCredits

Button btnCheck Text: Check

Label lblResult AutoSize: False

BorderStyle: Fixed3D

6.2 Components 301

5: SelectedIndex, YearLevel)
6: Dim gpa As Double = CDbl(txtGradeAverage.Text)
7: Dim status As AcademicStatus = CType(cboStatus.
8: SelectedIndex, AcademicStatus)
9:
10: Dim aStudent As New Student(credits, level, gpa, status)
11:
12: If Advisor.CanRegister(aStudent) Then
13: lblResult.Text = ''The student can register!''
14: Else
15: lblResult.Text = ''The student cannot register '' _
16: & "for so many credits. Maximum = '' &_

Advisor.MaxCredits(aStudent)

17: End If
18:
19: Catch ex As Exception
20: lblResult.Text = ''Please check all input fields''
21: End Try
22: End Sub

Lines 3–8 collect Student field information from the form’s controls. The
combo boxes are set up so their SelectedIndex values exactly match the order
of the YearLevel and AcademicStatus enumerated types. Line 10 creates a Stu-
dent object from the values entered by the user. Line 12 calls the CanRegister
method from the Advisor class in the RegistrationLib component. It is a
shared method, so it can be invoked using the class name (as in Advisor.
CanRegister).

If CanRegister returns False, lines 15–16 build a response message that
includes the maximum number of credits the student is permitted to take.
Notice that it calls MaxCredits to get this information.

Step 5: Run the application and enter the values shown in Figure 6-7. When you click
the Check button, the output should appear as it does in the figure.

Figure 6-7 Testing the Registration UI application

302 Chapter 6 Advanced Classes

Summary

More testing needs to be done on this application to verify its accuracy. Rather than
doing it manually, we will wait until later in this chapter to show how we can use auto-
mated testing to achieve the same result.

Checkpoint

1. What is a synonym for component?

2. What is the major advantage to using class libraries?

3. Which page in the My Project window identifies which components are used by an
application?

4. Which statement in the code window of a client application simplifies references to
component classes?

6.3 Unit Testing
In Chapter 1, you learned how important it is to test your software. Software engineers have
found that testing is very effective when it is an integral part of the development process.
One conventional approach to testing and debugging has been to begin testing at the end of
a project after all code is written. But that approach can create a lot of stress and result in
errors. Strict deadlines often force an application to be released before all defects are found.
A test/debug cycle at the end of a project often follows this pattern:

1. A bug (also known as a defect) is found by a tester, and added to a list of known bugs.
2. A programmer attempts to reproduce all known bugs while stepping through the code

with a debugger. This may take some time because the application is large, and many
steps may be involved.

3. The programmer fixes all known bugs by modifying the project’s source code.
4. The software tester tests the application again to verify that all known bugs are fixed.

In doing so, the tester discovers new bugs that were caused when the code was modi-
fied in Step 3.

5. Steps 2–4 are repeated until (1) no more bugs are found, or (2) the product’s release
deadline has been reached.

Step 3 is often complicated by the fact that the programmer may have written the applica-
tion code many months before and may not remember many details. This makes the code
harder to fix. All too often, software is released with undiscovered bugs, leaving the cus-
tomers to find them.

Naturally, developers using this approach may work extremely long hours near the end of a
project. To complicate matters, managers may be tempted to add some last-minute features
to the application to keep up with products released by competing companies. Many com-
mercial software products are revised every few months, making this traditional testing
model difficult to follow.

Continuous Software Testing
A fairly recent trend in software development uses a methodology known as continuous
software testing, which requires programmers to test new code immediately, as soon as
it is added to a project. Particularly when software must be created in short development

6.3 Unit Testing 303

cycles (to keep up with the competition), applications must be nearly defect-free all the
time. Therefore, a significant amount of time is invested in testing while the application
is being written. Then when a new version of the application is about to be released, its
code has already been tested. Near the release deadline, some amount of manual testing
must still be done, but fewer defects are found than if testing had begun at the end of the
project.

But don’t well-disciplined programmers test their own code? Yes, many programmers
manually test their own code, as you (hopefully) did in Chapters 1–5. At the same time,
they may be under pressure to write more code that will move the product closer to a fin-
ished state. As a result, programmers usually do not redo a long sequence of manual tests
every time they add a small amount of code to an application.

A central principle of continuous software testing is that you must rerun all existing tests as
soon as you modify the application’s source code. This type of testing is known as regression
testing. But here’s a basic problem—if regression testing were performed using manual tests,
as you did in Chapter 1, a company would need an army of human testers to validate even
a medium-size application. So it makes sense to let a computer do the testing instead, using
a practice known as automated testing.

Automated Unit Tests
An automated test is a program that executes all or part of an application without input
from a live user. There are different types of automated tests, but we will focus on just one
type that is very easy to learn. A unit test is a method that executes and tests a single unit of
code (such as a method) in an existing application. The unit test is designed to verify that
the code being tested is working correctly.

Let’s use an example from computer hardware. Desktop computers are assembled from dif-
ferent components such as motherboards, power supplies, memory chips, and a central pro-
cessing unit (CPU). If you’ve tried this, you know how important it is that each component
has already been tested. Then, when assembling the computer, you have only to do some
final tests to verify that the components are compatible with each other (known as
integration testing). Similarly, when creating a Visual Basic application, you can be sure that
the TextBox, ListBox, and other controls have been used and tested by a great many people.
That allows you to focus on your application code, without having to worry that the con-
trols themselves might be defective.

Programmers usually write a series of unit tests at the same time they write the application
that is being tested. They run the unit tests immediately, and if a test fails, they fix the appli-
cation code before rerunning the test. In fact, when any new code is added to an application,
all of the existing unit tests are run again to verify that the new code has not caused one of
the tests to fail.

A central philosophy of unit testing can be expressed by the phrase pay as you go, rather
than paying at the end. In other words, the time you invest in creating unit tests while devel-
oping an application saves you lots of testing and debugging time at the end of a project.

Unit Testing Basics

Unit testing falls under the general category of white box testing. This type of testing visu-
alizes the application as a transparent box, permitting the tester to view all of the source

304 Chapter 6 Advanced Classes

code of the class being tested. In contrast, black box testing is used when the tester cannot
view the source code of an application being tested. The application is like an opaque box
into which one can only pass inputs and view outputs.

Each unit test is designed to test one particular code unit of an application. The unit being tested
is usually a property or method. It is customary to create numerous unit tests for the same class.

When a unit test fails, it stops executing and returns immediately. In other words, it behaves
as if it were throwing an exception. If the test contains any method calls following the point
of failure, you will not know if they would have executed successfully. For that reason, each
unit test should test just one method in the application being tested.

Unit tests do not run in any particular sequence. Each unit test should be independent of all
other unit tests. Do not create dependencies between unit tests, so that, for example, the out-
come of unit test B depends on the successful completion of unit test A.

Design your unit tests so they completely exercise your application’s code. The goal is to
have 100 percent code coverage of the class or method being tested. If the method contains
nested If statements, for example, you should devise a unit test for each possible branch.

Unit tests are usually executed by a utility program known as a test engine. As it executes each
test method, it reports the success or failure of the test in a visual display. It also stores infor-
mation about which line of code was executing when the test failed, the time and date, and
the data values that were being compared at the time. This information helps the person read-
ing the output to pinpoint the source of the error that caused the test to fail. Some well-known
test engines are MBUnit, NUnit, JUnit, and, of course, the Visual Studio test engine.

Unit Testing in .NET
Unit testing in .NET is supported by classes in the Microsoft.VisualStudio.TestTools.UnitTesting
namespace. Visual Studio provides excellent support for unit testing. This is the basic work-
ing sequence you will follow:

1. Create a set of classes for your application that contain your program logic and basic
operations. These classes are not forms, so they have no user interface.

2. Create a Visual Studio test project, which is automatically configured to run unit tests.
3. Add one or more unit tests to your test project. Each unit test identifies the class in

your application that you wish to test. You can, if you wish, choose to test only cer-
tain methods and properties in the class.

4. Run the automated testing tool from the Visual Studio menu. You are shown a report
that lists the outcome of each test—whether it completed as expected or it failed by
producing the wrong output.

Creating a Test Project

To add a test project to the current Visual Studio solution, right-click the solution name,
select Add, and select New Project. In the Add New Project window, which is shown in
Figure 6-8, select Test Documents under the Test Projects heading. Select the Test Project
template, give it a name, and click the Add button.

Running a Test

To run one or more unit tests, select the Test menu, select Run, and select either All Tests in
Solution or Tests in Current Context. Before making the latter selection, you should select a
test project, test class, or test method. The test output will appear in the Test Results win-
dow. A green circle containing a check mark will appear next to the name of each test
method that passes.

6.3 Unit Testing 305

Figure 6-8 Adding a Test Project to the current Visual Studio solution

Running a Test in Debug Mode

To run a test in debug mode, wet a breakpoint inside the test that you wish to debug. Then,
from the Test menu, select Debug and select Tests in Current Context.

Unit Testing Attributes

The .NET languages use attribute names to identify classes and methods that are unit tests.
It does this so Visual Studio can identify and execute the tests when requested by the user.
The two most common attribute names are TestClass and TestMethod:

• <TestClass()>—Identifies a class that contains unit tests.
• <TestMethod()>—Identifies a method that performs a unit test by executing methods

in the application class.

These attribute names appear at the beginning of a class or method declaration. For exam-
ple, the following statement declares a class for unit testing named AccountTest:

<TestClass()> Public Class AccountTest

The following statement declares a method that will be executed as a unit test:

<TestMethod()> Public Sub AccountConstructorTest()

A unit test method normally produces a Boolean return value that indicates whether the test
passed or failed. It does this by calling one of the Assert class methods. For example, the fol-
lowing statement returns True if the values in the expected and actual variables were equal:

AreEqual(expected, actual)

Later in this section, we will talk about the Assert class methods in more detail. The
AreEqual method is used 90 percent of the time. In Tutorial 6-4, you will create your first
unit test.

306 Chapter 6 Advanced Classes

Tutorial 6-4:
Creating a Unit Test project

In this tutorial, you will create unit tests for a class that finds the largest value in an array
of integers. You will create two projects. The first will contain a class named IntArray,
which performs operations on an array of integers. This is the class that will be tested.
The second project will be a test project that contains a class named IntArrayTest that
performs tests by calling methods in the IntArray class. When you tell Visual Studio to
run the unit tests, it will execute each method in the IntArrayTest class. Figure 6-9 con-
tains a diagram that expresses the relationships between these two classes.

Figure 6-9 Relationships between the IntArray and IntArrayTest classes

Tutorial Steps

Step 1: Create a Class Library project named ArrayLib.

Step 2: Add a class file to the library named IntArray.vb. It should contain a property
that holds an array of integers, and a method named GetLargest.

Public Class IntArray
Public Property Data As Integer()

Public Function GetLargest() As Integer
Return Data(0)

End Function
End Class

When completed, the GetLargest method will return the element of the array
that has the largest value. For now, it returns only the first element of the
array.

Step 3: Next, you will create a test project named ArrayLib Test. In Solution
Explorer, select the solution name, right-click and select Add, then select
New Project. In the Add New Project window, select Test Projects, select
Test Documents, and select the Test Project template in the middle pane.
Name this project ArrayLib Test and click the OK button to close the dia-
log window.

Step 4: Next, you will add a unit test to the test project. In the Solution Explorer win-
dow, delete the existing .vb file inside the ArrayLib Test project. Then right-
click the project name, select Add, and select Unit Test. The Create Unit Tests
dialog will appear, as in Figure 6-10. Open up the tree below ArrayLib,
expand the entries and find the ArrayLib.IntArray class. Select the GetLargest
method and click the OK button to close the dialog.

creates
instance of

IntArrayTest
class

contains

that calltest methods

IntArray
class

contains

application
methods

6.3 Unit Testing 307

Figure 6-10 Creating a unit test for the ArrayLib.GetLargest method

Step 5: Next, you will edit the IntArrayTest class that was just created by Visual Stu-
dio. Open its source file and edit the code until it looks like this:

1: Imports Microsoft.VisualStudio.TestTools.UnitTesting
2: Imports ArrayLib
3:
4: <TestClass()> _
5: Public Class IntArrayTest
6:
7: <TestMethod()> _
8: Public Sub GetLargestTest()
9: Dim target As IntArray = New IntArray()
10: target.Data = {40, 16, 12, 22, 0, -33}
11: Dim expected As Integer = 40
12: Dim actual As Integer = target.GetLargest
13: Assert.AreEqual(expected, actual)
14: End Sub
15: End Class

The GetLargestTest method passes an array of integers to the IntArray class,
and then calls IntArray’s GetLargest method to see if it returns the right value.
Line 9 creates an instance of the IntArray class, which is the class we want to
test. Line 10 creates an array of integers and assigns it to the Data property
of the IntArray class. Line 11 sets expected to the largest value in the array,
40. Line 12 calls the IntArray.GetLargest method and stores the return value
in the variable named actual. Line 13 compares the expected and actual val-
ues by calling the Assert.AreEqual method. At this point, the test will either
pass or fail.

Notice the use of the TestClass and TestMethod attributes, which are required
markers for unit tests. Each method labeled as such will be executed by Visual
Studio’s test engine.

Step 6: Build the project. Next, you will run the unit test.

Step 7: From the Test menu, select Run, and then select All Tests in Solution. You
should see the Test Results window appear as in Figure 6-11, showing a green
dot next to the GetLargestTest method name. The green dot indicates that the
test passed, and the correct value was returned by the GetLargest method.

308 Chapter 6 Advanced Classes

Figure 6-11 Showing the results for a single unit test

Summary

At this point, one might imagine that the GetLargest method was correct. Or, were we
just lucky based on the arrangement of the numbers in the test array? You can inspect
the test data and the GetLargest method to answer that question. In Tutorial 6-5, you
will create more tests to determine whether GetLargest works correctly.

Tutorial 6-5:
Creating more unit tests for the IntArray class

Let us assume that the single test you created in Tutorial 6-4 for the GetLargest
method was not sufficient to verify that the method worked correctly. In this tuto-
rial, you will add more tests that properly test GetLargest and fix any defects you
might find.

Tutorial Steps

Step 1: Open the IntArrayTest class and examine its test method.

<TestMethod()> _
Public Sub GetLargestTest()

Dim target As IntArray = New IntArray()
target.Data = {40, 16, 12, 22, 0, -33}
Dim expected As Integer = 40
Dim actual As Integer = target.GetLargest
Assert.AreEqual(expected, actual)

End Sub

Step 2: Let’s rearrange the values in the test array to see if the order matters when
looking for the largest value. Make a copy of the method, rename it, and
change the line containing the array. The shaded line in the following code
needs to be modified:

<TestMethod()> _
Public Sub GetLargestTest_2()

Dim target As IntArray = New IntArray()
target.Data = {16, 40, 12, 22, 0, -33}
Dim expected As Integer = 40
Dim actual As Integer = target.GetLargest
Assert.AreEqual(expected, actual)

End Sub

6.3 Unit Testing 309

Step 3: Run all unit tests. A red circular icon should appear next to the new test in
the Test Results window, as shown in Figure 6-12. Double-click the line con-
taining this test, which will open the Test Details window, shown in Figure 6-13.
Of particular importance are the error message, which explains why the test
failed, and the stack trace, which contains a hyperlink that takes you to the
statement in the source code that was executing when the test failed. Another
interesting bit of information is the execution time, which can be useful if a
test fails after running an unusually long time.

Figure 6-12 Showing the results for both unit tests

Figure 6-13 Test Details window

The test’s error message indicates that the expected value was 40, but the
GetLargest method returned 16. Clearly, the position of the number 40 seems
to matter because the method fails to return the correct result when 40 is
moved to the second position. Let’s examine the code in GetLargest:

Public Function GetLargest() As Integer
Return Data(0)

End Function

Of course, we must add more code to this method! This type of mistake is
common because programmers often create an incomplete stub method
when designing a class. They always intend to complete the code, but they
often forget.

310 Chapter 6 Advanced Classes

Step 4: Revise the GetLargest method by writing some plausible-looking code:

Public Function GetLargest() As Integer
Dim largest As Integer
For i As Integer = 1 To Data.Length

If Data(i) > largest Then
largest = Data(i)

End If
Next
Return largest

End Function

The loop iterates through the array, comparing each element in Data(i) to
the variable named largest. Whenever a larger value is found in the current
array position, it is copied into largest. As you may have noticed, it contains
a bug.

Step 5: Run the tests again. This time, both tests generate exceptions, as shown in
Figure 6-14. You may already be able to identify the bug in this code, because
it is very simple. But more complex methods in actual applications are often
harder to fix, requiring you to trace them in the debugger.

Figure 6-14 Testing GetLargest after adding a loop to the method

Step 6: Set a breakpoint on the first line of GetLargest and run the tests in debug
mode. This is how to do it: From the Test menu, select Debug, and select All
Tests in Solution. When the debugger hits the breakpoint, inspect the value of
Data.Length. It should equal to 6. Open a Watch window and insert the vari-
ables i and largest. Step through the code and watch the values change.

Notice that when i = 6, the program throws an IndexOutOfRangeException.
Assuming that you were running the first test method (in which 40 was the
first array element), notice that largest was never assigned the value 40. So it
appears that the array index (i) should have started at 0 and ended at 5, which
is the last position in the array. The length of the array could be different each
time GetLargest is called, so let’s end the loop at Data.Length – 1.

Step 7: Revise the GetLargest method as shown:

Public Function GetLargest() As Integer
Dim largest As Integer
For i As Integer = 0 To Data.Length - 1

If Data(i) > largest Then
largest = Data(i)

End If
Next
Return largest

End Function

6.3 Unit Testing 311

Step 8: Run the tests again, see that they pass, and celebrate your success for a few seconds.

Are you convinced that you have thoroughly tested the GetLargest method?
Perhaps not. Let’s create some more tests that change the length of the array,
reorder the elements, and include some duplicate values.

Step 9: Insert the following test methods and run the tests again:

<TestMethod()> _
Public Sub GetLargestTest_3()

Dim target As IntArray = New IntArray()
target.Data = {12, 16, 45, 12, 22, 0, -33}
Dim expected As Integer = 45
Dim actual As Integer = target.GetLargest
Assert.AreEqual(expected, actual)

End Sub

<TestMethod()> _
Public Sub GetLargestTest_4()

Dim target As IntArray = New IntArray()
target.Data = {16, 40, -33, 40, 0, 12, 22, 0, 49}
Dim expected As Integer = 49
Dim actual As Integer = target.GetLargest
Assert.AreEqual(expected, actual)

End Sub

<TestMethod()> _
Public Sub GetLargestTest_5()

Dim target As IntArray = New IntArray()
target.Data = {0, 0, 0, 1, 1, 1, 0, 0, 0}
Dim expected As Integer = 1
Dim actual As Integer = target.GetLargest
Assert.AreEqual(expected, actual)

End Sub

All the tests pass, so we might be tempted to declare that GetLargest is cor-
rect. But it still contains a serious flaw, which further tests can uncover.

Step 10: Add a test for an array containing all negative integers. The largest value should
equal �5.

<TestMethod()> _
Public Sub GetLargestTest_6()

Dim target As IntArray = New IntArray()
target.Data = {-5, -6, -33, -42, -10}
Dim expected As Integer = -5
Dim actual As Integer = target.GetLargest
Assert.AreEqual(expected, actual)

End Sub

This test fails, with the following message: Assert.AreEqual failed.
Expected:<�5>. Actual:<0>. If you trace the code in the debugger, you’ll find
that the Boolean condition in the If statement is never true, so largest remains
equal its default value, 0.

If Data(i) > largest Then ' Never equals True
largest = Data(i)

End If

Therefore, largest was never explicitly initialized by our code, and it defaulted
to the value 0. This is a common mistake when coding this algorithm. Let’s
fix it by initializing largest to the first value in the array.

312 Chapter 6 Advanced Classes

Step 11: Revise the second line of GetLargest by initializing it to the value in the first
array element:

Public Function GetLargest() As Integer
Dim largest As Integer = Data(0)
For i As Integer = 0 To Data.Length - 1

If Data(i) > largest Then
largest = Data(i)

End If
Next
Return largest

End Function

We could also choose to change the starting value of i in the loop, but let’s
leave it for now.

Step 12: Run the tests again. All tests pass!

Step 13: Let’s create what is known as a degenerate test case by passing an empty array.
It’s not clear what value the expected variable should contain, so you can set
it to 0. Add the following test method:

<TestMethod()> _
Public Sub GetLargestTest_7()

Dim target As IntArray = New IntArray()
target.Data = {}
Dim expected As Integer = 0
Dim actual As Integer = target.GetLargest
Assert.AreEqual(expected, actual)

End Sub

Step 14: Run the tests again and notice that the new test generates an IndexOut-
OfRangeException. Of course, that makes sense when we look at the second
line of GetLargest:

Dim largest As Integer = Data(0)

An empty array doesn’t have a value at index position 0, so we cannot ini-
tialize largest to the first array element. Instead, we can initialize largest to the
smallest value an integer could ever have, known as Integer.MinValue (defined
in the .NET library). Then we will expect that value to be returned if the unit
test passes an empty array to GetLargest.

Step 15: Revise the second line of the GetLargest method:

Public Function GetLargest() As Integer
Dim largest As Integer = Integer.MinValue
For i As Integer = 0 To Data.Length - 1

If Data(i) > largest Then
largest = Data(i)

End If
Next
Return largest

End Function

Step 16: Modify the GetLargestTest_7 method by replacing the following line:

Dim expected As Integer = 0

with this line:

Dim expected As Integer = Integer.MinValue

6.3 Unit Testing 313

Step 17: Run the tests again. Now, finally, all the tests pass. It appears that we’ve
finally written and tested a completely bulletproof version of GetLargest.

What if the array passed to the Data property of the IntArray class were null (Nothing)?
Then we could expect an exception to be thrown. But we won’t fix that right now.

Summary

We hope that you can see from this tutorial that even the most trivial bit of code has
the potential to contain undiscovered errors. The unit tests you created were able to
uncover and fix the errors in the GetLargest method that may not have been obvious
when reading the code. As a chapter exercise, we will ask you to add two more meth-
ods to the IntArray class (GetSmallest and GetMedian) and write accompanying sets of
unit tests.

Grouping and Viewing Unit Tests
Visual Studio was designed to be easy for students to use, but it also has features that ben-
efit professional developers. Developers can use tools to manage large numbers of unit
tests and view the results of previous tests. They can also copy a test result to the Win-
dows clipboard, paste it into an email message, and send it to another person on the devel-
opment team.

Test List Editor

When you are testing more than one class, the Test List Editor is a useful tool for managing
lists of tests and setting individual test properties. To display the window, select Test from
the menu, then select Windows, and select Test List Editor. The window shown in Figure 6-15
has three selections in the left-hand pane. You can display lists of tests that have been pre-
defined, tests that have not yet been added to a list, and all tests.

Figure 6-15 The Test List Editor window

In the right-hand pane, you can click the hyperlink to add a new test. The Create New Test
List window appears, and you can define a new list, as is being done in Figure 6-16. After
defining a list, you can return to the Tests Not in a List pane and drag test names onto your
new list, shown under the Lists of Tests heading. You can also select a group of tests and
drag them all at once. Once you have assigned tests to lists, the list names will appear in the
All Loaded Tests pane, shown in Figure 6-17.

314 Chapter 6 Advanced Classes

Figure 6-16 Adding a new test list to the Test List Editor

Figure 6-17 Viewing all loaded tests

If you want to run only the tests belonging to a list, place a check mark next to a list in the
Test List Editor, and then click the Run Checked Tests button on the editor’s toolbar.

Viewing Prior Test Results

Visual Studio saves the results of each test for later review in the Test Results window. If you
select the All option from the dropdown list in the window’s toolbar, you can view all recent
test runs. Figure 6-18, for example, shows all recent runs of the GetLargestTest_6 method.
You can double-click any test to get details about when the test was run, how it failed, and
so on.

If you have grouped your unit tests into test lists, you can sort and group them by list name
in the Test Results window, shown in Figure 6-19. Our example contains two test lists:
GetLargest Method Tests and MaxCredits Tests.

All unit test results are stored in a file having the extension .vsmdi. You can find it in
the Solution Items folder in the Solution Explorer window. You could run your tests
and email this file to your class instructor, for example. The file can be opened in Visual
Studio.

6.3 Unit Testing 315

Figure 6-18 Viewing a test history

Figure 6-19 Viewing test results grouped by test list name

Assert Class Methods
An assertion is an expression that must be true for a program to continue. An assertion can
be used to validate a method’s input parameter, for example, if the parameter absolutely
must conform to some requirement (such as being greater than 0). The designers of .NET
unit testing framework decided to use assertions to signal whether unit tests pass or fail.

The Assert class contains a set of methods that are designed to execute within unit tests. You
have already seen how the Assert.AreEqual method checks to see if two values are equal.
Table 6-2 contains a list of the more commonly used Assert methods. These methods are
shared (static) methods, so you call them using the Assert class name as the prefix, as in
Assert.AreEqual. You cannot create an instance of the Assert class.

The Assert methods are overloaded with many different parameter lists. If you are compar-
ing integers or strings, call AreEqual and pass it two values:

Assert.AreEqual(expected, actual)

Comparing Floating-Point Values

Comparing floating-point values for equality must be done in a special way because the com-
puter’s processor rounds the results of floating-point calculations. Values that should be equal fre-
quently differ by a very small amount. Therefore, when comparing Single, Double, or Decimal

316 Chapter 6 Advanced Classes

expressions, pass a third parameter to the Assert.AreEqual method that represents the maxi-
mum difference between the first two parameters that would still permit them to be considered
equal. In the following example, if expected = 4.76 and actual = 4.77, the assertion succeeds.

Assert.AreEqual(expected, actual, 0.01)

But if expected = 4.76 and actual = 4.78, the assertion fails because their difference is larger
than .01.

The Assert.AreNotEqual method is an assertion that fails if the first two parameters contain
equal values. In the following example, if expected = 4.76 and actual = 4.77, the assertion
fails because the values are just equal enough.

Assert.AreNotEqual(expected, actual, 0.01)

Comparing Object Values

If you pass objects to the AreEqual or AreNotEqual methods, the classes represented by
these objects must override the Equals method. For example, we compare two Account
objects in the following code:

Dim X As New Account(30024,''Smith'')
Dim Y As New Account(10023,''Smith'')
Assert.AreEqual(X, Y)

Table 6-2 Assert Class Methods

Method Name Description

AreEqual(expected, actual) Checks to see if expected is equal to actual. Fails
otherwise.

AreEqual(expected, actual, diff) Checks to see if the difference between expected
and actual is less than or equal to diff. Fails
otherwise.

AreNotEqual(expected, actual) Checks to see if expected is not equal to actual.
Fails otherwise.

AreNotEqual(expected, actual, diff) Checks to see if the difference between expected
and actual is larger than diff. Fails otherwise.

AreSame(expected, actual) Checks to see if expected and actual refer to the
same object. Fails otherwise.

AreNotSame(expected, actual) Checks to see if expected and actual do not refer
to the same object. Fails otherwise.

Fail(message) Fails the assertion without checking any condition,
passing a message.

IsFalse(boolExpression) Checks to see if boolExpression is False. Fails
otherwise.

IsTrue(boolExpression) Checks to see if boolExpression is True. Fails
otherwise.

IsNull(object) Checks to see if object is null (Nothing). Fails
otherwise.

IsNotNull(object) Checks to see if object is not null (Not Nothing).
Fails otherwise.

6.3 Unit Testing 317

If the Account.Equals method were to compare accounts by their ID numbers, the assertion
above would fail. On the other hand, if Account.Equals compared accounts by their names,
the same assertion would pass. If you want to read more about overriding the Equals
method, refer to Section 3.2 in Chapter 3.

Executing an Assert Method

This is how an Assert class method executes:

• If the assertion succeeds, the test method continues on to the next line.
• If the assertion fails, the test method throws an AssertFailedException, passing infor-

mation about the values that were different. The test engine catches the exception and
signals that the test has failed.

If a test method completes normally with no assertion failures, the test is flagged as success-
ful by the Visual Studio test engine.

There is an important point to be made about Assert methods: If you call more than one of
them within the same test method, the first one that fails will cause the test to fail immedi-
ately. No other Assert methods after that will execute, so you won’t be able to tell which
ones might have failed.

Adding Tests to an Existing Application
Developers are frequently called on to create unit tests for existing applications. Depending
on how the code was structured, this may not be easy. Ideally, the existing code should be
factored into methods that each focus on a single task. We say that such methods are highly
cohesive.

If at all possible, each unit test should test only a single method in the application class.
When a test fails, it is important for you to know exactly which application method failed
to return the correct value. If you were to combine several method calls into a single test, the
method calls past the failure point would not execute.

In Tutorial 6-6, you will test the Advisor.MaxCredits method of the RegistrationLib
component.

Tutorial 6-6:
Testing the Advisor.MaxCredits method

Earlier in this chapter, we created a component named RegistrationLib that contained
two classes: Student and Advisor. In this tutorial, you will create unit tests to verify the
accuracy of the MaxCredits method in the Advisor class.

One of the realities of the software business is that as soon as an application is pub-
lished, it becomes eligible for revision and improvement. We will assume that the
MaxCredits method in the Advisor class must be revised, according to new criteria
listed in Table 6-3. Therefore, we know that the existing application will not produce
the correct output. In this tutorial, you will devise tests that identify changes that must
be made to the MaxCredits method. Notice that many cells in this table are empty.
They indicate that the particular property value is not used in the determination of
MaxCredits.

318 Chapter 6 Advanced Classes

Tutorial Steps

Step 1: Add a default constructor to the Student class. This constructor will simplify
the testing process by letting you create Student objects with only the proper-
ties needed for a particular test.

Public Sub New()
End Sub

Step 2: Next, add a Test Project named Test RegistrationLib to the current solution.

Step 3: In the test class, create a test method that tests the first row of Table 6-3,
which relates to students on academic probation.

1: <TestMethod()> _
2: Public Sub MaxCreditsTest_Probation()
3: Dim aStudent As New Student
4: aStudent.Status = AcademicStatus.Probation
5: Dim expected As Integer = 6
6: Dim actual As Integer = Advisor.MaxCredits(aStudent)
7: Assert.AreEqual(expected, actual)
8: End Sub

The expected value, 6, is taken from the Max Credits column of Table 6-3.

Step 4: Create the following test method, which tests for a lower division student with
Warning status and a grade average greater than 2.0:

<TestMethod()> _
Public Sub MaxCreditsTest_Warning__LD_1()

Dim aStudent As New Student
With aStudent

.Status = AcademicStatus.Warning

.Level = YearLevel.LowerDivision

.GradeAverage = 2.01
End With
Dim expected As Integer = 12
Dim actual As Integer = Advisor.MaxCredits(aStudent)

Table 6-3 Revised registration criteria, RegistrationLib

Row
Number Academic Status Year Level Grade Average Max Credits

1 Probation 6

2 Warning LowerDivision > 2.0 12

3 Warning LowerDivision 2.0 6

4 Warning UpperDivision > 2.2 10

5 Warning UpperDivision 2.2 8

6 Warning Graduate 7

7 Normal LowerDivision > 2.5 16

8 Normal LowerDivision 2.5 12

9 Normal UpperDivision 18

10 Normal Graduate 14

11 Honors 3.0 22

12 Honors < 3.0 16

6.3 Unit Testing 319

Assert.AreEqual(expected, actual)
End Sub

This test is based on row 2 of Table 6-3, so we set three properties for this stu-
dent. When a test class contains a large number of tests, it is often useful to
use a consistent naming scheme for the test methods. One approach is to num-
ber them consecutively. Another approach, which we have used, is to chose
names that suggest what is being tested (LD for lower division students,
Warning for students on academic warning).

Step 5: Add the following test method, which tests for a lower division student with
Warning status and a grade average equal to 2.0:

<TestMethod()> _
Public Sub MaxCreditsTest_Warning__LD_2()

Dim aStudent As New Student
With aStudent

.Status = AcademicStatus.Warning

.Level = YearLevel.LowerDivision

.GradeAverage = 2.0
End With
Dim expected As Integer = 6
Dim actual As Integer = Advisor.MaxCredits(aStudent)
Assert.AreEqual(expected, actual)

End Sub

Step 6: Run all the unit tests. The output, shown in Figure 6-20, shows that two tests
passed and one failed.

Figure 6-20 Running the first three MaxCredits tests

It seems that the MaxCreditsTest_Warning_LD_1 test failed because it
expected MaxCredits to return a value of 12 for a lower division student with a
Warning status and grade average greater than 2.0. Instead, MaxCredits returned
6. Let’s examine the relevant source code lines from the MaxCredits method in
the Advisor class.

Case AcademicStatus.Warning
If .Level = YearLevel.LowerDivision Then

Return 6

Clearly, the code does not take the student’s grade average into account. So let’s
revise the code in a way that is consistent with rows 2 and 3 of Table 6-3.

Case AcademicStatus.Warning
If .Level = YearLevel.LowerDivision Then

If .GradeAverage > 2.0 Then
Return 12

Else
Return 6

End If

320 Chapter 6 Advanced Classes

Step 7: Run the tests again. They should all pass. Our new code worked, and we did
not create errors in any existing code, as far as the tests show.

Step 8: Create the following test method, which tests for an upper division student
with a warning status and a grade average greater than 2.2. It tests row 4 of
Table 6-3.

<TestMethod()> _
Public Sub MaxCreditsTest_Warning__UD_1()

Dim aStudent As New Student
With aStudent

.Status = AcademicStatus.Warning

.Level = YearLevel.UpperDivision

.GradeAverage = 2.21
End With
Dim expected As Integer = 10
Dim actual As Integer = Advisor.MaxCredits(aStudent)
Assert.AreEqual(expected, actual)

End Sub

Step 9: Create the following test method, which tests for an upper division student with
a warning status and a grade average equal to 2.2. It tests row 5 of Table 6-3.

<TestMethod()> _
Public Sub MaxCreditsTest_Warning__UD_2()

Dim aStudent As New Student
With aStudent

.Status = AcademicStatus.Warning

.Level = YearLevel.UpperDivision

.GradeAverage = 2.2
End With
Dim expected As Integer = 8
Dim actual As Integer = Advisor.MaxCredits(aStudent)
Assert.AreEqual(expected, actual)

End Sub

Step 10: Run all the tests. The new tests will fail, of course, because the MaxCredits
method needs to be revised.

Step 11: Next, you will run the test in debug mode to discover which lines are pro-
ducing the incorrect result. Set a breakpoint on the following line in the
MaxCreditsTest_Warning__UD_1 method:

Dim actual As Integer = Advisor.MaxCredits(aStudent)

Step 12: Run the test in debug mode. When the debugger stops at your breakpoint,
step into the call to MaxCredits. You should reach the following lines, which
show that all upper division students with warning status can take a maxi-
mum of 9 credits:

ElseIf .Level = YearLevel.UpperDivision Then
Return 9

Step 13: Stop the debugger. Without reading beyond this point, look at rows 4 and 5
in Table 6-3, and decide how you wish to fix this error.

Step 14: Run the tests again. Did they all pass? If not, check the code you inserted
against the following code, which distinguishes between students having dif-
ferent grade averages:

ElseIf .Level = YearLevel.UpperDivision Then
If .GradeAverage > 2.2 Then

6.3 Unit Testing 321

Return 10
Else

Return 8
End If

Step 15: Run the tests again, and verify that they all pass.

Summary

At first, it seems like a lot of work to create a different unit test for each set of inputs.
It is fairly easy, however, to copy one of these methods to the Windows clipboard, paste
the copy, and make minimal changes. Also, remember the essential philosophy of unit
testing: Pay as you go, rather than paying at the end. In other words, the time you invest
in creating unit tests saves you much more time at the end of a project when you would
normally be stuck in a recurring cycle of find errors, fixing them, discovering new
errors, fixing them, and so on.

At this point, you probably recognize a working pattern, which can apply to one or
more tests:

1. Create and run a test.
2. If the test fails, locate and correct the code in the class being tested that caused the

test to fail.
3. Run the test again.

We will ask you, in Programming Challenge 5, to create tests for all specifications in
Table 6-3, and apply corrections to the MaxCredits method until all the tests pass.

Summary
All too often, programmers create complex applications without creating adequate unit
tests. The potential number of errors in their code is so large that even counting them would
be difficult. We have all used software that contains defects, and we know how aggravating
that can be. In fact, few of us would be happy flying on an airliner whose flight control soft-
ware contained defects.

Unit tests are not the only tool used in software testing, but they are the easiest to learn. They
are also created by the people who know their code the best—the programmers.

Here’s a good reason to learn about automated software testing: Many entry-level jobs are
given to software testers. You may be fortunate enough to land a position that lets you
develop your coding skills, and also learn to use industry-standard software testing tools.

Checkpoint

5. What type of test executes all or part of an application without input from a live user?

6. What type of test executes test methods that run individual segments of an existing
application?

7. What is the practice of rerunning all existing tests as soon as you modify an
application’s source code?

8. What type of testing technique permits the tester to view all of the source code of
the class being tested?

9. What type of testing technique deals only with the application’s inputs and outputs
and does not permit the tester to see any of the application’s source code?

322 Chapter 6 Advanced Classes

6.4 Events
Events provide a signaling system for messages that must be broadcast to whomever is lis-
tening. For example, when you click the mouse on a button, the Windows operating system
notices the click, creates a Click event, and adds it to an event queue. If an application is lis-
tening for events, and if the button was within the application’s window, it handles the event.

In fact, Visual Basic applications handle many kinds of events, such as TextChanged, Load,
Keypress, and Click. In regard to event handling, the following actions are important:

• A class raises an event when it wants to send a signal that something has happened
• Another class handles an event when it responds to the event

So far, you have written methods that handle events. Now we will show you how to create
classes that raise events. You will learn how to define event types, raise events, and handle
these events.

Delegates, Events, and Handlers
A delegate is a template that describes the return type and parameter list for a related group
of event handler methods. For example, this is the delegate that .NET uses for button Click
handlers:

Public Delegate Sub EventHandler(sender As Object, e As EventArgs)

Once a delegate has been defined, a class can define the types of events that it plans to raise.
For example, this is the Click event type declared in the Button class; it is raised when a user
clicks a Button control:

Public Event Click As EventHandler

Once an event type has been declared in the Button class, any class that contains an instance
of the Button class can include event handlers. For example, the following is a Button.Click
event handler for a button named btnOk; its parameter list conforms to the pattern
described by the EventHandler delegate we saw earlier:

Private Sub btnOk_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnOk.Click

End Sub

The Handles keyword is important here because it ties the btnOk_Click method to a specific
event from the Button class.

WithEvents Qualifier

When an object is declared, you must preface it with a WithEvents qualifier in order to per-
mit it to raise events. This is the general format for a class-level variable that raises events:

Private WithEvents variableName As Type

When you put a Button control on a form, Visual Studio makes it possible for the button to raise
events. This, for example, is how a Button control is declared in the form’s designer code file:

Friend WithEvents btnOk As System.Windows.Forms.Button

The WithEvents qualifier means that btnOk can raise all events declared in the Button class,
including the Click event.

TIP: By default, the designer source files for a program’s forms are hidden. To make them
appear, click the Show All Files button in the toolbar of the Solution Explorer window.

6.4 Events 323

Another mouse event is MouseHover. A handler for this event uses the same delegate as the
Click event, but it has a different Handles clause:

Private Sub btnOk_MouseHover(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnOk.MouseHover

End Sub

Your own classes can raise events. You can use events to alert objects that an important field
in your class has changed value, an operation has completed, or some other important action
has taken place. In Tutorial 6-7, you will create a class that raises events.

Tutorial 6-7:
The WeatherStation Events application

In this tutorial, you will examine, test, and modify a short application that demonstrates
the raising and handling of events related to a simulated weather station. The
WeatherStation class simulates software attached to physical weather monitoring equip-
ment. It detects four types of weather conditions: normal, rain, snow, and lightning. The
class will raise a specific event for each of these conditions.

The application contains a startup form that tests the WeatherStation class. It declares a
WeatherStation object, and it contains event handlers that respond to events raised by
the object. Each event handler writes a message to the window, as shown in Figure 6-21.
The form uses a Timer control to call the MonitorTheWeather method every 2 seconds.

Figure 6-21 User interface for the WeatherStation Events application

Tutorial Steps

Step 1: Open the Weather Station Events project from the chapter examples.

Step 2: Run the application, and notice that the weather station display changes.
Close the application window.

Step 3: Open the source file for the WeatherStation class.

When adding events to a class, it’s considered good style to select names that
describe the types of events you want to raise. At runtime, when your class
raises these events, other classes can listen and respond. The WeatherStation
class defines a delegate named WeatherEvent that serves as a template for
events that pass no arguments and return nothing.

Public Delegate Sub WeatherEvent()

Next, the class declares all events it can raise, each having type WeatherEvent.

Public Event Normal As WeatherEvent
Public Event Raining As WeatherEvent
Public Event Snowing As WeatherEvent
Public Event Lightning As WeatherEvent

324 Chapter 6 Advanced Classes

Next, a random number generator is declared and is used by the ReadWeath-
erSensor method to simulate data returned by a physical weather sensor.

Private randGenerator As New Random

Private Function ReadWeatherSensor() As Integer
Return randGenerator.Next(4)

End Function

When the ReadWeatherSensor method returns an integer between 0 and 3, the
MonitorTheWeather method shown here uses the integer value to raise dif-
ferent events:

Public Sub MonitorTheWeather()
Dim sensorValue As Integer = ReadWeatherSensor()
Select Case sensorValue

Case 0
RaiseEvent Normal()

Case 1
RaiseEvent Raining()

Case 2
RaiseEvent Snowing()

Case 3
RaiseEvent Lightning()

End Select
End Sub

Step 4: Open the source code for the MainForm class. First, it declares a Weather-
Station object using the WithEvents keyword so it can generate events.

Private WithEvents myStation As New WeatherStation

When the user clicks the Start button, the Timer control is enabled and begins
to generate a Tick event every 2 seconds:

Private Sub btnStart_Click() Handles btnStart.Click
Timer1.Enabled = True

End Sub

Each time the Timer control generates a Tick event, MonitorTheWeather is
called in the WeatherStation class:

Private Sub Timer1_Tick() Handles Timer1.Tick
myStation.MonitorTheWeather()

End Sub

The next four methods handle events raised by the WeatherStation object.
Each event is raised by the MonitorTheWeather method.

Private Sub myStation_Normal() Handles myStation.Normal
lblEventDetected.Text = ''The weather is normal''

End Sub

Private Sub myStation_Lightning() Handles myStation.Lightning
lblEventDetected.Text = ''A Lightning storm is in progress''

End Sub

Private Sub myStation_Raining() Handles myStation.Raining
lblEventDetected.Text = ''Rainfall has been detected''

End Sub

Private Sub myStation_Snowing() Handles myStation.Snowing
lblEventDetected.Text = ''It has begun to snow''

End Sub

6.5 Inheritance 325

Step 5: (Optional) Add a new event named Tornado to the WeatherStation class and
make the necessary changes so Tornado events can be raised and handled by
the application. When you are done, run and test the application.

Summary
Events and event handlers are powerful tools that can process events that happen in a more-
or-less unpredictable way. As we have seen, applications sometimes need to respond to input
from a physical sensor. In other applications, your code might initiate an operation, such as
playing a sound file, not knowing how long it will take to finish. If your application needs
to know when the sound has finished playing, the system can raise an event. The .NET con-
trols in the toolbox raise a wide variety of events that signal actions such as a mouse click,
key press, and form load. Being able to raise events in your code gives you the same power
as the .NET controls.

Checkpoint

10. When a class wants to signal that some event type action has taken place, it
_______ an event

11. A template that describes the return type and parameter list for a class of event
handler methods is a(n) ________.

12. When an object is declared, you must preface it with a(n) ________ qualifier to
permit the object to raise events.

13. What events are raised by the Weather Station Events application in Tutorial 6-7?

6.5 Inheritance
In object-oriented programming, inheritance refers to a parent-child relationship between
two classes. It enables classes to build on properties, methods, and events in existing classes.
Some examples of classes that exhibit this relationship suggest that the second name is a
more specific type than the first name.

Person – Student
Account - CheckingAccount
Message – EmailMessage
Vehicle – Automobile

The Inherits keyword in Visual Basic identifies an inheritance relationship between the
class being defined (called the derived class) and another class (called the base class).
Figure 6-22 shows how any number of derived classes can inherit from the same base
class. The reverse, by the way, is not true—a derived class cannot inherit from more than
one base class.

NOTE: Other programming languages (such as Java) refer to a base class as a superclass
and a derived class as a subclass.

326 Chapter 6 Advanced Classes

Figure 6-22 One or more derived classes inherit from a base class

This is the basic syntax of declaring a derived class in Visual Basic:

Class derivedClass
Inherits baseClass

A class that defines a Windows Form, for example, inherits from the Form class in the Sys-
tem.Windows.Forms namespace:

Public Class MainForm
Inherits System.Windows.Forms.Form

Accessing Members
Unless members of a base class are declared Private, they are accessible to methods in any
classes derived from the base class. This concept is described in Figure 6-23, in which the
base class makes some of its members visible to the derived classes. By members, we mean
variables, properties, methods, events, and even types such as enumerated types, and struc-
tures or classes declared inside the base class.

Figure 6-23 Accessing base class members

Access Modifiers
Before starting to create derived classes, let’s review the various member access modifiers.
Table 6-4 lists all access modifiers from most permissive (Public) to least permissive (Private).
If no access modifier is used, methods and properties are Public. If a field is declared using
Dim, it is automatically Private.

Class Demo
Dim mCount As Integer 'Private
Property Count As Integer... 'Public
Sub Print()... 'Public
Class Inner 'Public

Derived
classes

Base
class

public, friend,
and protected

members

private
members

inherit
from

can
access

contains

Derived
class #1

Derived
class #2

Derived
class #n

inherit
from

Base class

6.5 Inheritance 327

Creating a Derived Class
A derived class definition must include the Inherits keyword. The following indicates that
the SalariedEmployee class inherits from the Employee class:

Class SalariedEmployee
Inherits Employee

All classes implicitly inherit from the Object class, so it is not necessary to use the Inherits
keyword to reference the Object class.

Heroes and Villains Example

Let’s create a set of classes representing characters in a computerized role-playing game. We
can look for characteristics identifying the following types of characters: Hero, Villain, and
Wizard. This will be called the Heroes application, with outlines of classes shown in the fol-
lowing code listing:

Class Person

Public Property Name As String
End Class

Class Hero
Inherits Person

Public Property Ability As String
End Class

Class Villain
Inherits Person

Public Property BadDeeds As ArrayList()
End Class

Class Wizard
Inherits Person

Public Property Specialty As String
End Class

A diagram of the class relationships is shown in Figure 6-24. It uses arrows pointing from
derived classes toward Person, the common base class. Although Object is the implicit base
class of Person, it is usually not shown in diagrams such as this one.

Table 6-4 Access modifiers

Modifier Description

Public No restrictions on access to the member.

Protected Friend Union of Protected and Friend access.

Friend Accessible to classes located within the same assembly (compiled
unit) as the declared member.

Protected Accessible from within the declaring class and classes that inherit
from the current class.

Private Accessible only from within the declaring class.

...
End Class

End Class

328 Chapter 6 Advanced Classes

Figure 6-24 Hero class hierarchy

Hero, Villain, and Wizard objects implicitly contain the Name field declared in Person, as
well as fields declared in their own classes. The following code is from a test program that
illustrates the additive nature of inheritance. A Hero has a name and ability.

Dim H As New Hero
H.Name = ''Superman''
H.Ability = ''Invincible''

A Villain has a name, along with a list of bad deeds.

Dim V As New Villain
V.Name = ''Evil Witch''
V.BadDeeds.Add(''Casts spells'')
V.BadDeeds.Add(''Turns princes into frogs'')

A Wizard has a name and a specialty.

Dim W As New Wizard
W.Name = ''Merlin''
W.Specialty = ''Wisdom''

Inheritance with Constructors
When a derived object is constructed, its base class constructors execute before the object’s
own constructor executes. When a Hero is constructed, for example, the compiler automat-
ically calls the default constructor for Person. If the Person class has a parameterized con-
structor, the first statement inside Hero’s constructor must explicitly call the Person class
constructor. In the following example, the MyBase.New statement passes the name param-
eter to the Person class constructor:

Class Person
Sub New(ByVal pName As String)

Name = pName
End Sub

Public Property Name As String
End Class

Class Hero
Inherits Person

Sub New(ByVal pName As String, ByVal pAbility As String)
MyBase.New(pName)
Ability = pAbility

End Sub

Public Property Ability As String
End Class

Person

Hero

inherit
from

Villain Wizard

6.5 Inheritance 329

Inherited Properties and Methods

In the same way that fields are inherited, properties and methods are also inherited by
derived classes. The following statements show that a Hero can access any public member
of the Person class:

Dim H As New Hero(''Batman'', ''Speed'')
lblOutput.Text = H.Name

But a Person object cannot access a public member of the Hero class.

Dim P As New Person(''Joe'')
lblOutput.Text = P.Ability ' Error!

Assigning Object References

Object references can always be assigned upward in the inheritance hierarchy from a derived
type to a base type. This is called an upward cast.

Dim P As Person
Dim H As New Hero(''Aquaman'', ''Swims'')
P = H

The compiler will not let you assign a base type directly to a derived type.

Dim P As New Person(''Joe'')
Dim H As Hero
H = P 'error

If such an assignment were permitted, a programmer might be tempted to reference a mem-
ber of Hero using an object that was, after all, just a Person. It is possible to satisfy the com-
piler using a downward cast, accomplished by calling CType, as follows:

Dim P As New Person(''Joe'')
Dim Z As Hero = CType(P, Hero)

The Common Language Runtime throws an exception if it discovers P holds a reference to
a Person, not a Hero.

Downward casts are legitimate and useful in certain situations when you know a variable of
a base type holds a reference to a derived type. The following example uses a valid cast:

Dim P As Person = New Hero(''Aquaman'', ''Swims'')
.
.
MessageBox.Show(CType(P, Hero).Ability) 'OK

To be on the safe side, we recommend that you surround downward casts with a Try-Catch
block.

Overriding and Overloading
The terms overriding and overloading can easily be confused with each other.

• To override a method is to replace a base class method with a derived class method
having the same signature. Properties can also be overridden.

• To overload a method is to create a new method having the same name as an existing
method in the same class or a base class. The new method must have a different param-
eter list.

Table 6-5 lists the modifiers that relate to overriding methods and properties. A method or
property must be declared Overridable before it can be overridden in a derived class. A method
or property that overrides another method must be declared with the Overrides keyword.

330 Chapter 6 Advanced Classes

Table 6-5 Modifiers related to method overriding

Modifier Description

Overridable Property or method can be overridden in a class derived from the
current class.

Overrides Overrides an existing property or method in a base class.

NotOverridable Property or method cannot be overridden (default).

MustOverride Property or method must be overridden in a class derived from
the current class. (Only a prototype is used in the declaration.)

Tutorial 6-8:
Student Inheritance application

In this tutorial, you will examine a simple application that creates a collection of both
undergraduate and graduate students. There will be a Student class (for undergraduates)
and a GradStudent class. Figure 6-25 shows the startup form after the user clicked the
Create Undergrad Students button. Figure 6-26 shows the same form after the user
clicked the Create Grad Students button.

Figure 6-25 Displaying undergraduate students

Figure 6-26 Displaying graduate students

Strongly Typed Collections

Strongly typed collections are specific about the type of objects you can insert. If you
declare a List(Of String), you cannot insert Students, Accounts, Integers, or any other

6.5 Inheritance 331

type of objects into the list. But they do allow objects related by inheritance to be
inserted in the same collection, with one restriction: The collection type must identify
the base class. Therefore, the following declaration would let you insert both Student
and GradStudent objects in the allStudents list:

Private allStudents As New List(Of Student)

On the other hand, the following declaration would permit you to insert only Grad-
Student objects in gradList:

Private gradList As New List(Of GradStudent)

Now you are ready to examine the code in the tutorial’s sample program.

Tutorial Steps

Step 1: Open the Student Inheritance project from the chapter examples folder.

Step 2: Examine the code in the Student.vb file. First, a public enumerated type
defines the types of status a student might have.

Public Enum StatusType
Unknown
Undergraduate
Graduate

End Enum

The Student class appears next, containing ID, Name, Gpa, and Status
properties.

Public Class Student
Public Property ID As String
Public Property Name As String
Public Property Gpa As Double
Public Property Status As StatusType

Private ReadOnly StatusName As String() =
{''Unknown'', ''Undergraduate'', ''Graduate''}

Public Sub New(ByVal pID As String,
ByVal pName As String, ByVal pGpa As Double,
ByVal pStatus As StatusType)

ID = pID
Name = pName
Gpa = pGpa
Status = pStatus

End Sub

Public Overrides Function ToString() As String
Return StatusName(Status) & '': '' & ID & '', '' _

& Name & '', '' & Gpa.ToString(''n'')
End Function

End Class

GradStudent Class

Step 3: View the GradStudent class (GradStudent.vb file), which inherits from the Stu-
dent class. Notice that this class contains one new property, PreviousDegree.

Public Class GradStudent
Inherits Student

332 Chapter 6 Advanced Classes

Public Property PreviousDegree As String

Public Sub New(ByVal pID As String,
ByVal pName As String, ByVal pGpa As Double,
ByVal pStatus As StatusType,
ByVal pPreviousDegree As String)

MyBase.New(pID, pName, pGpa, StatusType.Graduate)
PreviousDegree = pPreviousDegree

End Sub

Public Overrides Function ToString() As String
Return MyBase.ToString() & '', '' & PreviousDegree

End Function
End Class

The GradStudent constructor has five parameters, four of which are passed to
the Student class constructor by calling MyBase.New. Notice that the
ToString method in this class overrides the ToString method in the Student
class. It doesn’t have to duplicate the existing code, however, because it calls
MyBase.ToString before appending the value of PreviousDegree.

MainForm Class

Step 4: Open the MainForm.vb class file. It declares a List(Of Student) object at the
class level.

Public Class MainForm
Private allStudents As New List(Of Student)

The Click handler for undergraduate students creates students and adds them
to the List. Then it connects the List to the ListBox.

Private Sub btnStudents_Click() Handles btnStudents.Click
allStudents.Add(New Student(''1001'', ''Jones, Ben'', 3.42,

StatusType.Undergraduate))
allStudents.Add(New Student(''1002'', ''Smith, Mary'', 3.52,

StatusType.Undergraduate))
allStudents.Add(New Student(''1003'', ''Chong, Susan'', 3.22,

StatusType.Undergraduate))
allStudents.Add(New Student(''1004'', ''Hasegawa, Darian'', 3.42,

StatusType.Undergraduate))
allStudents.Add(New Student(''1005'', ''Philippe, Gerard'', 2.92,

StatusType.Undergraduate))
lstBox.DataSource = Nothing
lstBox.DataSource = allStudents

End Sub

Notice how, when modifying the DataSource of a ListBox, you must first set it
to Nothing and then assign it your array or collection. Otherwise, the listbox
contents do not change.

Next is the Click handler for creating graduate students. It creates GradStudent
objects, adds them to the List, and displays the list in the ListBox. Each object
has one additional parameter: the student’s previous degree.

Private Sub btnGradStudents_Click() Handles btnGradStudents.Click
allStudents.Add(New GradStudent(''2001'', ''Danson, Ben'', 2.42,

StatusType.Graduate, ''B.A. English''))
allStudents.Add(New GradStudent(''2002'', ''Sutterfield, Mary'',

2.52,

Summary 333

StatusType.Graduate, ''B.M. Music''))
allStudents.Add(New GradStudent(''2003'', ''Calhoun, Susan'', 4.0,

StatusType.Graduate, ''B.S. Comp Sci''))
allStudents.Add(New GradStudent(''2004'', ''DeSoto,

Darian'', 3.89,
StatusType.Graduate, ''B.S. Info Tech''))

allStudents.Add(New GradStudent(''2005'', ''Ramirez,
Jose'', 3.72,
StatusType.Graduate, ''B.S. Biology''))

lstBox.DataSource = Nothing
lstBox.DataSource = allStudents

End Sub
End Class

Step 5: Run the application and click on both buttons. The list is not cleared, so each
time you click, a list of students will be appended to the existing list.

Summary

In actual college databases, the enrollment records of graduate and undergraduate stu-
dents exhibit numerous differences. By having separate classes, you can specialize each
according to an application’s needs. For example, undergraduate students might have
an activity fee that is not required for graduate students. Or, graduate students might
have to track the dates of their candidacy and qualifying exams. These differences can
be explored in Programming Challenge 6.

Inheriting common members from base classes helps to reduce the amount of duplicate
code you must write. Inheritance improves consistency of member names and common
operations throughout a class hierarchy. Before inheritance was introduced into pro-
gramming languages, programmers had to duplicate all variables, methods, and other
members in each class.

Checkpoint

14. Can more than one class inherit from a single base class?

15. Are base class methods accessible from a derived class?

16. Which keyword identifies a class as being derived from another class?

17. To ________ a method is to replace a base class method with a derived class method
having the same signature.

Summary

6.1 Structures

• A structure defines a container into which you can place variables, properties, meth-
ods, and events. A structure might be thought of as a lightweight type of class.

• Because a structure occupies memory “in place,” much like an integer or Boolean, it is
known as a value type.

• When a structure parameter is declared with the ByVal qualifier, a copy of the struc-
ture is passed to the method at runtime.

334 Chapter 6 Advanced Classes

• The assignment operator (=) copies the contents of a structure variable.
• If you compare two structure variables with the Equals method, they are compared

using the values of their fields.

6.2 Components

• A component (also known as a class library) is a collection of related classes that have
been compiled and stored so that they are easily available to other applications.

• The primary advantage to using a component is that it makes it easier to reuse exist-
ing code.

• Components fall into two general classes: (1) user interface components, such as
Visual Basic controls, and (2) code components, such as those found in the middle tier
or data tier.

• A component is compiled by Visual Studio into a DLL file (filename with .dll extension).
Also known as a dynamic link library, this file could be used by any .NET application.

6.3 Unit Testing

• Software engineers have found that testing is very effective when it becomes an inte-
gral part of the development process.

• The traditional approach to testing and debugging has been to wait until the end of a
project.

• The continuous software testing approach is to run tests on all newly written code dur-
ing the development of a project.

• Regression testing is the running of a set of tests on existing code.
• An automated test is a program that executes all or part of an application without

input from a live user.
• A unit test is an automated test that executes and tests a single unit of code (such as a

method) in an existing application. It falls under the category of white box testing.
• When a unit test fails, it stops executing sequentially and returns immediately.
• Unit tests do not run any particular sequence. Each unit test should be independent of

all other unit tests.
• Unit tests are typically executed by a utility program known as a test engine. As it exe-

cutes each test method, it reports the success or failure of each test in a visual display.
• The Microsoft.VisualStudio.TestTools.UnitTesting namespace provides the .NET sup-

port for unit testing.

6.4 Events

• A method raises an event when it wants to send a signal that something has happened.
• Another method handles an event when it responds to the event.
• A delegate is a template or pattern that is used to classify event handlers.

6.5 Inheritance

• Inheritance in object-oriented programming means the ability of classes to specialize
the properties, methods, and events of base classes.

• Inheriting common members from base classes helps to reduce the amount of duplicate
code in an object-oriented program or code library. Inheritance improves the consis-
tency of member names and common operations throughout a class hierarchy.

• When a derived object is constructed, its superclass constructors must execute before
the object’s own constructor executes.

• To override a member is to replace a base class member with a derived class member
having the same name and signature.

• To overload a method is to create a new method having the same name as an existing
method in the same class or a base class, but with a different signature.

Review Questions 335

Key Terms
Assert.AreEqual Method
Assert.AreNotEqual Method
Assert class
assertion
attribute name
automated test
base class
black box testing
class library
continuous software testing
delegate
component
derived class
downward cast

handle an event
inheritance
Inherits keyword
.NET assembly
overload a method
override a method
Overrides keyword
raise an event
regression testing
test engine
test project
unit test
upward cast
white box testing

Review Questions

True or False

Indicate whether each of the following statements is true or false.

1. When declared using ByVal, structure parameters behave just like integer parameters.

2. The assignment operator (=) cannot be used to copy a structure unless the operator is
overloaded inside the class.

3. If you compare two structures using the Equals method, they are compared according
to the values of their fields.

4. You can compare two structures using the = operator, even if you do not overload this
operator in your structure definition.

5. A Visual Studio project can create a reference to a DLL file.

6. A reference to another project must always be within the same solution container.

7. Regression testing occurs only when you begin a new project and need to test code that
you have imported from other projects.

8. Automated testing is used only when testing the user interface of an application.

9. A unit test is always an automated test.

10. White box testing implies that the tester has full access to the application’s source code.

11. Unit tests can be written as black box tests.

12. Unit tests are supported by classes in the Microsoft.UnitTesting namespace.

13. In Visual Studio, it is possible to run a unit test in debug mode, and set breakpoints
within the test code.

14. The Assert.AreEqual method has two versions: one for integers, the other for floating-
point values.

15. When comparing floating-point numbers with Assert.AreEqual, you must supply a third
parameter that indicates the size of the difference between the first two values.

16. When Assert.AreEqual fails, execution continues at the next line in the test method.

336 Chapter 6 Advanced Classes

17. As a general rule, you should call Assert only once within a single test method.

18. Events provide a signaling system for messages that must be broadcast to whomever is
listening.

19. The class that handles an event is usually the same class that raises the event.

20. When class A inherits from class B, we say that B is the derived class.

21. A superclass is the same thing as a derived class.

22. One class can inherit from multiple classes.

23. When a derived object is constructed, its base class constructors execute after the
object’s own constructor executes.

24. Although fields (variables) are inherited, properties and methods are not inherited by
derived classes.

25. To overload a method is to replace a base class method with a derived class method hav-
ing the same signature.

Short Answer

1. In terms of memory usage, how is a structure different from a class?

2. Under what circumstance would you need use the New operator when declaring a structure?

3. What is a component?

4. What is the primary advantage to using a component?

5. Which type of Visual Studio project is used when creating a component?

6. How do you add a component reference to a project in Visual Studio?

7. What main difficulty does a programmer face when the test/debug cycle is at the end of
a project?

8. Define continuous software testing.

9. Define regression testing.

10. Define unit test.

11. How is a test engine used in Visual Studio?

12. Which .NET namespace supports unit testing?

13. Which .NET attribute identifies a class as one that contains unit tests?

14. Besides AreEqual, what other Assert class methods are listed in this chapter?

15. What does it mean for a class to raise an event?

16. What purpose does a delegate serve, in terms of class events?

17. When an object is declared, which qualifier must be used if the object will be permitted
to raise events?

18. Define inheritance in terms of object-oriented programming.

19. How is the Protected access modifier different from Private?

20. If the Student class inherits from the Person class, explain how a downward cast would
work.

21. Explain the term overloading a method.

Programming Challenges 337

Algorithm Workbench

1. Assuming that the Point structure has a constructor that receives two integer parameters
(X, Y), write a statement that declares and initializes an array of two Points.

2. Create a class named File that contains the following properties: ID (string), Location
(String), CreationDate (DateTime). Then derive a class named Document that has an
additional property named Owner (String). Create constructors for both classes that use
parameters to initialize all properties.

3. Show how to declare a test method, using the proper unit testing attributes for .NET.

Programming Challenges
1. FlightSchedulerLib Component

Use the Calculating Flight Times exercise (Programming Challenge 5 in Chapter 2) as a
starting point for this exercise. Create a component (class library) named
FlightSchedulerLib. In this library, define a class named Airport that contains two prop-
erties: an airport code (such as MIA or LAX) and a UTC offset. (A UTC offset is a
signed integer that represents the difference between the airport’s local time zone and the
Universal Coordinated Time zone.)

Create a class named Flight that contains properties that hold a departure airport (an
Airport object), arrival airport (an Airport object), the flight’s departure date and time,
and the flight’s duration (in hours). The class must contain a method named GetArrival
that returns the date and time of the flight’s arrival, expressed in the local time zone of
the arrival airport. This is its declaration:

Public Function GetArrival() As DateTime

Create a text file containing the following information. The Flight class should read this
text file and save the information in variables inside the Flight class.

MIA JFK HNL LAX DFW
-5 -5 -10 -8 -6
0 3 12 8 2.5
3 0 14 8.5 3.5
12 12 0 4.5 8.5
8 8.5 4.5 0 3.5
2.5 3.5 8.5 3.5 0

The first line of the file contains the five airport codes; the second line contains the UTC
offset of each airport; the next five rows contain a two-dimensional array of flight dura-
tions. For example, the duration of a flight from MIA to LAX is 8 hours. The durations
of all flights leaving MIA are in the first row of the array. The flight duration from MIA
to LAX is given in column 3 of the same row. (Column numbers start at 0.) Similarly,
the duration of a flight from HNL to MIA is 12 hours (row 2, column 0).

Add a Windows Forms project named Flight Scheduler UI to the same Visual Studio
solution. Using the same interface shown in Programming Challenge 5 in Chapter 2, let
the user select the departure and arrival airports and enter the departure date and time.
When the user clicks a button, call the GetArrival method and display the flight dura-
tion and flight arrival time at the destination airport.

2. Testing the FlightSchedulerLib Component

Use Programming Challenge 1 as a starting point for this application. Create a test proj-
ect that tests the GetArrival method of the Flight class in the FlightSchedulerLib com-
ponent. Create five unit tests that validate flights between different sets of airports. Be
sure to include flights that begin before midnight and arrive the following day.

338 Chapter 6 Advanced Classes

3. GetSmallest Method

Add a method named GetSmallest to the IntArray class from Tutorial 6-5. The method
should return the smallest element in an array of integers. Create a complete set of unit
tests that test your method thoroughly. Create a test list in the Test Editor window for
your new tests.

4. GetMedian Method

Add a method named GetMedian to the IntArray class from Tutorial 6-5. The method
should return a Double that contains the median value of a set of integers. Create a com-
plete set of unit tests that test your method thoroughly. Create a test list in the Test Edi-
tor window for your new tests.

5. RegistrationLib Changes

Once again, the college registrar has again changed the rules for determining the maxi-
mum credits a student can take. Let the RegistrationLib and Test RegistrationLib proj-
ects from Tutorial 6-6 be the starting point for this challenge. Using Table 6-6, modify
all unit tests and corresponding code in MaxCredits to conform to the new criteria.

Table 6-6 Second revision of the registration criteria in RegistrationLib

Academic Status Year Level Grade Average Max Credits

Probation LowerDivision 6

Probation UpperDivision 3

Warning LowerDivision > 2.2 12

Warning LowerDivision 2.2 6

Warning UpperDivision > 2.4 10

Warning UpperDivision 2.4 8

Graduate < 3.0 6

Graduate 3.0 12

Normal LowerDivision > 2.5 16

Normal LowerDivision 2.5 12

Normal UpperDivision 18

Honors 3.0 22

Honors < 3.0 16

6. Undergraduate and Graduate Students

Tutorial 6-8 presented classes named Student and GradStudent. In this programming
challenge, you will build on that application. Create another class named AuditStudent
that inherits from Student. Create a suitable constructor. Add a CreditsEnrolled
property to the Student class, of type Double. Add a TuitionAmount property, of type
Decimal.

Audit students and undergraduate students pay the same tuition rate per credit hour.
Graduate students pay a different rate. The two tuition rates should be initialized by
assigning values to shared properties in the two classes. The TuitionAmount property
calculates the amount due by multiplying the CreditsEnrolled by TuitionAmount. How-
ever, in the AuditStudent class, add an additional $100 to the TuitionAmount value. For
graduate students, the total tuition amount is the same for nine credits as it is for any
number of credits higher than that.

Create a user input form that lets the user select a student by name from a list, input the
number of credits enrolled, and view the student’s tuition amount.

Programming Challenges 339

7. Shapes Inheritance

In this programming challenge, you will create three classes: Shape, Rectangle, and
Circle. Shape is a base class, and Rectangle and Circle are derived classes. You will use
the existing Point structure already defined in .NET, which has two properties named
X and Y.

The Shape class has a single property named Name, a constructor with a Name param-
eter, and a MustOverride method named GetArea that returns a Double. It has a
ToString method that returns the name of the shape.

The Rectangle class has two private members of type Point that represent the upper left
and lower right corners of a rectangle. It has a constructor that initializes the two cor-
ner points of the rectangle. It overrides the GetArea method, which calculates the rec-
tangle area as the length times width. It has a ToString method that displays the two
point values.

The Circle class has two private members: the center of the circle, which is a Point
object, and the radius of the circle, which is a Double. It has a constructor that initial-
izes the center and radius values. It overrides the GetArea method by computing the area
as Math.PI times the radius squared. It has a ToString method that displays the center
point and the radius.

In the application’s startup form, create Rectangle and a Circle. Display the contents of
both shapes, as well as their calculated areas, rounded to two decimal places. A sample
is shown in Figure 6-27.

Figure 6-27 Displaying shapes and their areas

8. Account Transactions

Create a set of classes that permit you to keep track of savings accounts and transactions.

• Define an Enum type named TransactionType with two values: Deposit, Withdrawal.
• Create a class named Transaction with three properties: a transaction date, the type

of transaction (using TransactionType), and the transaction amount. For example, a
Transaction object could hold the values #05/15/2011#, TransactionType.Deposit,
and 500.00.

• The Transaction class must contain a constructor that initializes all property values.
• Create a class named Account with three properties: ID (String), Owner (String), and

CashBalance (Double). For example, an Account object could hold the values
000123, Baker, James, and 2140.55.

• The Account class must contain a constructor that initializes all property values, a
ToString method that displays all property values, and an Equals method that com-
pares account ID numbers.

340 Chapter 6 Advanced Classes

• Create a class named TransactionHistory that contains a single property named
Items, whose type is Dictionary(Of Date, Transaction).

• Create a class named SavingsAccount, with two properties: InterestRate (Double), and
TransHistory (a TransactionHistory object). This class inherits from the Account class.

Startup Form

• In the startup form, use a SplitContainer to divide the form in half. Insert a ListBox
control in each panel. A sample is shown in Figure 6-28.

• In the Form_Load event handler, create two SavingsAccount objects. Add them to a
List(Of SavingsAccount) object. For each account, create three different transactions
and add them to the account transaction history.

• Display the account IDs, owner names and balances in the left-hand ListBox control.
When the user selects an account, display the account transaction history in the right-
hand ListBox control.

Figure 6-28 Displaying Account Transaction History

9. Weather Station Summary

The purpose of this programming challenge is to show how events raised by a class can
be broadcast to more than one class. Use the Weather Station Events application from
Tutorial 6-7 as a starting point for this programming challenge. Create a Summary form,
as shown in Figure 6-29, that keeps a running count of each type of event raised by the
WeatherStation class. The Summary form’s class contains an event handler for each type
of event raised by the WeatherStation class. Just before showing the Summary form, the
main form can pass to it a reference to the same WeatherStation object declared at the
top of the main form. Use the Show (not ShowDialog) method to display the Summary
form. As events appear on the main form, the summary form counts the number of each
type of event that has been raised so far.

Figure 6-29 Weather Station Summary form and main form

TOPICS

LINQ to SQL7

7.1 Using LINQ to Select Data

Tutorial 7-1: Displaying the Karate
Members table

Tutorial 7-2: Displaying the Karate
class schedule

7.2 Updating Tables

Tutorial 7-3: Using a BindingSource to
update the Members table

Tutorial 7-4: Using LINQ queries to
add schedule entries

341

C
H

A
P

T
E

R

This chapter introduces LINQ for SQL, a powerful tool for querying and updating database data.
LINQ for SQL offers the opportunity to use object-oriented programming (OOP) techniques to
view and update databases. Essentially, you work with databases in the same way that you did
with in-memory collections in Chapter 3. You will learn how to create entity classes that model
database tables. You will create selection queries that join multiple entity classes, using common
linking properties. You will learn how to insert, update, and delete table entries.

7.1 Using LINQ to Select Data
Language Integrated Query (LINQ) lets you work with objects and properties at the middle-
tier level by writing code that performs queries on data collections. A variant of LINQ,
named LINQ to SQL, translates object-oriented queries into SQL database syntax. LINQ
lets you work with objects that represent database tables by providing a conversion process
from one format to another. This conversion process is known as database entity mapping.

LINQ is implemented only by Microsoft .NET languages, so it is not found in Java or C++.
Fortunately, similar tools for database entity mapping exist for these other languages. We
think that once you learn how LINQ works in .NET, you will be able to learn to work with
tools in other languages.

LINQ to SQL Object Model
When you use LINQ to SQL, you do not issue commands directly to a database. Instead,
you use custom classes that represent database tables and the relationships between the
tables. When you modify properties and call methods in the classes, LINQ translates your
property and method calls into SQL commands. The following table lists some basic equiv-
alencies between LINQ’s object model and the relational data model used in databases.

342 Chapter 7 LINQ to SQL

LINQ to SQL Relational Database

Entity class Table

Entity property Table column

Association Relationship (foreign key)

Entity method Stored procedure or function

TIP: Table attributes are defined by the .NET TableAttribute class, and column attrib-
utes are defined by the ColumnAttribute class. Both classes belong to the
System.Data.Linq.Mapping namespace.

An entity class is a class that contains properties that match the structure of a specific data-
base table. An entity property is a member of an entity class that gets and sets the value of
a class-level variable. It also raises events that signal the application before and after the
property is modified. An association in an entity class is a reference to another class that cor-
responds to a relationship between two database tables. An entity method in an entity class
contains code that executes a database-stored procedure or function.

The following is a declaration of an entity class. Every entity class must begin with a table
attribute:

<Table(Name:="Members")> _
Public Class Member

'...
End Class

In an entity class, you identify properties that represent database columns, using a column
attribute:

<Table(Name:="Members")> _
Public Class Member

<Column(IsPrimaryKey:=True)> _
Public MemberId As String

' ...
<Column()> _
Public LastName As String

End Class

Only entity class members that are assigned a column attribute are saved when LINQ
updates the underlying database. Column attributes have an optional Boolean property
named IsPrimaryKey.

