= ADVANCED
RS
: 2010 TONY GACDIS

http://www.allitebooks.org

ADVANCED

Visual Basic® 2010

Kip Irvine
Florida International University

Tony Gaddis

Haywood Community College

Addison Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

M.al I itebookscogi

http://www.allitebooks.org

Editorial Director: Marcia Horton
Editor in Chief: Michael Hirsch
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Chelsea Bell
Managing Editor: Jeffrey Holcomb
Senior Production Project Manager: Marilyn Lloyd
Media Producer: Dan Sandin
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti
Production/Operations Manager: Pat Brown
Text Designer: Joyce Cosentino Wells
Cover Designer: Suzanne Duda
Cover Image: Shutterstock Images
Project Management/Composition: Jogender Taneja / Aptara®, Inc.
Printer/Binder: Bind-Rite Graphics
Cover Printer: Lehigh-Phoenix Color

Credits and acknowledgments borrowed from other sources and reproduced, with permis-
sion, in this textbook appear on appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in

the U.S.A. and other countries. Screen shots and icons reprinted with permission from the
Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the
Microsoft Corporation.

The interior of this book was set in the application QuarkXpress 6.52 with Basal text font
Sabon 10/12.5.

Copyright © 2012, 2007 Pearson Education, Inc., publishing as Addison-Wesley. All rights
reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and seller to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Irvine, Kip R.,
Advanced visual basic 2010 / Kip Irvine, Tony Gaddis.—5th ed.
p. cm.
ISBN-13: 978-0-13-231674-3
ISBN-10: 0-13-231674-9
1. Microsoft Visual BASIC. 2. BASIC (Computer program language)
I. Gaddis, Tony. II. Title.
QA76.73.B3G32 2012
005.13°3—dc22 2011000246

10 9876 5432 1—BRR—1514131211

Addison-Wesley
is an imprint of

PEARSON ISBN 10: 0-13-231674-9
e
www.pearsonhighered.com ISBN 13: 978-0-13-231674-3

M.al litebooks. cogl

www.pearsonhighered.com
http://www.allitebooks.org

This book is dedicated to the memory of Barry Brosch,
my teacher and mentor.

—Kip Irvine

This book is dedicated to the memory of Ruth Young,
an inspiration and a role model for all who knew ber.

—Tony Gaddis

M.al I itebooks.cogl

http://www.allitebooks.org

This page intentionally left blank

M.al litebooks. cogl

http://www.allitebooks.org

Brief Contents

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Appendix A
Appendix B

Preface xiii

Classes

Input Validation and User Interfaces
Collections

Using SQL Server Databases

Database Applications

Advanced Classes

LINQ to SQL

Creating Web Applications

Programming Web Forms

Web Applications with Databases

Web Services and Windows Presentation Foundation
Reports, MDI, Interfaces, and Polymorphism
Answers to Checkpoints

Optional Reference Topics

Index

M.al I itebookscogi

51
111
165
237
289
341
371
425
491
555
597
639
647
663

http://www.allitebooks.org

This page intentionally left blank

M.al litebooks. cogl

http://www.allitebooks.org

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Preface xiii

Classes 1

1.1 Classes and Objectst e 1
1.2 Creating Your Own Classesttt e 7
TUTORIAL 1-1: Creating a Student classttt 15
TUTORIAL 1-2: Adding a parameterized constructor to the Student class 20
1.3 Enumerated Typesot 23
TUTORIAL 1-3: Enumerated Account type vvvititnt it iniieeennnn 25
1.4 Focus on Program Design and Problem Solving: Bank Teller Application 26
TUTORIAL 1-4: Building the Bank Teller application 31
1.5 Manual Software Testingot 34
TUTORIAL 1-5: Manually testing integer inputo.veuenrenrennennenn.. 35

Input Validation and User Interfaces 51

2.1 InputValidation 51
TUTORIAL 2-1: Using the ErrorProvider control i, 56
2.2 ExceptionHandling 59
2.3 ListBox, ComboBox, and CheckedListBoxc...... 66
2.4 Datesand TiMeSottt e 70
2.5 ToolStrip Control 73
TUTORIAL 2-2: Building the Coffee Shop application, 76
2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl 80
TUTORIAL 2-3: Creating a simple image album 82
TUTORIAL 2-4: Completing a Web browser application 86
2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard 91
TUTORIAL 2-5: Completing the Kayak Tour Wizard application 94

Collections 111

3.1 ArrayLists ..o 111
TUTORIAL 3-1: ArrayList of teSt SCOres .. v v vt vttt it ie i eeenn 114
3.2 Arraylists of Custom Objects 118
TUTORIAL 3-2: Building an ArrayList of Student objects 123
3.3 List and Dictionary Classescuutiiut i 126
TUTORIAL 3-3: Creating a text CONCOrdanceououemiennennennenn. 133
3.4 Language Integrated Query (LINQ) 139
TUTORIAL 3-4: Performing LINQ queriesonalistvuvinnnnnn.... 143

Using SQL Server Databases 165

4,1 Database BasiCs i 165
4.2 SQL SELECT Statement i e 170

M.al I itebookscogi

vii

http://www.allitebooks.org

viii

Contents

Chapter 5

Chapter 6

4.3 Using the DataGridView Control i,
TUTORIAL 4-1: Showing a database table in a DataGridView control
4.4 Selecting DataSet ROWS it e
TUTORIAL 4-2: Filtering rows in the SalesStaff table
4.5 Data-Bound Controls
TUTORIAL 4-3: Displaying the Members table in a ListBox
TUTORIAL 4-4: Inserting rows in the Karate Payments table
TUTORIAL 4-5: Adding a total to the Insert Karate Payments application
4.6 Focus on Problem Solving: Karate School Manager Application
TUTORIAL 4-6: Creating the Karate School Manager startup form
TUTORIAL 4-7: Karate School Manager: Listing all members
TUTORIAL 4-8: Karate School Manager: Adding new members
TUTORIAL 4-9: Karate School Manager: Finding members by name
TUTORIAL 4-10: Karate School Manager: Listing all payments
TUTORIAL 4-11: Karate School Manager: Showing payments by one member

Database Applications 237

5.1 Creating Databases
TUTORIAL 5-1: Creating a SQL Server Express database
TUTORIAL 5-2: Adding the Appointments table to the RepairServices database
TUTORIAL 5-3: Adding the RepairTypes table to the RepairServices database

TUTORIAL 5-4: Creating relationships between the RepairTypes, Appointments,
and Customers tables i

TUTORIAL 5-5: Changing the database connection from the SQL Express server
toadatabasefile L

5.2 DataTables
5.3 Updating Databases Using SQL i,
5.4 Focus on Problem Solving: Home Repair Services Application
TUTORIAL 5-6: Adding the Appointments class to the middle tier
TUTORIAL 5-7: Creating the main startup form,
TUTORIAL 5-8: Adding classes to the middle tier
TUTORIAL 5-9: Adding controls to the New Appointment form
TUTORIAL 5-10: Searching for appointmentso.eurenrennennnn..
TUTORIAL 5-11: Modifying existing appOintmentseueueenenenen ..
TUTORIAL 5-12: Selecting appointments to modify
TUTORIAL 5-13: Deleting an appointmentuuteirenrennennnn..
TUTORIAL 5-14: Displaying a joined appointment list

Advanced Classes 289

6.1 STrUCTUIES e
6.2 COmMPONENtS

TUTORIAL 6-1: Creating a component and referencing it from
another application ittt

TUTORIAL 6-2: Adding an Advisor class to the RegistrationLib component
TUTORIAL 6-3: Using the Advisor and Student classes
6.3 UnitTestingttt
TUTORIAL 6-4: Creating a Unit Test project,

M.al litebooks. cogl

http://www.allitebooks.org

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Contents
TUTORIAL 6-5: Creating more unit tests for the IntArray class 308
TUTORIAL 6-6: Testing the Advisor.MaxCredits method 317
6.4 Events 322
TUTORIAL 6-7: The WeatherStation Events application 323
6.5 Inheritance 325
TUTORIAL 6-8: Student Inheritance application, 330
LINQ to SQL 341
7.1 UsingLINQtoSelectDatattt 341
TUTORIAL 7-1: Displaying the Karate Members table 347
TUTORIAL 7-2: Displaying the Karate class schedule 351
7.2 UpdatingTables 355
TUTORIAL 7-3: Using a BindingSource to update the Members table 356
TUTORIAL 7-4: Using LINQ queries to add schedule entries 360
Creating Web Applications 371
8.1 Programming fortheWeb 371
8.2 Creating ASP.NET Applications 375
TUTORIAL 8-1: Creating the Click application 381
8.3 ASPNET Controls e e 385
TUTORIAL 8-2: Student Picnic applicationt iiiiirnnennn.. 388
TUTORIAL 8-3: Tracking Server Ventseeueiuennenneneennennenn. 391
8.4 List-Type Controls e 393
TUTORIAL 8-4: Signing up for a Kayak Touro, 399
8.5 DesigningWeb Forms e 402
TUTORIAL 8-5: College Advising Wizard, 403
8.6 State Management 408
Programming Web Forms 425
9.1 Working in Source (XHTML) Modeo .. 425
TUTORIAL 9-1: Designing a Vacation Rentals application 427
TUTORIAL 9-2: Adding tables to the Vacation Rentals application 431
9.2 Cascading Style Sheets i 435
9.3 Custom Error Handling 442
9.4 Uploading Files and Sending Email 445
9.5 Data Validation Controls 454
9.6 Working with Multiple Web Forms 465
TUTORIAL 9-3: Moving between Web forms 469
9.7 Focus on Problem Solving: Vacation Rentals Application 471
9.8 Browser CooKiesttt e 477
Web Applications with Databases 491
10.1 Master-Detail Pages i 491
TUTORIAL 10-1: Creating an application with a master page 494
10.2 Using the GridView Control 500

M.al I itebooks.cogl

ix

http://www.allitebooks.org

Contents

TUTORIAL 10-2: Displaying the Karate Members table in a GridView control 503
TUTORIAL 10-3: Formatting the Karate Members columns 506
10.3 Using the DetailsView Control 508
TUTORIAL 10-4: Karate member details 509
TUTORIAL 10-5: Selecting members by ID 513
10.4 Data Binding with ListControls 516
10.5 Interacting with the GridView Control 518
TUTORIAL 10-6: Displaying the Courses table in a GridView 521
TUTORIAL 10-7: Using graphical command buttons in the Courses grid 522
TUTORIAL 10-8: Displaying classrolls i ... 525
TUTORIAL 10-9: Displaying the class roll on a separate page 529
10.6 Using JavaScript e 531
TUTORIAL 10-10: Receiving user input in JavaScriptccoiuevnn... 536
10.7 Using Microsoft Ajax Controls 538
TUTORIAL 10-11: Displaying the Web server time with Ajax controls 540
TUTORIAL 10-12: Using the UpdateProgress Control 542

Chapter 11 Web Services and Windows Presentation
Foundation 555

11.7 Introducing XML Web Services 555
11.2 BookService Web Service 561
TUTORIAL 11-1: Creating the BookService Web Service 561
TUTORIAL 11-2: Consuming BookService from a Web application 565
TUTORIAL 11-3: Consuming BookService from a Windows Forms application 567
11.3 Windows Presentation Foundation (WPF) 573
TUTORIAL 11-4: Creating the Kayak Tour Reservations application 575
TUTORIAL 11-5: Adding Images to the Kayak Tour Reservations application 579
TUTORIAL 11-6: Publishing the Kayak Tour Reservations application 583

TUTORIAL 11-7: Publishing the Kayak Tour Reservations application to the Web ... 586

Chapter 12 Reports, MDI, Interfaces, and Polymorphism 597

12.1 Creating Microsoft Reports 597
TUTORIAL 12-1: Creating a Sales Order Detail Report 601
TUTORIAL 12-2: Formatting and adding totals to the Sales Details report 606
TUTORIAL 12-3: Displaying the Sales Details report in a Web page 609
TUTORIAL 12-4: Grouping the Sales Details report by product name 611
TUTORIAL 12-5: Adding group totals to the Sales Details report 613
TUTORIAL 12-6: Adding a page heading to the Sales Details report 614
12.2 Multiple Document Interface (MDI) 616
TUTORIAL 12-7: Creating the Class Registration MDI interface 618
123 Interfaceso o 622
TUTORIAL 12-8: Defining and Implementing the IPayable Interface 624
12.4 Abstract Classes and Polymorphism 629

Appendix A Answers to Checkpoints 639

Appendix B

Index 663

Contents
Optional Reference Topics 647
B.1 TimeSpan and DateTime Formatting 647
B.2 ListView Control e e 649
TUTORIAL B-1: Filling a ListView control with contact information 652
B.3 Guide to SQL QUENIESottt e 656
B.4 Writing to the Application Log File 662

xi

This page intentionally left blank

Preface

dvanced Visual Basic® 2010, Fifth Edition, offers instruction in Visual Basic .NET

programming to those who have completed a semester course or equivalent in the
same topic. After studying the book and completing the programming exercises (called Pro-
gramming Challenges), students should be able to create small- to medium-size Windows
and Web applications that use databases. They will also gain essential concepts in object-
oriented programming, event-driven programming, and test-driven development.

Effective programmers must combine theory with practice in order to adapt to changing
computing environments. This book does not cover the breadth of topics found in some pro-
fessional reference books, but it provides a practical approach to programming and problem
solving. The following features make it helpful in the classroom:

A step-by-step learning method in which new ideas and concepts build on existing ones
Tutorials in which students gain hands-on experience by working with the chapter topics
Review questions (called Checkpoints) at the end of each chapter section

Tips that provide advice for solving programming problems, sprinkled throughout the
chapters

o A list of key terms at the end of each chapter

e Review questions and exercises at the end of each chapter

e Programming projects at the end of each chapter that reinforce the chapter material

e A companion website that contains sample programs and other support materials

Changes in the Fifth Edition

This edition of Advanced Visual Basic 2010 offers many improvements. We place much
more emphasis on object-oriented programming principles and software design than we did
in the previous edition. The multi-tier application model (data, business objects, user inter-
face) is a strong influence, as is programming with collections and components. Overall, the
fifth edition provides an enhanced approach to designing, implementing, and testing well-
constructed, maintainable, and extensible applications. Of particular note are the new sec-
tions on strongly typed collections, LINQ to Objects, LINQ to SQL, Unit Testing, Windows
Presentation Foundation (WPF), and Windows Communication Foundation (WCF). The
example programs were written in Visual Studio 2010.

Additional Materials

A primary selling point of a textbook lies in the quality of support given by the authors to
adopting professors. The publisher makes excellent resources for this book available at
www.pearsonhighered.com/irvine. The following materials are available to students and
instructors:

e Online VideoNotes, narrated by Kip Irvine, which explain concepts and examples from
the chapters

¢ A PowerPoint slide presentation for each chapter

e Example programs

e Online list of corrections to errors in the book

In addition, the following are available for professors:
e Answers to Review Questions and Exercises

e Solutions to Programming Challenges iii

www.pearsonhighered.com/irvine

xiv

Preface

Learning Objectives

Following are the learning objectives for this book, indicating the skills and knowledge that
students may expect to attain:

® Master the use of .NET controls to create rich user interfaces

® Master the design and implementation of object-oriented multi-tier applications

® Master the design of manual and automated tests for desktop applications

e Master the use of .NET controls and exception handling to trap errors at the user inter-
face level

e Master the displaying and updating of data in related database tables

e Master the creation of ASP.NET applications that contain multiple Web pages and
databases

® Master the use of page-level state and session state in ASP.NET programs

e Be familiar with database constraints and database security

* Be familiar with creating and consuming Web services

e Be familiar with creating database-driven reports

Sequencing the Chapters

If your Advanced Visual basic course emphasizes Windows applications, we recommend that
you complete Chapters 1 through 7 in sequence. For courses that cover Web programming,
continue to Chapters 8 through 11. Chapter 12 (Reports, MDI, Interfaces, and Polymor-
phism) can be introduced any time after Chapter 4.

Chapter Descriptions

Chapter 1: Classes. Chapter 1 begins with basic concepts of classes and objects. Next, we
show how to define classes, and enumerated types and structures, and how they are used in
applications. We build a two-tier Bank Teller application that uses classes to simulate the
basic operations of a software teller machine. The concept of multi-tier application design
will continue to be a central theme throughout the book. We also introduce manual software
testing as an important tool for validating program output.

Chapter 2: Input Validation and User Interfaces. Chapter 2 provides in-depth cov-
erage of input validation and error handling. The ErrorProvider control is introduced as an
ideal tool for input validation. Next, we review the ListBox, ComboBox, and
CheckedListBox controls, and we show how to write code that deals with multiple selec-
tions. Following that, we show how to use the FlowLayout, WebBrowser, SplitContainer,
and TabControl controls to create more creative user interfaces. The chapter finishes with
the design and development of a software wizard and shows some of the power and flexi-
bility of this type of application.

Chapter 3: Collections. Chapter 3 introduces some of the most useful and powerful col-
lection classes in the .NET library, with the idea that collections of objects help to build con-
cepts that can later be applied to databases. We show how to create and use ArrayLists, as
well as strongly typed Lists and Dictionaries. The chapter finishes with examples that show
how to search lists of objects, using Microsoft’s new Language Integrated Query (LINQ)
technology.

Chapter 4: Using SQL Server Databases. Chapter 4 focuses on the basics of displaying
and updating databases using .NET controls. It shows how Visual Studio enables data bind-
ing, which is the connecting of the user interface directly to database components. The chap-
ter also stresses basic database concepts; how to execute SQL queries; how to sort and filter
database data; how to display data in a grid; and how to bind individual controls to database

Preface

tables. After reading this chapter, students should be able to display and update database
tables rapidly with almost no programming.

Chapter 5: Database Applications. Chapter 5 focuses on database programming, using
the ADO.NET library. Students can think of it as an extension of the database concepts and
database binding from Chapter 4. In Chapter 3, students can integrate their knowledge of multi-
tier application design with objects and databases. The chapter concludes with an extended
example application that schedules appointments for a home repair services company.

Chapter 6: Advanced Classes. Chapter 6 introduces structures, which are simple con-
tainers for variables, properties, and methods. Then the chapter demonstrates the building
of components, also known as class libraries. Then the chapter introduces unit testing, the
industry standard for automated testing of individual units of code. This is followed by a
brief introduction to defining and using custom event types in classes. The chapter ends with
inheritance, a fairly large topic that is a core topic in object-oriented programming.

Chapter 7: LINQ to SQL. Chapter 7 introduces LINQ to SQL, a powerful tool for query-
ing and updating database data. LINQ to SQL offers the opportunity to use object-oriented
programming techniques to view and update databases. Essentially, students work with
databases in the same way that they did with in-memory collections in Chapter 3. They learn
how to create entity classes that model database tables. They learn how to create selection
queries that join multiple entity classes, using common linking properties. Students learn
how to insert, update, and delete table entries.

Chapter 8: Creating Web Applications. Chapter 8 introduces the ASPNET runtime
environment and shows how to use Visual Studio to create Web sites. Students learn what
happens when an ASP.NET page is processed by a Web server. Students learn about runtime
events and about the different categories of controls available in ASP.NET applications, and
they learn differences between HTML controls and ASP.NET controls. The chapter describes
application and configuration files required by ASP.NET applications. Finally, the chapter
shows how to create a simple Web application containing various types of buttons, labels,
headings, and text boxes.

Chapter 9: Programming Web Forms. Chapter 9 introduces students to programming
techniques in ASP.NET applications. They also learn about XHTML, cascading style sheets,
menus, and validation controls. Students learn how to upload files to a Web site and send
email from a Web site. They learn how to save page state information and how to save infor-
mation when users switch between pages. Finally, the chapter shows how application cook-
ies are created.

Chapter 10: Web Applications with Databases. Chapter 10 introduces master-detail
pages, which let students create a consistent look across a Web site. Following that, the chap-
ter shows how to use data-bound controls with databases. It examines some advanced use
of the GridView control. The chapter shows a few basic techniques available in JavaScript,
and finishes with a brief introduction to the Microsoft Ajax extension controls.

Chapter 11: Web Services and Windows Presentation Foundation. Chapter 11
helps students understand the basic technologies behind Web services and the types of appli-
cations that use them. Students learn how to create and consume Web services. Next, the
chapter introduces Microsoft’s exciting new Windows Presentation Foundation (WPF). WPF
programs can be run from both the desktop and the Web. We show how to use ClickOnce
technology, which greatly simplifies application deployment and installation.

Chapter 12: Reports, MDI, Interfaces, and Polymorphism. Chapter 12 introduces
several important topics. First, its shows how to create reports for the desktop and Web,

XV

XVi

Preface

using Microsoft Report templates and the ReportViewer control. Next, it shows how to cre-
ate Multiple Document Interface (MDI) applications, which manage multiple client win-
dows under a single parent window. Then we introduce advanced topics in object-oriented
programming: interface types, abstract classes, and polymorphism. Although these topics are
not heavily emphasized in Visual Basic applications, they can be important as programs
grow in size and complexity.

Appendix A: Answers to Checkpoints. Students may test their progress by comparing
their answers to the review questions at the end of each chapter section. These lists of review
questions are called Checkpoints. Appendix A provides all the Checkpoint answers.

Appendix B: Optional Reference Topics. Appendix B contains a collection of optional
reference topics. It shows how to calculate TimeSpan objects and how to format dates and
times. It shows how to use the ListView control. Next is a guide to SQL Queries (SELECT,
INSERT, DELETE, and UPDATE). Finally, it shows students how to write messages to the
application log file. This can be a powerful tool for diagnostic and error reporting.

Acknowledgments
We wish to thank the following individuals for their contributions to this book:

e Matt Goldstein, Acquisitions Editor at Addison-Wesley, who was the driving force
behind this book

® Chelsea Bell, Editorial Assistant at Addison-Wesley

* Jogender Taneja, my project manager at Aptara, did a great job of keeping the pro-
duction moving, with quality work all the way and Marianne I’Abbate, the excellent
copy editor

We wish to thank the following individuals who reviewed the current edition:

Evans Adams, Fort Lewis College

Patricia McDermott-Wells, Florida International University
David S. McDonald, Georgia State University

Rudy Lee Martinez, Austin Community College

We also wish to thank the following professors who reviewed earlier editions of this book:

Jeffery Allen, Indiana University Purdue University Indianapolis
Chuck Bailey, Kenai Peninsula College

Anthony Basilico, Community College of Rhode Island
Joni Catanzaro, Louisiana State University

Ronald Del Porto, Penn State University, Behrend
William Dorin, Indiana University Northwest

Dana Johnson, North Dakota State University

Melody Kiang, California State University, Long Beach
Bruce LaPlante, University of Wisconsin, Green Bay
Astrid Lipp, Georgia State University

Thomas McCullough, Hillsborough Community College
David McDonald, Georgia State University

Sally Field Mullan, College of DuPage

Theresa Nagy, Northern Virginia Community College
Adam Peck, Ohlone College

Anita Philipp, Oklahoma City Community College
Andre Poole, Florida Community College at Jacksonville
Ed Schott, Walsh University

Craig Van Lengen, Northern Arizona University

Preface

Lori Walljasper, Scott Community College
Sandy Wells, Gadsden State Community College

Kip Irvine
Tony Gaddis

About the Authors

Kip Irvine holds a Master of Science degree in Computer Science from University of Miami.
He taught computer programming at Miami-Dade College for seventeen years, and he has
taught at Florida International University since 2000. He has written programming textbooks
for Addison-Wesley and Prentice-Hall, covering subjects such as Assembly Language, C++,
Visual Basic, and COBOL. His books have been translated into Russian, Korean, Chinese,
Polish, Spanish, and French. He briefly worked as a software developer in the industry.