Connecting to a Database
To connect to a database, you need to create a DataContext object. This object provides methods
that connect to the database, retrieve data, and submit updates to the database. The DataContext
translates your requests for objects into SQL database queries. Also, it creates objects that
return the results of SQL queries. The DataContext constructor is overloaded with different
parameter lists, but the most common constructor receives a connection string, as follows:

Dim db As New DataContext(My.Settings.karateConnectionString)

Then you can call the DataContext’s GetTable method to get a table containing the data-
base table data. In the following example, one must already have defined an entity class
named Member.

Dim Members As Table(Of Member) = db.GetTable(Of Member)()

7.1 Using LINQ to Select Data 343

We recommend, however, that you let Visual Studio create a strongly typed DataContext
class that matches the database. In other words, Visual Studio creates a separate entity
class for each database table, a specific DataContext class, and methods that use the entity
classes.

Object Relational Designer
The Object Relational Designer (O/R Designer) is a Visual Studio design tool that lets you
create LINQ to SQL entity classes. You also use it to design associations between the classes.
To put it another way, the designer creates a system of objects that directly correspond to
the objects in a database. Finally, the designer creates a strongly typed DataContext that is
used to send and receive data between the entity classes and the database.

The following steps are required to create entity classes and a DataContext from an existing
database:

1. In the Server Explorer window, add a connection to the database or database file.
2. Add a LINQ to SQL Classes item to your project, choosing a name that suggests the

database, such as KarateClasses.dbml.
3. Drag one or more database tables from the Server Explorer window into the O/R

Designer window. After doing this, you can see each table expressed as a class, as in
the sample shown in Figure 7-1.

Pluralization: Entity class names in the O/R Designer are expressed as singular (by dropping
the final -s) compared to the database table names. For example, Member is the entity class
that represents one row of the Members table from the database. This naming approach is
called pluralization, and it may be disabled from the Tools menu by selecting Options, Data-
base Tools, O/R Designer, and Pluralization of names.

The arrows appearing between the classes are called associations. Any existing relationships
between the database tables are expressed as associations in the O/R Designer.

Figure 7-1 Karate database entity classes in the O/R Designer

344 Chapter 7 LINQ to SQL

Figure 7-2 Creating an association between the Day and Schedule entity classes

TIP: When creating an association, the connecting members must be the same data type.
In fact, their nullable properties must match, too. If one member is nullable, the other
must be, too.

Creating an Association

If you want to create an association manually in the O/R Designer, right-click the name of
the parent class, select Add, then select Association. Figure 7-2 shows an association being
defined that links the Day.ID member to the Schedule.Day_Id member.

Table Property Names and Entity Class Names

It is helpful to understand how Visual Studio chooses names for table properties and entity
classes when it creates a DataContext from a database. You will use these names in your
LINQ queries.

Visual Studio chooses DataContext property names that identify strongly typed Table objects.
Examples of table types are Table(Of Member), Table(Of Payment), and so on. The table
property names are always plural (ending in -s). For the Karate database, for example, the
DataContext table property names are Members, Payments, Schedules, Days, and Instructors.

Visual Studio chooses singular names for entity classes. For example, the Member class rep-
resents a single item from the Members table in the database, the Payment class represents
an item from the Payments table in the database, and the Schedule class represents an item
from the Schedule table in the database.

Constructing a Select Query
Assuming that you have already created a DataContext class for your database, you can
begin to create LINQ to SQL queries that pull data from the database.

First, you must declare a DataContext object. Assuming that you have created one for the
Karate database, it should already contain an initialized connection string. Therefore, we
can call the default constructor as follows:

Dim db As New KarateClassesDataContext

7.1 Using LINQ to Select Data 345

Next, you write a query that selects each payment from the Payments table:

Dim query = From aPayment In db.Payments
Select aPayment

This query is nearly identical to the LINQ queries we demonstrated in Chapter 3. At that
time, the source of the data would have been a List(Of Payment) object. In the current con-
text, db.Payments is a Table(Of Payment), which is almost the same. The difference is that
the Table(Of Payment) class has a connection to the database.

You can assign the LINQ query directly to a DataGridView control’s DataSource
property:

dgvPayments.DataSource = query

or to a BindingSource object:

KarateBindingSource.DataSource = query

or you can iterate over the query, perhaps to accumulate the payments:

Dim total As Double = 0
For Each aPayment In query

total += aPayment.Amount
Next

If you were interested in finding the average payment amount, you could rewrite the query
to return only the payment amounts.

Dim query = From aPayment In db.Payments
Select aPayment.Amount

Then a simple function call would return the average payment amount.

Dim avg As Double = query.Average()

Formatting a DataGridView Control

The primary disadvantage to using runtime data binding with a DataGridView control is
that you cannot use format the grid columns in design mode. Although it is possible to for-
mat grid columns at runtime, it is not easy to do. But if you create an Object data source in
Visual Studio, you can bind it to the grid and edit the grid in design mode. Here’s how to
create an Object data source:

1. In the Data Sources window, select Add New Data Source. The Data Source Configuration
Wizard will appear, as shown in Figure 7-3. In the next step, shown in Figure 7-4, select
one of the entity classes, such as Member. Click the Finish button to save the data source.

Figure 7-3 Creating an Object data source

346 Chapter 7 LINQ to SQL

2. Open the DataGridView Tasks window and choose a data source for the grid. Select
the data source you just created. As shown in Figure 7-5, a BindingSource object is
automatically placed in the form’s component tray and the table columns appear in the
grid. Now you can edit the grid columns.

Figure 7-4 Selecting the Member entity class as a data source

Figure 7-5 Binding source connects Member entity class to DataGridView control

7.1 Using LINQ to Select Data 347

Summary

Runtime data binding offers great flexibility and is easily implemented in LINQ. At the same
time, data binding with an Object data source lets you take advantage of Visual Studio’s
powerful design tools.

Tutorial 7-1:
Displaying the Karate Members table

In this tutorial, you will use Visual Studio to create an entity class named Member. Then
you will create an Object data source based on the Member class and connect to a Data-
GridView control. Finally, you will create a LINQ query that retrieves rows from the
Members table in the Karate database.

Tutorial Steps

Step 1: Create a new Windows Forms application named Karate Members Grid.

Step 2: In the Server Explorer window, add a new connection to the karate.mdf data-
base file. You can find a copy in the chapter examples directory.

Step 3: From the Project menu, select Add New Item, select the new Link to SQL
Classes template, and name it KarateClasses.dbml.

Step 4: Drag the Karate.Members table from the Server Explorer window into the
KarateClasses.dbml design window. Answer Yes when asked about copying
the database file into the project directory. The Member class should appear
in the window. Save your changes.

Step 5: In the Data Sources window, create a new Object data source. In the Select the
Data Objects step, choose the Member class. Click the Finish button to save
the data source.

Step 6: Open the startup form in Design view, add a DataGridView control named
dgvMembers, and attach it to the Member entity class.

Step 7: Optionally, you can set the Dock property to Fill; set RowHeadersVisible to
False; and disable adding, editing, and deleting.

Step 8: Create the following Form_Load event handler:

Private Sub Form1_Load() Handles MyBase.Load
Dim db As New KarateClassesDataContext
Dim query = From aPerson In db.Members

Select aPerson
dgvMembers.DataSource = query

End Sub

The KarateClassesDataContext class, created by Visual Studio, contains a
Members property that is a Table(Of Member) object. That is why the LINQ
query was able to use db.Members as its data source.

Step 9: Run the application. You should see the DataGridView output shown in
Figure 7-6. Then stop the application.

348 Chapter 7 LINQ to SQL

Table Associations
As you know, an association in LINQ is the object-oriented equivalent of a database rela-
tionship. An association links two entity classes using properties that match foreign key rela-
tionships. Associations make it easy to create queries that combine columns from multiple
database tables.

The Karate database contains the related Members and Payments tables. If you drag these
two tables from the Server Explorer window into the Object Relational Designer window,
as shown in Figure 7-7, an association is automatically formed between the Member and
Payment entity classes.

When two entity classes contain an association, each class implicitly contains a property that
references the other class. So it is with the Payment and Member classes in KarateClasses-
DataContext. In the Payment class, the Member property links to the associated Member

Figure 7-6 Using a LINQ query to display the Members table

Step 10: Next, you will add a filter to the query that selects only members who joined
after 1/1/2010. You will sort the rows by Date_Joined in ascending order.
Change the query definition to the following:

Dim query = From aPerson In db.Members
Where aPerson.Date_Joined > #1/1/2010#
Select aPerson
Order By aPerson.Date_Joined

Step 11: Run the application and verify that all Date_Joined column values are later
than 1/1/2010 and are sorted in ascending order.

Summary

You learned how to display database tables in DataGridView controls in previous chap-
ters, using TableAdapters and SQL queries. What makes the current example so differ-
ent is that the underlying SQL query is hidden, making it possible for you to work
completely in Visual Basic code.

7.1 Using LINQ to Select Data 349

object. For example, the following query selects the ID property from the Payment class and
the Last_Name property from the Member class:

Dim query = From aPayment In db.Payments
Select aPayment.ID, aPayment.Member.Last_Name

The output is shown in Figure 7-8. In the database, we know these values as the ID column
from the Payments table and the Last_Name column from the Members table. But we are
currently focusing on the classes in the DataContext rather than the database tables. The
expression aPayment.Member provides the link to any property in the Member class.

Figure 7-7 Members and Payments tables in the DataContext Design window

Figure 7-8 Query that associates the Payment and Member entity classes

The following query selects the ID, Payment_Date, and Amount properties from the Pay-
ment class, as well as the Last_Name property from the Member class:

Dim query = From aPayment In db.Payments
Select aPayment.ID, aPayment.Member.Last_Name,
aPayment.Payment_Date, aPayment.Amount
Order By ID

The output from this query is shown in Figure 7-9. If you assign this query directly to the
DataSource property of a DataGridView control, you can still format individual grid
columns at runtime. Our query created four columns, so the following statement formats the
Amount column to two decimal places:

dgvPayments.Columns(3).DefaultCellStyle.Format = "n2"

350 Chapter 7 LINQ to SQL

Creating Aliases for Entity Class Properties
Sometimes you may want to rename some properties produced by a query. In a LINQ query,
each alias name precedes the property name, followed by an equals (=) sign, in this format:

Alias = PropertyName

The Alias cannot contain any embedded spaces or punctuation, other than the underscore
character. The following query contains aliases named Date and Member:

Dim query = From aPayment In db.Payments
Select Date = aPayment.Payment_Date,

aPayment.Amount,
Member = aPayment.Member.Last_Name

The most important use of aliases is in creating combined properties. For example, we might
want to combine the first and last name of a member using an alias named Member. The fol-
lowing LINQ query does that:

Dim query = From aPayment In db.Payments
Select aPayment.Payment_Date, aPayment.Amount,
Member = aPayment.Member.First_Name + " " _

+ aPayment.Member.Last_Name

Sample output from this query is shown in Figure 7-10.

Figure 7-9 Selecting columns from both Members and Payments tables

Figure 7-10 Combining columns with an alias

Linking from the Parent Table to a Child Table

We have already seen how a child table (Payments) can link to a parent table (Members).
You can also link in the reverse direction, from parent to child. The difference is that there
might be multiple child rows that link to a single parent row.

7.1 Using LINQ to Select Data 351

Suppose we want to fill a grid with the name of each member, combined with a count of the
number of payments made by the member. The following statements do that, using a grid
named dgvPayments:

Dim query = From aMember In db.Members
Select aMember.Last_Name, aMember.Payments.Count()

dgvPayments.DataSource = query

The query returns a list of Member objects. For each one of these, the expression
aMember.Payments returns a list of payments made by the member. The code calls the Count
extension method to count the number of items in the list. In Tutorial 7-2, you will put these
techniques into effect by joining multiple tables.

Tutorial 7-2:
Displaying the Karate class schedule

In this tutorial, you will create entity classes for the Instructors, Schedule, and Days
tables in the Karate database. Then you will create a LINQ query that uses associations
among the three entity classes to display the class schedule. Essentially, you will create
a SQL join query in the background, using LINQ techniques.

Tutorial Steps

Step 1: Create a new application named Karate Class Schedule.

Step 2: Add a connection to the Karate database inside the Server Explorer window.

Step 3: Add a LINQ to SQL Classes object to the project and name it
KarateClasses.dbml.

Step 4: Drag the Days, Schedule, and Instructor tables from Server Explorer into the
Object Relational Designer window. Verify that arrows appear between the
classes, showing associations based on table relationships in the database.

Step 5: Add a DataGridView control to the startup form and name it dgvSchedule.
Optionally, you can dock the grid to the form; set RowHeadersVisible to
False; and disable adding, editing, and deleting.

Step 6: Create the following Form_Load event handler:

Private Sub MainForm_Load() Handles MyBase.Load
Dim db As New KarateDataContext
Dim query = From sched In db.Schedules

Select sched.Day.Name, sched.Time.TimeOfDay,
sched.Instructor.Last_Name

dgvSchedule.DataSource = query
End Sub

There are some important things to notice about this code:
• The sched variable is a Schedule object, which represents one row of the

Schedules table.
• We want to display the day name, so the expression sched.Day.Name uses

the association between the Schedule and Day entity classes to locate the
day name (such as Tue or Wed).

• The expression sched.Time would return a combined date/time object, so we
change it to sched.Time.TimeOfDay, which gives us only the time portion.

• The expression sched.Instructor.Last_Name gets the Last_Name property
from the Instructor entity class.

352 Chapter 7 LINQ to SQL

Step 7: Save and run the application. The output, shown in Figure 7-11, shows the
class day, time, and instructor. The default column names are not too great,
so add some aliases named Day, Time, and Instructor to the query:

Dim db As New KarateDataContext
Dim query = From sched In db.Schedules

Select Day = sched.Day.Name,
Time = sched.Time.TimeOfDay,
Instructor = sched.Instructor.Last_Name

dgvSchedule.DataSource = query

Each alias name precedes the actual column name, followed by an equals (=) sign.

Figure 7-11 Class schedule, with columns from three entity classes

Step 8: Save and run the application. The revised output appears in Figure 7-12 with
the new column headings.

Figure 7-12 Class schedule, with aliased column names

For extra practice, you may want to create an Object data source for this
example. Once you have attached it to the DataGridViewControl, you can
format the Time column to just hours and minutes.

7.1 Using LINQ to Select Data 353

Grouping Table Rows
The Group By operator is used in LINQ to group rows on one or more columns. For each
group, you can use formulas to show the number of items in the group, the average value,
total value, minimum, maximum, and so on.

For example, the following query groups the items in the Schedule table according to instruc-
tor last names, and counts the number of items in each group:

Dim query = From sched In db.Schedules
Group sched By sched.Instructor.Last_Name
Into InstructorGroup = Count()

dgvGrid.DataSource = query

Figure 7-13 shows the output from this code sample. The group is named InstructorGroup,
and Count is a built-in LINQ function.

Figure 7-13 Instructor groups counts in the Schedule table

Counting the members of a group may be useful, but you may prefer to display the individ-
ual members of a group. To do that, you must use the Group keyword in the last line of the
query:

Dim query = From sched In db.Schedules
Group sched By sched.Instructor.Last_Name
Into InstructorGroup = Group

Then you can loop through the query object and display the individual group members. The
following code displays the Last_Name property of each group member in a list box:

For Each grp In query
lstBox.Items.Add("Instructor = " & grp.Last_Name)

Next

The output from this query shows that the group names are automatically sorted in ascend-
ing order:

Instructor = Gonzalez
Instructor = Kowalski
Instructor = Kyoshi Sensei

Displaying the Items Inside Groups

Very often, you will want to display both the group names and the items belonging to each
group in a hierarchical display. In Figure 7-14, for example, the list box groups by instruc-
tor and displays the day and time of each class. Also, it displays a footer for each group con-
taining a count value. We can use the following query to generate the group information:

Dim query = From sched In db.Schedules
Group sched By sched.Instructor.Last_Name
Into InstructorGroup = Group

354 Chapter 7 LINQ to SQL

Then we use a nested loop structure to display all the information. The outer loop displays
instructor names on line 2.

1: For Each grp In query
2: lstBox.Items.Add("Instructor = " & grp.Last_Name)
3: For Each aClass In grp.InstructorGroup
4: lstBox.Items.Add(vbTab & aClass.Day.Name _
5: & ", " & aClass.Time.TimeOfDay.ToString)
6: Next
7: lstBox.Items.Add(vbTab & "Count = " & _

grp.InstructorGroup.Count())

8: Next

The inner loop, beginning on line 3, selects each class within an instructor group and dis-
plays the class day and time (lines 4–5). After this loop, line 7 counts the items in each group
and displays a group footer line.

Figure 7-14 Displaying the items in each Instructor group

There are other useful ways to group items in a table. In the Karate payments table, for
example, you could group payments by Member ID, and calculate the number of payments
or the total payments made by that member.

Summary
In this section, you learned about the LINQ to SQL object model, and how entity classes
and DataContext objects are created. Then you learned how to create queries that select
rows from one or more database tables, using associations among entity classes. You also
learned how to group the rows.

It may take some time to become comfortable with the use of associations and table refer-
ences in this example. The effort is well worth it because almost all nontrivial queries involve
multiple tables. Remember, LINQ queries use objects and properties, not SQL server tables
and columns.

NOTE: The type of listing shown in Figure 7-14 is often called a control-break report.
There are some great tools for creating reports that group items with headers and foot-
ers, and display totals and averages. In Chapter 12, you will learn how to use the
Microsoft reporting tools.

7.2 Updating Tables 355

Checkpoint

1. LINQ translates your property and method calls into commands in which database
language?

2. Which type of class contains properties that match the structure of a specific
database table?

3. What is the purpose of the TableAttribute declaration?

4. What is the purpose of a DataContext object?

5. Which Visual Studio design tool lets you create LINQ to SQL entity classes?

7.2 Updating Tables
In this section, we will show you two basic approaches to updating database tables. The first
is to use data binding, with an Object data source bound to a LINQ entity table. Almost no
code must be written when you use this approach.

The second approach to updating tables is to write LINQ code statements to do the updat-
ing. This is more work than the data-bound approach, but it can be used in the middle tier
of a multi-tier application.

Updating a Table Using a BindingSource
Perhaps the easiest way to update data on a form is to use a BindingSource component,
which pulls data from a data source and assigns the data to controls on a form. It can also
use data from the controls to update the data source.

You create a BindingSource by dragging a table or class from the Data Sources window onto
a form. Or, you can add a BindingSource from the ToolBox window and set its DataSource
property to the name of one of your LINQ entity classes.

To fill the BindingSource fields with data, you assign its DataSource property a LINQ query
that selects table rows.

BindingNavigator

A BindingNavigator component appears as a ToolStrip control on a form, with buttons that
navigate forward and backward through rows, insert rows, delete rows, and save changes,
as shown here:

The navigator’s BindingSource property can be assigned the name of an existing Binding-
Source control. If you do that, the BindingNavigator and BindingSource work closely
together to save you lots of time and effort. For example, if users click the Delete button (red
X icon), the currently displayed item is deleted from the data-bound table. If users modify
an entry and then move to a different entry, their changes are saved in the table.

By default, the Save button (floppy disk icon) is disabled. If you want to save changes to the
underlying database, you can enable the Save button and write code that updates the database
with changes made to the data-bound table. You just execute the DataContext.SubmitChanges()
method. In Tutorial 7-3, you will learn how to use a binding source to update a table in the
database.

356 Chapter 7 LINQ to SQL

Tutorial 7-3:
Using a BindingSource to update the Members table

In this tutorial, you will display rows from the Karate Members table in individual
detail fields. You will use a BindingSource object to transfer the data from a LINQ
query. The BindingSource will also let the user insert new entries, update existing
entries, and delete entries from the table.

Tutorial Steps

Step 1: Create a new application named Karate Member Details.

Step 2: Add a connection to the Karate database inside the Server Explorer window.

Step 3: Add a LINQ to SQL Classes object to the project and name it
KarateClasses.dbml.

Step 4: Drag the Members table from Server Explorer into the Object Relational
Designer window. Verify that arrows appear between the classes, showing
associations based on table relationships in the database.

Step 5: From the Data Sources window, add an Object data source to the project
(Refer to Figure 7-3 for an example.). In the Select the Data Objects step, drill
down into Karate_Member_Details and select the Member class. Click the
Finish button to save the data source.

Step 6: In the Data Sources window, select the dropdown list next to Member and
choose Details. Change the Date_Joined control type to TextBox.

Step 7: Drag the Member class into the design surface of the startup form. A Tool-
Strip and detail fields should be created for you. Notice that a MemberBind-
ingSource object appears in the form’s component tray. Rearrange the fields,
using Figure 7-15 as a suggested layout.

Figure 7-15 Editing member details with a BindingSource

If you were to run the application, nothing would appear in the detail fields.
You must write a query and assign it to the binding source.

7.2 Updating Tables 357

Updating Tables Using LINQ Statements
Updating database tables with LINQ has two important advantages over writing update
queries in SQL: You can step through your LINQ code in the debugger, and you can call
functions within your own class.

LINQ works with strongly typed Table objects, which are defined with types such as
Table(Of Member) or Table(Of Payment). When you delete, insert, or modify a row in a
table, you can continue to display and update the table as long as the application is running.

Step 8: Open the form’s code window and add the following to the class:

Private db As New KarateClassesDataContext

Private Sub Form_Load() Handles MyBase.Load
Dim query = From aPerson In db.Members

Select aPerson
MemberBindingSource.DataSource = query

End Sub

The job of the MemberBindingSource is to provide two-way binding
(read/write) from the individual Member object properties to the individual
TextBox and Label controls.

Step 9: Save and run the application. Scroll forward and backward through the
entries in the table. Click the Delete button (red X icon) on the ToolStrip and
watch the entries disappear. Modify two of the entries and note the changes.
Stop the application.

Step 10: Start the application and verify that no database entries were deleted or mod-
ified. Stop the application.

As you can see, changes made by the user affected only the table in memory,
but not the underlying database. To change the database, you need to call the
DataContext’s SubmitChanges method.

Step 11: Enable the Save button on the ToolStrip (set its Enabled property to True).
Create a Click event handler for the button, and insert the following code:

Private Sub MemberBindingNavigatorSaveItem_Click() _
Handles MemberBindingNavigatorSaveItem.Click
Try

MemberBindingSource.EndEdit()
db.SubmitChanges()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try
End Sub

The call to EndEdit completes any editing that might be in progress on the
currently displayed member.

Step 12: Experiment with inserting, updating, and deleting entries from the table. After
clicking the Save button, close the application, restart the application, and
verify that all changes you made were saved in the database.

Step 13: Build the application and run it again. Your database should return to its pre-
vious state.

358 Chapter 7 LINQ to SQL

The table is only in memory. From that point of view, tables have something in common with
DataSet objects.

If you want to update the database represented by a DataContext, you must call the
SubmitChanges method. Then all pending changes made to all tables within the DataCon-
text are written to the database. After that, you can continue to make more changes to the
tables, and call SubmitChanges again later, if you wish.

Deleting Table Rows

To delete a row from a list created by a LINQ query, call the DeleteOnSubmit method
defined in the DataContext’s Table class. For example, the KarateClassesDataContext class
contains a property named Payments, which is a Table(Of Payment) object. The following
statement would delete a row, assuming that db is a DataContext, and aPayment is a refer-
ence to the row we want to delete:

db.Payments.DeleteOnSubmit(aPayment)

If you want to delete the row from the underlying database, call the SubmitChanges method:

db.SubmitChanges()

Suppose that a variable named selectedId contains the ID of the payment we want to delete.
The following code begins by finding the Payment object:

Dim db As New KarateClassesDataContext
selectedId = 5 ' we will delete payment #5
Dim query =

From onePmt In db.Payments
Where onePmt.ID = selectedId
Select onePmt

The query returns a List(Of Payment) containing just one item. We can call the extension
method named First to get a reference to the item and pass it to the DeleteOnSubmit method.

db.Payments.DeleteOnSubmit(query.First())

Finally, to submit our change to the database, we call the SubmitChanges method. It’s a good
idea to use exception handling to report possible database errors:

Try
db.SubmitChanges()

Catch ex As Exception
'(show error message)

End Try

Deleting from Related Tables

When you carried out SQL delete operations in Chapter 5, you found that deleting a row
from a parent table in a foreign key relationship can violate a database referential integrity
constraint. The same applies to associations between entity classes. You cannot, for exam-
ple, delete a row from the Members table if it contains references to rows in the Payments
table. Instead, you can delete all payments for the member and then delete the member.

Suppose we want to delete the member named Chong, whose ID = 2. We begin by deleting
this person’s payments:

Dim query = From aPayment In db.Payments
Select aPayment
Where aPayment.Member_Id = 2 ' Chong

For Each aPayment In query
db.Payments.DeleteOnSubmit(aPayment)

Next

7.2 Updating Tables 359

Having done that, we can now delete Chong from the Members table:

Dim query2 = From aPerson In db.Members
Select aPerson
Where aPerson.ID = 2 ' Chong

db.Members.DeleteOnSubmit(query2.First())

Finally, we submit our changes to the database:

Try
db.SubmitChanges()

Catch ex As Exception
'(show error message)

End Try

Inserting Table Rows

The InsertOnSubmit method inserts a new row in a LINQ DataContext table. You do this
operation in two steps.

First, you construct the type of object that matches the table type. The Members table is type
Table(Of Member), so the following code builds a Member object:

Dim mem As New Member With
{.ID = 23,
.First_Name = "Joe",
.Last_Name = "Smith",
.Date_Joined = #5/1/2011#,
.Phone = 303-444-3333}

Notice that we use the recent VB syntax that lets us create objects by assigning values to
properties. We no longer need a parameterized constructor.

Second, we call the InsertOnSubmit method, passing it the Member object:

Dim db As New KarateClassesDataContext
db.Members.InsertOnSubmit(mem)

Up to this point, the new row is only in the DataContext’s table. To add it to the database,
we call SubmitChanges:

Try
db.SubmitChanges()

Catch ex As Exception
'(show error message)

End Try

Updating Table Rows

To update a row in a DataContext’s table, you first need to get a reference to the row
or rows you plan to update. The following query, for example, finds the member with
ID = 25:

Dim query =
From aMember In db.Members
Where aMember.ID = 25
Select aMember

Then you can use a For Each loop to iterate through the object (or objects) returned by the
query. You can modify one or more properties of the object. Here, we modify Date_Joined:

For Each person In query
person.Date_Joined = #12/1/2011#

Next

360 Chapter 7 LINQ to SQL

Up to this point, only the DataContext’s table has been modified. To write the changes to
the database, we call the SubmitChanges method:

Try
db.SubmitChanges()

Catch ex As Exception
'(show error message)

End Try

In Tutorial 7-4, you will create an application that uses LINQ queries to insert, delete, and
update rows in the Karate Schedule table.

Tutorial 7-4:
Using LINQ queries to add schedule entries

In this tutorial, you will create an application that lets the user add new entries to the
Karate school schedule. A sample of the user interface is shown in Figure 7-16. In the
upper half of the form, the current schedule is displayed in a DataGridView control. A
splitter bar separates the upper half from the lower half, where input fields and a Save
button are available for the user to input a new schedule item and save it in the table.
The Day_Id and Instructor_Id columns are both assigned values when the user selects
the day name and instructor name from combo boxes. Users should not be expected to
remember ID values, so the combo boxes are in place to offer usable selections.

Figure 7-16 Karate Schedule Updates application

Tutorial Steps

Step 1: Create a new Application named Karate Schedule Updates. Change the Text
property of the startup form to Karate Schedule Updates.

7.2 Updating Tables 361

Step 2: Add a connection to the Karate database inside the Server Explorer window.

Step 3: Add a LINQ to SQL Classes object to the project and name it
KarateClasses.dbml.

Step 4: Drag the Days, Schedule, and Instructor tables from Server Explorer into the
Object Relational Designer window. Verify that arrows appear between the
classes, showing associations based on table relationships in the database.

Step 5: Add a SplitContainer to the startup form and set its Orientation property to
Horizontal. Its Dock property should automatically be set to Fill.

Step 6: Add a DataGridView control to the upper panel of the SplitContainer and name
it dgvSchedule. Set its Dock property to Fill. Disable adding, editing, and deleting.

Step 7: Add the following code to the form’s class:

1: Private db As New KarateClassesDataContext
2: Private selectedId As Short
3:
4: Private Sub Form_Load() Handles MyBase.Load
5: FillScheduleGrid()
6: End Sub
7:
8: Private Sub FillScheduleGrid()
9: Dim query = From sched In db.Schedules
10: Select sched.ID,
11: Day = sched.Day.Name,
12: Time = sched.Time.TimeOfDay,
13: Instructor = sched.Instructor.Last_Name
14:
15: dgvSchedule.DataSource = query
16: End Sub

When the form loads, line 5 calls FillScheduleGrid. The query on lines 9–13
was adapted from Tutorial 7-2, in which you combined properties from the
Schedule, Day, and Instructor entity classes.

Step 8: Save and run the application, and verify that the schedule displays correctly.
Close the application window.

Step 9: Add the controls listed in Table 7-2 to the form. They will help the user add
a new class to the schedule.

Table 7-2 Essential controls in the Karate Schedule Updates application

Control Type Name Property Values

SplitContainer (default) Orientation = Horizontal

Label lblTitle Text = Add a New Class
Font = Times New Roman 14.25 Bold

TextBox txtId

TextBox txtTime

ComboBox cboDay

ComboBox cboInstructor

Button btnSave Text = Save

DataGridView dgvSchedule Dock = Fill

362 Chapter 7 LINQ to SQL

Step 10: Next, you need to create LINQ queries that initialize the ID text box with the
next available ID number. Add the PrepareInsertFields method.

1: Private Sub PrepareInsertFields()
2: ' Choose the next ID number
3: Dim idQuery = From sched In db.Schedules
4: Select sched.ID
5: txtID.Text = (idQuery.Max() + 1).ToString
6:
7: ' Fill combo box with days of the week
8: Dim dayQuery = From aDay In db.Days
9: Select aDay.ID, aDay.Name
10: cboDay.DataSource = dayQuery
11: cboDay.DisplayMember = "Name"
12: cboDay.ValueMember = "ID"
13:
14: ' Fill combo box with instructor names
15: Dim instructorQuery = From aPerson In db.Instructors
16: Select aPerson.ID, aPerson.Last_Name
17: Order By Last_Name
18: cboInstructor.DataSource = instructorQuery
19: cboInstructor.DisplayMember = "Last_Name"
20: cboInstructor.ValueMember = "ID"
21: End Sub

Lines 3–5 get the highest ID number from the Schedules table and add 1, thus
generating the ID number we will use when inserting a new row. Lines 8–12
fill a combo box with the days of the week. They also set the ValueMember
property so we can get the ID number of the user’s selection when the user
selects a day for the class. Lines 15–20 use a query to fill another combo box
with all the instructor names. At runtime, when the user selects an instructor,
we will take the ID from the combo box’s SelectedValue property and insert
it in the new Schedules table entry.

Step 11: Add a line to Form_Load that calls the PrepareInsertFields method.

Private Sub Form_Load() Handles MyBase.Load
FillScheduleGrid()
PrepareInsertFields()

End Sub

Step 12: Next, add the following Click handler for the Save button that creates a
Schedule object from the user’s entries and inserts it in the Schedules table.

1: Private Sub btnSave_Click() Handles btnSave.Click
2: 'Save the new class into the schedule
3: Try
4: Dim dt As Date = CDate(txtTime.Text)
5: Dim sched As New Schedule With {
6: .ID = CShort(txtID.Text),
7: .Day_Id = CShort(cboDay.SelectedValue),
8: .Time = Today.Add(New TimeSpan(dt.Hour,

dt.Minute, 0)),

9: .Instructor_Id = CShort(cboInstructor.
SelectedValue)}

10: db.Schedules.InsertOnSubmit(sched)
11: db.SubmitChanges()
12: FillScheduleGrid()
13: MessageBox.Show("Class saved into the schedule")
14: Catch ex As Exception

7.2 Updating Tables 363

If You Want to Know More: A Close Look at the
KarateClassesDataContext
You can learn many interesting things by looking at the source code of the KarateClasses-
DataContext we have been using in the tutorials. To see this code, select the Show All Files
button in the toolbar at the top of the Solution Explorer window. Before examining this file,
drag the Members table from the Server Explorer window into the Object Relational
Designer window.

Open the KarateClasses.designer.vb file. You should not modify this file, but you can look
at it. The following lines declare the KarateClassesDataContext class, which inherit from the
DataContext class:

<Global.System.Data.Linq.Mapping.DatabaseAttribute(Name:="karate")> _
Partial Public Class KarateClassesDataContext

Inherits System.Data.Linq.DataContext

The first line above is a special attribute that must be placed before any class that will be
recognized by LINQ. The DatabaseAttribute property links this class to the karate database.

Next, an AttributeMappingSource object is declared. It is needed when you want to link up
each database table column to a property in a class.

Private Shared mappingSource As System.Data.Linq.Mapping.MappingSource
= New AttributeMappingSource()

Next are several constructors. One of the constructors receives a connection string argu-
ment. It passes the connection string and the mappingSource variable to the constructor in
the DataContext class.

Public Sub New(ByVal connection As String)
MyBase.New(connection, mappingSource)
OnCreated

End Sub

15: MessageBox.Show(ex.Message)
16: End Try
17: End Sub

Lines 5–9 use object initializers to create a new Schedule object, using values
from the txtID, cboDay, txtTime, and cboInstructor controls. The Time prop-
erty (line 8) is a special case because it must contain both a date and a time.
We’re not interested in the date, so we set to Today (current date), and add a
TimeSpan object that was created on line 3. Line 10 inserts the Schedule
object into the Schedules table, and line 11 saves the table changes to the data-
base. Line 12 refills the DataGridView control with the updated contents of
the Schedules table.

Step 13: Save and run the application. Add a new class to the schedule and verify that
it appears at the bottom of the grid. Verify that the program cannot halt
because of invalid input.

Summary

It requires a surprising amount of code to prepare the combo boxes in this example
before the user can add a new row to the Schedules table, but the code is fairly straight-
forward. Fortunately, the code you would write to update an existing table row is
almost identical to the code you just wrote for the Save button’s click handler.

364 Chapter 7 LINQ to SQL

The Members property returns a Table(Of Member) object, containing the rows from the
Members table in the database.

Public ReadOnly Property Members() As System.Data.Linq.Table(Of Member)
Get

Return Me.GetTable(Of Member)
End Get

End Property

Find the Member class, which represents a single member, or row from the Members
database table. Notice that it uses a TableAttribute property to identify the database
table.

<Global.System.Data.Linq.Mapping.TableAttribute(Name:="dbo.Members")> _
Partial Public Class Member

This is also declared as a partial class, which allows you to create a Member class in your
own code and thus to add more features to the class. Then the compiler can join the two
partial classes into a single class when the project is compiled.

Inside the Member class are private variables that match each column from the Members
table.

Private _ID As Short
Private _Last_Name As String
Private _First_Name As String
Private _Phone As String
Private _Date_Joined As System.Nullable(Of Date)

Each variable is accompanied by a property procedure that does some fairly complicated
work of updating the database field contents. Let’s look at one of them:

1: Public Property Last_Name() As String
2: Get
3: Return Me._Last_Name
4: End Get
5: Set
6: If (String.Equals(Me._Last_Name, value) = false) Then
7: Me.OnLast_NameChanging(value)
8: Me.SendPropertyChanging
9: Me._Last_Name = value
10: Me.SendPropertyChanged("Last_Name")
11: Me.OnLast_NameChanged
12: End If
13: End Set
14: End Property

When a new value is assigned to the property, line 6 checks to see if the new value being
assigned is different from the existing value. Assuming that it is different, lines 7 and 8
raise events that indicate that the name property is about to change. Line 9 assigns the
new value to the private variable, and lines 10–11 raise events indicating that the prop-
erty has changed. You can inspect the SendPropertyChanging event code in this same file,
if you wish.

Why, then, are these events raised? Sometimes you may want to write code that validates a
value before it is assigned to a property. But you need to know when the change is about to
take place, and that’s where the events are useful. You can write an event handler that exe-
cutes when one of the events is raised.

You could create your own DataContext class by hand, but it’s a lot easier to let Visual Stu-
dio do it for you. The main thing is to understand what’s in there and how to use it.

Summary 365

Summary
There’s no doubt that expert SQL database programmers are in high demand in today’s mar-
ketplace. If you are looking in that direction, you will have many opportunities. But many
database application tasks are repetitive and time-consuming. LINQ provides an opportu-
nity to spend your time on the more interesting, analytical, and design aspects of applica-
tions. To use an analogy, if you had spent your early years making cooking fires with wood
sticks, imagine how much you would appreciate the invention of the barbecue grill!

Checkpoint

6. What is the purpose of a BindingSource component?

7. What is a BindingNavigator component?

8. If you want to update the database represented by a DataContext, which method
must you call?

9. Which method deletes a row from a list or table created by a LINQ query?

10. Which method inserts a new row in a LINQ DataContext table?

Summary

7.1 Using LINQ to Select Data

• LINQ queries use objects and methods to view and update databases.
• LINQ queries are translated to SQL queries, which are executed against the database.

When you use LINQ to SQL, you do not issue commands directly to a database.
Instead, you use custom classes that represent database tables and the relationships
between the tables.

• An entity class is a class that contains properties that match the structure of a specific
database table.

• An entity class property is a member of an entity class that gets and sets the value of
a class-level variable.

• An association in an entity class is a reference to another class that corresponds to a
relationship between two database tables.

• A method in an entity class contains code that executes a database-stored procedure
or function.

• To connect to a database, you need to create a DataContext object. This object pro-
vides methods that connect to the database, retrieve data, and submit updates to the
database.

• The Object Relational Designer (O/R Designer) is a Visual Studio design tool that lets
you create LINQ to SQL entity classes. The O/R Designer also creates strongly typed
DataContext classes.

• An Object data source binds a LINQ entity class to controls such as DataGridView. A
BindingSource object is added to the form’s component tray.

• The Group By operator is used in LINQ to group table rows based on one or more
columns. For each group, you can use formulas to show the number of items in the
group, the average value, total value, minimum, maximum, and so on.

366 Chapter 7 LINQ to SQL

7.2 Updating Tables

• LINQ queries can be used to insert rows and delete rows from tables. They can also
be used to modify existing table entries.

• The easiest way to update a table in LINQ is to use a BindingSource component (cre-
ated as an Object data source).

• A BindingNavigator component appears as a ToolStrip control on a form, with but-
tons that navigate forward and backward through rows, insert rows, delete rows, and
save changes.

• If you want to update the database represented by a DataContext, you must call the
DataContext.SubmitChanges method. Then all pending changes made to all tables
within the DataContext are written to the database.

• To delete a row from a list created by a LINQ query, you call the DeleteOnSubmit
method defined in the DataContext’s Table class.

• Deleting a row from the parent table in an association requires special care to avoid
violating a referential integrity constraint.

• The InsertOnSubmit method inserts a new row in a LINQ DataContext table.
• To update a row in a DataContext’s table, you first need to get a reference to the row

or rows you plan to update. Then you can use a For Each loop to iterate through the
objects returned by the query and modify their properties.

Key Terms
association
BindingNavigator
BindingSource
column attribute
database entity mapping
entity class
entity method
entity property

Group By operator
Language Integrated Query (LINQ)
LINQ to SQL
Object data source
Object Relational Designer (O/R

Designer)
pluralization
table attribute

Review Questions and Exercises

True or False

Indicate whether each of the following statements is true or false.

1. LINQ should be used in the data tier of a three-tier application.

2. LINQ is implemented only in Microsoft .NET languages.

3. A TableAttribute identifies a LINQ entity class.

4. The ColumnAttribute class belongs to the System.Data.Mapping namespace.

5. GetTable in the DataContext class returns a strongly typed DataTable object.

6. An O/R Designer file has an extension of .dbml.

7. Pluralization in LINQ is the practice of creating multiple classes from a single database
table.

8. Associations between LINQ entity classes are always one to one.

9. Even if a relationship between two tables does not exist in the database, you can still
create an association between two entity classes that represent the tables.

10. Table(Of Member) is an example of a strongly typed table class.

Programming Challenges 367

11. To assign a LINQ query to a DataGridView’s DataSource property, you must call the
ToList method.

12. You can assign a query to a BindingSource’s DataSource property.

13. If you use runtime data binding with a LINQ query, you cannot format the grid columns.

14. To create an Object data source, you must run the Data Source Configuration wizard.

15. You cannot use an entity class association to link from a parent table to a child table.

16. Join queries are not supported by LINQ.

Short Answer

1. Which relational database object is represented by a LINQ entity class?

2. Which relational database object is represented by a LINQ entity property?

3. Which relational database object is represented by a LINQ association?

4. In the Karate database tutorials, what was the name of the strongly typed DataContext
class?

5. What is the O/R Designer?

6. How are associations useful in LINQ queries?

7. What advantage does a BindingSource offer when used to fill a DataGridView from a
LINQ query?

8. How do you create an alternate column name (an alias) when creating a LINQ query?

Algorithm Workbench

1. Write a LINQ query that selects all rows from the Karate Members table in which the
phone number starts with the digit 3.

2. Write a LINQ query that selects all rows from the Karate Members table in which the
Last_Name property contains the string “ha”.

3. Write a query that groups the rows of the Schedule table in the Karate database by the
instructor’s last name.

4. Write a LINQ query that groups the rows of the Schedule table in the Karate database
by the Day ID number. Within each group, display the day name and class time in a List-
Box control.

5. Write a LINQ query that groups payments by Member_Id into a group named pay-
mentGroup.

Programming Challenges
1. Adding New Payments

Create an application that lets the user add new payments to the Karate database. Use
an Object data source, a LINQ query, and a BindingSource control. Do not use a
MenuStrip control, but use a Save button to save the payments. Add a Show Payments
button that displays the Payments table on a separate form in a DataGridView control.
A sample main form is shown in Figure 7-17. Catch all exceptions and display a mes-
sage box if an exception is thrown. Display a confirmation message when a row is added
successfully. Hint: Be sure to initialize the BindingSource’s DataSource property with a
LINQ Select query when the form is loaded.

368 Chapter 7 LINQ to SQL

Figure 7-17 Adding a new payment to the Payments table

2. Deleting Payments

Create an application that lets the user delete payments from the Karate database. Use
an Object data source and a BindingSource control. Add a ToolStrip control containing
a Delete button, as shown in Figure 7-18. Display all payments in a DataGridView con-
trol. When the user selects a payment and clicks the Delete button, LINQ queries that
delete the payment and refresh the grid are executed.

Figure 7-18 Selecting and deleting payments

3. Grouping Karate Payments

Use the Group By operator to group the Payments table by member ID. Display the mem-
ber ID in the outside group, and display the individual payment dates and amounts within
each group. Write the output to a ListBox control, as demonstrated in Figure 7-19.

Figure 7-19 Grouping payments by Member ID

Programming Challenges 369

4. Grouping Payments by Member Name

Use the Group By operator to group the Payments table by the members combined first
and last names. Display the member name in the outside group, and display the indi-
vidual payment dates and amounts within each group. Write the output to a ListBox
control, as demonstrated in Figure 7-20.

Hint: The Group By operator permits only a single key field, so you will have to create
an anonymous type and assign it an alias name, called MemberName here:

Group aPayment By MemberName = New With {aPayment.Member.First_Name,
aPayment.Member.Last_Name}

Figure 7-20 Grouping payments by member name

5. Students and Course Lists

In this programming challenge, you will use LINQ statements to display college courses
taken by selected students. You will use a CourseRegistration database, which contains
tables named Students and Courses.

• The Students table contains the following columns: Id (smallint, primary key), Last-
Name (varchar(30)), Status (smallint), and Major (varchar(5)).

• The Courses table contains the following columns: Id (varchar(10)),
Student_Id(smallint), Credits (smallint), and Grade (float). The primary key of the
Courses table consists of two combined columns: Id and Student_Id.

Figure 7-21 shows a one-to-many relationship between the Students and Courses tables.
You can find the CourseRegistration.mdf database file in the chapter examples folder.

Figure 7-21 Database relationship between the Students and Courses tables

Use a LINQ query to fill a DataGridView with a list of Student objects. When the user
selects a student in the grid, display all courses taken by the student in a separate grid.
Use another LINQ query to fill the second grid. A sample is shown in Figure 7-22, in
which Student 1001 (Charles) was selected by clicking the left side of his row. The grid
on the right fills with the list of courses taken by the selected student. Notice that the

370 Chapter 7 LINQ to SQL

rightmost column in the Student grid displays a count of the number of courses the stu-
dent has taken. This column was not in the database, but it is calculated by the LINQ
query. We showed how to do such a calculation in Section 7.1.

The two DataGridView controls should be inserted into panels belonging to a Split-
Container control. At runtime, the user will drag the divider between the two panels to
adjust their size. To format the Grade column in the right-hand grid, set its Default-
CellStyle.Format property like this:

dgvCourses.Columns(2).DefaultCellStyle.Format = "n"

Figure 7-22 Displaying courses taken by a selected student

TOPICS

Creating
Web Applications8

8.1 Programming for the Web

8.2 Creating ASP.NET Applications

Tutorial 8-1: Creating the Click
application

8.3 ASP.NET Controls

Tutorial 8-2: Student Picnic application

Tutorial 8-3: Tracking server events

8.4 List-Type Controls

Tutorial 8-4: Signing up for a kayak
tour

8.5 Designing Web Forms

Tutorial 8-5: College Advising Wizard

8.6 State Management

371

C
H

A
P

T
E

R

This chapter introduces the ASP.NET runtime environment, showing how to use Visual Stu-
dio to create Web sites. You learn what happens when an ASP.NET page is processed by a
Web server. You learn about runtime events, the different categories of controls available in
ASP.NET applications, and the differences between HTML controls and ASP.NET controls.
The chapter describes application and configuration files required by ASP.NET applications.
Finally, we show how to create a simple Web application containing various types of but-
tons, labels, headings, and text boxes.

8.1 Programming for the Web

Extended HyperText Markup Language (XHTML)
When the Web first became popular, HyperText Markup Language (HTML) was the only
available markup language for creating pages with text, graphics buttons, and input forms.
Later, eXtended HyperText Markup Language (XHTML) was created to meet a need for
more advanced Web sites. XHTML not only describes the appearance of Web pages, it has
the ability to embed commands that execute on the Web server.

Many Web sites today are fully functional, interactive applications. In past years, Web
applications tended to be pasted together from a complicated combination of HTML,
scripting languages such as JavaScript, and executable programs. But now you can create
Web sites that integrate all of these elements in an easy and natural way, using Microsoft
ASP.NET.

372 Chapter 8 Creating Web Applications

ASP.NET
ASP.NET is the name given to Microsoft’s Web development platform. It provides develop-
ment tools, code libraries, and visual controls for browser-based applications. ASP.NET
applications run under Web browsers such as Internet Explorer, Netscape, and Mozilla Fire-
fox. An application can run on the Web, on your own computer, or on a network (called a
network share). ASP.NET provides a way to separate ordinary HTML from object-oriented
program code. It also provides many powerful controls, which are similar to Windows Desk-
top controls. ASP.NET lets you transfer a lot of your Visual Basic knowledge to Web appli-
cations. Most important, ASP.NET uses a compiler to check for syntax errors before your
program executes. Visual Basic code can be stored in a file separate from a page’s text and
HTML, making it easier for you to code and maintain program logic.

Web applications written for ASP.NET generally consist of the following parts:

• Content—Web forms, HTML code, ASP.NET controls, images, and other multimedia.
• Program logic—Code written in Visual Basic or C#.
• Configuration information—Stored in a file named Web.config.

Visual Web Developer
Visual Studio makes it easy to edit pages in Source view (XHTML markup), Design view, or
Split view (both source and design). If you do not have Microsoft Visual Studio, you can
download Visual Web Developer, a free Microsoft development tool that simplifies the way
you create Web applications. It lets you do the following:

• Create powerful visual interfaces, with text boxes, color, images, buttons, list boxes,
and calendars.

• Create connections to databases, with table adapters and datasets.
• Display database data in gridlike controls.
• Run and debug your programs in Visual Studio.
• Publish your applications to the Web so they can be enjoyed by everyone.

TIP: Except where otherwise noted, everything we say about development tools,
environment, editor, buttons, and so forth, applies equally to Visual Studio and Visual
Web Developer.

How Web Applications Work
Web applications, which we define as Web sites containing executable code, are designed
around a client-server model, which means that an entity called a server produces data con-
sumed by another entity called a client. Put another way, clients make requests, which are
satisfied by responses from servers.

When you use a Web browser to access a Web site, your browser is the client and the Web
site provides the server. A program called a Web server runs on the computer hosting the
Web site. Web browsers display data encoded in HTML. Web browsers connect to Web sites,
causing HTML data to be sent to the client’s computer. The browsers render the HTML, dis-
playing the fonts, colors, and images from the pages in the browser windows.

Uniform Resource Locator (URL)

A Uniform Resource Locator (URL) is the universal way of addressing objects and pages on
a network. It begins with a protocol such as http://, https://, or ftp://. It is followed by a domain

8.1 Programming for the Web 373

name such as microsoft.com, gaddisbooks.com, or mit.edu. A specially defined domain name
for your local computer is localhost. The URL may include a specific folder path and/or filename.
The following are sample URLs:

http://localhost/Default.aspx
http://www.microsoft.com
http://www.kipirvine.com/vbnet/index.html

Displaying a Standard Web Page

When you navigate to a Web page in your Web browser, the browser must connect to a Web
server. The Web server’s job is to wait for connection requests, which occur in two steps:

1. A Web browser connects to the server by sending an HTTP request to the Web server.
The request contains either an IP address such as 128.42.96.34 or, more commonly, a
URL such as http://microsoft.com. The HTTP request may also contain the name of a
Web page, such as Default.aspx.

2. The Web server translates the HTTP request into a directory and filename within the
server computer’s file system. The server reads the requested file, now called a Web
page. The server sends the Web page back to the user’s Web browser over the network.
The browser renders (interprets) the HTML by displaying text, graphics, and sound
and by executing scripting code.

After sending the Web page to the client, the server immediately breaks the connection. It
becomes free to handle Web page requests from other clients.

After a Web page is displayed, the user may click a button or press the Enter key, causing
the page contents to be sent back to the Web server. This action is called a postback. The
server processes the page and resends a modified Web page to the browser. The process-
ing might involve updating controls and executing functions in the application’s compiled
code.

ASP.NET Web Forms

Web applications written in ASP.NET use special Web pages called Web forms. A Web form
can be identified by its aspx filename extension. A Web form contains text: HTML tags,
HTML controls (such as buttons and text boxes), and special interactive controls called
server-side controls (or server controls). These controls might be buttons, list boxes, and text
boxes that execute on the server. They look like HTML controls but they are more power-
ful because they use event handler procedures to carry out actions based on user input. They
behave a lot like Windows desktop controls.

The source code for a Web form is usually stored in a related file called a codebehind file,
with the filename extension aspx.vb. This part of the application is also known as the
application logic.

Configuration information is generally stored in two different files. A Web.config file con-
tains required information about the runtime environment. Another optional file, called a
cascading style sheet (CSS) file, contains style names that can be used to alter characteristics
of the page, including colors, fonts, alignment, and spacing.

Web Servers

You can execute ASP.NET applications in three primary ways:

• The ASP.NET Development Server is installed automatically with Visual Studio and
Visual Web Developer. It is easy to use and requires no special security setup, but it is
invisible to all other computers on a network. You cannot, for example, run a Web site
on one machine and use another machine to browse to the site.

http://www.microsoft.com
http://www.kipirvine.com/vbnet/index.html
http://microsoft.com

374 Chapter 8 Creating Web Applications

• Internet Information Services (IIS) is a professional Web server that you can run on
your own computer. It must be configured carefully to ensure proper security. It is vis-
ible across a network (or on the Internet), so you can use it to host a public Web site.

• A remote Web server is a Web site running on a computer somewhere else on a net-
work. You can copy your application to the remote server before running it. Ordinar-
ily, you must supply a username and password to publish on a remote server. Many
companies offer Web site hosting services today.

HTML Designer

HTML Designer is an interactive tool in Visual Studio that you use to design and code Web
pages. The designer generates HTML source code and embeds special codes that identify
ASP.NET controls. It is possible to create Web forms using a plain text editor, but doing so
requires considerable practice. HTML Designer offers three views of a Web page:

• Design view: You can visually edit Web pages, using the mouse to drag controls and
table borders. This view most closely resembles Visual Studio’s editor for Windows
forms.

• Source view: Use this view to directly edit the HTML source code that makes up a Web
form.

• Split view: The window is split between Design and Source panes. A change made in
one pane will immediately change the contents of the other pane.

Web Browser Support

Several different Web browsers are popular today, each with their own capabilities and char-
acteristics. To make it easier to adapt to different browsers, an ASP.NET-compatible Web
server automatically detects the user’s browser type and generates standard HTML that is
appropriate for the user’s browser.

TIP: Before publishing a Web application for public usage, test it with several browsers,
including Internet Explorer, Safari, Firefox, and Chrome.

Using Classes in Web Applications
You can create stand-alone classes such as Student, Person, or Account in Web applications.
In fact, it’s a good idea to do that so you can create multi-tier Web applications. You should
always put these classes in a special folder within your project named App_Code. When the
application starts, the Web server checks to see if any files in this folder have been modified
since they were last compiled. If necessary, they are compiled before the applications startup
form displays.

Classes must be declared Public for them to be accessible from other Web pages in your
application.

Types of Controls
When you design Web forms in Visual Studio, the Toolbox window contains Web-related
controls placed in the following groups:

• Standard—Also known as Web forms controls, this group contains the most commonly
used controls on Web forms. Some are close relatives of Windows forms controls,
including Label, Button, ListBox, CheckBox, CheckBoxList, and RadioButton. Others
are unique to Web programming, such as the LinkButton and HyperLink controls.

8.2 Creating ASP.NET Applications 375

• Data—Controls for connecting to data sources; displaying database tables and XML
data in grids and lists.

• Validation—Controls for validating user input into controls such as text boxes.
• Navigation—Advanced controls for navigating between Web pages.
• Login—Controls related to authenticating users when they log into a Web site with

usernames and passwords.
• WebParts—Controls that let a Web site’s users modify the content, appearance, and

behavior of Web pages directly from a browser.
• AJAX Extensions—Controls the use of server-side Ajax technology, a way to improve

the user experience in a Web browser.
• Dynamic Data—DynamicControl, DynamicDataManager, etc.
• Reporting—ReportViewer control.
• HTML—Controls found on HTML Web pages, such as buttons, check boxes, radio

buttons, lists, and text boxes. They are compatible with standard HTML and have a
limited number of properties, no event handling, and no associated classes.

• General—Contains text that you may have dragged from the coding area onto the
ToolBox window. (Note: For instructors especially, this is a good area to save code
snippets when they are interactively building an application in class.)

Checkpoint

1. Describe a Web application in your own words.

2. Describe the client-server relationship in a Web application.

3. What is a postback?

4. Why is ASP.NET called a platform?

5. In which files do you create program logic in an ASP.NET application?

8.2 Creating ASP.NET Applications

Types of Web Sites
Four types of Web sites, File System, Local IIS, FTP Site, and Remote Site, appear in the
Open Web Site window, as shown in Figure 8-1. ASP.NET applications are also known as
Web sites or Web applications. To reach this window, select Open from the File menu, and
then select Web Site.

A File System Web Site runs directly under the ASP.NET Development Server supplied with
Visual Studio and Visual Web Developer. The application files can be stored in any directory.
The server is simple to use and does not leave the operating system open to security attacks.
This type of Web site is best suited to college laboratory environments. We will use File Sys-
tem Web sites in this book.

A Local IIS Site runs under a Windows operating system utility named Internet Information
Services (IIS). It is a professional-quality Web server with powerful security and configuration
features, but it requires some expertise to set up and maintain. IIS requires you to have admin-
istrative rights on the computer running the server in order to test and debug Web applications.

FTP Site and Remote Site refer to existing ASP.NET Web sites located on remote computers
(network or Web). You must supply a username and password to the remote site to upload
a copy of your application to the site. Both sites are useful if you want to publish an appli-
cation to a public Web site.

376 Chapter 8 Creating Web Applications

Figure 8-1 The Open Web Site window

Creating a Web Application
To create a new Web application in Visual Studio, select New from the File menu, then select
Web Site. The New Web Site window gives you a list of possible Web sites, as shown in
Figure 8-2. Select ASP.NET Empty Web Site.

Figure 8-2 New Web Site window

8.2 Creating ASP.NET Applications 377

In the Web location dropdown list in the lower left corner of the window, select File System.

The edit box just to the right of the location lets you choose the path and folder name for
your project. Suppose, for example, that you create an application named Click in the
c:\data\myWebs folder. Then a project folder named c:\data\myWebs\Click is automatically
created by Visual Studio.

The Web site name will appear in the Solution Explorer window. An empty ASP.NET Web
site contains only a single file named web.config, known as a Web configuration file. Later,
you will begin to modify this file.

Adding a Page to a Web Site

In any Web site, you will want to have at least one page (known as a Web form in ASP.NET).
To add a page, right-click the Web site name in Solution Explorer, select Add New Item, and
select Web Form. The window shown in Figure 8-3 will appear. For the first page you add
to your site (your application’s startup form), the name Default.aspx is the usual choice.

Figure 8-3 Adding a page to the Web site

A second file named Default.aspx.vb (a code behind file) is also created automatically. It holds
the Visual Basic code you write for event handlers and other program logic. Figure 8-4 shows
the Solution Explorer window for a sample application named MyWeb. Our Web site is
located inside a Solution container, but that is not required. Your Web site can exist by itself.

Figure 8-4 Files created for the MyWeb application

378 Chapter 8 Creating Web Applications

Source, Design, and Split Views
When you open a Web project or add a page to a new project, the page displays in its Source
view. In Figure 8-5, near the bottom, notice the three tabs labeled Design, Split, and Source.
These are the three views of, or ways of looking at a Web page. In Source view, two tool-
bars are displayed below the menu: Standard and HTML Source Editing (on the right side).
You can turn toolbars on an off from the View / Toolbars menu.

Figure 8-5 Displaying a page in Source view

Design View

If you switch to Design view on a blank page, you will see nothing. But you can type text
directly into a Web form when it is open in Visual Studio. The text you type is called static
text, and it flows from top to bottom, left to right. In other words, it behaves like any ordi-
nary text document. In Figure 8-6, for example, three lines of text were typed directly into
a Web form in Design view.

Figure 8-6 Static text typed directly on a form in Design view

8.2 Creating ASP.NET Applications 379

Source View

You can also view and type text into a form when it is in Source view. In that case, you must
type the text between markers called HTML tags. In the following example, our text appears
between the <div> and </div> tags:

<body>
<form id="form1" runat="server">

<div>
Welcome to my first Web site.

I hope you like it.

This is easy!

</div>
</form>

</body>

Sections begin with a tag such as <body> and end with the same tag having a slash before its
name, like </body>. Every Web form has a <form> tag. The optional <div> tag is inserted auto-
matically in every new page created by Visual Studio. You can use <div> to assign font and
color properties (called styles) that apply to all text following <div> until a </div> tag is found.

Each line of text in our example ends with a line break, expressed as
. There is another
type of break you will often see, which is <p />, a paragraph break. To show the difference,
we will modify our text:

<body>
<form id="form1" runat="server">

<div>
Welcome to my first Web site.<p />
I hope you like it.<p />
This is easy!

</div>
</form>

</body>

Switching to design view in Figure 8-7, we can see that each line is a separate paragraph.

Most of your work can be done in the Design view. But you may want to gradually switch
to working in the Source view, to give yourself more precise control over the page’s output.

Figure 8-7 Each line ends in a paragraph break

Split View

The Split view, shown in Figure 8-8, lets you see how text in the Design pane is translated
into HTML in the Source pane. When you modify the contents of one pane, the other pane
is updated automatically.

380 Chapter 8 Creating Web Applications

Running a Web Application
To run a Web application that is open in Visual Studio, right-click the name of the applica-
tion’s startup form in the Server Explorer window and select View in Browser from the
popup menu. A default Web browser is selected for you, but you can select any browser on
your computer. To see a list of available Web browsers, right-click the Web form in the Solu-
tion Explorer window and select Browse With. . . from the popup menu. The window,
shown in Figure 8-9, also lets you select the default browser.

In Tutorial 8-1 you will create your first Web application.

Figure 8-8 Split view

Figure 8-9 Selecting a Web browser

8.2 Creating ASP.NET Applications 381

Tutorial 8-1:
Creating the Click application

In this tutorial, you create a Web application named Click that contains a Button con-
trol and a label that displays text when the button is clicked.

As a preparation step, decide which directory you will use to save Web projects.

Tutorial Steps

Step 1: Start Visual Studio and, from the File menu, select New, then select Web Site.
As in Figure 8-10, select Empty ASP.NET Web Site from the list of project
types, name it Click, and click the OK button to close the window.

Figure 8-10 New Web Site window

Step 2: You will add a new Web form named Default.aspx to the Web site. To do that,
right-click the Web site name in Solution Explorer, select Add New Item,
select Web Form, and name the form Default.aspx.

Step 3: You are looking at the Source view of a blank Web form. Click the Design tab
at the bottom to switch to Design view.

TIP: When we show screen snapshots of Internet explorer, we often
remove the Toolbar, status bar, and address bar. This is done only to save
space on the printed page and focus your attention on the page’s content.
You can leave the Toolbar, address bar, and status bar visible in your own
browser.

382 Chapter 8 Creating Web Applications

Step 4: Next, you will create a title that displays in the title bar of the Web browser
when the application runs. Select DOCUMENT in the Properties window and
set its Title property to Click Application.

Step 5: Switch to Source view and verify that the following text appears between the
<title> and </title> tags:

<title>Click Application</title>

Return to Design view.

Step 6: Look for the block format dropdown list on the left side of the formatting
toolbar just above the Toolbox window (see Figure 8-11). This list contains a
list of standard HTML formats that affect the font size, color, and other
attributes. Select Heading 1 <H1>.

Figure 8-11 Block format pull-down list from the formatting toolbar

Step 7: Click the mouse on the first line of the form and type My Click Application.
Press Enter to move to the next line. Figure 8-12 shows a sample of your work
so far.

Figure 8-12 After adding a heading in Heading 1 style

Step 8: Drag a Button control from the Toolbox window onto your form. Use the
mouse to make it wider. Set its Text property to Click Here. Set its ID prop-
erty to btnClick.

8.2 Creating ASP.NET Applications 383

Running in Debug Mode

You can start a program in Debug mode by selecting Start Debugging from the Debug menu.
The first time you run a Web application in Debug mode, you will see the message box
shown in Figure 8-14. When you click the OK button, a configuration file named
Web.config is added to your project, containing an option that permits debugging.

<system.web>
<compilation debug="true" targetFramework="4.0"/>

</system.web>

Step 9: Click the mouse just to the right of the Button and press Enter to move to the
next line. Insert a Label control on the next line. Set its ID property to
lblMessage and clear its Text property.

Step 10: Next, you will add code to the button’s Click event handler. Double-click the
Button and add the following statement to its Click event handler:

lblMessage.Text = "That was a great click!"

You have opened the file named Default.aspx.vb, which is the codebehind file
for this Web page. Code written in this file is compiled by Visual Basic. It can
contain classes and objects in the same way as Windows forms.

Step 11: Save the project. To open Default.aspx in the Web browser, right-click its
name in the Solution explorer window and select View in Browser. When the
Web browser opens your application, click the Click Here button. A message
should appear below the button, as shown in Figure 8-13. Our example uses
the Internet Explorer Web browser, but you can use a different one.

Figure 8-13 After clicking the button in the Click application

Step 12: Close the browser window.

NOTE: On Web pages, the ID property replaces the Name property used
on Windows forms.

384 Chapter 8 Creating Web Applications

Figure 8-14 Debugging an application for the first time

Useful Tips

Tip 1: Renaming the class behind a Web form

If you rename a Web form’s class in the form’s codebehind file, you must manually modify
the first line of the Web form’s XHTML code. Suppose the form’s class is named Default.

public partial class _Default : System.Web.UI.Page

And you rename the class to MainForm.

public partial class MainForm : System.Web.UI.Page

Then you must open the form’s aspx file and look for the Page directive on the first line.

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="MainForm.aspx.vb"
Inherits="_Default" %>

And change the Inherits property setting to the following:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="MainForm.aspx.vb"
Inherits="MainForm" %>

Tip 2: Creating an HTTP Web Site

In the Web location option on the Add New Web Site window, if you select the HTTP
option, your Web site will run under Internet Information Services (IIS). You enter the URL
of your new Web site. The server must be running in one of two places:

• On your local computer. You must install and configure IIS in order to choose this type
of Web site to run on your local computer. You must configure a base location for all
your Web sites, using the configuration options in IIS.

• On a remote Web server where you have an account with an Internet service provider
that supports ASP.NET. You use a domain name on the server as the base location for
your HTTP site. For example, suppose your domain name were mydomain.com. You
could create a new application named MyWeb by specifying the following URL:

http://mydomain.com/MyWeb

The Internet service provider would prompt you for a username and password.

Checkpoint

6. Name four types of Web sites you can open in Visual Studio.

7. When you create a Web site, which tab must you click to switch from the startup
page’s Source view to Design view?

http://mydomain.com/MyWeb

8.3 ASP.NET Controls 385

8. How do you select from a list of Web browsers when running a Web application in
Visual Studio?

9. What is static text? How is it similar to or different from Label controls in
Windows forms?

10. In the Click application, how did you specify the block format named Heading 1
for the first line of text in the Web form?

11. What special message appears the first time you run an ASP.NET application in
Debug mode?

8.3 ASP.NET Controls
ASP.NET controls, also known as Web server controls, make Web applications dynamic and
interactive. They are more powerful than standard HTML controls because each is defined
by a class with a rich set of properties, methods, and events. The controls look and feel like
Windows controls, making them easy to learn.

The following ASP.NET controls are the ones you are likely to use often. Except for those
marked with an asterisk (*), all have counterparts among the controls used on Windows forms.

Button
ImageButton
LinkButton
Text Box
Label
RadioButton
RadioButtonList*
CheckBox
CheckBoxList*
ListBox
DropDownList (similar to the ComboBox control)
Image (similar to the PictureBox control)
Calendar (similar to the MonthCalendar control)

ASP.NET controls have similar properties to their Windows Forms counterparts. Examples of
such properties are Text, Enabled, Visible, Font, BorderStyle, ReadOnly, and TabIndex. There
are a few important differences, however, between ASP.NET controls and Windows controls:

• The ID property of ASP.NET controls is the counterpart to the Name property of Win-
dows controls.

• ASP.NET controls have an important new property named AutoPostBack.
• ASP.NET controls lose their runtime values when the user moves away from the cur-

rent page. Special programming techniques can overcome this disadvantage.

Web server controls are unique to ASP.NET. When a user connects to an ASP.NET Web
page, a special process takes place, as shown in Figure 8-15. In Step (2), the Web server reads
and interprets the ASP.NET controls on the page and executes Visual Basic statements in the
application’s codebehind file. In Step (3), the server creates a modified Web page consisting
of standard HTML tags and controls. In Step (4), the modified Web page is sent back to the
user and displayed in the Web browser.

Label Control

The ASP.NET Label control is almost identical to the Label control used in Windows appli-
cations. When displaying text, you need to use a Label only if its contents will change at

386 Chapter 8 Creating Web Applications

runtime, or if you need to change its Visible property. Assign a name to a Label’s ID prop-
erty if you plan to access it in code statements.

This is how a Label control is declared in the form’s XHTML source code:

<asp:Label
ID="Label1"
runat="server"
Text="This is a label">
</asp:Label>

Here are some important details to notice about the example:

• Attribute values are enclosed in quotation marks.
• There is no rule regarding indentation or line breaks. Programmers often prefer to

arrange each property value on a separate line, as we have done, to make editing
easier.

• ASP.NET controls always begin with the prefix asp:.
• All ASP.NET controls require the runat=“server” attribute.
• A default value is assigned to the ID property, but you should rename it if you plan to

refer to it in coding statements.
• The Text property holds a string that appears in the label at runtime.

Figure 8-16 shows how the label appears when displayed in a browser.

(2) read by

(3) creates

(4) sent
back to

(1) connects toWeb
browser

Web
Server

aspx Web page
with Web controls

Web page with
standard HTML

controls

Figure 8-15 Connecting to ASP.NET Web pages

Figure 8-16 A Label control at runtime

8.3 ASP.NET Controls 387

If you want to make a copy of a control, you can do it in Source view by copying the code
to the clipboard and pasting it again. You just need to ensure that each control’s ID prop-
erty has a different value.

TextBox Control

The ASP.NET TextBox control is similar in many ways to the TextBox control for Windows
applications. The Text property holds text that is entered by the user. The MaxLength prop-
erty lets you limit the number of characters the user is permitted to type. The TextMode
property has three possible values:

• SingleLine—Permits the user to enter only a single line of input.
• MultiLine—Permits the user to enter multiple lines of input in the box.
• Password—Characters typed by the user appear as asterisks.

Internet Explorer and other browsers behave differently when using the TextBox control. To
be as compatible as possible with all Web browsers, you should use the Columns property
to control the width of the TextBox. If you want the user to enter multiple lines of input, set
the Rows property accordingly. In the following code, we declare two text boxes, a Single-
Line and a MultiLine, with some static text in between:

TextMode = SingleLine:
<asp:TextBox

ID="TextBox1"
BorderWidth="1"
runat="server">
</asp:TextBox>

<p />

TextMode = Multiline:

<asp:TextBox

ID="TextBox2"
runat="server"
Columns="40"
TextMode="MultiLine"
BorderWidth="1"Rows="15">
</asp:TextBox>

Notice that we also set the BorderWidth property of the text boxes to one pixel to make
them easier for the user to see.

Figure 8-17 shows how these controls look in the user’s browser.

Visual Studio does not provide a tool to set the Tab order on Web forms. By default, all con-
trols have their TabIndex property set to 0, and the tab order at runtime will move sequen-
tially down the page. If you want use a specific tab order, you must set the TabIndex for each
control to a value greater than 0. If the browser’s Address bar is visible, it will automatically
consume one tab stop.

CheckBox Control

The ASP.NET CheckBox control is almost identical to the CheckBox in Windows appli-
cations. Use its Text property to set the visible text, and evaluate the Checked property at
run time. The TextAlign property lets you position the text to the left or right of the box.

<asp:CheckBox
ID="chkSavePassword"
Text="Save my password"
runat="server" />

Notice that an ending </asp:CheckBox> tag is not required.

388 Chapter 8 Creating Web Applications

In Tutorial 8-2, you will create a Web form that uses labels, text boxes, a button, and a check
box.

Figure 8-17 TextMode examples: SingleLine and MultiLine

Tutorial 8-2:
Student Picnic application

In this tutorial, you will create an online sign-up application for a student picnic. Fig-
ure 8-18 shows how the application looks when it loads in the Web browser.

Figure 8-18 Picnic Signup application, on startup

8.3 ASP.NET Controls 389

Tutorial Steps

Step 1: Create a new empty ASP.NET Web site named Student Picnic and add a Web
form named Default.aspx to the site.

Step 2: Open Default.aspx in Source view and remove the <div> and </div> tags.

Step 3: Add the following code between the tags marked <form id=“form1”
runat=“server”>, and </form>:

<h2>Computer Department Student Picnic</h2>
First Name
<asp:TextBox

ID="txtFirst"
runat="server">
</asp:TextBox>

The first line creates a level-two heading with the application title. The second
line contains static text. Beginning on the third line, a TextBox control is
named txtFirst.

Step 4: Add a second prompt and a text box for the last name. To save time, you
may want to copy the first text box to the clipboard and paste a copy into
the code editor.

<p />
Last Name
<asp:TextBox

ID="txtLast"
runat="server">
</asp:TextBox>

The first line inserts a paragraph break.

Step 5: Add the following code, which inserts a paragraph break followed by a
CheckBox control:

<p />
<asp:CheckBox

ID="chkVegetarian"
runat="server"
Text="I am a vegetarian"/>

Step 6: Add the following paragraph break and Button control:

<p />
<asp:Button

ID="btnConfirm"
runat="server"
Text="Confirm" />

Step 7: Add a Label control that will hold a response message to the user:

<p />
<asp:Label

ID="lblMessage"
runat="server">
</asp:Label>

Next, you will write code in the form’s codebehind file.

390 Chapter 8 Creating Web Applications

Step 8: Open the file named Default.aspx.vb and add the following Page_Load event
handler:

Protected Sub Page_Load() Handles Me.Load
txtFirst.Focus()

End Sub

This statement sets the input focus to the TextBox when the browser loads the
page.

Step 9: Create the following Click event handler:

Protected Sub btnConfirm_Click() Handles btnConfirm.Click
' The user clicked the Confirm button.
lblMessage.Text = "Thank you for signing up for the " _

& "picnic, " & txtFirst.Text & " " & txtLast.Text & "."
If chkVegetarian.Checked Then

lblMessage.Text &= " You will be receiving a " _
& "Vegetarian meal."

End If
End Sub

This code may seem familiar because it is identical to how a Click handler
would be written in a Windows Forms application. Microsoft’s intent was
to make the transition from desktop to Web programming as smooth as
possible.

Step 10: View the Default.aspx page in your browser. Enter a person’s name, select the
check box, and click the Confirm button. The output should be similar to
Figure 8-19. Notice that when you resize the browser window, the message at
the bottom automatically wraps around to the next line.

Figure 8-19 The Student Picnic program, after clicking the Confirm button

Step 11: Uncheck the check box and click the Confirm button again. The vegetarian
portion of the message should disappear.

8.3 ASP.NET Controls 391

Web Form Events
Visual Basic programmers are usually pleased to find out that they can write code in
ASP.NET pages in nearly the same way they write code in Windows applications. For exam-
ple, every button generates a Click event.

Protected Sub btnOk_Click() Handles btnOk.Click
End Sub

Page_Load Event

Perhaps the most important Web form event of all is the Page_Load event, which is very sim-
ilar to the Form_Load event in Windows Forms applications. The Page_Load event fires
when a page is first loaded into the user’s browser and posted to the server.

You typically put code in Page_Load that initializes controls and other class-level variables.
In Tutorial 8-2, for example, you inserted code that set the initial input focus to the txt-
LastName TextBox.

txtFirst.Focus()

Page_Load also fires when a page is posted back to the server. This happens, for example,
when the user clicks a Button control.