Tony Gaddis taught computer programming languages, operating systems, and physics at
Haywood Community College in North Carolina. He was selected as the North Carolina
Community College Teacher of the Year in 1994, and received the Teaching Excellence
award from the National Institute for Staff and Organizational Development in 1997. Tony
has also provided training to companies and agencies, including NASA’s Kennedy Space Cen-
ter. He is a best-selling author of numerous computer programming textbooks for Addison-
Wesley, covering topics such as Alice, Java, C++, C#, Visual Basic, and algorithms.

Xvii

This page intentionally left blank

[
(NN]
—
o
<
I
)

1.1 Classes and Objects 1.4 Focus on Program Design and Problem
Solving: Bank Teller application

Tutorial 1-4: Building the Bank Teller

1.2 Creating Your Own Classes
Tutorial 1-1: Creating a Student class

Tutorial 1-2: Adding a parameterized application]
constructor to the Student class 1.5 Manual Software Testing
1.3 Enumerated Types Tutorial 1-5: Manually testing integer
input

Tutorial 1-3: Enumerated Account type

This chapter begins with basic concepts of classes and objects. Next, we demonstrate how
to define classes and enumerated types, showing how they are used in applications. We build
a two-tier Bank Teller application that uses classes to simulate the basic operations of a soft-
ware teller machine. The concept of multi-tier application design will continue to be a central
theme throughout the book. Finally, we introduce manual software testing as an important
tool for validating program output.

Classes and Objects

CONCEPT: Classes are the basic elements of object-oriented programming, which in
turn makes it possible for programmers to build rich, robust applications.

Object-oriented programming (OOP) is a way of designing and coding applications that
focuses on the objects and entities in real-world applications. In this chapter, we present
objects from a programmer’s point of view. The more abstract concepts of object-
oriented program and how they relate to the real-world of applications will not be
emphasized here.

An object is a container for members such as properties, fields, methods, and events. It usu-
ally represents some entity in a problem that the application is designed to solve. If you were
creating an automobile dealership application, for example, the entities might have names like
vehicle, customer, salesperson, manager, and vehicle inventory. If you were creating a graphi-
cal user interface, the objects might be button, text box, list box, label, and radio button.

Chapter 1

Classes

An object has attributes that may be thought of as common characteristics that apply to all
objects of the same type. For example, a vehicle object might have attributes such as make,
model, and color. An object also has behaviors, which represent the actions that can be car-
ried out on the object. A vehicle object might have behaviors such as start, stop, and turn.
An object may be able to raise events, which represent responses by the object to external
actions. A Button object in .NET, for example, raises a Click event when the user clicks the
button.

If you have already programmed in Visual Basic, you have used objects many times. In fact,
buttons, check boxes, list boxes, and other controls are objects. But what you may not have
known was that all of these objects were originally defined using classes.

Classes

A class defines which properties and methods can be applied to its objects. A class is defined
using the Class keyword. For example, every form that you add to an application is defined
by a class, such as the following:

Public Class Forml
End Class

Each control in the Visual Studio Toolbox window was defined by a class. The Button class,
for example, contains definitions of properties, methods, and events that make it different
from other classes. A TextBox control has properties named Name, Text, Visible, and
ForeColor. All TextBox objects have these properties.

The Microsoft .NET Framework contains a large library of classes that make it possible to
write applications for desktop computing, mobile applications, and the Web. The classes are
grouped by similarity into namespaces to make it easier to find them. A namespace is a log-
ical container that holds classes of similar types. For example, the System.Collections name-
space contains classes related to building collections (arrays, lists, dictionaries, sets). The
System. Windows.Forms namespace contains classes related to building desktop applications
for Windows.

Creating Objects

If a class has been defined, you can create one or more objects of the class type. We some-
times call them instances of the class, or class instances. The following statement does
this:

Dim freshman As New Student

The New operator tells VB to create an object in memory, and is required when creating
an object (String objects are the exception to this rule). Or, you can separate this into two
statements. For example, you might want to declare the variable at the class level in a
Form:

Private freshman As Student

This variable does not reference any object at this point—it only has a data type. Then at
some other point in the program’s execution, you could create an instance of the class and
assign it to the variable:

freshman = New Student

The = operator assigns the new object to the variable. We say that the variable contains a
reference to the object.

1.1 Classes and Objects

Visual Studio Controls

Visual Studio creates instances of controls when you drag them from the ToolBox onto a
form. For example, the following code was written to a form’s designer file when a button
was created and certain properties were set in the designer window:

Me.btnOk = New Button()
Me.btnOk.Location = New System.Drawing.Point(43, 48)

Me.btnOk.Name = "btnOk"
Me.btnOk.Size = New System.Drawing.Size(75, 23)
Me.btnOk.Text = "OK"

Notice how the first line uses the New operator to create an instance of the Button class.
Then various property values are assigned to the button (Location, Name, Size, and Text).

The Nothing Keyword

The Nothing keyword indicates a null value, which results when a reference type variable has
not been initialized. You cannot call a method or reference a property of an object that
equals Nothing. The following statements, for example, would cause a runtime error:

Dim freshman As Student
freshman.PrintCourses()

If your code needs to know whether a variable has been initialized, you can compare the
variable to the keyword Nothing.

If freshman Is Nothing Then
' must initialize the variable
freshman = New Student

End If

Value Types and Reference Types

There are two general categories of Visual Basic data types: value types and reference types. A
variable declared as a value type contains its own data in a single memory location. Value types
include all the number types, such as Integer and Decimal, as well as Boolean. These types use
a standard-size storage location.

A variable declared as a reference type does not directly hold its data. Instead, it points to
(references) an object somewhere else in memory. Classes are reference types, as are Arrays.
A reference variable is a variable declared using a reference type. When an object is created
by invoking the New operator, the .NET runtime reserves space in memory for the object.
The address of the object is stored in a reference variable. Doing this takes more processing
time than for value types, but it allows .NET to reclaim the storage used by the object when
it is no longer needed by the program.

Value Types

Value types do not require any initialization. As soon as you declare them, they have imme-
diate storage. Variables of type Integer, Doubles, Boolean, and other standard types are value
types. They are easy to use, consume little memory, and are the simplest to understand when
using the assignment operator (=).

When you assign one value type to another using the assignment operator (=), a copy is
made of the data in the variable on the right-hand side. The data is copied into the variable
on the left-hand side. In the following example, mCount is copied to temp:

Dim mCount As Integer = 25
Dim temp As Integer = mCount

Chapter 1

Classes

If a new value is later assigned to temp, mCount is not affected:

temp = 40 ' mCount still equals 25

However, not all variables work this way. When an object variable is assigned to another
object, it’s a little more complicated.

Reference Types

Whenever you create an instance of a class and assign it to a variable, your variable is a ref-
erence type. For example, the following code creates a Person object, assigns its reference
to P, and assigns a value it its Name property:

Dim P As New Person
P.Name = "Fred Smith"

Figure 1-1 shows the relationship between P and the data it references. The data contained
in the Person object is located in a special area of memory called the managed heap. P con-
tains a reference to the data, not the data itself. If at any time in the future, the Person object
is no longer needed, we can assign a value of Nothing to P:

P = Nothing

Figure 1-1 A reference type variable links to an object in memory

Memory

(reference) -
P » “Fred Smith”

(Person object)

Assuming that no other references to the same Person object existed, a special utility in the
NET runtime called the garbage collector would eventually remove the object from memory.

In addition to objects, arrays are also reference types. Let’s see what happens when reference
objects are assigned to each other.

Strings

String objects are reference types, but they are a special case because their declarations do
not require the New operator. Following are examples of String object declarations:

Dim strName As String
Dim strCity As String = "Miami"

Assigning Objects

The assignment operator (=) assigns an expression on its right side to a variable on its left
side. It is common to use the assignment operator to assign one object to another. When you
assign integers, for example, the value of the expression on the right side is copied into the
variable on the left:

Dim Y As Integer = 25
Dim X As Integer
X =Y

1.1 Classes and Objects

After the above lines execute, X equals 25. But what if the variables X and Y are objects (ref-
erence types)?

Dim Y As New Account
Dim X As Account
X =Y

In this example, the contents of Y are not copied into X. Instead, the reference contained in
Y is copied into X. Essentially, the variables X and Y now reference the same object.

Array Example

The following code creates an array of integers named fests, fills the array, and assigns the
array to the variable named scores:

Dim scores() As Integer
Dim tests() As Integer = {80, 95, 88, 76, 54}
scores = tests

After this code executes, the same array is referenced by both scores and tests, as shown in
Figure 1-2. The following code can be used to show that the two arrays share the same
memory. By assigning a new value to scores(2), we automatically assign the same value to
tests(2):

scores(2) = 11111

MessageBox.Show(tests(2).ToString()) ' displays "11111"

Figure 1-2 One array referenced by both variables

Memory

e
T |
scores

The message box shows that tests(2) equals 11111, as does scores(2). This type of dual ref-
erence can lead to a common type of programming error known as a side effect. Much like
a medication that causes unwanted effects to a person, a software side effect changes vari-
ables in a way that can fool a programmer. Code containing side effects is very difficult to

debug.

Using a Loop to Copy an Array

If you want to copy the contents of one array to another, you can use a loop to copy the indi-
vidual elements. First, you reserve space in the scores array. Then you copy the data:

Dim scores(tests.Length - 1) As Integer

For i As Integer = 0 To tests.Length - 1
scores(i) = tests(i)

Next

Figure 1-3 shows the result after copying the array. The following code shows that the two
arrays do not share the same memory. When a new value is assigned to scores(2), the value
of tests(2) is unchanged:

scores(2) = 11111
MessageBox.Show(tests(2).ToString()) ' displays "88"

Chapter 1

Classes

Figure 1-3 Results after copying an array

Memory

tests —> 80,95,88,76,54
~___ N
scores — 80,95,88,76,54
~___ N

Using Object.Clone to Copy Data

Not all reference variables are arrays, so we need a more general way to copy the data
from one reference type to another. This is where the Object.Clone method is useful. The
Clone method copies the data from one reference variable to another. Using the same
tests and scores arrays from the previous example, the following statement copies the
array:

scores = CType(tests.Clone(), Integer())

Clone returns an Object, so the return value must be cast into an Integer array when Option
Strict is in effect. The copy returned by Clone is called a shallow copy because it doesn’t deal
with the possibility that the elements in the array might be objects containing other refer-
ence types.

Here’s another example, using two Person objects:

Dim P As New Person

P.Name = "George Smith"

Dim S As Person

S = CType(P.Clone(), Person)

Comparing Objects

All standard .NET objects can be compared for equality by calling the Equals method or by
using the = operator. This is the case for strings:

Dim A As String = "abcde"
Dim B As String = '"abcde"
If A =B Then ... ' result: True
If A.Equals(B) Then ... ' result: True

Another type of comparison is the CompareTo method, which compares two values X
and Y:

e If X <Y, CompareTo returns a negative value
e If X =Y, CompareTo returns zero
e If X > Y, CompareTo returns a nonzero positive value

CompareTo is very useful because it is called automatically when you sort an array. You can
call it yourself, as shown in the following examples.

CompareTo Examples

In the following example, result is assigned a negative value:

Dim A As String = "abcde"
Dim B As String = "abd"
Dim result As Integer = A.CompareTo(B)

1.2 Creating Your Own Classes

In the following example, result is assigned a positive value:

Dim A As String = "abf"
Dim B As String = "abd"
Dim result As Integer = A.CompareTo(B)

In the following example, result is assigned zero:
Dim A As String = "abd"
Dim B As String = "abd"
Dim result As Integer = A.CompareTo(B)

Comparing Your Own Class Types

Your own classes, by default, will not use Equals and CompareTo effectively. For example,
the following comparison of two Student objects is not useful. The call to Equals will return
False, even though the students apparently have the same ID number:

Dim sl As New Student(1001)
Dim s2 As New Student(1001)
If sl.Equals(s2) Then ...

Similarly, calling s1.CompareTo(s2) below is not meaningful:
Dim result As Integer = sl.CompareTo(s2)

This means that you cannot effectively sort an array of Students, at least not yet. In Chapter
3, you will learn how to implement the Equals and CompareTo methods in your own classes.

Checkpoint

1. What is a class, according to the definition in this chapter?

2. What is the term for an object that is declared using a class type?
3. A(n) ___is a procedure or function that belongs to a class.
4

. Unlike reference types, a variable declared with a(n) type contains its own data
and has immediate storage as soon as it is declared.

5. Assigning one reference type to another using the = operator leads to what type of
potential error?

Creating Your Own Classes

In future discussions, we will refer to a user-defined class (or a custom class) as a class that
you design and build from scratch. In contrast, the NET Framework already contains its
own set of classes. You create a class in Visual Basic by coding a class definition. We will use
the following general format when writing class definitions:

Public Class ClassName
‘ class members here
End Class

ClassName is the name of the class. The keyword Public is called an access specifier. The
Public specifier tells VB that the class will be visible from all parts of your application. By
visible, we mean that it will be possible to create objects that use this class name.

Follow these steps to add a class definition to a project:

1. Select Project on the menu bar, then select Add Class. The Add New Item dialog box,
shown in Figure 1-4, should appear. Make sure that Class is selected in the Templates

Chapter 1 Classes

pane. Notice that in the figure, the name Class1.vb appears in the Name text box. In
this example, Class1.vb is the default name for the file that contains the code for the
class, and Class1 is the default name for the class.

Figure 1-4 Adding a class to a project

Add Mew Item - Reference Copying Example
Installed Templates Sort by: [DEfELﬂt | Search Installed Templates L |
N :
Type: C Jid
Code Style Sheet Common Items ype: -ommon tems
An empty class definition
Data
General =t JScript File Commen ltems
Web
Windows Forms \B ; Class Common Items
Reporting =
Workflow Module Common ltems
WPF
Online Templates qvﬂ] Interface Common Items
Windows Form Common Items
@ User Control Commen ltems
@ Component Class Common Items ™
MNarme: Classl.vb

TIP When adding a class to a project, the default class name will vary depending on the
number of classes already in the project.

£

2. Change the default name displayed in the Name text box to the name you wish to give
the new class file. For example, if you wish to name the new class Student, enter
Student.vb in the Name text box.

3. Click the Add button. A new, empty class definition will be added to your project. The
empty class definition will be displayed in the Code window, and an entry for the new
class file will appear in the Solution Explorer window.

Adding a Class in Solution Explorer

You can also add a class to a project inside the Solution Explorer window. To do that, right-
click on the Project name, select Add, and select Class. This is shown in Figure 1-5.

Class-Level Variables

A class-level variable is a variable that is declared inside a class but outside any methods in
the class. This makes it visible to all methods in the class. A local variable, on the other hand,
is declared inside a method and is visible only inside the method. You declare a class-level
variable using the following general format:

AccessSpecifier name As DataType

1.2 Creating Your Own Classes

Figure 1-5 Adding a class to a project inside the Solution Explorer window

Solution Explorer A x
=Y e
T e R e—
= M | Build
E=] Ay Rebuild
Clean
Publish...
Add PE] Newltern.. Ctrl+Shift+ A
Add Reference... 2 Existing Ttem... Shift+Alt+ A
Add Service Reference... 4 Mew Folder
5936 View Class Diagram E] Windows Form...
Debug » | # User Contral...
Cut Ctrl+ X @] Component...
Paste Ctrl+V # Module...
Rename “i¢ Class..

Ij Open Folder in Windows Explorer

== Properties Alt+Enter

AccessSpecifier determines the accessibility of the variable. Fields declared with the Private
access specifier may be accessed only by statements inside methods belonging to the same
class. This is the normal way to declare a variable.

Name is the name of the variable, and DataType is the variable’s data type. For example, the
following code declares a class named Student. The class contains the variables mIdNumber,
mLastName, and mTestAverage:

Public Class Student
Private mIdNumber As String
Private mLastName As String
Private mTestAverage As Double
End Class

A class definition does not, by itself, create an instance of the class. It establishes a blueprint
for the class’s organization, which makes it possible for you to write other code that creates
an object of this type.

Information Hiding

In object-oriented programming, the encapsulation principle says that you should bundle
attributes and behaviors inside a class. Think of a class as a container that encapsulates
everything inside for easy transporting and usage. The information hiding principle,
which is closely related to encapsulation, says that certain class members should be visi-
ble only to methods inside the class. Usually, this applies to variables, which are labeled
as Private. Many software engineers consider encapsulation and information hiding to be
the same.

Hidden (private) members can be accessed only by other methods in the same class. This is
a good idea because it leads to more reliable programs that are easier to debug.

A class-level variable could be declared Public, so code anywhere in an application could
access it directly. But doing so would violate the information hiding principle. Instead, we
use public methods and properties to define an interface, or public view of a class. Other
information, such as variables, remain hidden by using the Private keyword.

10

Chapter 1

Classes

Methods

A method is an action that implements some behavior of a class. You call a method by prefix-
ing it with the name of a class instance. For example, a class named Account might have a
method named ReadFromFile. First, we would have to create an instance of the Account class:

Dim savings As New Account

Then we would be able to call the ReadFromFile method:

savings.ReadFromFile("accounts.dat")

This is how the method could be declared in the Account class:

Public Class Account

Public Sub ReadFromFile(ByVal fileName As String)
' (code that reads the file here)
End Sub
End Class

Shared Methods

Special methods, called shared methods, can be called using the name of the class. An exam-
ple is the Array.Sort method that .NET provides for sorting an array:

Dim scores() As Integer = {62, 45, 89}
Array.Sort(scores) ' now: 45, 62, 89

Event handlers are also methods, but they have a special role—to respond to event messages
passed to your application from the operating system. Every method in a class can access the
class-level variables in the class.

ToString Method

All \NET classes support the ToString method, which returns a string representation of the
data within the current class object. ToString is defined in the Object class, and all other classes
inherit certain basic methods from the Object class. The method signature for ToString is:

Public Overridable Function ToString As String

Although we will provide a complete discussion of the concept of inheritance in Chapter 6,
we can say here that inheritance is a basic concept of object-oriented programming. It means
that one class can inherit attributes and behaviors from another class. In humans, for exam-
ple, offspring inherit characteristics from their parents.

The Overridable keyword lets us know that we can override, or replace, the behavior of
ToString by creating a version of this method in our own class. Here’s how we would do that
in the Student class:

Public Overrides Function ToString() As String
Return mIdNumber & ", " & mLastName _
& ", Test average = " & mTestAverage
End Function

Notice that the Overrides keyword must be used to let VB know that we want to override
the ToString method that already exists in the Object class.

Properties

In Visual Basic, a property is a special type of method that uses the same member name for
getting and setting a value. Whereas methods are the implementation of class behaviors,
properties are implementations of class attributes. Button objects, for example, have a number

1.2 Creating Your Own Classes

of properties that are listed in the Properties window in Visual Studio. You have used
properties since you began programming in Visual Basic. Now, you will learn how to add prop-
erties to your own classes. This is the standard format for a property definition:

Public Property PropertyName() As DataType
Get
'(code that returns data)
End Get
Set(value As DataType)
'(code that assigns value to a class variable)
End Set
End Property

PropertyName is the name of the property procedure and therefore the name of the prop-
erty that the procedure implements. The parentheses following PropertyName are optional.
DataType indicates the type of data, such as Integer or String. Notice that the procedure has
two sections: a Get section and a Set section. The Get section holds the code that is executed
when the property value is retrieved, and the Set section holds the code that is executed when
a value is stored in the property. Properties are almost always declared with the Public access
specifier so they can be accessed from outside their enclosing class module.

The following code defines a private field and its corresponding public property in the Stu-
dent class:

class Student
Private mLastName As String

Public Property LastName As String
Get
Return mLastName
End Get
Set(ByVal value As String)
mLastName = value
End Set
End Property
End Class

Auto-lmplemented Properties

An auto-implemented property is a property that is defined by only a single line of code. You
do not have to create a private member field to hold the property data. There are two gen-
eral formats:

Public Property PropertyName As DataType
Public Property PropertyName As DataType = InitialValue

You can follow each property name with optional parentheses:

Public Property PropertyName() As DataType
Public Property PropertyName() As DataType = InitialValue

InitialValue is an optional value that you can assign to the property when it is created. When
you declare an auto-implemented property, Visual Studio automatically creates a hidden pri-
vate field called a backing field that contains the property value. The backing field’s name is
the property name preceded by an underscore character. For example, if you declare an auto-
implemented property named ID, its backing field is named _ID.

The following are examples of auto-implemented properties that could be used in the Stu-
dent class:

Public Property IdNumber As String
Public Property LastName As String
Public Property TestAverage As Double = 0.0

M.al I itebooks.cogl

11

http://www.allitebooks.org

12

Chapter 1

Classes

After learning about auto-implemented properties, why would anyone want to create the
longer property definitions? In fact, the longer property definitions permit you to include
range checking and other validations on data assigned to the property.

A ReadOnly property must be fully coded—it cannot be auto-implemented.

Getting and Setting Property Values

Before accessing a property, you must declare an instance of the class that contains the property.
We could place the following statement anywhere in the program outside the Student class:

Dim freshman As New Student

The Set section of the property procedure executes when a value is assigned to the property.
The following statement sets the value of LastName:

freshman.LastName = "Smith"
Therefore, the following statement inside the property procedure would execute:
mLastName = value

Conversely, the Get section of a property procedure executes when a program needs to have
a copy of the LastName. Suppose that outside the Student class, we wrote the following
statement, which copies the student’s LastName value to a TextBox:

txtLastName.Text = freshman.LastName
Then the following statement inside the property procedure would execute:

Return mLastName

Input Validation in Properties

A property can be very useful when validating values assigned to it. In the following exam-
ple, which implements the TestAverage property, the value assigned to the property must be
between 0.0 and 100.0:

1: Public Property TestAverage As Double

2: Get

3: Return mTestAverage

4: End Get

5: Set(ByVal value As Double)

6: If value >= 0.0 And value <= 100.0 Then

7: mTestAverage = value

8: Else

9: MessageBox.Show(" Invalid test average.'", "Error'")

10: End If
11: End Set
12: End Property

Line 6 checks the range of the input value being assigned to the property. If line 6 equals
True, line 7 assigns the input value to mTestAverage, the private class-level variable. If the
input value is too large or too small, the mTestAverage variable remains unchanged, and line
9 displays an error message.

Object Initializers

Visual Basic provides a simple tool for declaring an object and assigning values to its prop-
erties. It is called an object initializer, and it is used in a couple of standard formats:

Dim VarName As New ClassName With {
.Property = value [,.Property = valuel]...}

1.2 Creating Your Own Classes

VarName = New ClassName With {
.Property = value [,.Property = value]...}

VarName is the name of the variable. Dim can be replaced by Public, Private, or similar qual-
ifiers. ClassName is the name of the class. Property is the name of a property. There is no
rigid format as far as line breaks or property order.

The following statement declares and initializes a new Student object using literal values:

Dim aStudent As New Student With {
.IdNumber = '"1234",
.LastName = "Smith",
.TestAverage = 85.4 }

The following assigns a new object to an existing variable:

aStudent = New Student With {
.IdNumber = "1234",
.LastName = "Smith",
.TestAverage = 85.4 }

The following statement creates and initializes a Student object using control values:

Dim aStudent As New Student With {
. IdNumber txtIdNumber.Text,
.LastName txtLastName.Text,
.TestAverage = CDbl(txtAvg.Text) }

Assigning Object Variables

In our book Starting Out in Visual Basic 2010, we discussed well-defined rules for assign-
ing values of standard data types to each other. You can assign an Integer expression to a
Double variable, for example, because VB automatically expands the integer expression to
type Double. There are similar rules for assigning class objects to each other, but they are
definitely more restrictive. You can assign one object variable directly to another under the
following specific circumstances:

1. The two variables have the same class type. A Student object, for example, can be
assigned to another Student variable:

Dim stu As New Student
Dim Y As Student = stu

2. The two variables are of different types, but the variable on the left side is type Object. This
is permitted because Object is a very general type that accepts any type of assignment:
Dim stu As New Student
Dim obj As Object = stu
In nearly all other cases, you must perform a cast from one type to another.

It is important to realize that the expression on the right side of the = operator might not be
a variable; it might be a property name or method call. For example, a method named Get-
Student returns a Student object, which cannot be assigned directly to a String variable:

Dim temp As String = GetStudent('"12345") 'error

On the other hand, if we call the Student object’s ToString method, it can be assigned to a
string variable:

Dim temp As String = GetStudent('"12345").ToString() ' ok
Converting any object to a string is easy because all classes implicitly contain a ToString

method. But if you want to convert to some other type, you will probably have to call the
CType function.

13

14

Chapter 1

Classes

Using the CType Function

The CType function casts (converts) an expression into a different type. This is the general
format of CType:

CType(ObjectVal, TypeName) As TypeName

ObjectVal is a variable or expression that is to be converted. TypeName is the name of the
type we wish to convert ObjectVal into. For example, the ListBox control’s SelectedItem
property returns an object. If you want to assign this object to a Student variable, you must
call the CType function:

Dim selStudent As Student = CType(lstStudents.SelectedItem, Student)
The following, in contrast, would not compile (assuming that Option Strict is turned on):
Dim selStudent As Student = lstStudents.SelectedItem

Not all expressions can be converted. Suppose we were to try to assign a Student object to
a BankAccount variable. No standard conversion exists for that, so VB throws an Invalid-
CastException.

Dim stu As New Student
Dim bank As BankAccount = CType(stu, Student) 'error

Student objects and BankAccount objects have nothing in common, so we should not have
been assigning them to each other anyway. Sometimes this type of error can be solved eas-
ily by calling a property or method in the class that returns the correct type of object. Per-
haps the Student class contains a property that returns the student’s bank account:

Dim bank As BankAccount = stu.SavingsAccount

There is more to learn about object assignments and conversions than we have introduced
in this brief discussion. Once we have introduced the concept of inheritance in Chapter 6,
we will revisit this topic.

Three-Tier Application Model

Most business applications today follow a basic design called the three-tier application model.
Each tier contains classes that call methods in the tier below it, as shown in Figure 1-6.

Figure 1-6 Three-Tier Application Model

Presentation
Tier

calls methods in

Middle Tier

calls methods in

Data Access
Tier

1.2 Creating Your Own Classes

The presentation tier, also known as the user services layer, consists of all objects that inter-
act with the user. Visual Basic uses a class to define a form, as well as the various controls
on a form. When you write code inside the form of an application, your code belongs to the
user interface tier. This includes, for example, all the event handler procedures, class-level
variables, and other subprocedures in the form class.

The middle tier, also known as the business logic tier or business services layer, consists of
classes that provide core information to the application, such as essential calculations and
decision making. They often embody the business rules of an organization, which include
operational principles that are common to multiple applications. These classes do not inter-
act with the user. Instead, they contain methods and properties that are called by classes in
the presentation tier.

The data access tier, also know as the data services layer, contains classes that interact
directly with a data source. In later chapters, we will create classes for this tier that read and
write to databases.

In Tutorial 1-1, you will create a two-tier application that uses a Windows form to call
methods and properties in a class named Student. It contains a presentation tier and a mid-
dle tier.

Tutorial 1-1:
Creating a Student class

In this tutorial, you will create a two-tier application that uses a form to pass inputs
by the user to the Student class. The form’s class belongs to the presentation tier, and
the Student class belongs to the middle tier. You will add controls to a form that per-
mit the user to input a Student ID, last name, and test average. When the user clicks
a button, your code will assign the input values to Student class properties. Finally,
you will redisplay the Student object in a label. Figure 1-7 shows the form after the
user clicks the Save button. Figure 1-8 shows the same form after the user clicks the
View button.

Figure 1-7 After clicking the Save button

a2/ Student Class Example [E=R[EoR >
Student ID: 10002
Last name: Johnson

Test average: 95.2

(student information saved)

Save | [View

15

16

Chapter 1 Classes

Figure 1-8 After clicking the View button

a5/ Student Class Example (=R E=R
Student ID: 10002
Last name: Johnson

Test average: 952

10002, Johnson, Test averaqge = 95.2

Save] View

Tutorial Steps
Step 1: Create a new Windows application named Student Class Example.

Step 2: Next, add a class named Student to the project. Right-click on the Project
name, select Add, and select Class. In the dialog window, select Code, select
Class, and enter the class name as Student.vb. The items are marked in Fig-
ure 1-9 with arrows.

Figure 1-9 Adding a Student class to the project

Add New Item - Student Class Example
Installed Templates Sort by: [Default

| Search Installed Templates R |

4 Common ltems | Type: Common ltems

Code '8 Code File Common ltems o
An empty class definition

Data -

General :q VE] COM Class Common ltems

Web

Windows Forms VEE Class Comman Items

Reporting =

Workflow @ Medule Common ltems 3

WPF
Online Templates | Transactional Component Common Ttems

Qg ADQ.MNET EntityObject G... Commmeon Items

@ Component Class Commonltems
'Hé‘ﬁ Interface Common Items _ ~
Mame: Studentvbh f——

Step 3: Open the Student.vb file and replace its contents with the following class definition:

Public Class Student
Public Property IdNumber As String

Step 4:

Step 5:

Step 6:

1.2 Creating Your Own Classes

Public Property LastName As String
Private mTestAverage As Double

Public Property TestAverage As Double
Get
Return mTestAverage
End Get
Set (ByVal value As Double)
If value >= 0.0 And value <= 100.0 Then
mTestAverage = value
Else
MessageBox.Show(" Invalid test average.'", "Error'")
End If
End Set
End Property

Public Overrides Function ToString() As String

Return IdNumber & ", " & LastName _
& ", Test average = " & TestAverage
End Function
End Class

The class contains auto-implemented properties named IdNumber and Last-
Name. Because the TestAverage property requires range checking, it is imple-
mented with explicit Get and Set sections.

Open the startup form in design mode and add the named controls shown in
Table 1-1. Also, add the labels shown earlier in Figure 1-7.

Table 1-1 Student Class example: named controls

Control Type Control Name Property Settings

TextBox txtldNumber

TextBox txtLastName

TextBox txtTestAverage

Label IblStudent BorderStyle = Fixed3D,
AutoSize = False

Button btnSave Text = Save

Button btnView Text = View

Next, you will write code in the startup form that copies the user’s inputs to
Student properties.

Declare a Student variable at the class level:

Private objStudent As New Student

Create the following Click handler for the Save button. You can omit the
parameters from the btnSave_Click procedure because they are optional:

Private Sub btnSave Click() Handles btnSave.Click
objStudent.IdNumber = txtIdNumber.Text
objStudent.LastName = txtLastName.Text
objStudent.TestAverage = CDbl(txtTestAverage.Text)
1blStudent.Text = " (student information saved)"

End Sub

17

18 Chapter 1 Classes

This code copies values from the TextBox controls into the properties of
the objStudent object. The additional label is added to provide a hint to the
user.

@1 TIP A feature in Visual Basic named relaxed delegates lets you omit
parameters in event handlers if the parameters are not being used inside the

body of the handler.

Step 7: Create a Click handler for the View button that uses the Student.ToString
method to display the Student object:

Private Sub btnView Click() Handles btnView.Click
lblStudent.Text = objStudent.ToString()
End Sub

Step 8: Save the project, and run the application with the following test:

Test
Input Expected output
Enter an ID number such as You should see the same ID
“001234” and a student’s last number and name that you
name, and click the Save button. entered. The test average will
Then click the View button. display as value 0.
Constructors

A constructor is a method that runs automatically when an instance of the class is created.
In Visual Basic, a constructor is always named New. Constructors typically initialize class
member variables to default values, but they can also be used to perform any required class
initialization. If a class is connected to a network connection, for example, the constructor
could be used to open a connection to a remote computer.

A default constructor is a constructor with no parameters. Let’s create a simple one for the
Student class that assigns a default values to the mIdNumber data member:

Public Sub New()
mIdNumber = '"999999"
End Sub

With this constructor in place, if a client program creates a new Student object, we know for
certain what value the object’s mIdNumber will contain.

Parameterized Constructor

A class may contain more than one constructor, so in addition to a default constructor,
you may want to create a parameterized constructor (a constructor with parameters).
Here is a parameterized constructor that assigns values to each of the Student class-level
variables:

Public Sub New(ByVal pIdNumber As String, ByVal pLastName As String,
ByVal pTestAverage As Double)

1))

1.2 Creating Your Own Classes

mIdNumber = pIdNumber

mLastName = pLastName

mTestAverage = pTestAverage
End Sub

Notice the arbitrary naming convention used here. Each parameter name has a “p” prefix
and each class-level variable begins with “m”.

When coding a constructor, do not use the same name for the parameters that you use for
class properties. For example:

Public Sub New(ByVal IdNumber As String, ByVal LastName As String,
ByVal TestAverage As Double)

IdNumber IdNumber

LastName = LastName

TestAverage = TestAverage
End Sub

The parameter names in this example hide the matching public property names. Always
choose names for your constructor parameters that are different from the names of class-
level variables and properties.

COMMON BUG: Reversing the asignment order in constructors
Beginners often have trouble writing assignment statements in constructors. Can you spot
the errors in this code?

Public Sub New(ByVal pIdNumber As String, ByVal pLastName As String,
ByVal pTestAverage As Double)

pIdNumber = IdNumber

pLastName = LastName

pTestAverage = TestAverage
End Sub

The code compiles correctly, but the operands in the assignment statements are reversed.
They copy the values from the properties to the parameters. The result is that the con-
structor does not work properly: The values passed to the constructor are not assigned
to the class properties.

How Visual Basic Creates Constructors

If your class does not contain any constructors, Visual Basic creates an invisible empty
default constructor for you. This is for convenience, so you can declare an object like this:

Dim sophomore As New Student

But if you add a parameterized constructor to the class, a default constructor is not created
automatically for you. Suppose this were the only one we had in the Student class:

Public Sub New(ByVal pIdNumber As String, ByVal pLastName As String,
ByVal pTestAverage As Double)
' (lines omitted)

End Sub

Then the following statement would not compile:

Dim objStudent As New Student

19

20

Chapter 1

Classes

You might have a good reason for not permitting an object to be constructed unless it
was assigned meaningful values. Decisions such as this one are based on the needs of the
application. If your class has a parameterized constructor, and you also wish to create
objects without passing any parameters, you must add a default constructor.

Constructors with Optional Parameters

An optional parameter does not require the calling method to pass a corresponding argument
value. Sometimes you will want to create instances of a class using varying amounts of infor-
mation. You can declare optional parameters in any method (including constructors) using
the Optional keyword, as long as you assign each a default value. In the following example,
the pLastName and pTestAverage parameters are optional:

Public Sub New(ByVal pIdNumber As String,
Optional ByVal pLastName As String = " ",
Optional ByVal pTestAverage As Double = 0.0)

IdNumber = pIdNumber

LastName = pLastName

TestAverage = pTestAverage
End Sub

Now, because the second and third parameters are optional, all of the following are valid
ways of declaring Student objects:

Dim A As New Student("200103")
Dim B As New Student("200103", "Ramirez")
Dim C As New Student('"200103", "Ramirez", 86.4)

There are two important rules to follow. Once a parameter is labeled optional, all subse-
quent parameters in the method’s parameter list must also be labeled the same way. Second,
all optional parameters must be assigned default values.

When the Visual Studio editor’s Intellisense tool displays a method’s parameter, optional
parameters appear inside square brackets. Here is an example:

New Student(|
| New(IdNumber As String, [pLastName As String = ""], [pTestAverage As Double = 0.0]) |

Tutorial 1-2:
Adding a parameterized constructor to the Student class

In this tutorial, you will add a constructor with three parameters to the Student class.
The application will ask the user to input values, which are then passed to the Student
constructor. Then the application will display the values stored inside the Student
object.

Step 1: In Windows Explorer, make a copy of the folder containing the Student Class
Example project you wrote for Tutorial 1-1. Open the new project.

Step 2: Change the caption in the form’s title bar to Student Class with Constructors.

Step 3: Add the following constructor to the Student class:

Public Sub New(ByVal pIdNumber As String,
Optional ByVal pLastName As String = " ",
Optional ByVal pTestAverage As Double = 0.0)

1.2 Creating Your Own Classes

IdNumber = pIdNumber

LastName = pLastName

TestAverage = pTestAverage
End Sub

Notice that the second and third parameters are optional.

Step 4: Edit the form’s source code. First, change the declaration of objStudent to the
following;:

Private objStudent As Student

This statement declares a Student variable, but it does not create a student
Object.

Step 5: Modify the btnSave_Click event handler so it contains the following code:

1: Private Sub btnSave Click() Handles btnSave.Click

2: Dim testAverage As Double

SE If Double.TryParse(txtAverage.Text, testAverage) Then
4: objStudent = New Student(txtIdNumber.Text,

58 txtLastName.Text, testAverage)

6: 1blStudent.Text = " (student information saved)"

78 Else

8: 1blStudent.Text = "Test average is not a valid number"
OF End If

10: End Sub

Line 4 calls the Student constructor, assigning values to the three class vari-
ables. If Double.TryParse fails to convert the test average, line 8 displays an
error message in the IblStudent label.

Step 6: Save the application and test it twice, as follows:

Input Expected output

Enter 200032, Johnson, 92.3 in The output should appear as in
the three text boxes and click Figure 1-10.

the Save button.

Enter 100011, Adams, XX in the The output should appear as in
three text boxes and click the Figure 1-11.

Save button.

Figure 1-10 Sample output from Test 1

a3 Student Class with Constructors o =]

StudentID: 200032
Lastname: Johnson

Test average: 923

200032, Johnson, Test average = 92.3

s |

21

22

Chapter 1

Classes

Figure 1-11 Sample output from Test 2

a3 Student Class with Constructors o =]

StudentID: 100011
Lastname: Adams

Test average: XX

Test average is not a valid number

[Sae]) [vw

ReadOnly Properties

A ReadOnly property allows methods outside the class to get the current property value but
not to change it. The ReadOnly qualifier must be added to the property declaration, and the
Set statement in the property is omitted. For example:

Public ReadOnly Property Count As Integer
Get
Return mCount
End Get
End Property

A ReadOnly property can prevent a client program from modifying the variable behind the
property. Also, the value returned by a property might be calculated from internal data. A
good example is the Count property in the Collection class, which returns a value indicat-
ing how many items are in the collection. You cannot directly change the value. You must
either add or remove items from the collection before the value of Count changes. Here is
an example:

Dim coll as New Collection
coll.Add (" Joe")
coll.Add(" Sam")

MessageBox.Show(coll.Count) ' displays "2"
coll.Count = 20 ' Error!
Example

Let’s revisit the TestAverage property in the Student class that we have been using. Rather
than letting callers set its value, we can calculate the value as the sum of all tests divided by
the number of tests. To do this, we introduce a new class-level variable:

Private mTestGrades As New Collection
We then create a method that lets callers add test scores to the collection:

Public Sub AddTestGrade(ByVal grade As Double)
mTestGrades.Add (grade)
End Sub

Now we rewrite the TestAverage property, making it ReadOnly. The For Each loop iterates
through the collection, adding each test grade to testSum. Then the property returns
testSum divided by the number of tests (contained in mTestGrades.Count):

1.3 Enumerated Types

Public ReadOnly Property TestAverage As Double
Get
Dim testSum As Double = 0.0
For Each grade As Double In mTestGrades
testSum += grade
Next
Return testSum / mTestGrades.Count
End Get
End Property

The result is a more useful implementation of the student’s test average than we had in the
previous version of the Student class.

TIP ReadOnly properties must be fully coded; they cannot be auto-implemented.

Shared Properties

A shared property belongs to the class in which it was declared, not to individual instances
of the class. To put it another way, each instance of the class does not contain a separate
copy of the property. Only one storage area is reserved for the property, and that storage
area is shared by all instances of the class. For example, we can declare a shared property
named CollegeName in the Student class:

Public Shared Property CollegeName As String

Having declared this property, a program could set the college name with a statement that
uses the class name, followed by the property name:

Student.CollegeName = "Gaddis Technical Institute"

You can also create shared class-level variables. For example, the following variable
could contain an integer that indicates the maximum credits for which any student can
enroll:

Private Shared smMaxCredits As Integer

'/ Checkpoint

6. List examples of access specifiers that were mentioned so far in this chapter.
7. How is a class-level variable different from a local variable?
8. Explain the principle of information hiding.
9. Which type of property only contains a Get section?
10. What two sections are contained in a property?
11. What is the name of a constructor without any parameters?

12. What are the three components of the three-tier application model?

Enumerated Types

An enumerated type is a list of symbolic names associated with integer constants. Its great-
est value is in making a program more readable by giving names to what would otherwise
be integers. Suppose, for example, that an application worked with four different account

23

24

Chapter 1

Classes

types, numbered 0, 1, 2, and 3. It might be difficult, when looking at program code, to recall
which integer corresponded to each type of account. Instead, we could define an enumerated
type that would provide this information:

Enum AccountType
Checking
Savings
Trading
Annuity

End Enum

The enumerated type defines, and therefore restricts, the set of values that can be assigned
to variables of its type. Internally, the list of AccountType values are assigned the integer val-
ues 0, 1, 2, and 3.

TIP When you press the dot after an Enum variable, Visual Studio’s Intellisense tool
shows a list of all the Enum values the variable can hold.

You do not use the New keyword when declaring an enumerated object:

Dim acct As AccountType

If you declare an AccountType object, only values from the prescribed list should be assigned
to it:

acct AccountType.Checking
acct = AccountType.Trading

The following statement is illegal because integers are not assignment-compatible with Enum
types:

acct =1
In specialized cases, you can assign an integer into an AccountType, but you should do that
only when no other option is available. For example, suppose you were to read an integer

from a TextBox, and the integer was supposed to indicate a type of account. The CType
function must be used to cast the integer into AccountType:

Dim acct As AccountType
Dim N As Integer = CInt(txtAccountType.Text)
acct = CType(N, AccountType)

No cast is required to assign an enumerated type to an integer:

Dim N As Integer = acct

Using Boolean Expressions

Enumerated types are particularly useful when used in Boolean expressions that involve
comparisons. For example, suppose we want to take a particular action if an account is an
annuity:

If acct = AccountType.Annuity Then

taxDeferred = True
End If

Such a statement is clearly easier to read than something like this:

If acctCode = 3 Then
taxDeferred = True
End If

1.3 Enumerated Types

Similarly, the Select Case statement can go through a list of enumerated values and take a
separate action for each possible value:

Select Case acct
Case AccountType.Annuity

1blResult.Text = "Plan payments for retirement"
Case AccountType.Checking

1blResult.Text = "Write checks to pay bills"
' etc.

End Select

In Tutorial 1-3, you will examine an application that uses an Enumerated type.

Tutorial 1-3:
Enumerated Account type

In this tutorial, you will examine and test an application that lets the user select an
account type from a list box. Each time the user’s selection changes, the selected index
of the list box is converted into an AccountType object. Then, using a Select Case state-
ment, a method selects an appropriate description to display for the account type. Sam-
ple program output is shown in Figure 1-12.

Figure 1-12 AccountType Enum Example program

a5 AccountType Enum Example =N |Eol (==

Select an Account type

Checkin
mh Save money for large purchases

Trading
Annuity

Step 1: Open the AccountType Enum Example project in the example program’s
folder for this chapter. In the code window of the startup form, notice the
AccountType declared at the end of the file:

Enum AccountType
Checking
Savings
Trading
Annuity

End Enum

Step 2: Examine the remaining code, which is shown here:

Public Class Forml
Private typeNames() As String = {"Checking", "Savings",
"Trading" , "Annuity"}

Private Sub Forml Load() Handles MyBase.Load
lstTypes.DataSource = typeNames
End Sub

Private Sub ShowDescription(ByVal acct As AccountType)
Select Case acct

O VW oUW WN

[y

25

26

Chapter 1 Classes

Step 3:

Checkpoint
@) Checkp

11:
12:
13:
14:
1537
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
2198
30:
31:

Line 2 declares a string array containing the AccountType member names.
Line 6 assigns this array to the list box when the form first loads. When the
user makes a selection, the SelectedIndexChanged handler (lines 22-30) exe-
cutes. The index of the selected item is cast into an AccountType object on
line 26 and passed to the ShowDescription method (lines 9-20). The Select
Case statement shows each of the enumerated values in a way that is easy to

Case AccountType.Annuity

1blResult.Text = "Plan payments for retirement"
Case AccountType.Checking

1blResult.Text = "Write checks to pay bills™"
Case AccountType.Savings

1blResult.Text = "Save money for large purchases"
Case AccountType.Trading

1blResult.Text = "Speculate in the stock market"

End Select
End Sub

Private Sub lstTypes SelectedIndexChanged()
Handles lstTypes.SelectedIndexChanged
Try
Dim index As Integer = lstTypes.SelectedIndex
ShowDescription(CType(index, AccountType))
Catch ex As Exception
1blResult.Text = ex.Message
End Try
End Sub

End Class

understand.

Run and test the application by selecting different account types in the list box.

13. What is the primary advantage of using an enumerated type?

14. Can an integer be converted into an enumerated type?

15. Can an enumerated value be cast into an integer?

16. Why does the Select Case statement work well with enumerated type variables?

Focus on Program Design and Problem
Solving: Bank Teller Application

In this section, we will create a short two-tier application that simulates an electronic bank
teller by letting the user look up an account, deposit funds, withdraw funds, and view the
current balance.

Let’s begin the design with a list of essential requirements:

1. Existing Account information (ID, account name, and account balance) will be stored
in a data file.

2. The user must be able to input an account number and initiate a search for a match-
ing account. If the account is found in the data file, the application will retrieve the

name of the account holder and the account balance.

1.4 Focus on Program Design and Problem Solving

3. The user must be able to enter an amount of money to deposit. The application will
show the updated account balance.

4. The user can enter an amount to withdraw, and the application will show the updated
account balance.

In this version of the application, the updated account balance will not be written to the file.
We will offer that task as one of the chapter Programming Challenges.

Background Information

Before we start to design this application, let’s look at some helpful techniques.

Relative File Paths

The following code shows how to call the File.OpenText method to open a file for input,
passing it a path to the file:

Dim infile As StreamReader = OpenText('"c:\temp\accounts.dat")

An example of a file path could be just a file name (such as accounts.dat); or it might
include a full path, such as c:\temp\accounts.dat; or it might contain a relative path such
as ..\accounts.dat. The ..\ notation indicates that we must back up one directory level to find
the data file. A compiled VB program is stored in either the bin\Debug folder or the
bin\Release folder of a project. Therefore, if we place the accounts.dat file in the project’s
root directory, the path that we pass to the OpenText method must back up two direc-
tory levels. This is how the file path will be declared:

Private ReadOnly FILEPATH As String = "..\..\accounts.dat"

Reading Delimited Fields from a Text File

The StreamReader class has a method named ReadLine, which reads an entire line of input
into a String variable:

Dim infile As StreamReader = OpenText(FILEPATH)
Dim entirelLine As String = infile.ReadLine()

The data file in the Bank Teller application contains three items of information on each line,
delimited by commas. Here is an example of a single line:

11111,George Baker,825.50

A lot of data files use this comma-delimited format. Usually, programs need to divide such a
string into separate fields, each as its own string. Fortunately, the String.Split method divides
a string such as this into an array of strings, using any delimiter character you choose. Let’s
assume that the string produced by calling ReadLine is stored in a string named entireLine.
This is how we could call the Split method, passing it a delimiter character:

Dim infile As StreamReader = OpenText(mFilePath)
Dim entireLine As String = infile.ReadLine()
Dim fields() As String = entireLine.Split(”,”c)

As a result, the fields array contains the account ID (11111) in the first position, the account
name (George Baker) in the second position, and the account balance (825.50) in the third
position:

11111 George Baker | 825.50

27

28

Chapter 1

Classes

Incidentally, the notation ", " c creates a single character constant containing a comma. In
fact, any character constant can be coded this way, such as the letter A: "a"c.