IsPostBack Property

Sometimes code must execute only once when a page is loaded but not each time the page
posts back. For example, you might want to preselect a ListBox item when the form loads.
There is a way to know if the page is being posted back and not loaded. The Page object has
an IsPostBack property that equals True when the page is posting back rather than loading
for the first time. The following code shows how you can selectively execute code either
when the page is loaded for the first time or when it is posted back:

Protected Sub Page_Load() Handles Me.Load
If IsPostBack Then
' Code in here only executes during postbacks.
Else
' Code in here only executes when the page loads.
Endif
' Code in this area executes when the page loads
' and when the page is posted back.

End Sub

Tutorial 8-3:
Tracking server events

In this Tutorial, you will create an application that tracks different server events as they
happen on a Web page. The events you will track are Page_Load, Click (button), and
TextChanged.

Events are fired in a different sequence in Web forms than they are in Windows forms.
The Web form shown in Figure 8-20 inserts a message in the ListBox each time the
Page_Load event fires. From the program display, we can see that Page_Load fired when
the page was loaded in the browser.

392 Chapter 8 Creating Web Applications

Figure 8-20 Immediately after the Web form loads

Tutorial Steps

Step 1: Create a new empty ASP.NET Web site named Event Demo and add a Web
form named Default.aspx to the site.

Step 2: Open Default.aspx in Source view and remove the <div> and </div> tags.

Step 3: Add the following code between the tags marked <form id=“form1”
runat=“server”>, and </form>:

<h1>Events</h1>
Enter your name:
<asp:TextBox

ID="txtName"
Columns="25"
runat="server">
</asp:TextBox>

<asp:Button
ID="btnOk"
runat="server"
Text="OK" />

<p />
<asp:ListBox

ID="lstEvents"
runat="server"
Width="250px"
Height="109px">
</asp:ListBox>

The ListBox control is empty at first, but it will be filled with the names of
events.

Step 4: Open the form’s codebehind file and insert the following code inside the class:

Protected Sub Page_Load() Handles Me.Load
lstEvents.Items.Add("Page_Load")

End Sub

8.4 List-Type Controls 393

Protected Sub txtName_TextChanged() Handles txtName.TextChanged
lstEvents.Items.Add("TextChanged")

End Sub

Protected Sub btnOk_Click() Handles btnOk.Click
lstEvents.Items.Add("Button Click")

End Sub

The Page_Load, TextChanged, and Click events are all represented in this
code. Each handler writes a line to the ListBox control that identifies the event
name.

Step 5: Type in a name and click the OK button. As shown in Figure 8-21, the
Page_Load event executes again because a postback event was fired. Then the
TextChanged event handler executes, followed by the button’s Click event.

Figure 8-21 After entering a name and clicking the OK button

The sequence of events is different on Web forms compared to the sequence on Win-
dows forms. Most notably, the TextChanged and Click events do not fire until after the
page is reloaded.

8.4 List-Type Controls
The ListBox, DropDownList, CheckBoxList, and RadioButtonList can all be classified as
list-type controls. They have the following common characteristics:

• All use the <ListItem> tag to identify items in their lists.
• All have an Items collection, and you can add items to it using the ListItem Collection

Editor window, shown in Figure 8-22.
• All have a ValueMember property.
• All have a SelectedIndexChanged event.

394 Chapter 8 Creating Web Applications

All have the following runtime properties:

• SelectedIndex returns the index of the selected item.
• SelectedItem returns the currently selected item, a ListItem object.
• SelectedValue returns the contents of the field identified by the ValueMember property.

The SelectedIndex property equals 0 when no item has been selected.

ListBox Control
In many ways, the ASP.NET ListBox control is similar to the ListBox control for Windows
Forms applications. The main difference is that the first item (at index 0) is automatically
selected when the Web page displays. This is how an empty ListBox named lstColors would
be coded in XHTML:

<asp:ListBox
ID="lstColors"
runat="server"
</asp:ListBox>

Another option would be to add Width and Height properties, measured in pixels, as
follows:

<asp:ListBox
ID="lstColors"
runat="server"
Width="150px"
Height="50px">
</asp:ListBox>

Adding ListBox Items

A ListBox has an Items collection, which can be filled in at runtime by calling the
Items.Add method. Or in the page’s Design view, you can open the ListBox Tasks window
shown in Figure 8-23, and select Edit Items. This brings up the ListItem Collection Editor
window.

Figure 8-22 ListItem Collection Editor window

8.4 List-Type Controls 395

Or you can insert items directly into its XHTML code, as shown below. Each item is
encoded as an ASP.NET ListItem control.

<asp:ListBox
ID="lstColors"
runat="server">
<asp:ListItem>Blue</asp:ListItem>
<asp:ListItem>Red</asp:ListItem>
<asp:ListItem>Green</asp:ListItem>
<asp:ListItem>Lavender</asp:ListItem>
</asp:ListBox>

SelectionMode

You can use the SelectionMode property to determine whether users can select only a single
item or multiple items from a ListBox. The two possible choices are Single and Multiple. In
Multiple mode, the user can hold down the Ctrl key to select multiple individual items or
hold down the Shift key to select a range of items.

SelectedIndexChanged Event and the AutoPostBack Property

You can use a SelectedIndexChanged event handler to respond to selections by the user
in any list-type control. There is one important consideration, however: the
AutoPostBack property must equal True if you want the user’s selection to be detected
immediately. Otherwise, the SelectedIndexChanged event will not fire until the form is
posted back to the server by some other control (such as a button). By default, Auto-
PostBack equals False.

When AutoPostBack equals True for a list-type control, the user experiences a short delay each
time he or she clicks on the list. Depending on the Web server’s response time, the delay can
be inconvenient for users. Most Web applications do not post back to the server each time
users select items in lists. Instead, the sites use button controls to post all selections on the
page back to the server at the same time.

AutoPostBack defaults to False for the CheckBox, CheckBoxList, DropDownList, ListBox,
ListControl, RadioButton, RadioButtonList, and TextBox controls. Other controls, such as
Button, LinkButton, and ImageButton automatically post the current page back to the
server, so they have no need for an AutoPostBack property.

Control
The CheckBoxList control looks like a group of check boxes but works like a ListBox. In
fact, the following code is identical to that of our previous ListBox, except that we changed
ListBox to CheckBoxList:

Figure 8-23 ListBox Tasks window

396 Chapter 8 Creating Web Applications

<asp:CheckBoxList
ID="lstColors"
runat="server">
<asp:ListItem>Blue</asp:ListItem>
<asp:ListItem>Red</asp:ListItem>
<asp:ListItem>Green</asp:ListItem>
<asp:ListItem>Lavender</asp:ListItem>
</asp:CheckBoxList>

Like the Listbox, a CheckBoxList has SelectedIndex, SelectedItem, and SelectedValue proper-
ties. It has an Items collection, and each item has a Selected property (equal to True or False).

Figure 8-24 shows our CheckBoxList at runtime. You can iterate over the Items collection
to find out which boxes have been checked. The following code is a sample:

For Each item As ListItem In lstColors.Items
If item.Selected Then
'do something
End If

Next

Figure 8-24 CheckBoxList control

DropDownList Control
The DropDownList control permits the user to select a single item from a list. This is how
a sample would be coded:

<asp:DropDownList
ID="lstColors"
runat="server">
<asp:ListItem>Blue</asp:ListItem>
<asp:ListItem>Red</asp:ListItem>
<asp:ListItem>Green</asp:ListItem>
<asp:ListItem>Lavender</asp:ListItem>
</asp:DropDownList>

Again, we just borrowed our earlier ListBox code and changed <asp:ListBox> to <asp:Drop-
DownList> tag.

A DropDownList looks like a Windows ComboBox control, but there are two important
differences. In a DropDownList, the initial value of SelectedIndex is 0, causing the first item
to display. Also, users cannot enter an arbitrary string into the DropDownList, but they can
do so in a ComboBox.

Figure 8-25 shows a simple expansion of a list by the user at runtime.

8.4 List-Type Controls 397

RadioButtonList Control

The RadioButtonList control displays a group of radio buttons, shown in Figure 8-26. You
could create a set of individual RadioButton controls, but a single RadioButtonList is easier
to use. As with any radio button list, only one item can be selected at a time. This is how we
coded the control:

<asp:RadioButtonList
ID="lstColors"
runat="server">
<asp:ListItem>Blue</asp:ListItem>
<asp:ListItem>Red</asp:ListItem>
<asp:ListItem>Green</asp:ListItem>
<asp:ListItem>Lavender</asp:ListItem>
</asp:RadioButtonList>

You can arrange the buttons horizontally or vertically, using the RepeatDirection property
(the default is vertical).

Figure 8-25 The user is expanding a DropDownList control

Figure 8-26 RadioButtonList example

Calendar Control
The Calendar control lets the user select one or more dates from a monthly calendar grid. It
is similar to the MonthCalendar control for Windows applications. Its default format is
shown at runtime in Figure 8-27. Here is the code that created the sample control:

<asp:Calendar
ID="Calendar1"
runat="server">
</asp:Calendar>

398 Chapter 8 Creating Web Applications

There are a number of predefined styles (fonts, colors) for this control. To select one, click
on the control’s Smart Tag in Design view, select AutoFormat, and choose from several stan-
dard formats. Figure 8-28 shows the result after choosing a format named Professional 1.

Figure 8-27 Calendar control in default format

Figure 8-28 Calendar control, using the Professional 1 format

Some essential Calendar control properties are listed here:

• The SelectedDate property gets or sets the selected date—it defaults to the current date.
• The VisibleDate property determines which month is displayed.
• The IsSelectable property determines whether the user will be able to select dates.

The SelectionChanged event fires when the user selects a date. For example, the following
code copies a Calendar’s selected date into a Label control:

lblDate.Text = Calendar1.SelectedDate.ToString("d")

Selecting Weeks

By changing the SelectionMode property to DayWeek, you permit the user to select either a
day or an entire week in the Calendar control, as shown in Figure 8-29. The SelectedDate
property returns only the first day of the selected week. But you can iterate over the
SelectedDates collection to get all dates in the range. The following statements display the
list of selected dates to a Label control:

For Each dt As Date In Calendar1.SelectedDates
lblDate.Text &= dt.ToString("d") & " "

Next

8.4 List-Type Controls 399

Figure 8-29 Selecting a week in the Calendar control

Tutorial 8-4:
Signing up for a Kayak Tour

The Kayak Tour Scheduler application lets a user sign up for kayak tours, as shown in
Figure 8-30. The user selects the type of tour from a RadioButtonList, the type of kayak
from a DropDownList, and optional equipment items from a CheckBoxList. The date
is selected from a Calendar control. When the Confirm button is clicked, the user’s
selections are displayed in a Label control at the bottom of the window.

Figure 8-30 Kayak Tour Scheduler application

400 Chapter 8 Creating Web Applications

Tutorial Steps

Step 1: Create a new empty ASP.NET Web site named Kayak Tour Scheduler and add
a Web form named Default.aspx to the site.

Step 2: Open Default.aspx in Source view and modify the <body> tag so it looks
like this:

<body style="font-family:Arial;font-size:.9em">

The style property shown here sets the name of the font (Arial), and the font
size (.9em, or 90% of the standard font size in the user’s browser).

Step 3: On the next line following the <form> tag, add a level-two heading and a
RadioButtonList control that holds different types of tours.

<h2>Sign Up for a Kayak Tour!</h2>
Select the Type of Tour:
<asp:RadioButtonList

ID="lstTourType"
RepeatDirection="Horizontal"
runat="server">
<asp:ListItem>Half day</asp:ListItem>
<asp:ListItem>Full day</asp:ListItem>
<asp:ListItem>Overnight</asp:ListItem>
</asp:RadioButtonList>

<p />

Step 4: Add a DropDownList that holds a list of kayak types.

Select the Type of Kayak:
<asp:DropDownList

ID="lstKayakType"
runat="server">
<asp:ListItem>Sit on top single</asp:ListItem>
<asp:ListItem>Sit on top tandem</asp:ListItem>
<asp:ListItem>Touring</asp:ListItem>
<asp:ListItem>Sea Kayak</asp:ListItem>
</asp:DropDownList>

<p />

Step 5: Add a CheckBoxList that lets users select optional equipment items.

<div>
Optional Equipment:
<asp:CheckBoxList

ID="lstEquipment"
RepeatDirection="Horizontal"
runat="server">
<asp:ListItem>Hi-tech paddle</asp:ListItem>
<asp:ListItem>Quick-inflate life vest</asp:ListItem>
<asp:ListItem>Fishing pole</asp:ListItem>
<asp:ListItem>Rudder</asp:ListItem>
</asp:CheckBoxList>

</div>

Above, a <div> tag groups the line of static text with the CheckBoxList
control to prevent a blank line from appearing between them at runtime.

Step 6: Add a Calendar control that lets the user select the tour date. The VisibleDate
property determines the first date displayed by the Calendar.

8.4 List-Type Controls 401

<p />
<div>
Select the Date:
<asp:Calendar

ID="calTourDate"
VisibleDate="2/1/2011"
runat="server">
</asp:Calendar>

</div>

Step 7: Add a Confirm button and a Label that will display information about the
reservation.

<p />
<asp:Button

ID="btnConfirm"
runat="server"
Text="Confirm" />

<p />
<asp:Label

ID="lblComments"
runat="server">
</asp:Label>

Codebehind File

Step 8: Open the form’s codebehind file and add the following Click handler for the
Confirm button:

1: Protected Sub btnConfirm_Click() Handles btnConfirm.Click
2: ' The user clicked the Confirm button.
3: lblComments.Text =
4: "You selected a " _
5: & lstTourType.SelectedItem.ToString _
6: & " tour using a " _
7: & lstKayakType.SelectedItem.ToString _
8: & " kayak on " _
9: & calTourDate.SelectedDate.ToString("d")
10:
11: ' Build the equipment list.
12: Dim equip As String = String.Empty
13: For Each item As ListItem In lstEquipment.Items
14: If item.Selected Then
15: equip &= item.ToString & ", "
16: End If
17: Next
18: ' Display the equipment list.
19: If equip.Length > 0 Then
20: ' Remove the final comma and space.
21: equip = equip.Remove(equip.Length - 2)
22: ' Append to the Label.
23: lblComments.Text &= ", with the following equipment: " _
24: & equip
25: End If
26: End Sub

Lines 3–9 build a string containing the user’s selected items from the list of
tours (lstTourType) and kayaks (lstKayakType), and the selected date from the

402 Chapter 8 Creating Web Applications

Checkpoint

12. Which ASP.NET control is the counterpart to the ComboBox in Windows forms?

13. Which ASP.NET control displays an image and fires a Click event?

14. Which ASP.NET control looks like a hyperlink (underlined text) and fires a Click
event?

15. How can you find out which button in a RadioButtonList control was selected by
the user?

16. How does setting AutoPostBack to True affect a ListBox control?

17. Which list-type control automatically initializes its SelectedIndex property to
zero?

18. Which Calendar control property returns a single date selected by the user?

8.5 Designing Web Forms

Using Panels to Hide and Show Groups of Controls
One of the easiest to use and most powerful controls is the Panel. It is a blank container that
can hold other controls as well as static text. It is defined like this:

<asp:Panel
ID="Panel1"
runat="server">

</asp:Panel>

Often, a Panel’s Visible property will equal False when a page is first displayed, and you use
runtime code to change Visible to True. To the user, the panel will seem almost like a popup
window because it appears out of nowhere, anywhere on a page. In Design mode, all pan-
els and controls are visible, regardless of the value of their Visible property.

You can use panels to control a user’s sequence of inputs, much in the same way that a soft-
ware wizard does so. Often, a selection made by the user at one stage will determine which
Panel is displayed next.

calendar (calTourDate). Lines 13–17 loop through the lstEquipment Check-
BoxList control and, for every selected item, add its name to a string. Line 19
checks to see if the string containing the list of equipment (named equip) is not
empty. On line 23, the string is appended to the Label control.

Step 9: Save and view the page in a browser. As you change the values of controls,
click the Confirm button, and observe that the page is posted back to the
server and refreshed.

It’s important to see that much of the VB code you write for Web applications
is the same as it would be for Windows Forms applications. We encourage
you to learn about many of the other amazing controls that you find in the
Visual Studio Toolbox.

8.5 Designing Web Forms 403

TIP: Use a nonbreaking space character to force the browser to display a space. Nor-
mally, spaces within a page’s XHTML markup are ignored by the browser unless they are
enclosed in quotation marks. But if you insert the string into the markup, the
browser will display a space. In the following example, the Button controls are separated
by two nonbreaking spaces:

<asp:Button ID="btnAdd" runat="server" Text="Add" />
 /
<asp:Button ID="btnReplace" runat="server" Text="Replace" />

College Advising Example

Suppose we have a Panel control named pnlNewStudent that contains information for newly
admitted college students. Another Panel control named pnlReturnStudent has information
for returning students. If an integer variable named studentType contains either 0 or 1, we
can decide which panel to display.

Select Case studentType
Case 0

pnlNewStudent.Visible = True
Case 1

pnlReturnStudent.Visible = True
End Select

Or using best coding practices, we can declare an enumerated type for the two types of
students.

Enum StudentStatus
NewStudent
ReturningStudent

End Enum

Then the Select Case statement can be coded like this:

Select Case studentType
Case StudentStatus.NewStudent

pnlNewStudent.Visible = True
Case StudentStatus.ReturningStudent

pnlReturnStudent.Visible = True
End Select

In Tutorial 8-5, you will create a short application that shows and hides Panels according to
the user’s actions.

Tutorial 8-5:
College Advising Wizard

In this tutorial, you will create a short application that begins the process of online
advising for college students. At the start, the student will be asked to make a selection,
as shown in Figure 8-31. If the student clicks the New student button, the panel shown
in Figure 8-32 is displayed. Notice that the initial question, which was also in a panel,
has disappeared. If the student clicks the Returning student button when the page loads,
the panel shown in Figure 8-33 is displayed.

404 Chapter 8 Creating Web Applications

Figure 8-31 College Advisor, initial question

Figure 8-32 College Advisor, new student

Figure 8-33 College Advisor, returning student

Tutorial Steps

Step 1: Create a new, empty ASP.NET Web site named College Advising Wizard and
add a Web form named Default.aspx to the site.

Step 2: Add the following code to Default.aspx, in Source view. It creates a title (Col-
lege Advisor) and a Panel control that contains the initial question and a
RadioButtonList.

<h2>College Advisor</h2>
<asp:Panel ID="pnlStart" runat="server">
What is your current enrollment status?

<asp:RadioButtonList ID="lstStudentType" runat="server"
AutoPostBack="true">
<asp:ListItem>New student</asp:ListItem>
<asp:ListItem>Returning student</asp:ListItem>

</asp:RadioButtonList>
</asp:Panel>
<p />

8.5 Designing Web Forms 405

Step 3: Add the following code:

<asp:Panel ID="pnlNewStudent" runat="server" Visible="false">
You have indicated that you are a new student. Which of the
following tasks have you completed?

<asp:CheckBoxList
ID="lstNewStudentTasks" runat="server">
<asp:ListItem>Attended orientation</asp:ListItem>
<asp:ListItem>Completed immunization forms</asp:ListItem>
<asp:ListItem>Visited with academic advisor</asp:ListItem>

</asp:CheckBoxList>
</asp:Panel>

Step 4: Add the following code:

<asp:Panel ID="pnlReturnStudent" runat="server" Visible="false">
You have indicated that you are a returning student. Do you have
any of the following registration holds?

<asp:CheckBoxList
ID="lstRegistrationHolds"
runat="server">
<asp:ListItem>Academic Skills Test not passed</asp:ListItem>
<asp:ListItem>Need academic advising</asp:ListItem>
<asp:ListItem>Academic probation hold</asp:ListItem>

</asp:CheckBoxList>
</asp:Panel>

Codebehind File

Step 5: Add the following VB code to the class in the form’s codebehind file. As you
can see, there’s not much code to write:

1: Enum StudentStatus
2: NewStudent
3: ReturningStudent
4: End Enum
5:
6: Protected Sub lstStudentType_SelectedIndexChanged() _
7: Handles lstStudentType.SelectedIndexChanged
8: pnlStart.Visible = False
9: Select Case lstStudentType.SelectedIndex
10: Case StudentStatus.NewStudent
11: pnlNewStudent.Visible = True
12: Case StudentStatus.ReturningStudent
13: pnlReturnStudent.Visible = True
14: End Select
15: End Sub

Step 6: View the Web form in the browser and test its operation.

If you were to add several more steps to this Wizard, each with its own panel,
the Web form would soon become difficult to maintain. At some point, you
would probably want to spread out the wizard among multiple Web forms. But
for a simple set of choices, the Panel control is a great tool.

Using Tables to Align Text and Controls
The HTML Table control is an essential tool for designing the layout of Web forms. You can
use it to align text, graphics, and controls in rows and columns.

406 Chapter 8 Creating Web Applications

The following HTML defines a table with one row (identified by <tr> . . . </tr>) and two
cells within the row:

<table>
<tr>

<td>one</td>
<td>two</td>

</tr>
</table>

The tag used to define a cell within a row is <td>. If we were to view this table in a browser,
it would just appear as two words side by side. However, we can add a border and widen
the first cell by setting its style property.

<table border="1">
<tr>

<td style="width:150px">one</td>
<td>two</td>

</tr>
</table>

Now, this is what the table looks like at runtime:

Adding a border is useful when laying out controls because you can see the cell borders when
looking at the page in Design view.

Using the Visual Studio Table Designer

Coding HTML tables by hand is a lot of work, so you will probably want to use the table
designer in Visual Studio. You must be looking at the Design view of a page to use it. There
are two ways to insert a table when viewing a form’s design:

• Select Insert Table from the Layout menu. When you do so, the Insert Table window
appears, letting you set various table layout options (see Figure 8-34).

• Select the Table control from the HTML section of the Toolbox window. A table with
3 rows and 3 columns is placed on the form, which you can resize by dragging the han-
dles along its right and bottom sides.

Adjusting Row Heights and Column Widths

To adjust the width of a column, hover the mouse over the double bar along the column’s
right border. When the mouse cursor changes to a double vertical bar with arrows
pointing left and right, hold down the mouse button and drag the border to its new loca-
tion. As you do so, the column width (in pixels) displays inside the column. Often, the
displayed number gives you a more accurate idea of the column width than the table’s
visual display.

To adjust the height of a row, hover the mouse over the row’s lower border. When the mouse
cursor changes to a double horizontal line with arrows pointing up and down, drag the
mouse and the border up or down. As you do this, the column height (in pixels) displays
inside the column. Often, the displayed number gives you a more accurate idea of the col-
umn height than the table’s visual display.

Inserting Rows and Columns

To insert a new row or column in a table, click inside the table in Design view. Then select
Insert from the Table menu, and select from the list of choices shown in Figure 8-35. In each

8.5 Designing Web Forms 407

case, the inserted row or column will have the same attributes as the row or column that was
selected when you issued the command.

Aligning Text Inside Cells

By default, static text typed into table cells is left justified. Each cell’s Align property con-
trols the placement of text and graphics in the cell. The possible values are center, char, jus-
tify, left, and right. You can also use the text alignment button on the Visual Studio
formatting toolbar.

Figure 8-34 Insert Table window

Figure 8-35 Inserting table rows and columns

408 Chapter 8 Creating Web Applications

Merging Adjacent Cells

Sometimes, it is useful to merge, or combine, adjacent table cells into a single cell. The cells
must be in the same column or row. To select a group of cells, drag the mouse over the cells.
Then from the Table menu, select Modify, then select Merge Cells.

Checkpoint

19. How do you merge several cells into a single table cell?

20. How do you select a column in a table?

21. How do you change a column width?

22. How do you set the default font for all cells in a table?

23. Which property of a CheckBoxList control contains the individual list items?

8.6 State Management
Web servers do not keep a link to a particular page active once the page has been sent to the
user’s browser. This presents a challenge when you have class-level variables in your Web
forms that must keep their values. Similarly, when users move from one Web page to
another, it is often necessary to transmit data from the first page to the second. Briefly, we
will show how to manage state using the following tools:

• ViewState—Holds the runtime state of controls and variables when a page is posted
back to the server.

• Session state—Holds data belonging to a single user’s session that can be accessed from
any Web form.

Page-Level State (ViewState)
Although Web pages are stateless, users expect controls to remember their settings when
pages are posted back to the server. HTML controls cannot do this. An ASP.NET control
retains its settings because of an extra step taken by the Web server: It encodes the control’s
state in a collection named ViewState. The ViewState data is rendered on the Web page sent
back to the client as an encrypted, hidden field. Here is an example:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDwUKMTkwNjc4NTIwMWRkbKFgfWrQ2DfhTDzQoPdyXJs3SKQ=" />

A simple comparison is shown in Figure 8-36, which has an HTML Input control and an
ASP.NET TextBox control. On the left side, the user enters text into both boxes. The page
just below the first page shows what happens when the user clicks the Post button. The
TextBox control retains its data, but the HTML control does not.

The ViewState collection can contain only objects whose classes implement the ISerializable
interface. Fortunately, that applies to almost all standard .NET data types.

Saving Values in ViewState

Although ASP.NET controls conveniently remember their values, class-level variables do
not. Suppose you declare the following class-level variable in a Web page’s codebehind file:

Private mTemperature As Double

And then you assign a value to mTemperature in one of the class methods:

mTemperature = 98.6

8.6 State Management 409

If the user clicks a button on the page, the page is posted back, and the contents of mTem-
perature are erased. This is very inconvenient, but there is a remedy. You can save mTem-
perature in the page’s ViewState collection, using a name-value pair. Here’s an example:

mTemperature = 98.6
Me.ViewState.Add("temperature", mTemperature)

The item’s name is also called a key because it must be unique in the collection. No two
entries in the ViewState collection can have the same key. Alternatively, you can use the
ViewState.Item method to insert or replace a value, as shown here:

ViewState.Item("temperature") = mTemperature

Because Item is a default property, the preceding statement can be shortened to the following:

ViewState("temperature") = mTemperature

ViewState is the name of a property in the current Page object. It is a StateBag object, so you
can see all of its methods and properties by looking up the StateBag class in the MSDN doc-
umentation.

Retrieving Values From ViewState

The Item property returns the collection entry that matches a key. Its return type is Object,
so you must cast the object into its exact type. For example, mTemperature is a Double in
the following line:

mTemperature = CDbl(ViewState.Item("temperature"))

Here is a shorthand version of the same operation:

mTemperature = CDbl(ViewState("temperature"))

If ViewState contains a List object, you must use the CType operator when assigning the item
to a List variable. For example:

Dim nameList As List(Of String)
nameList = CType(ViewState("names"),List(Of String))

Figure 8-36 HTML and TextBox controls, before and after posting a page

410 Chapter 8 Creating Web Applications

If you attempt to retrieve a value using a key that is not in the collection, the return value
equals Nothing.

Restoring values from ViewState after a page postback is best done in the Page_Load event
handler, as shown here:

Protected Sub Page_Load() Handles Me.Load
If IsPostBack Then

nameList = CType(ViewState("names"),List(Of String))
End If

End Sub

Removing Values From ViewState

You can remove an entry from the ViewState collection by calling the Remove method:

ViewState.Remove("temperature")

Local Variables

Local variables and method parameters are not affected by page postbacks. Local vari-
ables exist on the runtime stack and are re-created each time their enclosing method is
called.

Example: Counting Names

Let’s look at a more complete example that involves ViewState. Suppose a program lets the
user input names, and we want to keep track of how many names have been entered, as
shown in Figure 8-37. In the figure, the count equals 2, so the application appears to work
correctly.

In a Windows Desktop application, a counter variable would be declared at the class level
so it could keep its value each time the user added a name. But in a Web form, special care
must be taken to achieve the same behavior. The following code shows our first attempt at
a Web form that uses nameCount to count the names entered by the user. It does not retain
the value of nameCount when the page is posted back to the server.

Partial Class NameList
Inherits System.Web.UI.Page

Figure 8-37 Counting names that are input by the user

8.6 State Management 411

Private nameCount As Integer = 0

Private Sub btnOk_Click() Handles btnOk.Click
nameCount += 1
lblCount.Text = CStr(nameCount) & " names have been entered"

End Sub
End Class

NameCount is reset to zero each time the page is posted back to the server, rendering the
counting process useless. We can avoid this problem by saving the variable in the ViewState
collection. The following statement associates nameCount with the collection key named
nameCount:

ViewState("nameCount") = nameCount

When the page is posted back and refreshed by the server, we retrieve the stored value and
put it back in the same variable. The collection reference returns an Object, so we must cast
it into the appropriate type. In this case, nameCount is an Integer:

nameCount = CType(ViewState("nameCount"),Integer)

Following is the corrected version of the NameList class, using ViewState:

Partial Class NameList
Inherits System.Web.UI.Page

Private nameCount As Integer

Private Sub btnOk_Click() Handles btnOk.Click
nameCount = CType(ViewState("nameCount"), Integer)
nameCount += 1
ViewState("nameCount") = nameCount
lblCount.Text = CStr(nameCount) & " names have been entered"

End Sub
End Class

Objects Must Be Serializable

Any object stored in ViewState must be serializable, meaning that its class implements the
ISerializable interface. Objects based on your own classes are not automatically serializ-
able. This becomes an issue if we create, say, a List of custom object types. Here’s an
example:

Dim myList As List(Of Student)

Although the List class implements ISerializable, chances are the Student class does not.
Therefore, we cannot store myList in ViewState. We do not cover serialization in this
textbook, but we will show you how to use Session state to save and restore your own
objects.

Session State
Session state is the name of a collection that is associated with a particular user, across mul-
tiple Web forms. Session state is a great tool for saving data when a user browses from one
Web page to another. When a user connects to an application, a unique session ID is created
and saved as a temporary cookie by the user’s Web browser. The session ID is used when
saving and retrieving Session state information while the user’s session is active. If the
browser does not accept cookies, Session state can still be saved if the cookieless session
option is specified in the application’s Web.config file. A session remains active as long as
the user’s browser is open. If the user leaves the browser window open with no postbacks
for a period of time, the session eventually expires.

412 Chapter 8 Creating Web Applications

Session state items are stored in name-value pairs. The following example stores the string
A1234 in a session item named customerId:

Me.Session.Item("customerId") = "A1234"

The Session object is a property of the System.Web.UI.Page class. You can shorten the fore-
going statement because Item is the default property:

Session("customerId") = "A1234"

When you retrieve an object from Session state, you must cast it into the appropriate type
before assigning it to a variable. Here, for example, we cast the object into a String:

Dim customerId As String = CStr(Session("customerId"))

Saving and Restoring Objects

Any object can be saved in Session state. The object’s class does not have to be serializable.
For example, we can create a Student object and save it in a Session state item named
currStudent:

Session("currStudent") = New Student(12345,"Smith")

When retrieving the Session object at another place on the page, we cast it into a
Student.

objStudent = CType(Session.Item("currStudent"), Student)

Leaving out the implicit Item property name, the equivalent statement would be as follows:

objStudent = CType(Session("currStudent"), Student)

If Session state contains a List object, you must use the CType operator when assigning its
item to a List variable. For example:

Dim nameList As List(Of String)
nameList = CType(Session("names"),List(Of String))

Verifying Session State Values

When you retrieve an object from Session state, use a cautious approach and consider that
the object might not have been created yet. Suppose, for example, the following expression
returns a value of Nothing:

Session.Item("currStudent")

If we try to cast the value Nothing into a Student object, an exception is thrown. A safer
approach is to assign it to an Object variable, and then test it before casting to a specific
type:

Dim S As Student = Nothing
Dim obj As Object = Session.Item("currStudent")
If obj IsNot Nothing Then

S = Ctype(Session.Item("currStudent"), Student)
End If

From this point onward, S will either contain Nothing, or it will reference the object
retrieved from Session state.

TIP: Limit the amount of data that you store in Session state. It is stored on the Web
server, so a significant amount of server time can be spent transferring large amounts of
data to users.

Summary 413

Checkpoint

24. What important restriction applies to objects stored in the ViewState collection?

25. When a page is posted back to the server, how do TextBox controls avoid losing
their contents?

26. Show an example of storing a string variable named mClientName in ViewState.
Show an example also of retrieving the value and assigning it to a variable. Assume
Option Strict is On.

27. When you save an object in Session state, when will the object be discarded?

28. Yes or no: If two users are running the same ASP.NET application, can they access
each other’s Session state collections?

29. Why is it important to be careful when casting Session state objects directly into
specific types?

Summary

8.1 Programming for the Web

• Web applications are designed around a client-server model: An entity named a server
produces data consumed by another entity called a client. Web applications must be
run using a Web server.

• When the Web first became popular, HTML was the only available way to create
pages with text, graphics buttons, and input forms.

• ASP.NET is Microsoft’s platform for Web application development. It provides devel-
opment tools, code libraries, and visual controls for browser-based applications.

• Web applications written for ASP.NET consist of the following parts: (1) Content, in
the form of Web forms, HTML code, Web forms controls, images, and other multi-
media; (2) program logic, in compiled Visual Basic (or C#) code; and (3) configuration
information.

• Visual Web Developer is a Microsoft development tool with an editor that simplifies
the way Web applications are created.

• A Uniform Resource Locator (URL) provides a universal way of addressing objects
and pages on a network.

• Web applications written in ASP.NET use special Web pages called Web forms. A Web
form, which can be identified by its .aspx filename extension, contains text, HTML
tags, HTML controls (such as buttons and text boxes), and Web sever controls.

8.2 Creating ASP.NET Applications

• Using Visual Studio or Visual Web Developer, you can create a Web site in the local
File System, HTTP (Web server), or FTP Site (remote location).

• A File System Web site runs directly under the ASP.NET Development Server supplied
with Visual Studio and Visual Web Developer. An HTTP Web site runs under the Inter-
net Information Services (IIS) Web server. An FTP Web site uses the FTP protocol to
reference an existing ASP.NET Web site.

• ASP.NET applications are also known as Web sites or Web applications.
• You can start a program in Debug mode by selecting Start Debugging from the Debug

menu. You will be prompted to create or modify a file named Web.config that con-
tains a debugging option.

414 Chapter 8 Creating Web Applications

• The Calendar control lets the user scroll forward and backward through monthly date
displays and select individual dates.

• The Kayak Tour Scheduler application shows how to use a Calendar control when
scheduling tours.

8.3 Web Server Controls

• Web server controls make ASP.NET applications dynamic and interactive. The controls
are more powerful than standard HTML controls because each is defined by a class
with a rich set of properties, methods, and events.

• ASP.NET controls lose their runtime properties when the user moves away from the
current page.

• The ASP.NET Label control is almost identical to the Label control for Windows appli-
cations. Use a Label only if its contents will change at runtime or if you plan to change
its Visible property.

• The TextBox control in ASP.NET is similar in many ways to the TextBox control for
Windows applications. The Text property holds text input by the user.

• The ASP.NET CheckBox control is almost identical to the CheckBox for Windows
applications. Use the Text property to set the visible text. Evaluate the Checked prop-
erty at runtime.

• Events are fired in a specific sequence in Web forms. The Page_Load event occurs when
the page is first loaded into the user’s browser, and again every time the page is posted
back to the server. Page_Load executes before event handlers for other controls, such
as the Button Click handler.

• When a control’s AutoPostBack property equals True, clicking on the control causes
the form to be posted back to the server.

8.4 List-Type Controls

• The ListBox, DropDownList, CheckBoxList, and RadioButtonList can all be classified as
list-type controls. All use the <ListItem> tag to identify items in their lists, all have an Items
collection, all have a ValueMember property, and all have a SelectedIndexChanged event.

• All list-type controls have SelectedIndex, SelectedItem, ValueMember, and Selected-
Value properties.

• You can use the SelectionMode property to determine whether users can select a single
item or multiple items from a ListBox.

• You can use a SelectedIndexChanged event handler to respond to selections by the user
in any list-type control.

• The CheckBoxList control looks like a group of check boxes but works like a ListBox.
• In a DropDownList, the initial value of SelectedIndex is 0, causing the first item to display.
• The Calendar control is not a list-type control, but it does let you select a sequence of dates.

8.5 Designing Web Forms

• The HTML Table control is an essential tool for designing the layout of Web forms.
Use it to align text, graphics, and controls in rows and columns.

• There are two ways to insert a table when viewing a form’s Design: Select Insert Table
from the Layout menu, or select the HTML Table control from the Toolbox window.

• To adjust the width of a column, hover the mouse over the double bar along the column’s
right border. To adjust the height of a row, hover the mouse over the row’s lower border.

8.6 State Management

• Web servers do not keep a connection to a particular page active once the page has
been sent to the client’s browser. At the same time, programs often must preserve data
when moving between pages.

Review Questions and Exercises 415

• Web pages have a ViewState property that holds the contents of input controls when
forms are posted back to the server.

• Any object stored in ViewState must be serializable, meaning that its class implements
the ISerializable interface.

• Each user has a distinct collection named Session state that can be used to store objects
and other data.

• The SessionState Demo program displays Session state properties and uses application
state to save information about user connections.

Key Terms
application logic
ASP.NET
ASP.NET controls
ASP.NET Development Server
AutoPostBack property
Calendar control
CheckBoxList control
client-server model
codebehind file
Design view
DropDownList control
eXtended HyperText Markup Language

(XHTML)
File System Web Site
FTP Site
HTML control
HTML Designer
HTML Table control
HTML tag
HTTP request
HyperText Markup Language (HTML)
Internet Information Services (IIS)
IsPostBack property
Label control

ListBox control
list-type controls
localhost
Local IIS Site
postback
RadioButtonList control
remote Web Server
serializable
server controls
Session state
Source view
static text
TextBox control
Uniform Resource Locator (URL)
ViewState
Visual Web Developer
Web application
Web.config file
Web configuration file
Web form
Web page
Web server
Web server control

Review Questions and Exercises

True or False

Indicate whether each of the following statements is true or false.

1. ASP.NET applications will work only if the user’s Web browser is Internet Explorer Ver-
sion 5.0 or above.

2. The DropDownList control permits the user to type text directly into the first line.

3. Session state can only hold objects whose classes implement the ISerializable interface.

4. The AutoPostBack property does not affect the ListBox control.

5. The ListBox control fires a SelectedIndexChanged event.

6. To create a Web site on your local computer, you must be running Internet Information
Services.

7. The default value of SelectedIndex for a DropDownList control is 0.

416 Chapter 8 Creating Web Applications

8. The HyperLink control does not generate a Click event.

9. The ImageButton control generates a Click event and does not look like a button.

10. You can call the Add method or use the Item property to insert an item in the ViewState
collection.

11. The best place to load a collection from ViewState is in the Page_Load event handler.

12. A Session ID is stored in a permanent cookie by the Web browser.

13. When adding text to a Web form, you can type static text directly onto the form.

14. Conventional Web pages contain tags based on the HyperText Markup Language.

15. The two ways to save state information are ViewState and ApplicationState.

16. URL stands for Uniform Response Locator.

17. ASP.NET controls are also known as Web site controls.

18. A powerful Web server used by Web developers is named Internet Information
Services.

Short Answer

1. What are the three basic parts of an ASP.NET application?

2. What happens when an object is not found when you call the ViewState.Item
property?

3. How are ASP.NET controls different from HTML controls?

4. What special requirement do remote Web servers have, compared to local Web
servers?

5. What are the three ways to view a Web form in Visual Studio?

6. What command lets you choose the Web browser that will run your application?

7. How do you open an existing file-based Web application?

8. What happens the first time you try to run a Web application in Debug mode?

9. How is the DropDownList control different from the ComboBox control?

10. How are HyperLink and LinkButton controls different?

11. Which property in ASP.NET controls corresponds to the Name property in Windows
controls?

12. When the user selects an item from a ListBox and then clicks a button to post the page
back to the server (called a postback), which event executes first: Page_Load, or Selecte-
dIndexChanged?

13. Which property in a ListBox governs whether the user’s selection is posted back to the
server immediately?

14. Which property lets you use program code to select a date in a Calendar control?

15. How can you make the Calendar control display date selections without allowing the
user to make any selections?

16. How would you make the Calendar control display the month of April?

17. How can you permit the user to select either a day or an entire week in the Calendar control?

18. Which control displays a sequence of check boxes?

Programming Challenges 417

19. Which control displays a hyperlink and has a property named NavigateURL?

20. Which property of an ImageButton control holds the name of the image file?

21. Which property of a Label control can be used to make its border solid, dotted, or
dashed?

22. Which property of a TextBox control determines whether the user can enter multiple
input lines?

Algorithm Workbench

1. Write a statement that obtains a List(Of String) from the ViewState collection.

2. Write a statement that checks if the first button named radButtons in a RadioButtonList
control has been selected by the user.

3. Write a statement that removes all items named lstSummary from a ListBox.

4. Write a loop that selects all check boxes named chkOptions in a CheckBoxList control.

5. Write a statement that makes February 10, 2011, visible in the Calendar control named
myCal.

Programming Challenges
1. Stadium Seating

Suppose there are three seating categories at an athletic stadium. For a baseball game,
Class A seats cost $15 each, Class B seats cost $12 each, and Class C seats cost $9 each.
Create an application that allows the user to enter the number of tickets sold for each
class. The application should display the amount of income generated from each class
of ticket sales and the total revenue generated, as shown in Figure 8-38.

Figure 8-38 Stadium Seating form

2. Room Charge Calculator

A customer staying at the Highlander Hotel may incur the following types of charges:

• Room charges, based on a per-night rate
• Room service charges
• Telephone charges
• Miscellaneous charges

418 Chapter 8 Creating Web Applications

Create an application that calculates the customer’s total charges. Here are the basic
operations, in sequence:

1. When the application starts, the user enters the number of nights and the nightly
room charge. The user can also enter additional charges, in dollars.

2. When the user clicks on the Calculate Charges button, the application should multi-
ply the nights by the nightly charge. Then it should add the additional charges, pro-
ducing the subtotal.

3. Next, the application should multiply the subtotal by an 8 percent tax rate, produc-
ing the tax amount.

4. Finally, the application adds the tax amount to the subtotal, producing the total charges.

A sample is shown in Figure 8-39. Notice that the application displays the current date
and time in the upper-right corner of the window.

Figure 8-39 Room Charge Calculator application

3. Bank Charges

A bank charges $10 per month, plus the following check fees, for a commercial check-
ing account:

• $0.10 each for fewer than twenty checks
• $0.08 each for twenty through thirty-nine checks
• $0.06 each for forty through fifty-nine checks
• $0.04 each for sixty or more checks

Create a Web application that allows users to enter the number of checks they have writ-
ten. The application should compute and display the bank’s service fees for the month,
as shown in Figure 8-40.

Input Validation

Do not accept a negative value for the number of checks written. Ensure that all values
are numeric. Use the following test data to determine if the application is calculating
properly:

Programming Challenges 419

Figure 8-40 Bank charges

4. Long-Distance Calls

A cellular phone provider charges the following rates for telephone calls:

Create an application that allows the user to select a rate category (from a set of radio
buttons) and enter the number of minutes of the call, and then displays the charges, as
shown in Figure 8-41. Use the following test data to determine if the application is cal-
culating properly:

Figure 8-41 Long-distance calls

Rate Category and Minutes Charge

Daytime, 20 minutes $1.40

Evening, 20 minutes $2.40

Off-peak, 20 minutes $1.00

Rate Category Rate per Minute

Daytime (6:00 A.M. through 5:59 P.M.) $0.07

Evening (6:00 P.M. through 11:59 P.M.) $0.12

Off-Peak (12:00 A.M. through 5:59 A.M.) $0.05

Number of Checks Total Fees

15 $11.50

25 $12.00

45 $12.70

75 $13.00

420 Chapter 8 Creating Web Applications

5. Accounts Dictionary

Create an application that lists accounts from a Dictionary object. Create an Account class
that contains an ID, name, and balance. Display the accounts in a ListBox, as shown in
Figure 8-42. If the user enters new values, she can click on the Add button to add a new
account to the dictionary. If she clicks the Replace button, she can replace a dictionary
item. Use exception handlers to catch errors caused by invalid input values, or an attempt
to add a duplicate Account ID to the dictionary. Note: Remember to save the Dictionary
in Session state to avoid losing your changes when the page is posted back to the server.

Figure 8-42 Adding an Account to the dictionary

6. Club Committee Organizer

A student computer club needs to keep a record of which club members have joined com-
mittees. Your task is to write an application that will make the process easy. In Figure 8-43,
the user is about to select the name of a committee from a combo box. In Figure 8-44, the

Figure 8-43 Club Committee Organizer, selecting a committee

Programming Challenges 421

user has selected several members from the general members list and is about to click the
Add to committee link, which will copy the selected member names into the current mem-
bers list. In Figure 8-45, the members have been copied into the current members, and they
have been automatically unselected from the General Member list. If the user should try to
select and copy a member who already belongs to the committee, nothing will happen. In
Figure 8-46, the user is about to remove a selected committee member.

Figure 8-44 Club Committee Organizer, selecting several members

Figure 8-45 Club Committee Organizer, Activities committee

422 Chapter 8 Creating Web Applications

Insert the following list of committees into the combo box: Activities, Community Ser-
vices, Executive, Membership, Programming Team, Scholarship, Sports, Travel, and
Volunteer Tutoring. Make up your own list of at least ten names for the list box con-
taining the general membership.

7. Club Committee Collections

Using the solution program from Programming Challenge 6, make the following
improvements:

• Create a class named Committee that represents a single committee. It should contain
a List(Of String) containing the names of students who are members. (Be sure to put
it in the App_Code folder of your Web site.) The class should have a ReadOnly prop-
erty that returns a reference to the class’s internal List variable.

• When the user selects different committees from the combo box, the application must
remember which people were assigned to each committee. One way to do this is to
store each list of names in another list. Suppose, for example, that the user adds
Chong, Fernandez, and Fox to the Community Services committee, as in Figure 8-47.
Then the user selects another committee and adds some people to that one. If the user

Figure 8-46 One member is about to be removed from the committee

Figure 8-47 Club Committee Organizer: Community Services contains three people

Programming Challenges 423

then returns to the Community Services committee, she should see Chong, Fernan-
dez, and Fox in the current list of members.

In the main form class, create a List(of Committee) object. (Don’t forget to initialize this
list with a loop in Page_Load.) When members are selected and copied into the com-
mittee list box, you must also add these members to the list in the appropriate Com-
mittee object. (Remember to retrieve the committee list from Session state and save it
again after you have modified it.) Use the Committee list box’s SelectedIndex property
as a subscript in the list of Committee objects to access the appropriate Committee
object. The DropDownList containing the committee names must have AutoPostBack
set to True so you can refill the list of current members each time the user selects a dif-
ferent committee name.

This page intentionally left blank

TOPICS

Programming Web
Forms9

9.1 Working in Source (XHTML) Mode

Tutorial 9-1: Designing a Vacation
Rentals application in Source view

Tutorial 9-2: Adding tables to the
Vacation Rentals application

9.2 Cascading Style Sheets

9.3 Custom Error Handling

9.4 Uploading Files and Sending Email

9.5 Data Validation Controls

9.6 Working with Multiple Web Forms

Tutorial 9-3: Moving between Web
forms

9.7 Focus on Problem Solving: Vacation
Rentals Application

9.8 Browser Cookies

425

C
H

A
P

T
E

R

In this chapter, you will learn how to code directly in XHTML and how to use cascading
style sheets (CSS) to control the spacing, alignment, color, fonts, and other visual properties.
Then you will begin to use the rich set of controls that validate user input. Special tasks, such
as uploading files to an application, sending email, and saving session information when
moving between pages, are added benefits to this chapter.

9.1 Working in Source (XHTML) Mode
In the previous chapter, you were able to build applications with the built-in features of
ASP.NET and the Visual Studio development environment. Microsoft did a good job of creat-
ing a first impression that Web programming can be done at a simple level with only minimal
training. After the initial dip into the ASP.NET waters, however, people find that ASP.NET
requires a basic understanding of the entire process that a Web page goes through from the
user’s initial request to the page’s final rendering in a browser. Along the way, a fair amount of
programmer training is required. Therefore, this chapter focuses on writing code for Web pages
in ASP.NET to begin preparing you for what may be an exciting career as a Web programmer.

Let’s clarify a few definitions of Web-based markup languages:

• eXtensible Markup Language (XML) is a general-purpose markup language that can
be used to create other, more specific languages. XML files are usually used to share
data across networks, particularly the Internet.

• HyperText Markup Language (HTML) is the standard publishing language of the
World Wide Web. It is understood by all Web browsers. HTML was the first markup
language for Web pages, and is a subset of XML.

426 Chapter 9 Programming Web Forms

• eXtensible HyperText Markup Language (XHTML) is an application of XML for Web
pages. It has the same functions as HTML, but with a stricter syntax. It permits devel-
opers to define new tags (keywords). The World Wide Web Consortium (W3C) defines
XHTML as a family of current and future document types and modules that repro-
duce, subset, and extend HTML 4.

If you load a typical HTML Web page into the Visual Studio source editor, you may see a
few error messages. Errors are flagged when a Web page has malformed URLs, unknown
properties, and overlapping tags that do not conform to XHTML rules. Fortunately, it is
easy to learn how to write XHTML correctly, so your own pages should not contain errors.

An Inside Look at ASP.NET Code
The Visual Studio designer intentionally hides XHTML details when you look at a Web page
in Design view. The designer approximates the way the page will look when shown in a Web
browser. To adjust the page’s visual details, however, you must work with the page’s
XHTML code directly. With practice, you will easily flip back and forth between Design
view and Source view.

Before reading this section, you should have a basic working knowledge of HTML. If you
need help, there are many excellent tutorials on the Web. For example, the W3C organiza-
tion has a Tutorials page: http://www.w3.org/2002/03/tutorials. If this link changes, go to
http://www.w3.org, view the site map, and look for Tutorials. (W3C stands for World Wide
Web Consortium, the international governing body for Web standards.)

A Blank ASP.NET Page

Let’s begin with a detailed description of a simple ASP.NET page. A new blank page gener-
ated by Visual Studio contains the XHTML shown in Figure 9-1. In the description that fol-
lows, each line of code will be followed by its explanation.

The Page directive identifies the coding language (VB). AutoEventWireup determines
whether page events (such as Load and Init) must use standard names. A value of False lets
us choose any names we want for page event handlers. The CodeFile attribute names the
visual basic source code file containing the event handlers for this Web page. The Inherits
attribute defines the class name used by this page.

Figure 9-1 A blank ASP.NET page named Default.aspx

<%@ Page Language=''VB'' AutoEventWireup=''false''
CodeFile=''Default.aspx.vb'' Inherits=''_Default'' %>

<!DOCTYPE html PUBLIC ''-//W3C//DTD XHTML 1.0 Transitional//EN''
''http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd''>

<html xmlns=''http://www.w3.org/1999/xhtml''>
<head runat=''server''>

<title></title>
</head>
<body>

<form id=''form1'' runat=''server''>
<div>

</div>
</form>

</body>
</html>

http://www.w3.org/2002/03/tutorials
http://www.w3.org

9.1 Working in Source (XHTML) Mode 427

<!DOCTYPE html PUBLIC ''-//W3C//DTD XHTML 1.0 Transitional//EN''
''http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd''>

The DOCTYPE tag identifies the document type to the browser, along with the XHTML stan-
dard it follows. The URL given in the same line is a document that you can download from
the W3C organization, which describes the syntax and keywords of this XHTML standard.

<html xmlns=''http://www.w3.org/1999/xhtml''>

The <html> tag identifies the beginning of the HTML document that makes up your Web
page. The xmlns keyword identifies an XHTML namespace, which you can read about by
following the URL given there.

<head runat=''server''>
<title>Untitled Page</title>
</head>

The area between the <head> and </head> tags defines the heading portion of the document.
Sometimes this area contains program scripting code, keywords that hint at the document
content, links to CSS files, and the document title.

<body>

The <body> tag defines the displayable area of the Web page.

<form id=''form1'' runat=''server''>

The <form> tag identifies the beginning of a Web form. The ID is optional. A form contains
buttons, text boxes, and other controls that interact with the user. The runat="server"
option indicates that the form must be posted back to the server and processed in some way.

<div>
</div>

The <div> and </div> tags mark a block of text that can be assigned style attributes. They
are not required.

</form>
</body>
</html>

The </form> tag marks the end of the form, followed by the end of the document body, fol-
lowed by the end of the HTML document.

In Tutorial 9-1, you will create a Web form in Source view.

Tutorial 9-1:
Designing a Vacation Rentals application

In this tutorial, you will create a simple vacation rentals application using XHTML
code. Source view is activated when you click the View tab at the bottom of the page
(when an .aspx Web page file is open). In the Source view, you work directly with
HTML code. It is a good idea to view the Web page in a separate Web browser window
so that you can see how the final page looks as you make changes.

TIP: Some professional ASP.NET programmers prefer to build Web
forms in Source view. Visual Studio’s support for source XHTML editing
is excellent, and we have seen people use it to create controls and text at
lightning speed.

428 Chapter 9 Programming Web Forms

Tutorial Steps

Step 1: Create a new empty Web site and save it in a folder named Vacation Rentals.

Step 2: Add a Default.aspx page to the site. The page should appear in Source view.
If it does not, switch to Source view now.

Step 3: Remove the <div> and </div> tags.

Step 4: Change the text between the <title> and </title> tags to Vacation Rentals.

Step 5: Change the <body> tag to the following, which sets the default font for the page:

<body style=''font-family:Arial''>

Step 6: On the next line after the <form> tag, type <h1>. Notice that the ending tag
</h1> is inserted for you. Modify the line to be the following:

<h1>Vacation Rental Request</h1>

Step 7: Type the following text on the next line (it is not important where you break
the line):

Please select a location, price range, number of people, and
starting date

Step 8: Drag a DropDownList control from the Toolbox into the next position in the
editor window. Modify its ID property:

<asp:DropDownList ID=''ddlLocation'' runat=''server''>
</asp:DropDownList>

Step 9: Open a blank line before the </asp:DropDownList> tag and insert the fol-
lowing lines:

<asp:ListItem>London</asp:ListItem>
<asp:ListItem>Paris</asp:ListItem>
<asp:ListItem>Rome</asp:ListItem>
<asp:ListItem>Vienna</asp:ListItem>

As you start to type each item, the editor will display the ListItem control
name. Press the Tab key to complete the automatic code insertion.

Step 10: Save the form. Start the application from the Debug menu. Keep the Web
browser window open so you can use it as a reference.

Step 11: Begin editing the page’s XHTML again. After the dropdown list, insert a para-
graph tag, as follows:

<p />

Step 12: Add a RadioButtonList control to the form:

<asp:RadioButtonList ID=''radPrices'' runat=''server''
BorderColor=''Navy'' BorderStyle=''Solid''
BorderWidth=''1px''>

</asp:RadioButtonList>

Step 13: Insert the following items in the RadioButtonList:

<asp:ListItem>Less than $500 per week</asp:ListItem>
<asp:ListItem>$500 to $1000 per week</asp:ListItem>
<asp:ListItem>More than $1000 per week</asp:ListItem>

(ListItems are used in both DropDownLists and RadioButtonLists. They are
also used in ListBox and CheckBoxList controls.)

Step 14: Save the form and refresh the browser. You should see the radio buttons now.

9.1 Working in Source (XHTML) Mode 429

Step 15: Edit the form again, in Source view, and add the following lines:

<p />
Number of people:

Step 16: Add a TextBox control to the form:

<asp:TextBox ID=''txtNumberOfPeople'' columns=''2''
runat=''server''>

</asp:TextBox>

Step 17: Add the following text:

<p />
Number of weeks:

<asp:TextBox ID="txtNumberOfWeeks"
runat="server" Columns="2"></asp:TextBox>

Step 18: Add the following text:

<p />
Starting date:

Step 19: Add a Calendar control to the form:

<asp:Calendar ID=''calStartDate'' runat=''server''>
</asp:Calendar>

Step 20: Add the following text:

<p/>

Step 21: Add a Button control to the form:

<asp:Button ID=''btnSubmit''
runat=''server''
Text=''Submit my Request'' />

Step 22: Save the file and refresh the browser. Your output should look similar to that
shown in Figure 9-2, with a different calendar month, of course.

Code Listing

The following is a complete listing of the form’s HTML source, from the <head> tag onward:

<head runat="server">
<title>Vacation Rentals</title>

</head>
<body style="font-family:Arial">
<form id="form1" runat="server">
<h1>Vacation Rental Request</h1>

Please select a location, price range, number of
people, and starting date
<p />
Location:
<asp:DropDownList ID="ddlLocation" runat="server">

<asp:ListItem>London</asp:ListItem>
<asp:ListItem>Paris</asp:ListItem>
<asp:ListItem>Rome</asp:ListItem>
<asp:ListItem>Vienna</asp:ListItem>

</asp:DropDownList>
<p />
Number of people:
<asp:TextBox ID="txtNumberOfPeople" columns="2"

runat="server">
</asp:TextBox>
<p />

430 Chapter 9 Programming Web Forms

Price per week:
<asp:RadioButtonList ID="radPrices" runat="server"

BorderColor="Navy" BorderStyle="Solid"
BorderWidth="1px">
<asp:ListItem>Less than $500 per week</asp:ListItem>
<asp:ListItem>$500 to $1000 per week</asp:ListItem>
<asp:ListItem>More than $1000 per week</asp:ListItem>

</asp:RadioButtonList>
<p />
Number of weeks:
<asp:TextBox ID="txtNumberOfWeeks"

runat="server" Columns="2"></asp:TextBox>
<p />
Starting date:
<asp:Calendar ID="calStartDate" runat="server">

</asp:Calendar>
<p />
<asp:Button ID="btnSubmit"

runat="server"
Text="Submit my Request" />

</form>
</body>
</html>

Figure 9-2 Vacation Rental Request form

9.1 Working in Source (XHTML) Mode 431

Coding ASP.NET pages in Source view is not difficult, given the excellent tools available in
the Visual Studio editor. Tutorial 9-2 will show you how to arrange existing controls into
HTML tables.

Tutorial 9-2:
Adding tables to the Vacation Rentals application

In this tutorial, you will continue the Vacation Rentals application by inserting an
HTML table.

Tutorial Steps

Step 1: Open the Vacation Rentals application that you created in Tutorial 9-1, and
open Default.aspx in Source view.

Step 2: Find the definition of the DropDownList control and add the Font-Size property:

<asp:DropDownList ID=''ddlLocation'' font-size=''1em''
runat=''server''>

The default font size of this control is too small. By setting the Font-Size
property to 1em, you will match the text of this control to that of the other
elements.

Step 3: On the line following the </h1> tag, drag a Table control from the HTML
area of the Toolbox. The editor will build a set of table tags for a table that
has three rows and three columns. Each row begins with a <tr> tag. Each col-
umn within a row begins with the <td> tag.

Step 4: Change the <table> tag to <table border="1">. Each cell will have borders
around it so you can see the rows and columns in Design view.

Step 5: Switch to the Design view so you can see the table. You should see the table
outlines.

Step 6: Returning to Source view, change the first row to the following:

<tr>
<td colspan=''3''>

Please select a location, price range, number of
people, and starting date

</td>
</tr>

The colspan attribute permits the three columns in the first row to be merged
into a single column.

Step 7: Insert second table row that is 10 pixels high:

<tr style=''height:10px''>
</tr>

Step 8: Move the DropDownList and TextBox into the third table row:

<tr>
<td align=''right''>Location:</td>
<td>

<asp:DropDownList ID=''ddlLocation'' <cit>font-size=''1em''
width=''100'' runat=''server''>
<asp:ListItem>London</asp:ListItem>

432 Chapter 9 Programming Web Forms

<asp:ListItem>Paris</asp:ListItem>
<asp:ListItem>Rome</asp:ListItem>
<asp:ListItem>Vienna</asp:ListItem>
</asp:DropDownList>

</td>
<td>Number of people:

<asp:TextBox ID=''txtNumberOfPeople'' columns=''4''
runat=''server''>

</asp:TextBox>
</td>

</tr>

Step 9: Add the following table row:

<tr>
<td align=''right''>Price per week:</td>
<td>

<asp:RadioButtonList ID=''radPrices'' runat=''server''>
<asp:ListItem>Less than $500 per week</asp:ListItem>
<asp:ListItem>$500 to $1000 per week</asp:ListItem>
<asp:ListItem>More than $1000 per week</asp:ListItem>

</asp:RadioButtonList></td>
<td align=''right''>Number of weeks:

<asp:TextBox ID=''txtNumberOfWeeks''
runat=''server'' Columns=''2''></asp:TextBox></td>

</tr>

Step 10: Save the file and switch to Design view to see your work. So far, so good!

Step 11: Add a new row to the table. The first column contains Starting date:. The sec-
ond column, which spans the width of two columns, contains the Calendar
control:

<tr>
<td>Starting date:</td>
<td colspan=''2''>

<asp:Calendar ID=''calStartDate'' runat=''server''>
</asp:Calendar>

</td>
</tr>

Step 12: It’s time to remove the table border. Remove the border attribute from the
<table> tag.

Step 13: Save the Web form. In Design view, it should look like Figure 9-3.

Step 14: View the form in a Web browser. The rows are a bit jammed together right
now, so one thing you can do to improve spacing is to insert some blank rows.
Keep the browser window open.

Step 15: In Source view, insert a new row above the row containing the RadioButton-
List. The row does not need any columns, but it does need a height.

<tr height=''10px''>
<td></td>
</tr>

Refresh the browser and see if the spacing looks better. You can increase or
decrease the height of this row one pixel at a time, giving you absolute control.

Step 16: Insert ten-pixel rows above and below the row containing the Calendar control.

9.1 Working in Source (XHTML) Mode 433

Figure 9-3 Using a table to format the Vacation Rentals Request form

Step 17: Insert another row just above the row containing the DropDownList.

Step 18: Save the file and refresh the browser. The output should look like that shown
in Figure 9-4.

Figure 9-4 Running the Vacation Rentals application

TIP: It is nearly impossible to drag table borders in Design view with any
accuracy. You will find that you must work in Source view in order to
make fine adjustments to row heights and column widths.

434 Chapter 9 Programming Web Forms

Step 19: Switch the default text size in your Web browser to a larger size. Did all the
fonts resize, except for the Button control?

Step 20: In Source view, change the button definition to the following:

<asp:Button ID=“btnSubmit” Font-Size=“1em” runat=“server”
Text=''Submit my Request'' />

Step 21: Save the file and close the Web browser. Run the application and resize the
browser fonts. Now the button font should also resize.

We do not suggest that you design all Web forms at the source code level, but
you will be able to solve problems more quickly if you understand the under-
lying code. We encourage you to continue to study HTML and even
JavaScript if you plan to build Web sites.

Complete Source Code

Following is a listing of the Web page’s source code that you created in this tutorial. We
left out everything prior to the <head> tag:

<head runat="server">
<title>Vacation Rentals</title>

</head>
<body style="font-family:Arial">
<form id="form1" runat="server">
<h1>Vacation Rental Request</h1>
<table>

<tr>
<td colspan="3">

Please select a location, price range,
number of people, and starting date

</td>
</tr>

<tr style="height:10px">
<td></td>
</tr>

<tr>
<td align="right">Location:</td>
<td>

<asp:DropDownList font-size="1em" ID="ddlLocation"
width="100" runat="server">

<asp:ListItem>London</asp:ListItem>
<asp:ListItem>Paris</asp:ListItem>
<asp:ListItem>Rome</asp:ListItem>
<asp:ListItem>Vienna</asp:ListItem>
</asp:DropDownList>

</td>
<td>Number of people:

<asp:TextBox ID="txtNumberOfPeople" columns="4"
runat="server">

</asp:TextBox>
</td>

</tr>
<tr style="height:10px">
<td></td>
</tr>

9.2 Cascading Style Sheets 435

<tr>
<td align="right">

Price per week:</td>

<td>
<asp:RadioButtonList ID="radPrices" runat="server">

<asp:ListItem>Less than $500 per week</asp:ListItem>
<asp:ListItem>$500 to $1000 per week</asp:ListItem>
<asp:ListItem>More than $1000 per week</asp:ListItem>

</asp:RadioButtonList>
</td>
<td align="right">Number of weeks:

<asp:TextBox ID="txtNumberOfWeeks"
runat="server" Columns="2"></asp:TextBox></td>

</tr>
<tr style="height:10px">
<td></td>
</tr>

<tr>
<td>Starting date:</td>
<td colspan="2">

<asp:Calendar ID="calStartDate" runat="server">
</asp:Calendar>

</td>
</tr>
<tr style="height:10px">
<td></td>
</tr>

</table>

<asp:Button ID="btnSubmit" Font-Size="1em" runat="server"
Text="Submit my Request" Width="173px" />

</form>
</body>
</html>

Checkpoint

1. Which organization regulates Web standards, and what is its URL?

2. Which attribute in the <Page> directive identifies the file containing Visual Basic code?

3. In the Visual Studio designer Source view, how do you assign text to the title bar of
a Web page?

4. Show a sample definition of a TextBox control, using HTML source code.

5. Which HTML tag inserts an item into a DropDownList control?

9.2 Cascading Style Sheets
Cascading style sheets (CSS) are XHTML style definitions that Web developers use to cus-
tomize the appearance of fonts, tables, and other controls on Web forms. Rather than set-
ting individual fonts and colors for every label or body of text, CSS styles define attributes
that can be used over and over. Style sheets are based on industry standards from the World
Wide Web Consortium, who also sets standards for XML, XHTML, and HTML.

436 Chapter 9 Programming Web Forms

If you want all elements within a table to have the same style, you can assign a style name
to the table. The styles in a cascading style sheet file can be shared among all pages in an
application. Cascading styles can be defined directly on a Web page (in XHTML). But we
suggest defining the styles in a separate file, named a cascading style sheet file. You can add
such a file to a Web project.

Setting Properties for an Entire Page
In Visual Studio, you can set style properties for an entire Web form. When the form is open
in Design view, select DOCUMENT from the Object list in the Properties window. Any
properties you set for the document apply to the entire Web page. Click the Style property
and set characteristics like font name, font size, font color, background, and so on. All the
text and objects that you add to the page will inherit the same style characteristics.

What you do not want to do is insert lots of specific, ad hoc text formatting into a Web page.
This type of formatting results when you select a block of text and then start setting font
types, font sizes, and such. The problem with that approach is that your Web page becomes
a jumble of competing and overlapping HTML tags. At some point, it becomes nearly impos-
sible to fix any formatting problems. Instead, you should create styles (known as style classes)
and apply these styles to each of the objects on your Web pages. The accepted approach to
Web page formatting parallels the way experienced Microsoft Word users create paragraph
styles. They consistently apply the paragraph styles to all text in their document.

Creating a Cascading Style Sheet File

We recommend that you put all of your Web site’s styles in a CSS file. To create a cascading
style sheet (CSS) file, select Add New Item from the Website menu. Then select Style Sheet
from the list of template icons. The default name for your file will be StyleSheet.css, but you
can choose any name with a .css extension. The empty style sheet file will have only a single
definition for the body tag, which defines the default appearance of all items on a Web form:

body
{
}

The elements that make up a style are inserted between the braces { .. }. The built-in editor
makes it easy for you to see the possible tags, as shown in Figure 9-5. Just place the cursor
between the braces and press the space bar. As an illustration, we will set the font family to
Verdana, size = 1em, and weight to bold:

body
{

font-family:Verdana;
font-size:1em;
font-weight:600;

}

Font sizes can be specified in different measurement units. The more common ones are
listed here:

• Em units, which refer to the font size of the parent element.
• Relative names, such as small, smaller, medium, large, and larger.
• Percentage of the browser’s default size, such as 75 percent.
• Fixed point heights, such as 8pt, 10pt, and 12pt.

When setting font sizes, we recommend using em units. This approach lets visually impaired users
adjust the font size in their browsers. For example, if users set their default browser font to 20
points, then an em value of 1 produces a 20-point font. An em value of 2 produces a 40-point

9.2 Cascading Style Sheets 437

font. Do not use fixed-font sizes such as 10pt, because users will not be able to adjust the fonts.
For more information about the Web Accessibility Initiative, visit http://www.w3.org/WAI.

Linking the CSS File to a Web Page

To make a CSS file active, you must link it to your Web form by switching to the page’s
Design view and dragging the CSS filename from the Solution Explorer window onto your
Web form. If you’re curious to see what happened, switch to the Source view and see that a
<link> tag has been inserted into the <head> section of the page:

<head runat=''server''>
<link href=''StyleSheet.css'' type=''text/css'' rel=''stylesheet''>

</head>

The body CSS style affects all text typed in the page. To demonstrate, we return to Design
view and type some text, as shown in Figure 9-6. The new text matches the style we defined:
Verdana font, weight = 600, and size = 1em.

Figure 9-5 Intellisense window while editing a CSS file

Figure 9-6 Text in the form uses the body CSS style

Here’s the really good part: You can run an application and, while the browser is open, mod-
ify the CSS file. When you save the file and refresh the browser, the style changes appear
immediately.

Modifying Other Styles

You can alter the look and feel of any standard HTML style tag. Suppose, for example, you
want the h1 style to use a 2 em black Arial font, with spacing between letters of .3 em, and
a solid border line below the text (thickness = .1 em). An example is shown in Figure 9-7.
You can add the following definition to the CSS file:

h1 {
font-family: Arial;
font-size: 2em;
letter-spacing: .3em;
color: Black;
border-bottom: solid .1em;

}

http://www.w3.org/WAI

438 Chapter 9 Programming Web Forms

Needless to say, a large number of elements can be changed when determining the appear-
ance of text. You can alter the appearance of all the standard HTML tags, including the
following:

• Headings, such as h1, h2, h3, and h4
• Unordered lists (ul)—looks like a bullet list
• Ordered lists (ol)—looks like a numbered list
• Active hyperlink (a:active)
• Mouse hovering over a hyperlink (a:hover)

Line spacing is one of the most important factors in creating readable text on a Web page.
The line-height property can be set to pixels, percentages, or ems. The latter two are best if
the user wants to resize fonts in the browser. The following style, for example, redefines the
Unordered List (UL) style (bullet list) with more spacing between lines, and square markers
to the left of each item:

ul {
line-height: 1.4em;
list-style-type: square;

}

The corresponding output is shown in Figure 9-8. You can indicate images as part of the
style. In the following UL definition, a red diamond icon is used as the bullet marker:

ul {
line-height: 1.4em;
list-style-image: url(diamond.gif);
list-style-type: square;

}

A sample is shown in Figure 9-9. If the diamond.gif file is not found, square bullets are used
instead.

Figure 9-7 Redefining the Heading 1 style

Figure 9-8 Modified bullet list style

9.2 Cascading Style Sheets 439

Defining Style Classes
When you select text in Design view with the mouse and apply style characteristics such as
font, color, size, and boldface, Visual Studio inserts various HTML tags into the Web docu-
ment. The results can be very messy. For example, suppose you inserted a Label control con-
taining the following text. It uses a bold Arial font, size = 1.1em, color = blue.

This label contains text.

Here is the HTML generated for the Label control in the Web page:

<asp:Label ID=''Label1'' runat=''server'' Font-Bold=''True''
Font-Names=''Arial'' Font-Size=''1.1em'' ForeColor=''Blue''
Text=''This label contains text.''>

</asp:Label>

Suppose you had many such Labels with the same color and font characteristics throughout
the application. Changing the characteristics at any time in the future would be very time
consuming. Your best bet would be to define a style class in the CSS file as follows:

.blueLabel {
font-family: Arial;
font-weight: bold;
font-size: 1.1em;
color: Blue;

}

Once the style is defined, you can apply it to any control on the form.

In the CSS file, user-defined class names must begin with a period (.). To apply the style to
a control, assign its name (without the period) to the CssClass property. Notice how much
simpler the HTML for the Label control is now, compared to our previous version:

<asp:Label ID=''Label1'' runat=''server'' CssClass=''blueLabel''
Text=''This label contains text.''>

</asp:Label>

Later, if you want to change the appearance of all controls using the blueLabel style, just
modify the style description in the CSS file. You should define a separate style for all the
common elements in your Web application, including headers, footers, tables, ListBoxes,
buttons, and so on. Your pages will have a consistent look and feel.

Applying CSS Styles

You can apply styles to nearly any HTML element, using the class keyword. Examples
are shown in Table 9-1. To apply a CSS style to an ASP.NET control, select the control
and look at the Properties window. Assign the style name to the CssClass property of the
control.

Figure 9-9 Unordered list with red diamond bullets

440 Chapter 9 Programming Web Forms

To apply a style to an entire table, click inside the table until its Select icon (cross-shaped
icon) appears in its upper-left corner. The Properties window will indicate that the table is
selected. Assign the CSS style to the Class property of the table.

To apply a style to a table cell, click inside the cell. The <TD> marker should be displayed
in the top row of the Properties window. Assign the CSS style to the Class property.

Table 9-1 Examples of applying style names to document and table elements

Element Example

Document (body) <body class="myStyle">

Table <table class="myStyle">

Table row <tr class="myStyle">

Table cell <td class="someStyle">

div blocks <div class="special">

TIP: Sometimes when you are trying to select a table column with the mouse, you will
see the <p> tag rather than the <TD> tag in the Properties window. The table cell con-
tains a paragraph break, so you need to delete the <p> (paragraph) tag before you can
assign a CSS style to the table cell. Try to backspace over the line break. If that does not
work, switch to the Source (HTML) view and delete the <p> tag manually. Be careful not
to delete anything else.

You can also assign a CSS class to an entire table row, but it can be done only in the Source
(HTML) view of the page. Find the <TR> tag and change it to <TR class="classname">,
where classname is your CSS class name. If you want to assign a CSS class to a block of text,
use a tag. Text between and can be inserted side by side, creating the
effect of a paragraph that changes styles. Here is an example:

CSS Menu Demo Example
So that we can explore CSS styles further, let’s look at a small CSS Menu Demo application.
It displays a sliding bar menu, using an HTML table and several HyperLink controls. When
the user hovers the mouse over a menu item, the item changes color. When the user clicks a
menu item, the application transfers to a new Web page. Figure 9-10 shows the running pro-
gram on the left and the page in design mode on the right. The menu is contained within an
HTML table that has a blue border. The heading row of the menu has its own style. The
detail rows use another style, which features an aqua background (which appears gray on
the printed page). Each row holding a menu item contains a Hyperlink control, which uses
yet another style that causes it to change color when the mouse hovers over the link.

The CSS Menu Demo application is located in the chapter examples folder. The CSS file named
StyleSheet.css defines the styles used in the menu. The h1 name defines the Heading1 style:

h1 {
font-family:Arial;
font-size:2em;
color:Blue;

}

9.2 Cascading Style Sheets 441

The .menu style is applied to the entire table. It specifies a standard-size bold Arial font and
a solid blue border.

.menu {
font-family:Arial;
font-size:1em;
font-weight:bold;
border:solid .1em blue;

}

The menuHead style applies to the menu header row. It specifies white text on a navy blue
background, centered.

.menuHead
{

color:White;
background-color:Navy;
text-align:center;

}

The menuItem style applies to the individual menu items. It has an aqua background, and
the text is padded (indented) on the left by .4 em units.

.menuItem {
background-color:Aqua;
padding-left:.4em;

}

The a (anchor) style defines the appearance of the Hyperlink control in each menu item’s
row. It specifies navy blue text on an aqua background. Because hyperlinks are underlined
by default, the text-decoration:none specification removes the underlining.

.menuItem a {
color:Navy;
background:Aqua;
text-decoration:none;

}

The a:hover (mouse hover) style indicates what happens when the user hovers the mouse over
the Hyperlink controls in the menu items. The text becomes white on a navy blue background.

.menuItem a:hover {
color:White;
background:Navy;

}

Figure 9-10 Running the CSS Menu Demo application

442 Chapter 9 Programming Web Forms

In the Source (HTML) view of the startup page, the following line between the <head> and
</head> tags connects the page to the CSS file:

<LINK href=''StyleSheet.css'' type=''text/css'' rel=''stylesheet''>

Figure 9-11 shows how each of the CSS styles is assigned to elements in the Web page.

h1

menuHead

a:hover

menuItem

menu

a (hyperlink)

Figure 9-11 CSS styles are applied to HTML and ASP elements

Checkpoint

6. Which HTML table elements can be assigned style names?

7. Why should em units be used rather than points when setting font sizes?

8. Which property in the DOCUMENT object of a Web page would you use to set the
font family name?

9. How do you connect a CSS file to a Web page?

10. In a CSS file, which tag defines default attributes for all items on the page?

9.3 Custom Error Handling
Custom error handling refers to the ability that ASP.NET programs have to configure the
display of runtime error messages for both end users and program developers. You’ve
encountered unhandled exceptions (runtime errors) on your Web pages by now. When run-
ning an application on the local machine, you can view detailed information about the error,
including a stack trace. On the other hand, if you run your programs on a shared server,
error information is usually restricted because security would be compromised by showing
end users the names of variables, folder names, and other source code. We will show how to
control the level of detail in error messages.

The Custom Errors setting determines the way in which error messages are displayed on
Web pages. Three possible settings exist, and they are documented in the Custom Error Mes-
sages section of an application’s Web.config file.

• On—Always display custom (friendly) error messages.
• Off—Always display detailed error information.
• RemoteOnly—Remote users see custom (friendly) error messages; meanwhile, users on

the local machine see detailed error information.

9.3 Custom Error Handling 443

Following are the default settings in Web.config:

<configuration>
<system.web>

<customErrors mode=''RemoteOnly'' />
</system.web>

</configuration>

Additional entries in the system.web group are not shown here.

Example: Unhandled Exception
Suppose a program attempts to convert the contents of a text box to an integer and fails.
Figure 9-12 shows the type of detailed information that a programmer needs to see. It
includes line numbers and a stack trace. This level of detail is inappropriate for end users
because it reveals sensitive information such as line numbers and source code.

Figure 9-12 Unhandled exception, viewed by the local user

Figure 9-13 shows what happens when a remote user connects to the example program and
generates the same error. The error window message hides secret information and tells the
user nothing about what went wrong or what remedies are available.

A preferred approach to error handling is to create a custom error page similar to the one
shown in Figure 9-14. The URL that loads this page includes a request parameter named
aspxerrorpath, which is the path of the Web page that was executing when the error
occurred. The custom error page displays aspxerrorpath and has an email link so the user
can notify the support department about the error (see Figure 9-15).

444 Chapter 9 Programming Web Forms

The following line in the web.config file lets us redirect the user to the custom error page
named error.aspx:

<customErrors mode=''RemoteOnly'' defaultRedirect=''error.aspx'' />

You can test a redirected error handler on your local Web server without having to copy
your program to a public Web server. Temporarily change the mode to On as follows:

<customErrors mode=''On'' defaultRedirect=''error.aspx'' />

Figure 9-13 Unhandled exception, viewed by the remote user

Figure 9-14 Custom Errors application

Figure 9-15 Sending an email report

9.4 Uploading Files and Sending Email 445

Handling HTTP Errors

Most Web sites use custom error pages to handle HTTP errors, which are generated by the
Web server. For example, error 404 is generated by a server when a requested Web page is
not found. Rather than displaying a generic error page (which was shown in Figure 9-13),
you can designate a specific page for error 404 in the web.config file. In the following exam-
ple, the notFound.aspx file displays whenever error 404 occurs:

<customErrors mode=''On'' defaultRedirect=''error.aspx''>
<error statusCode=''404'' redirect=''notFound.aspx'' />

</customErrors>

The error page used in the Custom Errors program appears in Figure 9-16.

Figure 9-16 Custom error page for 404 Not Found

Checkpoint

11. Which CustomErrors setting in web.config permits end users to see detailed error
information when an unhandled exception is thrown?

12. What settings can you make in the web.config file that will allow remote users to
see friendly error information and at the same time allow a user on the local
machine to see detailed debugging information?

13. Which HTTP error is generated when the browser cannot locate a Web page?

9.4 Uploading Files and Sending Email
Allowing users to upload files to a Web site is often very useful. They can send email with
attachments and upload pictures to online photo albums. Students can upload assignments,
and groups of people collaborating on projects can share documents. The FileUpload con-
trol lets users upload any type of file, but you have the option of restricting the permitted
file types and the maximum size of each file.

When the user uploads a file, it is held in server memory. When the file has finished upload-
ing, the code in your Web page executes. The maximum file size that can be uploaded is set
by the server’s MaxRequestLength configuration setting. The default is 4MB.

FileUpload Control Properties
Table 9-2 lists a few commonly used properties of the FileUpload control. The PostedFile
property, an HttpPostedFile object, represents the uploaded file. Table 9-3 lists the more

446 Chapter 9 Programming Web Forms

common properties of the HttpPostedFile class. You can use the ContentType property to
limit the types of files that can be saved. This helps to prevent users from uploading files con-
taining malicious scripts and executable files. Table 9-4 lists a number of common MIME
types, which are standardized descriptions of Web content.

Table 9-2 FileUpload properties

Property Description

FileBytes A byte array containing the file’s contents.

FileContent A stream containing the file.

HasFile Gets a Boolean value indicating whether the FileUpload contains
a file.

PostedFile An HttpPostedFile object that contains information about the file
being uploaded.

Table 9-3 HttpPostedFile properties

Property Description

ContentLength Gets the size of the uploaded file, in bytes.

ContentType Identifies the MIME content type of the uploaded file.

FileName Gets the fully qualified name of the uploaded file (on the
client computer).

InputStream Gets a Stream object that points to the uploaded file’s data.

Table 9-4 Common MIME types

MIME Type Description

image/gif GIF image file (.gif)

image/pjpeg JPEG image file (.jpg, .jpeg)

image/* any type of image file

text/plain plain text file

application/octet-stream Java source code file (.java)

application/java Java class file (.class)

text/html HTML file (.htm, .html)

application/x-zip-compressed ZIP (compressed) file (.zip)

application/msword Microsoft Word document (.doc)

application/rtf Rich Text format file (.rtf)

application/pdf Adobe Acrobat™ file (.pdf)

vnd.ms-excel Microsoft Excel file (.xls)

Saving the File

After the user uploads a file, you are ready to save the file on the server. The PostedFile.SaveAs
method receives an absolute path that determines the location of the saved file on the server.
Here’s a sample call, assuming the FileUpload control is named btnSelectFile:

btnSelectFile.PostedFile.SaveAs(''c:\temp\picture.gif'')

The filename might have been supplied by the user in a TextBox.

btnSelectFile.PostedFile.SaveAs(''c:\temp\'' & txtFileName.Text)

9.4 Uploading Files and Sending Email 447

You might want to save the file in a folder that belongs to your Web application. Then
you can use the My.Request.PhysicalApplicationPath property to get the absolute path
of the Web application on the server. The path name always ends with a back slash
character.

If a folder named Uploads exists inside the current project, the following statements assign
its absolute path to the variable named uploadPath:

Dim uploadPath As String
uploadPath = My.Request.PhysicalApplicationPath & ''Uploads\''

The following statement calls SaveAs, using the uploadPath variable:

btnSelectFile.PostedFile.SaveAs(uploadPath & txtFileName.Text)

Extracting the Client Filename

If you want to save the file under the same name as the uploaded filename, you must extract
the filename and extension from the PostedFile property. The latter contains a fully qualified
name (complete path), such as c:\myStuff\files\recent\myfile.txt. The easiest way to do this
extraction is to call the System.IO.Path.GetFileName method, as follows:

With btnSelectFile.PostedFile
fileName = System.IO.Path.GetFileName(.FileName)

End With

Now fileName contains just the filename and extension, such as myfile.txt.

Figure 9-17 shows a program that uploads a file to a Web site. The FileUpload control
appears as a text box and button, side by side. When the user clicks the Browse button, the
Web browser displays a file chooser window that browses their local computer. After a file
is selected, its complete path appears in the text box on the Web form. The user also enters
the name she or he wants to use when saving the file on the server. When the user clicks the
Upload Now button, the file is transferred to the server.

Figure 9-17 File Upload Demo, just before uploading the file

After the file is uploaded, the program displays a confirmation message (see Figure 9-18).
The originally selected filename disappears from the FileUpload control. This may be
good; if the user accidentally clicks the button twice in a row, the same file will not upload
a second time.

448 Chapter 9 Programming Web Forms

Figure 9-18 File Upload Demo, after uploading the file

Implementation

Here is the source code for the File Upload Demo program:

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub btnUpload_Click() Handles btnUpload.Click
Dim uploadPath As String
uploadPath = My.Request.PhysicalApplicationPath & ''Uploads\''
btnSelectFile.PostedFile.SaveAs(uploadPath & txtFileName.Text)
lblResult.Text = ''Your file has been uploaded''

End Sub
End Class

Sending Email
One of the most useful tasks an ASP.NET application can perform is to send email. For
example, it might send a confirmation notice when a customer orders an item or when a per-
son joins a club. It could use email to send time-sensitive information to users. Or if a run-
time error occurs, an application can send email to the technical support department.
Following are some suggestions on how to send email.

You must import the System.Net.Mail namespace at the top of a Web page:

Imports System.Net.Mail

You must know the name of your outgoing SMTP mail server. If you’re working at home
and you have an Internet service provider (ISP), use their mail server name. If you’re in a
college lab, check with the lab staff to find out the server name. If your Web application is
running on a remote server, the Web hosting company will supply you with the name of the
server. Here is an example of a mail server name:

Dim mailServerName As String = ''mailhost.mycollege.edu''

The following statement declares an SmtpClient object using a sample mail server name:

Dim m_Client As New SmtpClient(mailServerName)

9.4 Uploading Files and Sending Email 449

MailMessage Class

The MailMessage class provides all the necessary properties to define an email message. If you
are sending mail to only one recipient, here is a simple way to create a MailMessage object. Pass
the following parameters to the MailMessage constructor: sender email, receiver email, subject,
and body. The following, for example, is a message from me@abc.com to you@xyz.com:

Dim message As New MailMessage(''me@abc.com'', ''you@xyz.com'',
''Greetings'', ''This is the message body'')

To send the message, call the SmtpClient.Send method, as follows:

m_Client.Send(message)

Use a Try..Catch block to catch exceptions. Exceptions are usually thrown when the name
of the mail server is incorrect or the mail server does not respond.

File Attachments

The MailMessage class has a property named Attachments, which is a collection that holds
the names of files attached to a message. First, you create an Attachment object by passing
a fully qualified filename (path plus filename) to its constructor:

Dim attachedFile As New Attachment(''c:\temp\myfile.txt'')

Next, add the Attachment object to the Attachments collection, as follows:

Dim message As New MailMessage
message.Attachments.Add(attachedFile)

If you want users to be able to attach files to their messages, you might find it convenient to
create a folder in your application to hold the files. Suppose a folder is named Attachments.
The following statement gets the physical path of that folder:

Private ReadOnly attachPath As String =
My.Request.PhysicalApplicationPath & ''Attachments\''

When a file is uploaded (using a FileUpload control named btnSelectFile), we can get its file-
name and use the SaveAs method to save it in the Attachments folder.

btnSelectFile.PostedFile.SaveAs(
attachPath & System.IO.Path.GetFileName(btnSelectFile.FileName))

(The System.IO.Path.GetFileName method removes path information from the file the user
uploaded.)

MailAddress Class

The MailAddress class defines an object that can hold email addresses. The mail-sending
example we showed earlier used a shorthand version for addresses of the sender and receiver.
But if you want to store both the name of a recipient and their email address, you should
construct a MailAddress object. Here are examples of its constructors:

new MailAddress(''joe@anywhere.com'')
new MailAddress(''joe@anywhere.com'', ''Joe Smith'')
new MailAddress(''joe@anywhere.com'', ''Joe Smith'',

System.Text.Encoding.Unicode)

The first parameter must be in a correct email address format. Your mail server may check
the domain name to see if it exists. The second constructor has a display name parameter,
which shows in the message header when the message is received. The third constructor
lets you select the encoding method for the address, an option used for international char-
acter sets.

450 Chapter 9 Programming Web Forms

In the following example, we create a MailMessage object. Then we create MailAddress
objects and add them to the From and To properties of the message. The message is sent
from Joe Smith to Sam Jones and Eric Chong.

Dim message As New MailMessage
With message

.From = New MailAddress(''joe@anywhere.com'', ''Joe Smith'')

.To.Add(New MailAddress(''sam@sam.com'', ''Sam Jones''))

.To.Add(New MailAddress(''eric@xyz.edu'', ''Eric Chong''))

.Subject = ''This is the message subject''

.Body = ''This is the message body''
End With

MailMessage Properties

The MailMessage class has properties that configure messages and include attachments.
Some of the more useful properties are shown in Table 9-5. The Bcc field is convenient when
sending a message to multiple persons because each recipient cannot see the addresses of the
other recipients. When a field contains a list of email addresses, each address must be sepa-
rated by semicolons.

Table 9-5 Commonly used MailMessage properties

Property Description

Attachments Collection of MailAttachment objects that represent file
attachments.

Bcc A MailAddressCollection that contains a list of blind
carbon copy recipients—recipients cannot see this field.

Body Body of the message.

BodyEncoding Gets or sets the encoding method used for the
message body.

CC A MailAddressCollection that contains a list of carbon
copy recipients—recipients can see this field.

DeliverNotificationOptions Options relating to how the message is delivered.

From Required: The address of the message sender
(MailAddress object).

Headers Collection of headers used by the message.

IsBodyHtml Gets or sets option to include HTML tags in the
message body.

Priority MailPriority enumeration. Choices are High, Normal,
and Low.

ReplyTo The reply to field of the message (MailAddress object).

Subject Message subject.

To Required: A MailAddressCollection that contains a list of
recipients.

Messages Containing HTML Tags

You can embed HTML tags in a message body as long as you set the MailMessage.BodyFormat
property to HTML. When the form is posted back, however, the HttpRequest class rejects
HTML tags as being potentially harmful. Figure 9-19 shows the runtime error that results from
inserting the tag in the message body.

9.4 Uploading Files and Sending Email 451

Figure 9-19 Request validation error message

As the instructions in the error message explain, you can bypass this error by including the
following assignment in the form’s Page directive, which you can modify when the editor is
in Source view:

ValidateRequest=''false''

MailDemo Program

Figure 9-20 shows an ASP.NET application that sends mail to recipients using the MailMessage
class. The program lets you send messages in either text or HTML format, depending on
your choice in the dropdown list. If you select HTML, you can embed tags such as or
<h1> in your message.

Figure 9-20 Sending a mail message

TIP: Before running this sample program, you must customize the m_ServerName vari-
able in the program source code to make it match the mail server name on your system.

452 Chapter 9 Programming Web Forms

Figure 9-21 shows a sample error message that is generated when an invalid email address is
entered into the From text box. The default exception message is rather general, so it’s a good
idea for you to perform validation on email addresses before sending a message. Use a Regu-
larExpressionValidator control, which is demonstrated in Section 9.5.

Table 9-6 lists the controls used in the program. We set validateRequest= '"false" in the Page
directive of the Web form. The StyleSheet.css file contains one custom style definition:

.normal
{

FONT-FAMILY: Verdana, Helvetica, sans-serif;
FONT-SIZE: small;

}

Figure 9-21 Sample error message

Table 9-6 Controls used in the MailDemo program

Control Type Name Properties

<Table> Table1
<Table> Table2
TextBox txtFrom
TextBox TxtTo
TextBox TxtCc
TextBox txtBcc
TextBox txtSubject
TextBox txtBody TextMode: MultiLine
FileUpload btnSelectFile
Button btnAttach Text: Attach
Label lblAttachedFile
DropDownList ddlFormat Items: Text, HTML
Button btnSend Text: Send
Label lblStatus

9.4 Uploading Files and Sending Email 453

Implementation

The following is a complete listing of the program source code:

Imports System.Net.Mail
Imports System.IO

Partial Class _Default
Inherits System.Web.UI.Page
'Change the following server name to your server:
Private ReadOnly m_ServerName As String = ''mail.bellsouth.net''
Private ReadOnly m_AttachmentsPath As String = My.Request. _

PhysicalApplicationPath & ''Attachments\''

Private Sub SetFormat(ByVal objMail As MailMessage)
Select Case ddlFormat.SelectedValue

Case ''HTML''
objMail.IsBodyHtml = True

Case ''Text''
objMail.IsBodyHtml = False

End Select
End Sub

Private Sub btnSend_Click() Handles btnSend.Click
Dim fileName As String = String.Empty
'If an attachment has been selected, upload
'the file to the appropriate directory.
With btnSelectFile.PostedFile

If lblAttachedFile.Text.Length > 0 Then
fileName = m_AttachmentsPath & lblAttachedFile.Text
.SaveAs(fileName)

End If
End With
Try

' Build a message object and set the HTML option.
Dim objMail As New MailMessage
SetFormat(objMail)
With objMail

.From = New MailAddress(txtFrom.Text)

.To.Add(New MailAddress(txtTo.Text))

.Subject = txtSubject.Text

.Body = txtBody.Text

' send Carbon Copies.
If txtCc.Text.Length > 0 Then

.CC.Add(New MailAddress(txtCc.Text))
End If

' send Blind Carbon Copies.
If txtBcc.Text.Length > 0 Then

.Bcc.Add(New MailAddress(txtBcc.Text))
End If

' Add the file attachment, if any.
If fileName.Length > 0 Then

.Attachments.Add(New Attachment(fileName))
End If

End With

' Create the mail client and send the message.
Dim client As SmtpClient = New SmtpClient(m_ServerName)
client.Send(objMail)
lblStatus.Text = ''Mail message sent to '' & txtTo.Text

454 Chapter 9 Programming Web Forms

Catch ex As Exception
lblStatus.Text = ''Unable to send mail: '' & ex.Message

End Try
End Sub

Protected Sub btnAttach_Click() Handles btnAttach.Click
With btnSelectFile.PostedFile

If .FileName.Length > 0 Then
lblAttachedFile.Text = Path.GetFileName(.FileName)

End If
End With

End Sub
End Class

Checkpoint

14. Which control makes it possible for users to upload files to a server from their
browsers?

15. Why is the HttpPostedFile class important in a program that lets users upload files?

16. What is the name of the protocol used when sending mail?

17. Show an example of sending a mail message using an SmtpMail object.

18. Which class offers a rich set of properties that can be used to send mail with
attachments?

9.5 Data Validation Controls
Data Validation controls check the contents of user input fields and produce error messages.
They are located in the Validation section of the Visual Studio Toolbox and check for the
following kinds of errors:

• An input field has not changed from its initial value.
• An input value is too small or too large.
• One input value does not correlate with the contents of another input value (a student,

for example, might have entered a graduation date that is earlier than his or her initial
enrollment date).

• An input value does not match a required format (a user, for example, might have
entered a date that does not match the way dates are expressed in the geographical
locale).

Validation controls can also perform custom error checking that involves logical rules.
For example, a tax calculation program might have a number of rules that govern
whether exceptions for dependents can be claimed. A custom validator could check those
rules.

The names and descriptions of the validation controls are listed in Table 9-7. When you use
these controls, you associate each one with a particular input field on a Web form.

Server-Side and Client-Side
Two basic types of validation work together: server-side and client-side.

• Server-side validation is activated when the user posts the page back to the server, typ-
ically by clicking a button. Validation error messages are displayed, and then the but-
ton’s Click event handler executes.

9.5 Data Validation Controls 455

Table 9-7 ASP.NET validation controls

Validation Control Usage

RequiredFieldValidator Alerts the user when an input field has not changed from
its initial value.

RangeValidator Checks a field’s value against a predetermined range of
values.

CompareValidator Compares the value of one field with a constant or with the
value of another field.

RegularExpressionValidator Compares a field’s value to a regular expression.

CustomValidator Flexible validation performed by user-coded logic.

ValidationSummary Displays a message for each validation control found to
have an error.

• Client-side validation is performed when the user moves between input fields, using
the Tab key or the mouse. ASP.NET generates Javascript code that executes directly on
the user’s browser, producing an effect similar to a Windows application. When the
user fixes an error, the related error message disappears.

You have the option of disabling client-side validation for a particular validation control by
setting its EnableClientScript property to False. But if you do so, you must manually check
the control’s IsValid property to find out if the control’s contents are valid. We recommend
leaving EnableClientScript set to its default value of True.

Client-side validation typically intercepts a button’s Click event. If an error is found in
a validated input field, the button’s server-side Click handler never executes. When the
user corrects all errors and clicks the button again, the Click handler is permitted to
execute.

RequiredFieldValidator Control
The RequiredFieldValidator control alerts the user when the content of a particular input
control has not changed from its initial value. Suppose a Web form has a text box that the
user fills out before clicking the OK button. We will assume that the text box’s initial value
is empty, and a RequiredFieldValidator control is attached to the text box. In Figure 9-22,
an error message displays if the user clicks the OK button without having entered a daily

Figure 9-22 RequiredFieldValidator example

456 Chapter 9 Programming Web Forms

The RequiredFieldValidator’s Text property, which is usually assigned a single character, dis-
plays at the location where the validation control is located on the form. It is usually best to
include a ValidationSummary control on the same form as other validation controls. A
ValidationSummary displays all error messages generated by validation controls on the cur-
rent form. When you assign a string to a validation control’s ErrorMessage property, the
string is displayed by the ValidationSummary control. Figure 9-23 contains a concept map
that expresses the functional relationships among a TextBox being validated, a Required-
FieldValidator, and a ValidationSummary.

ValidationSummary
control

a TextBox
control

error
message

RequiredFieldValidator
control

ControlToValidate

properties

obtains error
message from

checks for blank
value in

displays

refers to

ErrorMessage

Text

holds

Figure 9-23 Communication relationships among the TextBox, RequiredFieldValidator,
and ValidationSummary controls

When the user corrects the error and clicks the OK button, the browser moves to the
Confirmation form. In the example shown in Figure 9-24, the following Click handler is
used for the OK button:

Protected Sub btnOk_Click() Handles btnOk.Click
Response.Redirect(''Confirmation.aspx'')

End Sub

In Section 9.6, we will explain more details about the Response.Redirect statement.

Nonblank Values

If you assign a value to the RequiredFieldValidator control’s InitialValue property, you can
find out if the user has changed the contents of the control being validated. This feature is

Property Name Value

ControlToValidate txtRentalRate

InitialValue (empty)

Text *

ErrorMessage Rental rate is required

rental rate. The properties of the RequiredFieldValidator in this example are assigned as
follows:

9.5 Data Validation Controls 457

useful when validating a DropDownList control. You can set its default selection to some-
thing like (none), with an associated value of –1. If the user does not make a selection at
runtime, the RequiredFieldValidator displays an error because the value from the Drop-
DownList is still equal to the InitialValue property of the RequiredFieldValidator control.
Figure 9-25 shows such a situation. The Value property of the first ListItem in the Drop-
DownList equals –1. Here are the validator control’s settings:

Figure 9-24 After the user corrects the error

Figure 9-25 DropDownList with a RequiredFieldValidator

Property Name Value

ControlToValidate ddlRoomType

InitialValue –1

Text *

ErrorMessage Room type must be selected

CausesValidation Property

Any control that causes postback events has a CausesValidation property with a default value
of True. Examples are Buttons and LinkButtons. Sometimes, however, you may not want any
validation to occur when the user clicks a particular button. In Figure 9-22, we showed a
LinkButton with the Text Skip this page. The CausesValidation property for that button was
set to False to prevent the RequiredFieldValidator control from activating. Figure 9-26 shows
the resulting page display.

Common Properties

A number of properties, shown in Table 9-8, are common to all validator controls.

458 Chapter 9 Programming Web Forms

RangeValidator Control
The RangeValidator control checks the value of an input control, comparing it to a range of
acceptable values. The MaximumValue and MinimumValue properties are used to set the
range. This control becomes active only after the user enters some data into the input field.
For example, Figure 9-27 shows an input form in which the user enters the number of occu-
pants for a vacation rental. The range of acceptable values is 1 to 8. Table 9-9 shows the
property settings used in this example. Ranges do not have to be numeric. For example, you
can set the MinimumValue to s and MaximumValue to x if you want to require input strings
to fall between these two letters of the alphabet.

Table 9-8 Common validator control properties

Property Name Description

ControlToValidate Control whose contents are to be validated (called the target
control).

Display Determines how the message contained in the Text property is
displayed (choices are Static, Dynamic, and None).

EnableClientScript Enable or disable client-side validation.

Enabled Enable or disable validation of the target control.

ErrorMessage The message that is displayed by the ValidationSummary control
when an error is detected.

IsValid Equals True when the control’s contents are valid (runtime
property).

Text Text displayed on the form at the location of the validator
control when the validation check fails.

Figure 9-26 User clicked the Skip this page LinkButton

Figure 9-27 Using the RangeValidator control

9.5 Data Validation Controls 459

Multiple Validators

Input controls typically have more than one validator. A RequiredFieldValidator for each
required input field is a starting point. Then you can add other validators to check the range,
compare two fields, and so on. If an input field’s contents are no different from its default
value, only the RequiredFieldValidator is activated. Once the user modifies the field, the
other validators become active.

CompareValidator Control
The CompareValidator control compares one input control’s contents to either a fixed value
or the value of another control. You identify the first control using the ControlToValidate
property. If you are comparing to a fixed value, assign it to the ValueToCompare property.
If you are comparing to another control, assign its name to the ControlToCompare prop-
erty. This control has some unique properties, which are listed in Table 9-10.

Table 9-9 Sample RangeValidator control settings

Property Name Value

ControlToValidate txtOccupants

Text *

ErrorMessage Number of occupants must be between 1 and 8

MaximumValue 8

MinimumValue 1

Table 9-10 Unique CompareValidator properties

Property Name Description

ValueToCompare A constant value that is compared to the control’s contents.

Operator Used when comparing control contents to a constant value (select
from a list of predefined operator identifiers: equal to, greater than,
less than, and so on).

Type The type of data used in the control being validated (select from
String, Integer, Double, Date, or Currency).

ControlToCompare A control whose contents will be compared to the control being
validated.

Suppose we wanted to use the CompareValidator to check the values of starting and ending
rental reservation dates. We would like to input the dates using Calendar controls, but they
are not supported by the CompareValidator. Naturally, the return date must be greater than
or equal to the rental date. In Figure 9-28, for example, the user has entered an invalid date
range. Figure 9-29 shows the important property values in the CompareValidator control.

Comparing to Today’s Date

Sometimes you may want to compare a date entered by the user to today’s date. Although
the standard Today property returns the current date, you cannot assign it to the
ValueToCompare property in Design view. On the other hand, you can assign the property
at runtime as follows:

cmpDate.ValueToCompare = CStr(Today)

460 Chapter 9 Programming Web Forms

RegularExpressionValidator Control
The RegularExpressionValidator control performs string pattern matching against the con-
tents of another control. Regular expression syntax is somewhat complex, but you can select
from a dropdown list of predefined expressions when setting the ValidationExpression
property. Here are some predefined regular expressions you can select:

• Internet URL
• Email address
• U.S. phone number
• U.S. Social Security number
• U.S. ZIP code

In Figure 9-30, a regular expression is used to validate an email address entered by the user.
Table 9-11 lists the RegularExpressionValidator’s property values used in this example.

Regular Expressions

Regular expressions are specification strings that conform to regular expression syntax.
They are a powerful tool for pattern matching. You can match an expression against various
input strings and accept or reject each string based on how it matches the expression.

Suppose a regular expression for a four-digit personal identification number (PIN) is
encoded as \d{4}. This expression can be assigned to the ValidationExpression property of

Figure 9-28 CompareValidator Example

CompareValidator
control

txtReturnDate
Is

compared
to

ControlToValidate ControlToCompare

Type

Operator

Date

txtRentalDate

GreaterThanEqual

Figure 9-29 Property settings for the CompareValidator Example

9.5 Data Validation Controls 461

a RegularExpressionValidator control. The following table shows the result of checking dif-
ferent strings against the sample expression:

Figure 9-30 Validating an email address

Table 9-11 Property values in the RegularExpressionValidator example

Property Name Property Value

ControlToValidate txtEmail

ErrorMessage Invalid email format

Text *

ValidationExpression \w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*

String Outcome

1234 accept

2222 accept

333 reject

999A reject

11111 reject

A fairly large set of symbols are used in regular expressions. Although we cannot show them
all here, some common symbols are listed in Table 9-12.

Table 9-12 Common regular expression symbols

Symbol Description

\w Matches digits 0 through 9, underscore, and any other characters classified as
alphanumeric in the Unicode character properties database.

\d Matches digits 0 through 9 only.

+ Matches any number of occurrences of the preceding character.

\ Escape: matches the next character following the backslash.

{n} Specifies the number of occurrences n of the previous character.

()* Repeats sequence inside the parentheses any number of times.

[aaa] The set of characters specified inside the brackets.

[^aaa] All characters except the ones specified inside the brackets.

462 Chapter 9 Programming Web Forms

Table 9-13 lists a number of regular expression examples that you can modify and use in
your own programs. If you are interested in learning more, look up Regular Expressions at
the Microsoft MSDN Web site.

Table 9-13 Regular expression examples

Expression Matches Strings Containing . . . Sample Matching Strings

\d+ any number of digits 234249749875764392

\d* 1

(\d)*

\d{5} exactly five digits 98346

11111

00002

X(\d)*Y strings beginning with X, ending with Y,
containing any number of digits in between

X2Y
XY
X23423424234Y

\w* any number of alphanumeric characters,
including the underscore

sdjd6883sdfh_234AB

AB+ character A followed by any number of letter B’s AB

ABBBBBBB

[123]{5} any digit from the set {1,2,3}, repeated five times 11111

11222

13221

33333

000\d{3} three zeros followed by any three digits 000123

000444

000219

[A-Za-z]1 any number of capital or lowercase letters
in the range A to Z

aBytXnp
B

[a-z]:\\[a-z]+ lowercase letter, colon, backslash, followed
by any number of lowercase letters

c:\xyz
b:\z

[^aeiou] any character not in the set of vowels X

Z

M

Validating an Email Address

The validation expression used in our earlier example to validate an email address was
\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*. Table 9-14 breaks it into segments to make it
more understandable. Examples of strings that match the first subexpression follow:

ben123
any_one
fred.jones
dan+miller
comp-sci
microsoft.com

9.5 Data Validation Controls 463

CustomValidator Control
The CustomValidator control can perform any validation not already covered by existing
validation controls. The actual validation is performed by your own event handler. The event
being handled is called ServerValidate.

Example: Evaluating Academic Status

In Figure 9-31, the user selects the academic status of a student who plans to register for
classes and inputs the number of requested credits. When the Verify button is clicked, the
program evaluates the request according to the following criteria:

• If the Advisor override box is checked, the student can register.
• If the Advisor override box is not checked, the status value must be checked:

– If status = Satisfactory, the student may take no more than 18 credits.
– If status = Warning, the student may take no more than 12 credits.
– If status = Probation, the student may take no more than 8 credits.
– If status = Not eligible, the student may not take any credits.

Table 9-14 Email expression example

Subexpression Description

\w+([-+.]\w+)* Any number of alphanumeric characters can begin an email address
(\w1) followed by a single occurrence of either minus, plus, or dot;
this is followed by any number of alphanumeric characters

@ The @ symbol

\w+([-+.]\w+)* Same as the first subexpression

\. A period (.)

\w+([-+.]\w+)* Same as the first subexpression

Figure 9-31 CustomValidator Example

Suppose a student whose status equals Satisfactory tries to register for 19 credits. The result
is shown in Figure 9-32.

A complete listing of the program’s source code is shown in Figure 9-33. To enable a Cus-
tomValidator control, you must handle its ServerValidate event. The second parameter
(args), has a property named IsValid, which you can set once you have applied your own
validation logic, as follows:

Private Sub CreditsCustomValidate_ServerValidate(
ByVal source As Object,
ByVal args As ServerValidateEventArgs) _
Handles CreditsCustomValidate.ServerValidate

464 Chapter 9 Programming Web Forms

Figure 9-32 Sample error message

Figure 9-33 Listing of the CustomValidator Example

Partial Class CustomValidator
Inherits System.Web.UI.Page

Enum StatusType
Satisfactory
Warning
Probation
NotEligible

End Enum

Protected Sub CreditsCustomValidate_ServerValidate(
ByVal source As Object,
ByVal args As ServerValidateEventArgs) _
Handles CreditsCustomValidate.ServerValidate

args.IsValid = True
' If the advisor override box is checked, no further
' evaluation is necessary.
If chkAdvisorOverride.Checked Then Return

' Determine the maximum number of credits the
' student can take.
Dim maxCredits As Integer = 0
Select Case ddlStatus.SelectedValue

Case StatusType.Satisfactory
maxCredits = 18

Case StatusType.Warning
maxCredits = 12

Case StatusType.Probation
maxCredits = 8

Case StatusType.NotEligible
maxCredits = 0

End Select

If CInt(txtCredits.Text) > maxCredits Then
args.IsValid = False

End If
End Sub

Protected Sub btnVerify_Click() Handles btnVerify.Click
If CreditsCustomValidate.IsValid Then

Response.Redirect(''Confirmation.aspx'')
End If

End Sub
End Class

9.6 Working with Multiple Web Forms 465

This program uses the student’s academic status and advisor setting to decide the maximum
number of credits the student can take. Then it compares the requested number of credits to
the maximum credits.

The Click handler for the Verify button has an important job—it checks the IsValid prop-
erty of the CustomValidator control before displaying the Confirmation form.

Assigning Names to Validation Controls

There is no standard naming convention for Validation controls. An approach we suggest is
to hint at the name of the control it validates, followed by the type of validation. Table 9-15
lists some examples of this naming scheme.

Table 9-15 Sample validation control names

Control Being Validated Validation Control Type
Suggested Validation
Control Name

txtDailyRate RequiredFieldValidator DailyRateRequiredValidator

txtRentalDate CompareValidator RentalDateCompareValidator

txtDailyRate RangeValidator DailyRateRangeValidator

txtEmail RegularExpressionValidator EmailExpressionValidator

txtCredits CustomValidator CreditsCustomValidator

Checkpoint

19. Which validator control notifies a user that an input field should not contain its
default value?

20. Which properties must be set when using the RangeValidator control?

21. Which validator control would be useful when verifying that an employee’s
promotion date is greater than or equal to her or his hire date?

22. Which validator control would be useful when verifying that an account number
contains seven digits?

9.6 Working with Multiple Web Forms
Before long, you will want to create Web applications having multiple pages. You might
collect information on one page and display a summary on a second page. Or, you might
display supplementary information on a third page, which the user can select at will.

Hyperlinks
A hyperlink is an image or text that acts as a transfer mechanism for the Web browser. When
you hover the mouse over a hyperlink, the mouse changes shape. When you click the hyper-
link, the browser transfers control to either a new place in the same Web page or a different
Web page. Standard HTML Uses the <a> tag around a block of text to specify a hyperlink.
Here is an example:

Tony Gaddis Books

466 Chapter 9 Programming Web Forms

Within the <a> tag, the href property identifies a target URL. All text from the > character
at the end of the <a> tag, until the closing tag is a hyperlink. This is what the user would
see if the page were set up to display underlined hyperlinks:

Tony Gaddis Books

Using style characteristics, you can make hyperlinks appear without underlining and in
a specific color. Chapter 10 shows how to use CSS styles to change the appearance of
hyperlinks.

To create a hyperlink in Visual Studio, select a block of text with the mouse; click the Hyper-
link button on the Formatting toolbar, as shown in Figure 9-34; and enter the URL of the
target URL. If the URL will point to a page in your project, you can click the Browse but-
ton to locate a file within your project, as shown in Figure 9-35.

Figure 9-34 Converting a block of text to a hyperlink

Figure 9-35 Selecting the target page for the hyperlink

9.6 Working with Multiple Web Forms 467

HyperLink, ImageButton, and LinkButton Controls

HyperLink Control

The HyperLink control is a programmable hyperlink that lets users navigate from the cur-
rent page to another page. The link can appear as text or as an image. Here are the more
commonly used properties:

• The Text property contains text to be displayed by the control. If you assign a value to
this property, leave the ImageUrl property blank.

• The ImageUrl property contains the URL of an image to be displayed (rather than
text). If you use this, leave the Text property blank.

• The NavigateUrl property contains the destination URL when the user clicks on the
link. The property editor has a Browse button you can use to locate Web pages within
your project.

• The Target property controls whether the new page will appear in the current browser
window (the default) or in a separate window. To open in a separate browser window,
set Target equal to _blank.

In XHTML, the hyperlinked text appears after the > character and before the closing
</asp:HyperLink> tag. Here is a sample of a complete control definition:

<asp:HyperLink
ID=''lnkViewStudents''
runat=''server''
NavigateUrl=''ViewStudents.aspx''>
View the Student List
</asp:HyperLink>

This is what the user would see, assuming that the page is configured to display underlined
hyperlinks:

View the Student List

Alternatively, you can assign the hyperlinked text to the control’s Text property, as follows:

<asp:HyperLink
ID=''lnkViewStudents''
runat=''server''
NavigateUrl=''ViewStudents.aspx''
Text=''View the Student List''>
</asp:HyperLink>

A HyperLink control has an ID that lets you access its properties at runtime. For example,
the following VB code makes a hyperlink invisible:

lnkViewStudents.Visible = False

An HTML hyperlink (using the <a> tag), on the other hand, is not programmable because
you cannot refer to it by name in runtime code.

TIP: If you assign a value to a HyperLink control’s ImageUrl property and display an
image as the HyperLink, you cannot control the image size (the Height and Width prop-
erties are ignored).

ImageButton Control

Web pages typically use clickable images as an effective navigation tool. You can create the
same effect with the ImageButton control. It does not look like or bounce like a typical

468 Chapter 9 Programming Web Forms

button—instead, it simply shows an image. When the user hovers the mouse over the image,
the mouse cursor changes shape. When the user clicks the image, a Click event is generated
(which is probably why they call it a button).

You insert the image by placing an image’s relative URL in button’s ImageUrl property.
Ordinarily, you copy the image file into your project folder. The button generates a Click
event when the image is clicked by the user. An example of a relative URL is
Images/Tulips.jpg, assuming that the image file is located in a project folder named Images.
Here is a sample ImageButton control:

<asp:ImageButton
ID=''btnTulips''
ImageUrl=''Images/Tulips.jpg''
Width=''100''
Height=''80''
runat=''server'' />

LinkButton Control

The LinkButton control looks and behaves like a HyperLink control, with one major differ-
ence: It generates a Click event. You can write an event handler that executes when the user
clicks the button. Here is a sample:

<asp:LinkButton
ID=''btnContinue''
runat=''server''>Click here to continue
</asp:LinkButton>

The LinkButton control is implemented in a clever way: The Web server creates an ordinary
hyperlink and then generates JavaScript code that posts the page back to the server when the
hyperlink is clicked. To see this code when the page is visible in your browser, select the View
menu, and then select Source.

Using Runtime Code to Load a Web Page

Applications often need the flexibility to navigate to another page without having to ask the
user to click a hyperlink. Runtime VB code does this by calling the Response.Redirect method.

The following statement uses runtime code to navigate to a target page within the same Web
application named Students.aspx:

Response.Redirect(''Students.aspx'')

If the page is inside a folder within the same Web site, you must include the folder name, as
follows:

Response.Redirect(''Members/Students.aspx'')

The same page might be accessed from different places in an application, so it is best to pre-
cede any folder name with “~/”, which is translated by the server into a path that starts from
the root folder of the Web site. So we should rewrite the previous example as follows:

Response.Redirect(''~/Members/Students.aspx'')

If the target page is on another Web server, you must supply a fully formed URL.

Response.Redirect(''http://anothersite.com/Students.aspx'')

The Server.Transfer Method

If you want to use runtime code to go to another page on the same Web server, you can call
the Server.Transfer method.

Server.Transfer(''Page_two.aspx'')

9.6 Working with Multiple Web Forms 469

The user will not see any change to the URL in the Web browser’s address bar. That feature
can be useful if you do not want the user to bookmark individual pages in your Web site.

Server.Transfer is a little faster than Response.Redirect because it reduces the amount of data that
must be passed back and forth between the browser and the server. However, Server.Transfer can
be used only when the current page and the target page are located on the same Web server.

In Tutorial 9-3, you will write an application that transfers control between Web forms.

Tutorial 9-3:
Moving between Web forms

In this tutorial, you will experiment with different ways of moving between Web forms.
The application begins with a form, shown in Figure 9-36, that displays a text box, a
hyperlink, and a Button control. If the user clicks the hyperlink, she or he is taken to
the second page, shown in Figure 9-37. The user can also use the Button control on the
first page to navigate, but the button’s Click handler has an If statement that requires
the user to enter her or his name first.

Figure 9-36 Moving between forms, startup page

Figure 9-37 Moving between forms, second page

Tutorial Steps

Step 1: Create a new empty ASP.NET Web site named Moving Between Forms.

Step 2: Add Web forms named Default.aspx and Page2.aspx to the site.

Step 3: Add a level-two heading (<h2>) to each page that displays the page’s filename.

Step 4: Add the following XHTML to Default.aspx; it contains a TextBox control
and an HTML hyperlink:

Enter your name:
<asp:TextBox

ID=''txtName''
runat=''server''>
</asp:TextBox>

Go to Page 2

470 Chapter 9 Programming Web Forms

Step 5: Add the following HyperLink control to Page2.aspx:

<asp:HyperLink
ID=''lnkReturn''
runat=''server''
NavigateUrl=''Default.aspx''
Text=''Return to Default.aspx''>
</asp:HyperLink>

The HyperLink control stores the target page location in its NavigateUrl
property.

Step 6: Save the project and view Default.aspx in the browser. Enter your name into
the text box and click the hyperlink to go to Page2.aspx.

Step 7: On Page2.aspx, click the HyperLink control to return to Default.aspx.

Have you noticed something interesting? When you returned from the second
page to the first page, the name you typed on the first page disappeared. This
happened because a fresh copy of Default.aspx was loaded from the Web
server. (There are ways to reload controls when you move between pages, and
we will demonstrate them in Section 9.7)

Step 8: On the Default.aspx page, type your name again and click the hyperlink to go
to Page2.aspx. Now, click the browser’s Back button (an arrow pointing to
the left) to return to Default.apx.

Notice that your name still appears in the text box. But why? It turns out that
your Web browser keeps the previous page in memory, so it does not have to
reload Default.aspx from the Web server. You often see public Web sites that
take advantage of this feature, relieving the programmer from having to pre-
serve the previous page’s data. On the other hand, more secure, professional
Web sites do not allow you to click the browser’s Back button when returning
to a page. They want to verify your identity before reloading the previous page.

Step 9: Add a paragraph break and a Button control to Default.aspx.

<p />
<asp:Button ID=''btnGo''

runat=''server''
Text=''Click Here'' />

Step 10: Create a Click event handler for the btnGo button in the form’s codebehind
file. It calls the Response.Redirect method to move to Page2.aspx.

Protected Sub btnGo_Click() Handles btnGo.Click
If txtName.Text.Length > 0 Then

Response.Redirect(''Page2.aspx'')
Else

btnGo.Text = ''Please type your name''
End If

End Sub

This code will navigate to Page2.aspx only if the user remembered to type his
or her name. Otherwise, a reminder is inserted directly into the button so the
user can’t miss it.

Step 11: Save the project and view Default.aspx in the browser. Leave the text box
blank, and click the Button control. Did you notice how the button changes?
Now type a name into the text box and click the button. You should see
Page2.aspx.

9.7 Focus on Problem Solving: Vacation Rentals Application 471

Summary

In many situations, the HyperLink control is an efficient tool for navigating between pages.
You can use it very effectively in a menu, for example, where you might want to modify the
item’s text or hide the menu item at runtime. But if you need to execute a conditional state-
ment or perform other actions before navigating to another page, you’ll probably want to
use the Response.Redirect method.

Checkpoint

23. How do you set up a HyperLink control so that the user can navigate to a different
Web page?

24. How do you convert a block of static text to a hyperlink?

25. Which method in the Response object navigates to a different Web page?

9.7 Focus on Problem Solving:
Vacation Rentals Application
In Tutorials 9-1 and 9-2, you designed the user interface for an application named Vacation
Rentals. We would now like to add some improvements that take advantage of techniques
presented in this chapter. The user fills in a Rental Request form, as shown in Figure 9-38.
In this new version, the radio buttons containing price ranges are determined at runtime.

Figure 9-38 Vacation Rental Request page

The user can enter the number of weeks for the rental. When the user clicks the Submit my
Request button, she or he is taken to a Confirmation form, shown in Figure 9-39. If she or
he returns to the Rental Request page by clicking the hyperlink, the existing inputs and selec-
tions are still visible.

472 Chapter 9 Programming Web Forms

In a Windows application, passing information between pages and saving settings in controls
are trivial. All values are automatically kept in memory. In a Web application, however, we have
to do some extra work by saving data in the Session state collection. This application should
give you a basic understanding of how we use page-level events to save and restore information.

Designing the Application’s Web Forms
The Design view of the Vacation Rental Request form is shown in Figure 9-40. It has a
DropDownList control holding vacation locations and TextBox controls for the number of
people and number of weeks. An empty RadioButtonList is filled with price ranges at run-
time. A Calendar control lets the user select a starting rental date. A button at the bottom
collects the information from the form and sends the user to a Confirmation form. Table 9-16
contains a list of controls and properties for this form.

Figure 9-39 Confirmation form

Figure 9-40 Design view of the Vacation Rental Request page, Default.aspx

The Confirmation form displays information about the user’s selections. This information is
retrieved from Session state. (Session state was explained in Chapter 8.) A Design view of
the form is shown in Figure 9-41. Nearly all its control names are visible in the Design view.
The HyperLink control contains the Text: Return to the Rental Request page.

9.7 Focus on Problem Solving: Vacation Rentals Application 473

The DecimalRange Structure
The Vacation Rentals application defines a simple structure named DecimalRange. It is a
container that holds two values, Min and Max, and it can be represented as a String.

Public Structure DecimalRange
Public Min As Decimal
Public Max As Decimal
Public Sub New(ByVal mmin As Decimal, ByVal mmax As Decimal)

Min = mmin
Max = mmax

End Sub
Public Overrides Function ToString() As String

Return Min.ToString() & '' to '' & Max.ToString()
End Function

End Structure

DecimalRange could be useful in almost any program that deals with ranges of currency values.

RentalInfo Class
The RentalInfo class describes a container that holds the user’s rental selections. A RentalInfo
object is stored in Session state by the Rental Request form before it sends the user to the Con-
firmation form. It has a number of interesting details, as shown in Figure 9-42. First, it con-
tains an Enum type named PriceCategory. Each value (Low, Medium, High) corresponds to
an integer (0, 1, 2) that sets RadioButtonList values. The property named PriceRange is
declared with the PriceCategory type.

Figure 9-41 Design view of the Confirmation form

Table 9-16 Control names in the Vacation Rental Request page

Control Type Control Name Property Settings

DOCUMENT Font-Family: Arial Title: Vacation Rentals

DropDownList ddlLocation Font.Size: 1em

TextBox txtNumberOfPeople

TextBox txtNumberOfWeeks

RadioButtonList radPrices

Calendar calStartDate

Button btnSubmit Text: Submit my Request

474 Chapter 9 Programming Web Forms

The m_PriceCategories array contains three DecimalRange objects. The PriceCategoryVals
property uses this array to return an array of strings that can be used to initialize the
RadioButtonList in the Rental Request form. The PriceCategoryStr property returns a string
containing a single price category range, such as “700 to 1299.” This method is useful when
displaying the Confirmation form.

Rental Request Form
A complete listing of the code in the startup form (Default.aspx) appears in Figure 9-43.
Each time this page is loaded, the RadioButtonList is filled with the price range from the
RentalInfo class. This approach makes it easy to change the price ranges in the future. It is
best not to hard-code the ranges in HTML.

' Initialize the RadioButtonList.
For Each str As String In RentalInfo.PriceCategoryVals

radPrices.Items.Add(str)
Next

Figure 9-42 The RentalInfo class

Imports Microsoft.VisualBasic

Public Class RentalInfo
Enum PriceCategory

Low
Medium
High

End Enum

Private Shared m_PriceCategories As DecimalRange() _
= {New DecimalRange(0, 699), New DecimalRange(700, 1299),
New DecimalRange(1300, 3000)}

Public Property Location() As String
Public Property PriceRange() As PriceCategory
Public Property StartDate() As Date
Public Property NumberOfPeople() As Integer
Public Property NumberOfWeeks() As Integer

Public Shared ReadOnly Property PriceCategoryStr(
ByVal cat As PriceCategory) As String
Get

Return m_PriceCategories(cat).ToString()
End Get

End Property

Public Shared ReadOnly Property PriceCategoryVals() As String()
Get

Dim temp(m_PriceCategories.GetUpperBound(0)) As String
Dim j As Integer
For j = 0 To m_PriceCategories.GetUpperBound(0)

temp(j) = m_PriceCategories(j).ToString()
Next
Return temp

End Get
End Property

End Class

9.7 Focus on Problem Solving: Vacation Rentals Application 475

Figure 9-43 Code in the Startup form (Default.aspx)

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load() Handles Me.Load
' The page might be loading for the first time, or loading
' when the user returns from the Confirmation form.
If Not IsPostBack Then

' Initialize the RadioButtonList.
For Each str As String In RentalInfo.PriceCategoryVals

radPrices.Items.Add(str)
Next
Dim obj As Object = Session(''rental'')
Dim rental As RentalInfo
' The Session state will contain an object when the user
' returns from the Confirmation.aspx page. The following
' code assigns the RentalInfo values to the controls.
If obj IsNot Nothing Then

rental = CType(obj, RentalInfo)
With rental

ddlLocation.SelectedValue = .Location
radPrices.SelectedIndex = .PriceRange
txtNumberOfWeeks.Text = .NumberOfWeeks.ToString()
txtNumberOfPeople.Text = .NumberOfPeople.ToString()
calStartDate.SelectedDate = .StartDate

End With
End If

End If
End Sub

Protected Sub btnSubmit_Click() Handles btnSubmit.Click
' Create and initialize a RentalInfo object,
' using the user's input in this form.

Dim rental As New RentalInfo
With rental

.Location = ddlLocation.Text

.NumberOfWeeks = CInt(txtNumberOfWeeks.Text)

.NumberOfPeople = CInt(txtNumberOfPeople.Text)

.StartDate = calStartDate.SelectedDate

.PriceRange = radPrices.SelectedIndex
End With
' Save rental info in Session state.
Session(''rental'') = rental
' Go to the Confirmation form.
Response.Redirect(''Confirmation.aspx'')

End Sub
End Class

The btnSubmit_Click event handler collects all the user’s input and control settings, and
stores them in a new RentalInfo object. The object is then saved in Session state under a key
named rental.

Page_Load Event Handler

If the user returns to this page via the Confirmation form, the Page_Load event handler reas-
signs settings to the controls. The first step is to look for a RentalInfo object in the Session
state collection:

Dim obj As Object = Session(''rental'')
Dim rental As RentalInfo

476 Chapter 9 Programming Web Forms

If an object is found, it is cast into a RentalInfo object; the RentalInfo object retrieves the
object’s properties, and assigns them to controls on this form:

If obj IsNot Nothing Then
rental = CType(obj, RentalInfo)
With rental

ddlLocation.SelectedValue = .Location
radPrices.SelectedIndex = .PriceRange
txtNumberOfWeeks.Text = .NumberOfWeeks.ToString()
txtNumberOfPeople.Text = .NumberOfPeople.ToString()
calStartDate.SelectedDate = .StartDate

End With
End If

Without this step, the user would return to the startup form and find that all the settings had
been erased.

Confirmation Form
Figure 9-44 lists all the source code in the Confirmation form. It looks for the rental item in
Session state and, on finding it, gets a RentalInfo object. The object’s properties are assigned
to the controls on this form. The PriceCategoryStr property makes it easy to convert the
PriceRange enumerated value into a string.

Figure 9-44 Listing of the Confirmation form source code

Partial Class Confirmation
Inherits System.Web.UI.Page

Protected Sub Page_Load() Handles Me.Load
If Not IsPostBack Then

Dim obj As Object = Session(''rental'')
If obj Is Nothing Then

lblStatus.Text = ''Error: unable to receive Rental '' _
& ''Request information''

Else
Dim m_Rental As RentalInfo = CType(obj, RentalInfo)
With m_Rental

lblLocation.Text = .Location
lblNumberOfPeople.Text = .NumberOfPeople.ToString()
lblNumberOfWeeks.Text = .NumberOfWeeks.ToString()
lblStartDate.Text = .StartDate.ToString(''d'')
lblPriceRange.Text =

RentalInfo.PriceCategoryStr(.PriceRange)
End With

End If
End If

End Sub
End Class

Extending the Application

This application can be extended and improved in many ways. You could, for example, do
a database search for all rental properties that match the criteria entered in the startup form.
Then the Confirmation form could show a list of available properties. The user could select
a rental property and make a reservation. A third-party credit card billing service could
process the transaction, and our application could email a receipt to the customer.

9.8 Browser Cookies 477

Checkpoint

26. How did the Vacation Rentals application restore the settings of the
RadioButtonList when the user moved from the Confirmation form to the Vacation
Rental Request page?

27. In the Vacation Rentals application, how do the user’s selections in the Vacation
Rental Request form get transmitted to the Confirmation form?

28. In the Vacation Rentals application, what utility class is used to hold the user’s
selection of minimum and maximum weekly rental prices?

29. In the Vacation Rentals application, show how items are inserted in the
RadioButtonList control.

9.8 Browser Cookies
A browser cookie is a name-value pair stored on a user’s computer by a Web browser. Cook-
ies are appropriate for small amounts of data that can be expressed as strings. You cannot
store a Student object, for example, but you can store the student’s ID number. Browsers have
the option to disable cookies, so your applications should be careful about assuming that you
can use them. Cookies are not automatically encrypted, so do not store passwords, credit card
numbers, or other sensitive information in a cookie unless you encrypt it yourself.

Cookies can be temporary, or they can be stored for days, months, or years at a time. Each
cookie has an Expires property (set to a specific date) that controls its lifetime. If you leave
the Expires property blank, the cookie is deleted when the user session ends.

Programs create and assign cookies using the Response.Cookies property. The Request.Cookies
property, on the other hand, is used to retrieve cookie values.

You can see a list of cookies stored on your computer by looking in the directory named
<drive>:\Documents and Settings\<user>\Cookies, where <drive> is your system drive letter,
and <user> is your username. Each cookie is stored as a text file. For example, the follow-
ing shows a cookie named Name, which is stored in a file named kip@localhost[1].txt:

Name
Kip Irvine
localhost/
1024
3984441856
29633514
3275258352
29633313
*

A session cookie is a cookie that expires as soon as the user closes the browser. A persistent
cookie is stored in a file on the user’s computer. To make a persistent cookie, you must set a
cookie’s expiration date to some time in the future.

Examples
The following statement declares an HttpCookie variable:

Dim aCookie As HttpCookie

The following statement creates a cookie named FirstName and assigns it a value of Bill:

aCookie = new HttpCookie(''FirstName'', ''Bill'')

The following statement retrieves the FirstName cookie from the Request object:

aCookie = Request.Cookies(''FirstName'')

478 Chapter 9 Programming Web Forms

The following statement assigns a cookie’s value to a TextBox:

txtName.Text = aCookie.Value

The following adds a cookie to the Response object’s Cookies collection:

Response.Cookies.Add(aCookie)

If you retrieve and modify the Value property of a cookie, the change is not permanent until
you call the Cookies.Set method:

Response.Cookies.Set(aCookie)

The following assigns an expiration date of three days in the future:

aCookie.Expires = Now.AddDays(3)

To delete a cookie, set its Expires property to the current date and time. Then call the
Cookies.Set method.

aCookie.Expires = Now
Response.Cookies.Set(aCookie)

Cookie Example Program
The Cookie Example program uses a persistent cookie to remember the name of the person
who last logged in from the same user account on a particular computer. Figure 9-45 shows
the program after the user has entered his name (Joe Smith) and checked the Remember me
the next time I visit option. Clicking the OK button saves this information, hides the panel
containing all the controls, and displays a closing message, as shown in Figure 9-46.

Figure 9-45 Cookie Example application

Figure 9-46 After the user has clicked the OK button

After closing the browser window, the user can open a new browser and run the example
again. The program will look for the cookie and, if it is found, copy the person’s name from
the cookie to the TextBox.

9.8 Browser Cookies 479

Implementation

The TextBox control is named txtName. The CheckBox is named chkRemember. The But-
ton control is named btnOk. These controls are located inside a Panel control named
mainPanel. When we set the Panel control’s Visible property to False, all controls within the
Panel become invisible.

Figure 9-47 contains a complete listing of the program’s source code. In the Page_Load
event handler, the program looks for the Name cookie in the Cookies collection. If the
cookie is found, it tells us that the cookie is currently stored on the user’s computer. The
program copies the user name from the cookie to the TextBox. In effect, the user has been
remembered.

Figure 9-47 Listing of the Cookie Example application

Partial Class CookieExample
Inherits System.Web.UI.Page
Private m_NameCookie As HttpCookie

Private Sub Page_Load() Handles MyBase.Load

If Not IsPostBack Then
m_NameCookie = Request.Cookies(''Name'')
' If the cookie was found, assign the name
' in the cookie to the TextBox.
If m_NameCookie IsNot Nothing Then

txtName.Text = m_NameCookie.Value
End If

End If
End Sub

Private Sub btnOK_Click() Handles btnOk.Click
m_NameCookie = Request.Cookies(''Name'')
' Does the cookie exist?
If m_NameCookie Is Nothing Then

' Does the user want to be remembered?
If chkRemember.Checked Then

' Cookie not found. Create a 31-day cookie.
m_NameCookie = New HttpCookie(''Name'', txtName.Text)
m_NameCookie.Expires = Now.AddDays(31)
Response.Cookies.Add(m_NameCookie)

End If
Else

' The cookie was found.
If chkRemember.Checked = False Then

' Delete the cookie by making it expire immediately.
m_NameCookie.Expires = Now

Else
' Modify the existing cookie. Store the user name
' and set the expiration date 31 days from now.
m_NameCookie.Value = txtName.Text
m_NameCookie.Expires = Now.AddDays(31)

End If
' Save it back in the Cookies collection.
Response.Cookies.Set(m_NameCookie)

End If
mainPanel.Visible = False
Response.Write(''Thanks. Now close the browser window'')

End Sub
End Class

480 Chapter 9 Programming Web Forms

When the user clicks the OK button, the Click handler has a bit of work to do. First, it looks
for the cookie. If the cookie is not found and the user has checked the Remember me the
next time option, the code creates a cookie and assigns the name from the TextBox. The
cookie is added to the Cookies collection:

If chkRemember.Checked Then
m_NameCookie = New HttpCookie(''Name'', txtName.Text)
m_NameCookie.Expires = Now.AddDays(31)
Response.Cookies.Add(m_NameCookie)

End If

If the cookie already exists, the approach is a little different. If the user doesn’t want to be
remembered, the program sets the Expires property to the current date and time. If the user
wants to be remembered, the program modifies the existing cookie. The name from the
TextBox is assigned and the expiration date is moved forward. Finally, in both cases, the
cookie is put back into the Cookies collection.

Response.Cookies.Set(m_NameCookie)

Checkpoint

30. How do you set the lifetime of a browser cookie?

31. Show an example of getting the String value of a cookie named myCookie.

32. Show an example of deleting a cookie named myCookie.

33. Write a code statement that creates a cookie named username, and assigns it the
Text property of the TextBox control named txtUsername.

Summary

9.1 Working in Source (XHTML) Mode

• The Visual Studio designer intentionally hides XHTML details when you work in its
Web form Designer window. Occasionally you must work in the Source view to fine-
tune the appearance of your Web forms.

• The Page directive identifies the coding language (VB). The AutoEventWireup property
determines whether page events (such as Load and Init) must use standard names.

• The DOCTYPE tag identifies the document type to the browser, along with the stan-
dard it follows.

• The area between the <head> and </head> tags defines the heading portion of the doc-
ument.

• The <body> tag defines the displayable area of the Web form.
• The <form> tag identifies the beginning of a Web form.
• The Vacation Rental application was created in source view, using ASP.NET controls

and HTML tables.

9.2 Cascading Style Sheets

• Cascading style sheets (CSS) are definitions that Web developers use to customize the
appearance of fonts, tables, and other controls on Web forms.

• We suggest defining CSS styles in a cascading style sheet file.
• To create a cascading style sheet file (CSS file), select Add New Item from the Website

menu. Then select Style Sheet from the list of template icons.

Summary 481

• Use em units to specify font sizes, so users can adjust the font sizes in their Web
browsers.

• The <link href> tag identifies the name of the linked CSS file.
• You can alter the look and feel of any standard HTML style tag in a CSS file.
• You can define style classes in a CSS file. Each class name begins with a period.
• You can apply styles to nearly any HTML element, using the class attribute.
• To apply a CSS style to an ASP.NET control, assign the style name to its CssClass

property.
• The CSS Menu Demo application displays a sliding bar menu, using an HTML table

and several HyperLink controls.

9.3 Custom Error Handling

• Custom error handling refers to the ability that ASP.NET programs have to configure
the display of runtime error messages for both end users and program developers.

• The Custom Errors setting governs the way in which error messages are displayed on
Web pages.

• Most Web sites use custom error pages to handle HTTP errors generated by the Web
server.

• Programs often create custom error pages to handle common HTTP errors. The cus-
tom page references can be located in the web.config file.

9.4 Uploading Files and Sending Email

• The HTMLInputFile control lets users upload files to a Web site. Any type of file can
be transferred, but you can limit which types of files are saved.

• The PostedFile property, an HttpPostedFile object, represents the uploaded file.
• Simple Mail Transfer Protocol (SMTP) is a service that responds to a standard set of

commands for sending email.
• The simplest way to send an email message is to use the SmtpMail class. The Send

method sends a message with few options.
• The MailMessage class has a rich set of properties that let you configure messages and

include attachments.

9.5 Data Validation Controls

• The RequiredFieldValidator control alerts the user when an input field still contains its
default (initial) value.

• The RangeValidator control checks minimum and maximum values against user input.
• The CompareValidator control compares one control’s contents to that of another.
• The RegularExpressionValidator control performs string pattern matching against the

contents of another control. Regular expressions are specification strings that conform
to regular expression syntax. They are powerful tools for pattern matching.

• The CustomValidator control performs unique types of validation that are not avail-
able with existing validator controls.

• The ValidationSummary control displays error messages generated by other validation
controls on the same Web form.

9.6 Working with Multiple Web Forms

• Most Web applications have multiple pages. You might collect information on one
page and display a summary on another page. Or, you might display supplementary
information on a second page.

• To permit your application to navigate from one Web page to another, you can use a
HyperLink control, call Response.Redirect, call Server.Transfer, or convert a block of
static text to an HTML hyperlink.

482 Chapter 9 Programming Web Forms

9.7 Focus on Problem Solving: Vacation Rentals Application

• The Vacation Rentals application asks the user to fill in the Rental Request form. The
user selects a starting date, location, and price category, and enters the number of peo-
ple and number of weeks.

• A support class named RentalInfo encapsulates the user’s selections. The RentalInfo
class has methods that return price category lists.

• The application uses Session state to save a RentalInfo object and pass it between
pages.

9.8 Browser Cookies

• Cookies are name-value pairs stored on a user’s computer by a Web browser. Such
cookies are appropriate for small amounts of data, which can be expressed as strings.

• Cookies can be stored temporarily or for days, months, or years at a time. Each cookie
has an Expires property (set to a date) that controls its lifetime.

• A session cookie is one that expires as soon as the user closes the browser. A persist-
ent cookie is stored in a file on the user’s computer.

• The Cookie Example program uses a persistent cookie to remember the name of the
person who last logged in from the same user account on a particular computer.

Key Terms
browser cookie
cascading style sheets (CSS)
CompareValidator
custom error handling
CustomValidator
eXtensible Markup Language (XML)
eXtensible HyperText Markup Language

(XHTML)
HTTP errors
hyperlink
HyperLink control

HyperText Markup Language (HTML)
MailAddress class
MailMessage class
MIME types
persistent cookie
RangeValidator
regular expressions
RegularExpressionValidator
RequiredFieldValidator
session cookie
ValidationSummary

Review Questions and Exercises

True or False

Indicate whether each of the following statements is true or false.

1. Browser cookies can hold strings of limited length but not complex objects.

2. Browser cookies automatically remain on the client’s computer for 24 hours.

3. A RequiredFieldValidator control displays a message only when the field it validates has
the same value as the field’s initial value.

Short Answer

1. What is the purpose of the DOCTYPE tag in HTML code?

2. What elements have been shown to appear between the <head> and </head> tags in this
chapter?

3. Show the HTML encoding of a ListItem containing the word Brussels in a ListBox control.

Review Questions and Exercises 483

4. Which ASP.NET controls contain the runat="server" attribute?

5. Which CSS style property governs the horizontal spacing between letters?

6. Which property in an ASP.NET control assigns a CSS style name to the control?

7. Which property in an HTML control assigns a CSS style name to the control?

8. In the CSS Menu Demo program, which CSS style name causes the menu items to
change color when the mouse hovered over them?

9. In the CSS Menu Demo program, which type of control was used for each menu item?

10. How does the ValidationSummary control obtain the error message it needs from a
RequiredFieldValidator control?

11. Which property of all the data validation controls identifies the control to be validated?

12. How is the ErrorMessage property different from the Text property in a CompareValidator
control?

13. Which data validation control is best for checking the format of an email message?

14. If you wanted to compare a date entered by the user to today’s date, which data valida-
tion control would be best?

15. How do you attach a file to an email message?

16. What kind of object needs to be added to the To property of a MailMessage object when
the message has multiple recipients?

17. Show an example of a CSS style definition for a Tahoma font that is 1.5 times the size
of the browser’s default font and in bold.

18. Which HTML tag links a CSS file to a Web page, and where is this tag located?

19. Which setting in the web.config file lets you determine the way in which error messages
are displayed on Web pages?

20. In a FileUpload control, which property provides information about the uploaded file?

What Do You Think?

1. Why does sending an HTML email message trigger a Request Validation error?

2. In what way(s) does the FileUpload control reveal information about the client’s computer?

3. Does the Calendar control execute a postback every time the user selects a date?

Algorithm Workbench

1. Show the HTML encoding for a table containing a single row and three columns. Insert
the letter A in the first column, the letter B in the second, and the letter C in the third.

2. Show the HTML encoding of a table cell that spans two columns.

3. Create a CSS style class named BigHead that uses a 2-em font size, font family =
Tahoma, color = Red, a bold typeface, and line spacing equal to 2.3 ems.

4. Create a CSS style named SubHead that has an Arial font, a 1.2-em size, a solid line
below the text, and width = .1 em.

5. Write a definition in the Web.config file that routes all HTTP error 403 instances to a
Web page named error403.htm.

6. Write a statement that saves an uploaded file as c:\temp\x.doc, for the HTMLInputFile
control named uplFile.

484 Chapter 9 Programming Web Forms

7. Write a single statement that sends an email message from me@fiu.edu to you@fiu.edu
with the subject Grades and the body Your grades are ready for viewing.

8. Given a MailMessage object named myMsg, add a file attachment named
c:\classes\grades.htm.

9. Write a code statement that transfers control to a Web page named PageTwo.aspx with-
out changing the URL displayed in the address window of the user’s browser.

Programming Challenges
1. Computer Club Meeting

Write a Web application for a computer club that lets the user schedule a meeting by
doing the following actions: Select a meeting date from a Calendar control, enter the
meeting title as the message subject, and enter a list of email addresses for the message
recipients. The title and recipient fields are required, so provide RequiredFieldValidator
controls. Also, verify that the Recipient field contains a valid email address.

Figure 9-48 shows a sample design for this application. The user has entered a title,
selected a date, and entered one recipient’s email address. The error message is displayed
because the second email address (aaa) is not valid. The user must correct it and click
the Add Recipient button again.

Figure 9-48 Computer Club Meeting Scheduler

2. Validating a DropDownList

When discussing the RequiredFieldValidator, we showed how you can remind users that
they must select from a DropDownList control. In this programming challenge, show
how you could do the same type of validation using the CompareValidator control. See
Figure 9-49 for an example.

Programming Challenges 485

Figure 9-49 CompareValidator with DropDownList

3. Checking a Date with CompareValidator

The CompareValidator control can check an input field to make sure it contains a cer-
tain data type. You do this by setting its Type property. You also set the Operator prop-
erty to DataTypeCheck. Write a short application that asks the user to input a birth date
into a TextBox. Use the CompareValidator control to make sure the user enters a valid
date. See Figure 9-50 for an example.

Figure 9-50 Checking a Date

4. Validating a Date Range

In a project scheduling application, the user can schedule a project by entering a begin-
ning date and an ending date. Your task is to use the RangeValidator control to make
sure the two dates are no more than 100 days apart. Hint: You can modify the
MaximumValue property at runtime and explicitly call the RangeValidator’s Validate
method. Write a short demonstration program. See Figure 9-51 for an example.

Figure 9-51 Validating a Date Range

5. Vacation Rentals with Validation

Use the Vacation Rentals application presented in Section 9.7 as a starting point for this
programming challenge. Add the following validation rules to the Rental Request page,
using the ASP.NET validation controls:

• All inputs are required.

486 Chapter 9 Programming Web Forms

• The number of people must be between one and eight.
• The number of weeks must be between one and twelve.
• The starting date must be at least three days from today but not greater than 120 days

from today.

The default first item in the Location DropDownList should be (select). Add an email
input field to the Vacation Rental Request Web page. Use RequiredFieldValidator
and RegularExpressionValidator controls to make sure the email is not blank and
that it is a valid email address. Add a ValidationSummary control to the page. Use
Figure 9-52 as a sample of the user interface, shown after the user has entered all
inputs. You will need to add an email field to the RentalInfo class so the user’s email
can be preserved in Session state when returning from the Confirmation form to the
Rental Request page.

Figure 9-52 Sample Vacation Rental Request form with email field

6. Comparing Calendar Controls

The CompareValidator example we showed in this chapter let’s the user input a
rental date and a return date. The validator verified that the return date was greater
than or equal to the rental date. In this programming challenge, you will use Calen-
dar controls for the input, as shown in Figure 9-53. There’s one slight problem: The
CompareValidator control does not recognize the Calendar control. You will have to
find a way around this restriction. Two CompareValidator members may prove
useful:

• The Validate method causes the CompareValidator to perform validation immediately.
• The IsValid property returns True if the CompareValidator has validated the two

inputs and found them to be correct.

Programming Challenges 487

Figure 9-53 Comparing Calendar Controls program

CompareValidator can compare TextBoxes, and you can copy a Calendar control’s
SelecteDate property into a TextBox. If the TextBox controls were not visible, the user
might think that the Calendar controls were being compared.

7. MailDemo with Validation

Improve the MailDemo program from this chapter by adding validation controls.
Specifically, make sure that the From, To, and Subject fields are not blank. Also, verify
that all email fields are formatted correctly.

8. Best Brew Coffee Shop, Version 1

Write a program that displays several types of coffee and tea drinks in a list box (see
Figure 9-54). When the user selects an item and clicks the OK button, the price is dis-
played in a Label control. You can put the prices into the Value property associated with
the item when you build the Items collection from the Properties window. Display the
price using a currency format.

Figure 9-54 Best Brew Coffee Shop, version 1

488 Chapter 9 Programming Web Forms

9. Best Brew Coffee Shop, Version 2

Start with the Best Brew Coffee Shop Program from Programming Challenge 8. Add a
CheckBoxList control so the user can select extra items, such as chocolate and whipped
cream (see Figure 9-55). Each item should have an add-on price, such as .25 cents for
whipped cream. When the user clicks the OK button, display the basic price of the drink
plus the price of the combined extras.

Figure 9-55 Best Brew Coffee Shop, version 2

10. Best Brew Coffee Shop, Version 3

Continue the Best Brew Coffee Shop program from Programming Challenge 9. When
the user makes selections to order a drink, do not display the price on the same Web
page. Instead, when the user clicks the OK button, display a separate Web page that con-
tains a receipt. Figure 9-56 shows the user ordering a drink; Figure 9-57 shows the cor-
responding receipt. We have elongated the window so you can see that the order
information was passed as a set of Request parameters appended to the URL. Assume
that the sales tax rate is 7 percent.