Detecting End of File

When reading from an InputStream, the easiest way to check for the end of a file is to inspect
the EndOfStream property. This property will equal True if the end of the file has been
reached. It is usually coded as the condition of a While loop:

Dim infile As StreamReader = OpenText(mFilePath)
While Not infile.EndOfStream

infile.ReadLine()
'etc.

End While

Account Class

The Bank Teller application will contain a class named Account that holds an account ID,
account holder name, and the account balance. A property named LastError will contain a
description of the last error that occurred while calling methods in the class. In addition, the
class will have the following methods:

New(accountld)—a constructor that receives an account ID and creates a new
Account object.

GetData()—opens the data file and searches for the account ID. If the ID is found, the
method reads the account name and balance from the file and returns True. If the ID is
not found, the method assigns a message to the LastError property and returns False.
Deposit(amount)—deposits an amount of money in the account.

Withdraw(amount) As Boolean—attempts to withdraw an amount from the account.
If the balance is at least as large as the amount being withdrawn, the method subtracts
the amount from the account balance and returns a value of True. If the balance is too
low, the method assigns an error message to the LastError property and returns a value
of False.

Form1 Class

In the application’s startup form, you will create the following event handlers:

binFind_Click—opens the account data file and searches for a record containing a
matching account number. If a match is found, this method copies the account name
and balance to Label controls on the form.

binDeposit_Click—reads the deposit amount from a TextBox control and passes it to
the Account.Deposit method. Displays the account’s updated balance in a Label.
binWithdraw_Click—reads the withdrawal amount from a TextBox control and
passes it to the Account.Withdraw method. If the latter method returns True, this
method displays the account’s updated balance in a Label. If the Withdraw method
returns False, an error message is displayed in a Label.

btnClose_Click—closes the form.

User Interface Design

The user will interact with a single window containing text boxes, labels, and buttons.
We wish to control the user’s actions by disabling buttons until the appropriate account

1.4 Focus on Program Design and Problem Solving

Figure 1-13 Bank Teller application startup window

a< Bank Teller Application [][]

Ay t ber: Find
@an& ccount number in
({,{B Account holder name:

. Bal 3
Select an action: lellind

R (;
Amount:
Close

information has been located. Figure 1-13 shows the application’s startup window, in which
the user can enter an account number and click the Find button. The Deposit and Withdraw
buttons are disabled. Figure 1-14 shows the same window after the user has entered an
account number and clicked the Find button. Because the account was found in the input
file, the account name and balance are displayed, and the Deposit and Withdraw buttons are

enabled.

Figure 1-14 Bank Teller application after user’s successful search for an account

s N

a5 Bank Teller Application =IER=
@an& Account number: 11111
W Account holder name:

'George Baker

Balance:

Select an action: $825.50

Depasit
Amount:

Withdraw Close

Figure 1-15 shows the result when the user searches for an account that was not found in
the input file. Any existing account information is cleared from the form, and the Deposit
and Withdraw buttons are disabled. In Figure 1-16, the user has made a deposit into the
account by entering a value into the text box and clicking the Deposit button. Notice that
the account balance has changed.

In Figure 1-17, the user has made a withdrawal from the account by entering a value into
the text box and clicking the Withdraw button. Notice that the account balance has
changed. Table 1-2 lists the named controls on the startup form.

29

30 Chapter 1 Classes

Figure 1-15 Bank Teller application after user’s unsuccessful search for an account

g Bank Teller Application

@ an & Account number: 22222
m Account holder name:

Select an action:

[Deposit l Account 22222 not found
- Amount:
[withdraw |

Figure 1-16 Bank Teller application showing a deposit into the account (arrow added
for clarity)

Ganéﬂ Account number: 11111
m Account holder name:

George Baker
cor Balance:
Select an action: $1.22550
L
Amount: 400,00

Figure 1-17 Bank Teller application showing a withdrawal from the account (arrow
added for clarity)

@an& Account number: 11111
m Account holder name:

George Baker

P Balance:
Select an action: $1,000.00
Depoasit S
Amount: 22550

T R

1.4 Focus on Program Design and Problem Solving

Table 1-2 Named controls in the Bank Teller application

Control Type Control Name Property Values

Form Form1 Text = Bank Teller Application
PictureBox PictureBox1 Image = logo.png

GroupBox GroupBox1 Text = Select an action:

TextBox txtAccountNum

TextBox txtAmount

Label IblAccountName BorderStyle = Fixed3D, AutoSize = False
Label IblBalance BorderStyle = Fixed3D, AutoSize = False
Button btnFind Text = Find

Button btnDeposit Text = Deposit

Button btnWithdraw Text = Withdraw

Button btnClose Text = Close

Tutorial 1-4:

Building the Bank Teller application

In this tutorial, you will complete the Bank Teller application. It consists of a class named
Account and a single startup form.

Step 1: Open the project named Bank Teller Start from the chapter examples folder.
The startup form has been created for you.

Step 2: Add a class named Account to the project.

Step 3: Add the following Imports statements to the Accounts.vb file, just above the
class declaration:
Imports System.IO ' StreamReader class
Imports System.IO.File ' OpenText method

Step 4: Insert the following variable into the Account class that will contain the cur-
rent account balance. In addition, create a read-only property that returns the
value of mBalance.
Private mBalance As Decimal

Step 5: Insert the following auto-implemented properties:

Public Property AccountId As String
Public Property AccountName As String
Public Property FilePath As String
Public Property LastError As String

AccountName holds the name of the person who is the account holder. FilePath
holds a string containing the location of the input file. LastError holds a string
that contains the most recently generated error message by methods in this class.

Step 6: Insert the following constructor, which receives an account ID number:

Public Sub New(ByVal pAccountId As String)
AccountId = pAccountId
AccountName = String.Empty
mBalance = 0.0D

End Sub

M.al I itebooks.cogl

31

http://www.allitebooks.org

32

Chapter 1

Classes

Step 7:

Step 8:

Insert the GetData method, which reads the data file and attempts to find
a data set containing a certain account ID. If the ID is found, the method
returns True:

1: Public Function GetData() As Boolean

28 Dim infile As StreamReader = Nothing

38 LastError = String.Empty

4: Try

58 infile = OpenText(FilePath)

6: While Not infile.EndOfStream

78 Dim entireLine As String = infile.ReadLine()
8: Dim fields() As String = entireLine.Split(","c)
ok If fields(0) = AccountId Then

10: AccountName = fields(1l)

11: mBalance = CDec(fields(2))

12: Return True

138 End If

14: End While

15: LastError = '"Account " & AccountId & " not found"
16: Return False

17: Catch ex As Exception

18: LastError = ex.Message

19: Return False

20: Finally

21: If infile IsNot Nothing Then infile.Close()
22: End Try

238 Return False

24: End Function

Line 5 opens the input file, using the file name and path in the FilePath prop-
erty. If the file is found, OpenText returns a StreamReader that can be used to
read all data from the file. Line 7 reads one line from the file, and Line 8 splits
the line into an array of strings named fields. Line 9 compares the first field to
mAccountld, which contains the ID we are looking for. If the IDs match, lines
10-11 assign the field values to AccountName and mBalance. Line 12 returns
immediately with a value of True. On the other hand, if the While loop ends
by reaching line 15, we assume that a matching Account ID was not found.

Notice in the code above that a Finally block is used to hold a statement that
closes the input file (line 21). We know that the code in a Finally block is guar-
anteed to execute, even if an exception is thrown somewhere within the Try
block. Even when a Return statement executes, the Finally block is still exe-
cuted before control leaves the GetData function.

Add the Deposit and Withdraw methods to the class:

1: Public Sub Deposit(ByVal amount As Decimal)
' Deposit the amount in the account by adding it
' to the balance.
mBalance += amount
End Sub

N oUW N
e oo s s es ee

Public Function Withdraw(ByVal amount As Decimal) As
Boolean

©

' Withdraw <amount> if the existing balance
9: ' is at least as large as the amount.
10: ' Return False if balance is less than <amount>.

1.4 Focus on Program Design and Problem Solving

11: If amount <= mBalance Then

12: mBalance -= amount

13: Return True

14: Else

158 LastError = "Balance is too low to withdraw the
requested amount"

16: Return False

178 End If

18: End Function

On line 11, if the Withdraw method finds that the requested amount is greater
than the account balance, it sets the value of LastError and returns False (lines
15-16). Later, when writing code for the user form, we will display the error
message in LastError when the Withdraw method returns False. On the other
hand, if Withdraw returns True, we know that the balance was updated so we
can display the new value.

The Form1 Class

Next, you will write code inside the application’s startup form.

Step 9:

Step 10:

Open the code window for the startup form and insert the following code.
The btnFind_Click handler is activated when the user clicks on the Find but-
ton after having entered an account number in a text box:

1: Private currAccount As Account
2: Private ReadOnly FILEPATH As String =
"..\..\accounts.dat"

38

4: Private Sub btnFind Click() Handles btnFind.Click

58 ' User clicked Find button to find an account.

6: currAccount = New Account (txtAccountNum.Text)

78 currAccount.FilePath = FILEPATH

8: If currAccount.GetData() Then

OF 1blAccountName.Text = currAccount.AccountName
10: 1blBalance.Text = currAccount.Balance.ToString("c")
11: btnDeposit.Enabled = True

12: btnWithdraw.Enabled = True

13: Else

14: MessageBox.Show(currAccount.LastError, "Error'")
15: Clear()

16: End If

17: End Sub

Lines 67 create a new Account and set its file path. Line 8 calls the GetData
method to open the data file and attempt to locate the account information
that matches the Account number entered by the user. If GetData returns
True, lines 9-10 display the account name and balance. Lines 11-12 enable
the Deposit and Withdraw buttons. If GetData returns False, line 14 displays
the error message in the LastError property.

Add the following Clear method, which removes the account name and bal-
ance and disables the Deposit and Withdraw buttons. It is called when the
user enters an account number that cannot be found in the input file:

Private Sub Clear()
1blAccountName.Text = String.Empty
lblBalance.Text = String.Empty

33

34 Chapter 1 Classes

btnDeposit.Enabled = False
btnWithdraw.Enabled = False
End Sub

Step 11: Add the following Click handler for the Deposit button. It passes the amount
entered by the user (in txtAmount) to the Account.Deposit method, and it
retrieves and displays the account balance:

Private Sub btnDeposit Click() Handles btnDeposit.Click

' The user has clicked the Deposit button

Try
currAccount.Deposit (CDec (txtAmount.Text))
lblBalance.Text = currAccount.Balance.ToString('"c")

Catch
MessageBox.Show("Please enter a numeric deposit amount",
"Error")

End Try
End Sub

Step 12: Add the following Click handler for the Withdraw button. It calls the
Account.Withdraw method, passing it the amount entered by the user into the
text box (txtAmount):

1: Private Sub btnWithdraw Click() Handles btnWithdraw.Click

2 ' The user has clicked the Withdraw button

3 Try

4 If currAccount.Withdraw(CDec (txtAmount.Text)) Then

58 1blBalance.Text = currAccount.Balance.ToString("c")

6: Else

74 MessageBox.Show(currAccount.LastError, "Error")

8 End If

9 Catch

0 MessageBox.Show("Please enter a numeric withdrawal" _
& " amount", "Error")

11: End Try
12: End Sub

1

This code must deal with two kinds of errors. If the user enters a nonnumeric
value, line 4 throws an exception and line 10 reminds the user to enter a
numeric value. Or, if the user tries to withdraw more than the account balance,
line 7 displays the error message stored in the LastError property.

Step 13: Add the following Click handler for the Close button:

Private Sub btnClose Click() Handles btnClose.Click
' The user has clicked the Close button
Me.Close()

End Sub

Manual Software Testing

We cannot stress enough how important it is to create programs that perform in the way
they were intended. We all like to use reliable software, and often our lives depend on it. For
example, the flight navigation system for an aircraft must not fail, nor should medical
devices. There is a well-known case of software failure in a radiation therapy device, lead-

1.5 Manual Software Testing

ing to severe consequences. (Look up Therac-25 at hitp://www.wikipedia.org to read about
this famous software failure.)

In this chapter, we divide software testing into two general categories: manual testing and
automated testing. Manual testing is performed by a person (a tester) who manually enters
a variety of inputs into an application. The tester compares the actual outcomes produced
by the software to a set of expected outcomes. Manual testing is often associated with the
term black box testing, where the tester is concerned only with the program’s input and out-
puts. The tester cannot see the code inside.

Manual testing requires a lot of human labor, and therefore is expensive. Automated testing
is performed by a computer program, which executes part or all of an application in a way
that requires no manual intervention. This chapter will focus on manual testing, and
Chapter 6 will introduce automated testing.

A testing plan is a list of tests that are to be run on an application to verify that the appli-
cation works as expected. For each given user action or input value, the testing plan lists the
expected output or action produced by the application. This chapter shows how to create
manual testing plans for VB applications.

Requirements Specification

Before creating an application, we usually want to know what it is supposed to do. A
requirements specification is a complete description of the behavior of an application. It
should include a description of inputs and actions by the user, and how those inputs and
actions affect the program’s behavior. Here is a sample requirements specification for a pro-
gram that inputs an integer and displays a corresponding color:

e The application prompts the user with a range of acceptable integer values.

e The user inputs an integer N.

e If the user inputs a noninteger value, the application displays an error message.

e If N is outside the range of acceptable values, the application displays an error
message.

e If N is within the range of acceptable values, the application displays the name of a
color that matches N from the following list: 0 = white, 1 = yellow, 2 = green, 3 = red,
4 = blue, 5 = orange.

This requirements specification will be used in Tutorial 1-3.

Tutorial 1-5:
Manually testing integer input

Software testing can get complicated when applications have a lot of inputs and out-
puts. In this tutorial, you will learn some basic techniques for creating manual tests.
You will examine an application that asks the user to input an integer. The application
will display a string by using the integer as a subscript into an array of strings. Then
you will examine a manual testing plan for the application. The user interface is shown
in Figure 1-18.

Step 1: Open the project named Manual Test from the chapter examples folder.

Step 2: Run the application, enter an integer, and click the OK button.

35

http://www.wikipedia.org

36

Chapter 1

Classes

Figure 1-18 Application that uses an integer to find a color

Step 3:

s Manual Test =N EcR(===

Please enter an integer between 0 and 5

QK

Close the application and open the startup form’s code window. Here is the
source code:

Public Class Forml
Private ReadOnly colors() As String = {"white",
"yellow", "green", "red", "blue", "orange"}

lblPrompt.Text = "Please enter an integer " _
& "between 0 and " _
& colors.GetUpperBound(0).ToString

1

2

3

4:

58 Private Sub Forml Load() Handles MyBase.Load
6

7

8:

9: End Sub

10:

11: Private Sub btnOk Click() Handles btnOk.Click

12: Dim colorIndex As Integer

13: If Integer.TryParse(txtInput.Text, colorIndex) Then
14: If colorIndex < 0 OrElse colorIndex >

15: colors.GetUpperBound(0) Then

16: lblPrompt.Text = "The value is out of range"
17: Else

18: 1blPrompt.Text = "You selected the color "
193 & colors(colorIndex)

20: End If

21: Else

228 lblPrompt.Text = "Please enter an integer"

23: End If

24: End Sub
25: End Class

In Form_Load, line 6 initializes a Label control with a prompt that tells the user
the range of values to be entered. You may recall that the GetUpperBound func-
tion returns the highest permissible subscript for a given array. In the OK but-
ton’s Click handler, line 13 uses TryParse to convert the text box to an integer.
If it fails, line 22 displays an error message. Line 14 checks colorIndex against
a range of acceptable values. If colorIndex is within a valid range, line 19 uses
colorIndex as a subscript into the colors array, to get the name of the color, as
a string.

The requirements specification provides the basic structure of our testing plan
because it mentions error handling for user input. Therefore, it is necessary to
test the range of values entered by the user, and we must check for noninteger
input. Each of the tests, shown in Table 1-3, has a specific output that we
expect the application to produce.

1.5 Manual Software Testing

Step 4: Run the application and perform the tests shown in Table 1-3 in sequence.

Table 1-3 Testing plan for the Manual Test application

Input Expected output
“xx” or a blank string Please enter an integer
=1 The value is out of range

0 You selected the color white
1 You selected the color yellow
2 You selected the color green
3 You selected the color red
4 You selected the color blue
5 You selected the color orange
6 The value is out of range

Example: Calculating Weekly Pay

Suppose you are about to create an application that calculates weekly pay. The requirements
specification for this application is:

e The user enters the hours worked and the pay rate.

e Error messages are displayed if: (1) the user’s inputs are nonnumeric, (2) the number
of hours worked is less than or equal to 0 or greater than 60, or (3) the pay rate is less
than 0 or greater than 999.

e The application displays weekly pay as the product of hours worked multiplied by the
pay rate.

This is a fairly simple application to write, so we will leave that step as an exercise. But we do
want to create a testing plan. When selecting inputs, we use values that should produce spe-
cific results. In the following table, the prompts to the user indicate valid ranges for the inputs.
We begin by hand-calculating reasonable inputs and expected outputs for the testing plan.

Input Expected output

hours = 10, rate = 45 weekly pay = $450.00
hours = 20.2, rate = 40.6 weekly pay = $820.12
hours = 60, rate = 999 weekly pay = $59,940.00
hours = 1.0, rate = 1.0 weekly pay = $1.00

You should also test the application with invalid inputs to make sure the correct error mes-
sages are generated. In our current example, inputs might be blank, nonnumeric, or out of
range. Of course, the program must not throw an unhandled exception. The following
entries should be added to the testing plan:

Input Expected output

hours = abc, rate = 50.0 Hours worked must be numeric

hours = 22.5, rate = xxx Pay rate must be numeric

hours = 0, rate = 40.6 Hours worked is out of range

hours = —20, rate = —40.6 Hours worked and pay rate are out of range
hours = 10, rate = —40.6 Pay rate is out of range

hours = 60, rate = 999.5 Pay rate is out of range

hours = 60.1, rate = 40.6 Hours worked is out of range

37

38

Chapter 1 Classes

Summary

We cannot overemphasize the importance of testing your applications. Although you are not
currently writing any flight navigation or medical equipment software, you might do that
type of work in the future. Also, your current course grade might be improved if your pro-
gramming assignments work correctly!

Checkpoint
) checke

17. What type of testing is performed by an actual person interacting with an
application?
18. What type of testing is performed by a computer program, with no human
intervention?
19. Explain the purpose of a requirements specification.
20. What is the term used in this section for a table containing a list of user inputs and
expected outputs?
Summary
1.1 Classes and Objects

1.2

Object-oriented programming (OOP) is a way of designing and coding applications so
that interchangeable software components can be used to build larger programs.

A class is a program structure that defines an abstract data type. You create a class, and
then create instances of the class. All class instances share common characteristics.
Each control in the Visual Studio is a class. By that, we mean that it contains the prop-
erties, methods, and visual appearance that make it different from other controls.
Each instance of a class can contain unique values in its class properties. For example,
if you have two Button objects, each will have its own unique Name, Text, Width, and
Height property values.

A variable declared with a value type contains its own data, in a single location.

A variable declared as a reference type does not directly contain its own data. Instead,
it points to some other object in memory.

Creating Your Own Classes

You create a class in Visual Basic by coding a class definition. It includes the Class key-
word, the name of the class, an access specifier (such as Public), and a list of class mem-
bers.

A class-level variable is always declared inside a class, but outside any class methods
or properties.

The principle of information hiding says that most variables and even some methods
must be hidden inside classes. The hidden variables and methods can be accessed only
by other methods in the same class.

Creating an instance of a class is a two-step process. First, declare an object variable;
then create an instance of the class and assign it to the variable.

A property procedure is a class member that defines a property. It has two sections: Get
and Set. The Get section holds the code that is executed when the property value is
retrieved, and the Set section holds the code that is executed when a value is stored in
the property.

1.3

14

1.5

Key Terms

Many desktop applications follow a basic design used widely in industry called the Two-
Tier Application Model. Each tier consists of one or more classes. The presentation tier
consists of classes that interact with the user. The middle tier, also known as the busi-
ness logic tier, consists of classes that provide essential calculations and decision mak-
ing. The data access tier contains classes that interact directly with data sources.

Enumerated Types

An enumerated type is a named list of integer constants. It defines, and therefore lim-
its, the set of values that can be assigned to variables of its type. You use the Enum key-
word to define an enumerated type.

When you press the dot after an enumerated variable, Visual Studio’s Intellisense tool
shows a list of values that the variable can hold.

You can cast an integer value into an enumerated type, but you should do that only
when no other option is available.

Focus on Program Design and Problem Solving: Bank Teller Application

The Bank Teller application is a two-tier application that simulates an electronic bank
teller by letting the user look up an account, deposit funds, withdraw funds, and view
the current balance.

Existing account information is stored in a data file. The user can input an account
number and initiate a search for a matching account. The user can deposit funds and
withdraw funds. If funds are withdrawn, the updated account balance is displayed.
The application contains a class named Account that holds an account ID, account
holder name, and the account balance.

Manual Software Testing

Software testing can have critical importance, particularly when lives and finances are
at stake.

Manual testing is performed by a person (called a software tester) who manually enters
a variety of inputs into an application. This person compares the actual outcomes pro-
duced by the software to a set of expected outcomes. Automated testing is performed
by a computer program and requires no human input.

A testing plan is a list of tests that are to be run on an application to verify that the
application works as expected. For each given user action or input value, the testing
plan lists the expected output or action produced by the application.

A requirements specification is a complete description of the behavior of an applica-
tion. It should include a description of inputs and actions by the user, and how those
inputs and actions affect in the program’s behavior.

Key Terms

access specifier

assignment operator (=)
attributes
auto-implemented property
automated testing
behaviors

class

class definition

class instance

class-level variable
constructor

data access tier

default constructor
encapsulation principle
enumerated type
information hiding principle
inheritance

instance

39

40

Chapter 1

Classes

local variable property

manual testing property procedure
method ReadOnly property
middle tier reference type

Microsoft .NET Framework reference variable
namespace requirements specification
New operator shared property

object side effect

object behaviors testing plan

object initializer three-tier application model
object-oriented programming (OOP) ToString method

optional parameter user-defined class
parameterized constructor value type

presentation tier

Review Questions and Exercises

True or False

Indicate whether each of the following statements is true or false.

1.
2.
3.

0

ACH 2

10.

Strings are value types.
Private methods may be referenced only by other methods in the same class.

If a class named Account has a single constructor containing two required parameters,
the following line will compile:

Dim act As New Account()
A shared class-level variable must always be marked Private.

If the Employee class had a public property named IDSize, you would have to write an
expression such as Employee.IDSize to access the property.

The controls in the Visual Studio toolbox represent classes.
When you drag a control onto a form, you are creating a class.
Integer is not a value type.

Instances of classes are reference types.

When you initialize a reference variable, use the New operator.

. When the assignment operator (=) assigns one reference variable to another, the vari-

ables point to two different objects.

Short Answer

1.

Suppose isFullTime is a Boolean variable. Is the following the best way to use it in an
expression?

If isFullTime = True Then ...

Which tier in a two-tier application is responsible for interacting with the user?

. How are class behaviors implemented in Visual Basic?

In a two-tier Student Registration application, which tier would contain rules that decide
if a student’s grade average is high enough to enroll in classes during the current term?