Figure 9-56 Best Brew Coffee Shop, version 3

Programming Challenges 489

Figure 9-57 Displaying the receipt

This page intentionally left blank

TOPICS

Web Applications
with Databases10

10.1 Master-Detail Pages

Tutorial 10-1: Creating an application
with a master page

10.2 Using the GridView Control

Tutorial 10-2: Displaying the Karate
Members table in a GridView control

Tutorial 10-3: Formatting the Karate
Members columns

10.3 Using the DetailsView Control

Tutorial 10-4: Karate member details

Tutorial 10-5: Selecting members
by ID

10.4 Data Binding and ListControls

10.5 Interacting with the GridView Control

Tutorial 10-6: Displaying the Courses
table in a GridView

Tutorial 10-7: Using graphical
command buttons in the Courses grid

Tutorial 10-8: Displaying class rolls

Tutorial 10-9: Displaying the class roll
on a separate page

10.6 Using JavaScript

Tutorial 10-10: Receiving user input in
JavaScript

10.7 Using Microsoft Ajax Controls

Tutorial 10-11: Displaying the Web
server time with Ajax controls

Tutorial 10-12: Using the
UpdateProgress control

491

C
H

A
P

T
E

R

This chapter introduces master-detail pages, which let you create a consistent look across a Web
site. Next, we show how to use data binding to fill the GridView and DetailsView controls with
database data. Then we introduce the popular JavaScript language for writing code that exe-
cutes in the browser, and then we show how to use some common Microsoft Ajax controls.

10.1 Master-Detail Pages
In many Web applications, each page has common elements, such as a company logo, a
menu, and navigation links. Duplicating these elements on each page requires a lot of work. If
a change were made to the heading information at some time in the future, a lot of work
might be required to make the same change to each page. Recognizing the need for common
page elements, Microsoft uses a design technique called master-detail pages. An application
contains one or more master pages that contain empty areas into which other pages may be
inserted. Then, for each master page, you create one or more content pages that display
inside the master page.

492 Chapter 10 Web Applications with Databases

A master page contains empty areas called content placeholders. At runtime, the master page
remains visible all the time, while different content pages are inserted into the content place-
holders. Figure 10-1 shows a master page in Design view, with the empty content placeholder
(the placeholder rectangle shows in lavender on the screen, and gray on the printed page).

Figure 10-1 Master page with a ContentPlaceHolder control

Content page

user

Content
PlaceHolders

contains

each is
filled by a

has a reference
to its

navigates
to

Master
Page

Figure 10-2 Relationships among master page, content pages, and user

This is what the <head> and <body> sections of the sample master page contain:

<head runat="server">
<title></title>
<asp:ContentPlaceHolder id="head" runat="server">
</asp:ContentPlaceHolder>

</head>
<body>

<form id="form1" runat="server">
<div>

<h2>This Text is on the Master Page</h2>
<asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
</asp:ContentPlaceHolder>

</div>
</form>

</body>

You never explicitly put any text or controls directly inside a ContentPlaceHolder control.
Instead, you create content pages (Web pages) that insert themselves inside the master page
at runtime. Figure 10-2 shows the relationship between a master page and its content pages.
A master page contains content placeholders. Each placeholder can be filled by a content
page. Each content page has a reference to its master page. The user uses a Web browser to
navigate to a content page. Users cannot directly open master pages in Web browsers.

With a master-detail page design, a single master page is referenced by one or more content
pages, but only one at a time. The master page, on the other hand, does not contain refer-
ences to any content pages. When the user loads a content page, the Web server finds the

10.1 Master-Detail Pages 493

Figure 10-3 Adding a Master Page

related master page and combines the two into a single HTML page. This final page is sent
to the user’s Web browser.

To add a content page to an application, select the master page filename inside the Solution
Explorer window. Then select Add Content Page from the Website menu. Content page file-
names have the usual .aspx extension.

Cascading style sheet (CSS) files can be linked to master pages, but not content pages. CSS
styles can be used by content pages as long as their master pages have links to the styles.

Creating a Master Page
To create a master page in Visual Studio, select Add New Item from the Website menu. In the
dialog window (see Figure 10-3), select Master Page and click the Add button. A master page
has a special filename extension of .master.

It is usually best to use an HTML table to control the position of the ContentPlaceHolders
on a master page. A ContentPlaceHolder’s width defaults to the width of its enclosing form.
If it is located inside a table cell, however, the cell determines the ContentPlaceHolder’s
boundaries. The master page can contain any amount of text, controls, and components in
addition to the ContentPlaceHolder.

Content Pages
It is always easiest to add a content page to an application if you have already created a mas-
ter page. To add a content page, either select or open the master page file. Then select Add
Content Page from the Website menu.

A content page does not contain any <body>, <form>, or <html> tags. This is a sample
content page:

<%@ Page Title="" Language="VB"
MasterPageFile="~/MasterPage.master"
AutoEventWireup="false"
CodeFile="Default.aspx.vb"
Inherits="_Default" %>

494 Chapter 10 Web Applications with Databases

<asp:Content ID="Content1"
ContentPlaceHolderID="head"
Runat="Server">

</asp:Content>

<asp:Content ID="Content2"
ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">

</asp:Content>

Every content page has a MasterPageFile property in its Page directive that identifies the
name and path of the master page file. In the example above, the master page filename is
MasterPage.master.

By default, a content page has two Content controls. The first one matches up with the Con-
tentPlaceHolder control that appears in the <head> area of a master page. The second Content
control matches the ContentPlaceHolder in the <body> area of a master page. This is the con-
trol that normally contains other controls, text, and so on, that will be displayed on the content
page. For example, the following Content control contains a level-three heading and a ListBox:

<asp:Content ID="Content2"
ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<h3>Events for This Month</h3>
<asp:ListBox ID="lstEvents"

runat="server">
</asp:ListBox>

</asp:Content>

Notice how the ContentPlaceHolderID property identifies the ContentPlaceHolder control
on the Master page that will hold the content declared here.

Setting the Master Page at Runtime
An application may contain multiple master pages, and you might want to use runtime code
to switch master pages. For example, the choice of Master page might depend on whether
the current user is logged in. You can alter the Page.MasterPageFile property at runtime
inside a content page’s PreInit event handler for the content page. In the following code, a
different master file is selected just before the content page is displayed.

Protected Sub Page_PreInit() Handles Me.PreInit
If UserIsLoggedIn Then

Page.MasterPageFile = "~/MembersMaster.master"
End If

End Sub

In Tutorial 10-1, you will create a master-detail application.

Tutorial 10-1:
Creating an application with a master page

In this tutorial, you will create a small application that has a master page and two con-
tent pages. The master page contains buttons that navigate to each of the content pages.
The first content page, shown in Figure 10-4, has a single table cell containing text, a
dropdown list of fruit types, a Button, and a Label (that cannot be seen in the figure).
The second content page, shown in Figure 10-5, displays a simple heading. Users can
click buttons on the master page to switch between the content pages.

10.1 Master-Detail Pages 495

Figure 10-4 Content Page 1

Figure 10-5 Content Page 2

Tutorial Steps

Step 1: Create a new ASP.NET Empty Web Site named Master-Detail Pages.

Step 2: Add a master page named MasterPage.master to the application.

Step 3: In the master page’s Source view, notice that a ContentPlaceHolder is placed
in the <head> area (we will not be using it).

<head runat="server">
<title></title>
<asp:ContentPlaceHolder id="head" runat="server">
</asp:ContentPlaceHolder>

</head>

Step 4: The <body> area of the page also contains a ContentPlaceHolder control.
Remove the <div> and </div> tags. Modify the style of the body to be the
following:

<body style="font-family:Arial; font-size:.85em">

496 Chapter 10 Web Applications with Databases

Step 5: Add a table containing three rows to the <form> area and insert the heading as
shown below in the first row. You may do this step in Design view if you wish:

<table style="width:90%">
<tr>

<td>
<h3>This Text is on the Master Page</h3>

</td>
</tr>
<tr>

<td></td>
</tr>
<tr>

<td></td>
</tr>

</table>

Step 6: Move the ContentPlaceHolder control to the second table row and add two
Button controls to the third row.

<table style="width:90%">
<tr>

<td>
<h3>This Text is on the Master Page</h3>

</td>
</tr>
<tr>

<td>
<asp:ContentPlaceHolder

id="ContentPlaceHolder1"
runat="server">

</asp:ContentPlaceHolder>
</td>

</tr>
<tr>

<td>
<asp:Button ID="btnPage1" runat="server"

Text="Open Content Page 1" />

<asp:Button ID="btnPage2" runat="server"

Text="Open Content Page 2" />
</td>

</tr>
</table>

Notice that you inserted two nonbreaking spaces between the two buttons. In
Design view, your page should look like Figure 10-6.

Step 7: Open the master page’s codebehind file and add the following Click handlers.
Each one displays a different content page.

Protected Sub btnPage1_Click() Handles btnPage1.Click
Response.Redirect("Page1.aspx")

End Sub
Protected Sub btnPage2_Click() Handles btnPage2.Click

Response.Redirect("Page2.aspx")
End Sub

Step 8: With the Master page still open, add a content page to the application and
name it Page1.aspx. To add a content page, select (or open) the master page,

10.1 Master-Detail Pages 497

Figure 10-6 Master Page in Design view

usually named MasterPage.master. Then select Add Content Page from the
Website menu.

Step 9: In Page1.aspx, directly edit the Title property in the Page directive to be the
following:

Title="Page One"

Step 10: Insert the following CSS style definition inside the head area of the master page:

<style type="text/css">
.page1
{

width:100%;
background-color:Cyan;
border:1px solid black;

}
</style>

Step 11: Insert an HTML table inside the Content2 content control. Set the class prop-
erty in the table to the CSS style named page1. The Content control with the
table inside should be coded like this:

<asp:Content ID="Content2"
ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">

<table class="page1">
<tr>

<td>

</td>
</tr>

</table>
</asp:Content>

Step 12: Insert some text, a DropDownList, a Button, and a Label inside the table cell
(shown here as boxed text).

<table class="page1">
<tr>

<td>

NOTE: From this point forward, you are editing the content page named
Page1.aspx

498 Chapter 10 Web Applications with Databases

<h2>Page 1 = My favorite fruit</h2>
<p />
<asp:DropDownList ID="ddlFruitList"

runat="server">
</asp:DropDownList>

<p />
<asp:Button ID="btnSelect"

runat="server"
Text="Select" />

<asp:Label ID="lblAnswer"

runat="server">
</asp:Label>

</td>
</tr>

</table>

Step 13: In the editor’s Design view, insert several fruit names into the Items property
of the DropDownList.

Step 14: In the page’s codebehind file, create a Click handler for the Select button. It gets
the item the user selected in the fruit list, and copies the item to the Label control.

Protected Sub btnSelect_Click() Handles btnSelect.Click
lblAnswer.Text = "You chose " &

ddlFruitList.SelectedItem.ToString
End Sub

Step 15: View Page1.aspx in the browser and verify that the master page, containing the first
content page, is displayed. Select a fruit from the list and click the Select button.

Step 16: Add a second content page named Page2.aspx to the application, and insert
the following text inside its Content control named Content2:

<asp:Content ID="Content2"
ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">

<h2>Page 2 – Second Content Page</h2>
</asp:Content>

Step 17: Modify the Web form’s Title property inside the Page directive:

Title="Page Two"

Step 18: Save the Web form, and view Page1.aspx in the browser. Click both buttons,
to alternate between Page1 and Page 2.

Notice that if you select a fruit on page 1 (and click Select), go to Page 2, and
return to Page 1, the fruit selection has disappeared. This is normal because
we have not saved the fruit selection in Session state.

NOTE: From this point forward, you are editing the content page named
Page2.aspx.

More Advanced Use of Master and Content Pages

Web.config File

In the <configuration> section of a project’s web.config file, you have the option of specify-
ing the default master page for every content page in the application.

10.1 Master-Detail Pages 499

<configuration>
<system.web>

<pages masterPageFile="~/MasterPage.master" />
</system.web>

</configuration>

Even if you do this, you can still override the default by identifying a specific master page
filename inside the Page directive of a content page.

Handling Events

Buttons and other controls on a master page pass their events to the currently displayed con-
tent page. There can be a button on a master page with a Click handler that navigates to
another page. The following Click event handler, located in the codebehind file of a content
page, transfers control to Page2.aspx:

Protected Sub btnPage2_Click() Handles btnPage2.Click
Response.Redirect("Page2.aspx")

End Sub

References to Content Controls

To access controls such as buttons and text boxes on the currently displayed content page,
you can write code in the master page that calls the ContentPlaceHolder’s FindControl
method. The following example hides a Button control named btnCancel that is located in
the Web page currently displayed by ContentPlaceHolder1:

Dim btn As Button = ContentPlaceHolder1.FindControl("btnCancel")
If btn IsNot Nothing Then

btn.Visible = False
End If

Changing the Class Name of a Master Page’s Class

If you rename the class in a Master Page’s codebehind file, you must also assign the new class
name to the Inherits property of the Master page’s Master directive. For example, suppose
you had just renamed a Master page class to the following in its codebehind file:

Partial Class MasterPage
Inherits System.Web.UI.MasterPage

Then the Master directive in the MasterPage.master file should be as follows:

<%@ Master Language="VB" CodeFile="MasterPage.master.vb"
Inherits="MasterPage" %>

Referencing the Master Page

To reference the master page from a content page, use the Me.Master property. It returns a
general Web.UI.MasterPage object, but you can cast it to your specific master page class
type. For example, suppose a master page’s class is named MyMasterPage. The following
statement, located in a content page, gets a reference to the master page:

Dim tmaster As MyMasterPage = CType(Me.Master, MyMasterPage)

Once your code contains a reference to the master page, it can access individual controls on
the page. To do that, call the FindControl method, passing the control’s ID. In the following
example, we get a reference to a Label control named lblStatus on the master page:

Dim ctrl As Label = CType(tmaster.FindControl("lblStatus"), Label)

Then we modify the control’s Text property:

ctrl.Text = "The Content page says Hello!"

500 Chapter 10 Web Applications with Databases

Any controls on the master page modified in this manner revert to their default values when
another content page is loaded into the content pane. If FindControl fails to find the control
ID, it returns a value of Nothing. One final point: The content page’s Load event fires before
the same event in the master page.

Checkpoint

1. Which control on the master page holds data from a content page?

2. Which control on a content page holds data that will be displayed on the master
page?

3. How does a content page identify its related master page?

4. How can all pages in an application use the same master file without having to
specify the master file name on every page?

10.2 Using the GridView Control
In ASP.NET applications, the GridView control is the counterpart to the DataGridView con-
trol in Windows Forms applications. The two grids have many of the same capabilities, but
their underlying structure is very different. The GridView control is specified in XHTML on
a Web form. Then the grid is turned into a standard HTML table when the server sends the
containing Web page back to the user’s browser.

Web forms applications use a different model for accessing databases than do Windows
forms. Rather than using a DataSet, Web forms use a type of control named DataSource con-
trol. Actually, you can select between different controls, depending on the type of database
being used. One control is named AccessDataSource control, for Microsoft Access data-
bases. The other is named SqlDataSource control, for SQL Server databases. DataSource
controls directly update the underlying database because no dataset is kept in memory.

There is a third type of DataSource control named ObjectDataSource that binds to a class.
It automatically calls Select, Insert, Update, and Delete methods from a middle-tier class. In
every other way, it functions just like an SqlDataSource control.

GridView Control
The GridView control offers the ideal way to display a database table by binding to a data
source. It lets you sort on any column, select the column order, and format the data within
columns. You can also edit, insert, and update database rows in the grid.

The GridView control is located in the Data section of the Visual Studio Toolbox window.
An example is shown in Design view in Figure 10-7. When you click the smart tag, the
GridView Tasks menu pops up, as in Figure 10-8. You can use it to set various grid proper-
ties and connect a data source.

The XHTML code for a GridView is simple when displayed in Source view:

<asp:GridView
ID="GridView1"
runat="server">

</asp:GridView>

There are a large number of GridView properties that can be used to control alignment, col-
ors, fonts, borders, and so on. It is easiest to select one of the predefined AutoFormat styles
from the GridView Tasks window. In Figure 10-9, for example, we have selected the Oceania

10.2 Using the GridView Control 501

autoformat, where the column headings are dark blue (appearing in gray on the printed
page). After selecting this format, the XHTML code for the control is more complicated:

<asp:GridView ID="GridView1" runat="server" BackColor="White"
BorderColor="#3366CC" BorderStyle="None" BorderWidth="1px"
CellPadding="4" Height="156px" Width="325px">
<FooterStyle BackColor="#99CCCC" ForeColor="#003399" />
<HeaderStyle BackColor="#003399" Font-Bold="True"

ForeColor="#CCCCFF" />
<PagerStyle BackColor="#99CCCC" ForeColor="#003399"

HorizontalAlign="Left" />
<RowStyle BackColor="White" ForeColor="#003399" />
<SelectedRowStyle BackColor="#009999" Font-Bold="True"

ForeColor="#CCFF99" />
<SortedAscendingCellStyle BackColor="#EDF6F6" />
<SortedAscendingHeaderStyle BackColor="#0D4AC4" />
<SortedDescendingCellStyle BackColor="#D6DFDF" />
<SortedDescendingHeaderStyle BackColor="#002876" />

</asp:GridView>

Figure 10-7 GridView control in design mode

Figure 10-8 GridView tasks popup menu

Figure 10-9 GridView, using the Oceania autoformat

502 Chapter 10 Web Applications with Databases

You can see from this code that formatting is accomplished by various tags such as <Footer-
Style> and <HeaderStyle>. Many developers prefer to create a separate CSS class for each of
these tags to make the source code easier to read and modify.

SqlDataSource Control
When you create a connection to an SQL Server database on a Web form, you need to use
an SqlDataSource control. It appears in Design view as a gray rectangle, with the control’s
name inside, as in Figure 10-10. The following is the XHTML encoding of an SqlDataSource
control that connects to the Karate database:

<asp:SqlDataSource ID="MembersDataSource"
runat="server"
ConnectionString="<%$ ConnectionStrings:karateConnectionString %>"
SelectCommand="SELECT ID, Last_Name, First_Name, Phone,

Date_Joined FROM Members ORDER BY Last_Name">
</asp:SqlDataSource>

The ConnectionString property identifies the name of a specific database connection string
from the ConnectionStrings area of the application’s configuration file. The SelectCommand
property contains an SQL query that retrieves rows from the database.

Meanwhile, the actual connection string is in the Web site’s web.config file. Notice the name
property:

<connectionStrings>
<add name="karateConnectionString"

connectionString="Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|\karate.mdf;
Integrated Security=True;
Connect Timeout=30;
User Instance=True"
providerName="System.Data.SqlClient" />

</connectionStrings>

The AttachDbFilename parameter is important because it identifies the database file loca-
tion. It could contain a complete disk directory path, which would have to be corrected if
we moved the Web site to a new computer or directory. Instead, our example uses the
DataDirectory keyword (with vertical bars on either side) as the root of the database path.
This keyword asserts that the database is located inside the Web site’s App_Data folder.

In Tutorial 10-2, you will display a GridView control, using an SqlDataSource control to
provide the database connection.

Figure 10-10 SqlDataSource control in Design view

10.2 Using the GridView Control 503

Tutorial 10-2:
Displaying the Karate Members table in a GridView control

In this tutorial, you will create an application that connects to the Karate database and
displays the Members table in a GridView control. A sample of the running application
is shown in Figure 10-11.

Figure 10-11 Running the Karate Member Grid application

Tutorial Steps

Step 1: Create a new empty Web site named Karate Member Grid.

Step 2: Add a folder to the project named App_Data.

Step 3: In Windows Explorer, copy the karate.mdf database file from the chapter
examples folder into your project’s App_Data folder.

Step 4: In Visual Studio, right-click the App_Data folder and select Refresh Folder
from the popup menu. (The database filename should appear.)

Step 5: Add a new Web form named Default.aspx to the project. It must be located
in the project’s root folder. Open this form in Source view.

Step 6: In the <head> area of the form, set the title to Karate Members.

TIP: If you refresh the App_Data folder after copying a database to this
folder, Visual Studio will be able to create a correct connection string when
you create a database connection. To verify later that you did it correctly,
open the web.config file and examine the database connection string. The
AttachDbFileName property must begin with |DataDirectory| rather than
an absolute database path.

504 Chapter 10 Web Applications with Databases

Step 7: Inside the <form> area, add a level-two heading.

<h2>Members Table, Karate Database</h2>

Step 8: Add the following GridView control:

<asp:GridView ID="gvMembers"
style="width:90%"
runat="server">

</asp:GridView>

Step 9: Switch to the form’s Design view, open the GridView Tasks window, and
select New Data Source under the Choose Data Source entry.

Step 10: In the Data Source Configuration Wizard, select SQL Database, change the
ID value to MembersDataSource, and click the OK button to continue.

Step 11: In the Choose Your Data Connection step of the wizard, select the karate.mdf
file from the dropdown list of existing connections. (The database filename
appears in this list because you copied the database file to the Web site’s
App_Data folder and refreshed the folder in Solution Explorer.) Click the
Next button to continue.

Step 12: In the Save the Connection String step, click the Next button to continue.

Step 13: In the Configure the Select Statement step, select the Members table, as shown
in Figure 10-12. Place a check in the check box next to each of the columns.

Figure 10-12 Configuring the SELECT statement

Step 14: Click the ORDER BY... button. In the dialog box shown in Figure 10-13, sort
by the Last_Name column. Click the OK button to close the dialog box.

10.2 Using the GridView Control 505

Figure 10-13 Adding an ORDER BY clause to the query

Step 15: Returning to the Configure the Select Statement dialog box, click the Next
button, which takes you to the Test Query dialog. Click the Test Query but-
ton. If the displayed columns match those shown in Figure 10-14, click the
Finish button to close the window.

Figure 10-14 Testing the query

506 Chapter 10 Web Applications with Databases

Step 16: Click the GridView’s smart tag again and check the Enable Sorting option.

Step 17: Select AutoFormat from the GridView Tasks window and select the Oceania
format.

Step 18: Save the project and view Default.aspx in the browser. You should see the display
shown earlier in Figure 10-11, although some data in the rows may be different.

Step 19: Sort on each column by clicking its column header. If you click the same col-
umn header twice in a row, the column sorts in descending order.

Tutorial 10-3:
Formatting the Karate Members columns

In this tutorial, you will format one of the columns in the Karate Member Grid appli-
cation. You will also modify a column heading and find out what happens when you
incorrectly set the DataField property of a column.

Tutorial Steps

Step 1: Open the Karate Member Grid Web site. (In the chapter examples folder, the
solution program for this tutorial is named Karate Member Grid 2.)

Step 2: In the Design view of Default.aspx, select the GridView control and open the
Properties window.

Step 3: Select the Columns property. This should cause the Fields window to appear, as
in Figure 10-15. In the Selected fields list, select Date_ Joined. In the properties
list for this column, enter {0:d} into the DataFormatString property. The notation
{0:d} is called a format specifier. In this case, it specifies the short date format.

Step 4: Expand the entries under the Date_Joined column’s ItemStyle property.
Change the HorizontalAlign subproperty to Center. Click the OK button to
close the dialog box.

Step 5: Save the form and view it in the browser. Observe that the dates are now for-
matted in mm/dd/yyyy format, and the column values are centered.

Step 6: Examine the form’s source code and locate the Date_Joined column. Notice
that it includes the DataFormatString parameter that you just created:

<asp:BoundField
DataField="Date_Joined"
HeaderText="Date_Joined"
SortExpression="Date_Joined"
DataFormatString="{0:d}">

Summary

You will find that, with a small amount of practice, you can put together a form like this
with a data-bound grid in a very short time—perhaps 2 minutes or less. The tools Microsoft
has provided are the product of years of refinement and many user suggestions! You prob-
ably noticed that the Date_Joined column did not appear in the best possible format in the
GridView control. In Tutorial 10-3, you will learn how to alter the alignment and format-
ting of any column in the grid, with a few simple commands.

10.2 Using the GridView Control 507

Figure 10-15 Modifying the GridView columns

Step 7: In the source code, change the HeaderText parameter to Join Date and
save the form. This will change only the name displayed in the column
heading.

Step 8: View the page in the browser and verify that your change appears. (If the
browser was already open, you can just refresh the page.)

What if you were to change the name of the DataField property? Let’s find
out.

Step 9: Change the DataField property for the Date_Joined column to DateJoined.
When you save the form and view the page in the browser, you should see the
error shown in Figure 10-16, although your application will be named as
Karate Member Grid.

Figure 10-16 Using the wrong column binding name

508 Chapter 10 Web Applications with Databases

Checkpoint

5. How do you edit the columns in a GridView?

6. In this chapter, what type of control was used as the data source for the GridView
control?

7. How do you select one of the predefined GridView formats?

8. Which property in an SqlDataSource control identifies the database connection?

10.3 Using the DetailsView Control
The DetailsView control lets the user add, view, edit, and delete database table rows. If you
connect it to a DataSource control, it displays one table row at a time. No programming is
required. Microsoft has been working hard to automate as many menial tasks as possible,
and database table editing is high on the list of tasks most programmers would prefer not to
code by hand.

The DetailsView control is found in the Data section of the Toolbox window. When you
place it on a Web form, use its DetailsView Tasks window to attach it to a data source.

Properties
The DataSourceID property of the DetailsView control contains a reference to a DataSource
control on the same form that provides the database connection.

Each member of the Fields collection is a BoundField object. For example, in the following
XHTML code for a DetailsView control, the BoundField displays the ID database column:

<Fields>
<asp:BoundField DataField="ID"

HeaderText="ID"
ReadOnly="True"
SortExpression="ID" />

You can select the AutoFormat link in the DetailsView Tasks window to select from a set of
predefined formats.

Errors like this are fairly common, and it is important for you to know how
the error was caused. If you examine the SQL query in the SqlDataSource con-
trol, it lists the column names:

SelectCommand="SELECT ID, Last_Name, First_Name, Phone,
Date_Joined FROM Members ORDER BY Last_Name"

And it is clear that DateJoined is not a column name.

Step 10: Change the DataField property for the DateJoined column to Date_Joined.
Save the form and view it in the browser. Verify that the grid displays correctly.

As you can see, there are a lot of details to learn about the GridView control. We
encourage you to experiment on your own with different properties, formats, and align-
ments in the grid you used for this tutorial. It’s the best way to learn, and you can
always undo your changes if you make a mistake.

10.3 Using the DetailsView Control 509

The DataKeyNames property is a collection of strings that identifies the columns from the
data source that make up the primary key.

The DefaultMode property selects the starting state of the control when it first becomes vis-
ible. The default setting is ReadOnly, but you can set it to Edit or Insert if you want the user
to begin editing or inserting items immediately.

In Tutorial 10-4, you will update the Members table from the Karate database, using a
DetailsView control.

Tutorial 10-4:
Karate member details

In this tutorial, you will create an application that lets the user view, edit, insert, and
delete individual rows in the Members table in the Karate database. You will connect a
DetailsView control to an SqlDataSource.

Figure 10-17 shows the application at runtime. The underlined words Edit, Delete, and
New are built-in LinkButton controls. In Figure 10-18, the user has clicked the New
button and entered data for a new member. When the user clicks the Insert button, the
row is saved in the database. If the user tries to add a row having an ID number equal
to an existing ID in the table, an error page displays. When the user clicks the Edit but-
ton, she can modify any of the member fields, as shown in Figure 10-19. When the user
clicks the Update button, changes to the record are saved in the database.

Figure 10-17 DetailsView control showing the Members table at runtime

Tutorial Steps

Step 1: Create a new empty Web site named Karate Member Details. Add a folder
named App_Data, and add a Web form named Default.aspx.

Step 2: In Windows Explorer, copy the karate.mdf file from the chapter examples
folder to your project’s App_Data folder.

Step 3: Change the page’s <title> value to Members Table Details.

510 Chapter 10 Web Applications with Databases

Figure 10-18 About to insert a new member

Figure 10-19 After clicking the Edit button

Step 4: On the first line of the <form> section, insert the following:

<h2>Members Table Details</h2>

Step 5: Add a DetailsView control to the page, and set its ID property to
dvAddMember. Widen it to about 300 pixels.

Step 6: In Design view, select the smart tag in the upper-right corner of the dvAdd-
Member control. Under Choose Data Source, select New data source. The
Data Source Configuration Wizard window will appear.

Step 7: Name the data source as MembersDataSource and connect it to the
karate.mdf database file. Select all columns of the Members table. Order the
rows by Last_Name in ascending order.

Step 8: Before moving to the next window, click the Advanced button. In the
Advanced SQL Generation Options window, select the Generate INSERT,

10.3 Using the DetailsView Control 511

UPDATE, and DELETE statements option, as shown in Figure 10-20. Click
the OK button, and then click the Next button.

Figure 10-20 Selecting advanced SQL generation options

Step 9: Click the Finish button to close the Configure Data Source window. Back in
the Design view of the form, open the Tasks menu for dvAddMember and
select the check boxes to enable inserting, editing, and deleting. The form
should now appear in Design view, as in Figure 10-21. Notice that the control
includes LinkButton controls named Edit, Delete, and New.

Figure 10-21 DetailsView control in design mode

Step 10: Save the form and view the page in the browser. It should look like Figure 10-22.

Step 11: Select the grid in Design view and open the Fields property. (Or, you can select
Edit Fields from the control’s Tasks menu.) In the Fields window, select the
Date_ Joined field (from the Selected Fields list) and set its DataFormatString
property to {0:d}. You may recall this is the same short date format specifier
you used in the GridView control.

Step 12: Save the form and view the page in the browser. The Date_Joined field format
should be correct.

512 Chapter 10 Web Applications with Databases

Figure 10-22 Initial view of the DetailsView in the browser

Step 13: In the Tasks window for the control, select AutoFormat, and select Classic.
Try other formats as well.

Next, you will test the control by inserting, editing, and deleting members. All
the changes you make will be permanent. The “rollback” capability you had
in Windows Forms applications is not available here. Of course, you can
always make a fresh copy of the database file in the chapter examples folder.

Step 14: View the form in a browser and click the New button. The fields will clear.
Enter the following data: 14, Baker, Eric, 654-3210, 3/1/2011. Then click the
Insert button. The display should now show the member you inserted.

Step 15: Try to insert a second new record, using the same ID number. You should see
an error message saying that the changes you requested for the table were not
successful. Click the browser’s Back button, change the ID to 15, and click the
Insert button.

Step 16: Click the Delete button. The record you inserted should disappear, and the
first person in the table (probably Anne Chong) should display.

Step 17: Click the Edit button, change any one of the fields except for the ID, and click
the Update button. The changes should be saved.

TIP: To verify changes to a database table, select the database inside the
Server Explorer window, open the Tables group, right-click the table name,
and select Show Table Data.

Summary

We think you’ll agree that the DetailsView control is a great convenience. You could create
all the necessary code yourself, but this control frees you up to do more meaningful things
(like going to the beach). If you want to customize the control, you can select Edit Templates
from the control’s Tasks menu. We do not have space to talk about custom templates, but
there’s lots of help at the Microsoft MSDN Web site.

10.3 Using the DetailsView Control 513

Tutorial 10-5:
Selecting members by ID

In this tutorial, you will add a parameterized query to the SelectCommand property of
the SqlDataSource of the Karate Member Details application. The user will be able to
edit any row of the table. When the application starts (see Figure 10-23), users are
prompted to enter a member ID number. When they do so and click the Go button, the
appropriate member displays, as shown in Figure 10-24. User can enter any ID number
and move to a different row.

Figure 10-23 On startup, the user enters an ID number

Figure 10-24 Displaying the member with ID = 2

514 Chapter 10 Web Applications with Databases

Tutorial Steps

Step 1: If it is not already open, open the Karate Member Details Web site.

Step 2: Just below the DetailsView control, insert the text: Select ID to view.

Step 3: Insert a TextBox control to the right of the text. Set its ID property to
txtFindId.

Step 4: Insert a Button control to the right of the TextBox. Set the following proper-
ties: ID = btnGo, Text = Go. Refer again to Figure 10-24 as a guide.

Next, you will modify the query in the SqlDataSource control by adding a
query parameter. The parameter will be bound to the TextBox control you
just added.

Step 5: Click the smart tag of the MembersDataSource control and select Configure
Data Source.

Step 6: Click the Next button, keeping the same connection.

Step 7: In the Configure the Select Statement panel, the table and columns should
already be selected, as shown in Figure 10-25.

Figure 10-25 Configuring the Select Statement

Step 8: Click the WHERE button. The Add WHERE Clause window appears.

Step 9: Select the ID column, and select Control in the dropdown list entitled Source.
Select txtFindId from the dropdown list labeled Control ID. The form values
should appear as shown in Figure 10-26.

Step 10: Click the Add button. A new entry should appear in the box at the bottom of
the window.

Step 11: Click the OK button to close the window, which takes you back to the
Configure the Select Statement window.

Step 12: Click the Next button, and then click the Finish button.

Step 13: Save the page and view it in the browser.

Step 14: Enter an ID (usually between 1 and 9) in the TextBox and click the Go but-
ton. The DetailsView control should fill with the matching member’s data.
Experiment with different ID values.

10.3 Using the DetailsView Control 515

Checkpoint

9. Which property in a DetailsView control permits you to modify the formatting of a
column containing a date?

10. Which property of an SqlDataSource control holds the SQL SELECT query?

Figure 10-26 Adding a WHERE clause with a query parameter

Looking at the Web Page Source

The following line in the Web page source code holds the SelectCommand property of
the SqlDataSource control. It uses a query parameter named @ID:

SelectCommand="SELECT [ID], [Last_Name], [First_Name], [Phone],
[Date_Joined] FROM [Members] WHERE ([ID] = @ID)
ORDER BY [Last_Name]"

It is interesting to see how the ID entered into the text box by the user is assigned to the
SQL query parameter at runtime. The SqlDataSource control has a SelectParameters
collection, into which you inserted a single ControlParameter object:

<SelectParameters>
<asp:ControlParameter

ControlID="txtFindId"
Name="ID"
PropertyName="Text"
Type="Int16" />

</SelectParameters>

The ControlParameter was created when you specified the Control ID, shown previ-
ously in Figure 10-26. In the figure, the ControlID property is assigned to txtFindId, the
name of the TextBox control that held the ID entered by the user. At runtime, the Web
server finds this ControlID value and uses it to get the contents of the txtFindId text
box, and plugs that value into the query parameter.

516 Chapter 10 Web Applications with Databases

11. What type of object is inserted into the SelectParameters collection?

12. How do you enable the Edit button in a DetailsView control?

10.4 Data Binding with ListControls
In Web applications, the ListBox, DropDownList, CheckBoxList, and RadioButtonList con-
trols all inherit from a common class named ListControl. If you understand its properties
and methods, you automatically understand how to use the classes that inherit from it.
Table 10-1 lists the properties of the ListControl class. The ones marked with an asterisk (*)
can be accessed only at runtime.

Table 10-1 ListControl properties

Property Description

AutoPostBack Determines whether a postback will occur when the user selects
an item.

DataMember The specific table in the data source that will be bound to the
control.

DataSource The data source that fills the Items collection.

DataSourceID The ID of a DataSource control; it automatically binds to the
DataSource control at runtime.

DataTextField The field within the DataSource that provides the visible list
of items.

DataTextFormatString A format string that is applied to the displayed items.

DataValueField The field in the DataSource that provides the value of each
list item.

Items The collection of items in the list control (read-only).

SelectedIndex* The lowest index of the selected items in the list.

SelectedItem* The selected item with the lowest index (read-only).

SelectedValue* Gets the value that is associated with the selected item in the list
control, or selects the item associated with the specified value.

*Property is available only at runtime.

Static Data Binding

The technique of binding a control to a data source in design mode is known as static data
binding. First, open the control’s Tasks popup window and select Choose Data Source. The
Data Source Configuration Window (see Figure 10-27) appears. Select the SqlDataSource
control name, the field to display, and the data field.

Suppose we want a ListBox to display a list of names from the Customers table in the
RepairServices database. The following XHTML code accomplishes the binding:

<asp:ListBox ID="lstCustomers"
runat="server"
DataSourceID="CustomersDataSource"
DataTextField="Name"
DataValueField="CustId">
</asp:ListBox>

10.4 Data Binding with ListControls 517

CustomersDataSource refers to an SqlDataSource control on the same form. The DataSourceID
property points to the SqlDataSource control. The DataTextField property identifies the data-
base column to be displayed in the list box. The DataValueField identifies the database column
that will supply a value at runtime when the user uses code to obtain the contents of the Select-
edValue property.

Runtime Data Binding

Sometimes, you may want to bind ListControls at runtime, using Visual Basic code. This
approach is known as runtime data binding. It gives you the flexibility of calling a middle-
tier method (in this case, named GetCustomers) that returns a DataTable.

With lstCustomers
.DataSource = GetCustomers()
.DataTextField = "Name"
.DataBind()

End With

Notice that you must also call the DataBind method.

You can also use runtime code to assign the ID of an SqlDataSource control to the ListBox’s
DataSourceId property. You do not have to call DataBind:

With lstCustomers
.DataSourceID = CustomersDataSource.ID
.DataTextField = "Name"
.DataValueField = "CustId"

End With

The DataSourceID and DataSource properties of a control cannot both contain values. For
example, if you assign a value to DataSource using runtime code, you must erase any value
that is currently in the DataSourceID property. The converse is also true.

Checkpoint

13. Which types of controls inherit from the ListControl class?

14. Which ListControl property identifies the DataSource control that provides data?

15. Which ListControl property identifies the field within the DataSource that provides
the visible list of items?

16. Which common ListControl property gets the runtime value of the selected item in
the list control?

Figure 10-27 Binding a Control to a data source

518 Chapter 10 Web Applications with Databases

10.5 Interacting with the GridView Control
The GridView control is easy to use tool for displaying data. But it is also an enormously
rich control, with many properties and capabilities. Most often, users like to interact with
the control and carry out operations on the grid data. They might select one or more rows,
delete rows, edit row data, or insert new rows. In this section, we introduce the use of com-
mand buttons in the GridView. We also show how an SqlDataSource control can use grid
selection information to filter data in a related query.

The Campus.mdf Database

Throughout this section, we will use a database named Campus.mdf, which contains hypo-
thetical college courses, student data, and a table that tracks students enrolling in the
courses. First, we will display the courses table from this database, which contains the fol-
lowing columns (CourseId is the primary key):

Field DataType Sample Values

CourseId int 33333

YearSem varchar(10) 2010-01

CourseNum varchar(10) COP4338

Credits int 3

Field DataType Sample Values

StudentId varchar(4) 1010

FirstName varchar(50) James

LastName varchar(50) Smith

Gpa float 3.2

Birthdate smalldatetime 5/1/1990

Status int 2

Figure 10-28 lists sample rows from the courses table.

Later, we will use the students table, which contains the following columns (StudentId is the
primary key):

Figure 10-28 Courses table data

10.5 Interacting with the GridView Control 519

Finally, we will use an enroll table that keeps track of which students have enrolled in which
courses:

Figure 10-29 Class relationships in the Campus database

Figure 10-30 Web form with GridView and SqlDataSource controls, in Design view

Field DataType Sample Values

CourseId Int 33333

StudentId varchar(4) 1010

RegistrationDate Smalldatetime 5/15/2011

The three tables contain the relationships shown in Figure 10-29. A one-to-many relation-
ship exists between courses and enroll. Another one-to-many relationship exists between
students and enroll.

Inserting Command Buttons in a GridView
Figure 10-30 shows a Web form in design mode with GridView and SqlDataSource controls.
The latter connects to the Courses table in the Campus.mdf database file. The LinkButtons
along the left side of the grid are automatically generated when you select the Enable
Selection, Enable Editing, and Enable Deleting options in GridView Tasks window. These

520 Chapter 10 Web Applications with Databases

buttons are collectively known as GridView commands. The color scheme you would see in
the figure if it were printed in color was produced by selecting Auto Format in the GridView
Tasks window.

TIP: When you open the Configure Data Source window, you can click the Advanced
button to generate queries that join multiple tables. The table used in the data source
must have a primary key before you can generate Insert, Delete, and Update queries.

In Tutorial 10-6, you will create a Web site that displays a GridView with buttons.

TIP: Some of images used here can be found in the VS2010 Image Library collection,
located in the Common7 folder of the Visual Studio 2010 installation.

When the user clicks the Delete button in a GridView control, the corresponding row is
immediately deleted from the database. There is no in-memory DataSet. When the user
clicks the Edit button, the grid displays an editing template containing TextBox controls, as
shown in Figure 10-31. After making changes, the user clicks the Update button to save the
changes, or the Cancel button to discard the changes. No other rows can be selected until
one of these buttons is clicked.

Figure 10-31 GridView control in Edit mode

You can customize the appearance and operations of the GridView control by changing the
text of the Cancel, Delete, Edit, and Update links. To do that, edit the Columns property,
select the CommandField column, and change the CancelText, DeleteText, EditText, and
UpdateText properties.

You can also use image buttons rather than text to carry out operations on each grid row.
In Figure 10-32, for example, we set ButtonType = Image, and assigned image filenames for
the DeleteImageUrl, EditImageUrl, and SelectImageUrl properties.

10.5 Interacting with the GridView Control 521

Figure 10-32 GridView using image buttons

Tutorial 10-6:
Displaying the Courses table in a GridView

Tutorial Steps

Step 1: Create a new empty ASP.NET application named Campus GridButtons.

Step 2: Add a form named Default.aspx to the project.

Step 3: Create an App_Data folder.

Step 4: Copy the Campus.mdf database file from the chapter examples folder to the
App_Data folder of your project.

Step 5: Refresh the App_Data folder in Solution Explorer.

Step 6: In the Source view of Default.aspx, change the <body> tag to:

<body style="font-family:Arial;font-size:.85em">

Step 7: Insert a GridView control on the form and name it gvCourses.

Step 8: In the GridView Tasks window, create a new data source named
CoursesDataSource. It should connect to the Courses table in the Campus.mdf
database. Sort the rows on the CourseId column.

Step 9: When creating the data source, click the Advanced button. Select the option
to create INSERT, UPDATE, and DELETE statements. Finish the DataSource
configuration.

Let’s take a moment to examine the SqlDataSource in Source view:

<asp:SqlDataSource ID="CoursesDataSource" runat="server"
ConnectionString="<%$ ConnectionStrings:CampusConnection-
String %>"

DeleteCommand="DELETE FROM [courses] WHERE [CourseId] =
@CourseId"

InsertCommand="INSERT INTO [courses] ([CourseId],
[YearSem], [CourseNum] [Credits]),

VALUES (@CourseId, @YearSem, @CourseNum, @Credits)"

522 Chapter 10 Web Applications with Databases

SelectCommand="SELECT [CourseId], [YearSem], [CourseNum],
[Credits] FROM [courses] ORDER BY [CourseId]"

UpdateCommand="UPDATE [courses] SET [YearSem] = @YearSem,
[CourseNum] = @CourseNum, [Credits] = @Credits
WHERE [CourseId] = @CourseId">

(etc.)
</asp:SqlDataSource>

In the DataSource definition, notice the four command objects: DeleteCom-
mand, InsertCommand, SelectCommand, and UpdateCommand. Each is an
SQL query that executes when activated by a control attached to this data
source. The GridView control is connected, so these commands execute when
the grid is filled (SelectCommand), when the user clicks the Delete button
(DeleteCommand), and so on.

Step 10: Select the grid and verify that its DataKeyNames property is set to CourseId.

Step 11: Select the grid’s Columns property and center each column, using the
ItemStyle property of each column.

Step 12: Select the grid’s smart tag and enable the Selection, Editing, and Deleting
options.

Step 13: Save the project and run the application. It should display a list of courses.
Experiment with selecting, editing, and deleting rows. In Tutorial 10-7, you
will substitute graphical buttons for the grid commands.

Tutorial 10-7:
Using graphical command buttons in the Courses grid

In this tutorial, you will continue the Campus GridButtons application by associating
icons with the Edit, Delete, Select, Update, and Cancel buttons in the GridView
control.

Tutorial Steps

Step 1: Open the Campus GridButtons Web site.

Step 2: Copy the following files from the images folder inside the chapter examples
folder to your project folder: cancel.jpg, delete.gif, edit.png, select.png, and
update.png.

Step 3: Refresh the project name inside Solution Explorer. The image filenames
should appear.

Step 4: Select the GridView in Design view and open the GridView Tasks window.
Select Edit Columns.

Step 5: In the Fields window, select CommandField from the Selected fields box
(lower left corner of the window).

Step 6: Set the ButtonType property to Image. Set the following properties:

10.5 Interacting with the GridView Control 523

Step 7: Save the form and view it in the browser. Verify that the icons appear as
shown in Figure 10-33.

Figure 10-33 GridView using image buttons

Step 8: Click the Delete () icon and verify that the row is deleted.

Step 9: Click the Select () icon and verify that the row is selected.

Step 10: Click the Edit () icon. Verify that a blue check mark and a red X appear in
the two command fields, as shown in Figure 10-34. Experiment with updat-
ing and canceling the current edit.

Figure 10-34 Editing a row in the GridView

As you can see, it’s fairly easy to substitute icons for text in the command buttons.

Cancel ImageUrl cancel.jpg

DeleteImageUrl delete.gif

EditImageUrl edit.png

SelectImageUrl select.png

UpdateImageUrl update.png

524 Chapter 10 Web Applications with Databases

Filling Query Parameters from Different Sources
When you configure a DataSource control with an SQL query that contains query parameters,
you have some choices about how the parameters will be assigned values. In the Define Para-
meters step (see Figure 10-35), the Parameter source entry contains a dropdown list that lets
you select from some useful choices. Here are the parameter values that you are likely to use:

• Cookie—Gets the parameter value from a HttpCookie object. You must supply the
cookie name.

• Control—Another control on the same page. You can use the default property of the
control, or you can specify a property from the control.

• Form—Gets the value of an HTML form field, identified by name.
• QueryString—Gets the value from a QueryString (passed on the line at the end of the URL).
• Session—Gets the value from an object in the Session state collection. You must sup-

ply the key value.

Figure 10-35 GridView using image buttons

Using a GridView as the Control Parameter Source

A GridView control makes a great parameter source as long as it is configured correctly.
First, you must create a DataSource from a query that includes the primary key field of one
of your database tables. Second, the DataKeyNames property in the grid must contain the
column name(s) that comprise the table’s primary key. In the Courses table of the Campus
database, the column is CourseId.

Once you have these two items in place, you can include a WHERE clause in your data
source that compares the query parameter to the primary key field:

WHERE (enroll.CourseId = @CourseId)

And then when you get to the Define Parameters step (when you are configuring the data
source), you select the GridView control by its ID and the property name in the grid that will
supply the value at runtime. The following code becomes part of the DataSource control:

<SelectParameters>
<asp:ControlParameter ControlID="gvCourses" Name="CourseId"

PropertyName="SelectedValue" />
</SelectParameters>

Using a Query String as a Control Parameter Source

Suppose you want to fill a grid on a Web page, using a query string (part of the URL) as the
input value. For example, if you type the following string into the address bar of a Web
browser, you’ll see a list of links to Web sites relating to snow:

http://www.google.com/search?q=snow

http://www.google.com/search?q=snow

10.5 Interacting with the GridView Control 525

So, q=snow is known as a query string. You can assign a query string value to an SQL query
parameter. To do this for the Campus database, for example, we would initialize the
CourseId query parameter with a query string named ID. All we need to do is insert the fol-
lowing QueryStringParameter object into the SelectParameters collection of an SqlData-
Source control:

<SelectParameters>
<asp:QueryStringParameter

Name="CourseId"
QueryStringField="ID" />

</SelectParameters>

Then a statement like the following can pass an ID value to the Web page containing the Sql-
DataSource:

Response.Redirect("DisplayRoll.aspx?ID=11111")

If you prefer to hide the query string from the user for security purposes, call Server.Transfer:

Server.Transfer("DisplayRoll.aspx?ID=11111")

Then the URL in the browser’s address bar will not change when the new page appears. The
user will not be able to see the query string.

Identifying GridView Selections at Runtime

When a GridView row is selected by the user, a SelectedIndexChanged event is fired. Assum-
ing that the grid’s DataKeys collection contains the primary key of the underlying dataset,
you should be able to get the selected key value from the SelectedValue property. Here, for
example, we get the course ID from the gvCourses grid:

Dim courseId As Integer = gvCourses.SelectedValue

The grid’s SelectedRow property returns a reference to the grid row selected by the user. It
returns a GridViewRow object.

Dim row As GridViewRow = gvCourses.SelectedRow

Once you have a GridViewRow object, you can index into its Cells collection and obtain a
TableCell object.

Dim cell as TableCell = row.Cells(2)

The Text property of a TableCell object contains the cell’s contents. The following statement
copies the cell’s contents into a Label control:

lblCourseNumber.Text = row.Cells(2).Text

In Tutorial 10-8, you will display a list of students who are enrolled in a course when the
user selects the course from a GridView control.

Tutorial 10-8:
Displaying class rolls

When the user selects a row in a GridView control, you can write code statements to
find out which row was selected. Then you can use that information to filter rows in a
second grid. In this tutorial, you will display a class roll in a GridView control filled
from tables in the Campus database. The courses table contains a list of courses offered
by the college, the students table contains a list of students, and the enroll table shows
which students have enrolled in which courses. Sample rows from the enroll table are
shown in Figure 10-36.

526 Chapter 10 Web Applications with Databases

Figure 10-36 Sample enroll table data

The application shows a list of classes when the application starts (Figure 10-37).
When the user selects a class, another GridView control displays the list of students
who are enrolled in the class, sorted by last name and first name. An example appears
in Figure 10-38.

Figure 10-37 Application startup, with list of classes

Preparation Step

Open the web.config file in the Campus GridButtons project and examine the database con-
nection string. The AttachDbFileName property must equal |DataDirectory|\Campus.mdf.
Having this correct value will enable you to copy the project and retain a usable database
connection.

Tutorial Steps

Step 1: Make a copy of the Campus GridButtons Web site from Tutorial 10-7 and
rename the copy Campus Class Rolls. If you deleted any rows from the classes
table when testing the previous tutorial, get a fresh copy of the Campus.mdf
database file.

10.5 Interacting with the GridView Control 527

Figure 10-38 Displaying the class roll for a selected class

Step 2: Insert the following line in the form’s Source view, just below the SqlData-
Source control:

<h3>Class Roll:</h3>

Step 3: Switch to Design view and insert another SqlDataSource control on the form.
Name it EnrollDataSource. Use the existing connection to the Campus data-
base file. Configure the data source so it joins the courses, enroll, and students
tables. Here’s the query:

SELECT students.StudentId, students.FirstName,
students.LastName, students.Gpa

FROM enroll INNER JOIN students ON enroll.StudentId =
students.StudentId

WHERE (enroll.CourseId = @CourseId)
ORDER BY students.LastName, students.FirstName

You can use the Query Builder tool to create this query, as you did in
Chapter 5. In the Define Parameters step (shown in Figure 10-39), select
Control as the parameter source and select gvCourses as the ControlID.
This will ensure that the SQL query parameter is filled at runtime with the
course ID selected by the user in the gvCourses GridView control. Notice
that the SelectedValue property was selected automatically by Visual Studio.

Step 4: After saving the data source, switch to the form’s Source view and verify that
EnrollDataSource is defined like this:

1: <asp:SqlDataSource ID="EnrollDataSource" runat="server"
2: ConnectionString="<%$ ConnectionStrings:

ConnectionStrings:CampusConnectionString %>"

3: SelectCommand="SELECT students.StudentId,
students.FirstName,

528 Chapter 10 Web Applications with Databases

4: students.LastName, students.Gpa FROM enroll INNER JOIN
5: students ON enroll.StudentId =
6: students.StudentId WHERE (enroll.CourseId = @CourseId)
7: ORDER BY students.LastName, students.FirstName">
8: <SelectParameters>
9: <asp:ControlParameter ControlID="gvCourses"

Name="CourseId"

10: PropertyName="SelectedValue" />
11: </SelectParameters>
12: </asp:SqlDataSource>

Figure 10-39 Defining the query parameter

On line 2, your connection string name might be different. On line 9, a Con-
trolParameter links the gvCourses grid to the CourseId query parameter. The
PropertyName value identifies SelectedValue as the property in the gvCourses
grid that will return the Course ID that we need.

Step 5: Add a second grid to the bottom of the form and name it gvClassRoll. Set its
Width to 80 percent. Open its GridView Tasks window and select
EnrollDataSource as its data source.

Step 6: Save the page and view it in the browser. Click the check mark icon next to
each course in the grid, and watch the lower grid appear with a list of students
enrolled in the course.

You did not have to write a single line of code in this application. But if you want the
class roll to appear on a different Web page, you would have to do a little more work.
In Tutorial 10-9, you will find out how this works.

10.5 Interacting with the GridView Control 529

Tutorial 10-9:
Displaying the class roll on a separate page

In this tutorial, you will modify the Campus Class Rolls application. The user will select
a course in the GridView control on the startup page shown in Figure 10-40 and click
a link to continue. Then the browser will navigate to a second Web page (shown in
Figure 10-41) that displays the class roll for the selected course.

Figure 10-40 The user selects a course and clicks a link to view the class roll

Figure 10-41 The class roll appears on a second page

Tutorial Steps

Step 1: Close Visual Studio, make a copy of the Campus Class Rolls application,
and rename the copy Campus Class Rolls 2. If you have deleted any rows
from the database, get a fresh copy of the Campus.mdf database from the
chapter examples folder.

530 Chapter 10 Web Applications with Databases

Step 2: Add a Web form named DisplayRoll.aspx to the Web site. Open the form in
Design view.

Step 3: Cut the gvClassRoll GridView control in Default.aspx to the Windows Clip-
board and paste it into DisplayRoll.aspx.

Step 4: Cut the EnrollDataSource control in Default.aspx to the Windows Clipboard
and then paste it into DisplayRoll.aspx.

Step 5: In Source view, modify the SelectParameters section of the EnrollDataSource
control so it looks like this:

<SelectParameters>
<asp:QueryStringParameter

Name="CourseId"
QueryStringField="ID" />

</SelectParameters>

Step 6: Move the following heading from Default.aspx to DisplayRoll.aspx:

<h3>Class Roll:</h3>

Step 7: Add the following paragraph break and LinkButton control to the bottom of
Default.aspx:

<p />
<asp:LinkButton ID="btnShowRoll"

runat="server">Display the selected class roll
</asp:LinkButton>

Step 8: In the same page’s codebehind file, create the following Click handler for the
btnShowroll control that allows the user to navigate to the DisplayRoll.aspx
page:

Protected Sub btnShowRoll_Click() Handles btnShowRoll.Click
Response.Redirect("DisplayRoll.aspx?ID=" _

& gvCourses.SelectedValue.ToString)
End Sub

Notice that the statement passes a query string (?ID=) to the new page, get-
ting the CourseId value from the grid’s SelectedValue property.

Step 9: Save both pages and view Default.aspx in the browser. Select a course in the
grid and click the link to view the class roll. To return to the previous page,
click the browser’s Back button.

You’re done. As an alternative approach, you could use a Session state value as the
query parameter.

Checkpoint

17. Which options in the GridView Tasks panel cause Edit and Delete buttons to
appear in each row of a GridView?

18. When the user clicks the Edit button in a GridView, which buttons appear in the
current row?

19. What is a CommandField column?

20. Which GridView property contains an array of primary key values?

10.6 Using JavaScript 531

10.6 Using JavaScript
Two general types of code execute on Web pages: server-side script and client-side script.
The first, server-side script, executes on the server after a page is posted back to the server. The
second, client-side script, refers to computer programs that execute on the user’s Web
browser. The user’s browser is known as the client.

JavaScript is the most common client-side scripting language. It is not just for ASP.NET
pages; it also works on all types of Web pages. Code that runs in a user’s browser does not
need to wait for the page to be posted back before it executes. Client-side script includes
both JavaScript and VBScript.

You may have noticed how some Web sites display a popup window as soon as you hover
the mouse over an object on the page. To do that, they must execute client-side scripts. Also,
Web pages that display graphical animations are using client-side scripts.

Our focus in this chapter will be on JavaScript. It can access built-in browser objects such
as the document and window objects, which have large sets of properties and methods. In
fact, to get the most out of JavaScript, you should learn the Web browser’s complete object
model.

JavaScript is often mistaken for the Java programming language because of its similar
name. The two languages have some minor similarities in syntax, such as IF statements,
math expressions, and loops. But they are different in some fundamental ways: In
JavaScript, variables and function parameters have no types whereas JavaScript code is
interpreted, Java is compiled.

Although you may not have realized it, ASP.NET validation controls such as RequiredField-
Validator use JavaScript to flag errors without requiring a round trip to the server. They can
also respond when the user tabs from one field to the next.

Writing JavaScript
You can insert JavaScript directly into a Web page by enclosing it between <script> and
</script> tags. The script executes as soon as the page is loaded or posted back to the server.
Here’s an example that calls the alert function:

<script type="text/javascript">
alert('Welcome to my Web site!')

</script>

This function, which is predefined, displays a small popup window called an Alert dialog
containing a string and an OK button. Figure 10-42 shows the alert dialog displayed by our
example.

Figure 10-42 Showing an alert dialog with JavaScript

532 Chapter 10 Web Applications with Databases

Executing JavaScript from ASP.NET Controls
You can attach a client-side script to a Button control by assigning it to the button’s
OnClientClick property. The script executes immediately when the user clicks the button
and before the page is posted back to the server. Here is an example:

<asp:Button ID="btnConfirm"
runat="server"
Text="Confirm"
OnClientClick="alert('You clicked the Confirm button')"
Width="74px" />

Double quotes must enclose any control property, which in this case contains JavaScript
code. Therefore, within the JavaScript code, single quotes must be used to surround the
string literal. In our example, when the page loads and the user clicks the button, the alert
dialog box pops up, as shown in Figure 10-43.

TIP: If an ASP.NET contains a client script in its OnClientClick property and also has
a Click event handler, the client script executes before the postback. Then after the page
is posted back, the Click event handler executes.

You can embed a script in a hyperlink, using the javascript: prefix. The following HTML
code, for example, causes the Web browser to show a Print dialog for the current page:

Print this page

You can also insert a javascript statement in a HyperLink control’s NavigateURL property.

<asp:HyperLink
ID="hypPrint"
NavigateUrl="javascript:window.print()"
runat="server">Print this page
</asp:HyperLink>

If your embedded script contains multiple JavaScript statements, they must be separated by
semicolons(;). The following example pops up an Alert dialog box. When the user clicks the
OK button, the Alert dialog closes and the Print dialog appears.

Print this page

Script Debugging
Errors in your JavaScript code are often difficult to detect when your Web browser is con-
figured to ignore JavaScript errors. You can change that. In Internet Explorer, for example,
open the Internet Options dialog from the Tools menu, click the Advanced tab, and unselect

Figure 10-43 Alert dialog displayed by JavaScript in the OnClientClick property

10.6 Using JavaScript 533

the two options that begin with the phrase Disable script debugging. Then, when you browse
to the Web page and encounter a script error, you will be given the option of opening the
debugger. In Figure 10-44, for example, a script error was found on line 12. The right-hand
side of the window shows an execution trace.

Figure 10-44 Internet Explorer script debugger, showing the location of an error

Accessing Form Fields
When it receives a Web page from a server, the Web browser displays a document object that
encapsulates the contents of the page. For example, it contains an array named forms. There
is only one form on an ASP.NET page, so your JavaScript code can refer to the form using
document.forms[0] or document.form1, assuming that it was defined like this in the page:

<form id="form1" runat="server">

Within a form, each input control has an ID property. To refer to an ASP.NET TextBox
whose ID equals txtName, for example, you would use the following expression:

form1.txtName

JavaScript statements use a property named value to refer to the Text property of ASP.NET
controls. The following statement, for example, assigns a person’s name to the Text prop-
erty of a TextBox control named txtName:

form1.txtName.value = "Joe Smith"

Why the value property? Because when a TextBox is rendered by a Web browser, it becomes
a standard HTML input control on the page sent to the user’s browser:

<input name="txtName"
type="text"
id="txtName"
value="Joe Smith" />

You can also access the value property of a HiddenField control:

form1.hfSaveFile.value = true

534 Chapter 10 Web Applications with Databases

You cannot access a Label control in JavaScript because Labels are not form fields. But you
can, in the codebehind file, assign the contents of a HiddenField control to a Label. You will
see how to do this in Tutorial 10-10.

JavaScript Functions
To execute more than one JavaScript statement at a time, it’s best to call a function con-
taining the statements. A function definition begins with the function keyword, followed by
a parameter list, followed by a block within braces { . . . }. Here is a simple JavaScript func-
tion that returns the sum of two integers:

function addTwo(v1, v2)
{

return v1 + v2;
}

Parameters are declared without types, and the function has no specific return type. The fol-
lowing JavaScript statement shows how the addTwo function is called:

sum = addTwo(10, 20)

The following statements call a function and pass its return value to a TextBox control:

X = form1.txtValueX.value
Y = form1.txtValueY.value
form1.txtSum.value = addTwo(X, Y)

The window.open Function

JavaScript uses the window.open function to display popup browser windows. A popup can
display a calendar, as in Figure 10-45; a photo; or an appointment book. When calling win-
dow.open, pass it the name of a Web page that supplies the content. Here is an example:

window.open('Calendar.aspx')

Figure 10-45 Sample popup calendar window

A popup browser window is a fully functioning Web browser window, in contrast to an alert
dialog, which is a predefined dialog window with no customizable properties. On the other
hand, a popup browser window can be configured so that it restricts the user. It can hide the
menu, the address input field, the status bar, and even the title bar.

Although many Internet users configure their Web browsers to block popup windows, a
window that is displayed without any configuration parameters is usually not blocked.

10.6 Using JavaScript 535

As another option, you can pass a window title and a number of options that set the win-
dow size, the toolbar visibility, and so on.

window.open('calendar.aspx','Calendar','width=400,height=300,
resizable=yes')

Popups that set the window size and perform other customizations are more likely to be
blocked because they may be hidden windows containing malicious scripting code.

Generating JavaScript at Runtime

In server-side code, you can add JavaScript to a Web form while an application is run-
ning. To do this, call the RegisterClientScriptBlock method and pass to it the following
arguments:

• A reference to the current form’s type, obtained by calling the GetType method
• A string that uniquely identifies the script block on the current page
• The JavaScript code

The following statement causes an alert dialog to display:

ClientScript.RegisterClientScriptBlock(Me.GetType(), "alertWelcome",
"<script>alert('Welcome to my JavaScript page')</script>")

If you put this code in a Button.Click event handler, the page posts back to the server when
the user clicks the button; the server then creates a Web page and passes it to the client’s
browser. This page includes the JavaScript code you have inserted. As the user’s browser ren-
ders the page, the alert window appears.

The main advantage to generating JavaScript at runtime is that you can configure the script
by including the values of variables and controls.

In Tutorial 10-10 you will write a short application that displays popup windows.

The confirm and prompt Functions

The confirm function in JavaScript displays a Confirm dialog, as shown in Figure 10-46.

confirm('Save file before creating a new one?')

Figure 10-46 Displaying a Confirm dialog

If the user clicks the OK button, the function returns True. If the user clicks the Cancel but-
ton, the function returns False. It is possible to convey this information back to your server-
side Visual Basic code by assigning the return value of the function to a control. Here, for
example, we use a HiddenField control to hold the return value:

form1.hfSaveFile.value = confirm('Save file before creating a new one?')

The window.prompt function displays an input dialog and returns a string. An example is
shown in Figure 10-47.

536 Chapter 10 Web Applications with Databases

Figure 10-47 Prompting the user for a string

Tutorial 10-10:
Receiving user input in JavaScript

In Tutorial 10-10, you write a short application that displays the following dialogs and
windows:

• A dialog that asks a question.
• A dialog that inputs a string from the user.
• A popup window that displays a Calendar control.

Tutorial Steps

Step 1: Create a new Web application named JavaScript Dialogs. Add a Web form
named Default.aspx to the project.

Step 2: Using Figure 10-48 and Table 10-2 as guides, build the controls and text on
the page.

Figure 10-48 Design view of the JavaScript Dialogs page

Step 3: In Source view, insert the following JavaScript functions anywhere between
the <head> and </head> tags. Be careful not to change the capitalization. The
second argument to the prompt function is an empty string.

<script type="text/javascript">
function AskUserName()
{

name = window.prompt('What is your name?', ");
form1.txtUserName.value = name;

}

10.6 Using JavaScript 537

function AskToSaveFile()
{

form1.hfSaveFile.value =
confirm('Save file before creating a new one?')

}
</script>

The AskUserName function displays a popup dialog with an input field. Its
return value is the string typed by the user, which is assigned to the txtUser-
Name TextBox control.

The AskToSaveFile function displays a popup dialog with a question. It returns
a Boolean value, which is assigned to the HiddenField control named hfSaveFile.

Step 4: Open the form’s codebehind window and insert the following statements
inside the Page_Load event handler:

If IsPostBack Then
lblSaveFile.Text = hfSaveFile.Value

End If

This code executes only during a page postback; it assigns the HiddenField
control’s value to the Label control. As we mentioned earlier, a Label control
cannot be assigned a value directly by JavaScript, so we use the HiddenField
control as a helper.

Step 5: Add another Web form to the application and name it Calendar.aspx.

Step 6: Add a Calendar control to the form, using Table 10-3 as a guide.

Step 7: In the Default.aspx form, set the btnCalendar button’s OnClientClick prop-
erty to the following:

window.open('calendar.aspx').

Table 10-2 Controls in the JavaScript Dialogs application startup page

Control Type Control Name Control Values

DOCUMENT Title: JavaScript Dialogs,
Style: font-family:Arial;font-size:.85em

HiddenField hfSaveFile Value: False

Label lblSaveFile

Button btnSaveFile OnClientClick: AskToSaveFile()
Text: Save File?

TextBox txtUserName

Button btnUserName OnClientClick: AskUserName()
Text: Ask for User Name

Button btnCalendar OnClientClick: window.open('calendar.aspx')
Text: Show Calendar Popup

Table 10-3 Controls in the Calendar.aspx page

Control Type Control Name Control Values

DOCUMENT Title: Calendar, Style: font-family:Arial

Calendar (default)

538 Chapter 10 Web Applications with Databases

Checkpoint

21. Which group of ASP.NET controls mentioned in this section uses client-side
JavaScript?

22. Show how to use JavaScript to display Hello in a popup dialog window.

23. Which section(s) of an HTML document can contain JavaScript statements?

24. How do you cause JavaScript to execute directly when an ASP.NET Button control
is clicked?

25. How does a JavaScript statement access the contents of a TextBox control named
txtName?

10.7 Using Microsoft Ajax Controls
Ajax technology provides a richer user experience on Web sites by handling many actions
within the Web browser. The letters in its name refer to Asynchronous JavaScript and XML.
The Microsoft implementation of Ajax is a synthesis of the following different Web tech-
nologies:

• HTML—HyperText Markup Language.
• Cascading style sheets (CSS)—Used to define appearance styles on Web pages.
• JavaScript—The client-side scripting language whose code is executed by Web

browsers.
• Document Object Model (DOM)—Lets you access directly Web page elements and

events using JavaScript.
• Extended Markup Language (XML)—Customizable markup language for objects and

other data.
• XMLHttpRequest—A technology that permits direct communication between elements

on a Web page with a Web server.

Ajax controls are able to update individual components on Web pages. Ordinarily, when you
click a non-Ajax page, the browser posts the entire page to the server. The server executes
code embedded in the page’s codebehind file and sends back a complete new copy of the page.
But Ajax controls circumvent this process and communicate directly with the Web server.

NOTE: The Microsoft online documentation at http://msdn.microsoft.com uses the
capitalizations Ajax and AJAX interchangeably.

Step 8: Save the page and view it in a browser. Click the Save File? button, click OK,
and notice that the Label changes when the dialog closes.

Step 9: Click the Ask for User Name button, enter a name, and close the dialog.
Notice that the name appears in the text box.

Step 10: Click the button that opens the calendar.

We have touched upon only a few basic JavaScript techniques in this tutorial. JavaScript
can be tricky to debug, and is prone to unexpected runtime errors. Fortunately, a new
user interface technology named Ajax reduces the need for JavaScript programming.
You will learn about this in Section 10.7.

http://msdn.microsoft.com

10.7 Using Microsoft Ajax Controls 539

Microsoft Ajax Controls
The basic controls in the AJAX Extensions section of the Visual Studio toolbox are Script-
Manager, ScriptMangagerProxy, UpdatePanel, Timer, and UpdateProgress. Here are brief
descriptions of each:

• The ScriptManager control is required on every page that uses other Ajax controls. It
provides a connection to a standard Microsoft library of JavaScript functions. It
enables partial-page rendering and calls to Web services.

• The ScriptManagerProxy control enables nested components such as content pages
and user controls to add script and service references to pages when a ScriptManager
control is already defined in a parent element.

• The UpdatePanel control allows applications to refresh only selected parts of a Web
page, without having to post an entire page back to the server. This technique is known
as partial-page update.

• The Timer control performs postbacks at defined time intervals. You can use it to post
back an entire page or just the part of a page that is located inside an UpdatePanel
control.

• The UpdateProgress control lets the user know the ongoing status of a partial page update.
For example, the user might initiate a database operation that takes some time to execute.
The UpdateProgress control can let the user know that the operation is in progress.

Microsoft Ajax Control Toolkit
In addition to its basic set of Ajax controls, Microsoft produces a set of advanced controls
called the Ajax Control Toolkit. You can use these advanced controls to create highly inter-
active Web pages, with a variety of advanced features. The controls are fairly easy to use,
and they are provided with examples and documentation. Currently, they are a free down-
load from http://ajaxcontroltoolkit.codeplex.com. After downloading the set of controls,
install them in your copy of Visual Studio. To give you a general impression of their capa-
bilities, we list a few examples here:

• Accordion Control—Contains text panels that expand and collapse when selected by the
user. Each panel has a heading and a content area that can be customized with style sheets.

• AlwaysVisible Control—Lets you define a text area that floats above the other con-
tents of a page.

• AnimationExtender Control—Adds animation capabilities to a page. It can start an
animation (such as a fading panel) when the user clicks a button, hovers the mouse,
and so on.

• AsynchFileUpload Control—Lets the user upload a file as a background operation
while he or she continues to interact with the Web page.

• AutoComplete Control—Displays a list of choices for a text box. It looks much like
the desktop ComboBox control because the user can select from the list.

• CalendarExtender Control—Displays a popup calendar from which the user can select
a date.

• CascadingDropDownControl—Displays a series of dropdown lists. When the user
selects from the first list, the second list is populated accordingly. When that selection
is made, the next list in the series is populated.

• CollapsiblePanel Control—Adds collapsible sections to a Web page, each defined as
panels.

• ColorPicker Control—Lets you display a popup color picker when a specified control
receives the focus.

There are too many toolkit controls to describe here. But you can read the complete docu-
mentation for these controls online at http://www.asp.net.

http://ajaxcontroltoolkit.codeplex.com
http://www.asp.net

540 Chapter 10 Web Applications with Databases

Ajax Timer and UpdatePanel Controls
The Ajax Timer control is an ideal tool for refreshing the contents of individual controls or
sections of a Web form. You might like to check for the latest sports scores, check to see if
someone has sent you an instant message, or obtain the latest data from a database. The
Timer control has an Interval property, measured in milliseconds, that determines how often
it will generate a Tick event. Then you can create a Tick event handler in your codebehind
file that carries out any operation you want.

If you were to use only the Timer control, every Tick event would cause the enclosing page
to post back to the server. Therefore, it is best to combine the Timer with an Ajax
UpdatePanel control. With this control on the form, the only part of a Web page that is
posted to the server is that which is located inside the panel. Suppose, for example, that your
page used a ListBox control to hold a set of news headlines. You could place the ListBox and
Timer controls inside an UpdatePanel. Then each time a Tick event fired, you could either
add new entries to the ListBox or refill the ListBox completely.

The UpdatePanel control contains two sections. The <ContentTemplate> section is required. It
contains the text and controls that will be posted back to the server and therefore will be
updated. Another section named <Triggers> is optional. It can be used when you want the con-
trol generating the postback to be located outside the UpdatePanel control. In Tutorial 10-11,
you will experiment with the Timer and UpdatePanel controls.

Tutorial 10-11:
Displaying the Web server time with Ajax controls

In this tutorial, you will display the Web server’s current date and time. You will use an
Ajax Timer control to refresh the portion of the Web page that is located inside an
UpdatePanel control. A ScriptManager control will be used to enable the other Ajax
controls to function properly. A sample of the output is shown in Figure 10-49.

Figure 10-49 Displaying the Web server time with Ajax controls

Tutorial Steps

Step 1: Create a new empty ASP.NET Web site named Ajax Example.

Step 2: Add to the Web site a single Web form named Default.aspx, and open it in
Source view.

Step 3: Insert a ScriptManager control from the AJAX Extensions section of the Tool-
box onto the form immediately following the <form> tag.

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

Step 4: Add a level-two heading to the form on the next line.

<h2>Ajax ScriptManager, Timer, and UpdatePanel Controls</h2>

10.7 Using Microsoft Ajax Controls 541

Step 5: Insert an Ajax UpdatePanel control in the next line.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
</asp:UpdatePanel>

Step 6: Insert a ContentTemplate section inside the UpdatePanel control.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
</ContentTemplate>

</asp:UpdatePanel>

Step 7: Insert the following text, and a Label control named lblTime inside the
ContentTemplate, followed by a blank line. The entire template is shown
here:

<ContentTemplate>
Current Web Server date and time:
<asp:Label ID="lblTime" runat="server" Text=""></asp:Label>

</ContentTemplate>

Step 8: Insert an Ajax Timer control into the form where you left a blank line inside
the ContentTemplate. Set the Timer properties as shown here:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>

Current Web Server date and time:
<asp:Label ID="lblTime" runat="server" Text=""></asp:Label>
<asp:Timer ID="UpdateTimer"

Enabled="true"
Interval="1000"
runat="server">

</asp:Timer>
</ContentTemplate>

</asp:UpdatePanel>

Step 9: Switch to Design view and double-click the Timer control to create a Tick
event handler. Edit the content of the handler (in the codebehind file) as
follows:

Protected Sub UpdateTimer_Tick() Handles UpdateTimer.Tick
' Get the date and time from the Web server.
lblTime.Text = DateTime.Now.ToString()

End Sub

The Label control is assigned the Web server’s date and time. This event han-
dler executes each time the Time control generates a Click event.

Step 10: Save the project and open Default.aspx in the browser. After a one-second
delay, you should see the date and time, and the time should update itself
once per second. Notice that the rest of the page is not posted back to the
browser.

Step 11: In Source view, move the lblTime Label control just above the UpdatePanel
control and save the form. Open the page in the browser, and notice that the
date and time are never displayed. This is because the Timer control posts
back only the contents of the UpdatePanel control. It does not update any
page areas outside the UpdatePanel.

Step 12: Move the lblTime Label back into the ContentTemplate area, save the form,
and view it in the browser again.

542 Chapter 10 Web Applications with Databases

UpdateProgress Control
The UpdateProgress control is an ideal tool for those situations when the user might have to
wait for an operation to finish. For example, a large database table might be loading into a
GridView control. Or, the browser might be waiting for a credit card service to respond with
a payment authorization.

The UpdateProgress control always activates when one or more UpdatePanel controls are in
the process of communicating with the Web server. To use it, add an UpdateProgress control
to the form, and indicate some text that you want to display, such as Please wait. Or, you
can use a graphic image that has built-in animation.

In Tutorial 10-12, you will create a Web site that uses the UpdateProgress control.

Tutorial 10-12:
Using the UpdateProgress Control

In this tutorial, you will create an application containing an update panel with a
LinkButton control. When the user clicks the button, there will be a short delay, which
you will use to simulate the time it might take to read a large file. While the user is wait-
ing, the UpdateProgress control will display an animated image and a message that says,
“Please wait. . . .” As soon as the delay ends, the UpdatePanel is refreshed and the mes-
sage and animated image disappear.

Tutorial Steps

Step 1: Create a Web site named UpdateProgress Demo.

Step 2: Copy the file named ajax-loader.gif from the \images folder in the chapter
examples directory to your Web site directory.

Step 3: Add a new form to the site named Default.aspx, and open it in Source view.

Step 4: Add a ScriptManager control to the form.

Step 5: Insert the following UpdatePanel below the ScriptManager, containing a
LinkButton control inside its ContentTemplate area:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>

<asp:LinkButton ID="lnkRead" runat="server">
Read a large file</asp:LinkButton>

</ContentTemplate>
</asp:UpdatePanel>

Step 6: Add the following UpdateProgress control to the form:

<asp:UpdateProgress id="PageUpdateProgress"
runat="server" >
<ProgressTemplate>

<asp:Image ImageUrl="~/ajax-loader.gif" runat="server" />
Please wait...

</ProgressTemplate>
</asp:UpdateProgress>

The ProgressTemplate section displays some text on the page during the time
that the LinkButton’s click event takes place. In addition, there is an Image
control that displays an animated GIF file.

Summary 543

Step 7: Create a Click handler for the LinkButton control. Modify its code so that it
calls the Thread.Sleep method, telling the program to pause for 4,000 mil-
liseconds:

Protected Sub lnkRead_Click() Handles lnkRead.Click
System.Threading.Thread.Sleep(4000)

End Sub

Step 8: Save the page and view it in the browser. Click the Read a large file button, and
watch the animated image (balls moving in a circle) and the Please wait
message appear on the page for 4 seconds. They disappear automatically when
the Click handler finishes.

Summary

10.1 Master-Detail Pages

• Master-detail pages let you create a consistent appearance for a set of Web pages by
giving them common page areas (such as headers and footers).

• A master page contains empty areas called content placeholders. At runtime, the mas-
ter page remains visible all the time, while different content pages are inserted into the
content placeholders.

• You never explicitly put anything inside the ContentPlaceHolder control. Instead, you
must create content pages that insert themselves inside the master page at runtime.

• With a master-detail page setup, a single master page is referenced by one or more
content pages, but only one at a time. When the user loads a content page, the Web
server finds its matching master page and combines the two into a single HTML page
sent to the user’s browser.

• Buttons and other controls on a master page pass their events to the currently dis-
played content page.

• To access controls such as buttons and text boxes on the currently displayed content
page, a master page calls the ContentPlaceHolder’s FindControl method. Conversely,
to reference the master page from a content page, use the Me.Master property.

10.2 Using the GridView Control

• Similar to the Windows control named DataGridView, a GridView control binds to a
data source. It lets the user sort on any column, select the column order, and format the
data within columns. The user can also edit, insert, and update database rows in the grid.

• When you create a connection to an SQL Server Database on a Web form, Visual Stu-
dio automatically inserts an SqlDataSource control on the form.

• You format the contents of a grid column by selecting its ItemStyle property.

10.3 Using the DetailsView Control

• The DetailsView control makes it easy for the user to add, view, edit, and delete database
table rows. If you connect it to a DataSource control, it displays one table row at a time.

• You can create customized templates for the DetailsView control that affect its appear-
ance when displaying or editing a single table row.

• Use the Fields property of the DetailsView control to modify the appearance of each
field.

544 Chapter 10 Web Applications with Databases

10.4 Data Binding and ListControls

• In Web applications, the ListBox, DropDownList, CheckBoxList, and RadioButton-
List controls all inherit from a common class named ListControl. If you understand
its properties and methods, you automatically understand how to use the classes that
inherit from it.

• The ListBox control has a property named SelectionMode that is not part of the List-
Control class. If you set it to Multiple, the user can select multiple items at run time.

• The DropDownList control is almost identical in function to a ListBox control, except
that it uses only one line on a Web page, and only one item may be selected at a time.

• The RadioButtonList control is almost identical in function to a CheckBoxList con-
trol, except that only one item can be selected.

10.5 Interacting with the GridView Control

• The GridView control can display command buttons in each row. You can customize
the text and appearance of buttons such as Select, Edit, Cancel, Update, and Delete.

• In Web applications, the SqlDataSource control reads and writes databases.
• The GridView control’s DataKeys property contains a collection of values that repre-

sent the primary key of each row.
• The GridView control has event handlers and properties that you can use to your

advantage when the user selects a row.
• If you include a database table’s primary key column when filling a GridView control,

your program code can uniquely identify rows selected by the user at runtime.

10.6 Using JavaScript

• JavaScript is a client-side scripting language that you can put into ASP.NET pages.
When added to a Web page, JavaScript code executes directly on the user’s Web
browser.

• Although JavaScript looks superficially like Java, it is fundamentally different. For
example, variables and function parameters have no types; the code is interpreted, not
compiled.

• You can insert JavaScript directly into a Web page by enclosing it between <script>
and </script> tags.

• The RegisterClientScriptBlock method inserts a block of JavaScript into a Web page
at runtime.

• You can insert client-side JavaScript code into the OnClientClick property of a Button
control.

• JavaScript code can refer to individual controls on a form.
• The JavaScript window.open function opens a popup window. The confirm function

in JavaScript displays a popup dialog that asks a yes or no question. The window.prompt
function displays a popup dialog and inputs a string from the user.

10.7 Microsoft Ajax Controls

• Ajax technology provides a rich user experience on a Web site by handling many
actions within the Web browser. The letters in its name refer to Asynchronous
JavaScript and XML.

• Ajax is a synthesis of different Web technologies: HTML, cascading style sheets, JavaScript,
Document Object Model, Extended Markup Language, and XMLHttpRequest.

• In addition to a basic set of Ajax controls, Microsoft produces a set of advanced con-
trols named the Ajax Control Toolkit. You can use the toolkit to create highly inter-
active Web pages, with a variety of advanced features.

• The Ajax Timer control refreshes an UpdatePanel or an entire page at regular time
intervals.

Review Questions and Exercises 545

Key Terms
AccessDataSource control
Ajax technology
Ajax Control Toolkit
AccessDataSource control
Alert dialog
client-side script
Content control
content page
content placeholder
ContentPlaceHolder control
DataSource
Details View control
document object
GridView control
JavaScript

ListControl class
master-detail pages
master page
query string
RegisterClientScriptBlock method
runtime data binding
ScriptManager control
ScriptManagerProxy control
server-side script
SqlDataSource control
static data binding
Timer control
UpdatePanel control
UpdateProgress control

• The Ajax UpdatePanel control lets you post only part of a Web page back to the
server, while leaving the rest of the page unchanged.

• The Ajax UpdateProgress control is useful for situations in which the user might have
to wait for an operation to finish. It displays a wait message or icon until an
UpdatePanel is refreshed.

Review Questions and Exercises

True or False

Indicate whether each of the following statements is true or false.

1. A master page can contain only one ContentPlaceHolder in the <form> section.

2. You always navigate to a content page, never a master page.

3. Cascading style sheets can be linked to a content page only.

4. If a master page is currently open in the editor, you can find the Add Content Page selec-
tion in the Website menu.

5. The MasterPageFile property of the Page directive in a content page identifies the file-
name of the master page.

6. You can set the default master page filename in web.config.

7. The FindControl method cannot be used by code in a content page to reference a con-
trol on its master page.

8. The Load event for a content page occurs before the Load event for its master page.

9. You select a GridView auto format from the GridView Tasks window.

10. When you create a connection to an SQL Server Database on a Web form, Visual Stu-
dio automatically inserts an SqlDataSource control on the form.

11. In a connection string in web.config, the FileName property shows the path to the data-
base file.

12. If you place a database file in any folder belonging to your Web site, you can use the
DataDirectory keyword to identify the database path in a connection string.

546 Chapter 10 Web Applications with Databases

13. In the Configure Data Source wizard, click the Advanced button to let Visual Studio
generate insert, update, and delete queries.

14. To change the horizontal alignment of a column in a GridView, navigate to the ItemStyle
property.

15. The DetailsView control displays only one data source row at a time.

16. The StartingMode property of a DetailsView control selects its starting state when it first
becomes visible.

17. The DataValueField property of a ListControl identifies the column that will be dis-
played in the list.

18. Client-side script waits for a Web page to be posted back before it executes.

19. The OnClientClick method always executes before a server-side Click handler.

20. You can embed JavaScript in the NavigateUrl property of a Hyperlink control.

21. If a form has an ID property, you can refer to it by name in JavaScript code.

22. The window.open function always opens a full-size window.

23. The RegisterClientScriptBlock method adds JavaScript to the Web page when it is
posted back to the server.

24. The window.prompt function returns an integer.

Short Answer

1. How does the end user know that a master-detail page combination was used?

2. If you have a master page open in the Design window, how do you create a content
page?

3. Where is the MasterPageFile attribute defined?

4. How can you specify the default master page filename for an entire application?

5. In the codebehind file, how can a master page get a reference to a Button control inside
the currently displayed content page?

6. In the codebehind file, how can a content page get a reference to its master page?

7. Which page Load event fires first: master page or content page?

8. Which properties must you set when binding a ListBox to an SqlDataSource control?

9. In a multiselect ListBox, how do you identify all selected items?

10. What is the default SelectedIndex value of a DropDownList control?

11. How do you make a CheckBoxList control display three columns of items?

12. How do you get the contents of the first cell in the currently selected row of a GridView
control?

13. Which GridView property contains the index of the currently selected row?

14. Which GridView event occurs when the user clicks on a row’s Select button?

15. What is the ASP.NET equivalent to the DataBindingSource in a Windows Forms appli-
cation?

16. Buttons containing a long Text value should be displayed by which type of ASP.NET
control?

Programming Challenges 547

17. Which three properties of a ListControl are available only at runtime?

18. If you want to control the formatting of a GridView’s column, which property must
you set?

19. Using JavaScript, show how to obtain the Text property of a Button control named
btnOk. The form’s ID property equals form1.

20. Which .NET method adds JavaScript to a Web page at runtime?

21. Write a JavaScript statement that asks the user to answer a yes or no question.

22. Write a JavaScript statement that displays a popup dialog that asks for a project name.

23. Define a JavaScript function named calculate that returns the first parameter divided by
one-half of the second parameter.

24. Write a JavaScript statement that opens a popup window and displays a file named
Schedule.aspx.

25. Which method does a master page use to locate a reference to a control on its content page?

Programming Challenges
1. Karate Master Pages

Create a Web application that uses a Master page and several content pages to display
lists of members and payments from the Karate database. The master page contains a
top-level menu, and some of the content pages have menus that show immediately below
the master page menu. The result is a two-level menu system that helps the user to navi-
gate easily between the two subsystems: Members and Payments. The master page should
contain a heading, a club logo as an image, and a menu with three selections (Home,
Members, Payments). An example is shown in Figure 10-50. When the user clicks the
Members menu selection, she or he is taken to the Members page (Figure 10-51). Notice
that this content page contains a submenu (List All, Delete Selected). Figure 10-52 shows
the result when the user selects List All from the menu. If the user selects Payments from
the top-level menu, the Payments page appears, as shown in Figure 10-53. Notice that
this page also contains a menu.

Figure 10-50 Master Page, showing the homepage

548 Chapter 10 Web Applications with Databases

Figure 10-51 Members page

Figure 10-52 Gridview listing of all members

On the Payments page, you only need to implement the List All menu item.

Create the following content pages:

• Members—On this content page, display a menu containing: List All and Delete Selected.
• Payments—On this content page, display a menu containing: List All, Date Range,

Delete Selected, and By One Member.

Programming Challenges 549

Figure 10-53 Payments page

The following are suggested CSS style classes for the main menu. The second style
becomes active when the user hovers the mouse over the menu.

.MainMenu
{

background-color:#ebf5fc;
padding-top:3px;
padding-bottom:5px;
border-bottom:solid 1px #00a8ec;
border-top:solid 1px #00a8ec;
font-size:.8em;
font-weight:bold;
font-variant:small-caps;

}
.MainMenu a:hover
{

color:#ebf5fc;
color:White;
background-color:Navy;

}

2. Karate Payments Grid

Write an ASP.NET application that displays the first name, last name, date, and payment
amounts made by members in the Karate database. Permit the user to display payments,
but not modify the data. Sort the rows by last name. Center the payment dates in short
date format. For each column except the payment date, left-justify the heading by set-
ting the HeaderStyle.HorizontalAlign property to Left. Put a blue, one-pixel-wide bor-
der around the grid. Use the grid’s HeaderStyle property to give the headings white text
on a dark blue background. A sample is shown in Figure 10-54.

550 Chapter 10 Web Applications with Databases

Figure 10-54 Grid showing member names, dates, and payments

3. Karate Schedule Details

The Schedule table in the Karate database contains the following columns: ID, Day,
Time, and Instructor_Id. The Day value is an integer between 0 and 6, where 0 indicates
Monday and 6 indicates Sunday. Display the table in a DetailsView control, as shown
in Figure 10-55. Permit the user to add, remove, and update table rows. Include a
TextBox control that lets the user enter an ID value and select the row to be displayed.

Figure 10-55 Showing Karate schedule details

4. Campus GridButtons Application

Use the Campus GridButtons application you wrote for Tutorial 10-2 as a starting point
for this programming challenge. When the user clicks the Edit button on a grid row, as
shown in Figure 10-56, text boxes automatically appear in the row. When the user clicks

Figure 10-56 The user has entered an invalid number of credits

Programming Challenges 551

the Update button, a RowUpdating event is fired. Inside the event handler, you must
implement error-checking code that checks the value entered in the Credits column. If
the user enters a value less than 1 or greater than 5, display an error message below the
grid, and cancel the update operation. The text boxes remain open. In the grid’s RowUp-
dating event handler, the expression e.NewValues.Item ("credits") returns the contents
of the TextBox containing the credits. If you find it to be out of range when you check
the value, display an error message and set e.Cancel to True.

5. Bug-Tracking Application

Using what you have learned about databases, ASP.NET controls, CSS styles, and mas-
ter-detail pages, create an application that helps a development team track software
bugs. Use the SQL Server database file BugTrack.mdf, located in the chapter examples
folder. Study the database structure and match the data in the tables to the screen images
shown in this description.

When the application runs, as shown in Figure 10-57, the master page displays the bar
along the top and the menu on the left. The content area with the program title is sup-
plied by a page named About.aspx. It is the same page displayed when the user clicks
the About menu item on the left. The content area on the bottom is a GridView control
located directly in the master page.

Figure 10-57 Running the BugTrackAW application

Figure 10-58 shows the master page in Design view. The ContentPlaceHolder at the bot-
tom of the page contains a GridView control that displays default content. In other
words, when the user navigates to the content pages, the contents of the lower Con-
tentPlaceHolder (Latest Bug Reports) stay the same.

When the user selects View all from the menu, the upper pane displays a list of all bug
reports, as shown in Figure 10-59. When the user chooses Select by category from the
menu, the upper content pane displays a list of categories, as shown in Figure 10-60.
When the user selects a category and clicks the Go button, the upper grid displays a list
of matching bug reports.

6. Home Repair Services—Adding Appointments (Extra Challenging)

In Section 5.4 of Chapter 5, you learned how to create a Windows Forms application
named Home Repair Services. In this (extra challenging) programming challenge, you

will convert that program to a Web application and then implement the New Appoint-
ment window, as shown in Figure 10-61.

The data-tier and middle-tier classes should be put into a component (class library)
named RepairServicesLib. This is a more advanced assignment, so you may have to con-
sult with your classroom instructor on the details of getting the DataSet set up in your
project. Here are the general steps, in the order that we used when creating the solution:

1. Using Windows Explorer, copy the following files to your component: Cus-
tomers.vb, Appointments.vb, RepairTypes.vb, and RepairServices.mdf. Refresh the

552 Chapter 10 Web Applications with Databases

Figure 10-58 Bug TrackAW master page, in Design view

Figure 10-59 Executing the View all command (ViewAllBugs.aspx)

Programming Challenges 553

Figure 10-60 Executing the Select by category command

Figure 10-61 Adding a new repair appointment

component’s project name inside Visual Studio. (Note: This copy of the database is
needed only while creating the DataSet definitions.)

2. Right-click the project name and add a DataSet component to the project. Drag the
Appointments, RepairTypes, and Customers tables from the ServerExplorer win-
dow onto the surface of the editor window for RepairServicesDataSet.xsd.

3. Within the same Visual Studio solution, create a separate Web site that references
the RepairServicesLib component.

4. Create an App_Data folder in your Web site, and copy the RepairServices.mdf file
into that folder. This is the database file that will be updated when your application
executes.

5. Right-click the Web site name in Server Explorer, select Add Reference, and select
RepairServicesLib.

Other Details

Fill the dropdown list controls from the Page_Load event handler when the IsPostBack
property equals False. Use a TextBox for the appointment date. Use a Label control to
display a message that tells the user whether adding the Appointment was successful.

This page intentionally left blank

TOPICS

Web Services and Windows
Presentation Foundation11

11.1 Introducing XML Web Services

11.2 BookService Web Service

Tutorial 11-1: Creating the BookService
Web Service

Tutorial 11-2: Consuming BookService
from a Web application

Tutorial 11-3: Consuming BookService
from a Windows Forms application

11.3 Windows Presentation Foundation
(WPF)

Tutorial 11-4: Creating the Kayak Tour
Reservations application

Tutorial 11-5: Adding Images to the
Kayak Tour Reservations application

Tutorial 11-6: Publishing the Kayak
Tour Reservations application

Tutorial 11-7: Publishing the Kayak
Tour Reservations application to the
Web

555

C
H

A
P

T
E

R

This chapter will help you understand the basic technologies behind Web services and the
types of applications that use them. You will learn how to create and consume Web services.
Next, the chapter introduces Microsoft’s exciting new Windows Presentation Foundation
(WPF). WPF programs can be run from both the desktop and the Web. We show how to use
ClickOnce technology, which greatly simplifies application deployment and installation.

11.1 Introducing XML Web Services
XML Web Services is a valuable technology that permits computers to share data and meth-
ods across networks, particularly across the Internet. Applications can be built that collect
data and perform useful operations from a wide variety of sources. Web services are strongly
supported by the .NET Framework.

In general, a Web service is a component that is compiled and stored on a Web site. It has
no visual interface, but it exposes methods and properties that may be accessed by other pro-
grams on a network. The XML part of the name says that the data transferred over the net-
work is in Extended Markup Language (XML) format.

When an application wants to use a Web service, it creates a local object that acts as a rep-
resentative, or proxy, for the Web service. It then uses the object to call Web service meth-
ods. We say that the application consumes the Web service. Web services can be consumed
by Windows applications and Web applications. Web services make it convenient for pro-
grams to acquire and distribute data across the Internet.

556 Chapter 11 Web Services and Windows Presentation Foundation

Web Service Technology
Some Web sites let users compare prices of consumer items sold by different online stores. The
user searches for an item by category, views a list of matching items, and selects an item for price
comparisons. Behind the scenes, the Web application consumes Web services provided by each
online store that return the item’s price, shipping information, and so on. The Web application
builds a Web page from all this information that lets the end user view store names and prices.

Here are a few ways Web services are useful:

• Credit card transactions are processed in the background.
• Manufacturers and distributors provide prices and inventory availability on demand.
• Stores provide product and pricing information. Amazon.com, for example, has a Web

service that lets you search for books by keyword and retrieve detailed information
about individual titles.

• Government agencies provide weather and satellite information.
• Real-time stock market data is sent to subscribers.
• Sports events results are obtained on demand.
• Companies embed functions in their desktop software that permit users to order prod-

ucts from other companies.

Initially, background communication on the Web was accomplished by custom-designed
communication programs. Because of a lack of standardization, data produced by one pro-
gram was not compatible with other software. Web services make it possible for Web sites
to standardize the interactions between programs on the Web. Web services incorporate the
following enabling technologies and specifications:

• eXtensible Markup Language (XML)—A text markup language for the exchange of
structured documents and data across the Internet. Web services use XML to store and
transmit objects and other data.

• Simple Object Access Protocol (SOAP)—An industry-standard protocol for handling
requests and responses. It includes class names, method names, and parameters. SOAP,
like XML, is represented as plain text and can pass through Internet firewalls. A
firewall is a software barrier set up by a person or organization to limit or filter com-
munications between their internal network and the Internet.

• Web Services Description Language (WSDL)—Specifies the formatting of calls to Web
service methods. In ASP.NET, a WSDL file is created in the Web References folder of
a program that consumes (calls) the Web service. For each method exposed by the Web
service, the WSDL file shows the method name, parameter list, and return type.

• Universal Description, Discovery, and Integration (UDDI)—A directory service that
makes information about Web services public. You can use it to search for Web serv-
ices on a network or on the Internet.

Windows Communication Foundation (WCF)
Microsoft created Windows Communication Foundation (WCF) as a unified programming
model and runtime support for building Web services applications. Using the .NET frame-
work, WCF lets you build secure, reliable Web services. It integrates very nicely into other
Microsoft technologies, such as Enterprise Services and System.Messaging. We say that a
WCF service is a Web service that was built using Windows Communication Foundation.

Attribute Classes
The .NET framework uses attribute classes to identify important elements of a WCF serv-
ice. The most important classes are:

• ServiceContractAttribute

11.1 Introducing XML Web Services 557

• OperationContractAttribute
• DataContractAttribute
• DataMemberAttribute

We will discuss details about these classes in a moment. But what you need to know is that
attribute classes associate predefined system information or custom information with a tar-
get element. Examples of such elements are classes, fields, methods, interfaces, and events.
In Visual Basic, attributes are special markers inserted in your source code just before the
elements they affect. You may recall from Chapter 6, for example, that each Unit test
method was preceded by the <TestMethod()> attribute. Attributes are often referred to as
metadata.

In the following discussions, we will refer to the ServiceContractAttribute class as simply a
service contract. The same is true for the other attribute classes.

Service Contract

In .NET terms, a service contract is an interface that defines which methods can be called
from a specific WCF service. The service contract is defined as a Visual Basic interface. You
may recall from Chapter 3 that an interface defines a set of methods and properties that can
be implemented by other classes. The classes that implement the interface are guaranteed to
contain these methods and properties. At that time, you learned how to create a CompareTo
method, which was part of the IComparable interface. The <ServiceContract()> attribute
must be inserted just before the declaration of an interface.

<ServiceContract()>
Public Interface IService

The name IService can be any name you select and that defines your WCF service. For exam-
ple, you could call it IBookService if the service returns information from a bookstore.

Operation Contract

Within an Interface that has been identified as a ServiceContract, you create methods and
properties named operation contracts. An operation contract is a method that exists within
a service contract. It can also be called a WCF service method.

The following shows a sample operation contract in which the exported method named Get-
Data receives a String input parameter and returns a Book object. The <OperationCon-
tract()> attribute must appear just before the function declaration.

<OperationContract()>
Function GetData(ByVal ID As String) As Book

Data Contract

A data contract is a class type that will be used by the WCF service. The type is implicitly seria-
lizable, meaning that it can be converted to and from a stream of bytes. This is an essential
quality for all data types used by WCF services because only by serializing an object can you
pass it across a network. The <DataContract()> attribute must appear just before the class dec-
laration. The class must be declared Public. Following is an example of a data contract:

<DataContract()>
Public Class Book

<DataMember()>
Public Property ISBN() As String
<DataMember()>
Public Property Title() As String
<DataMember()>
Public Property Price() As Double

End Class

558 Chapter 11 Web Services and Windows Presentation Foundation

By creating this data contract, we show that we intend to pass Book objects between clients and
the WCF service. Notice that each property in this class contains a <DataMember()> attribute.

Data Member

In the current context, a data member is a member of a data contract. Within a data con-
tract, the <DataMember()> attribute identifies fields, properties, and events that hold values
you want to serialize. Any member not having this attribute will be invisible to client appli-
cations that call the WCF service.

Creating a WCF Service in Visual Studio
You create a WCF service in Visual Studio by selecting File, and then New Web Site from
the File menu. Select WCF Service from the list of templates, as shown in Figure 11-1.

Figure 11-1 Creating a WCF Service Web site

The following files are created automatically:

• Service host file (Service.svc)
• Service contract file (IService.vb)
• Service implementation file (Service.vb), also known as a CodeBehind file
• Web configuration file (Web.config)

The service host file contains just one line, the ServiceHost directive, written as follows in
XHTML:

<%@ ServiceHost
Language="VB"
Debug="true"
Service="Service"
CodeBehind="~/App_Code/Service.vb" %>

The Language property identifies the programming language used in the service implementation
(CodeBehind) file. The Debug property enables or disables debugging. The Service property
names the Visual Basic class that implements the WCF service (named Service in this example).
Finally, the CodeBehind property contains the path of the service implementation file.

11.1 Introducing XML Web Services 559

Figure 11-2 Adding a Web Reference to a client application

The service contract file (IService.vb) defines an interface that is passed to all client programs
so they know what they can use from the Web service.

A service implementation file contains the Visual Basic code that implements all methods
defined in the interface for the WCF service.

A Web configuration file looks very much like a configuration file for a normal ASP.NET
Web site. It contains a section named <system.serviceModel>, however, that defines attrib-
utes relating only to WCF services.

Consuming a Web Service
If you imagine a Web service to be a kind of server of information and services, then
consuming a Web service means to act as its client. A Web service consumer can be a Win-
dows Forms application, a Web site, a class library, or even another Web service.

Suppose we want our client to be an ASP.NET Web site. After creating the site, we must
add a Web reference to the Web service. A Web reference is information added to an appli-
cation’s web.config file that permits a Web application to locate a Web service. Here is an
example:

<add key="localhost.BookService"
value="http://localhost:61796/Book Service/BookService.svc"/>

Visual Studio lets you add four types of Web references:

• A Web service within the same Visual Studio solution container.
• A Web service running on the same computer, using the Internet Information Services

(IIS) Web server.
• A Web service running on the local network (using a UDDI server).
• A Web service running on the Internet.

To add a reference to an existing Web service, select the client project’s name in the Solution
Explorer window and select Add Web Reference from the context menu.

Figure 11-2 shows the list of choices within the Add Web Reference dialog window. Of these
four types, the first is easiest to use, so you should create your client application(s) within
the same solution container as the WCF service. When you click the Web services in this
solution hyperlink, you will see a list of services, as in Figure 11-3. Select one of the services,
causing the window in Figure 11-4 to appear. Notice on the right side that the default Web
reference name is localhost. You use this identifier as a namespace when writing code that
refers to Web service classes and methods.

560 Chapter 11 Web Services and Windows Presentation Foundation

Writing Code That Calls Web Service Methods

Once you have added a Web Reference to your client Web site, you can open the CodeBe-
hind window of a Web form in your site and add an Imports statement for the Web refer-
ence name (localhost):

Imports localhost

Then you must create an instance of the WCF service:

Dim client As New localhost.BookService

Then you can call a service method. The following statement, for example, calls GetBook-
List, which returns a list of Book objects.

Dim bookList As List(Of Book)
bookList = client.GetBookList()

Figure 11-3 About to select a Web service

Figure 11-4 After selecting a Web service

11.2 BookService Web Service 561

We assume that the Book class was defined inside the WCF service interface, with the <Data-
Contract()> attribute class. Because the WCF service has already defined the Book class, we
do not need to redefine it in the client Web application. You will create your own Web serv-
ice in Tutorial 11-1.

Checkpoint

1. How does a Web service transmit objects across a network?

2. What does WSDL stand for?

3. What function does UDDI provide?

4. What is the name of Microsoft’s implementation of Web services?

5. When a Web service declares a class, which attributes are required for the class to
be serializable?

6. What purpose do attribute classes serve in WCF services?

11.2 BookService Web Service
The easiest way to learn about Web services is to create one of your own. Aside from the
few attribute classes explained in Section 11.1, the implementation of a Web service is just
like programming a Web site. First, we will show you how to create a simple Web service
that lets the user display a list of books and search for books by ISBN number. Then you
will create a Web site that consumes your Web service. Finally, you will create a Windows
Forms application that consumes the same Web service.

Tutorial 11-1:
Creating the BookService Web Service

In this tutorial, you will create a WCF Service Web site named BookService. In its imple-
mentation, the service contains a list of books, with titles, ISBN numbers, and prices. The
service will let callers get the complete book list or an individual book. Figure 11-5 shows
a simple client application that consumes the BookService Web service. The ListBox con-
trol contains the entire list of books. The Label just above the ListBox contains the title
and price of the book that was returned when the user searched for ISBN 1000555.

Figure 11-5 Consuming the BookService Web service

562 Chapter 11 Web Services and Windows Presentation Foundation

Tutorial Steps

Step 1: From the File menu, select New, and then select Project. Under Other Project
Types in the left-hand pane, select Visual Studio Solutions. Choose the Blank
Solution template and name it BookService Example.

Step 2: Next, you will add a WCF Service Web site named BookService to the solu-
tion. To do that, right-click on the solution name in the Solution Explorer
window, select Add, select New Web Site, and select WCF Service from the list
of templates.

Step 3: Rename the service host file (Service.svc) to BookService.svc. Change its con-
tents to the following:

<%@ ServiceHost
Language="VB"
Debug="true"
Service="BookService"
CodeBehind="~/App_Code/BookService.vb" %>

Step 4: Rename the service contract file (IService.vb) to IBookService.vb. Open the
file and replace the ServiceContract definition with the following code:

<ServiceContract()>
Public Interface IBookService

<OperationContract()>
Function GetBookList() As List(Of Book)

<OperationContract()>
Function FindBook(ByVal ISBN As String) As Book

End Interface

The IBookService interface contains two methods: GetBookList returns a List
of Book objects. FindBook searches for a book with a matching ISBN num-
ber and either returns the book or it returns null (Nothing).

Step 5: In the same file, replace the existing DataContract definition with the follow-
ing code that defines the Book class:

<DataContract()>
Public Class Book

<DataMember()>
Public Property ISBN() As String
<DataMember()>
Public Property Title() As String
<DataMember()>
Public Property Price() As Double

End Class

Step 6: Rename the service implementation file (Service.vb) to BookService.vb. Open
the file and replace its code with the following lines. Notice that the class has
been renamed as BookService.

1: Public Class BookService
2: Implements IBookService
3:
4: Private bookList As New Dictionary(Of String, Book)
5:
6: Public Sub New()
7: bookList.Add("1000021", New Book With {.ISBN =

"1000021",

8: .Title = "Starting out with C++", .Price = 92.0})

11.2 BookService Web Service 563

9: bookList.Add("1000034", New Book With {.ISBN =
"1000034",

10: .Title = "Starting out With Visual Basic", .Price
= 95.0})

11: bookList.Add("1000555", New Book With {.ISBN =
"1000555",

12: .Title = "Starting out With Java", .Price = 85.0})
13: bookList.Add("1000786", New Book With {.ISBN =

"1000786",

14: .Title = "Assembly Language", .Price = 97.0})
15: bookList.Add("1001029", New Book With {.ISBN =

"1001029",

16: .Title = "Starting out With C#", .Price = 89.5})
17: End Sub
18:
19: Public Function GetBookList() As List(Of Book) _
20: Implements IBookService.GetBookList
21:
22: Return bookList.Values.ToList()
23: End Function
24:
25: Public Function FindBook(ByVal ISBN As String) As Book _
26: Implements IBookService.FindBook
27: If bookList.ContainsKey(ISBN) Then
28: Return bookList(ISBN)
29: Else
30: Return Nothing
31: End If
32: End Function
33: End Class

Line 4 defines a Dictionary object that will contain all the books. Each book
is indexed by a string containing its ISBN number. Lines 6–17 use the class
constructor to initialize and insert several books into the list. The GetBook-
List method on line 19 returns the Values property of the dictionary (as a list).
The FindBook method on line 25 searches for a book that matches the given
ISBN number and returns a book if one is found.

Step 7: View the BookService.svc file in a browser. You will see the message shown in
Figure 11-6, which explains that you must create a client application to test
the service.

Figure 11-6 Viewing the BookService.svc file in a browser

564 Chapter 11 Web Services and Windows Presentation Foundation

Step 8: Click on the hyperlink. You should see a large amount of XML code that
defines the Web service. Specifically, this XML code is written in Web Services
Description Language (WSDL). Look at the excerpt from this file shown in
Figure 11-7. Notice how the GetBookList method has been encoded as two
values: (1) IBookService_GetBookList_InputMessage, which is sent from the
client to the Web service, and (2) IBookService_GetBookList_OutputMessage,
which represents the message sent back from the Web service to the client.

Figure 11-7 Excerpt from BookService.svc file

Summary

An explanation of WSDL is beyond the scope of this book, but you can read about it
from many sources on the Web. We encourage you to read the article Understanding
WSDL, which is available at http://msdn.microsoft.com.

Creating a simple Web service is surprisingly easy, given the excellent tools available in
Visual Studio. In Tutorial 11-2, you will create a client Web site that consumes Book-
Service.

TIP: If you modify a WCF service that is referenced by a client application,
the client must refresh the Web reference to see the modifications. To do that,
select the Web reference in the client’s Solution Explorer window and select
Update Web/Service References.

Displaying Web Service Exception Information
Like other methods, Web service methods can throw exceptions. For security reasons, they
don’t automatically convey details about of the thrown exception. If they did, a dishonest
programmer could call the service method in a way that would generate an exception, just
to find out about the internal implementation of the service. By default, when a Web method
throws an exception, the output in the client program looks like Figure 11-8, assuming that
a Web client application is consuming the Web service. The instructions on the page explain
how to modify the web.config file in the Web service project if you want to display more
information. All you have to do is find the following line:

<serviceDebug includeExceptionDetailInFaults="false"/>

and change it to the following:

<serviceDebug includeExceptionDetailInFaults="true"/>

http://msdn.microsoft.com

11.2 BookService Web Service 565

Then, if you enable debugging in the Web client application, an uncaught exception looks like
Figure 11-9. In this example, the message says: The given key was not present in the dictionary,
and you can see the location in the client source code where the FindBook method was called.

In any event, when you write code that consumes a Web service method, remember to use
Try Catch statements to catch possible exceptions.

Figure 11-8 Unhandled exception when the book ISBN is not found and no
debugging information is generated by the Web service

Figure 11-9 Unhandled exception when the ISBN is not found, with debugging
enabled

Tutorial 11-2:
Consuming BookService from a Web application

In this tutorial, you will create a simple Web site that consumes the BookService Web
service. The user interface for this Web site was shown previously in Figure 11-5.

Tutorial Steps

Step 1: Using the same Visual Studio Solution that contains the BookService Web
service, add a new empty ASP.NET Web site named BookService Web Client.

Step 2: Right-click the Web site name in the Solution Explorer window and select
Add Web Reference. In the window that appears, click on Web services in this
solution. Select BookService, and click the Add Reference button to close the
window.

Notice that a new folder named App_WebReferences was added to your site.
Another folder within it is named localhost and it includes several files:

• BookService.disco—Here, you can find the Web path to the BookService.svc,
known as the service host file.

566 Chapter 11 Web Services and Windows Presentation Foundation

• BookService.wsdl—A file written in Web Services Discovery Language
(WSDL), which matches the file you examined at the end of Tutorial 11-1.

• BookService.xsd—Called a schema definition file, which defines the Web
service methods and return values. It can be displayed in the XML Schema
Explorer window, as shown in Figure 11-10. (To display this window, dou-
ble-click the filename, which opens a design window. In that window, click
the hyperlink phrase XML Schema Explorer.)

Figure 11-10 BookService.xsd file, displayed in the XML Schema Explorer

• BookService0.xsd and BookService1.xsd—Additional schema definitions
for the Book and ArrayOfBook serializable types.

Step 3: Add a Web form named Default.aspx to the Web site and insert the controls
shown in Table 11-1. (Refer back to Figure 11-5.)

Step 4: Add the following Imports statement to the top of the form’s CodeBehind file.
This is necessary to reference the Web service interface.

Imports localhost

Step 5: Add the following code to the form’s class. First, a BookService object named
client is declared.

1: Private client As New localhost.BookService
2:
3: Protected Sub lnkGetList_Click() Handles lnkGetList.Click
4: With lstBooks
5: .Items.Clear()
6: For Each bk As Book In client.GetBookList
7: lstBooks.Items.Add(bk.Title)
8: Next
9: End With
10: End Sub

Table 11-1 Controls in the BookService Client application page

Control Type Control Name Property Values

LinkButton lnkGetList Text: Get complete book list

LinkButton lnkFindBook Text: Find book by ISBN:

TextBox txtISBN

Label lblBook

ListBox lstBooks

11.2 BookService Web Service 567

Line 1 declares a BookService object named client. Line 3 declares a Click
handler for a LinkButton control. Line 6 iterates through the list of books
returned by the Web service’s GetBookList method. The method returns a
List(Of Book) object. Line 7 adds each book title to the ListBox named
lstBooks.

Step 6: Add the following code to the class:

1: Protected Sub lnkFindBook_Click() Handles lnkFindBook.Click
2: ' Search for a book by ISBN number.
3: Dim aBook As Book = client.FindBook(txtISBN.Text)
4: If aBook Is Nothing Then
5: lblBook.Text = "Book not found"
6: Else
7: lblBook.Text =
8: String.Format("Book found: {0}, on sale for " _
9: & "{1:c}", aBook.Title, aBook.Price)
10: End If
11: End Sub

Line 1 declares a Click handler for the other LinkButton, which searches for
a book. Line 4 calls the Web service’s FindBook method, passing the ISBN
number entered by the user into the text box. Line 4 checks for a return
value of Nothing, in case the ISBN number was not found. If the book was
found, line 8 builds a string containing the book’s title and price. Note that
HTML tags are embedded inside the string so the fields can be displayed in
a bold font.

Step 7: Save the form and view in a Web browser. Experiment with searching for the
following ISBN numbers: 1000021, 1000034, 1000555, 1000786, and
1001029.

Summary
In general, creating and consuming Web services is not overly different from ordinary Web
application programming. The main issues you must deal with are practical—for example,
the client might not be able to connect to the service in a timely manner. Also, the Web serv-
ice may require some authentication of the client in the form of a name and password.

In Tutorial 11-3, you will consume the same BookService Web service from a Windows
Forms application.

Tutorial 11-3:
Consuming BookService from a Windows Forms application

In this tutorial, you will create a simple Windows Forms application site that consumes
the BookService Web service. The running application appears in Figure 11-11. The user
can click a link to get the complete book list, which appears in the list box. Or, they can
enter an ISBN number and click another link to find a matching book, which appears
in a Label control just above the list box.

568 Chapter 11 Web Services and Windows Presentation Foundation

Figure 11-11 Running the BookService WinForms client

Tutorial Steps

Step 1: Open the Solution container that you used when creating the BookService
Web service. Add a new Windows Forms project to the solution and name it
BookService WinForms Client.

Step 2: Using Figure 11-11 as a guide, add the controls listed in Table 11-2 to the
form.

Step 3: Right-click the project name in Solution Explorer and select Add Service Refer-
ence. In the window that appears, click the Discover button. Expand the entry
entitled BookService/BookService.svc. A sample is shown in Figure 11-12. Click
on IBookService to display its operations (FindBook and GetBookList). Rename
the Namespace entry at the bottom to LocalServices. Click the OK button to
save the reference.

Figure 11-13 shows that the LocalServices namespace has been added to the
Service References section of the Solution Explorer window.

Table 11-2 User interface controls

Control Type Name Property Settings

Form (default) Text: BookService Client Application
FormBorderStyle: FixedSingle

TextBox TxtISBN

LinkLabel lnkGetList Text: Get complete book list

LinkLabel lnkFindBook Text: Find book by ISBN:

ListBox lstBooks

Label lblBook

TIP: There is nothing special about the name LocalServices. We chose it
for the namespace because the Web service we’re calling is located on your
local computer.

11.2 BookService Web Service 569

Figure 11-12 Adding a Service Reference

Figure 11-13 Service References entry in Solution Explorer

Step 4: Double-click BookService_WinForms_Client.LocalServices in the Solution
Explorer window. This will display the namespace in the Object Explorer
window, as shown in Figure 11-14.

Figure 11-14 Displaying the LocalServices namespace in Object Explorer

570 Chapter 11 Web Services and Windows Presentation Foundation

Notice that the LocalServices namespace contains two classes, BookService-
Client and Book. The Book class was imported directly from the Web service
definition. The BookServiceClient class was created by Visual Studio when
you added the service reference in Step 3 of this tutorial. Your application
communicates directly with this class, which is often called a client proxy.
When you call its methods, the proxy relays the calls to the Web service. If you
would like to see the source code for this class, select the Show All Files tool-
bar button at the top of the Solution Explorer window, and then open the file
named Reference.vb, which is displayed when you expand the entry named
Reference.svcmap.

Step 5: Click on BookServiceClient in the Object Browser window.

Notice that BookServiceClient contains the FindBook and GetBookList meth-
ods. These methods match the name and parameter lists of the BookList Web
service exactly.

Step 6: Open the startup form’s code window and add the following Imports state-
ment, which imports the LocalServices namespace:

Imports BookService_WinForms_Client.LocalServices

Step 7: Add the following declaration to the top of the class:

Private client As New BookServiceClient

The BookServiceClient class contains the methods you will be calling when
you invoke the Web services.

Step 8: Add the following code to the class:

Protected Sub lnkGetList_Click() Handles lnkGetList.Click
With lstBooks

.Items.Clear()
For Each bk As Book In client.GetBookList

lstBooks.Items.Add(bk.Title)
Next

End With
End Sub

Step 9: Add the following Click method for the link button that searches for books:

Protected Sub lnkFindBook_Click() Handles lnkFindBook.Click
' Search for a book by ISBN number.
Try

Dim aBook As Book = client.FindBook(txtISBN.Text)
lblBook.Text =

String.Format("Book found: {0}, on sale for " _
& "{1:c}", aBook.Title, aBook.Price)

Catch ex As Exception
lblBook.Text = "Book not found"

End Try
End Sub

Notice that the code above catches exceptions. In the Web client version
(Tutorial 11-2), we were able to check for a return value of Nothing when
calling FindBook. In a Windows Forms application, which we have written
here, the call to FindBook throws an exception when the ISBN number is not
found. Therefore, we must catch the exception and display a Book not found
message.

11.2 BookService Web Service 571

Services That Return Database Data
One of the most useful tasks a Web service can perform is to return database data. Suppose
you want to populate a DataGridView control in a client application, using data from a Web
service. Getting service contracts in .NET to return DataTable and DataSet objects can be
tricky. But you can easily return a strongly typed collection such as List(Of Type). First, you
will need to define a DataContract for the type of object you want to insert in the list and
then copy the rows from a DataTable into the list. To illustrate this concept, let us adapt
an example from the Home Repair Services application in Chapter 5. The following Data-
Contract defines a class named Appointment. It contains a constructor and a set of public
properties. Each property is labeled with the DataMember attribute.

<DataContract()>
Public Class Appointment

Public Sub New(ByVal apptIdv As Short, ByVal typeIdv As Short,
ByVal Descriptionv As String,ByVal Licensedv As Boolean,
ByVal CustIdv As Short, ByVal Scheduledv As DateTime)
ApptId = apptIdv
TypeId = typeIdv
Description = Descriptionv
Licensed = Licensedv
CustId = CustIdv
Scheduled = Scheduledv

End Sub

<DataMember()>
Public Property ApptId As Short
<DataMember()>
Public Property TypeId As Short
<DataMember()>
Public Property Description As String
<DataMember()>
Public Property Licensed As Boolean
<DataMember()>
Public Property CustId As Short
<DataMember()>
Public Property Scheduled As DateTime

End Class

The DataContract is usually located in the same file as the ServiceContract. A typical file-
name would be IRepairService.vb.

Next, our Web service contract can include a method named AllAppointments, which
returns a strongly typed List of Appointment objects. This is how we can implement the
method in the service implementation file:

1: Public Function AllAppointments() As List(Of Appointment) _
2: Implements IRepairService.AllAppointments
3:
4: Dim appts As New Appointments
5: Dim table As RepairServicesDataSet.AppointmentsDataTable
6: = appts.AllAppointments

Step 10: Save and run the application. Experiment with searching for the following
ISBN numbers: 1000021, 1000034, 1000555, 1000786, and 1001029.

Step 11: Enter an ISBN number that cannot be found. The application should say
Book not found.

572 Chapter 11 Web Services and Windows Presentation Foundation

7: Dim aList As New List(Of Appointment)
8: For Each row As RepairServicesDataSet.AppointmentsRow In table
9: aList.Add(New Appointment(row.ApptId, row.TypeId,
10: row.Description, row.Licensed, row.CustId, row.Scheduled))
11: Next
12: Return aList
13: End Function

Line 4 creates an instance of a middle-tier class named Appointments, which is not shown
here. Line 5 calls AllAppointments on that object, which returns a DataTable. Line 7 creates
a List object; line 8 iterates through the DataTable. Line 9 creates a new Appointment object,
using data from the current table row, and adds it to the List object (named aList). Finally,
Line 12 returns the List object. You will have a chance to implement this application in Pro-
gramming Challenge #3 at the end of this chapter. After compiling the Web service, you can
build a Web or desktop application that consumes the service.

Connecting an ObjectDataSource to a Web Service
The ObjectDataSource control in a Web application connects easily to Web services. When
you add this control to the form, select Configure Data Source from its tasks window, then
select localhost.ServiceName, where ServiceName is the name of the Web service. An exam-
ple is shown in Figure 11-15, using the RepairService Web service.

Figure 11-15 Connecting a Web service to an ObjectDataSource control

In the next panel, select the Web service method that you want to use for the Select opera-
tion of the data source, as shown in Figure 11-16. If you bind a GridView control to the
ObjectDataSource, you will notice that extra columns have been created. When you edit the
grid’s columns collection as shown in Figure 11-17, delete the extra columns ending with the
suffix Specified.

As an alternative, you can always fill a GridView control using dynamic binding by calling
the Web service method and assigning its return value to the grid’s DataSource property.
Here is an example:

Dim service As New localhost.RepairService
gvwAppointments.DataSource = services.AllAppointments()
gvwAppointments.DataBind()

This approach prevents you from modifying the grid columns in Design view.

11.3 Windows Presentation Foundation (WPF) 573

Checkpoint

7. Yes or no: Does a Web service display a Web page by itself?

8. What is the term for actions by an application that calls Web service methods?

9. What was contained in the service host file for the BookService Web service?

10. Which two methods were exposed by the BookService Web service?

11.3 Windows Presentation Foundation (WPF)
Imagine a single application that has the usual set of menus and controls, along with rich
text displayed in columns, a three-dimensional (3D) bar chart, and live video. Imagine
being able to combine all these elements on the same page. These capabilities are available
to advanced developers using Microsoft’s Windows Presentation Foundation (WPF). In the
past, developers with a wide variety of specialties and skills would be required to create
such an application. They would have to integrate different toolkits and spend a lot of time

Figure 11-16 Selecting a Web service method (ObjectDataSource control)

Figure 11-17 Editing the columns collection of a GridView control

574 Chapter 11 Web Services and Windows Presentation Foundation

testing and debugging. To make matters worse, they might have to redo these applications
completely for the Web.

Microsoft created the Windows Presentation Foundation (WPF) technology for a number of
reasons: (1) They wanted developers to be able to create applications that could run both on
the desktop and the Web, and (2) they wanted to make it easy to incorporate advanced two-
dimensional (2D) and 3D graphics and multimedia into applications without having to link
together separate tools manually.

WPF was first introduced in Visual Studio 2008 and has been greatly expanded in Visual
Studio 2010. Microsoft has reworked the traditional Windows Forms technology to
allow it to incorporate WPF forms within the same applications. In the future, WPF will
be Microsoft’s new platform for applications that run on both the Windows desktop and
the Web.

Visual Studio contains an interactive design surface that provides drag-and-drop support for
WPF layout and controls, a new property editor, and Intellisense support for source editing.
Microsoft Expression Blend is the tool used by designers to create advanced interactive
visual elements in applications. Animation, multimedia, and advanced styles are often devel-
oped in this way.

eXtensible Application Markup Language (XAML)
eXtensible Application Markup Language (XAML) is an XML-based markup language that
describes visual elements in WPF applications. In some ways, it resembles the XHTML
markup used in ASP.NET Web applications. Pronounced as Zamel, XAML it can be gener-
ated by both Expression Blend and Visual Studio. It can be referenced by coding statements
at runtime.

In the past, artistic designers and programmers had great difficulty working together unless
they were extensively trained to do so. The designer might create a graphic design for a Web
page and then pass it along to the programmer to add functions needed by the application.
But the designer might not know whether his or her design vision could be implemented by
the programmer. Once the programmer started to add code, it was nearly impossible to
make any changes or improvements to the visual design.

By creating XAML and WPF, Microsoft allowed designers and programmers to work
together, each taking advantage of his or her special skills. The same project can be passed
back and forth between the designer and the programmer as it gradually takes shape. Using
XAML, the designer can create rich visual interfaces that easily lend themselves to coding by
a programmer.

Layout and Controls
A WPF application controls its layout through the user of containers named panels. Each
panel can contain child elements, such as controls like buttons and check boxes, or other
panels. There are three types of panels:

• DockPanel—Allows child elements to be positioned along the edges of the panel.
• Grid—Allows child elements to be positioned in predetermined rows and columns,

similar to a table.
• Canvas—Allows child elements to be positioned anywhere in the panel.

All of the standard controls are available, such as TextBox, CheckBox, and ComboBox.
More advanced controls are also available, including DocumentViewer, MediaElement, and
ViewPort3D.

11.3 Windows Presentation Foundation (WPF) 575

Types of Applications

Stand-Alone WPF

A stand-alone WPF application runs like any other Windows application. You do not need
to use a Web browser to run it. This type of program runs with the same privileges as the
current user, so it can access the computer’s hard drive, use network sockets, and so on. It
can be installed from a local disk, a network server, or in a third way named ClickOnce.
Using ClickOnce technology, a Web browser connects to a page containing a button that
downloads and installs the WPF application on a user’s computer.

There is a clear advantage to creating ClickOnce applications. You can publish an applica-
tion to a Web server for others to use. Later, when you have made improvements to the pro-
gram, you can republish the application. This makes it easy for users to get the latest version
of your work.

XAML Browser Applications (XBAPs)

A XAML browser application (XBAP) runs inside Internet Explorer. It can use most of the
capabilities of WPF in a browser application.

An XBAP is silently loaded via ClickOnce and looks just like a Web page. It is given only
a limited amount of trust, so it does not have all the privileges normally given to desk-
top applications. For example, it cannot create other windows, display dialog boxes,
access the full file system of the computer, or execute user interface code created with
Windows Forms.

In Tutorial 11-4, you will begin to create your first stand-alone WPF application.

Tutorial 11-4:
Creating the Kayak Tour Reservations application

In this tutorial, you will begin to create a stand-alone WPF application named Kayak
Tour Reservations that lets the user sign up for a kayak tour. By the time you finish the
tutorials in this chapter, your application will let users select the type of kayak they want
to use, the tour location, and the tour date.

Tutorial Steps

Step 1: On the File menu, select New Project. Select WPF Application from the list of
application templates. Name the project Kayak Tour Reservations and click
the OK button.

Step 2: Select Save All from the File menu. When the Save Project dialog appears,
choose a folder location for your project and click the Save button.

Step 3: The MainWindow.xaml Design window should appear, as shown in Figure 11-18.
You should also see another tab, labeled MainWindow.xaml.vb. When you click
this tab, you see the code file for MainWindow, where you will write event han-
dler procedures.

Step 4: Using the mouse, drag the slider in the upper-left corner of the Design win-
dow to zoom the form display in and out, making it appear larger and smaller.
This adjustment does not change the actual size of the window object. Look

576 Chapter 11 Web Services and Windows Presentation Foundation

Figure 11-18 Design window, immediately after creating a new WPF project

for its Height and Width properties in the Properties window to verify that
their values do not change.

Step 5: Using the mouse to drag the corner of the window, expand the window’s size
to about 380 units high and 600 units wide. Now you can see that Height and
Width properties have changed.

Step 6: Set the window’s Title property to Register for a Kayak Tour.

Step 7: Open the Toolbox window and expand the Common WPF Controls section.

Step 8: Drag a Label control from the Toolbox into the middle of the grid, near
the top. Set the following properties for the Label: FontSize = 30; Content =
Our Featured Kayak Tours. Drag the borders of the label with the
mouse so that all the text in the label is visible. A sample is shown in
Figure 11-19.

Step 9: Drag a Label control onto the grid near the left side and set its Content prop-
erty to Select a Type of Kayak.

TIP: The design surface automatically contains a single Grid control. The
advantage to using a grid is that you can use the mouse to drag controls
from the Toolbox onto the grid and position them anywhere you want. In
some applications, you will insert additional rows and columns into the
grid to help you align the different controls.

11.3 Windows Presentation Foundation (WPF) 577

Figure 11-19 A Label containing the application title

Step 10: Drag a ListBox control onto the grid, just below the label on the left side.
At the very top of the Properties window, set the ListBox’s Name property
to lstKayaks. Select its Items property, and click the Add button to add three
items to the box, as shown in Figure 11-20. For each item, you need to enter
a value into its Content property. The values are as follows:

Solo recreational
Tandem recreational
Solo sea kayak

Figure 11-20 Adding items to the lstKayak ListBox

578 Chapter 11 Web Services and Windows Presentation Foundation

Click the OK button to close the dialog. Figure 11-21 shows the design of the
form after adding the ListBox. It also includes ComboBox and DatePicker
controls that you will add during the next few steps.

Figure 11-21 Kayak Tours window in design mode

Step 11: Add another label to the right side of the form and set its Content property to
Select a Kayak Tour.

Step 12: Add a ComboBox control to the right side of the form and name it cboTour.
Select its Items property and add three items. Set the Content properties of the
three items to the following:

Na Pali Coast tour
Hanalei Bay tour
Wailua River tour

Step 13: We would also like to let the user select the date of his or her tour. Just below the
ComboBox control, add a Label that says Tour Date:. Next to it, add a DatePicker
control, and set its Content property to Show Calendar. In the following figure,
you can see the ComboBox control, with the DatePicker just below it:

Step 14: Save the project and run the application by selecting Start Debugging from
the Debug menu. Verify that you can select kayak types from the list box
and that you can select tour names from the ComboBox. Click the
DatePicker control, which causes the month calendar to appear, as shown in
Figure 11-22. When you select a date, the calendar closes and the date
appears in the text box.

11.3 Windows Presentation Foundation (WPF) 579

Figure 11-22 KayakTourWPF application at runtime

Step 15: Close the application window and return to Design mode.

Tutorial 11-5:
Adding Images to the Kayak Tour Reservations application

Most customers who go on kayak tours for the first time are not familiar with the var-
ious types of kayaks that they might be able to use. Therefore, a well-designed reserva-
tion system should display a picture of each kayak type to help the user make a
selection. In this tutorial you will add three kayak images to the Kayak Tour Reserva-
tions application. The pictures will be displayed by a WPF Image control. When the user
selects each type of kayak in the ListBox, the appropriate image will display at the bot-
tom of the window.

Tutorial Steps

Step 1: Copy three image files from the chapter examples folder into your application’s
directory (the directory containing the file named MainWindow.xaml). The
image filenames are rec_kayak.jpg, sea_kayak.jpg, and tandem_rec_kayak.jpg.

Step 2: Right-click the project name in Solution Explorer, select Add, and select
Existing Item. In the Add Existing Item dialog window, select Image Files in
the file type dropdown list in the lower corner of the window, as shown here:

TIP: Adding an image to a WPF application is a little different from the
way it’s done in Windows Forms. You must first add the image file to the
project, using the Solution Explorer window. Then, when you want to dis-
play the image in an Image control, select the image name from a list of
images belonging to the project.

580 Chapter 11 Web Services and Windows Presentation Foundation

Select the three image files from your project directory. Then click the Add
button. The three filenames should appear in the list of files in your Solution
Explorer window.

Step 3: Add three Image controls to the form, positioned near the bottom. Each
Image control should be about 2 inches long and 1.5 inches high. For each,
set its Stretch property to None, and set its Visibility property to Hidden. The
image controls should occupy the same general position on the form.

Step 4: Using Table 11-3 as a guide, assign names and images to the three Image con-
trols on the form. As you assign each image filename to the Source property,
adjust the displayed size of the image on the form by dragging its handles with
the mouse.

If you were to run the application now, the images would not appear because
the Image controls are hidden. Instead, the images should pop out and become
visible when the appropriate type of kayak is selected in the ListBox control.
To make that happen, you need to create a SelectionChanged event handler
for the ListBox.

Step 5: Select click the lstKayaks ListBox control with the mouse. At the top of the
Properties window, click the lightning bolt icon (events) to display all the List-
Box event types. Double-click the box to the right of the SelectionChanged
event in the Properties window. You should now see the code window editor
for MainWindow.xaml.vb, containing the lstKayaks_SelectionChanged event
handler procedure. Modify it as follows:

Private Sub lstKayaks_SelectionChanged() _
Handles lstKayaks.SelectionChanged

TIP: When you have elements stacked on top of each other in a WPF
form, you can select the top one with the mouse and move it to the back.
Here’s how: Select the item with the mouse; then, from the Format menu,
select Order, and select Send to Back.

Table 11-3 Kayak Tour form property settings

Control Type Control Name Property Settings

Image imgRecKayak Source: rec_kayak.jpg

Image imgRecTandem Source: tandem_rec_kayak.jpg

Image imgSeaKayak Source: sea_kayak.jpg

TIP: If you experience difficulties when trying to set control properties in
the editor, rebuild the application and try setting the properties again.

11.3 Windows Presentation Foundation (WPF) 581

ClickOnce Deployment
ClickOnce refers to the Microsoft application deployment technology that permits applica-
tions to be installed just by clicking a link or a button that starts the installation. The instal-
lation can be from the desktop, from a network share (a directory on an organization’s
network), or on the Web. It is offered as an alternative to the standard Microsoft Windows
Installer program.

A ClickOnce application is any Windows Presentation Foundation, Windows Forms, or con-
sole application published using ClickOnce technology. A ClickOnce application can be
published in three different ways:

• From a Web page

imgRecKayak.Visibility = Windows.Visibility.Hidden
imgRecTandem.Visibility = Windows.Visibility.Hidden
imgSeaKayak.Visibility = Windows.Visibility.Hidden

If lstKayaks.SelectedIndex = 0 Then
imgRecKayak.Visibility = Windows.Visibility.Visible

ElseIf lstKayaks.SelectedIndex = 1 Then
imgRecTandem.Visibility = Windows.Visibility.Visible

ElseIf lstKayaks.SelectedIndex = 2 Then
imgSeaKayak.Visibility = Windows.Visibility.Visible

End If
End Sub

Depending on the SelectedIndex of the kayak selected in the ListBox in the
code above, we set one of the Image controls to Visible. The other two images
remain set to Hidden.

Step 6: Save the project and run the application by selecting Start Debugging from the
Debug menu. Test the application by selecting each of the kayak types from the
ListBox. As you do so, a different kayak image should appear. Figure 11-23
shows a sample of the application at runtime.

Figure 11-23 Viewing the kayak photos while running the application

582 Chapter 11 Web Services and Windows Presentation Foundation

• From a network file share
• From external disk-type media such as a USB or CD-ROM

A ClickOnce application can be installed on an end user’s computer, or it can be run from
the network without being installed on the user’s computer.

Comparing Windows Installer to ClickOnce

Windows Installer has been the standard installation program used by many Windows desk-
top applications for several years. It requires the user to have administrative rights, because
it makes a number of important changes to the system. Also, the user must install an entire
application, even when the application has been updated in only a minimal way. Finally,
Windows Installer has the potential to affect other installed programs that use the same
shared components.

ClickOnce technology simplifies the process of installing and updating applications. Instal-
lation does not require the user to have administrative privileges because the application
runs in a restricted environment. ClickOnce applications are isolated and self-contained, so
they do not affect any other installed applications. When a ClickOnce application automat-
ically detects that it has been updated by its author, it downloads just the changed parts of
the application to users’ computers.

How It Works

ClickOnce Deployment is based on two XML files, both of which are created by the Publish
Wizard in Visual Studio. These two XML files are:

• Application manifest—Describes the application, including the assemblies, dependen-
cies, and files that make up the application; the required permissions; and the location
where updates will be available.

• Deployment manifest—Describes how the application is deployed. This includes the
location of the application manifest and the version of the application that clients
should run.

If you have administrative rights on the computer where you plan to deploy a ClickOnce
application, the deployment manifest can be deployed right after it is created by Visual Stu-
dio. This is also true also if you have read/write permissions for a Web folder that will hold
the manifest. If you do not have administrative rights, then the computer administrator must
run a tool that digitally signs the manifest using a command-line tool. (The use of this tool
is beyond the scope of our discussion here.)

After the two manifests are copied to a deployment location, users can download and install
the application by running a small setup program or by navigating to a Web location. For
example, you can install the sample application from this chapter by browsing to this loca-
tion on the Web:

http://kipirvine.com/KayakTour/KayakTourWPF.application

TIP: For more information on ClickOnce deployment, we encourage you to read the
article entitled ClickOnce Deployment Overview at http://msdn.microsoft.com.

In Tutorial 11-6, you will publish the Kayak Tour Reservations application, using ClickOnce
deployment. In Tutorial 11-7, you will see how the same application can be published on a
Web site.

http://kipirvine.com/KayakTour/KayakTourWPF.application
http://msdn.microsoft.com

11.3 Windows Presentation Foundation (WPF) 583

Tutorial 11-6:
Publishing the Kayak Tour Reservations application

In this tutorial, you will publish the Kayak Tour Reservations to a folder on your com-
puter. The files in this folder could be given to anyone to install and run the application
on their computer.

Tutorial Steps

Step 1: Select Publish Kayak Tour Reservations from the Build menu. The Publish
Wizard window appears, as shown in Figure 11-24. Enter publish.

Figure 11-24 Selecting a folder to hold the published files

Another option is to enter a complete path, such as c:\data\Kayak Tour. Or if
you enter just a folder name, such as publish, the application will be published
in a folder inside your WPF project folder.

Step 2: Click the Next button to continue. As shown in Figure 11-25, the Publish
Wizard asks which location users will access when they want to install the
application. Click the Next button to continue.

Step 3: The Publish Wizard then asks where the application will go to check for updates.
Select The application will not check for updates, as shown in Figure 11-26, and
click the Next button to continue.

Step 4: The final step of the Publish Wizard is shown in Figure 11-27. It shows the
directory path of the location where the application will be installed. Click the
Finish button.

584 Chapter 11 Web Services and Windows Presentation Foundation

Figure 11-25 Selecting the method of installation

Figure 11-26 Checking for updates

Step 5: Open Windows Explorer and browse to the folder in your project named
publish. In this folder, you should find the following files:

Application Files (a folder)
autorun.inf
Kayak Tour Reservations.application
setup.exe

11.3 Windows Presentation Foundation (WPF) 585

Figure 11-27 Final step of the Publish Wizard

Step 6: Double-click on setup.exe to install and run the application. It will briefly
check for required components, as in Figure 11-28. It may then display a secu-
rity warning, similar to that shown in Figure 11-29, which shows a slightly
different application name.

Figure 11-28 Launching the application

Figure 11-29 Security warning on installation (Windows 7)

586 Chapter 11 Web Services and Windows Presentation Foundation

Step 7: Click the Install button, and in a moment you will see the application window
shown in Figure 11-30.

Figure 11-30 The Kayak Tour Reservations application window

Step 8: (Optional) Open the computer’s Control Panel, go to the list of installed pro-
grams, and look for the Kayak Tour Reservations application.

Step 9: Click the Windows Start menu and run the application from this menu.

If you modify the application, you can publish it again and update the files in the
publish folder.

Tutorial 11-7:
Publishing the Kayak Tour Reservations application to the Web

If you have access to a Web server, you can easily publish your WPF application to the
server. From Visual Studio, you identify the Web site where the application will be pub-
lished. When users navigate to the site using a Web browser, they will be able to install
your application just by clicking a button.

This tutorial is designed as a demonstration. We will use a Web site named http:/
/kipirvine.com for this demonstration. If you wish to reproduce the steps, you will need
to substitute the URL of your own Web site.

Tutorial Steps

Step 1: Select Publish Kayak Tour Reservations from the Build menu. The Publish
Wizard window appears, as shown in Figure 11-31. Enter the Web address of
a folder on our Web site, and click the Next button.

Step 2: Next, shown in Figure 11-32, the Publish Wizard asks which location users
will access when they want to install the application. We have selected a folder
named Install on the same Web site.

http://kipirvine.com
http://kipirvine.com

11.3 Windows Presentation Foundation (WPF) 587

Figure 11-31 Selecting a location where the Kayak Tour Reservations application
will be published

Figure 11-32 Selecting the Install location

Step 3: The Publish Wizard then asks if the application will be available online only
(see Figure 11-33), or whether it should be added to the Start menu of the
user’s computer. We do not wish to install any software on the local computer,
so we select the Web-only option.

588 Chapter 11 Web Services and Windows Presentation Foundation

Figure 11-33 Choosing to make the application available online only

Step 4: Next, Visual Studio opens the Web site and asks for user authentication (user-
name and password). After a brief pause, during which Visual Studio copies
the application to the remote Web site, the application’s published Web page
(named publish.htm) appears. This is shown in Figure 11-34.

Figure 11-34 Displaying the published application Web page (publish.htm)

11.3 Windows Presentation Foundation (WPF) 589

Checkpoint

11. What important feature (other than graphics and multimedia) does WPF have over
Windows Forms applications?

12. What is XAML?

If the user’s local computer were missing any required components, he or she
would have to click the Run button and wait for the components to be
installed directly from Microsoft’s Web site. In our sample, however, there are
no missing components.

Step 5: The user clicks the Run button. A dialog window, shown in Figure 11-35,
appears briefly, while Windows verifies that all required software components
exist on the user’s computer. Then the application window, shown in Fig-
ure 11-36, appears.

Figure 11-35 Launching the application

Figure 11-36 The Kayak Tour Reservations application window

Our WPF application does not run in a Web browser window. It runs what
might be called a desktop application mode, on the local computer. The Web
browser is used only when launching the application.

You can run the application by browsing directly to its application file. For the
Kayak Tour Reservations application, the direct execution URL on the Web is:
http://kipirvine.com/KayakTour/KayakTourWPF.application

http://kipirvine.com/KayakTour/KayakTourWPF.application

590 Chapter 11 Web Services and Windows Presentation Foundation

13. What two general types of WPF applications can you create?

14. How can ClickOnce deployment be used with a Web browser?

15. What are the two types of manifests in a ClickOnce deployment?

Summary

11.1 Introducing XML Web Services

• XML Web Services is a valuable technology that permits computers to share data and
methods across networks.

• A Web service is a component class that is compiled and stored on a Web site. It has
no visual interface, but it exposes methods and properties accessed by other programs
across a network.

• Extensible Markup Language (XML) is the standard protocol used to represent data
on the Web.

• Simple Object Access Protocol (SOAP) is an industry-standard protocol for handling
requests and responses. It includes class names, method names, and parameters.

• Web Services Description Language (WSDL) specifies the formatting of calls to Web
methods.

• Universal Description, Discovery, and Integration (UDDI) is a directory service that
makes information about Web services publicly available.

• Microsoft created Windows Communication Foundation (WCF) as a unified pro-
gramming model and runtime support for building Web services applications.

• In Visual Studio, when creating a client program that consumes a Web service, you
must add a Web reference to the project that identifies and locates the Web service.

• The .NET framework uses attribute classes to identify important elements of a WCF
service. The most important classes are ServiceContractAttribute, OperationContrac-
tAttribute, DataContractAttribute, and DataMemberAttribute.

11.2 BookService Web Service

• The BookService Web service returns a list of books and lets calling programs search
for books by ISBN number.

• BookService is implemented as a Windows Communication Foundation (WCF) Web site.
• WCF service methods, like other methods, can throw exceptions. For security reasons,

they don’t automatically convey which type of exception was thrown.
• You can modify the <serviceDebug> attribute in the WCF service’s web.config file to

permit it to convey detailed exception information to client programs.
• We create both Windows Forms and ASP.NET applications that consume the Book-

Service service.

11.3 Windows Presentation Foundation (WPF)

• Microsoft created the Windows Presentation Foundation (WPF) technology for a
number of reasons: (1) They wanted developers to be able to create applications that
could run on both the desktop and the Web, and (2) they wanted to make it easy to
incorporate advanced 2D and 3D graphics and multimedia into applications without
having to link together separate tools manually.

• eXtensible Application Markup Language (XAML) is used to describe the visual ele-
ments in a WPF application. By creating XAML and WPF, Microsoft allows designers
and programmers to work together, each taking advantage of their special skills.

Review Questions and Exercises 591

Review Questions and Exercises

True or False

Indicate whether each of the following statements is true or false:

1. A Web service can be consumed only by an ASP.NET application.

2. A Web service is a component class, which is compiled and stored on a Web site. It has
no visual interface, but it exposes methods and properties accessed by other programs
across a network.

3. The <MethodContract()> attribute is required for WCF service methods.

Key Terms
application manifest
attribute classes
ClickOnce technology
consuming a Web service
data contract
data member
deployment manifest
eXtensible Application Markup

Language (XAML)
eXtensible Markup Language (XML)
firewall
Microsoft Expression Blend
operation contract
service contract
service contract file
service host file
service implementation file

Simple Object Access Protocol (SOAP)
stand-alone WPF application
Universal Description, Discovery, and

Integration (UDDI)
WCF Service
Web configuration file
Web service
Web Services Description Language

(WSDL)
Windows Communication Foundation

(WCF)
Windows Presentation Foundation

(WPF)
XAML browser application (XBAP)
XML Web Services
Web reference

• A WPF application controls its layout through the use of containers named panels.
Each panel can contain child elements, such as controls like buttons and check boxes,
or other panels.

• A stand-alone WPF application runs like any other Windows application. You do not
need to use a Web browser to run it.

• A XAML browser application (XBAP) runs inside Internet Explorer. It can use most
of the capabilities of WPF in a browser application.

• Click-Once Deployment refers to the Microsoft technology that permits applications
to be installed just by clicking a link or a button that starts the installation.

• ClickOnce technology simplifies the process of installing and updating applications.
Installation does not require the user to have administrative privileges because the
application runs in a restricted environment.

• ClickOnce applications are isolated and self-contained, so they do not affect any other
installed applications.

• ClickOnce applications can automatically detect when an application has been
updated by its author, and then it downloads only changed parts of the application to
users’ computers.

592 Chapter 11 Web Services and Windows Presentation Foundation

4. A WPF application can run only on the Web.

5. A stand-alone WPF application runs with full administrative privileges.

6. With ClickOnce installation, the user can use a Web browser to connect to a page con-
taining a button that downloads and installs the WPF application on his or her computer.

7. A XAML browser application runs inside Internet Explorer, but it cannot use all of the
WPF controls.

8. An XBAP application is given only a limited amount of trust, so it does not have all the
privileges normally given to desktop applications.

9. A ClickOnce application cannot be installed from a network file share.

10. Windows Installer does not require the user to have administrative privileges.

11. ClickOnce does not require the user to have administrative privileges.

12. A ClickOnce installation is not able to verify that the user’s computer has the right com-
ponents (also known as application requirements).

13. WPF applications can automatically check for updates.

Short Answer

1. What does XML stand for?

2. When a Visual Studio project calls Web service methods, how does it know which meth-
ods to call?

3. Describe Single Object Access Protocol.

4. Which language specifies the formatting of calls to Web service methods?

5. Which directory service is helpful when you want to locate available Web services?

6. What do the letters WCF stand for in a WCF service?

7. What is the attribute tag used just prior to the class name in a WCF service?

8. Which attribute tag is used just before a class defined inside a WCF service?

9. What is the attribute tag used just prior to a method name in a WCF service?

10. What is a service host file?

11. What is a service contract file?

12. What is a service implementation file?

13. In which file does the <system.serviceModel> tag appear?

14. What does WPF stand for in Microsoft .NET?

15. What is the name of the .NET development tool used by designers to create advanced
interactive visual elements in application?

16. What does XAML stand for?

17. Which WPF control allows child elements to be positioned along the edges of the panel?

18. What is the name of the Microsoft technology that permits applications to be installed
just by clicking a link or a button that starts the installation?

19. What is the name of the WPF file that describes the application, including the assem-
blies, dependencies, and files that make up the application; the required permissions;
and the location where updates will be available?

Programming Challenges 593

20. What is the name of the WPF file that describes how the application is deployed and includes
the location of the other manifest and the version of the application that clients should run?

21. What is the name of the tool that lets the developer deploy a WPF application?

Programming Challenges
1. Currency Conversion Web Service

Create a Web service that converts currency values between U.S. dollars and several
other world currencies. Consumers can pass each currency code as a two-character or
three-character string. One method, named GetDollarValue, returns the amount in U.S.
dollars corresponding to the amount parameter.

Public Function GetDollarValue(ByVal Country As String,
ByVal amount As Decimal) As Decimal

The other method, named GetCurrencyValue, returns the value in a foreign currency
that corresponds to the dollars parameter.