10.

11.
12.
13.

14.
15.
16.

17.
18.

Review Questions and Exercises

How is a shared class variable different from a non-shared class-level variable?

. Write code that creates a shared property named Color for a class named Window.

Show an example of declaring a method named MyMethod with a single reference
parameter of type String. The method should not return a value.

. What is the name of the principle that advocates keeping class-level variables private?

If a class-level variable is declared private, how can users of the class get and set the vari-
able’s value?

Create a constructor for a class named Hero that receives two Integer parameters:
pStrength and plntelligence. Make the parameters optional. The corresponding class
properties are named Strength and Intelligence.

Which section (Set or Get) is omitted from a ReadOnly property?
Which Object method makes a shallow copy of a reference variable?

One way to create a class is to add a new class to a project from the Project menu. What
is the other way to create a class?

Show how to declare a private, shared, class-level String variable named smDefaultColor.
What is the name of the type of constructor that permits callers to pass arguments?

Write a statement that opens a text file named myfile.dat for input, and returns a
StreamReader.

Werite a statement that reads a line of text from a StreamReader object named reader.

Which StreamReader property lets you know when there is no more data to read in the
input stream?

What Do You Think?

1.

7o N

o

Rather than using a loop with a subscript to copy one array to another, is it possible to
use a For Each loop? If your answer is yes, write code that demonstrates your technique.

Why is it necessary to call the CType function when calling Object.Clone?
Why are shared properties useful in programs? Give an example.
Why do you think a middle tier class should not provide a user interface?

Why is it inconvenient for constructor parameters to have the same names as class-level
properties or variables?

Why is a default constructor sometimes omitted in classes?

In the Bank Teller application in this chapter, how does the Account.Withdraw method
let the caller know that the amount being withdrawn is larger than the balance? Can you
think of a better way to signal this type of error?

Algorithm Workbench

1.

Create a property that gets and sets a person’s date of birth. Include appropriate error
checking.

Create a constructor for a class named Investment that contains one required parame-
ter and two optional parameters. You may choose any parameter names that seem
appropriate.

41

42 Chapter 1 Classes

3. Create an enumerated type named WindowColor that contains five colors. Then write
a function that has a WindowColor input parameter. The function should display the
color as a string in a Label control named IbIWindowColor.

4. Suppose a string named mputLine contains “95.1\86.5\72.4.” Write a single statement
that divides this string into an array of three strings named scores.

Programming Challenges
1. Bank Teller with Totals

Use the Bank Teller application shown in this chapter as a starting point for this exer-
cise. Implement the following properties in the Account class:

e TotalDeposits—the total amount deposited in this account
e TotalWithdrawals—the total amount withdrawn from this account

Add a button to the form that displays a message box containing the total deposits and
total withdrawals, as shown in Figure 1-19. Display the two values in currency format.
Reset the totals to zero when a new account is displayed.

Figure 1-19 Showing total deposits and withdrawals in a message box.

==

Total deposits = §300.00, Total withdrawals = §220.25

OK

2. Aircraft Takeoff Calculations

As we all know, conventional aircraft such as jets must reach a certain speed before they
can take off. The required speed, known as velocity, enables lift, maneuverability, and
safety requirements to be satisfied. Your job is to write an application that calculates
how much time it will take for certain aircraft to reach their required takeoff velocity.
You will also calculate how many feet of runway will be required. (Ignore the extra run-
way space normally required to allow an aircraft to safely abort a takeoff.)

For each aircraft, you are given (1) its name, (2) its required takeoff velocity (feet/
second), and (3) how quickly it accelerates (feet/second?). Use the following arrays:

Private ReadOnly Names() As String = {"A-747","A-737","C-150","D-240"}
Private ReadOnly TakeoffVelocity() As Double = {250, 264, 270, 240}
Private Acceleration() as Double = {33.5, 44.2, 37.1, 51.9}

The names and values are, of course, fictitious. Create an Aircraft class that holds the
corresponding information for one aircraft. It should have a ToString method that
returns the aircraft name.

In your startup form, create and fill an array of Aircraft objects. Then insert the array
in a ListBox control. When the user selects an aircraft, your program should calculate
and display the required takeoff velocity, the acceleration constant, the time required
to take off, and the number of feet the aircraft will travel on the runway before leav-
ing the ground. Format the output as a sentence, in the manner shown in Figure 1-20.

Programming Challenges 43

Figure 1-20 Aircraft Takeoff Calculations, sample output

a5l Aircraft Takeoff Calculations = [=][]

Select an Aircraft

A-747 | The A-747 aircraft has a required takeoff
A-737 velocity of 250.00 ft/sec and an
312‘3[[]) acceleration constant of 33.50

Therefore, it requires 7.46 seconds to
take off, with a distance of 1,865.67 feet

In the Aircraft class, create a property for each the following calculations:

TakeoffTime: Calculate the time it will take for the aircraft to reach takeoff velocity
(¢ = time in seconds), @ = acceleration, and v = velocity in ft/sec), using the following
formula:

t = v/a

TakeoffDistance: Calculate the distance (d) traveled (in feet) before takeoff, using the
following formula:

d = at?
3. Training Workshops

Your company likes to present training workshops that help people in the information
technology industry improve their skills. Your task is to write an object-oriented appli-
cation that will let the company display and edit workshops.

There are several workshop categories: (1) application development, (2) databases, (3)
networking, and (4) systems administration. You will create an enumerated type that
matches these categories. A workshop consists of: (1) title, (2) length in days, (3) cate-
gory, and (4) cost. Create a class named Workshop that holds this information, with a
complete set of properties and a ToString method. It should also contain a public shared
string array such as the following:

Public Shared CategoryNames() As String = {"Application development",
"Databases", "Networking", "System administration'"}

Data File

When the application starts, it must read a list of workshops from a data file and store
them in an array or collection. Each line in the file will be a different workshop, with
the fields separated by the \ (backslash) character. Here is a sample line from the file:

0\3\800\Programming in Java
(Category = 0, Days = 3, Cost = $800, Title = Programming in Java)

Create a user interface that lets the user complete the following tasks:

1. Display all workshops in a list in the startup form, as shown in Figure 1-21.

2. Select a single workshop to display in detail format in a separate window, as shown
in Figure 1-22. A combo box control should display a list of categories, with the
workshop’s actual category as the current selection. This window permits the user to
modify the workshop fields and save all changes. If the user modifies a workshop,
clicks the Save and Close button, and returns to the startup form, the workshop
changes should appear in the list box.

44

Chapter 1

Classes

None of the changes are permanent because you are not required to save the modified
workshop list back to the data file.

Figure 1-21 List of training workshops

a5 Training Workshops =]]

Programming in Java, Days = 3. Category = Application development, Cost = $800.00
Programming in Visual Basic, Days = 3, Categaory = Application development, Cost = $2300.00 P
Programming in CH, Days = 3, Category = Application development, Cost = $800.00

Advanced Java, Days = 5, Category = Application development, Cost = $1,500.00

Advanced Visual Basic, Days = 5, Category = Application development, Cost = £1,500.00
Advanced CH, Days = 5, Category = Application development, Cost = $1,500.00

Web Application Programming, Days = 5, Category = Application development, Cost = $1,500.00
Intro to Networking. Days = 3. Category = Metworking, Cost = $700.00

Advanced Networking, Days = 5, Category = Networking, Cost = $1,500.00

Mabile Metworks, Days = 3, Category = MNetworking, Cost = $600.00

Intro to Databases, Days = 5. Category = Databases, Cost = $2.000.00

Database Administration, Days = 4, Category = Databases, Cost = £2,000.00

Irtro to Uni/Linwee, Days = 3, Category = System administration, Cost = $670.00 i

Show Details

»

1L}

Figure 1-22 Viewing and editing a single workshop

Workshop Details (=53]

Title Advanced Visual Basic
Categony Application developr -
Days 5

Cost 1.500.00

Implementation Suggestions

You can create a property of type Workshop in the Workshop Details form. Before dis-
playing this form, assign the selected workshop (from the list box) to the Workshop
Details form’s Text property. When the form loads, copy the workshop property values
into the text boxes and combo box.

Here are some suggestions for workshop titles, although you may add more of your own:
Programming in Java, Programming in Visual Basic, Programming in C#, Advanced Java,
Advanced Visual Basic, Advanced C#, Web Application Programming, Intro to Networking,
Advanced Networking, Mobile Networks, Intro to Databases, Database Administration,
Intro to Unix/Linux, Advanced Unix/Linux, and Windows Administration.

Investment Tracking

Create an application that tracks investments. Let the user type a ticker symbol into a
text box, enter the number of shares, and set the purchase date. A sample is shown in
Figure 1-23. In the example, the price per share was obtained from a data file that was
read when the application started. The combo box contains a list of investment types.

Programming Challenges 45

When the user selects an investment type and clicks the Confirm button, the total pur-
chase amount displays in the bottom right corner of the form.

Figure 1-23 After clicking the confirm button

o7 Imvestrnent Tracking EI =l @

Investment Purchase Information

Investment type: \Stock ,J
Ticker symbaol: BCHS Price per share: 42.10

Purchase date: 10/12/2011 B~

Number of shares: 50 Total amount: |$2,105.00

Confirm J Close -

A ticker symbol is a short abbreviation that uniquely identifies the name of an invest-
ment such as a stock. The term ticker refers to the noise made by ticker tape machines
that were once used to print stock prices.

Implementation
Define a class named PriceType with two properties: Ticker (string), and Price (Double).

Define an enumerated type named InvestmentType that lists four types of investments:
stock, mutual fund, commodity, and money market.

Define a class named Investment containing the following public properties:

e Ticker symbol

¢ Investment type

e Purchase date

® Price per share

e Number of shares purchased
e Purchase amount (read-only)

The class should contain a shared collection of PriceType objects. Also, create a shared
method in the Investment class that loads PriceType information from a comma-delim-
ited text file (in real life, we would expect these values to change constantly). Each line
in the text file should look like the following, in which the first value is the ticker sym-
bol, and the second value is the current price:

AMB, 32.2

The file should contain at least ten lines like this, each with a different ticker symbol and
price.

Create a method in the Investment class that receives a ticker symbol and returns the
price of the investment associated with that ticker symbol.
User Interface Notes

As the user begins to type the ticker symbol into a text box, the application should search
for the symbol and display the price per share. As soon as the ticker symbol matches an

46

Chapter 1

Classes

existing symbol in the collection, the price should appear in a label on the form. We sug-
gest that you write an event handler for the TextChanged event of the TextBox control.
When the user clicks the Confirm button, its click handler should create an Investment
object and initialize its properties with values in the controls on the form.

. Client Billing

Werite an application that tracks the amount of billable time that the user spends on con-
sulting projects. The application reads an input client file and appends information to a
billing file, which it creates the first time it runs.

Startup Form

Figure 1-24 shows a sample of the main window. When the user begins working on
a project, the client name is selected from a ComboBox control. In Figure 1-25, the
user has clicked the Szart button, so the billing timer is running. Notice that the Start
button is disabled. In Figure 1-26, the user has clicked the Stop button. At that
moment, the application shows the amount of elapsed time and writes a record to the

billing file.

Figure 1-24 Client selected, before starting the billing timer

a5 Consulting Time Clock E]@

Client Name: (Orangutang, Cheetah, and Gibbon j

Start time:
Stop time:

Billable hours, minutes:

Start Exit

Figure 1-25 While the billing timer is running

o5 Orangutang, Cheetah, and Gibbon =3 Eol <=
Client Name: [Orangutang. Cheetah, and Gibbon - |
Billing in progress. . . Start time: | 10:46 AM
Stop time:

Billable hours, minutes:

| =]

Programming Challenges 47

Figure 1-26 After stopping the billing timer

s Orangutang, Cheetah, and Gibbon =N Bl <7

Client Mame: |Orangutang. Cheetah, and Gibbon j

Start time: | 10:46 AM
Stoptime: |[11:47 AM

Billable hours, minutes: |1:1

Start \ Stop I Exit

Coordinate the command buttons carefully to make sure the user cannot click out of
sequence. The following table shows the two possible program states that affect the but-
tons. The program is in State 1 when it starts; after clicking the Start button, the pro-
gram enters State 2. When the Stop button is clicked, the program returns to State 1.

State Start Stop Exit
1 Enabled Disabled Enabled
2 Disabled Enabled Disabled

When the user clicks the Start button, display a status message Billing in Progress ... to
show that the clock is running. Do not permit the user to select a different client while
the clock is running. When the Stop button is clicked, display the stop time and the num-
ber of billable hours and minutes. The name of the selected client should appear in the
window caption.

TimeClock Class

Create a class named TimeClock that encapsulates the time-related calculations per-
formed by the program. Use a TimeSpan object to hold the difference between two Date-
Time values. The following table lists the TimeClock properties:

Name Type Attributes Description

StartTime DateTime ReadOnly

StopTime DateTime ReadOnly

Elapsed TimeSpan ReadOnly Duration between the starting and ending times
ClientName String

The following table lists the TimeClock methods:

Name Return Type Attributes Description

StartClock none public Begins the timing sequence

StopClock none public Ends the timing sequence

48

Chapter 1

Classes

BillingData Class

Create a class named BillingData to handle the client and billing files. Use the Visual Stu-
dio editor to create the client file. Insert at least five records in the client file before run-
ning the program. Each record in the client file contains a client name. Your program
will create the billing file the first time it runs. Subsequent runs will append to the file.
Each record in the billing file contains the following fields: billing date, client name, start
time, stop time, and elapsed time. The following is a sample record:

02-01-2003,Jones and Smith,21:51,22:10,1:19

. Elevator Simulation

Write an application that simulates the movement of a passenger elevator. Create a class
named Elevator that holds the following information: current floor number, number of
passengers on the elevator, and direction (up or down). Declare an enumerated type to
represent the elevator direction. Most of your other code will be located in the startup
form.

The simulated building contains eight floors. The elevator starts at the first floor and
moves upward until it reaches the top floor; it then pauses for one cycle, and begins
moving downward until it reaches the first floor. After one cycle, it begins moving up
again. Each floor of the building is initialized with a random number of passengers
(between 0 and 5). As the elevator stops at each floor and picks up passengers, the num-
ber of passengers inside the elevator increases. When the elevator reaches the end of its
trip, all passengers leave the elevator, and the list of floors is filled with a new set of ran-
dom passenger counts.

Use a Timer control to move the elevator to the next floor every two seconds. On each
floor, display the number of people waiting for the elevator, as shown in Figure 1-27.
Before moving to the second floor, the single passenger on the first floor will enter the
elevator. In Figure 1-28 (a different simulation run), the elevator has arrived at the
fourth floor with six passengers. After the three passengers on the fourth floor enter the
elevator, it will contain nine passengers when it reaches the fifth floor.

Use a Panel control to display the elevator as it is moving up and down. To move the
Panel up and down in the window, create a new Point object using x and y coordinates,
and assign it to the Panel’s Location property.

Figure 1-27 Beginning position of the elevator on the first floor

a5 Elevator Simulation @

Floor: 1

Programming Challenges 49

Figure 1-28 Elevator arrives at the fourth floor

a2 Elevator Simulation

Floor: 4

This page intentionally left blank

Input Validation and
User Interfaces

CHAPTER

2.1 Input Validation 2.6 FlowLayoutPanel, WebBrowser,
Tutorial 2-1: Using the ErrorProvider SplitContainer, and TabControl
control Tutorial 2-3: Creating a simple image

2.2 Exception Handling album

2.3 ListBox, ComboBox, and Tutorial 2-4: Completing a WebBrowser
CheckedListBox application

2.4 Dates and Times 2.7 Focus on Problem Solving: Kayak Tour

Scheduling Wizard

Tutorial 2-5: Completing the Kayak
Tour Wizard application

2.5 ToolStrip Control

Tutorial 2-2: Building the Coffee Shop
application

This chapter provides in-depth coverage of input validation and error handling. The Error-
Provider control is introduced as an ideal tool for input validation. Next, we review the
ListBox, ComboBox, and CheckedListBox controls, which shows you how to write code
that deals with multiple selections. Following that, we show how to use the FlowLayout,
WebBrowser, SplitContainer, and TabControl controls to develop creative user interfaces.
The chapter finishes with the design and development of a software wizard to illustrate some
of the power and flexibility of this type of application.

Input Validation

Whenever possible, applications should do their best to detect and handle errors resulting
from user input. Most of a programmer’s efforts are often directed toward error detection
and recovery. In our book Starting Out with Visual Basic 2010, we showed how to use Try-
Parse, Try-Catch, and If statements to handle user input errors. In this chapter, we show two
basic approaches to notifying the user when an error is detected:

e The StatusStrip control can display error messages in a label at the bottom of the form.

e The ErrorProvider control can use flashing icons to alert the user of an error. Then the
user can see a more detailed error message when hovering over the control with the
mouse.

51

52

Chapter 2

Input Validation and User Interfaces

Later in the chapter, we will review the topic of exception handling, and provide detailed
information on how to handle multiple exception types.

The Char Data Type

The Char data type holds some useful tools for string manipulation and validation. Inter-
nally, a Char holds a single 16-bit Unicode character. The Unicode character format can rep-
resent a variety of international characters in most world languages.

A character constant is encoded between quotes, followed by a lowercase letter C. The fol-
lowing code stores the letter A in the variable named letter:

Dim letter As Char = "A'"c ' the capital letter A

The String class has a Chars property that you can use to get a single character from a given
index position in a string. The following lines, for example, place the letter A in the variable
named ch:

Dim temp As String = "ABC"
Dim ch As Char = temp.Chars(0)

Chars is a default property, so you can write the following equivalent statement:

Dim ch As Char = temp(0)

The Chars property is ReadOnly, so you cannot use it to modify a string. The following
statement is not valid:

temp(0) = "X"c

The String class has a ToCharArray method to convert that builds a character array from a
string:

Dim temp As String = "ABCDEFG"
Dim chars() As Char = temp.ToCharArray()

Shared Methods

Following is a list of the shared methods belonging to the Char class that you are likely
to use:

e GetNumericValue(Char ch) As Double—returns the numeric value of ch

e IsControl(Char ch)—returns True if ch is a control character, such as a backspace,
cursor arrow, Home, End, etc.

e IsDigit(Char ch)—returns True if ch is a decimal digit (0 to 9)

e IsLetter(Char ch)—returns True if ch is a letter

o IsLetterOrDigit(Char ch)—returns True if ch is a letter or digit

o IsLower(Char ch)—returns True if ch is a lowercase letter

e IsUpper(Char ch)—returns True if ch is an uppercase letter

e IsPunctuation(Char ch)—returns True if ch is a punctuation mark, such as a comma,
semicolon, or period

e IsSymbol(Char ch)—returns True if ch is a symbol character, such as +, —, and *

e IsWhiteSpace(Char ch)—returns True if ch is a tab, newline, or space

e ToLower(Char ch)—returns the lowercase equivalent of ch

e ToUpper(Char ch)—returns the uppercase equivalent of ch

The classification of individual characters as punctuation and symbols varies from one lan-
guage to another, but those values are generally known for the English language.

A shared method is called using the class name before the dot (.). For example, the follow-
ing expression converts the contents of the Char variable named letter to lowercase:

Char.ToLower (letter)

2.1 Input Validation

The following code displays a message if the Char variable named input contains a decimal
digit:
If Char.IsDigit(input) Then

lblStatus.Text = "The character is a digit™"
End If

Char methods can check for certain classes of characters. For example, the following code
counts the number of letters and digits in a string:

Dim count As Integer = 0
For Each ch As Char in inputString
If Char.IsLetterOrDigit(ch) Then
count += 1
End If
Next

You can use Char methods to validate keyboard input, as we show in the next section.

Working with TextBoxes and Strings

The TextChanged event associated with the TextBox control fires every time the user
changes its contents. The event can also fire if a program statement modifies the Text prop-
erty. For example, you might write code in a TextChanged handler to enable a button (the
OK button) if the length of the Text is a certain size:

Private Sub txtPatientID TextChanged()
Handles txtPatientId.TextChanged
btnOk.Enabled = txtPatientId.Text.Length = 6
End Sub

There are many other ways you can filter or process the input string. You might convert all
characters to uppercase, for example:

txtPatientId.Text = txtPatientId.Text.ToUpper/()

KeyPress Event

The TextBox control also fires a KeyPress event each time the user presses a key while the
input focus is on the control. You can use this event to filter out certain characters. For
example, in the following event handler, we reject any character that is not a letter or digit:

Private Sub txtPatientID KeyPress(ByVal sender As System.Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs)
Handles txtPatientID.KeyPress

If Not Char.IsLetterOrDigit(e.KeyChar) Then
e.Handled = True
End If
End Sub

By default, the e.Handled property equals False. This value means that the key will be
processed and displayed normally. If you want to reject an input character, you must set
e.Handled parameter to True. Then the character will not appear in the text box and it will
not be added to the Text property.

Usually, when filtering a user’s input, we permit him or her to press control characters such
as the Backspace key or arrow keys. In the following code, line 5 exits immediately if a con-
trol character is found. This prevents any further filtering of the input:

Private Sub txtPatientID KeyPress(ByVal sender As System.Object,

ByVal e As System.Windows.Forms.KeyPressEventArgs)
Handles txtPatientID.KeyPress

=W N =

53

54

Chapter 2

Input Validation and User Interfaces
If Char.IsControl(e.KeyChar) Then Exit Sub

e.Handled = True
End If

5
6
7 If Not Char.IsLetterOrDigit(e.KeyChar) Then
8
9
10 End Sub

If line 7 is reached, we assume that e.KeyChar is a displayable character. Then the character
is filtered out if it is neither a letter nor a digit.

Displaying Messages with the StatusStrip Control

When signaling user input errors, it is possible to call the MessageBox.Show method. But
this way of handling errors interrupts the user and forces her to close the message box. Gen-
erally, this approach should be avoided unless the error is so critical that it absolutely can-
not be ignored.

A better way to display error messages is to alert the user without interrupting his actions.
For example, you can display an error message in a label on a StatusStrip control. The user
will see the error message, make a mental note, and fix the error when it is convenient.

You can find the StatusStrip control inside the Menus & Toolbars section of the Visual Stu-
dio Toolbox, as shown here:

4 Menus & Toolbars
Pointer
ContextMenuStrip
MenuStrip
StatusStrip
ToolStrip

e

TeoolStripContainer

By default, the StatusStrip control docks along the bottom of the form. When you select the
control with the mouse, as in Figure 2-1, an insert tool appears at the first available posi-
tion. Click the arrow pointing downward to add a control to the strip. Although several
types of controls are available, you will only need to add a ToolStripStatusLabel control to
the strip in order to display messages for the user. A sample message, shown at runtime,
appears in Figure 2-2. By changing its Dock property, you can attach the StatusStrip to any
side of the form.

Figure 2-1 StatusStrip control, in design mode

o5l StatusStrip Demo ===z

4

Statuslabel
ProgressBar

DropDownButton

B) e -

SplitButton

2.1 Input Validation

Figure 2-2 Message displayed in StatusLabel at runtime

a! StatusStrip Dermo = EoR(=T

Please enter a numeric value

ErrorProvider Control

The ErrorProvider control provides a visual cue to the validation status of input fields on a
form. It does not perform the actual validation—you must do that in your own code. But it
displays a bright red icon next to fields that have been found to contain invalid data. In
Figure 2-3, for example, the icon next to the text box was displayed by an ErrorProvider
control. When the user hovers the mouse over the icon, a popup message appears much in
the same way as a tool tip.

Figure 2-3 ErrorProvider control, with icon and popup message

a3 ErrorProvider Test E]]
Last name: | r]
Enter your age: Name cannot be blank
OK | Close |

A single ErrorProvider control can validate all controls on the same form. The control can be
found in the Components section of the Visual Studio Toolbox. The ErrorProvider is not visible
on the form in Design mode, so when it is added to a form, it appears in the form’s component
area.