Public Function GetCurrencyValue(ByVal Country As String,
ByVal dollars As Decimal) As Decimal

Client Program

Create a client application (Windows or Web) that lets the user select a currency type
from a ComboBox and then input a U.S. dollar amount or a foreign currency amount.
In Figure 11-37, the user clicks the button with the arrow pointing right to convert $55
U.S. into the equivalent amount in euros. If the user enters the foreign currency amount
in the right-hand text box and clicks the arrow pointing left, the equivalent amount in
dollars should appear.

Figure 11-37 Currency Conversion Web service, client program

2. Asynchronous Message Web Service

Create a Web service that permits users to send short text messages to other users and
receive messages from other users. The Web service is termed asynchronous because
messages are not received as soon as they are sent; users decide when they want to
receive messages.

When a user logs in with a name and password, the Web service authenticates him by
searching a database table. If the user is accepted, a unique ID number is created and
sent to the user. The Web service uses this ID number to identify the user in all subse-
quent calls to Web methods.

A user sends a message by calling a Web service method and passing a user ID, the name
of the recipient, and the message text. A user receives her messages by passing a user ID
to a Web method that returns an array of message strings.

594 Chapter 11 Web Services and Windows Presentation Foundation

When the user logs out, the unique ID assigned to the user is discarded. Here are the
suggested method declarations:

'Logs into the message service with a username and password.
'Returns a unique integer to be used in subsequent transmissions.
Public Function Login(ByVal user As String,

ByVal passwd As String) As Integer

'Sends a message to a specific user. Parameters:
'userId: unique identifier returned by Login method.
'recipient: username of the receiver of the message
'msg: the text of the message
'Returns True if the userId is recognized, or False if it is not.
Public Function Send(ByVal userId As Integer,

ByVal recipient As String,
ByVal msg As String) As Boolean

'Gets all messages addressed to the current user.
'If the userId is recognized, an Array of String containing
'the messages is returned; otherwise, an empty array is returned.
Public Function GetMessages(ByVal userId As Integer) As String

'Logs out of the mail service. Discards the unique user ID.
Public Sub Logout(ByVal userId As Integer)

3. RepairServices Web Service—Appointments

The Home Repair Services database was introduced in Chapter 5. Create a Web service
that returns the contents of the Appointments table from the database as a strongly typed
List of Appointment objects. Then create a Web site that consumes your Web service
client and displays the list of appointments in a GridView control (see Figure 11-38). Use
an ObjectDataSource control to bind the return value of the WebMethod to the grid.

Figure 11-38 Web client for the RepairServices Web service

4. Customers and Appointments—Web Service

The Home Repair Services database was introduced in Chapter 5. Create a Web service
named CustomerRepairServices that reads the database and creates a List of Customer
objects. Each Customer object should contain the customer Name, ID, Phone, and a list
of Appointments for which the customer is scheduled. Next, create a Web site that con-
sumes your Web service and displays the list of Customers in a GridView control. When
the user selects a customer, display the person’s list of appointments in a second Grid-
View on the same page.

Programming Challenges 595

5. Winter Sports Rentals WPF

A winter sports rentals store needs an application that will let the store clerk enter
information about each customer’s rental. The store clerk should be able to select mul-
tiple equipment items, a rental duration, and insurance (see Figure 11-39). The
detailed description appears in Programming Challenge 3 in Chapter 2. Your task is
to implement it as a WPF application, except that you may eliminate the Weather
Forecast form.

Figure 11-39 Winter Sports Rentals application

This page intentionally left blank

TOPICS

Reports, MDI, Interfaces,
and Polymorphism12

12.1 Creating Microsoft Reports

Tutorial 12-1: Creating a Sales Order
Detail Report

Tutorial 12-2: Formatting and adding
totals to the Sales Details report

Tutorial 12-3: Displaying the Sales
Details report in a Web page

Tutorial 12-4: Grouping the Sales
Details report by product name

Tutorial 12-5: Adding group totals to
the Sales Details report

Tutorial 12-6: Adding a page heading
to the Sales Details report

12.2 Multiple Document Interface (MDI)

Tutorial 12-7: Creating the Class
Registration MDI interface

12.3 Interfaces

Tutorial 12-8: Defining and
Implementing the IPayable Interface

12.4 Abstract Classes and Polymorphism

597

C
H

A
P

T
E

R

This chapter introduces several important topics. First, it shows how to create reports for
the desktop and Web, using Microsoft Report templates and the ReportViewer control.
Next, we show how to create Multiple Document Interface (MDI) applications, which man-
age multiple client windows under a single parent window. Then we introduce advanced
topics in object-oriented programming (OOP): interface types, abstract classes, and poly-
morphism. Although these topics are not heavily emphasized in Visual Basic applications,
they can be important as your programs grow in size and complexity.

12.1 Creating Microsoft Reports
Microsoft Reports consist of Visual Studio templates, a definition language, and tools that
make it easy for you to create printable reports in Visual Studio for Windows Forms and
ASP.NET applications. You use a designer tool to create report definition files. The contents
of these files are based on Microsoft’s Report Definition Language (RDL). This language is
completely specified as an XML file, which can be customized and extended by individual
developers.

Figure 12-1 shows an example of a report based on a sample Microsoft database named
AdventureWorks. This report has a page heading and column headings, and the report detail
lines are grouped according to the product name. The report can be viewed in a Windows
Forms or ASP.NET application.

598 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Figure 12-1 After adding a page heading to the report

Report Designer
Visual Studio Report Designer is a powerful built-in tool for creating and modifying reports.
A report can contain ordinary text, data-bound fields, graphic images, and charts. A report
must be bound to a data source. In our examples, the data source will be a DataSet.

Tablix Data Region

Microsoft reports use a Tablix data region as the basis for report designs. It is a general layout
item that displays report data as rows and columns, much like an electronic spreadsheet. You
can insert detail data from a database query into a Tablix data region, or you can aggregate
the data into groups. A Tablix data region has four main areas, each containing Tablix cells:

• The corner
• The row group area
• The column group area
• The body

Tablix cells in each area have a distinct purpose. You can display detail data and grouped
data by adding cells to the Tablix body area. You can display group headings by adding cells
to the Tablix row group area. You can also create headings that repeat on each page.

Detail Data and Grouped Data

Detail data consists of all the rows returned by a query from a data source. It might contain
fields from multiple tables as well as calculated values.

Grouped data is detail data that is organized by a value that you specify in the group defi-
nition, for example, Product Name. You display grouped data on group rows and columns
by using simple expressions that aggregate the grouped data. Referring back to Figure 12-1,
for example, you might want to calculate the sum of all values in the Order Qty column.

ReportViewer Control
The ReportViewer control provides a convenient way to display report files on Windows
and Web forms. This control reads data from a data source and renders the data according
to the design of a Microsoft Report file. The control contains a toolbar at the top, with but-
tons that perform a number of basic operations on the report. These buttons let you print
the report; zoom in and out; modify the print layout and page setup; and export the report
to Excel, PDF, and Word formats.

12.1 Creating Microsoft Reports 599

Figure 12-2 ReportViewer toolbar

Figure 12-3 Product table, AdventureWorks LT database

The ReportViewer control displays a toolbar with navigation buttons that let you do the fol-
lowing tasks:

• Print the report.
• Zoom in and out.
• Modify the print layout.
• Modify the page setup.
• Export the report to Excel, PDF, and Word formats.
• Search for text inside the report.

The toolbar is shown in Figure 12-2.

The AdventureWorks Databases
The AdventureWorks databases are recommended by Microsoft for training materials, and they
are used in many of their tutorials. They contain tables of products sold by a fictitious company
that sells sporting equipment for outdoor adventures. In addition, there are tables of customers
who buy the products, and sales orders. There are two primary versions of the database—the
larger is named AdventureWorks, and the smaller is named AdventureWorks LT. It is the
smaller database that we will use in this chapter because it can be downloaded and installed on
student computers more easily. The database is ideally suited to generating reports.

The Product table, shown in Figure 12-3, is one of the most important tables in the data-
base. We will display some of its columns on our reports. Sample rows from this table are
shown in Figure 12-4.

600 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Creating a Report Application
Visual Studio Report Designer is a built-in tool for creating and modifying reports. It shows
a blank report template, onto which you can add report fields, text, and graphics. A report
is saved as a Client Report Definition (.rdlc) file. To add an empty report to a project or Web
site, perform the following steps:

1. Select Add New Item.
2. In the Installed Templates pane, select Reporting.
3. In the Templates pane, select Report.

A blank .rdlc file is added to the project.

Report Wizard

When you are learning to create reports, we recommend using the Report Wizard, which
guides you through the following steps when creating a report:

• DataSet Properties—You are asked either to select an existing project data source or to
create a new data source.

• Arrange Fields—You arrange the report fields into row groups, column groups, and
detail rows.

• Choose the Layout—You design the overall report layout, add grand totals and subto-
tals to group data, and decide on the placement of the totals.

• Choose a Style—You select a style template to affect the style properties such as colors
and fonts.

To start the Report Wizard and add a report to an existing project or Web site, do the fol-
lowing steps in sequence:

1. Right-click the Web or project name in Solution Explorer, and select Add New Item.
2. In the Installed Templates pane, select Reporting.
3. In the Templates pane, select Report Wizard, then select Add.

To create a new Windows Forms report application, select the Reports Application template,
as shown in Figure 12-5. The Report Wizard will start automatically.

To create a new ASP.NET Reports Web site, select the ASP.NET Reports Web Site template,
as shown in Figure 12-6. The Report Wizard will start automatically.

In Tutorial 12-1, you will create a Sales Order Detail report based on two tables from the
AdventureWorks LT database.

Figure 12-4 Sample rows from the Product table

12.1 Creating Microsoft Reports 601

Figure 12-5 Creating a Reports Application

Figure 12-6 Creating an ASP.NET Reports Web Site

Tutorial 12-1:
Creating a Sales Order Detail Report

In this tutorial, you will create a Windows Forms application with a report that dis-
plays rows from the SalesOrderDetail and Product tables of the AdventureWorks LT
database.

602 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Tutorial Steps

Step 1: Create a new Windows Forms application named Sales Details.

Step 2: Create a new Data Source that links to the AdventureWorksLT_Data.mdf file
as the data source. In doing so, select the SalesOrderDetail table. Name the
dataset SalesDetailsDataSet and click the Finish button. You can find the data-
base file in the chapter examples folder.

Step 3: Open the DataSet Designer window. Right-click SalesOrderDetailTableAdapter,
and select Configure.

Step 4: Open the Query Builder window. Unselect all the SalesOrderDetail columns,
and add the Product table to the query. Select the following fields in any order,
and save your changes:

• Product.Name
• SalesOrderDetail.SalesOrderDetailID
• SalesOrderDetail.OrderQty
• SalesOrderDetail.LineTotal
• SalesOrderDetail.ModifiedDate

Step 5: From the Project menu, select Add New Item, and select the Report Wizard
template from the Reporting category. Name it SalesDetails.rdlc.

Step 6: The Report Wizard will begin with the DataSet Properties step. From the Data
source dropdown list, select SalesDetailsDataSet, as shown in Figure 12-7.
Notice that all of its fields appear in the list on the right side of the window.

Figure 12-7 Choosing the data source in the Report Wizard window

Step 7: Click the Next button, taking you to the Arrange fields step, shown in
Figure 12-8. Drag field names from the Available fields box on the left into
the Values box on the right.

Step 8: Notice that the SalesOrderDetailID field is marked as a Sum calculation.
Select the field, and remove the check mark next to the Sum option. We do
not want to accumulate this column.

12.1 Creating Microsoft Reports 603

Figure 12-8 Arranging the Report fields

Step 9: Click the Next button, taking you to the Choose the layout step. You will not
make any changes to this panel, so click the Next button again.

Step 10: In the step named Choose a style, which is shown in Figure 12-9, select any
of the available styles and click the Finish button to save the report.

Figure 12-9 Choosing a report style

Step 11: The SalesDetails report will appear in the Design window. Drag the report han-
dles with the mouse until the report fills the available area, as shown in Fig-
ure 12-10. You may want to drag the edge of the report border and widen it a bit.

604 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Figure 12-10 Report layout, in Design view

Figure 12-11 Selecting the entire report

Step 12: Change the report’s font size to 9pt.

Next, you will add a ReportViewer control to the application’s startup form,
and link it to your report.

Step 13: Open the project’s startup form in Design view and change its Text property
to Sales Details.

Step 14: Drag a ReportViewer control from the Reporting section of the Toolbox onto
the form. Set its Dock property to Fill.

Step 15: Click the report’s smart tag and display the ReportViewer Tasks window.
From the Choose Report dropdown list, select the SalesDetails report.

Notice that three components have been added to the form’s component tray:
SalesDetailsDataSet, SalesOrderDetailBindingSource, and SalesOrderDe-
tailTableAdapter. These components work in exactly the same manner as the
data-binding components used with DataGridView controls.

Step 16: Save and run the application. You should see the report shown in Figure 12-12.
As you can see, the report columns could use some formatting, which can easily
be fixed.

Step 17: Click the navigation buttons on the toolbar and scroll through all pages of the
report. Use the buttons to print the report; zoom in and out; modify the print
layout and page setup; and export the report to Excel, PDF, and Word formats.

Step 18: Type Racing Socks into the text box next to the Find button on the toolbar,
and then click the Find button. Notice that the report display jumps to the
first product name that matches this string. Then you can use the Next button
to move to the rest of the matched names.

TIP: To select the report, click anywhere inside it and then click the gray
square in the upper-left corner of the report, as shown in Figure 12-11.

12.1 Creating Microsoft Reports 605

Modifying a Report
When modifying existing reports, it helps to know how reports are constructed. A report is
comprised of individual text boxes, which can be bound to static text, detail fields, totals,
and custom formulas. To modify a single text box in a report, right-click on it and select Text
Box Properties from the popup menu. You will see the window shown in Figure 12-13. You

Figure 12-12 Viewing the Sales Details report without formatted columns

Summary

In this tutorial, you have created the simplest of detail reports. Although you have used
only a small fraction of the capabilities of the Microsoft Reporting tool, we hope you
can see that it simplifies many tasks. In Tutorial 12-2, you will format the report columns
and add report totals.

Figure 12-13 Modifying the properties of a single report text box

606 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

can modify the number formatting, text alignment, fonts, borders, and other properties in
this window. If you select Number formats, Figure 12-14 shows the available options.

Figure 12-14 Number formatting in a text box

In Tutorial 12-2, you will modify the Sales Details report.

Tutorial 12-2:
Formatting and adding totals to the Sales Details report

In this tutorial, you will format the columns in the Sales Details report, and you will
add report totals. Let’s begin by formatting the report.

Tutorial Steps

Step 1: Select the text box that holds the heading for the Name column. Click the
edge of the box to select it. Then right-click and select Text Box Properties
from the popup menu. Set the horizontal alignment to Center. Also, set the
Font size to 9pt. Click OK to save your changes.

Step 2: Carry out the same changes for the other headings.

Step 3: Select the text boxes for the SalesOrderDetailID, OrderQty, and Modified-
Date columns. Center each of these columns.

Step 4: Format the ModifiedDate column in short date format (mm/yy/dddd).

Step 5: Format the LineTotal column in Number format with two digits after the dec-
imal point.

12.1 Creating Microsoft Reports 607

Step 6: Save the report and run the application. The report should appear as in
Figure 12-15, with formatted columns.

Figure 12-15 Viewing the Sales Details report with formatted columns

Next, you will add final totals to the report.

Step 7: Find the orange Details bar (appears in gray in Figure 12-16) at the bottom of
the report designer, and click the dropdown arrow on the right side of the bar,
as shown in the figure. Click on Add Total in the popup menu, and select
After. You should immediately see another line added to the report design, as
shown in Figure 12-17. This line defines the final totals, which will appear at
the bottom of the last page of the report at runtime. This type of total is often
called a report total.

Figure 12-16 Adding a final totals line to the Sales Details report

Figure 12-17 After adding a final totals line to the design

Step 8: Insert the following text into the leftmost column of the report total line:
Report Totals:. Use a bold font.

608 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Step 9: Save the report and run the application. Go to the last page of the report and
view the report totals, which should appear as in Figure 12-18.

Figure 12-18 Viewing the Sales Details report, with final totals

Displaying Reports on Web Pages
Once you have displayed a report in a Windows Forms application, you may be pleased to
discover that the same report can easily be displayed on a Web form. Only a few steps are
involved. First, you must add a DataSet to the Web site, which is done by selecting from a
list of predefined templates. Then, in the DataSet Designer window, you create one or more
table adapters. The easiest way to do this is to drag a table from the Server Explorer win-
dow onto the designer surface. After doing that, you can customize the TableAdapter by
modifying its SELECT query.

A Web form that displays a report must contain the following three components:

• A ScriptManager control, which is a server component located in the AJAX section of
the Visual Studio Toolbox.

• An ObjectDataSource control, which uses a TableAdapter object to execute SQL
queries against the database. The ObjectDataSource passes the query data to the
ReportViewer control.

• A ReportViewer control, which is used to render the Report file and display a toolbar
at the top of the report.

It is usually convenient to place a ScriptManager control on the form first. Then, when
you place a ReportViewer control on the form and open its Tasks window by clicking
on the smart tag, you will select a report file from the project. At that moment, an
ObjectDataSource control is automatically inserted on the form and linked to the
ReportViewer.

ReportViewer Control

The ReportViewer control uses the following XHTML tag in the Source view of a Web
form:

<rsweb:ReportViewer ID="ReportViewer1" runat="server">

The ReportPath property identifies the name and file path of the report definition file.
The DataSourceId property identifies the name of the ObjectDataSource control that

12.1 Creating Microsoft Reports 609

supplies the data for the report. The following XHTML code shows how these proper-
ties are used:

<rsweb:ReportViewer ID="ReportViewer1" runat="server">
<LocalReport ReportPath="SalesDetails.rdlc">

<DataSources>
<rsweb:ReportDataSource

DataSourceId="SalesDataSource" Name="DataSet1" />
</DataSources>

</LocalReport>
</rsweb:ReportViewer>

You can modify the ReportPath and DataSourceId properties at runtime if you want to let
the user select from a list of available reports.

In Tutorial 12-3, you will use a ReportViewer control on a Web form to display the Sales
Details report.

Tutorial 12-3:
Displaying the Sales Details report in a Web page

In this tutorial, you will display the Sales Details report on a Web form. A sample is
shown in Figure 12-19.

Figure 12-19 Sales Details report in a Web application

Tutorial Steps

Preparation Step: Close Visual Studio to release any lock it may have on the database
file. Then open Visual Studio again.

610 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Step 1: Create an empty ASP.NET Web site named Sales Details Web.

Step 2: Add both an App_Code folder and an App_Data folder to the project.

Step 3: In Windows Explorer, copy the AdventureWorksLT_Data.mdf file into the
App_Data folder. Then in Visual Studio, right-click the folder and select
Refresh Folder.

Step 4: Right-click the App_Code folder, select Add New Item, and select the DataSet
template. Name it SalesDetailsDataSet.xsd and click the Add button. The
DataSet Designer window should open.

Step 5: Open the Server Explorer window, select the AdventureWorksLT_Data.mdf
file, open its Tables folder, and drag the SalesOrderDetail table onto the
DataSet Designer’s editing area.

Next, you will modify the TableAdapter query.

Step 6: Right-click the SalesOrderDetailTableAdapter and select Configure.

Step 7: Click the Query Builder button to open the Query Builder window. Unselect
all the SalesOrderDetail columns, and add the Product table to the query.
Select the following fields in any order, and save your changes:

• Product.Name
• SalesOrderDetail.SalesOrderDetailID
• SalesOrderDetail.OrderQty
• SalesOrderDetail.LineTotal
• SalesOrderDetail.ModifiedDate

Step 8: In Windows Explorer, locate the SalesDetails.rdlc report file from the Sales
Details project you created in Tutorial 12-1 and copy it into the current Web
site’s folder.

Step 9: Refresh the project folder in Solution Explorer so you can see the report
filename.

Step 10: Add a Default.aspx Web form to the site and set its Title to Sales Details.

Step 11: In the Web page’s Design view, drag a ScriptManager control from the
AJAX Extensions section of the Toolbox onto the beginning area of the
form.

Step 12: Drag a ReportViewer control from the Reporting section of the Toolbox onto
the form. Place it immediately after the ScriptManager.

Step 13: In the ReportViewer Tasks popup window, select the SalesDetails.rdlc report.
Notice that an ObjectDataSource control was automatically added to the
form.

Step 14: Set the report’s Width property to 98 percent.

Step 15: View the Web form in a browser, and experiment with the buttons on the
toolbar.

Summary

As you learned in this tutorial, the same report file can be used interchangeably in Windows
Forms and Web applications.

12.1 Creating Microsoft Reports 611

Creating a Report with Groups
Report groups make it easy to join together detail rows according to a common column
value. For example, in the Sales Details report, we could group together all rows having the
same product name, as shown in Figure 12-20. Notice that we can suppress the printing of
the product name on each detail line because the group header displays the name anyway.
Creating this type of grouping involves two steps. First, you insert a group header line into
the report and configure the header to display the group name. Second, you remove the
existing display of the group name from each detail line.

Figure 12-20 Grouping Sales Details by product name

You can also display group summary information, such as counts, totals, and averages. In
Tutorial 12-4, you will modify the Sales Details report so that it displays rows grouped by
product name.

Tutorial 12-4:
Grouping the Sales Details report by product name

In this tutorial, you will modify a copy of the Sales Details report so that it displays
rows grouped by product name.

Tutorial Steps

Step 1: Open the Sales Details project that you last modified in Tutorial 12-2.

Step 2: Copy the SalesDetails.rdlc file and rename the copy to GroupSalesByName.rdlc.
Open the report file in the Design window.

Step 3: Click inside the cell that displays the Name detail field, as shown in Figure 12-21.

612 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Figure 12-21 Selecting the Name detail cell

Step 4: Right-click the gray button just to the left of the Name field, select Add
Group, and select Parent Group. In the Tablix group window that appears
(see Figure 12-22), select the Name field, and select Add group header and
Add group footers. Click the OK button to save the selections.

Figure 12-22 Selecting the group by field

Step 5: Right-click the gray button just above the Name column heading, and select
Delete Columns from the popup menu. The column should disappear.

Step 6: Change the Group1 heading name to Product Name, and widen the column.
Insert Report Totals: into the page footing. The report should now appear as
in Figure 12-23.

Figure 12-23 Report with group header and footer lines

Step 7: Save the report. Open the startup form and open the ReportViewer Tasks
popup window. Select the GroupSalesByName.rdlc report from the drop-
down list.

Step 8: Save your changes and run the application. The report should appear just as
in Figure 12-20, shown earlier.

12.1 Creating Microsoft Reports 613

Tutorial 12-5:
Adding group totals to the Sales Details report

In this tutorial, you will add group totals to the Sales Details report.

Tutorial Steps

Step 1: Open the Sales Details project that you last modified in Tutorial 12-4.

Step 2: Open the GroupSalesByName.rdlc report file in the Design window.

Step 3: Right-click the cell in the group totals line just below the cell marked [OrderQty]
and select Expression from the popup menu.

Step 4: In the Expression window, select and expand Common Functions in the
Category box, select Aggregate Functions, and then double-click on Sum,
as shown in Figure 12-24. You will see an expression begin to build in the
upper pane.

Figure 12-24 Expression editor window, creating a group total

Step 5: Select Fields in the Category box, and double-click on OrderQty in the
Values box. You should see the following expression appear in the upper
pane:

=Sum(Fields!OrderQty.Value

Add a closing parenthesis.

=Sum(Fields!OrderQty.Value)

614 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Step 6: Click the OK button to save the expression. Notice that [Sum(OrderQty)]
now appears in the report cell just below the OrderQty detail field.

Step 7: Insert the text Group Totals: into the cell immediately to the left of the expres-
sion you just created. Highlight the text in bold.

Step 8: Save the report and run the application. You should see a totals line appear
after each group, as shown in Figure 12-25.

Figure 12-25 After adding a group total for Order Quantity

Step 9: Add another total that shows the sum of the Line Total column. Format the
column to two decimal places by modifying the properties of the text box that
holds the total.

Step 10: Highlight all cells in the group totals line with a bold font. Select a fill
color for each cell (from the Properties popup window) that highlights
the line.

Step 11: Save the report and run the application.

Tutorial 12-6:
Adding a page heading to the Sales Details report

Page headings may contain images, text, and other basic report controls. They are
repeated at the top of each report page. In this tutorial, you will add a page heading that
contains a title and the current date to the Sales Details report.

Tutorial Steps

Step 1: Select the report by clicking on its border with the mouse. Then use the mouse
to move the report and create a 1⁄4-inch blank border around the table.

12.2 Multiple Document Interface (MDI) 615

Checkpoint

1. What is the RDL language used in report files?

2. What is the name of the Visual Studio tool for creating report files?

3. What name is given to a general layout item that displays report data as rows and
columns, much like an electronic spreadsheet?

4. Which control displays reports on Windows forms?

5. How do you change the formatting of a TextBox in a report?

Step 2: Right-click the area at the top of the report. From the popup menu, select
Insert, and select Page Header. A page heading area should appear.

Step 3: Drag a TextBox control from the Toolbox into the report header area.
Expand it to fill three-quarters of the area, and center it on the page. Enter
the following text: AdventureWorks Sales Details, Grouped by Product
Name.

Step 4: Center the text by clicking the text alignment tool on the toolbar.

Step 5: Select the header text with the mouse and change its size to 18pt, and change
its font to Times New Roman.

Step 6: Just below the title, insert a smaller text box. Set its text alignment to cen-
tered. Right-click inside the box, select Expression, and enter the following
formula:

=Today().ToString("d")

Step 7: Save the report and run the application. You should see a heading similar to
the one shown in Figure 12-26 at the top of each page. The date, of course,
will be different.

Figure 12-26 After adding a page heading to the report

You might want to find an image of some outdoor activity, such as biking or kayaking,
and add it to the report page heading.

616 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Figure 12-27 Adding an MDI Parent form to an application

12.2 Multiple Document Interface (MDI)
Multiple Document Interface (MDI) is the term used for applications in which child win-
dows are retained with the boundaries of an enclosing parent window. In fact, the terms
MDI child and MDI parent apply to the two types of windows. The MDI parent is also
known as an MDI container. When the MDI parent closes or is minimized, the child win-
dows do the same. A single application can contain multiple MDI parent windows, although
a single MDI parent is more common.

There are two ways to create an MDI form:

• An existing form can be made into an MDI container by setting its IsMdiContainer
property to True.

• You can select the MDI Parent Form template when adding a new form to a Windows
Forms application. A sample is shown in Figure 12-27. The form is automatically
assigned a menu, toolbar, and status line, as shown in Figure 12-28.

When Visual Studio generates the MDI form, quite a bit of code is added to the form, includ-
ing methods that show new forms and that display the Open File and Save As dialogs. You
can just customize the menu and toolbar, and add extra event handlers. Figure 12-29 shows
what happens when you run the application after creating an MDI parent from the template.
The user has selected New from the File menu four times and has selected the Cascade com-
mand from the Windows menu.

Creating Your Own MDI Child Forms

You probably will not want to use the default child forms generated by the menu commands
in the automatically generated MDI parent forms. The forms have no controls on them. Let’s
assume that you want to create customized MDI child forms. Just design each form the way

12.2 Multiple Document Interface (MDI) 617

Figure 12-28 Default MDI parent form at runtime

Figure 12-29 MDI Parent with cascading child windows

you always do, and set its MdiParent property to the name of the MDI parent form at run-
time. The following code, located in the parent form, displays a child form:

Dim childForm As New RegisterForm
childForm.MdiParent = Me
childForm.Show()

Form Class

The following list contains Form class properties, methods, and enumerations related to
MDI windows. Some of these have been mentioned before.

• The ActiveMdiChild property returns a reference to the child form that has the focus
or was most recently active.

• The ActiveControl property of a form returns a reference to the control that has the
focus.

• The MdiChildren property returns an array of forms that represent the children of the
MDI parent. It is a read-only property.

618 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

• The LayoutMdi method arranges the MDI child forms within the parent form. When
calling it, pass it a value of type MdiLayout.

• The MdiLayout enumeration consists of four constants with the following names:
ArrangeIcons, Cascade, TileHorizontal, and TileVertical. The values tell the Layout-
Mdi method how to arrange the child windows.

• The MdiParent property identifies the form that acts as an MDI parent container for
this form. The property may be set only at runtime.

• The MergedMenu property returns a MainMenu object that represents the merged
menu for the form.

• The IsMdiChild property returns True if the form is an MDI child. It is read-only.
• The IsMdiContainer property gets or sets a value indicating whether the form is cur-

rently a container for any MDI child forms.

Tutorial 12-7:
Creating the Class Registration MDI interface

In this tutorial, you will create the user interface for a simple MDI application that lets
the user select a college course by name, view the scheduled time, and confirm the course
selection. The application will display a summary of the courses selected by the user.
Figure 12-30 shows a sample of the application at runtime, when the user is in the
process of selecting courses.

Figure 12-30 Class Registration MDI application

Why, one might ask, should this be an MDI application? In response, we can say that
users might like to display and select multiple courses at the same time before confirm-
ing their choices. Users might want to juggle their schedules a bit to avoid time conflicts
and get exactly the right courses. If they should be interrupted by an instant message

12.2 Multiple Document Interface (MDI) 619

from a friend, they can just minimize the MDI parent window. The child windows will
automatically disappear. When the parent window is restored, the child windows are
restored to their original locations and contents.

Tutorial Steps

Step 1: Create a new application named Class Registration MDI.

Step 2: Rename the existing form to RegisterForm.vb.

Step 3: Add an MDI Parent form to the application. Its filename will be MDIParent1
by default, so rename it MdiMain.vb.

Step 4: Set the MDI Parent form’s Text property to ABC College Class Registration
System.

Step 5: In the Project Designer, set the startup form to MdiMain.vb.

Step 6: In MdiMain, open the code window and change the ShowNewForm method
to the following:

Private Sub ShowNewForm() Handles NewToolStripMenuItem.Click,
NewToolStripButton.Click, NewWindowToolStripMenuItem.Click

' Create a new instance of the child form.
Dim childForm As New RegisterForm

' Make it a child of this MDI form before showing it.
childForm.MdiParent = Me
childForm.Show()

End Sub

Step 7: Add the following code to the beginning of the class. The m_Registered-
Courses variable is a collection that holds course names and times of courses
selected by the user. The AddCourse method permits methods in other classes
to add to the collection.

Private m_RegisteredCourses As New Collection

Public Sub AddCourse(ByVal courseInfo As String)
m_RegisteredCourses.Add(courseInfo)

End Sub

Step 8: Delete the OpenFile and SaveAsToolStripMenuItem_Click methods.

Step 9: Verify that the ExitToolsStripMenuItem_Click procedure contains the follow-
ing line:

Me.Close()

From this point forward, you will edit the RegisterForm.vb file.

Step 10: Add the following controls to RegisterForm, using Figure 12-31 as a guide:

• cboCourses, a ComboBox
• lblDateTime, a Label, positioned to the right of the combo box, at the same

level
• btnConfirm, a Button
• btnClose, a Button

Step 11: Add the two additional descriptive labels, using default names.

620 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Figure 12-31 The Course Registration form

Step 12: Add the following values to the Items property of the combo box:

COP 1110 Beginning Java
COP 1120 Beginning C++
COP 1130 Beginning Visual Basic
COP 1140 Beginning C#
COP 2210 Intermediate Java
COP 2120 Intermediate C++
COP 2130 Intermediate Visual Basic
COP 2140 Intermediate C#

Step 13: Insert the following code near the beginning of the RegisterForm class:

Dim m_CourseDaysTimes() As String = {"MW 8:00am", "MW 11:00am", _
"TR 8:00am", "TR 9:00am", "MW 9:00am", "MW 12:00pm", _
"TR 10:00am", "TR 11:00am"

Private Sub cboCourses_SelectedIndexChanged() _
Handles cboCourses.SelectedIndexChanged
lblDateTime.Text = m_CourseDaysTimes(cboCourses.SelectedIndex)

End Sub

The m_CourseDaysTimes array contains the days and times for courses in the
cboCourses combo box. When the user selects a course, the ComboBox’s
SelectedIndex property is used as a subscript into the m_CourseDaysTimes
arrray. The day and time that results is displayed in the Label control named
lblDateTime.

Step 14: Create the following Click handler for the Confirm button:

Private Sub btnConfirm_Click() Handles btnConfirm.Click
CType(Me.MdiParent, MdiMain).AddCourse(_

cboCourses.SelectedItem.ToString() & " [" _
& lblDateTime.Text & "]")

End Sub

The MdiParent property returns a reference to the MDI parent form. The
property returns type System.Windows.Forms.Form, so we must use the
CType function to cast it into an MdiMain object before calling the Add-
Course method:

CType(Me.MdiParent, MdiMain).AddCourse(...

The AddCourse method adds the course name and course day and time
information to a collection. We pass to it the course name (from the combo
box) and the course day and time information from the Label named
lblDateTime.

12.2 Multiple Document Interface (MDI) 621

Step 15: Write an event handler for the Close button that closes RegisterForm.

Step 16: Add a new form to the project and name it RegisteredCoursesForm.vb. Add
a ListBox to the form and name it lstCourses. Add a button named btnClose.
Set the form’s Text property to Selected Courses and set the Font.Size prop-
erty to 9pt. Add a Click event handler to the Close button. A sample of the
form (at runtime) is shown in Figure 12-32.

Figure 12-32 The Selected Courses form

Step 17: Return to the design view of MdiMain and add a new entry to the View menu:
&Registered courses. Write a Click event handler for the menu item and insert
the following code:

Private Sub RegisteredCoursesToolStripMenuItem_Click() _
Handles RegisteredCoursesToolStripMenuItem.Click

With RegisteredCoursesForm
.lstCourses.Items.Clear()
For Each course As String In m_RegisteredCourses

.lstCourses.Items.Add(course)
Next
.MdiParent = Me
.Show()

End With
End Sub

In this code, you iterate through the m_RegisteredCourses collection and add
each course that the user has selected to the ListBox named lstCourses (in
RegisteredCoursesForm). After setting the MdiParent property, you show the
form. You do not have to create an instance of RegisteredCoursesForm.

Step 18: Save the project and run the application. Open several Course Registration
windows and select a course in each one. Click the Confirm button just once
in each window.

Step 19: Minimize the parent window. Notice that all child windows vanish. Restore
the parent window, and watch the child windows reappear.

Step 20: Select Registered courses from the View menu. You should see names, days,
and times for the courses you selected.

Step 21: Close the application.

622 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Checkpoint

6. What does the acronym MDI stand for?

7. Which property identifies a Windows form as an MDI parent form?

8. Which property in a Windows form identifies the form serving as the form’s MDI
parent?

9. How does an MDI parent form identify the child form that currently has the focus
or was the most recently active form?

10. Which property may be assigned values such as ArrangeIcons, Cascade, TileHorizontal,
and TileVertical?

12.3 Interfaces
An interface defines specific behaviors for a set of classes that have a set of common prop-
erties and methods. Those classes are said to implement the interface.

Interfaces are very important in the real world. For example, a robotic vehicle might sup-
port operations such as TurnRight, TurnLeft, GoForward, GoBackward, and Stop. With
that in mind, we could create an interface named IRobotVehicle that would describe the
actions of a certain group of robot-related classes. Figure 12-33 shows the operations we
have suggested.

Summary

This application presents at least two weaknesses that should provide interesting chal-
lenges. What happens if the user clicks the Confirm button two or three times for the
same course? What if the user selects the same class in two different windows and con-
firms both? In the Programming Challenges at the end of this chapter, we ask you to
prevent duplicate classes from being selected.

GoBackward

specifies

GoForward

TurnRightTurnLeft

Stop

IRobotVehicle
Interface

Figure 12-33 The IRobotVehicle interface

12.3 Interfaces 623

How does the interface concept relate to programming? We would create classes that imple-
ment the IRobotVehicle interface. The Interface definition, shown below, lists every method
that our classes would be required to contain:

Interface IAutomobile
Sub TurnLeft(ByVal degrees As Integer)
Sub TurnRight(ByVal degrees As Integer)
Sub GoForward(ByVal speed As Integer)
Sub GoBackward(ByVal speed As Integer)
Sub Stop()

End Interface

Interface names in .NET always start with a capital letter I, so we follow that naming
convention.

Implementing an Interface

After creating an interface, the next step is to create one or more classes that implement the
interface. In other words, the classes must contain the same methods and properties that
were specified in the interface. In addition, these implementing classes can contain other
variables, properties, and methods.

Figure 12-34 shows the relationship between an interface and a class that implements
the interface. The interface specifies, but does not implement, a set of methods and
properties. A class can implement the interface by providing implementations of all the
properties and methods in the interface. Finally, other classes are free to implement the
same interface.

TIP: You cannot create an instance of an interface. The following, for example, is incor-
rect, assuming that IRobotVehicle is an interface:

Dim myCar As New IRobotVehicle

Class

a set of methods
and properties

implements

implementsspecifies

Interface

Figure 12-34 A class implements the methods specified by an interface

The .NET library already contains many important interfaces. The IList interface, for exam-
ple, specifies method names such as Add, Remove, IndexOf, and Contains, which you have
already seen used in Collection objects. The IComparable interface contains a method for
comparing objects.

624 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Defining an Interface
An interface is defined much the same way as a class, except it uses the Interface keyword:

Interface identifier
property-definition
method-definition
event-definition
type-definition

End Interface

Interfaces can contain properties, methods, events, and type definitions. Method and prop-
erty definitions appear as prototypes, each consisting of a return type, name, and parameter
list. All members are implicitly public, so you cannot use a Public or Private modifier.

For example, payroll software for an organization might use an interface named IPayable
that defines properties and methods related to paying people salaries.

Interface IPayable
Function CalculateTax() As Decimal
ReadOnly Property NetPay() As Decimal

End Interface

CalculateTax returns the amount of withholding tax for the current pay period. NetPay
returns the person’s biweekly pay after subtracting taxes.

Tutorial 12-8:
Defining and Implementing the IPayable Interface

In this tutorial, you will create an application that defines an IPayable interface that
applies to employees at a company who would be paid a salary. You will also create a
class that implements IPayable.

Tutorial Steps

Step 1: Create a new application named IPayable Example.

Step 2: From the Project menu, add a new item, select the Code tab, and select the
Interface template. Name it IPayable.vb. Enter the following code in the editor:

Interface IPayable
Function CalculateTax() As Decimal
ReadOnly Property NetPay() As Decimal

End Interface

Step 3: Create an Employee class, and input the following code:

Public Class Employee
Implements IPayable

Private ReadOnly mTaxRate As Decimal = 0.1D
Public Property Name As String
Public Property Salary As Decimal

Sub New(ByVal pName As String, ByVal pSalary As Decimal)
Name = pName
Salary = pSalary

End Sub

12.3 Interfaces 625

Public ReadOnly Property NetPay() As Decimal _
Implements IPayable.NetPay
Get

Return (Salary / 26D) - CalculateTax()
End Get

End Property

Public Function CalculateTax() As Decimal _
Implements IPayable.CalculateTax
Return Salary * (mTaxRate / 26D)

End Function

Public Overrides Function ToString() As String
Return Name & " (Employee), Salary = " &
Salary.ToString("c")

End Function
End Class

Adding a Consultant Class

An interface would not be very useful unless you were to implement it in more
than one class. An interface only tells you what properties and methods
should be used in all classes that implement the interface. Therefore, your next
step will be to create a Consultant class that implements the IPayable inter-
face. Consultants are often paid by the hour, so you will implement the Cal-
culateTax and NetPay interface methods in a manner that is appropriate for
hourly consultants.

Step 4: Add a new class to your project and name it Consultant.vb. Enter the follow-
ing code:

1: Public Class Consultant
2: Implements IPayable
3:
4: Public Property Name As String
5: Public Property Hours As Single
6: Public Property HourlyRate As Single
7: Private Const TAX_RATE As Decimal = 0.1D
8:
9: Sub New(ByVal pName As String, ByVal pHours As Single,
10: ByVal pHourlyRate As Decimal)
11: Name = pName
12: Hours = pHours
13: HourlyRate = pHourlyRate
14: End Sub
15:
16: Public ReadOnly Property GrossPay As Decimal
17: Get
18: Return CDec(HourlyRate * Hours)
19: End Get
20: End Property
21:

TIP: When you type Implements IPayable and press Enter in Visual Stu-
dio, the editor automatically creates empty shells for CalculateTax and
NetPay. In other words, all properties and methods declared in the inter-
face are generated for you.

626 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

22: Public Function CalculateTax() As Decimal _
23: Implements IPayable.CalculateTax
24: Return GrossPay * TAX_RATE
25: End Function
26:
27: Public ReadOnly Property NetPay() As Decimal _
28: Implements IPayable.NetPay
29: Get
30: Return GrossPay - CalculateTax()
31: End Get
32: End Property
33:
34: Public Overrides Function ToString() As String
35: Return Name & " (Consultant), Hourly rate = " _
36: & HourlyRate.ToString("c") & ", Hours = " & Hours
37: End Function
38: End Class

Line 16 begins a readonly property named GrossPay that multiplies the
hourly pay rate by the number of hours worked. This property is called from
two places: lines 24 and 30. On line 24, the tax is simply the gross pay mul-
tiplied by the tax rate. On line 30, the net pay is found by subtracting the tax
from the gross pay.

Creating the User Interface

Step 5: Edit the project’s startup form in Design view and insert the controls listed in
Table 12-1. Also, use Figure 12-35 as a guide when designing the form.

Figure 12-35 Output from the IPayable Example program

When a method parameter is declared using an interface type, any object
implementing the interface can be passed as an argument when calling the
method. It is useful to create a method that can be passed both Employee and
Consultant objects. Therefore, you will create a method named ProcessPayroll
that has an IPayable parameter.

Table 12-1 Controls in the IPayable Example form

Control Type Name Property Settings

Form (default) Text: IPayable Example

Button btnEmployee Text: Create Employee

Button btnConsultant Text: Create Consultant

ListBox lstShow Anchor: Top, Bottom, Left, Right

12.3 Interfaces 627

Step 6: Create the ProcessPayroll method, which displays the calculated tax and net
pay of any type of Payable object.

Sub ProcessPayroll(ByVal P As IPayable)
lstShow.Items.Add(P.ToString())
lstShow.Items.Add("Tax = " & P.CalculateTax().ToString("c"))
lstShow.Items.Add("Net Pay = " & P.NetPay.ToString("c"))

End Sub

Step 7: Create a Click handler for the btnEmployee button, which creates an
Employee and passes the object to ProcessPayroll.

Dim emp As New Employee("Jones, Dan", 35000D)
ProcessPayroll(emp)

Step 8: Create a Click handler for the btnConsultant button, which creates a Consul-
tant object and also passes it to ProcessPayroll.

Dim cons As New Consultant("Ramirez, Jose", 80, 75D)
ProcessPayroll(cons)

Step 9: Save and run the application. Figure 12-35 (shown earlier) shows the expected
output.

IComparer Interface
In Chapter 3, you learned about the IComparable interface, which a class must implement
if arrays and lists of the class objects are to be sorted. To compare two Student objects, for
example, you have to create a CompareTo method that defines which property (or proper-
ties) will participate in the comparison.

On the other hand, what if Student objects must be compared in different ways? You might
want to sort a Student array first by student ID numbers, then later by last names, and
finally by grade point averages. Unfortunately, the CompareTo method cannot be written
all three ways. Instead, you can create a separate class that implements an interface named
IComparer.

The IComparer interface declares a single method named Compare. It compares two objects
and returns an integer in the same manner as the CompareTo method. This is the IComparer
interface definition:

Interface IComparer
Function Compare(ByVal x As Object, ByVal y As Object) _

As Integer
End Interface

Unlike CompareTo, the Compare method is not declared in the class it compares. It is
declared in its own class, one that implements the IComparer interface. The following lines
show a general template for this type of class, in which className and methodName are
replaced by programmer-chosen names:

Class className
Implements IComparer

Public Function methodName(ByVal A As Object,
ByVal B As Object) As Integer _
Implements IComparer.Compare

End Function
End Class

628 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

When an IComparer object is created using the New operator, we call it a comparator. For
example, the following code calls the Array.Sort method, passing to it an array of Point
objects, and a comparator:

Array.Sort(pArray, new PointComparer)

Employee Example
The following Employee class contains two properties (ID and Salary), which could each be
used when comparing Employee objects:

Class Employee
Public Property Salary() As Double
Public Property ID As Integer
Public Sub New(ByVal pId As Integer, ByVal pSalary As Double)

ID = pId
Salary = pSalary

End Sub
Public Overrides Function ToString() As String

Return ID & ", " & Salary
End Function

End Class

We’ve also added a constructor and a ToString method to this class. Next, let’s define a com-
parator class that compares two employees by their ID numbers.

1: Class CompareByID
2: Implements IComparer
3:
4: Public Function Compare(ByVal emp1 As Object,
5: ByVal emp2 As Object) As Integer _
6: Implements IComparer.Compare
7: Dim e1 As Employee = CType(emp1, Employee)
8: Dim e2 As Employee = CType(emp2, Employee)
9: Return e1.ID.CompareTo(e2.ID)
10: End Function
11: End Class

Lines 4–6 are standard for every comparator. Lines 7 and 8 cast the object parameters
into the types we want to compare (Employee). Line 9 calls the CompareTo method,
using the ID properties of the two employees. Fortunately, the CompareTo method is
implemented for all standard .NET types, and it returns the same values that our Compare
needs to return.

To test the comparator, we can create an array of Employee objects and call the Array.
Sort method.

Private empArray(3) As Employee
empArray(0) = New Employee(1005, 50000.0)
empArray(1) = New Employee(1002, 40000.0)
empArray(2) = New Employee(1001, 60000.0)
empArray(3) = New Employee(1004, 35000.0)
Array.Sort(empArray, New CompareByID)

Now the array contains objects that are sorted in ascending order by ID number. The fol-
lowing code creates a second comparator for salaries:

1: Class CompareBySalary
2: Implements IComparer
3:

12.4 Abstract Classes and Polymorphism 629

4: Public Function Compare(ByVal emp1 As Object,
5: ByVal emp2 As Object) As Integer _
6: Implements IComparer.Compare
7: Dim e1 As Employee = CType(emp1, Employee)
8: Dim e2 As Employee = CType(emp2, Employee)
9: Return e1.Salary.CompareTo(e2.Salary)
10: End Function
11: End Class

Comparators give you the flexibility to sort arrays and other collections in different
ways. You can compare not only individual class properties but calculated values and
combinations of values. Comparators are one of the most powerful tools for sorting that
you can imagine.

Summary

Interfaces are an essential part of the .NET library because they define standard behaviors
for many classes. Essentially, if you understand how an interface works, you then under-
stand how to use all classes that implement the interface. If you want to become a profi-
cient programmer in .NET, learn how to design your own interfaces. For further study,
read about the IList, IComparable, and IDictionary interfaces in the online .NET library
documentation.

When a class implements multiple interfaces, it takes on the behaviors (operations) of all the
interfaces it implements. The following declaration says that we can call CalculateTax and
NetPay using Employee objects, as well as the CompareTo method:

Class Employee
Implements IPayable, IComparable

Checkpoint

11. What is an interface?

12. Yes or no: Can a class implement an interface by providing implementations of only
some of the properties and methods in the interface?

13. Which common .NET interface contains a method for comparing objects using the
CompareTo method?

14. Which common .NET interface contains a method named Compare?

15. Yes or no: Can a method parameter be declared as an interface type?

12.4 Abstract Classes and Polymorphism

Abstract Classes and Methods
A class declared with the MustInherit keyword is known as an abstract class. You cannot
create an instance of an abstract class, but it’s a great place to put fields, properties, and
methods that will be common to all of its derived classes.

A method declared as MustOverride is an abstract method. It contains a method prototype
with no implementation. It must be overridden and implemented in a derived class before
instances of the derived class can be created.

630 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

In the following code, the Base class is declared MustInherit, making it an abstract class. It
contains a MustOverride method named Print.

MustInherit Class Person
MustOverride Sub Print()

End Class

Class Employee
Inherits Person

Public Overrides Sub Print()
MessageBox.Show("Employee.Print was called")

End Sub
End Class

If you want to be able to create an instance of the Employee class, the class must override
the Print method, as we have done above. The following statements create an instance of the
Employee class and call the Print method:

Dim emp As New Employee
emp.Print()

If we removed Print method from the Employee class, a compiler error would say that the
Employee class must be declared as MustInherit, or it must override the Print method.

You cannot create an instance of an abstract class. Instead, think of it as a class inside which
elements are defined so that they can be used by derived classes.

Employee Classes Example
The Employee class in Figure 12-36 is an abstract class (using the MustInherit keyword) that
implements the IComparable interface. Combining inheritance with interfaces is common
because it combines a rich set of attributes and behaviors. Note the following:

• The GrossPay property is declared MustOverride because the Employee class does not
contain enough information to calculate a person’s pay.

• NetPay and CalculateTax are implemented in Employee because their calculations may
work for some types of employees. At the same time, NetPay and CalculateTax are declared
Overridable in case derived classes need to calculate the net pay and taxes differently.

• The ToString method is not declared Overridable because it inherits this attribute from
the Object class.

• CompareTo relaxes the type-checking rules by allowing the input parameter to be any
type of Employee. The TypeOf operator returns True if the input parameter’s class is
derived from Employee.

SalariedEmployee and HourlyEmployee Classes
The SalariedEmployee and HourlyEmployee classes are shown in Figure 12-37. Each class
must override the GrossPay method and calculate the employee’s pay in a manner appro-
priate to the class. We assume that a SalariedEmployee receives one twenty-sixth of his or
her annual salary every two weeks, and an hourly employee receives hours worked multi-
plied by the hourly pay rate.

Derived class constructors should always call their base class constructors. The SalariedEm-
ployee constructor demonstrates the way to do it by calling MyBase.New.

Sub New(ByVal empId As Integer, ByVal name As String,
ByVal salary As Decimal)
MyBase.New(empId, name)
Me.Salary = salary

End Sub

12.4 Abstract Classes and Polymorphism 631

Similarly, the ToString method should call the same method in its base class.

Overrides Function ToString() As String
Return MyBase.ToString() & " " & m_Salary.ToString("c")

End Function

Testing the Classes
The following code creates both salaried and hourly employees and executes the payroll cal-
culations for each:

Dim S As Employee
Dim H As Employee

Figure 12-36 Abstract Employee class

MustInherit Class Employee
Implements IComparable

Private ReadOnly m_TaxRate As Decimal = 0.1D
Public Property Name As String
Public Property EmpId As Integer
Public MustOverride ReadOnly Property GrossPay() As Decimal

Public Sub New(ByVal empIdp As Integer,
ByVal namep As String)

EmpId = empIdp
Name = namep

End Sub

Public Overridable Function CalculateTax() As Decimal
Return GrossPay * m_TaxRate

End Function

Public Overridable ReadOnly Property NetPay() As Decimal
Get

Return GrossPay - CalculateTax()
End Get

End Property

Public Function CompareTo(ByVal obj As Object) As Integer _
Implements IComparable.CompareTo

If obj Is Nothing Then Return 1
If Not TypeOf (obj) Is Employee Then

Throw New ArgumentException
End If
Return Name.CompareTo(CType(obj, Employee).Name)

End Function

Public Overrides _
Function Equals(ByVal obj As Object) As Boolean

If obj Is Nothing Then Return False
If Not obj.GetType Is Me.GetType Then Return False
Return EmpId.Equals(CType(obj, Employee).EmpId)

End Function

Public Overrides Function ToString() As String
Return EmpId & ": " & Name

End Function
End Class

632 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

S = New SalariedEmployee(1001, "Johnson, Cal", 57000)
H = New HourlyEmployee(2002, "Ramirez, Ben", 85, 35.5D)

MessageBox.Show(S.ToString() & ": " & _
S.GrossPay.ToString("c") & " - " & _
S.CalculateTax().ToString("c") & " = " & _
S.NetPay.ToString("c"))

MessageBox.Show(H.ToString() & ": " & _
H.GrossPay.ToString("c") & " - " & _
H.CalculateTax().ToString("c") & " = " & _
H.NetPay.ToString("c"))

Figure 12-37 SalariedEmployee and HourlyEmployee classes

Class SalariedEmployee
Inherits Employee

Public Property Salary As Decimal

Public Sub New(ByVal empId As Integer,
ByVal name As String, ByVal salary As Decimal)

MyBase.New(empId, name)
Me.Salary = salary

End Sub

Public Overrides ReadOnly Property GrossPay() As Decimal
Get

Return (Salary / 26D)
End Get

End Property

Public Overrides Function ToString() As String
Return MyBase.ToString() & " " _

& Salary.ToString("c")
End Function

End Class

Class HourlyEmployee
Inherits Employee

Public Property Hours As Decimal
Public Property PayRate As Decimal

Public Sub New(ByVal empId As Integer,
ByVal name As String, ByVal hours As Decimal,
ByVal payRate As Decimal)

MyBase.New(empId, name)
Me.Hours = hours
Me.PayRate = payRate

End Sub

Public Overrides ReadOnly Property GrossPay() _
As Decimal

Get
Return Hours * PayRate

End Get
End Property

Public Overrides Function ToString() As String
Return MyBase.ToString() & " Hrs/Rate = " _

& Hours & "/" & PayRate
End Function

End Class

12.4 Abstract Classes and Polymorphism 633

The following two images show the output generated by the given code:

Polymorphism
Webster’s dictionary defines the term polymorphic as “having, occurring, or assuming various
forms, characters, or styles.” In the world of object-oriented design, the definition of
polymorphism is a bit more concrete: It expresses a base object type’s ability to reference derived
object types. For example, if we declare a variable of type Employee, we can assign it a refer-
ence to an object of a derived type, such as SalariedEmployee. Polymorphism lets us do this:

Dim emp As Employee
emp = New SalariedEmployee(1001, "Johnson, Cal", 57000)

At a later point in the program’s execution, we might assign an HourlyEmployee to the same
variable:

emp = New HourlyEmployee(2002, "Ramirez, Ben", 85, 35.5D)

This type of assignment is permitted because it gives programs the flexibility to create arrays
and collections of various employee types. A program can use the same method to handle
objects of different types, as long as the types are related by inheritance.

Using the recently shown Employee, SalariedEmployee, and HourlyEmployee classes, let us
create a method that calculates and displays the pay and taxes for all types of employees:

Sub DoCalculations(ByVal emp As Employee)
MessageBox.Show(emp.ToString() & ": " & _

emp.GrossPay.ToString("c") & " - " & _
emp.CalculateTax.ToString("c") & " = " & _
emp.NetPay.ToString("c"))

End Sub

The input parameter for DoCalculations is type Employee, but we can pass any derived type
as an argument. In the future, if new types of employees were added to the inheritance hier-
archy, they could also be passed as arguments to the DoCalculations method. Having a
method that works for all types of employees can greatly reduce the amount of duplicate
code. We could add new types of employees to our application without having to revise and
rewrite existing methods that handle employees.

Suppose we call DoCalculations with the following code:

Dim emp As Employee
emp = New SalariedEmployee(1001, "Johnson, Cal", 57000)
DoCalculations(emp)

634 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

During the program’s execution, the .NET runtime examines emp and, upon discovering
that it references a SalariedEmployee object, calls the GrossPay property method in the
SalariedEmployee class.

Checkpoint

16. A class declared with the ________ keyword is known as an abstract class.

17. A method declared with the _______ keyword is an abstract method.

18. Yes or no: Can you create an instance of an abstract class?

19. In the Employee abstract class example, which property must be overridden by
derived classes?

Summary

12.1 Microsoft Reports

• You use the Visual Studio Report Designer to create report definition files. The con-
tents of these files are based on Microsoft’s Report Definition Language (RDL).

• Microsoft reports use a Tablix data region as the basis for report designs. It is a
general layout item that displays report data as rows and columns, much like an elec-
tronic spreadsheet.

• Detail data consists of all the rows returned by a query from a data source. It might
contain fields from multiple tables, as well as calculated values.

• The ReportViewer control provides a convenient way to display report files on Win-
dows and Web forms. This control reads data from a data source and renders the data
according to the design of a Microsoft Report file. You can use the same report file in
both Windows Forms and Web applications.

• The Web form we used to display a report contained a ScriptManager control, an
ObjectDataSource control, and a ReportViewer control.

• Grouped data is detail data that is organized by a value that you specify in the group
definition. To create a report group, insert a group header line into the report and con-
figure the header to display the group name.

• The AdventureWorks databases contain tables of products sold by a fictitious com-
pany that sells sporting equipment for outdoor adventures.

12.2 Multiple Document Interface (MDI)

• Multiple Document Interface (MDI) is the term used for applications in which child
windows are retained with the boundaries of an enclosing parent window.

• An existing form can become an MDI container form by setting its IsMdiContainer
property to True. Or, you can create an MDI Parent form using the template that
shows up in the Add New Item window.

• From an MDI parent form, you can find out which child form is active, you can close
all child windows, and you can change the layout and arrangement of the child forms.

12.3 Interfaces

• An interface defines specific behaviors for a set of classes that have a set of common
properties and methods. Those classes are said to implement the interface.

• The Interface keyword is used to define an interface, much in the way the Class key-
word defines a class.

Review Questions 635

Key Terms
abstract class
abstract method
comparator
IComparer interface
MDI child
MDI container
MDI parent
Multiple Document Interface (MDI)

polymorphism
report definition file
Report Definition Language (RDL)
Report Designer
Report Wizard
ReportViewer control
Tablix data region

Review Questions

True or False

Indicate whether each of the following statements is true or false.

1. A report file created for a Windows Forms application cannot be displayed by an
ASP.NET application.

2. You can use the ReportViewer toolbar to zoom a report view in and out.

3. You can use the ReportViewer toolbar to export the report to a Microsoft Word file but
not to a PDF file.

4. You can use the ReportViewer toolbar to search for text inside a report.

5. The ScriptManager control is located in the Reports section of the Toolbox.

6. A ReportDataSource control uses a TableAdapter object to execute SQL queries against
the database.

7. The ObjectDataSource control is used only in Windows Forms applications.

8. To add a group to a report, right-click the gray button just to the left of a detail field
and select Add Group, then select Parent Group.

• Interface names in .NET applications should begin with the letter I, such as ICompa-
rable, IPayable, and IList.

• The IComparer interface declares a single method named Compare. It compares two
objects and returns an integer in the same manner as the CompareTo method from the
IComparable interface. When an IComparer object is created using the New operator,
we call it a comparator.

12.4 Abstract Classes and Polymorphism

• A class declared with the MustInherit keyword is known as an abstract class. You can-
not create an instance of an abstract class, but it’s a great place to put fields, proper-
ties, and methods that will be common to all of its derived classes.

• A method declared MustOverride is an abstract method. It contains a method proto-
type with no implementation. It must be overridden and implemented in a derived
class before instances of the derived class can be created.

• In object-oriented programming, polymorphism expresses a base object type’s ability
to reference derived object types.

636 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

9. You cannot make a form into an MDI parent by setting its IsMdiContainer property.

10. A child form cannot identify its MDI parent form at runtime.

11. The read-only MdiChildren property returns an array of forms that represent the chil-
dren of the MDI parent.

12. The CurrentControl property on an MDI parent form returns a reference to the control
that has the focus.

13. In an MDI application, all child windows are retained within the boundaries of a par-
ent window.

14. An Interface can contain methods but not properties.

15. The methods in an Interface contain no implementations.

16. A class that implements an interface need not contain all the methods specified by the
interface.

17. The Implements keyword is optional in each method that implements an interface
method.

18. Derived class constructors should never call their base class constructors.

19. You can assign an object of a derived type to a variable of a base type, assuming that
base and derived are related by inheritance.

20. You can assign an object of a base type to a variable of a derived type, assuming that
base and derived are related by inheritance.

Short Answer

1. How do you select an entire table in the Report Designer?

2. Which supplementary controls are required by the ReportViewer control on Web
pages?

3. Which tables from the AdventureWorks LT database are used in this chapter?

4. Which project component must already exist before your start the Report Wizard?

5. How do you change the alignment of text inside a report TextBox?

6. In this chapter, how did the Employee and Consultant classes vary in the way they
implemented the IPayable interface?

7. What is the primary advantage to defining an interface type in an application?

8. Suppose you want to sort a collection of BankAccount objects, and the BankAccount
class CompareTo method compares account numbers. How could you sort the collec-
tion on a different BankAccount property, such as Balance, without modifying the Com-
pareTo method?

9. Suppose an MDI parent form needs to close all its child forms. What is the easiest way
to do this?

10. To be called an abstract class, what special keyword is required in a class definition?

11. To be called an abstract method, what special keyword is required in a method
definition?

12. What keyword is used with a method in a base class to indicate that derived classes can
override the method?

Programming Challenges 637

Programming Challenges
1. Karate Payments Report

Create a printable report that displays all rows in the Karate Payments table. Include
page headings, and a final totals line that displays the total amount of payments by all
members, as well as the largest and smallest payments. Format the Payment Date
column in short date format.

2. College Registration MDI

Use the College Registration MDI program from Tutorial 12-7 as a starting point for
this project. Make the following improvements:

• The AddCourse method in the MDI parent window must not permit the same course
to be added twice.

• If the Selected Courses window is open and the user clicks the Confirm button in one
of the Course Registration windows, update the ListBox in the Selected Courses win-
dow immediately.

• Let the user remove courses from the Selected Courses window.

3. SalesEmployee Class

Create a component named EmployeeLib. Include in it the abstract Employee class
from Figure 12-36. Also, create a SalesEmployee class that inherits from Employee. The
class will contain properties that hold the employee’s base pay, sales quota, sales
amount, and commission rate. Use the following formula to calculate the employee’s
gross pay:

base pay + ((sales amount – sales quota) * commission rate)

If the sales amount is less than the sales quota, however, the gross pay should just equal
the base pay.

Add a Windows Forms application to the Visual Studio solution. Its startup form must
let the user input the employee name, base pay, sales quota, sales amount, and commis-
sion rate. Then when a button is clicked, the application must display the person’s name,
gross pay, tax, and net pay.

4. Employees and Managers

Using the IPayable interface presented in this chapter as a starting point, make the fol-
lowing modifications:

1. The Employee class should implement both the IPayable and IComparable
interfaces.

2. Add a CompareTo method to the Employee class that compares the values of the Net-
Pay properties of each pair of Employee objects.

3. Add a class named Manager that inherits from the Employee class. It has two new
properties: (1) Title (String), containing values such as VP Research, or Evening Shift
Supervisor, and (2) ExpenseAccountBalance (Decimal). Create a constructor for this
class that permits the new fields to be initialized, as well as the parameters required
by the Employee constructor. (Our discussion about inheritance in this chapter
explained that a derived class constructor must call MyBase.New, passing to it all
required parameters for the base class constructor.) The ToString method in the Man-
ager class should display the same fields as Employee.ToString, as well as the man-
ager’s title.

4. In the startup form’s Load event handler, fill an array with six Employee and Man-
ager objects. Display the array in a list box, as shown in Figure 12-38. Note that the
same array can hold both Employee and Manager objects because the two classes are
related by inheritance.

638 Chapter 12 Reports, MDI, Interfaces, and Polymorphism

Figure 12-38 Employees and Managers list, before sorting

5. When the user clicks the Sort by Net Pay button, your code should sort the array and
redisplay it in the list box. A sample is shown in Figure 12-39.

Figure 12-39 Employees and Managers, after sorting

Suggestions

You can resize an array without losing its elements, using the Redim Preserve statement.
The following statement, for example, resizes an array named Names so its upper sub-
script equals 30:

ReDim Preserve Names(30)

The Array.Sort method sorts an array. You can pass the starting index position and the
number of items to sort as second and third parameters. The following statement sorts
the first twenty elements of an array named Names, starting at index position 0:

Array.Sort(Names,0,20)

The ordering of the elements in the Employee is controlled by code that you write inside
the CompareTo method of the Employee class.

Answers to CheckpointsA

639

A
P

P
E

N
D

IX

Chapter 1
1. A class is a program structure that defines an abstract data type.
2. class instance
3. method
4. value
5. Both variables reference the same object, so a change to one variable will cause a

change to the other. This is known as a side effect.
6. Private, Public
7. A class-level variable is declared outside any of the methods in a class.
8. The information hiding principle dictates that most variables and even some methods

must be hidden inside classes. Effectively, the hidden variables and methods can be
accessed only by other methods in the same class.

9. ReadOnly property
10. Get and Set
11. default constructor
12. presentation, middle, data access
13. It makes the program code more understandable and self documenting.
14. yes, using the CType function
15. yes, using the CInt function
16. Because you can list each possible enumerated value in a way that is easy to read
17. manual testing
18. automated testing
19. It is a complete description of the behavior of an application. It should include a

description of inputs and actions by the user, and how those inputs and actions affect
the program’s behavior.

20. testing plan

Chapter 2
1. 16
2. Chars
3. IsLetterOrDigit
4. Call Char.ToUpper
5. Call IsControl
6. Unhandled exception
7. It throws an exception.

640 Appendix A Answers to Checkpoints

8. It may continue if it catches the exception.
9. No, the variable is optional.

10. yes
11. It lets the user check the item as soon as it is clicked.
12. SelectedIndices
13. SelectionMode
14. Items.AddRange
15. Items. RemoveAt
16. Format
17. MinDateTime and MaxDateTime
18. AddDays
19. Dim duration as New TimeSpan(2, 30, 5)
20. Button, Label, SplitButton, DropDownButton, Separator, ComboBox, TextBox, Pro-

gressBar.
21. DisplayStyle
22. Image
23. ImageScaling
24. ToolStripDropDownButton
25. Navigate
26. GoBack
27. Document
28. DocumentCompleted
29. SplitContainer

Chapter 3
1. The subscript is 0.
2. ArrayList
3. no
4. Item
5. IndexOutOfRangeException
6. A For Each loop
7. Equals
8. IComparable
9. True

10. By the Student ID number
11. A collection that does not restrict the types of items inserted into it.
12. A class that implements a strongly typed collection, by taking on a specific data type

only when an instance of the class is created.
13. List, Dictionary, SortedDictionary, and KeyValuePair.
14. It must implement the Equals method.
15. It permits you to sort a List in a nonstandard way, different from the ordering implied

by the class’s CompareTo method.
16. Language Integrated Query
17. From, Where, Select
18. The variable is not given a type, but it is known as IOrderedEnumerable(Of Type),

where Type depends on the data being queried.
19. It is a method that can be applied to the results of a LINQ query.
20. When its results are assigned to a collection, or you use a loop to iterate through the

query’s values

Appendix A Answers to Checkpoints 641

Chapter 4
1. A database can contain multiple tables.
2. Employee ID
3. Boolean
4. Maintenance would be difficult if the department name changed in the future.
5. A foreign key identifies a field that matches the primary key of some other table. There

can be multiple instances of the same foreign key value in the same table.
6. SELECT pay_rate, employee_id, hours_worked FROM Payroll ORDER BY

hours_worked DESC
7. SELECT pay_rate AS Rate_of_Pay FROM Payroll
8. SELECT gross_pay AS pay_rate * hours_worked FROM Payroll
9. SELECT * FROM Payroll WHERE pay_rate > 20000 AND pay_rate <= 55000

10. SELECT * FROM Payroll WHERE employee_id LIKE ‘FT%’
11. Select Columns, select the Salary column, select DefaultCellStyle, select Format, and

select Currency.
12. Data binding
13. TableAdapter component
14. It is not affected.
15. DataGridView control
16. BindingSource component
17. Structured Query Language
18. The SQL language is standardized and has been adopted by nearly all database vendors.
19. SELECT First_Name, Last_Name FROM Employees
20. Right-click the TableAdapter, select Add Query, and enter the appropriate SQL statement.
21. WHERE Salary <= 85000
22. Data Sources
23. Data Source
24. Drag the table from the Data Sources window onto the form.
25. Drag the column from the Data Sources window onto the form.
26. DateTimePicker
27. From the Data menu, select Add New Data Source.
28. Members
29. Members and Payments
30. Columns
31. The ID is found in the ComboBox’s SelectedValue property.
32. LIKE

Chapter 5
1. Server Explorer
2. Create a database diagram, add the tables to the diagram, and drag the mouse between

the linking columns in both tables.
3. One-to-many, with Customers as the parent table
4. TypeId field
5. To create a many-to-many relationship between the Employee and Appointments

tables.
6. GetData
7. DefaultView
8. DataColumn
9. DataSource

642 Appendix A Answers to Checkpoints

10. INSERT INTO
11. UPDATE
12. all rows

Chapter 6
1. class library
2. Libraries make it easier to create reusable code, and for applications to share the same

code.
3. References page
4. Imports
5. automated test
6. unit test
7. regression testing
8. white box testing
9. black box testing

10. raises
11. delegate
12. WithEvents
13. Normal, Raining, Snowing, Lightning
14. yes
15. yes, except when the methods are declared Private
16. Inherits
17. override

Chapter 7
1. SQL
2. entity class
3. A TableAttribute identifies a LINQ entity class
4. A DataContext provides methods that connect to a database, retrieve data, and sub-

mit updates to a database.
5. Object Relational Designer
6. It can also use data from the controls to update the data source.
7. It appears as a ToolStrip control on a form, with buttons that navigate forward and

backward through rows, insert rows, delete rows, and save changes.
8. SubmitChanges
9. DeleteOnSubmit

10. InsertOnSubmit

Chapter 8
1. Functional description: A Web browser opens a Web site. The Web server opens the

page, interprets the server-side code, executes functions and creates objects. It then ren-
ders (creates) a Web page, which is sent to the client’s browser.

2. The client-server relationship means that a Web site (the server) produces data con-
sumed by clients, which are users running Web browsers.

3. When a page is sent back to the server for processing

Appendix A Answers to Checkpoints 643

4. ASP.NET is called a platform because it provides development tools, code libraries, and
visual controls for browser-based applications

5. In codebehind files, having an .aspx.vb filename extension
6. File system, local IIS, FTP, and Remote
7. Design tab
8. Right-click the project name in the Solution Explorer window and select Browse With . . .

from the context menu.
9. Static text is typed directly into a document. It does not require any type of control.

Windows applications require a Label control to display text.
10. Look for the Block format dropdown list on the left side of the formatting toolbar just

above the Toolbox window. Select Heading 1 <H1>.
11. The message asks if you want to enable debugging, and explains that if you approve,

the application’s Web.config file will be modified.
12. DropDownList
13. ImageButton
14. LinkButton
15. Examine the SelectedIndex property.
16. The page posts back as soon as the user selects an item.
17. DropDownList
18. SelectedDate
19. The cells must be in the same column or row. To select a group of cells, drag the mouse

over the cells. Then select Merge Cells from the Layout menu.
20. Select the table and click the arrow tag at the top of the column.
21. Grab and drag the column’s right-hand border with the mouse.
22. Select the table in its upper-left corner and open the table’s Style property.
23. Items property
24. Objects stored in ViewState must be serializable.
25. Their contents are automatically stored in ViewState.
26. Code examples:

ViewState(''clientName'') = mClientName
mClientName = CType(ViewState(''clientName''),String)

27. When the user closes the Web browser, or after a period of inactivity (usually 20 minutes)
28. no
29. Their values might be null (VB keyword Nothing), so casting can cause an exception

to be thrown.

Chapter 9
1. World Wide Web Consortium, at www.w3.org
2. CodeFile attribute
3. Insert the text between the <title> and </title> tags.
4. Code example:

<asp:TextBox ID=''TextBox1'' runat=''server''></asp:TextBox>

5. The <asp:ListItem> tag
6. Table, TR, TD
7. Because they allow the user to resize the fonts in his or her browser
8. Style property
9. Drag the CSS filename from the Solution Explorer window on to the form, in Design

view.
10. body
11. Off

www.w3.org

644 Appendix A Answers to Checkpoints

12. <customErrors mode=''RemoteOnly''>
13. Error 404 (file not found)
14. FileUpload control
15. The PostedFile property of the FileUpload control is an HttpPostedFile object.
16. SMTP
17. Code example:

SmtpMail.Send(me@myCollege.edu, you@somewhere.com,
''this is my subject'', ''this is my message'')

18. MailMessage class
19. RequiredFieldValidator
20. ControlToValidate, MaximumValue, MinimumValue
21. CompareValidator
22. RegularExpressionValidator
23. Assign the target page name to the NavigateUrl property.
24. Highlight the block with the mouse, and select the hyperlink button on the toolbar.
25. The Redirect method
26. We obtained the RentalInfo object from Session state and assigned its PriceRange prop-

erty to the SelectedIndex property of the RadioButtonList.
27. The selections are stored in a RentalInfo object, which is placed in the Session state col-

lection.
28. DecimalRange class.
29. The values are obtained from the PriceCategoryVals property of the RentalInfo class.

For Each str As String In RentalInfo.PriceCategoryVals
radPrices.Items.Add(str)

Next

30. By placing a date in its Expires property
31. Code example:

Dim temp As String = Request.Cookies(''myCookie'')

32. Code example:

myCookie.Expires = Now
Response.Cookies.Set(myCookie)

33. Code example:

Response.Cookies.Add(New HttpCookie(''username'',
txtUsername.Text))

Chapter 10
1. ContentPlaceHolder control
2. Content control
3. MasterPageFile attribute of the Page directive
4. In the System.web section of Web.config, you can identify the name of the master page

file.
5. Select Edit Columns from GridView tasks, or select Columns from the Properties win-

dow.
6. SqlDataSource control
7. Select AutoFormat from the GridView Tasks window.
8. ConnectionString
9. DataFormatString

10. SelectCommand
11. ControlParameter

Appendix A Answers to Checkpoints 645

12. First, you must enable updates in the SqlDataSource control connected to the
DetailsView. Then you must select the Enable editing check box in the DetailsView
Tasks window.

13. ListBox, DropDownList, CheckBoxList, and RadioButtonList
14. DataSourceID
15. DataTextField
16. SelectedValue
17. Enable Editing and Enable Deleting
18. Update and Cancel
19. A column that contains some combination of Select, Edit, and Delete buttons
20. DataKeyNames
21. ErrorProvider
22. alert(‘Hello’)
23. <head> and <body>
24. Insert it in the OnClientClick property.
25. document.forms(0).txtName.value (or form1.txtName.value).