The best approach to using ErrorProvider is to write code in an input field’s event handler
that checks for invalid data. If an error is discovered, call the ErrorProvider’s SetError
method, passing it a reference to sender (the control being validated) and an error message
string. This is the general format of SetError:

Provider.SetError (ControlName, Message)

Provider is the name of the ErrorProvider control. ControlName is the name of the control
being validated, and Message is a string that will pop up when the user hovers the mouse
over the error icon.

Last Name Input Example

The following example code is from the TextChanged event handler for a TextBox named
txtLastName. If the box is blank, we pass an error message to the SetError method:

Private Sub txtLastName TextChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles txtLastName.TextChanged

55

56

Chapter 2

Input Validation and User Interfaces

If txtLastName.Text.Length = 0 Then
errProvider.SetError (DirectCast(sender, Control),
"Last name cannot be blank")
End If

In the code above, the sender parameter is type Object, so it must be cast into a Control
object before it can be passed to the SetError method.

The ErrorProvider’s GetError method returns the current error message associated with a
control:

Dim st As String = errProvider.GetError(txtLastName)

Choosing Event Handlers

When implementing the ErrorProvider control, determine how and when you want the error
checking to take effect. The Leave event is fired when the user moves the focus away from
any type of input control. Examples are text boxes, list boxes, check boxes, and combo
boxes. In a TextBox, if you want an event to fire each time the user types a character, write
a handler for the TextChanged event.

You might implement the two types of checking by providing separate methods that handle
both the Leave event and the TextChanged event. That would result in unwanted duplicate
code. Instead, you can write a single event handler for multiple events. The following exam-
ple handles both TextChanged and Leave events for the same control. Both event types use
the same parameter list:

Private Sub txtLastName Validate() _
Handles txtLastName.TextChanged, txtLastName.Leave

In Tutorial 2-1, you will create an application that demonstrates the use of the ErrorProvider
control.

Tutorial 2-1:
Using the ErrorProvider control

In this tutorial, you will create an application that prompts the user for his or her name
and age. Your program will verify that the name field is not empty, and that the age field
is numeric. An ErrorProvider control will be used to signal the user and display an error
message on demand.

Step 1: Create a Windows application named ErrorProvider Test.
Step 2: Add an ErrorProvider control to the form and name it errProvider.

Step 3: Add a StatusStrip control to the form. Edit the control and insert a Tool-
StripStatusLabel named 1blstatus.

Step 4: Add the remaining controls listed in Table 2-1 to the form. The startup form
is shown at runtime in Figure 2-4.

Step 5: At the top of the form’ code window, use Readonly strings to define error

messages:
Private ReadOnly mNameMsg As String = "Name cannot be blank"
Private ReadOnly mAgeMsg As String = "Age must be a number"

Private ReadOnly mValidMsg As String = "All user input is valid"

2.1 Input Validation 57

Table 2-1 Controls in the ErrorProvider Test application

Control Type Control Name Properties

Form (default) Text: ErrorProvider Test
Font.Size: 10pt

ErrorProvider errProvider

TextBox txtLastName Text: String. Empty

TextBox txtAge Text: String.Empty

Button btnOK Text: OK

Button btnClose Text: Close

Label (default) Text: Last name:
TextAlign: MiddleRight

Label (default) Text: Enter your age:
TextAlign: MiddleRight

StatusStrip (default)

ToolStripStatusLabel IblStatus Text: String. Empty

Figure 2-4 ErrorProvider Test user interface

o5 ErrorProvider Test =aEO]

Last name: |

Enteryuurage:|
OK Close

Step 6: Create the following methods that validate the age and last name fields:

Private Sub ValidateAge(ByVal ctrl As Control)
If Not IsNumeric(txtAge.Text) Then
errProvider.SetError(ctrl, mAgeMsqg)
txtAge.Focus()
Else
errProvider.SetError(ctrl, String.Empty)
End If
End Sub

Private Sub ValidateLastName(ByVal ctrl As Control)
If txtLastName.Text.Length = 0 Then
errProvider.SetError(ctrl, mNameMsg)
txtLastName.Focus()
Else
errProvider.SetError(ctrl, String.Empty)
End If
End Sub

The methods shown above check to make sure the age is numeric and the last
name is not blank. If an error is found, they call the ErrorProvider’s SetError

58

Chapter 2

Input Validation and User Interfaces

P

Step 7:

Step 8:

Step 9:

method, passing to it the control that caused the error along with an error
message. They also call the Focus method, which sets the input focus to the
input field that needs to be fixed.

TIP When an ErrorProvider’s message string is blank, the ErrorProvider
icon disappears. This is a useful visual cue to the user that the input error
has been corrected.

Create event handlers for the txtAge and txtLastName controls. Each one
handles both Leave and TextChanged events. And each one calls an appro-
priate validation method, passing to it a reference to sender, cast into a Con-
trol object:

Private Sub txtLastName Validate(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtLastName.Leave,
txtLastName.TextChanged
ValidateLastName (CType(sender, Control))
End Sub

Private Sub txtAge Validate(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtAge.Leave,
txtAge.TextChanged
ValidateAge (CType(sender, Control))
End Sub

Create Click event handlers for the OK and Cancel buttons. The btnOK han-
dler calls ValidateAge, in case the user has clicked the OK button without hav-
ing visited the txtAge text box. The btnOK_Click event handler makes sure
both error messages are blank before allowing the form to close:

Private Sub btnOK Click() Handles btnOK.Click
' Enforce validatation of the Age input field
' in case the user tries to skip it.
ValidateAge (txtAge)
With errProvider
If .GetError(txtLastName).Length <> 0 Then
lblStatus.Text = mNameMsg
ElseIf .GetError(txtAge).Length <> 0 Then
lblStatus.Text = mAgeMsg
Else
lblStatus.Text = mvValidMsg
End If
End With
End Sub

Private Sub btnClose Click() Handles btnClose.Click
Me.Close()
End Sub

Save the project and run the application. Here are some suggestions for test-
ing the application.

e Press the Tab key to move between the two blank text boxes. The Error-
Provider icon will appear as soon as you move away from a blank text box.
Hover the mouse over the icon to read its message.

e While the two text boxes are still blank, click the OK button. A message
should inform you that the last name cannot be blank. Fix the last name

2.2 Exception Handling

and click the OK button again. This time, the error message should say that
age must be numeric.

e Type a name into the last name box and note that the ErrorProvider icon
disappears.

e Enter a non-numeric value into the Age text box. Fix the error and watch
the red icon disappear.

e Click the Cancel button, even when the input fields are empty. The form
closes without performing any validation.

Summary

The ErrorProvider control offers a flexible way to deal with input errors, particularly
because you can write your own methods to perform advanced types of validation.

Checkpoint
1. How many bits are used to represent a Char type object?
2. Which shared method in the Char class returns a specific character in a string?

3. Which shared method in the Char class tells you if a character is either a letter or a
number?

4. How do you convert a character to uppercase?

5. How do you find out if a character is a control character, such as Backspace?

Exception Handling

In general terms, when any program encounters an error while running, we say that a run-
time error occurred. In .NET and other environments like it, we can also say that the appli-
cation threw an exception. The phrase throwing an exception seems a bit unusual, but it has
always meant that some part of a program used the Throw statement to signal that it
detected an error. Then another part of the program used the Catch statement to catch the
exception.

Exceptions are objects. In other words, a program that throws an exception is really throw-
ing an instance of one of the exception classes. All exception classes are related to the
System.Exception class.

An exception is thrown when a program encounters an error severe enough to cause the pro-
gram’s behavior to become unreliable. The error must be resolved before the program can
continue. If the exception causes the program to stop, we call it an unhandled exception or
an uncaught exception.

Visual Basic performs what is known as structured exception handling. One part of a pro-
gram detects and responds to specific exceptions. When an exception is thrown, the program
may be able to recover from the exception and continue executing, or it may close in a con-
trolled manner.

Handling Exceptions

Your programs will most often handle exceptions that were caused (thrown) because of
invalid input by a user. A typical example is when you ask the user to enter a number, and

59

60

Chapter 2

Input Validation and User Interfaces

instead he or she leaves the input field blank or types invalid characters. A statement such
as the following can cause an exception to be thrown:

Dim age As Integer = CInt(txtAge.Text)

An exception can also be thrown when a program tries to open a data file that cannot be
found, or when a program tries to divide by zero. Of course, these types of errors can often
be avoided by calling TryParse, or checking a denominator’s value before performing divi-
sion. But other types of errors may be caused by circumstances outside the programmer’s
control.

Try—Catch—Finally Statement

Handling an exception is accomplished using a Try—Catch—Finally statement. An optional
statement, Finally, is often used, too (see Figure 2-5). We will discuss the exception-type

parameter in the next section. A structured exception handler begins with Try and ends with
End Try. There are three blocks:

Figure 2-5 Syntax of the Try—Catch —Finally Statement

Try
try-block

Catch [optional filters]
catch-block

[additional Catch blocks]
catch-block

[Finally
finally-block]

End Try

1. The Try block starts with Try and ends just before the Catch keyword. The Try block
contains code that might cause an exception to be thrown.

2. The Catch block starts with the Catch keyword and ends before the Finally keyword,
or at the beginning of a new Catch block. The code in the Catch block executes when
an exception is thrown. The Catch block is known as the exception handler.

3. The Finally block (optional) begins with Finally and ends at End Try. If no exceptions
are thrown, the Finally block executes immediately after the last statement in the Try
block. If an exception is thrown, the Finally block executes immediately after the last
statement in the appropriate Catch block.

Figure 2-6 shows the alternate paths that may be taken through a Try—Catch—Finally
statement, depending on whether an exception was thrown. Use the optional Finally
block to release resources created inside the Try block or to perform any other type of
cleanup.

Figure 2-6 Alternate execution paths

exception

thr V Catch block \\

exception not thrown

Try block Finally block

2.2 Exception Handling

Integer Conversion Example

The following code attempts to convert the contents of a TextBox to an integer. It displays
an appropriate message depending on the outcome:

Try
Dim n As Integer = CInt(txtInput.Text)
stsMessage.Text = "OK"
Catch
stsMessage.Text = '"That's not an Integer!"
End Try

Figure 2-7 shows the result when the user enters “xxx” into the text box and clicks the OK
button.

Figure 2-7 Handling the exception

o' Exception Test E=H|ESEF=2)

Enter an integer: e

That's not an Integer!

Catch Block—Optional Filters

What would happen in our exception test example if the user entered an integer outside
the range —2,147,483,648 to 2,147,483,647? The message That’s not an Integer would
display, which is not quite appropriate. A preferred approach would be to catch two types
of exceptions:

e InvalidCastException: Input string cannot be converted to an integer
e OverflowException: Conversion yields an integer that is either too large or too small

To do that, we create multiple catch blocks. And we create catch blocks that look for spe-
cific exception types by adding a filter expression to the Catch statement. Here is the gen-
eral syntax:

Catch ObjectVar As ExceptionType

ExceptionType is the name of a class that is derived from the System.Exception class.
ObjectVar is the name of a variable that references the exception object being caught. You
can use the object variable to call System.Exception properties and methods. The most com-
mon ones are listed here:

® Message—Gets a message string describing the current exception

® StackTrace—Gets a string representation of the call stack when the exception was
thrown, enabling you to trace the error through several method calls

o ToString—Returns a string representation of the exception, including the Message and
StackTrace property values

o GetType().ToString—Returns a string containing the exception type

61

62

Chapter 2

Input Validation and User Interfaces

Examples

The following Catch block names a specific exception type and displays the Exception
object’s Message property:

Catch ex As InvalidCastException
MessageBox.Show(ex.Message)

Let’s return to our earlier integer conversion example and create Catch blocks for two spe-
cific exception types: InvalidCastException and OverflowException. We will also display the
exception object’s Message property in a label on a StatusStrip control:

Try
Dim n As Integer
n = CInt(txtInput.Text)

stsMessage.Text = "OK"
Catch ex As InvalidCastException

stsMessage.Text = '"Please enter only digits"
Catch ex As OverflowException

stsMessage.Text = '"The number was out of range"
End Try

You may notice in the code above that the same object variable name (ex) was used in more
than one Catch block. That is permitted because each variable is separate from the other. Fig-
ure 2-8 shows how the sample program responds when the user enters either “xxx” or a very
large integer into the text box. Each message is customized to the particular type of error.

Figure 2-8 Handling specific exceptions

=5 Exception Test = R == 25 Exception Test o[- s

Enter an integer: 0o Enter an integer: | 7656 7657657657

Please enter only digits 4 The number was out of range 4

Using StackTrace and GetType

The following code displays a message box containing the Exception object’s StackTrace
property, with the name of the exception type in the title bar of the message box. The sam-
ple output is shown in Figure 2-9.

Try

Dim n As Integer = CInt(txtInput.Text)
Catch ex As Exception

MessageBox.Show(ex.StackTrace, ex.GetType().ToString)
End Try

Throwing Exceptions

When you create methods and properties that are called from other methods, you have the
opportunity to throw exceptions. Throwing an exception is a powerful technique because
it lets you signal that some data value is missing, inconsistent, out of range, or invalid. By
throwing the exception, you are saying that you do not have enough information about the

2.2 Exception Handling

Figure 2-9 Displaying a stack trace

System. InvalidCastException =5

at Microsoft.VisualBasic.CompilerServices.Conversions. Tolnteger(String Value)
at Exceptionsl frmMain.Exampled () in
DhAdvanced_VE_2010\chaptersi\ch02\Examples'ExceptionsiForml.vb:line 143

overall context of the application to resolve the issue fully. Suppose, for example, when
working in an ice cream store, you discover that all the ice cream scoops are missing.
Assuming that you cannot resolve the issue, you alert the manager. Essentially, you have
thrown an exception. When the manager locates a scoop and gives you one, she has caught
the exception. Now you can start eating ice cream again (and occasionally serve some to
the customers).

You are likely to throw only two standard exception types from your own class code. Their
names are self-explanatory:

e IndexOutOfRangeException
e ArgumentOutOfRangeException

It is possible to define your own exception classes, but that would be necessary only in appli-
cations more advanced than the ones presented in this book.

Payroll Example

Let’s create a Payroll class with a property named HoursWorked, which should contain val-
ues between 0 and 80 (for a single week). If a value outside that range were to be assigned
to the property, any other calculations based on this property would probably be incorrect.
In those cases, we throw an ArgumentOutOfRangeException object:

Class Payroll
Private mHoursWorked As Double

Public Property HoursWorked() As Double
Get
Return mHoursWorked
End Get
Set(ByVal value As Double)
If value < 0 OrElse value > 80 Then
Throw New ArgumentOutOfRangeException
Else
mHoursWorked = value
End If
End Set
End Property
End Class

We assume that the Payroll class does not directly interact with the user because it is a mid-
dle tier class. Therefore, catching the exception and displaying a message for the user can-
not be done by the Payroll class. Instead, the exception would be caught and handled by a
class in the presentation tier (a form).

Figure 2-10 shows what would happen if the calling code did not catch the exception we
have thrown. The error message shown in the figure is a bit vague, so we might improve it

63

64 Chapter 2 Input Validation and User Interfaces

by passing two parameters to the exception’s constructor: the property name and a helpful
message. The following code shows just the Set section of the revised property procedure:

Set(ByVal value As Double)
If value < 0 OrElse value > 80 Then
Throw New ArgumentOutOfRangeException('"HoursWorked",
"Must be between 0 and 80")
Else
mHoursWorked = value
End If
End Set

Figure 2-10 Unhandled Exception as a result of an exception thrown by
Payroll.HoursWorked

(Payroll Example ==

Unhandled exception has occurred in your application. If you elick
Continue, the application will ignore this error and attempt to continue.
If you click Quat, the application will close immediately.

Specified argument was out of the range of valid values.

Continue I Quit |

Now if the exception is not caught, the output shown in Figure 2-11 is more descriptive than
in the previous figure.

Figure 2-11 Improved error message from the exception thrown by
Payroll.HoursWorked

Payroll Example ==
p— Unhandled exception has occurred in your application. If you click
4 Continue, the application will ignore this esror and atiempt to continue.
@ If you click Guat, the application will close immediately

Must be between 0 and 8D
Parameter name: Hours\Worked.

Handling a Thrown Exception

A method that assigns a value to the HoursWorked property can handle the potential
thrown exception. The following is an example of how to do this:

Public Class PayrollForm
Private myPayRoll As New Payroll

Private Sub bntOk_Click() Handles bntOk.Click
Try
myPayRoll.HoursWorked = CDbl(txtHours.Text)
Catch ex As Exception
1blResult.Text = ex.Message
End Try
End Sub
End Class

You can see in this code that it is not necessary to be specific about the exception class
because catching a basic Exception object will catch all other types of exceptions. When the

2.2 Exception Handling

code catches an exception, the message displayed in the label is easy to understand (see
Figure 2-12). In our current example, the average user doesn’t care that the property name
is HoursWorked, but the name bears a close resemblance to the input field that the user was
using at the time. We recommend that you customize your messages when throwing excep-
tions to make them more understandable to the user.

Figure 2-12 Exception caught in the PayrollForm class

u! Payroll Example = =]

Enter the hours worked: -1 OK I

Must be between 0 and 50
Parameter name: HoursWorked

Summary

Think about exception handling from two points of view—how you throw exceptions in one
part of your application, and how you handle them in another part. Understanding the
appropriate places to do these two tasks will take some time, but it is well worth the effort.
Here are a few guidelines that you may find helpful when using exception handling:

Middle tier classes can detect errors, but they should not display any messages to the
user. They tend to throw exceptions more often than they catch them.

Presentation tier classes often execute other code that might throw exceptions. A form
class will usually catch an exception and alert the user.

If possible, try to prevent exceptions before they are thrown. The TryParse and
IsNumeric methods are helpful in this regard.

When a Try block contains multiple statements (and it usually does), not all statements
in the block may be able to execute. If an exception is thrown partway through the exe-
cution of the block, control immediately transfers to the appropriate Catch block. The
remaining statements in the Try block are skipped.

Catch blocks should always begin with the most specific exception types and end with
the most general. Once a Catch block is entered, no other Catch block can execute. In
the following example, the Catch block for the Exception class is last. It catches all
exceptions that have not yet been caught by the specific Catch blocks:

Catch ex As OverflowException
Catch ex As FormatException

Catch ex As Exception ' catches all exceptions

Throw predefined .NET exception types whenever possible. You can customize the
Message property by passing a string to the exception’s constructor.

Checkpoint
@) Checkp

6. What type of exception causes a program to halt?

7. What action related to exceptions does a program take when it encounters invalid

user input that might cause the program’s behavior to be unreliable?

65

66 Chapter 2 Input Validation and User Interfaces

8. How can an application continue to run when an exception has been thrown?
9. Must a Catch block include an exception object variable?

10. Does the code in a Finally block execute regardless of whether an exception was
thrown?

ListBox, ComboBox, and CheckedListBox

The ListBox, ComboBox, and CheckedListBox are not considered advanced controls. But
there are techniques for using them that one might consider to be advanced. For example,
we will show how you can use just one line of code to assign an array directly to the Items
collection of a ComboBox control. We will also show how you can insert custom objects
into a ListBox control.

To make this discussion as general as possible, we will use the term list-type control to
include the ListBox, ComboBox, and CheckedListBox controls. As you are aware, these con-
trols have many characteristics in common.

CheckedListBox Control

The CheckedListBox control has the same properties and behavior as a ListBox, except that
it displays a check box next to each item (see Figure 2-13). Ordinarily, clicking once on an
item selects it, and clicking a second time places a check in the item’s check box. But if you
set the CheckOnClick property to True, only a single mouse click is needed to check and
uncheck each item.

Figure 2-13 CheckedListBox control

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Multiple check boxes may be checked at the same time. The CheckedListBox has a property
named CheckedIndices, which is a collection of the indexes of the checked items. Similarly,
the CheckedItems collection contains the items that are checked.

Selecting Items

The SelectedIndex property returns the index position of the most recently selected item of
a list-type control. Here’s an example:

Dim index As Integer = lstNames.SelectedIndex
You can also use code to set the value of this property at runtime.
lstNames.SelectedIndex = 0 ' selects the first item
The SelectedItem property returns a reference to the item selected by the user.

Dim name As String = lstNames.SelectedItem

2.3 ListBox, ComboBox, and CheckedListBox

Selecting Multiple Items

The SelectionMode property of a ListBox can be configured to allow the user to make mul-
tiple selections. You can set it to each of the following:

® None—no items can be selected.

® Omne—only a single item can be selected.

® MultiSimple—multiple individual items can be selected by clicking the mouse on each item.

® MultiExtended—multiple individual items can be selected by holding down the Cirl
key, and a range of items can be selected by holding down the Shift key.

If a ListBox or CheckedListBox control allows multiple selections, the SelectedIndices prop-
erty contains a collection of the indexes of the selected items. The following example loops
through SelectedIndices:

For Each index As Integer in lstNames.SelectedIndices
Next

Similarly, the SelectedlItems property is a collection containing all currently selected ListBox
items:

For Each item As String in lstNames.SelectedItems
Next

The CheckedListBox control also has a CheckedlItems property that is a collection contain-
ing all items checked by the user.

For Each item As String in lstNames.CheckedItems
Next

Items.AddRange

To insert an array into a list-type control, pass the array to the Items.AddRange method. For
example, the following statement declares an array of strings named colors and adds it to a
list box:

Dim colors() As String = {"Red","Blue", "Green"}
lstColors.Items.AddRange(colors)

The same technique works with ComboBox and CheckedListBox controls.

Adding and Inserting Single Items

To append an item to the end of the Items collection in a list-type control, call the Items.Add
method. For example:

lstColors.Items.Add(" Purple")

To insert an item into the beginning or middle of a list-type control, call its Items.Insert
method. Pass the index position where you want to insert. This is the general format:

ControlName.Items.Insert(index, item)

ControlName is the name of the control. For example, the following inserts “Yellow” into
index O (at the beginning):

lstColors.Items.Insert(0, "Yellow")

Removing Items

The Items.Remove and Items.RemoveAt methods both erase one item from a list-type con-
trol. This is the general format for both methods:

ControlName.Items.Remove (item)
ControlName.Items.RemoveAt (index)

67

68

Chapter 2

Input Validation and User Interfaces

ControlName is the name of the control. Item is an object that exactly matches one of the
items in the Items collection. Index is the index position where you wish to remove an
item. For example, the following statement removes the color “Yellow” from the IstCol-
ors list box:

lstColors.Items.Remove(" Yellow")

The following statement removes the item at index position 2:
lstColors.Items.RemoveAt(2)

If you pass an item to the Remove method that is not in the Items collection, nothing is
removed. If you pass an index to the RemoveAt method that is out of range, an exception is
thrown.

The Items.Clear method removes all items from the collection.

Inserting Objects into List-Type Controls

As we have shown, it is easy to insert an array into a list-type control. However, applications
often use parallel arrays with related information. For example, you might have an array of
drink names as strings that parallels an array of prices for those drinks. How could you
insert both into a ListBox?

You can create a class that defines the objects to be inserted in the list. The class must have
properties to hold the data, as well as a ToString method. For example, DrinkType is a class
that contains the name and price of a drink:

Class DrinkType
Public Name As String
Public Price As Double
Public Overrides Function ToString() As String
Return Name
End Function
End Class

DrinkType must contain a ToString method, which is called by the ListBox control when dis-
playing the drink names.

To demonstrate, imagine a simple application that displays a list box containing the
names of drinks. When the user selects a drink, the price of the drink appears. In Fig-
ure 2-14, the user interface shows how the price changes when the user selects different

drinks.
First, let’s define a couple of arrays of drink names and their corresponding prices:

Private ReadOnly Names() As String = {"Espresso", "Cappucino",
"Latte", "Cortadito", "Cafe au Lait", "Chai Tea"}
Private ReadOnly Prices() As Double = {2.0, 3.5, 3.4, 1.5, 2.2, 1.5}

We certainly could have inserted only the drink names into a ListBox, and used its
SelectedIndex to reference data in other parallel arrays. Let us consider, however, the
advantages of using the DrinkType class. First, DrinkType objects can be passed easily as
parameters between methods. Second, parallel arrays often become unsynchronized
when new values are added or removed. We will not have that problem with an array or
collection of DrinkType objects. Finally, DrinkType objects can easily be inserted into a
database table.

Next, let’s define an array named drinks that holds DrinkType objects:

Private drinks(5) As DrinkType

2.3 ListBox, ComboBox, and CheckedListBox

Figure 2-14 Displaying a list of drinks and prices

a5’ List of Drinks (S|

Cappucino
Late
Cortadito
Cafe au Lat
ChaiTea

The price is: |5$2.00

(9 List of Drinks [t

Espresso
Cai i ucing
dno The price is: |$3.40

Cafe au Lant
Chai Tea

Next, the Form_Load event handler loops through the Names and Prices arrays and assigns
their values to the objects in the drinks array:

1 Private Sub Forml Load() Handles MyBase.Load
2 For i As Integer = 0 To Names.Count — 1

3 drinks(i) = New DrinkType

4 drinks(i).Name = Names(1i)

5 drinks(i).Price = Prices(i)

6 Next

7 lstDrinks.Items.AddRange(drinks)

8 End Sub

Line 3 creates a new DrinkType object and assigns it to the current array position. Lines 4-5
assign the DrinkType properties, and line 7 copies the drinks array into the list box when
the application starts.

In the SelectedIndexChanged event handler for the ListBox, we get the selected DrinkType
object and copy its price to a label:

Private Sub lstDrinks SelectedIndexChanged()
Handles lstDrinks.SelectedIndexChanged

1lblPrice.Text = aDrink.Price.ToString("c")

1
2
3
4 Dim aDrink As DrinkType = CType(lstDrinks.SelectedItem, DrinkType)
5
6 End Sub

The SelectedItem property of a list box returns a plain object, so it was cast it into a Drink-
Type object on line 4. Then, on line 5, we were able to access the drink’s Price field.

Summary

It is safe to say that connecting an object array to a list-type control can make your pro-
gram code simpler. This is because each object may contain a number of fields, allowing
you to keep all the information together. It is true that you have to invest some time in
creating a class to hold the data. But as your programs become more object-oriented, this
task will become natural, and you will find that classes make it easier to write advanced
applications.

69

70

Chapter 2

Input Validation and User Interfaces

'/ Checkpoint

11. What is the purpose of the CheckOnClick property in the CheckedListBox
control?

12. Which property of a ListBox contains the indexes of all the selected items?
13. Which ListBox property controls the way multiple items are selected?
14. Which ComboBox method fills the list from an array?

15. Which ComboBox method removes the item at index position 2?

Dates and Times

Many applications use date and time information. Some do scheduling of meetings, projects,
appointments, and events. Other applications store information about events, such as when
a stock was purchased or when a home was sold. The .NET framework provides several
classes that make date and time manipulation very easy:

e DateTime
e TimeSpan
e DateTimePicker

First, we will start with the DateTimePicker control, which provides an easy-to-use interface
for collecting or displaying date and time information. Then we will show some easy tech-
niques for doing arithmetic with dates and times.

DateTimePicker Control

The DateTimePicker control provides an attractive and intuitive way to display and ask for
date information from the user. You can use it to display either a date or a time, depending
on how it is configured. Normally, when the user clicks the dropdown arrow, a month cal-
endar drops down, as shown in Figure 2-15.

Figure 2-15 Dropdown month calendar in the DateTimePicker control

| Thusday . June 22,2006 ¥

June, 2006

Sun Mon Tue Wed Thu Fri Sat
’8 29 30 31 2 3
4 5 B 7 8 9 10
1 12 13 14 15 16 17
18 13 20 21 =
25 26 27 28 29 30

} 4 5 6

Today: 6/22/2006

The DateTimePicker uses very little screen space until it is activated. The Format property
controls the appearance of the date or time. Choices for the Format property are Long,
Short, Time, or Custom. If Custom is selected, another property named CustomFormat is
assigned a custom format string. Figure 2-16 shows examples of each of the standard for-
mats, plus a custom format.

2.4 Dates and Times

Figure 2-16 Sample formats for the DateTimePicker control

Long Short

| Thusday , June 22,2006 v | Thuisdsy . June 22,2006 v
Time Custom

[1230.25PM v |22 Jun, 2008 v

Custom Date/Time Formats

Custom date/time formats are somewhat hard to remember, but you can find ample docu-
mentation by looking for Custom DateTime Format String in MSDN help. Table 2-2 shows
several sample custom format strings for displaying June 27, 2006, at 4:05 p.M.

Table 2-2 Sample date (June 27, 2006, 4:05 pr.m.) displayed in custom DateTime formats

Custom Format String Sample Display

dd MMM, yyyy 27 Jun, 2006
MM/dd/yyyy, dddd 06/27/2006, Tuesday
dd.mm.yy 27.06.06

H:mm 16:05

h:mm tt 4:05 PM

Other Properties

e The MinDateTime property limits the earliest date and time the user can select. The
MaxDateTime property limits the latest date and time the user can select. In most appli-
cations, you will set these values to prevent the user from entering unreasonable dates.

e The Value property gets or sets the date and time assigned to the control. By default,
the control displays the current date and/or time. You can set it to any value between
MinDateTime and MaxDateTime. When the user selects a new date or time, the Value
property tells you what the user selected.

e The ShowUpDown property, when set to True, prevents the dropdown month calen-
dar from showing. Instead, the user must use the mouse to select individual parts of
the date or time. He or she can type numbers or click on spin button arrows to change
the values.

e The ShowCheckBox property determines whether to display a check box in the control.
By selecting the check box, the user can indicate that the control has been selected. Use
the Checked property set or get the value of the check box. A sample is shown here:

(122 Jun. 2006 ¥

Date and Time Arithmetic

If you need to add a value to a DateTime object, there are couple of ways to do it. You can
add individual months, days, hours, minutes, and seconds. None of these methods modifies
the current DateTime object:

Function AddMonths(Integer) As DateTime
Function AddDays(Double) As DateTime
Function AddHours(Double) As DateTime
Function AddMinutes(Double) As DateTime
Function AddSeconds(Double) As DateTime

71

72

Chapter 2

Input Validation and User Interfaces

Most of these parameters are doubles; for example, you can add 1.5 hours to a DateTime
object.

Examples

The following adds 133 days to the current DateTime and returns a new value:
Dim later As DateTime = Today.AddDays(133)

The following adds 3.5 hours to the current DateTime and returns a new value:
later = Today.AddHours(3.5)

The following adds 60 minutes to the current DateTime and returns a new value:
later = Today.AddMinutes(60)

The following adds 30 seconds to the current DateTime and returns a new value:

later = Today.AddSeconds(30)

TimeSpan Objects

Another way to add or subtract from a DateTime is to use a TimeSpan object. You can add
and subtract TimeSpan objects from a DateTime object:

Function Add(TimeSpan) As DateTime
Function Subtract(TimeSpan) As DateTime

A TimeSpan object can be constructed in a number of different ways. Here are four examples:

New TimeSpan(ticks As Long)

New TimeSpan(hours As Integer, minutes As Integer,
seconds As Integer)

New TimeSpan(days As Integer, hours As Integer,
minutes As Integer, seconds As Integer)

New TimeSpan(days As Integer, hours As Integer, minutes As Integer,
seconds As Integer, milliseconds As Integer)

In the first version of the constructor, you pass the number of 100-nanosecond ticks. You are
more likely to use the second and third versions. For example, the following creates a TimeSpan
of 5 hours, 22 minutes, and 3 seconds:

Dim duration As New TimeSpan(5, 22, 3)

A TimeSpan can be added to a Date or DateTime object. Suppose an airline flight is due to
take off on April 11, 2011, at 10:30 P.M. (22:30 military time). If the duration of the flight
is 6 hours and 22 minutes, the following statements calculate the date and time of the flight’s
arrival:

Dim takeoff As New DateTime(2011, 4, 11, 22, 30, 0)

Dim duration As New TimeSpan(6, 22, 0)
Dim arrival As DateTime = takeoff.Add(duration)

Therefore, the arrival time equals 4/12/2011, at 4:52 A.M., assuming that the arrival airport
is in the same time zone as the departure location.

'/ Checkpoint

16. Which DateTimePicker property controls whether a date or time is displayed?

17. Which DateTimePicker properties limit the earliest and latest date and time the user
can select?

2.5 ToolStrip Control

18. Which method adds N days to a DateTime object?

19. Declare a TimeSpan object named duration that equals 2 hours, 30 minutes, and
5 seconds.

ToolStrip Control

The ToolStrip control is a customizable container that holds various types of other controls.
You can use it to give your applications the look and feel of Microsoft software, such as
Windows 7 or Microsoft Office. You can use it to create custom toolbars that support
advanced layout features such as rafting, docking, and dragging by users. The ToolStrip
replaces the older ToolBar control, with many improved editing features. Most important,
you can insert buttons and other controls interactively at design time.

Adding Controls

When you add a ToolStrip control to a form, it attaches itself to the top of the form. Using
the Dock property, you can cause the strip to attach to the top, bottom, left side, or right
side of the form.

Controls placed on a ToolStrip respond to the same events they would respond to if they
were placed anywhere on a form. To create a Click handler for a ToolStripButton, for exam-
ple, just double-click the control in design mode.

In design mode, a dropdown list appears when you select the ToolStrip control with the
mouse. An example is shown in Figure 2-17, with a list of available control types. You can
insert buttons, labels, separators, combo boxes, text boxes, and progress bars to a ToolStrip.
Once controls are in the ToolStrip, you can drag them to new locations with the mouse. If
the AllltemReorder property of a ToolStrip equals True, the user can press the Alf key and
drag an item from one ToolStrip to another at runtime. See an example in Figure 2-18. Each
type of control has a corresponding .NET class (see Table 2-3).

Figure 2-17 Ready to add items to a ToolStrip control

4

Button
Label
SplitButton

i B = & "

DropDownButton
Separator
ComboBox

TextBox

E “II

ProgressBar

Figure 2-18 The user can press Alt and drag an item to another ToolStrip

£ Account Manager

i User Type - | 10/30/2006

User Accounts =

73

74 Chapter 2 Input Validation and User Interfaces

Table 2-3 ToolStrip Control types and their corresponding classes

Control Type Class

Button ToolStripButton

Label ToolStripLabel

SplitButton ToolStripSplitButton
DropDownButton ToolStripDropDownButton
Separator ToolStripSeparator
ComboBox ToolStripComboBox
TextBox ToolStripTextBox
ProgressBar ToolStripProgressBar

Let’s look at a few examples of ToolStrips that contain different types of controls. In
Figure 2-19, the ToolStrip contains a ComboBox. It also contains a Label that displays the
current date. To right-justify a control, set its Alignment property to Right. In Figure 2-20,
the user is selecting from a DropDownButton.

Figure 2-19 ToolStrip with ComboBox selection

{8 Account Manager

| User Accounts = 10/30/2006
Administrator
Registered user
Guest

Figure 2-20 Selecting from a DropDownButton

E& Acco anage Ll
User Type - |User Accounts - | 10/30/2006
Create user
| Modify user |
Remove user

Choosing Between a MenuStrip or a DropDownButton

It can be argued that lists of actions to be carried out should be placed in menus rather than
DropDownButton controls. This is a well-accepted point of view. On the other hand, Tool-
Strips permit you to combine menu-like actions with lists of items, buttons, text boxes, and
other controls. By making a variety of controls available in ToolStrips, Microsoft has implic-
itly endorsed a flexible approach to menu and toolbar design. Also, it can be pointed out that
when lists of choices must be modified at runtime, it is much easier to change the contents of
a DropDownButton or ComboBox control than to dynamically create and delete menu items.

When you first insert a ToolStripButton into a ToolStrip, the button is configured to display
a graphic image. If you would rather have it display text only, change its DisplayStyle prop-
erty to Text. If you prefer a combination of an image and text, set DisplayStyle to
ImageAndText.

To change the image displayed by the button, select the Image property. The dialog window
shown in Figure 2-21 will display. Click on the Import button to select a graphic image file
and import it into your application. If your application already has a project resource file
(containing strings, bitmaps, and so on), you can use items from it. Standard types of image
files, including BMP, GIF, JPEG, WME, and PNG, are supported.

"

2.5 ToolStrip Control

Figure 2-21 Selecting a resource for a ToolStripButton’s Image property

Select Resource

Resource context

(%) Local resource:

Import... Clear

(3 Project resource file:

REesour

SX

TIP A good way to find out which images are available on your computer is to open
Windows Explorer, click the Search button, and search for Pictures and Photos.

[OK] [Cancel

Scaling the Button Images

Each ToolStripButton has an ImageScaling property that determines whether the button
image will be scaled (resized) to a standard image size. This property helps you create uni-
form button sizes in a toolbar. If you set ImageScaling to None, the button will expand to
fit the size of the image you insert. In the ToolStrip control, the ImageScalingSize property
controls the default image size for all buttons. Its default value is 16 pixels by 16 pixels,
which is the typical size of a small toolbar button.

Figure 2-22 shows the Items Collection Editor window that lets you add and edit individ-
ual ToolStrip controls. All the controls are saved in the ToolStrip’s Items property. Another
way to edit a single control is to select it with the mouse and modify values in the Proper-
ties window.

Figure 2-22 Adding items to a ToolStrip control

Items Collection Editor

Select item and add to list below: ToolStripButton tsbview
[E8) utton v|[add | Al =
Members: TextDirection Horizontal ~
e ToolStripl 4 TextImageRelation ImageBeforeText
. ==
AutoSize True
AutoToolTip True
- CheckOnClick False
DoubleClickEnabled False
Enabled True
ToolTipText Click here to View our d:
Visible True
E Data
(ApplicationSettings) n
Tag
B Design
(Name) tsbView b
OK] [Cancel

75

76

Chapter 2

Input Validation and User Interfaces

Design Tips

If you want to display a static list of selections that cause immediate actions, use a MenuStrip
control. If you want to select from a list of items without necessarily causing an action, use a
combo box (on the form or in a ToolStrip). In Microsoft Word, for example, ToolStrip combo
boxes are used to select fonts and paragraph styles. The DropDownButton control is perhaps
less common because it is a hybrid between a list and a button. For good examples on how
to use toolbars, look at Visual Basic Express, Visual Studio, or Microsoft Office.

It’s a good idea to assign a descriptive message to the ToolTip property of a ToolStripBut-
ton. The message appears when users hover the mouse over the control.

Each ToolStrip control should contain items relating to a single category. You can offer
options to let the user hide and display individual toolbars. Visual Studio, for example, does
this with the View | Toolbars menu command.

d Tutorial 2-2:
Building the Coffee Shop application

In this tutorial, you will create a short application that lets the user purchase coffee. The
application uses a ToolStrip control with various types of buttons and lists. Here is a
simple description of the steps taken by the user to log in, purchase a drink, and log out:

1.

e

6.

The user logs in

The user selects a type of drink.

The cost of the drink, including tax, is displayed.

The user clicks the Purchase button.

The application confirms the purchase. The user can return to Step 2, or continue
on to the next step.

The user logs out.

The focus in this application is on the user interface, so you will use program code to
coordinate the visibility of various controls. Controls should appear only when their use
is appropriate to the application needs.

Running the Application

The following sequence helps to show how the application coordinates the visibility of
each control.

1.

When the application starts up, only the Account dropdown button is visible
(Figure 2-23).

Figure 2-23 Application startup

a5l Kip & Tony's Coffee Express = || &

Account =

2.5 ToolStrip Control 77

2. When the user selects Log in from the Account button’s menu, the login controls
on the right panel appear (Figure 2-24).

Figure 2-24 User logs in

(92 Kip & Tony's Coffee Express ==

¢ Account =

Username: bamabym

AREEIARERE

Password:

3. When the user clicks the OK button, the login controls disappear and the Drink
Type combo box appears. In Figure 2-25, the user has selected a drink, so the price
appears.

Figure 2-25 User selected a drink type and is ready to purchase

(a2 Kip & Tony's Coffee Express [l &S
! Account + | [ETTIIEMT [l " Purchase
Beverage cost: [3.50
Tax | 0.23
Total: | $3.73

4. In Figure 2-26, the user clicks the Purchase button, causing a confirmation dialog
to appear.

Figure 2-26 User has clicked the Purchase button

(3 Kip & Tony's Coffee Express (= e =)
© Account ~ ||Cappuccine T| ' Purchase
Ex

Beverage cost:

Thank you!
Tax

5. When the user selects Log out from the Account button list, the application
returns to its original appearance (the same screen as when it started).

78 Chapter 2 Input Validation and User Interfaces

Hands-on Steps

Follow these steps to create the Coffee Shop application.

Step 1: Create a new project named Coffee Shop.

Step 2: You will find an image file named purchase.gif in the examples folder for this
chapter. Copy it into your project folder.

Step 3: Add a ToolStrip control to the form.

Step 4: Add two Panel controls to the form, one on the left, the other on the right.

Step 5: Add a DropDown button to the ToolStrip and name it btnAccount. Set its
DisplayStyle property to Text, and set its Text property to Account. Add the
following values to its Items property: Log In, Log Out.

Step 6: Figure 2-27 is a guide to the locations of the controls. There are two Panel

controls—the one on the left is named pnlCost, and the one on the right is
named pnlLogin. Table 2-4 lists all controls and their properties. Using this
information, add the remaining controls to the form.

Figure 2-27 Coffee Shop application in design mode

a5 Kip & Tony's Coffee Express
Account - | Drink Type

=EEs

Beverage cost: Username:
Tax: i Password:
Total:

Step 7: Add the following code to the form class:

' Array to hold the prices of drinks.
Private ReadOnly mPrices As Double() = {1.75, 2.5, 3.5, 3.75}
Private ReadOnly mSalesTaxRate As Double = 0.065

Private Sub btnPurchase Click() Handles btnPurchase.Click
' User has clicked the Purchase button.
MessageBox.Show(" Thank you!")

End Sub

Private Sub btnOk_Click() Handles btnOk.Click
' User has clicked the OK button to log in.
pnlLogin.Visible = False
cboDrinkType.Visible = True

End Sub

Notice in these lines that you can show or hide a group of controls that are

located inside a Panel control. All you have to do is set the panel’s visible prop-
erty to True or False. Continue to add the following code to the form’s class:

Private Sub mnuAccountLogin Click() Handles
mnuAccountLogin.Click

' User has selected Log in from the menu.
pnlLogin.Visible = True
End Sub

2.5 ToolStrip Control

Table 2-4 Controls in the Coffee Shop application main form

Control Type Name Property Values

Form CoffeeShopForm FormBorderStyle = FixedSingle
Text = Kip & Tony’s Coffee
Express

ToolStrip

ToolStripDropDownButton btnAccount Text = Account
DisplayStyle = Text
Items = Log In, Log Out

ToolStripSeparator

ToolStripComboBox cboDrinkType Text = Drink Type
Items = Daily Brew, Espresso,
Cappuccino, Latte
Visible = False

ToolStripButton btnPurchase Alignment = Right
DisplayStyle = Image
Visible = False
Image = (purchase.gif)

Panel pnlCost Visible = False

Panel pnlLogin Visible = False

Label IblCost

Label bl Tax

Label IblTotal

TextBox txtUserName

TextBox txtPassword

Button btnOk Text = OK

Label (default) Text = Beverage cost:

Label (default) Text = Tax:

Label (default) Text = Total:

Label (default) Text = Username:

Label (default) Text = Password:

Private Sub mnuAccountLogout Click() Handles
mnuAccountLogout.Click

' User has logged out from the menu.

cboDrinkType.Visible = False

pnlLogin.Visible = False

pnlCost.Visible = False

btnPurchase.Visible = False
End Sub

Step 8: Next, add the SelectedIndexChanged handler for the Drink Type combo box:

1 Private Sub cboDrinkType SelectedIndexChanged() _
Handles cboDrinkType.SelectedIndexChanged

2

79

80

Chapter 2 Input Validation and User Interfaces

' User has selected a drink from the combo box

Dim cost As Double = mPrices(cboDrinkType.SelectedIndex)
Dim tax As Double = cost * mSalesTaxRate
Dim total As Double = cost + tax

0 N o U bW

9 1blCost.Text = cost.ToString("n")
10 1blTax.Text = tax.ToString("n")
11 1blTotal.Text = total.ToString("c")

12

13 ' Show drink cost panel and enable Purchase button.
14 pnlCost.Visible = True

15 btnPurchase.Visible = True

16 End Sub

In the lines above, line 5 uses the selected index from the drink type combo
box as a subscript into the mPrices array. That gives us the cost of the selected
drink. On line 14, the panel showing the drink cost, tax, and total is made vis-
ible. On line 15, the purchase button is displayed.

Step 9: Save and run the application. Test it by logging in, selecting a drink, confirm-
ing the purchase, and logging out.

Checkpoint
@) crecip

20. Name all the control types you can insert in a ToolStrip control.

21. Which ToolStripButton property determines whether the button will display an
image, text, or both?

22. Once a button has been added to a ToolStrip, what property identifies the image to
be displayed on the button?

23. Which ToolStripButton property determines whether the button image will be sized
to the button’s default size?

24. Which type of tool strip button displays a dropdown list when the button is clicked?

FlowLayoutPanel, WebBrowser, SplitContainer,
and TabControl

In this section, we feature four specialized controls that were selected because of the unique
features they bring to applications. The FlowLayoutPanel control is a general-purpose con-
tainer into which you can insert any type of controls. The WebBrowser control lets users
view HTML pages either on their local computer or from the Web. The SplitContainer con-
trol lets users change the sizes of panels at runtime, letting them use space on a form in the
most effective way. The TabControl lets you create a form containing multiple pages, with
only one page visible at a time. It is a great tool for creating software wizards.

FlowLayoutPanel Control

When you insert controls in a FlowLayoutPanel control, you do not position the controls
with x and y coordinates. Instead, you treat the panel like a document that flows from one

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl

end to the other. When items reach the end of a line, they wrap around to the next line. Web
pages follow this model, as do text editors. Normally, lines flow from left to right, but you
can change that. Here are some essential properties:

® Controls—Collection of controls that have been added to the panel.

® AutoScroll—When this property equals True, scroll bars will appear when the panel
content exceeds the displayable area.

e FlowDirection—Sets the flow direction to one of the following: LeftToRight, Right-
ToLeft, TopDown, or BottomUp.

* WrapContents—Determines whether long lines are wrapped around or clipped at the
boundary.

You can insert controls in a FlowLayoutPanel in design mode, of course. But the real value
of this control is its ability to hold controls created dynamically, at runtime.

Creating Controls Dynamically

Sometimes you do not know what types of controls or how many controls you will need
before an application runs. In such a situation, you need to be able to create controls dynam-
ically (at runtime). For example, you could ask the user how many TextBoxes to create, or
read an input file that determines the number of check boxes to display. You might want to
create a photo album consisting of N PictureBox controls, where N is determined by the
number of images in a disk directory.

You create a control at runtime by creating an instance of the control and setting any desired
properties. All controls have default properties (which you can see in the Properties win-
dow), so you need to set only those properties that differ from the defaults.

First, you should create a panel to hold all controls you plan to create at runtime. The
FlowLayoutPanel control is the easiest to use because you don’t have to position the indi-
vidual controls inside it. The following code, for example, creates a button and adds it to a
FlowLayoutPanel named LayoutPanel:

Dim btn As New Button()
btn.Text = "Click here"
LayoutPanel.Controls.Add(btn)

If you also want to create a Click handler (or some other type of event handler) for your
control, you can use the AddHandler statement to identify the address of a method in your
program:

AddHandler btn.Click, AddressOf btn Click

The Click handler itself would look something like this:

Private Sub btn Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)
' (your code here)

End Sub

In this example, btn_Click must be declared with the standard parameter list for a but-
ton Click handler. In a Click handler, the sender parameter is a reference to the control
that raised the Click event. But its data type is Control, so you may have to cast it into
the type of control that generated the Click. For example, we assume our control to be
type Button:

Private Sub btn_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Dim aButton As Button = CType(sender, Button)

End Sub

M.al I itebooks.cogl

81

http://www.allitebooks.org

82

Chapter 2 Input Validation and User Interfaces

But it might just as easily have been a PictureBox or any control that is capable of generat-
ing a Click event.

If you would rather use a Panel control than a FlowLayoutPanel, you need to assign a Point
object to the button’s Location property that will determine the location of the control on
the Panel’s surface:

btn.Location = New Point (100, 50)

In Tutorial 2-3, you will create an application that builds an image album by creating Pic-
tureBox controls at runtime and adding them to a panel.

Tutorial 2-3:
Creating a simple image album

In this tutorial, you will create and display an image album by loading all images from
a directory that is selected by the user. Because the number of images is not known at
compile time, you will create a PictureBox array at runtime and insert the array items
into a FlowLayoutPanel. Figure 2-28 shows a sample of the application while running.
(The photos were taken by the authors.)

Figure 2-28 Image Album example

—

52 D:\Advanced VB 2010\examples\chapt 2\Image Alburm\images

File

FolderBrowserDialog

In this tutorial, we introduce the FolderBrowserDialog control. It displays a list of fold-
ers and lets the user select one, as in Figure 2-29. Similar to the FileOpenDialog con-
trol, it does not appear until you call its ShowDialog method. This method returns an
enumerated type that lets you know which button was clicked by the user. If it returns
DialogResult.Cancel, the Cancel button was clicked. If it returns DialogResult.OK, the
Open button was clicked. (There is no DialogResult.Open enumeration value.)

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl

Figure 2-29 FolderBrowserDialog example

Browse For Folder (=3

. Dates and Times o
. Exceptions
4 Image Album
+ 4 bin |;|
J images —
| My Project
| obj
. images
» o Kayak Tour Wizard
» . Keyboard_Validation
. ListOfDrinks
, MameAndAgelnput -

Make New Folder OK] [Cancel

If you set the dialog’s SelectedPath property to a folder path before calling ShowDialog,
the dialog will position itself on the folder. After the user closes the dialog, you can
query the SelectedPath property to find out what folder the user selected. Incidentally,
the Directory.GetCurrentDirectory function returns the complete path to the applica-
tion’s EXE file directory.

Tutorial Steps

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Create a new application named Image Album.

Create a folder inside your project directory that contains image files that are
small enough so you can fit five to ten of them on a single window. If you
want, you can use the images folder inside the Chapter 2 examples directory.

Add a MenuStrip control with the following entries:

&File
&Open
E&xit

Add a FlowLayoutPanel control named FlowPanel to the form, set its Dock
property to Fill, and set AutoScroll = True.

Add a FolderBrowserDialog control named folderBrowser to the form. This
control will display a list of folders and let the user select a folder containing
images.

In the code window, add an Imports statement:
Imports System.IO
Add the following declarations at the top of the class:

Private folderPath As String
Private pics() As PictureBox

The second variable is an array of PictureBox controls.

83

84

Chapter 2

Input Validation and User Interfaces

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Begin to create a Click handler for the File | Open command in the menu:

Private Sub mnuOpenFile Click() Handles mnuFileOpen.Click
' The user clicked on the File | Open menu item.
folderBrowser.SelectedPath = Directory.GetCurrentDirectory
If folderBrowser.ShowDialog() = DialogResult.Cancel Then
Return
End If
folderPath = folderBrowser.SelectedPath()

If the user cancels the dialog, the Return statement bypasses all remaining
code in this method. The SelectedPath property of the FolderBrowserDialog
control is set to the application’s current directory before opening the dialog.
Then after the dialog closes, the same property returns the directory path
selected by the user.

Get a list of files from the selected directory and store them in the fileNames array:

Dim fileNames As String() = Directory.GetFiles(folderPath)
If fileNames.Length = 0 Then
MessageBox.Show("Unable to find any image files")
Return
End If

Next, your code will display the image directory name in the window title bar
and set the PictureBox array size based on the number of image files in the
directory:

Me.Text = folderPath
ReDim pics(fileNames.Length - 1)

Now you are ready to write code that loads the images into the PictureBox
controls and inserts the controls into the panel. This will complete the
mnuOpenFile_Click method:

g For i As Integer = 0 To fileNames.Length - 1
28 pics(i) = New PictureBox()

38 With pics(i)

4: .Size = New System.Drawing.Size(300, 200)
54 .SizeMode = PictureBoxSizeMode.Zoom

6: .Image = New Bitmap(fileNames(i))

78 FlowPanel.Controls.Add(pics(1i))

8: End With

Ok Next

10: End Sub

Line 2 creates a new PictureBox object. Line 4 sets the size (width, height),
and line 5 sets the SizeMode property. The value named PictureSizeMode.Zoom
causes the image to zoom to the size of the control. Line 6 uses the image file
to create a Bitmap object and assigns the Bitmap to the Image property of the
PictureBox. Line 7 adds the PictureBox to the FlowLayoutPanel’s Controls
collection.

Save the project and run the application. When you load the images, resize the
window and notice how the photos rearrange themselves within the FlowLay-
outPanel.

This application runs out of memory when it tries to load a large number of
full-size images. An improvement (requested in the end-of-chapter Program-
ming Challenges) is to show only thumbnail images and let the user click an
image to expand it to full size.

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl 85

WebBrowser Control

You can use the WebBrowser control to view online Web pages or HTML documents on a
local computer. In Figure 2-30, for example, the control is displaying the publisher’s Web
folder for books by Tony Gaddis.

Figure 2-30 Using the WebBrowser control

1=/ WebBrowser Example El
Open Back URL: http://www.pearsonhighered.com/gaddis/

Online Resources for
PEARSON .
s ~ Gad d-l S Technical Support | myPearsonStore

Jump to: Books by Tony Gaddis | Books by Tony Gaddis and Kip Irvine | Books by Tony Gaddis and
Godfrey Muganda | Books by Tony Gaddis, Judy Walters, and Godfrey Muganda

Books by Tony Gaddis

Starting Out with Starting Out
Alice, 1/e with C++:
Tony Gaddis From Control
Structures
= Instructor through
Resources Objects, Brief
m Student Resources 6/e
m Buy the Book
Tony Gaddis

Methods and Properties

To load an HTML page into the WebBrowser control, call the Navigate method. Pass it a
fully formed URL, beginning with a protocol specifier such as http://, file://, or ftp://. If you
are using the file://protocol, include the complete path of the file.

Several other WebBrowser methods might easily be incorporated into a simple browser toolbar:

e GoBack—returns to the previously displayed page in the browser’s history. Before call-
ing it, check the CanGoBack property to see if moving backward is possible.

e GoForward—moves forward in the browsing history. Before calling it, check the value
of the CanGoForward property.

e Stop—stops loading the current page.

e Refresh—reloads the current page.

e Print—sends the contents of the browser’s document to the default printer.

The DocumentText property (a String) gets or sets the HTML content of the current Web
page. The Document property (read only) returns an HtmIDocument object representing the
Web page currently displayed in the WebBrowser control. You can use this object to access
many HtmlDocument properties. Examples are images and links collections, all of the con-
trols on the Web page (via the Forms collection), background and foreground colors, docu-
ment title, and Url.

86 Chapter 2 Input Validation and User Interfaces

Events

The WebBrowser control fires some useful events that relate to browsing and moving
between Web pages and HTML documents. The Navigating event fires just before the Web-
Browser navigates to a new document. You can use this event handler to prevent the docu-
ment from being opened or to redirect to a different document. The Navigated event fires
when the WebBrowser has located a new document and has begun to load it. You can ini-
tialize a progress bar during this event handler and show the name of the page being loaded.
The DocumentCompleted event fires when the WebBrowser has finished loading a docu-
ment. You can use it to scan the contents of the page. A parameter named e gives you access
to the page’s URL (address):

lblStatus.Text = "Finished loading " & e.Url.ToString()
The FileDownload event fires when the WebBrowser has just finished downloading a file.

In Tutorial 2-4, you will create a simple Web browser application.

6 Tutorial 2-4:
Completing a Web browser application

In this tutorial, you will complete an application that contains a WebBrowser control.
The user will be able to open other Web pages by clicking on the links that appear on
the startup page. Also, the user will be able to open up HTML and GIF files on his or
her local computer. Figure 2-31 shows an example of the finished application when it
starts up. A home page is displayed in the WebBrowser control. The content shown in
the browser is from an HTML file named index.htm.

Figure 2-31 Starting up the WebBrowser demo application

a5 WebBrowser Example o |- =) (|
Open Back =

WebBrowser Example

Here are some good links to visit:
Microsoft Visual Basic Developer Center

Microsoft Developer Network

Books by Kip Irvine
Books by Tony Gaddis

Tutorial Steps
Step 1: Open the WebBrowser Demo application from the chapter examples folder.

Step 2: The ToolStrip contains three controls: a button named btnOpen, a button named
btnBack, and a label named IblPageName. The latter is currently empty, and
because its AutoSize property equals True, you cannot see it in the ToolStrip.

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl 87

Step 3: Open the startup form’s code window and add the following code to the class:

Private Sub Form Load() Handles MyBase.Load
browser.Navigate(My.Application.Info.DirectoryPath & _
"\..\..\index.htm")

End Sub

Private Sub browser DocumentCompleted(ByVal sender As Object,
ByVal e As _
System.Windows.Forms.WebBrowserDocumentCompletedEventArgs)
Handles browser.DocumentCompleted
lblPageName.Text = "URL: " & e.Url.ToString()
End Sub

In this code, the DocumentCompleted event occurs after the WebBrowser has
loaded the requested page. The code copies the page URL into a label on the

ToolStrip.
Step 4: Continue by adding the following Click handler for the Open button on the

toolbar:
1 Private Sub btnOpen Click() Handles btnOpen.Click

2 With ofdOpenPage

3 .Filter = "HTML files | *.htm;*.html | GIF files | *.gif"
4 .FileName = String.Empty
5 .InitialDirectory = My.Application.Info.DirectoryPath
6 If .ShowDialog() = Windows.Forms.DialogResult.OK Then
7 browser.Navigate(.FileName)
8 End If
9 End With

10 End Sub

Line 2 identifies an OpenFileDialog object named ofdOpenPage. Lines 3-5 set
the Filter, FileName, and InitialDirectory properties. Line 6 displays the dia-
log, so the user can browse through HTML and GIF files on the local com-
puter. If a file is selected, it is displayed in the WebBrowser control on line 7.

Step 5: Add the following Click handler to the class:

Private Sub btnBack Click() Handles btnBack.Click
' The user has clicked the Back button. Move backward one
' step in the browser history.
browser.GoBack ()

End Sub

Step 6: Save and run the application. Click on the hyperlinks in the homepage. If you
are connected to the Internet, you should be able to navigate to the pages
behind the three hyperlinks. Click the back button to return the previous

page.
Step 7: Click the Open button, navigate, and select any HTML, JPEG, or GIF file on
your computer. The file should display in the WebBrowser control.

SplitContainer Control

Some controls, like WebBrowsers, DataGridViews, and ListBoxes, occupy a great deal of
space on forms. When you have more than one of these controls, you can use the
SplitContainer control to divide the display area into separate panels. At runtime, the user
can move the splitter bar between the panels to make one smaller and the other larger.

88 Chapter 2 Input Validation and User Interfaces

Figure 2-32 shows a simple mail client application that contains a SplitContainer. The left
panel contains a TextBox, and the right panel contains two ListBoxes and a button. When
the user passes the mouse pointer over the splitter bar, the cursor changes to indicate that
the bar can be moved. Figure 2-33 shows the same mail client after the user has resized the
window and moved the splitter bar.

Figure 2-32 Mail client with SplitContainer control

a:! SplitContainer Example (===
Tewt of Email message Address Book
Hi Bill, + | |James Brosch <jbroschi@abc.com>
Reagarding our mesting last week about the Prometheus Dan DeSautel <ddesaut @wcoc.com:
project. Please forward your notes to me at your earliest Bobby Goldstein <bgoldsteing@bbb com:
possible convenience. George Leidich <eidlich@mdc edus
Bill Welch <welch@mdp eduz

Select

Recipients
Bill Welch «welch@mdp.eduz

Figure 2-33 User has resized the window and moved the splitter bar

a5 SplitContainer Example =B =]
Text of Email message Address Book
Hi Bill, » | |James Broscl .
Regarding our meeting last week about the Prometheus project. Please forward your Dan DeSauts =
notes to me at your eariest possiole convenience. Bobby Golde
George Leidli _
Rill Wialrk =
]
Recipients

Bill Welch <welc

™

When inserting controls in each panel, the Anchor and Dock properties are important. Here
are some guidelines to use, assuming the splitter moves in the horizontal direction:

e To attach a control to the bottom of the panel, set Dock to Bottom. You can still leave
room at the top for other controls.

2.6 FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl

e To attach a control to the top of the panel, set Dock to Top. You can still leave room
at the bottom for other controls.

e To place a control somewhere in the middle of a panel (neither top nor bottom), set
the Anchor property to Left, Right.

o If the window is resizable, set Anchor to Bottom for any controls that need to move or
expand downward when the bottom of the window is stretched.

You can do some other interesting things with splitters. There can be a minimum size for
each panel. You can freeze the splitter bar. The Orientation property can be changed from
Vertical (the default) to Horizontal.

SplitContainer with WebBrowser

The SplitContainer control opens up possibilities for designing forms in creative ways. In
Figure 2-34, for example, a form contains a WebBrowser control in the upper pane of a
SplitContainer. The lower pane contains a RichTextBox control, into which the user can
write his or her notes and comments about the Web page shown at the top. The Save but-
ton can be used to write the notes to a file or database. The BackColor property of the
lower pane was set to gray to make it easier for the user to see the location of the split-
ter bar.

Figure 2-34 Showing a WebBrowser and RichTextBox in a SplitContainer

o5 Web Browser IEI

MSDMN Home = MSDN Library > .NET Development = .MET Framework SDK > .NET Framework > Getting Started

Welcome to the MSDN Library

»

MNET Framework Developer's Guide
Overview of the .NET Framework

m

The .MET Framework is an integral Windows component that supports building and running the next generation of
applications and XML Web services. The .MET Framewaork is designed to fulfill the following objectives:

To provide a consistent object-oriented programming environment whether object code is stored and
executed locally, executed locally but Internet-distributed, or executed remotely.

* To provide a code-execution environment that minimizes software deployment and versioning conflicts.

* To provide a code-execution environment that promotes safe execution of code, including code created by an
unknown or semi-trusted third party.

To provide a code-execution environment that eliminates the performance problems of scripted or interpreted
environments.

* To make the developer experience consistent across widely varying types of applications, such as Windows-
based applications and Web-based applications.

This page explains how the .NET Framework is the basic componert of programming in Visual Basic |

TabControl

The TabControl control provides a convenient way for you to divide a form into separate
pages. Each page (a TabPage object) belongs to a TabPageCollection that is referenced by the
control’s TabPages property. Figure 2-35 shows the TabControl in design view, just after
having been placed on a form. Two pages are placed in the control by default, but you can
add more pages in design mode. To do that, open the TabControl Tasks menu, or select
TabPages in the Properties window.

89

20

Chapter 2

Input Validation and User Interfaces

Figure 2-35 TabControl, in design view

Fagel | TabPage2

Only one page can be visible at a time. Each page is a container, so any controls on the page
exist only when the page is visible. At runtime, if the user switches away from a page and
returns to it later, the control settings on the page are retained.

The SelectedIndex property tells you the index of the tab that is currently visible. You can
also make a particular page visible by setting the value of the SelectedIndex property to an
integer between 0 and TabPages.Count — 1. The SelectedIndex property has built-in range
checking, so if you attempt to assign to it a value that is out of range, no exception is thrown
and no action occurs.

Another way to make a particular page visible is to call the SelectedTab method, which has
three versions:

o SelectTab(String)—selects a page using the name displayed in the page’s tab
e SelectTab(Integer)—selects a page using an index position (starting at 0).
e SelectTab(TabPage)—makes the specified TabPage the current tab.

The tabs appearing at the top of the control are part of the TabControl, but they are not part
of the individual TabPage controls.

A SelectedIndexChanged event fires when the SelectedIndex property changes, indicating
that a different page is visible.

TabPage Class

The TabPage class has a constructor that you can use to create a new page and add it to the
TabPages collection. For example, the following statement adds a new page to myTabCon-
trol, with the caption Events:

myTabControl.TabPages.Add(New TabPage('"Events'))

The text appearing in the tab above each page is set using the TabPage’s Text property. The fol-
lowing statement, for example, changes the text for the first page in the TabPages collection:

myTabControl.TabPages(0).Text="Step 1"

Each TabPage fires an Enter event when it receives the focus, and a Leave event when the
focus switches to another page. If you want, you can write an event handler for the Enter
event that initializes the values of controls on the page.

'/ Checkpoint

25. Which WebBrowser control method opens a Web site?
26. Which WebBrowser method returns to the previously displayed Web page?

27. If you want to get a list of all the images on a Web page, which property must you
access first?

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard

28. Which event fires when the WebBrowser has finished loading a Web page document?

29. Which control can be used to divide the display area into two parts and allows the
user to change the sizes of the two parts at runtime?

Focus on Problem Solving: Kayak Tour
Scheduling Wizard

We would like to build a software wizard that guides customers of an imaginary kayaking
outfitter company through the process of selecting one or more kayaking tours. An impor-
tant aspect of selecting a kayaking tour is to make sure that the customer’s level of skill and
endurance are matched to the type of tour. This application asks questions that gather basic
information from the user. Appropriate types of tours are suggested in a list, which the user
can select according to his or her preferences. Finally, a list of available tours is displayed,
allowing the user to select multiple tours. After the application is written, we will develop a
manual testing plan that checks the inputs and outputs for consistency.

A software wizard (or software assistant) is a user interface that leads the user through a
series of predescribed steps. In each step, the user may be given choices that influence sub-
sequent steps. Wizards are particularly useful when completing tasks that are complicated or
need to be completed in a specific sequence. One example that you have probably used is the
Database Connection Wizard in Visual Studio.

In addition, wizards can be educational when they provide supplemental information and
assistance at each step. Most wizards work best when they are short and simple and are lim-
ited to about five steps or fewer. Wizards with multiple execution paths may become too
complex for the average person to follow.

The easiest way to construct a wizard is to use a TabControl. Each tab page represents a dif-
ferent step in the wizard. In Tutorial 2-5, you will create a wizard that helps the user select
kayaking tours.

Walkthrough

When the application starts, the About window shown in Figure 2-36 is briefly displayed as
a splash screen. This window can be redisplayed at any time by clicking a LinkLabel control
at the bottom right side of the wizard window.

Figure 2-36 About window

(About Kayak Tour Wizard ==
Kayak Tour Wizard

Version 1.0.0.0

Copyright © 2010

Gaddis & Irvine Kayak Outfitters. Inc.

This wizard is designed to help you select one ar »
mare kayaking tours that are suited to your ability.

If you have additional questions, please contact

our expert staff.

921

92

Chapter 2

Input Validation and User Interfaces

In Step 1 of the wizard, shown in Figure 2-37, the user is asked about his or her experi-
ence level. In Step 2 (Figure 2-38), the user is asked about paddling endurance. In Step 3
(Figure 2-39), the user is shown a list of suitable types of kayaking tours. The user has
selected three types of tours, and is about to click the Next button to continue. The user
can also return to previous steps without losing any previous selections. If he or she
returned to Step 1, for example, the 2 to 4 times list box entry would still be selected.

Figure 2-37 Kayak Tour Wizard, Step 1 (experience level)

Step 1 |Step2 [Step 3 | Step 4 | Finish

How many times have you been kayaking before?

Newver
One time

2104 times

Sto 6 times
710 9times
10 times or more

[Back | [mNea | [cancel

Gaddis & Inine Kayak Ouffitters, Inc., About this wizard

Figure 2-38 Kayak Tour Wizard, Step 2 (endurance level)

Step 1) Step2 | Step3 | Step 4 | Finish|

How long can you paddle continuously without resting?

Unknown

A few minutes

15 minutes

30 minutes

60 minutes

120 minutes or more

[ek | [New | [Cance

Gaddis & Inine Kayak Ouffitters, Inc. About this wizard

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard

Figure 2-39 Kayak Tour Wizard, Step 3 (recommended tour types)

|Step 1| Step2| Step3 | Step4 | Finish |

The following types of tours are recommended for you. Please select the
types that interest you.

Beginning class
Two hour

Half day

[Back | [_Nea | [camca |

Gaddis & Invine Kayak Outfitters, Inc. About this wizard

In Step 4 (Figure 2-40), the user is shown a list of upcoming tours that match his or her
selected tour types. In our sample, the user has selected three tours and is about to click the
Next button. In the final step (Figure 2-41), the user is shown a list of the tours he or she
selected and asked to pay a deposit for each one.

Figure 2-40 Kayak Tour Wizard, Step 4 (available tours)

| step 1| Step2 | Step3| Step4 |Finish |

Based on your selection criteria, the following tours are available
during the next week. Please select the tours you wish to join.

[7] Garden Cave

Pennecamp Park
Rattlesnake Key

Garden Cove to Pennecamp
[¥ Largo Sound

)l Blackwater Sound

[Bax | [Nea | [cancel |

Gaddis & Ivine Kayak Outfitters, Inc. About this wizard

93

94 Chapter 2 Input Validation and User Interfaces

Figure 2-41 Kayak Tour Wizard, final step (selected tours)

8 Kayak Tour Wizard E:pﬁ'

[step1 | Step 2 | Step 3 | Step4 | Finish

You have selected the following tours. Please send a 550 deposit for
each, to guarantee your reservation:

Ratilesnake Key
Largo Sound
Blackwater Sound

Back] [Done Cancel

Gaddis & Invine Kayak Outfitters, Inc. About this wizard

In Tutorial 2-5, you will complete the Kayak Tour Wizard application.

Tutorial 2-5:
Completing the Kayak Tour Wizard application

In this tutorial, you will complete the Kayak Tour Wizard application. The user inter-
face controls have been created for you so you can focus on the programming aspects.

Step 1: Open the project named Kayak Tour Wizard—Start from the chapter exam-
ples folder.

Step 2: Open the input data file, named Towrs.txt. The first integer N identifies the
number of tours, and also indicates the number of lines to follow. Each sub-
sequent line begins with an integer, identifying the type of tour (0..5). Fol-
lowing each comma is the name of the tour:

14

0,Beginning Kayak Class
1,Garden Cove

1,Pennecamp Park
1,Rattlesnake Key

2,Garden Cove to Pennecamp
2,Largo Sound

3,Sunset Cove

3,Flamingo Park

3,Deer Key

2,Blackwater Sound
4,Little Blackwater Sound
4 ,Butternut Key Overnight
4 ,Whaleback Key Overnight
5,Multi-Day Ten Thousand Islands

Step 3:

Step 4:

<

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard

When you look at the code listing later, you will see how the integer tour type
relates to array variables in the program.

Open the Design window for the main form. Click on each tab of the