Chapter 11
1. By encoding the objects in XML
2. Web Services Description Language (WSDL)
3. UDDI is a directory service that makes information about Web services public. You can

use it to search for Web services on a network, or on the Internet.
4. Windows Communication Foundation (WCF)
5. DataContractAttribute, DataMemberAttribute
6. They identify important elements, such as the service class name, method names, data

types, and data members.
7. no
8. consuming the Web service
9. Language (VB), Debug, the service name, and the codebehind filename

10. GetBookList and FindBook
11. WPF applications can run on the desktop or on the Web.
12. eXtensible Application Markup Language (XAML) is used to describe the visual ele-

ments in a WPF application.
13. Stand-alone WPF application, and XAML Browser application
14. Using ClickOnce, the user can use a Web browser to connect to a page containing a

button that downloads and installs the WPF application on her or his computer.
15. Application manifest, and Deployment manifest

Chapter 12
1. Report Definition Language (RDL)
2. Report Designer
3. Tablix data region
4. ReportViewer
5. Right-click in the box and select Text Box Properties.
6. Multiple Document Interface
7. IsMdiContainer
8. MdiParent
9. ActiveMdiChild property

646 Appendix A Answers to Checkpoints

10. MdiLayout
11. An interface defines specific behaviors for a set of classes that have a set of common

properties and methods.
12. No, it must implement all of the interface properties and methods.
13. IComparable
14. IComparer
15. yes
16. MustInherit
17. MustOverride
18. no
19. GrossPay

Optional Reference
TopicsB

647

A
P

P
E

N
D

IX

Appendix B contains a collection of useful reference topics. It shows how to calculate TimeSpan
objects and how to format dates and times. It shows how to use the ListView control, which
displays rows and columns in the same manner as Windows Explorer. Next is a handy guide
to SQL Queries (SELECT, INSERT, DELETE, and UPDATE). Finally, we show how to write
messages to the application log file. Log files can be very useful for producing diagnostic
messages that monitor the health and performance of an application.

B.1 TimeSpan and DateTime Formatting

TimeSpan Class
The TimeSpan class holds time and date ranges. The constructor is overloaded with four ver-
sions:

• TimeSpan(Int64)—Initializes a new TimeSpan to the specified number of ticks.
• TimeSpan(Int32, Int32, Int32)—Initializes a new TimeSpan to a specified number of

hours, minutes, and seconds.
• TimeSpan(Int32, Int32, Int32, Int32)—Initializes a new TimeSpan to a specified num-

ber of days, hours, minutes, and seconds.
• TimeSpan(Int32, Int32, Int32, Int32, Int32)—Initializes a new TimeSpan to a specified

number of days, hours, minutes, seconds, and milliseconds.

The TimeSpan class has a number of useful properties, including Days, Hours, Minutes, Sec-
onds, and Milliseconds. Here are some of the more interesting methods:

• The Add method adds two TimeSpan objects.
• The Subtract method subtracts two TimeSpan objects.
• The FromDays method converts a specific number of days to a TimeSpan.
• The FromHours method converts from hours to a TimeSpan.

TOPICS

B.1 TimeSpan and DateTime Formatting

B.2 ListView Control

Tutorial B-1: Filling a ListView control
with contact information

B.3 Guide to SQL Queries

B.4 Writing to the Application Log File

648 Appendix B Optional Reference Topics

• The FromMinutes method converts from minutes to a TimeSpan.
• The Equals and CompareTo methods compare TimeSpan objects.

Calculating a Future Date
Quite a few applications require the use of date calculations. The DateTime class in .NET is
very powerful, yet it is rarely understood by many intermediate programming students. For
example, you can easily subtract one date from another to find out the number of days
between the dates. If you need to calculate a future date, you can create a TimeSpan object
with a given duration, passing it a number of days, hours, minutes, and seconds. Then you
add the TimeSpan object to a DateTime object.

Suppose that you want to calculate the date 133 days from today. First, you create a TimeSpan
containing 133 days. Then you add the TimeSpan object to the current date, which is
returned by the Today() method. The following statement does all of this:

Dim newDate As Date = Today() + New TimeSpan(133, 0, 0, 0)

Airplane Flight Example
An airplane flight on April 11, 2007, leaves at 10:30 P.M. The flight is expected to take 5
hours and 22 minutes. Assuming that the plane does not fly through a different time zone,
when will it arrive? First, a Date object with the takeoff time and date is constructed.

Dim takeoff As New Date(2007, 4, 11, 22, 30, 0)

Next, the flight duration is stored in a TimeSpan object.

Dim duration As New TimeSpan(5, 22, 0)

Finally, the duration is added to the takeoff time, producing the arrival date and time.

Dim arrival As Date = takeoff.Add(duration)

The sample flight will arrive April 12, 2007, at 3:52 A.M.

Project Duration Example
Suppose a project began on July 1, 2006, and ended on April 5, 2007. We would like to find
the length of the project, in days. First, DateTime objects for the starting and ending dates
of the project are constructed.

Dim projStart As DateTime = New DateTime(2006, 7, 1)
Dim projEnd As DateTime = New DateTime(2007, 4, 5)

Next, the Subtract method is called, producing a TimeSpan object.

Dim duration As TimeSpan = projEnd.Subtract(projStart)

The Days property of the TimeSpan object produces the answer we seek.

Dim days As Integer = duration.Days

In this instance, the project lasted 278 days.

Coordinated Universal Time
Coordinated Universal Time (UTC) identifies a single time zone as the reference point for
all other world times. (Although the letters in UTC seem to be out of order, they represent
a compromise between the wording of the phrase in different languages.) You may think of
UTC time as roughly equivalent to GMT (Greenwich Mean Time). UTC offsets of cities and
countries change, depending on whether daylight savings time is in effect.

When you do time calculations that involve crossing time zones, you use UTC encoding. The
DateTime class has methods for performing conversions.

B.2 ListView Control 649

• The ToLocalTime method converts from UTC time to local time; the local time is
based on the time zone in which the user’s computer is located.

• The ToUniversalTime method converts from local time to UTC time.

The only problem with these methods is that they work with time zones in which the com-
puter is located. That presents a problem for Web applications because their servers and end-
users are often located in different time zones. You can take control of time conversion by
understanding the process: Each time zone has a value known as a UTC offset, measured in
hours, that is added to the UTC time to produce an equivalent time in the local time zone.

When converting from local time to UTC time, wrap the UTC offset in a TimeSpan object
and subtract it from the local time. Here is an example:

Dim localTime As DateTime= #10/1/2011 12:00 PM#
Dim utcTime As DateTime
Dim utcOffset As Integer = -5
utcTime = localTime.Subtract(New TimeSpan(0, utcOffset, 0, 0))

When converting from UTC time to local time, add the UTC offset:

localTime = utcTime.Add(New TimeSpan(0, utcOffset, 0, 0))

Sometimes, adding to a time value will move the date forward one day. Subtracting from a time
may cause the date to move backward one day. For example, Malaysia has a UTC of 8 hours.
If their local time is 3:00 A.M. on July 2, the equivalent UTC Time is 1900 on the previous day:

0300 - 0800 = -0500
2400 + (-0500) = 1900 the previous day

To convert a negative time to positive time, add it to 2400.

Formatting Dates and Times
Applications written for .NET use standard DateTime formats. In many cases, you can select
the format by entering a DateTime formatting string. Table B-1 contains most of the com-
mon DateTime format strings. The output examples are based on the en-US (United States
of America) culture format. If you would like to learn more about the available formats,
look for standard date time format in the online MSDN documentation.

Table B-1 DateTime format strings

Format String Description Example

d short date 5/10/2006

D long date Wednesday, May 10, 2006

t short time 7:00 A.M.

T long time 7:00:00 A.M.

f long date + short time Wednesday, May 10, 2006 7:00 A.M.

F long date + long time Wednesday, May 10, 2006 7:00:00 A.M.

g short date + short time 5/10/2006 7:00 A.M.

G short date + long time 5/10/2006 7:00:00 A.M.

B.2 ListView Control
One of the most commonly used controls, the ListView control stands out for its flexi-
bility and power. The effort you take to master the ListView is well rewarded because it

650 Appendix B Optional Reference Topics

gives your applications a distinctly professional appearance. It offers a number of useful
features:

• The user can switch between display formats: large icons, small icons, list, or details.
• Data can easily be aligned in columns, without the need for tabs.
• The user can resize columns by dragging the column headings with the mouse.
• Column widths can be set at runtime by programming statements.
• Column headers can respond to click events.
• Text appearing in columns can be centered, left justified, or right justified.
• List items are stored in a collection, making it easy to find individual items.
• List items can be edited by the user at runtime.

An example of the ListView control is shown in Figure B-1.

Figure B-1 ListView Control example

The ListView control stores each row of its display in a ListViewItem object. The
ListViewItem objects belong to a collection named Items. Each column heading belongs to
a collection named Columns. Because of the complexity of the ListView, we will show only
the most common techniques here.

Creating Column Headings
If a ListView is to display data in a tablelike format (called the Detail view), it must have column
headings. You can create column headings in design mode by clicking on the Columns entry in
the ListView control’s properties window. The property page is reasonably self-explanatory.

You can also create column headings at runtime by calling the Columns.Add method,
passing the column title, its width (in pixels), and the type of alignment. The possible
alignment values are HorizontalAlignment.Left, HorizontalAlignment.Center, and Hori-
zontalAlignment.Right. The following code, for example, creates a column heading
named Name, which is 150 pixels wide and left-aligned. The column is added to the
ListView.

lvwContacts.Columns.Add(''Name'', 150, HorizontalAlignment.Left)

A more detailed way to add the column is as follows:

Dim column As New ColumnHeader()
With column

.Text = ''Name''

.Width = 150

.TextAlign = HorizontalAlignment.Left
End With
lvwContacts.Columns.Add(column)

The following code demonstrates a nice trick you can use to calculate column header widths
as percentages of the ListView’s Width property:

With lvwContacts
.Columns.Add(''Name'', CInt(.Width * 0.3),

B.2 ListView Control 651

HorizontalAlignment.Left)
.Columns.Add(''Phone'', CInt(.Width * 0.3),

HorizontalAlignment.Left)
.Columns.Add(''Email'', CInt(.Width * 0.4),

HorizontalAlignment.Left)
End With

Each calculated expression returns a Double, so it must be cast into an Integer argument
when passed to the Add method.

ListViewItem Class
The ListViewItem class defines the appearance, behavior, and data associated with each row
in a ListView control. Depending on which view is selected, the items may appear in a table-
like format, or as large icons, small icons, or a list of items.

If a ListView is to display icons, they must be stored in an ImageList control associated with
the ListView. Each ListViewItem contains an ImageIndex property that identifies the index
of the item’s icon in an ImageList. You can construct a ListViewItem in a number of differ-
ent ways, shown by the following definitions:

new ListViewItem()
new ListViewItem(itemText As String)
new ListViewItem(itemArray As String())
new ListViewItem(itemText As String, imageIndex As Integer)

Following are examples of each:

Dim item As ListViewItem
item = New ListViewItem() '1
item = New ListViewItem(''John Smith'') '2
Dim strArray As String() = {''Tennis Racket'',

''10.25'', ''40.50'', ''200.00'', ''15''}
item = New ListViewItem(strArray) '3
item = New ListViewItem(''John Smith'', 0) '4

Creating and Inserting a ListViewItem
To insert a new row in a ListView, you can create a ListViewItem using the text you want to
display in the first column. To add more columns to the item, pass their values to the item’s
SubItems.Add method. Finally, call the Items.Add method to add the complete ListViewItem
to the ListView control. The following statements, for example, create a ListViewItem con-
taining a person’s name, phone number, and email address:

With lvwContacts
Dim item As ListViewItem
item = New ListViewItem(''John Smith'')
item.SubItems.Add(''305-222-3333'')
item.SubItems.Add(''smithj@mydomain.com'')
item.ForeColor = Color.White
item.BackColor = Color.DarkBlue
.Items.Add(item)

End With

(You can set individual item colors.) When you are ready to display a ListView containing
multiple columns, set the View property to show all column details:

lvwContacts.View = View.Details

Other possible values for the View property are related to the same view options available
in Windows Explorer: View.LargeIcon, View.List, and View.SmallIcon.

652 Appendix B Optional Reference Topics

Changing Font Styles

You can set font styles such as bold and italic for ListViewItem objects by creating a Font
object and passing to it the existing font and the desired font style. For example, the fol-
lowing lines create a ListViewItem and set its font style to Bold:

Dim item As New ListViewItem(''John Smith'')
item.Font = New Font(item.Font, FontStyle.Bold)

FontStyle is a standard Enum type that includes the following types: bold, italic, regular,
strikeout, and underline.

ListViewItem Properties

Table B-2 contains descriptions of ListViewItem properties that you are most likely to use.

TIP: If you forget to define column headings for a ListView and set the View property
to Details, the ListView will appear empty when the application runs.

Table B-2 ListViewItem properties

Property Description

BackColor Background text color

Checked Boolean: indicates whether the item is currently checked

Font Font object: defines a format for text, including font face, size,
and style attributes

Selected Boolean: indicates whether the item is currently selected

ForeColor Foreground text color

ImageIndex Index of the image associated with the item (the image is stored
in an ImageList control)

Tutorial B-1 will show you how to fill a ListView control.

Tutorial B-1:
Filling a ListView control with contact information

This tutorial takes you through the steps to fill a ListView control containing employee
contact information. There are three columns and two employees, as shown in Figure B-2.
The item data is inserted by code in the form’s Load event handler.

Figure B-2 ListView Contacts example

B.2 ListView Control 653

Tutorial Steps

Step 1: Create a Windows application project named ListView Contacts. Rename the
startup form ContactsForm.

Step 2: Add a ListView control to the form and name it lvwContacts. Size the
ListView so that it fills the entire form, and set its Anchor property to (top,
bottom, left, right). Another option is to change the BorderStyle property to
FixedSingle.

Step 3: Insert the following code into the form’s Load event handler:

With lvwContacts()
.Columns.Add(''Name'', CInt(.Width * 0.3), _

HorizontalAlignment.Left)
.Columns.Add(''Phone'', CInt(.Width * 0.3),

HorizontalAlignment.Left)
.Columns.Add(''Email'', CInt(.Width * 0.4),

HorizontalAlignment.Left)
.Width += 2
.View = View.Details 'show all column details
Dim item As ListViewItem
item = New ListViewItem(''John Smith'')
item.SubItems.Add(''305-222-3333'')
item.SubItems.Add(''jsmith@nuvisionmiami.com'')
.Items.Add(item)
item = New ListViewItem(''Maria Gonzalez'')
item.SubItems.Add(''305-444-3333'')
item.SubItems.Add(''mgonzal@nuvisionmiami.com'')
.Items.Add(item)

End With

Step 4: Set the ListView’s FullRowSelect property to True. This will permit the user
to select a row by clicking on any column within the row.

Step 5: Save the project. Run the application and confirm the output shown earlier in
Figure B-2. Try selecting rows with the mouse to verify that the row selection
feature works.

Useful ListView Techniques

Responding to ItemCheck

The ItemCheck event fires when the user clicks a ListViewItem’s check box. The Index prop-
erty of the parameter e indicates the row index checked by the user. The following code dis-
plays the contact name of the person whose check box was clicked:

Private Sub lvwContacts_ItemCheck(ByVal sender As Object,
ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
Handles lvwContacts.ItemCheck
MessageBox.Show(lvwContacts.Items(e.Index).Text _

& '' was checked/unchecked'')
End Sub

The Text property of an item contains the contents of the first column. Row indexes begin
at zero.

654 Appendix B Optional Reference Topics

Selecting Items

When the user clicks on a single list item, the item reference is stored at index 0 in the
SelectedItems collection. The following code displays the item:

Private Sub lvwContacts_Click() Handles lvwContacts.Click
MessageBox.Show(lvwContacts.SelectedItems.Item(0).Text _

& '' has been selected'')
End Sub

If multiple items have been selected (by clicking and holding down the Ctrl or Shift key), you
can iterate through the SelectedItems collection. The following code concatenates a list of all
selected items into a string:

Private Sub lvwContacts_Click() Handles lvwContacts.Click
Dim temp As String
Dim item As ListViewItem
For Each item In lvwContacts.SelectedItems

temp = (item.Text & '', '')
Next item
MessageBox.Show(temp, ''Selected Contacts'')

End Sub

Removing Items

You remove an item from a ListView control by calling the Items.Remove method. Pass it
an object that matches the one to be removed from the collection. The following code
removes a single selected item:

Dim item As ListViewItem = lvwContacts.SelectedItems(0)
.
.
lvwContacts.Items.Remove(item)

The CheckedItems collection contains references to all items in the ListView that are cur-
rently checked. You can use it in the same way as the SelectedItems collection.

Properties and Methods
In this section, we feature some of the more common properties, methods, and events of the
ListView control. Table B-3 displays a list of ListView properties you would commonly use
in design mode or at runtime. Table B-4 contains a list of properties that can be accessed
only at runtime. Table B-5 contains a list of commonly used ListView events at runtime.
Table B-6 contains descriptions of common ListViewItem properties.

Table B-3 ListView design mode / runtime properties

Property Description

AllowColumnReorder When set to True, the user can rearrange columns by
dragging his or her headers with the mouse (the altered
column order is not saved).

CheckBoxes When True, every item will have a check box.

CheckedIndices Gets the indexes of the currently checked items.

CheckedItems Gets a collection of the currently checked items.

Columns Gets the collection of ColumnHeader objects, each
describing a column heading when the Details view is
active.

B.2 ListView Control 655

Table B-3 (continued)

Property Description

FullRowSelect Gets or sets a value indicating whether clicking an item
selects all of its subitems.

GridLines Gets or sets a value indicating whether horizontal and
vertical grid lines appear between rows and columns.

Items Gets the collection of ListViewItems.

LabelEdit Gets or sets a value indicating whether the first column of
each item can be modified by the user (or by program
code).

LargeImageList Gets or sets an ImageList holding large icons associated
with the Items collection.

MultiSelect If set to True, permits the user to select more than one item
at a time.

SmallImageList Gets or sets an ImageList holding small icons associated
with the Items collection.

Sorting Gets or sets the sort order for the items.

View Determines how the items are displayed; values are Large-
Icon, SmallIcon, List, and Details.

Table B-4 ListView runtime properties

Property Description

CheckedIndices Returns a collection containing the indexes of the currently
checked items (ListViewItem objects).

CheckedItems Returns a collection of the currently checked items.

SelectedIndices Gets the collection of indexes of the currently selected
items.

SelectedItems Gets the collection of the currently selected items.

TopItem Returns the first visible item in the control (useful when the
user scrolls the items).

Table B-5 ListView events

Property Description

AfterLabelEdit Occurs when the user has finished editing the label of an
item.

BeforeLabelEdit Occurs when the user starts editing the label of an item.

ColumnClick Occurs when the user clicks on a column header.

ItemActivate Occurs when an item is activated.

ItemCheck Occurs when the check state of an item changes.

SelectedIndexChanged Occurs when the index of the selected item in the list view
control changes.

656 Appendix B Optional Reference Topics

B.3 Guide to SQL Queries
Structured Query Language (SQL) was developed as a universal language for creating,
updating, and retrieving data from databases. In this section, we introduce the most
important of all SQL statements, called SELECT. It is used to retrieve rows from database
tables.

SELECT Statement
The SELECT statement retrieves rows from one or more database tables. The most basic for-
mat for a single table is as follows:

SELECT column-list
FROM table

The members of column-list must be table column names separated by commas. The fol-
lowing statement selects the ID and Salary from the SalesStaff table:

SELECT ID, Salary
FROM SalesStaff

There is no required formatting or capitalization of SQL statements or field names. The fol-
lowing queries are equivalent:

SELECT ID, Salary FROM SalesStaff
select ID, Salary from SalesStaff
Select id, salary from salesstaff

As a matter of style and readability, you should try to use consistent capitalization. If field
names contain embedded spaces, they must be surrounded by square brackets, as in the fol-
lowing example:

SELECT [Last Name], [First Name]
FROM Employees

The * character in the column list selects all columns from a table.

SELECT *
FROM SalesStaff

Table B-6 ListViewItem properties

Property Description

BackColor Background text color.

Checked Boolean: indicates whether the item is currently checked.

Font Font object: defines a format for text, including font name,
size, and style attributes.

ForeColor Foreground text color.

ImageIndex Index of the image associated with the item (the image is
stored in an ImageList control).

Selected Boolean: indicates whether the item is currently selected.

B.3 Guide to SQL Queries 657

Aliases for Column Names

Column names can be renamed using the AS operator. The new column name is called an
alias, as in the following example that renames the Hire_Date column to Date_Hired:

SELECT
Last_Name, Hire_Date AS Date_Hired

FROM
SalesStaff

Renaming columns is useful for two reasons. First, you may want to hide the real column
names from users for security purposes. Second, column headings in a report can be more user-
friendly if you substitute descriptive names for the columns in the query that fills the report.

Creating Alias Columns from Other Columns

A query can create a new column from existing columns. For example, we might want to
combine Last_Name and First_Name from a table named Members. We can insert a comma
and space between the columns, as follows:

SELECT Last_Name + ', ' + First_Name AS Full_Name
FROM Members

Notice that we assigned a name (Full_Name) to the new column. In general, when strings
occur in queries, they must always be surrounded by single quotes (apostrophes). The +
operator concatenates strings.

Calculated Columns

You can create new columns whose contents are calculated from existing column values. Sup-
pose a table named Payroll contains columns named employeeId, hoursWorked and hourlyRate.
The following statement creates a new column named payAmount using hoursWorked and
hourlyRate:

SELECT employeeId, hoursWorked * hourlyRate AS payAmount
FROM PayRoll

Setting the Row Order with ORDER BY
The SELECT statement has an ORDER BY clause that lets you control the display order of
the table rows. In other words, you can sort the data on one or more columns. The general
form for sorting on a single column is the following:

ORDER BY columnName [ASC | DESC]

ASC indicates ascending order (the default), and DESC indicates descending order. Both are
optional, and you can use only one at a time. The following clause orders the SalesStaff table
in ascending order by last name:

ORDER BY Last_Name ASC

We can do this more simply, as follows:

ORDER BY Last_Name

The following sorts the data in descending order by Salary:

ORDER BY Salary DESC

You can sort on multiple columns. The following statement sorts in ascending order first by
last name; then within each last name, it sorts in ascending order by first name:

ORDER BY Last_Name, First_Name

658 Appendix B Optional Reference Topics

For a more complete example, the following SELECT statement returns the first name, last name,
and salary, sorting by last name and first name in the Members table of the Karate database:

SELECT
First_Name, Last_Name, Date_Joined

FROM
Members

ORDER BY Last_Name, First_Name

Selecting Rows with the WHERE Clause
The SQL SELECT statement has an optional WHERE clause that you can use to filter, or select
zero or more rows retrieved from a database table. The simplest form of the WHERE clause is:

WHERE columnName = value

In this case, columnName must be one of the table columns, and value must be in a format
that is consistent with the column type. The following SELECT statement, for example,
specifies that Last_Name must be equal to Gomez:

SELECT First_Name, Last_Name, Salary
FROM SalesStaff
WHERE Last_Name = 'Gomez'

Character comparisons are case-insensitive, so the following WHERE clause is equivalent to
the previous one:

WHERE Last_Name = 'gomeZ'

Because Last_Name is a varchar column, it must be assigned a string literal enclosed in sin-
gle quotes. If the person’s name contains an apostrophe (such as O’Leary), the apostrophe
must be repeated:

SELECT First_Name, Last_Name, Salary
FROM SalesStaff
WHERE Last_Name = 'O''Leary'

Relational Operators

Table B-7 lists the operators that can be used in WHERE clauses. The following expression
matches last names starting with letters B..Z.

WHERE Last_Name >= 'B'

The following expression matches nonzero salary values:

WHERE Salary <> 0

Table B-7 SQL relational operators

Operator Meaning

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

BETWEEN between two values (inclusive)

LIKE similar to (wildcard match)

B.3 Guide to SQL Queries 659

TIP: Microsoft Access databases use a slightly different syntax for SQL. For example,
dates are delimited by the number sign (#) character. The WHERE clause we just looked
at would be written as follows:

WHERE (Hire_Date BETWEEN #1/1/2002# AND #12/31/2009#)

Bit Field (Boolean) Values

SQL Server stores Boolean values in columns that use the Bit type. You can compare this
type of column to bit constants such as 1, 0, ‘True’, and ‘False’. A value of 1 indicates True,
and 0 indicates False. Here are examples:

WHERE Full_Time = 1
WHERE Full_Time = 'True'
WHERE Full_Time = 0
WHERE Full_Time = 'False'

Numeric and Date Values

Numeric literals do not require quotes. The following expression matches all rows in which
Salary is greater than $30,000:

WHERE (Salary > 30000)

Date and time values must be delimited by single quotation marks:

WHERE (Hire_Date > '12/31/2009')

The following expression matches rows containing hire dates falling between (and includ-
ing) January 1, 2002, and December 31, 2009:

WHERE (Hire_Date BETWEEN '1/1/2002' AND '12/31/2009')

Following is a complete SELECT statement using the WHERE clause that selects rows
according to Hire_Date and sorts by last name:

SELECT First_Name, Last_Name, Hire_Date
FROM SalesStaff
WHERE (Hire_Date BETWEEN '1/1/2002' AND '12/31/2009')
ORDER BY Last_Name

LIKE Operator

The LIKE operator can be used to create partial matches with Text column values. When
combined with LIKE, the underscore character matches a single unknown character. For
example, the following expression matches all Account_ID values beginning with X and
ending with the digit 4:

WHERE Account_ID LIKE 'X_4'

The percent (%) character matches multiple unknown characters. We also call % a wildcard
symbol. For example, the following matches all last names starting with the letter A:

WHERE Last_Name LIKE 'A%'

You can combine wildcard characters. For example, the following matches all First_Name
values in the table that have the letters dr in the second and third positions:

WHERE First_Name LIKE '_dr%'

The character comparisons are case-insensitive.

660 Appendix B Optional Reference Topics

Compound Expressions (AND, OR, NOT)

SQL uses the NOT, AND, and OR operators to create compound expressions. In most cases,
you should use parentheses to clarify the order of operations.

The following expression matches rows in which the person was hired after 1/1/2005 and
her or his salary is greater than $40,000:

WHERE (Hire_Date > '1/1/2005') AND (Salary > 40000)

The following expression matches rows in which the person was hired either before 2005 or
after 2008:

WHERE (Hire_Date < '1/1/2005') OR (Hire_Date > '12/31/2008')

The following expression matches two types of employees: (1) those hired after 1/1/2005
and whose salary is greater than $40,000, and (2) part-time employees:

WHERE (Hire_Date > '1/1/2005') AND (Salary > 40000)
OR (Full_Time = 'False')

The following expression matches rows in which the hire date was either earlier than
1/1/2005 or later than 12/31/2009:

WHERE (Hire_Date NOT BETWEEN '1/1/2005' AND '12/31/2009')

The following expression matches rows in which the last name does not begin with the letter A:

WHERE (Last_Name NOT LIKE 'A%')

Inserting Table Rows
The SQL statement INSERT INTO inserts a new row into a table, using the following syntax:

INSERT INTO target
[(field1[,field2[,...]])]
VALUES(value1,[,value2[,...])

Target is the table name. Field (column) names must be specified unless you are willing to
assign values in exactly the same order as they occur in the database’s table structure.

The following query, for example, inserts a row into the Payroll table of the Karate data-
base; all column names are specified:

INSERT INTO Payroll (SSN, PaymentDate, HoursWorked, HourlyRate)
VALUES('400-33-2555', '1/15/1998', 47.5, 17.50)

Text (string) values and dates must be enclosed in single quotation marks.

Query Parameters

Generally, INSERT INTO statements do not contain literal column values. More often,
parameterized queries are the best tools for updating a database. The following statement,
for example, inserts a row in the Payments table using query parameters:

INSERT INTO Payments(Amount, MemberId, PaymentDate)
VALUES (@amount, @memberId, @paymentDate)

Updating Table Rows
The SQL UPDATE statement modifies the contents of one or more rows in a database table.
It has the following basic syntax:

UPDATE table
SET fieldname = newvalue
[SET fieldname = newvalue] ...
WHERE criteria

B.3 Guide to SQL Queries 661

The UPDATE statement has the potential to modify every row in a table. For example, the
following query increases the hourly pay rate in all rows of the Payroll table by 5 percent:

UPDATE Payroll
SET HourlyRate = HourlyRate * 1.05

If you want to update only some of the rows in a table, use a WHERE clause with selection
criteria. The following query, for example, increases the hourly pay rate for employees who
were paid after a given payment date:

UPDATE Payroll
SET HourlyRate = HourlyRate * 1.05
WHERE PaymentDate > '05/01/1999'

If you want to update a single row, the WHERE clause must uniquely identify the selected
row. Ordinarily, you would use an expression containing the table’s primary key. For exam-
ple, the following increases the hourly pay rate for a single employee:

UPDATE Payroll
SET HourlyRate = HourlyRate * 1.05
WHERE SSN = '111223333'

Karate Database Example

The following query updates the Payments table of the Karate database; it sets Amount to
$60 for the row in which the payment ID equals 23:

UPDATE Payments
SET Amount = 60
WHERE PaymentId = 23

Deleting Table Rows
The DELETE FROM statement removes rows from a table. The WHERE clause can be used
to select the rows. The following format is used when deleting from a single table:

DELETE FROM table
WHERE criteria

Once a row has been deleted, it cannot be recovered. It is also possible to delete from mul-
tiple tables. When you’re deleting a single row from a table, the WHERE clause must
uniquely identify the row you want to delete. The usual thing to do is to specify a value for
the primary key field.

Examples

The following statement, for example, deletes all rows from the Payroll table in which the
payment date is before January 1, 1998:

DELETE FROM Payroll
WHERE PaymentDate < '1/1/1998'

The following command deletes all rows from the Payroll table and retains the empty table
in the database:

DELETE FROM Payroll

The following statement deletes a single row from the Payments table, identified by Payment
ID 19:

DELETE FROM Payments
WHERE PaymentId = 19

662 Appendix B Optional Reference Topics

B.4 Writing to the Application Log File

Writing Messages to the Application Log File
Application developers like to keep a record of all the errors that occurred when their soft-
ware was running. Sometimes an end user will call to complain about an error but will not
be able to describe the error very well. The developer can then inspect the log file, which will
contain the exception messages along with supporting information. Fortunately, .NET
makes this process very easy. The key to making this happen is to use the
My.Application.Log class, which has two methods:

1. The WriteEntry method receives a string and writes it to the log file:

My.Application.Log.WriteEntry(ByVal message As String)

2. The WriteException method writes an exception object to the log file, along with an
optional message string:

My.Application.Log.WriteException(ByVal ex As Exception,
ByVal type As TraceEventType, ByVal message As String)

The complete path of the log file can be found at runtime in the following property:

My.Application.Log.DefaultFileLogWriter.FullLogFileName

For example, the log file for an application named Exception_Test, with a Windows 7
account named sam, has this path:

C:\Users\sam\AppData\Roaming\Exception_Test\My\1.0.3814.17463\
Exception_Test.log

Payroll Example

Suppose the HoursWorked property in a class named Payroll throws an exception if it
receives an invalid value. We might want to write a Click handler for a button that assigns
a value to HoursWorked. The following example code catches any thrown exception and
writes the exception information to a log file along with the current date and time:

Private Sub bntOk_Click() Handles bntOk.Click
Try

myPayRoll.HoursWorked = CDbl(txtHours.Text)
Catch ex As Exception

My.Application.Log.WriteException(ex,
TraceEventType.Error, Now.ToString())

End Try
End Sub

Then, if the user enters an out-of-range value into the txtHours text box, the following two
lines are written to the log file:

DefaultSource Error 2 Must be between 0 and 80
Parameter name: HoursWorked 6/11/2010 11:44:30 PM

Any message can be written to the log file. For example, when the main form loads, we could
write a note, like the following, to the log indicating the date and time when the application
starts to run:

Private Sub PayrollForm_Load() Handles MyBase.Load
My.Application.Log.WriteEntry(''Application started at '' & Now)

End Sub

The resulting string in the log file looks like this:

DefaultSource Information 0 Application started at 6/12/2010
12:01:12 AM

A
Abstract classes, 630–633

Employee class, 631
methods, 629–630
SalariedEmployee and HourlyEmployee classes,

630–632
testing, 631–633

AddMemberForm.vb, 228
Add method, 113
Advanced classes

components
adding reference, 295
ArrayLib, assembly information

for, 292
assemblies, 291–292
class library, 292
creating, 294
Custom Control in.NET, 292
DLL file, reference to, 297
reference properties window, 296
references outside current solution,

297–302
registration UI application, 300–301
tutorial: advisor and student classes, using,

299–302
tutorial: creating and referencing from another

application, 293–296
tutorial: RegistrationLib, adding advisor class,

297–299
user interface, 300
Visual Studio, using in, 292–296

programming challenges, 338–340
structures

array, 291
constructors, 290
method parameters and, 290–291
.NET runtime and, 289
objects, comparing, 291

Visual Studio, using component
Class Library project and, 292–293
versions, 293

Ajax controls, 538
AllItemReorder property, 73
Anonymous types, 140
ArgumentOutOfRangeException, 63
ArrayLists, 111, 118

adding and inserting items, 113
class, 112
Count property, 114

creating, 113
of custom objects, 118
finding items, 113
IndexOutOfRangeException, 114
loops, 114
overview of, 112
properties and methods, 112
removing items, 113
retrieving and replacing items, 113–114
tutorial: ArrayList of test scores,

114–118
ArrayLists of custom objects

comparing objects, CompareTo method,
120–122

with Equals method, 122–123
references and copies, 119–120
tutorial: building ArrayList of student objects,

123–126
Array.Sort method, 10
ASP.NET code, 375, 377

blank page, 426–427
checkbox, 387
label, 385–387
running, 380

block format pull-down list, 382
debugging, 384
New Web Site window, 381
tutorial: creating click application, 381–383
Web browser, 380

source, design and split views, 378
page displaying in, 378
paragraph break, 379
split view, 380
static text typed, 378

textbox, 387–388, 390
tips, 384

creating HTTP Web Site, 384
renaming class, 384

types of Web sites, 375
Open Web Site window, 376

Web creation, 376–377
Web form events, 391–393

IsPostBack Property, 391
Page_Load, 391
tutorial: tracking server events,

391–393
Assert.AreEqual, 315
Assigning objects, 4–6
Auto-implemented properties, 11–12

Index

663

664 Index

B
BackColor property, 89
Bank Teller application, 26–27

Account class, 28
after user’s successful search for account, 29
after user’s unsuccessful search for account, 30
building, 31–34
for deposit into account, 30
error handling, 36
implementation, 44
named controls in, 31
programming challenges, 42–49
requirements, 26
startup window, 29
summary points, 38–39
for withdrawal from account, 30

Binding individual fields to controls, 195
after docking grid, 196
Data Sources window, 196
ID field in, 197
list-type controls, 198–199
row of SalesStaff table, 197

BookService Web service
connecting ObjectDataSource, 572–573
consuming from Web application, 565, 567

adding service reference, 569
BookService.xsd file, 566
displaying localservices namespace, 569
running BookService WinForms, 568
service references entry, 569
user interface controls, 568

displaying Web service exception information,
564–565

services from database data, 571–572
Browser cookies, examples, 477–478

C
Campus.mdf Database, 518–519
Cascading style sheets (CSS), 435

page setting properties for
HTML and ASP elements, 442
intellisense window, 437
menu demo example, 440–442
modified bullet list style, 438

redefining, 438
text in body, 437
unordered list with red diamond bullets, 439

Char data type
letters and digits, 53
property, 52
shared methods, 52
String class, 52
variable, 52–53

CheckedListBox control, 66
adding and inserting single items, 67
Items.AddRange method, 67
Items.Clear method, 68

Items.Remove and Items.RemoveAt methods,
67–68

removing items, 67–68
selecting items, 66
selecting multiple items, 67
SelectionMode property, 67

Classes
Bank Teller application (see Bank Teller

application)
basic data types, 3
class-level variable, 8

AccessSpecifier, 9
information hiding principle, 9
mIdNumber, mLastName and mTestAverage, 9

creating
adding in Solution Explorer, 8–9
ClassName, 7–8

defined, 2
inheritance, 10
.NET, 2
object variables, 13
tutorial: creating student class, 15–18
value and reference types, 3–4
Visual Studio controls, 3
Visual Studio Toolbox window, 2

Class-level variable, 8–9
Collections

ArrayList class, 112
ArrayLists (see ArrayLists)
dictionary

adding entries to, 131
extension methods, 132
finding, modifying and removing entries,

131–132
Of KeyType, ValueType class, 130
looping through, 131
querying, 147

LINQ
array of integers, 139–140
clauses, 139
example, 140–141
filtering rows, 143
querying list of objects, 141–142

list, 126
of integers, 128–129
invalid cast example, 127
sorting with comparator, 129–130

strongly typed collection, 127–128
ComboBox, 66

adding and inserting single items, 67
Items.AddRange, 67
removing items, 67–68
selecting items, 66–67

CompareTo method
ArrayList, 120
example, 121–122
IList and IListSource interfaces, 122
interface, 121

Index 665

CompareValidator control
example, 460
properties, 459

Confirmation form, 477
source code listing of, 476

Constructors
default constructor, 18
with optional parameters
parameterized, 18–19
reversing assignment order in, 19
tutorial: student class, 20–22

Cookies, 477–480
application, 478

listing of, 479
CType function, 14
Custom Control in.NET, 292
Custom error handling, 445

application, 444
sending email report, 444
unhandled exception, 443–444

CustomValidator control, 465
example, 463
listing of, 464
sample error message, 464

D
Databases, 165, 237

constraints
column check, 246
orphan rows, 247
primary key, 245–246
referential integrity, 246

DataGridView control, 241
dataset designer window, 249
Departments table, 166
designing table, 166–169
design of appointments table, 242
employee appointments table, 245
file, copying, 249–251

RepairServices.mdf, 249
SQL Express, 249

foreign key relationship window, 248
Karate database, 238
many-to-many relationships, 245

Employee Appointments table, 245
naming, 240
new, in server explorer, 239
one-to-many relationships, 244–245

between customers and appointments
tables, 244

parent table, 245
primary key, 166
primary key constraint violation, 246
programming challenges, 287–288
RepairServices, adding table to, 240
RepairTypes table, 244
rows, 241
Server Explorer, 244

karate.mdf, 237–238
new, 238

SQL server data types, 166
tutorial: RepairServices, adding appointments

table to, 242–243
tutorial: RepairServices, adding RepairTypes table

to, 243–244
tutorial: RepairTypes, appointments, and

customers tables, creating relationships,
247–249

tutorial: SQL express server to database file,
250–251

tutorial: SQL server express, 239–242
updating, using SQL

deleting table rows, 255
query parameters, 254
referential integrity constraint, violated, 255
related tables, deleting rows from,

255–256
table rows, 254–255

Data binding with ListControls
data source, 517
properties, 516
runtime, 517
static data, 516–517

Data-bound controls
adding rows to datatables, 202–204
binding individual fields, 195–197
Karate database, 197

members and payment table from, 198
tutorial: adding total to Insert Karate Payments

application, 207–208
tutorial: displaying Members table in ListBox,

199–202
tutorial: inserting rows in Karate Payments table,

204–207
using loops with DataSets, 207
Visual Studio copies, 193

binding data source, 195
distributing compiled database application, 194

modifying database connection
string, 194

renaming and deleting data
sources, 194

DataGridView control, 174
formatting columns in

CellStyle Builder window, 176
editing properties, 175
Format String Dialog window, 177
numeric and DateTime formats, 176
Query Builder, 188–190

tutorial: showing database table, 177–185
two-way data flow, 175

DataSets, 174
rows selecting, 185

modifying query in data source, 186–188
SELECT query, 189–190
SQL, 186

666 Index

DataSets (continued)
tutorial: filtering rows in SalesStaff table,

191–193
using loops, 207

Data source, 174
DataSource property, 198
DataTables, 174

binding controls to, 252
DataRow objects, 252

ItemArray, 252
NewRow method, 252

filtering and sorting rows, 252
properties, 251
rows

insert using TableAdapter, 203
NewRow method, 202–203
removing row, 203–204
updating, 203

strongly typed, 252–253
CustomersDataTable, 252–253
CustomersRow, 253

Data validation controls, 454
Date and time arithmetic, 71

examples, 72
TimeSpan objects, 72

DateTimePicker control, 70
custom date/time formats, 70–71
date and time arithmetic, 71

TimeSpan object, 72
dropdown month calendar in, 70
properties, 70

Default constructor, 18
Deposit (amount), 28
DetailsView control

properties, 508–509
tutorial: Karate Member details, 509–512
tutorial: selecting members by ID,

513–515
Web page source, 515

Dictionary
classes and list, 126–127
Of KeyType, ValueType, 130–132
programming challenges, 152–164
tutorial: creating text concordance,

133–138
DisplayMember property, 198
DocumentCompleted event, 86
Document Object Model (DOM), 538
DocumentText property, 85

E
Email, 448

file attachments, 449
HTML tags, 450–451
implementation, 453–454
MailAddress class, 449–450
MailDemo program, 451

controls used in, 452

MailMessage class, 449–450
message, 451

EndOfStream property, 28
Enumerated types, 23

AccountType, 24
CType function, 24
tutorial: enumerated account type, 25–26
using Boolean expressions, 24–25

Equals method
A.Equals(B), 122
overriding, 123

ErrorProvider control. See also Input validation
and user interfaces

choosing event handlers, 56
with icon and popup message, 55
last name input example, 55–56
test application, 57
test user interface, 57
tutorial: using ErrorProvider control, 56–59
user interface, 57

Events in advanced classes
delegates and handlers, 322–325

MouseHover, 323
WithEvents qualifier, 322–323

tutorial: WeatherStation application,
323–325

Exception handling
alternate execution paths, 60–61
catch block-optional filters, 61
examples, 62
integer conversion example, 61
payroll example, 63–65
System.Exception class, 59
throwing, 62

payroll example, 63–64
stack trace displaying, 63

Try-Catch-finally statement, 60
uncaught exception, 59
using StackTrace and GetType, 62

Extended Markup Language (XML), 538
eXtensible Application Markup Language

(XAML), 574
Extensible HyperText Markup Language. See

XHTML (Extensible HyperText Markup
language)

F
File.OpenText method, 27
FindMemberForm.vb, 228
FlowLayoutPanel control, 80

creating controls dynamically
AddHandler statement, 81
Click handler, 81
Location property, 82

FolderBrowserDialog, 83
image album example, 82
tutorial: creating simple image album,

82–84

Index 667

G
GridView control, 500

campus.mdf database, 518–519
class relationships, 519
column binding name, 507
in design mode, 501
in edit mode, 520
image buttons, 521
inserting command buttons, 519–520
modifying, 507
Oceania autoformat, 501
popup menu, 501
query parameters

properties to select rows, 525
source, 524–525
using image buttons, 524

SQL DataSource
datadirectory, 502
design view, 502

tutorial: displaying class rolls, 525–528
tutorial: displaying courses table in GridView,

521–522
tutorial: displaying Karate Members table,

503–506
tutorial: using graphical command buttons in

courses grid, 522–523
Web form with, 519

H
Home repair services application

adding new appointment, 267
appointment from grid, selecting, 277
AppointmentsForm, shown at runtime, 268
AppointmentsTableAdapter properties

window, 257
copying class within project, 271–278

close Visual Studio, 270
creating queries

appointments table, 278
INNER JOIN statement, 279–280
nested join, 280
TableAdapter warning message, 279
tables joined together, 279

modify appointment form at
runtime, 275

runtime data binding, 262–270
DataGridView columns,

formatting, 262
SelectedIndexChanged event,

262–263
tutorial: appointments class to middle tier,

adding, 256–259
tutorial: appointments, searching for,

267–270
tutorial: deleting appointment, 277–278
tutorial: joined appointment list,

displaying, 281–283

tutorial: main startup form, creating,
259–260

tutorial: middle tier, adding classes
to, 261

tutorial: modifying existing appointments,
271–275

tutorial: new appointment form, adding controls,
263–267

tutorial: selecting appointments to modify,
275–277

HyperText Markup Language (HTML), 538

I
IComparable interface, 121
IList and IListSource interfaces, 122. See also

CompareTo method
ImageButton, 467

URL, 468
ImageScaling property, 75
ImageScalingSize property, 75
IndexOf method, 113
IndexOutOfRangeException, 63, 114
Inheritance

accessing members, 326
constructors and, 328–329

MyBase.New, 328
object references, assigning, 329
properties and methods, 329

derived, creating, 327–328
heroes and villains, 327–328

graduate students, displaying, 330
modifiers, access, 326–327
object-oriented programming and, 325
one or more from base, 326
overriding and overloading, 329–333

keyword, 329
modifiers related to, 330

overriding, modifiers related to, 330
tutorial: student application, 330–333
undergraduate students, displaying, 330

Input validation and user interfaces, 51
Char data type

shared methods, 52–53
date and time information, 69–72
ErrorProvider control

choosing event handlers, 56
with icon and popup message, 55
last name input example, 55–56
test application, 57
test user interface, 57
tutorial: using ErrorProvider

control, 56–59
FlowLayoutPanel, WebBrowser, SplitContainer

and TabControl, 82–90
ListBox, ComboBox and CheckedListBox,

66–69
messages displaying with StatusStrip

control

668 Index

Input validation and user interfaces (continued)
design mode in, 54
StatusLabel at runtime in, 55

programming challenges, 105–110
software wizard, 91–94
ToolStrip control, 72–76
working with textboxes and strings

KeyPress event, 53–54
Interfaces

class implements methods specified, 623
defined, 121, 624–627
employee example, 628–629
IComparer, 627–628

employee class, 628–629
implementing, 623
IPayable

defining and implementing, 624–627
example form, 626
tutorial steps, 624–627

IRobotVehicle, 622
output from IPayable example

program, 626
InvalidCastException, 61
IsControl(Char ch), 52
IsDigit(Char ch), 52
IsLetter(Char ch), 52
IsLetterOrDigit(Char ch), 52
IsLower(Char ch), 52
IsPunctuation(Char ch), 52
IsSymbol(Char ch), 52
IsUpper(Char ch), 52
IsWhiteSpace(Char ch), 52
Item property, 113

J
JavaScript

accessing form fields, 533–534
document object, 533

executing from ASP.NET controls
alert dialog displayed, 532

functions, 534–536
confirm and prompt, 535
displaying confirm dialog, 535
generating at runtime, 535
prompting user for string, 536
RegisterClientScriptBlock method, 535
sample popup calendar Window, 534
window.open, 534–535

script debugging, 532
Internet explorer, 533

tutorial: receiving user input in JavaScript,
536–538

writing, alert dialog with, 531

K
Karate School Manager application, 208

Add New Member form, 211
All Members form, 210

BindingSource using
DataSource property, 214–215

Find Member by Last Name
form, 210

general design guidelines,
209–212

payments forms, 211–212
programming challenges, 232–235,

547–553
source code, 227–229
startup form, 209
tutorial: adding new members, 216–217
tutorial: creating Karate School Manager startup

form, 212–213
tutorial: finding members by name,

218–221
tutorial: listing all members, 213–214
tutorial: listing all payments, 221–223
tutorial: showing payments by one member,

224–226
using query parameters, 217–218
wildcard matches in SQL queries, 218

Kayak Tour Scheduling Wizard
club committee organizer, 106–107
experience levels, 96
final step (selected tours), 94
information for, 109–110
parallel arrays, 96
step 1 (experience level), 92
step 2 (endurance level), 92
step 3 (recommended tour types), 93
step 4 (available tours), 93
tutorial: completing, 94–101

KeyPress event, 53–54

L
Language Integrated Query (LINQ)

array example, 139–141
classes with lists, 147–148
filtering rows, 143
querying dictionary, 147
querying list of objects, 141–142
tutorial: performing LINQ queries on list,

143–146
LINQ to SQL, 341

BindingSource, updating table using
BindingNavigator, 355

entity class properties, creating aliases for
Alias � PropertyName, 350
aMember.Payments, 351
parent table to child table, linking from,

350–351
LINQ statement, updating tables using

deleting table rows, 358
inserting table rows, 359
related tables, deleting from, 358–359
SubmitChanges method, 357–358
updating table rows, 359–360

Index 669

Object Relational Designer
association, creating, 344
KarateClasses.dbml, 343
pluralization, 343
table property and entity class

names, 344
programming challenges, 367–370
query constructing

DataContext object and,
344–345

DataGridView control, formatting,
345–346

data source configuration
wizard, 345

selecting data
alias, combining columns with, 350
binding source connects, 346
constructing query, 344–348
database, connecting to, 342–343
database entity mapping, 341
DataContext design window, 349
day and schedule entity classes, 344
displaying items, 354
entity class properties, 350–352
instructor groups counts, 353
member entity class, 346
object data source, 345
object model, 341–342
object relational designer,

343–344
payment and member entity

classes, 349
selecting columns from, 350
table associations, 348–350
table rows, grouping, 353–355
tutorial: Karate class schedule, displaying,

351–352
tutorial: Karate Members table, displaying,

347–348
table rows, grouping

control-break report, 354
displaying items inside, 353–354
Group By operator, 353
keyword, 353

updating tables
BindingSource, using, 355–357
KarateClassesDataContext,

363–365
tutorial: binding source to update members

table, 356–357
tutorial: LINQ queries to add schedule entries,

360–363
using LINQ statements, 357–363

List(Of Type), 128
ListBox, 66

adding and inserting single items, 67
Items.AddRange, 67
removing items, 67–68

selecting multiple items, 67
List-type controls, 68–69

calendar
default format in, 398
Kayak Tour Scheduler application, 399
selecting a week, 399
tutorial: signing up for Kayak Tour, 399–402
using Professional 1 format, 398

CheckBoxList control, 396
DropDownList, 396–397
ListBox, 394

adding items, 394–395
SelectionMode, 395

listitem collection editor window, 394
ListView control, 649

creating column headings, 650–651
creating inserting, 651–652

properties, 652
example, 652
properties methods, 654–656
techniques, 653–654
tutorial: filling ListView control with contact

information, 652–653

M
Manual software testing, 34

black box testing, 35
requirements specification, 35

example, calculating weekly pay, 37
testing plan, 35
tutorial: manually testing integer input,

35–37
MaxCredits Tests, 314
MaxDateTime property, 71
Message string, 61
Methods

shared methods
Array.Sort method, 10
ToString method, 10

Microsoft Ajax controls, 538–539
Control Toolkit

Accordion, 539
AlwaysVisible, 539
AnimationExtender, 539
AsynchFileUpload, 539
AutoComplete, 539
CalendarExtender, 539
CascadingDropDownControl, 539
CollapsiblePanel, 539
ColorPicker, 539

ScriptManagerProxy control, 539
timer and UpdatePanel controls,

539–540
tick event, 540

Timer control, 539
tutorial: displaying Web server time with Ajax

controls, 540–541
tutorial: using UpdateProgress control, 542–543

670 Index

Microsoft Ajax controls (continued)
UpdatePanel control, 539
UpdateProgress control, 539, 542

Microsoft.NET Framework, 2
Microsoft Reports, 597

AdventureWorks databases, 599–600
product table, 599–600

application
ASP.NET Reports Web Site, 600–601
creation, 601
data source in, 602
fields arranging, 603
layout, in design view, 604
Report Wizard, use, 600
sales details report without formatted

columns, 605
style selection, 603–604

arranging Report fields, 603
ASP.NET reports Web site, 601
designer, 598

detail data and grouped data, 598
Tablix data region, 598

layout, in design view, 604
modifying, 605–608
programming challenges, 638
report application, 600–605
ReportViewer control, 598–599
ReportViewer toolbar, 599
Report Wizard window, 602
Sales Details report, 607
sample rows from product table, 600
single report text box, 605
style, choosing, 603
tutorial: adding page heading to Sales Details,

614–615
tutorial: group totals to Sales Details,

adding, 613–614
tutorial: Sales Details by product name,

grouping, 611–612
tutorial: Sales Details, formatting and adding

totals to, 606–608
tutorial: Sales Details in Web page, displaying,

609–610
tutorial: sales order detail, 601–605
viewing Sales Details, with final

totals, 608
Web application, Sales Details in, 609
Web pages, displaying on, 608–610

Microsoft.VisualStudio.TestTools.UnitTesting, 304
MinDateTime property, 71
Multiple document interface

adding parent form to application, 616
class registration application, 618
course registration form, 620
default parent form, 617
parent with cascading child

windows, 617
selected courses form, 621

tutorial: class registration interface, creating,
618–622

Multiple document interface (MDI)
child forms, 616

parent form, 616–617
class registration, 618

tutorial steps, 619–621
form class

ActiveControl property, 617
ActiveMdiChild property, 617
IsMdiChild property, 618
IsMdiContainer property, 618
LayoutMdi method, 618
MdiChildren property, 617
MdiLayout, 618
MdiParent property, 618
MergedMenu property, 618

parent with cascading child windows, 617
Multiple web forms, working with

hyperlink, 465–466
ImageButton, 467–471
and LinkButton controls, 467–471

MyBase.New, 328

N
.NET Systems.Collections.Generic

namespace, 127
classes in, 128

New (accountId), 28
NewRow method, 202–203
Nothing keyword, 3

O
Object

array example
using loop to copy, 5–6
using Object.Clone to copy, 6

assigning
assignment operator (�), 4–5

comparing
CompareTo method, 6
Equals method, 6
example, 6–7

defined, 1
variables, 13

assigning, 13
CType function, 14

Object.Clone method, 6
Object initializers

ClassName and Property, 13
formats, 12–13
VarName, 13

Object-oriented programming (OOP), 1
OverflowException, 61

P
Polymorphism

abstract classes and methods

Index 671

DoCalculations method, 632
employee class, 630–631
MustInherit, 629–630
MustOverride, 629
SalariedEmployee and HourlyEmployee

classes, 630–632
testing, 631

Programming language, 372
ASP.NET, 372–373
browser support, 374
classes in applications, 374
displaying standard, 373
Extended HyperText Markup (XHTML), 371
HTML designer, 374
servers, 373–374
types of controls, 374–375
Uniform Resource Locator (URL), 372–373
visual Web developer, 372

Properties, 10
auto-implemented, 12

formats, 11
InitialValue, 11

DataType, 11
format for definition, 11
getting and setting, 12
input validation in, 12

Q
Queries, creating in database, 278–283

appointment list form, displaying, 283
appointments, RepairTypes, and customers

tables, joining, 281
TableAdapter warning message, 279
tables joined together, 279
tutorial: joined appointment list, displaying,

281–283
Queries in SQL

inserting table rows, 660
row order setting ORDER BY, 657
rows selection WHERE clause,

659–660
relational operators, 658

select statement, 656–657
updating table rows, 660–661

R
RangeValidator control

settings, sample, 459
use, 458

ReadFromFile, 10
ReadOnly property

Count property, 22
example, 22–23
qualifier and Set statement, 22

Reference types
garbage collector, 4
String objects, 4
variable, 4

RegularExpressionValidator control, 460
email expression example, 463
examples, 462
expression symbols, 461
property values in, 461
validating email address, 461

RemoveAt method, 113
Rentalinfo class, 473–474
Rental request form, 474

code in startup form, 475–476
Reports (Microsoft Reports)

final totals, adding, 607–608
formatting and adding of, 606–607
with groups

header and footer lines, 612
name detail cell, 612
tutorial steps, 611–614

number formatting in text box, 606
page heading

tutorial steps, 614–615
Report Definition Language (RDL), 596
ReportViewer control, 598

single text box, properties of, 605
viewing, 607–608
on Web pages

ObjectDataSource control, 608
ReportViewer control, 608–609
ScriptManager control, 608
tutorial steps, 609–610

toolbar with navigation buttons, 599
Request validation

error message, 451
RequiredFieldValidator

CausesValidation property, 457
example, 455
nonblank values, 456

after user, 457
DropDownList with, 457

properties, 456–458
ValidationSummary, 456

RequiredFieldValidator control
DropDownList with, 457
example, 455–456
LinkButton for, 458
properties, 458
TextBox, communication relationships, 456
ValidationSummary controls, communication

relationships, 456
RichTextBox control, 89
Runtime code, 468

S
SalesStaffDataSet, 186
SelectedIndexChanged event, 90
SelectedIndex property, 90
SelectedTab method, 90
Server-side and client-side, 454–455

ASP.NET validation controls, 455

672 Index

Server transfer method, 468–469
Shared methods, 10
Shared properties, 23
ShowCheckBox property, 71
ShowUpDown property, 71
SortedDictionary class, 132
SplitContainer control, 87

Anchor and Dock properties, 88
mail client with, 88
resized window, 88
with WebBrowser, 89

RichTextBox and, 89
window and splitter bar, 88

StackTrace, 61
State management

Page-Level State (ViewState), 408
example: counting names, 410
HTML and TextBox controls, 409
local variables, 410
objects must be serializable, 411
retrieving values, 409–410
saving values, 408–409
values, 410

session state
restoring objects and, 412
verifying session state values, 412

StatusStrip control
in design mode, 54
message displayed in, 55

StreamReader class
delimiter character, 27
String variable, 27

String.Split method, 27
Structured Query Language (SQL)

ORDER by clause, 171
row order, 171
SELECT statement

aliases for column names,
170–171

calculated columns, 171
server databases, 165

data types, 166
designing, 166–167
and.NET data types, 167
primary key, 166

WHERE clause
bit field (Boolean) values,

172–173
compound expressions (AND, OR,

and NOT), 173–174
LIKE operator, 173
numeric and date values, 173
relational operators, 172

Style classes, 439
document and table elements, 440

System.Collections, 2
System.Exception class, 59
System.Windows.Forms, 2

T
TabControl, 89

in design view, 90
TabPage class, 90

TableAdapter, 174
TabPageCollection, 89
TestAverage property, 22
TextBox control, 2, 53
TextChanged handler, 53
Three-tier application model, 14

data access tier, 15
middle tier, 15
presentation tier, 15

TimeSpan Class, 647
airplane flight example, 648
calculating future date, 648
coordinated universal time, 648
formatting dates times strings, 649
project duration example, 648

ToCharArray method, 52
ToLower(Char ch), 52
ToolStrip control

adding
classes, 74
with ComboBox selection, 74
DropDownButton, 74
MenuStrip or DropDownButton, 74
resource selecting, 75

adding controls, 73–74
design tips, 76
DisplayStyle property, 74
DropDownButton, 74
Image property, 74
ready to add items to, 73
scaling button images

adding items, 75
tutorial: building coffee shop application

startup, 76–80
types and corresponding classes, 74

ToString method, 10
ToUpper(Char ch), 52
Try—Catch—finally statement

alternate execution paths, 60
Catch block starts, 60
Finally block (optional), 60
Try block starts, 60

U
Unit Testing

adding new test list to Test List Editor, 314
ArrayLib.GetLargest method and, 307
Assert class methods, 315–317

Assert.AreEqual, 315
executing, 317
floating-point values, comparing,

315–316
object values, comparing, 316–317

Index 673

automated, 303–304
basics, 303–304
integration, 303

continuous software testing
new code, 302
well-disciplined programmers

and, 303
current Visual Studio solution, 305
existing application, adding tests to, 317–321
GetLargest after adding loop, 310
grouping and viewing, 313–315

GetLargest Method Tests, 314
loaded tests, viewing, 314
MaxCredits Tests, 314
new test list, adding, 314
prior test results, 314–315
test list editor, 313–314

IntArray and IntArrayTest, relationships
between, 306

MaxCredits tests, running first three, 319
.NET and, 304–313

attributes, 305
debug mode, running test in, 305
Microsoft.VisualStudio.TestTools.UnitTesting, 304
project, creating, 304
running test, 304
Visual Studio solution, adding test

project to, 305
results for both, showing, 309
revised registration criteria, RegistrationLib, 318
showing results for single, 308
test details window, 309
test history, viewing, 315
test list editor window, 313
test results grouped by test list name, 315
tutorial: Advisor.MaxCredits method,

317–321
tutorial: IntArray, creating more, 308–313
tutorial: project, creating, 306–308
viewing all loaded tests, 314

Uploading files
control properties, 445–448

client filename, extracting, 447
HttpPostedFile, 446
implementation, 448
MIME types, 446
saving file, 446–447

demo, 447–448
HttpPostedFile properties, 446
MIME types, 446
properties, 446

User interface design, 28–31

V
Vacation Rentals application

application focus on problem solving, 471–472
DecimalRange structure, 473
design view of, 472

Value and reference types, 3–4
Value types, 4

assignment operator (�), 3
Visual Studio controls

Nothing keyword, 3
ToolBox, 3

W
Web applications

ASP.NET
configuration information, 372
content, 372
File System Web Site, 375
FTP Site and Remote Site, 375
Local IIS Site, 375
MyWeb application, 377
New Web Site window, 377
Open Web Site window, 376
page adding, 377
program logic, 372
running, 380–384
source, design, and split views, 378–380
tips, 384

classes in, 374
control types

AJAX extensions, 375
data, 375
dynamic data, 375
general, 375
HTML, 375
login, 375
navigation, 375
parts, 375
reporting, 375
standard, 374
validation, 375

designing Web forms
panels use, 402–403
tables use, 405–408
tutorial: college advising wizard,

403–405
list-type controls, 393

calendar, 397–399
CheckBoxList, 395–396
DropDownList, 396–397
ListBox, 394–395
ListItem Collection Editor window, 394
runtime properties, 394
tutorial: signing up for Kayak Tour,

399–402
programming challenges, 417–423
state management

Page-Level (ViewState), 408–411
session, 411–412

visual Web developer, 372
Web server controls

checkbox, 387
connecting to, 386

674 Index

Web applications (continued)
form events, 391
label, 385–387
SingleLine and MultiLine, 388
textbox, 387
tutorial: student picnic application,

388–390
Web servers, 373–374
XHTML, 371

Web applications with databases
data binding with ListControls

data source, 517
properties, 516
runtime, 517
static data, 516–517

DetailsView control
properties, 508–509
Web page source, 515

GridView control, 500
datasource controls, 500
in design mode, 501
Oceania autoformat, 501
popup menu, 501
SqlDataSource, 502

interacting with GridView Control
Campus.mdf database, 518–519
command buttons, 519–520
parameter sources, 524–525

JavaScript
accessing form fields, 533–534
client-side, 531
debugging, 532–533
executing from ASP.NET

controls, 532
functions, 534–536
server-side, 531
writing, 531

master-detail pages, 491–500
adding master page, 493
changing class name of, 499
content pages, 493–495
ContentPlaceHolder control, 492
creating, 493
CSS, 492
design view, 497
handling events, 499
references to content controls, 499
referencing master page, 499–500
relationships among, 492
setting, 494

tutorial: creating master page, 494–498
Web.config file, 498–499

Microsoft Ajax controls, 539
Ajax Control Toolkit, 539
Document Object Model (DOM), 538
Extended Markup Language (XML), 538
HTML, 538
JavaScript, 538

ScriptManagerProxy control, 539
timer and UpdatePanel controls, 540
Timer control, 539
UpdatePanel control, 539
UpdateProgress control, 539, 542
XMLHttpRequest, 538

WebBrowser control, 80
events, 86
methods and properties, 85
tutorial: completing application starting up, 86

Web forms designing
hyperlink, 465–466
ImageButton and LinkButton controls,

467–469
programming challenges, 484–489
tutorial: moving between web forms,

469–470
using panels, 402–403
using tables to align text and controls,

405–407
Web forms programming

ASP.NET code
blank page, 425–427
tutorial: adding tables to vacation rentals

application, 431–435
tutorial: designing vacation rentals application,

427–430
browser cookies

examples, 477–478, 480
CSS, 435

menu demo example, 440–442
page setting properties, 436–438
running, 441
style classes, 439–440

custom error handling, 442
unhandled exception, 443–445

data validation controls
client-side, 455
CompareValidator control, 459–465
RangeValidator, 458–459
RegularExpressionValidator,

460–463
RequiredFieldValidator, 455–458
server-side, 454

email, 448
file attachments, 449
implementation, 453–454
MailAddress class, 449–450
MailDemo program, 451–452
MailMessage class, 449
MailMessage properties, 450
messages containing HTML tags,

450–451
multiple Web forms, working with

hyperlink, 465–467
ImageButton control, 467–468
LinkButton control, 468

programming challenges, 484–489

Index 675

tutorial: moving between Web forms,
469–470

uploading files
control properties, 445–448

vacation rentals application, 471
Confirmation form, 472
DecimalRange structure, 473
designing, 472–473
RentalInfo class, 473–474
Rental request, 474–476
request page, 471

XHTML mode
eXtensible markup language (XML), 425
hypertext markup language (HTML), 425

Windows Presentation Foundation (WPF), 573
ClickOnce deployment, 581

Compared to Windows Installer, 582
eXtensible Application Markup Language

(XAML), 574
layout and controls, 574
tutorial: adding images to Kayak Tour

reservations application, 579–581
tutorial: creating Kayak Tour reservations

application, 575–579
tutorial: publishing Kayak Tour reservations

application, 583–586
types of applications

stand-alone WPF, 575
XAML browser applications (XBAPs), 575

X
XHTML (eXtensible HyperText Markup Language)

ASP.NET code, 372, 375–377
configuration information, 372
content, 372
ListBox control, 394
mode, working in source, 425–426
program logic, 372
tutorial: designing vacation rentals application,

427–430
Visual Web developer, 372

XMLHttpRequest, 538
XML Web services, 555

attribute classes, 556
data contract, 557
data member, 558
operation contract, 557
service contract, 557

consuming Web service, 559–561
writing code, 560–561

technology
eXtensible markup language (XML), 556
Simple object access protocol (SOAP), 556
universal description, discovery, and integration

(UDDI), 556
Web services description language (WSDL), 556

in Visual Studio, 558–559
Windows Communication Foundation (WCF), 556

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 Classes
	1.1 Classes and Objects
	1.2 Creating Your Own Classes
	TUTORIAL 1-1: Creating a Student class
	TUTORIAL 1-2: Adding a parameterized constructor to the Student class
	1.3 Enumerated Types
	TUTORIAL 1-3: Enumerated Account type
	1.4 Focus on Program Design and Problem Solving: Bank Teller Application
	TUTORIAL 1-4: Building the Bank Teller application
	1.5 Manual Software Testing
	TUTORIAL 1-5: Manually testing integer input

	Chapter 2 Input Validation and User Interfaces
	2.1 Input Validation
	TUTORIAL 2-1: Using the ErrorProvider control
	2.2 Exception Handling
	2.3 ListBox, ComboBox, and CheckedListBox
	2.4 Dates and Times
	2.5 ToolStrip Control
	TUTORIAL 2-2: Building the Coffee Shop application
	2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl
	TUTORIAL 2-3: Creating a simple image album
	TUTORIAL 2-4: Completing a Web browser application
	2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard
	TUTORIAL 2-5: Completing the Kayak Tour Wizard application

	Chapter 3 Collections
	3.1 ArrayLists
	TUTORIAL 3-1: ArrayList of test scores
	3.2 ArrayLists of Custom Objects
	TUTORIAL 3-2: Building an ArrayList of Student objects
	3.3 List and Dictionary Classes
	TUTORIAL 3-3: Creating a text concordance
	3.4 Language Integrated Query (LINQ)
	TUTORIAL 3-4: Performing LINQ queries on a list

	Chapter 4 Using SQL Server Databases
	4.1 Database Basics
	4.2 SQL SELECT Statement
	4.3 Using the DataGridView Control
	TUTORIAL 4-1: Showing a database table in a DataGridView control
	4.4 Selecting DataSet Rows
	TUTORIAL 4-2: Filtering rows in the SalesStaff table
	4.5 Data-Bound Controls
	TUTORIAL 4-3: Displaying the Members table in a ListBox
	TUTORIAL 4-4: Inserting rows in the Karate Payments table
	TUTORIAL 4-5: Adding a total to the Insert Karate Payments application
	4.6 Focus on Problem Solving: Karate School Manager Application
	TUTORIAL 4-6: Creating the Karate School Manager startup form
	TUTORIAL 4-7: Karate School Manager: Listing all members
	TUTORIAL 4-8: Karate School Manager: Adding new members
	TUTORIAL 4-9: Karate School Manager: Finding members by name
	TUTORIAL 4-10: Karate School Manager: Listing all payments
	TUTORIAL 4-11: Karate School Manager: Showing payments by one member

	Chapter 5 Database Applications
	5.1 Creating Databases
	TUTORIAL 5-1: Creating a SQL Server Express database
	TUTORIAL 5-2: Adding the Appointments table to the RepairServices database
	TUTORIAL 5-3: Adding the RepairTypes table to the RepairServices database
	TUTORIAL 5-4: Creating relationships between the RepairTypes, Appointments, and Customers tables
	TUTORIAL 5-5: Changing the database connection from the SQL Express server to a database file
	5.2 DataTables
	5.3 Updating Databases Using SQL
	5.4 Focus on Problem Solving: Home Repair Services Application
	TUTORIAL 5-6: Adding the Appointments class to the middle tier
	TUTORIAL 5-7: Creating the main startup form
	TUTORIAL 5-8: Adding classes to the middle tier
	TUTORIAL 5-9: Adding controls to the New Appointment form
	TUTORIAL 5-10: Searching for appointments
	TUTORIAL 5-11: Modifying existing appointments
	TUTORIAL 5-12: Selecting appointments to modify
	TUTORIAL 5-13: Deleting an appointment
	TUTORIAL 5-14: Displaying a joined appointment list

	Chapter 6 Advanced Classes
	6.1 Structures
	6.2 Components
	TUTORIAL 6-1: Creating a component and referencing it from another application
	TUTORIAL 6-2: Adding an Advisor class to the RegistrationLib component
	TUTORIAL 6-3: Using the Advisor and Student classes
	6.3 Unit Testing
	TUTORIAL 6-4: Creating a Unit Test project
	TUTORIAL 6-5: Creating more unit tests for the IntArray class
	TUTORIAL 6-6: Testing the Advisor.MaxCredits method
	6.4 Events
	TUTORIAL 6-7: The WeatherStation Events application
	6.5 Inheritance
	TUTORIAL 6-8: Student Inheritance application

	Chapter 7 LINQ to SQL
	7.1 Using LINQ to Select Data
	TUTORIAL 7-1: Displaying the Karate Members table
	TUTORIAL 7-2: Displaying the Karate class schedule
	7.2 Updating Tables
	TUTORIAL 7-3: Using a BindingSource to update the Members table
	TUTORIAL 7-4: Using LINQ queries to add schedule entries

	Chapter 8 Creating Web Applications
	8.1 Programming for the Web
	8.2 Creating ASP.NET Applications
	TUTORIAL 8-1: Creating the Click application
	8.3 ASP.NET Controls
	TUTORIAL 8-2: Student Picnic application
	TUTORIAL 8-3: Tracking server events
	8.4 List-Type Controls
	TUTORIAL 8-4: Signing up for a Kayak Tour
	8.5 Designing Web Forms
	TUTORIAL 8-5: College Advising Wizard
	8.6 State Management

	Chapter 9 Programming Web Forms
	9.1 Working in Source (XHTML) Mode
	TUTORIAL 9-1: Designing a Vacation Rentals application
	TUTORIAL 9-2: Adding tables to the Vacation Rentals application
	9.2 Cascading Style Sheets
	9.3 Custom Error Handling
	9.4 Uploading Files and Sending Email
	9.5 Data Validation Controls
	9.6 Working with Multiple Web Forms
	TUTORIAL 9-3: Moving between Web forms
	9.7 Focus on Problem Solving: Vacation Rentals Application
	9.8 Browser Cookies

	Chapter 10 Web Applications with Databases
	10.1 Master-Detail Pages
	TUTORIAL 10-1: Creating an application with a master page
	10.2 Using the GridView Control
	TUTORIAL 10-2: Displaying the Karate Members table in a GridView control
	TUTORIAL 10-3: Formatting the Karate Members columns
	10.3 Using the DetailsView Control
	TUTORIAL 10-4: Karate member details
	TUTORIAL 10-5: Selecting members by ID
	10.4 Data Binding with ListControls
	10.5 Interacting with the GridView Control
	TUTORIAL 10-6: Displaying the Courses table in a GridView
	TUTORIAL 10-7: Using graphical command buttons in the Courses grid
	TUTORIAL 10-8: Displaying class rolls
	TUTORIAL 10-9: Displaying the class roll on a separate page
	10.6 Using JavaScript
	TUTORIAL 10-10: Receiving user input in JavaScript
	10.7 Using Microsoft Ajax Controls
	TUTORIAL 10-11: Displaying the Web server time with Ajax controls
	TUTORIAL 10-12: Using the UpdateProgress Control

	Chapter 11 Web Services and Windows Presentation Foundation
	11.1 Introducing XML Web Services
	11.2 BookService Web Service
	TUTORIAL 11-1: Creating the BookService Web Service
	TUTORIAL 11-2: Consuming BookService from a Web application
	TUTORIAL 11-3: Consuming BookService from a Windows Forms application
	11.3 Windows Presentation Foundation (WPF)
	TUTORIAL 11-4: Creating the Kayak Tour Reservations application
	TUTORIAL 11-5: Adding Images to the Kayak Tour Reservations application
	TUTORIAL 11-6: Publishing the Kayak Tour Reservations application
	TUTORIAL 11-7: Publishing the Kayak Tour Reservations application to the Web

	Chapter 12 Reports, MDI, Interfaces, and Polymorphism
	12.1 Creating Microsoft Reports
	TUTORIAL 12-1: Creating a Sales Order Detail Report
	TUTORIAL 12-2: Formatting and adding totals to the Sales Details report
	TUTORIAL 12-3: Displaying the Sales Details report in a Web page
	TUTORIAL 12-4: Grouping the Sales Details report by product name
	TUTORIAL 12-5: Adding group totals to the Sales Details report
	TUTORIAL 12-6: Adding a page heading to the Sales Details report
	12.2 Multiple Document Interface (MDI)
	TUTORIAL 12-7: Creating the Class Registration MDI interface
	12.3 Interfaces
	TUTORIAL 12-8: Defining and Implementing the IPayable Interface
	12.4 Abstract Classes and Polymorphism

	Appendix A: Answers to Checkpoints
	Appendix B: Optional Reference Topics
	B.1 TimeSpan and DateTime Formatting
	B.2 ListView Control
	TUTORIAL B-1: Filling a ListView control with contact information
	B.3 Guide to SQL Queries
	B.4 Writing to the Application Log File

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

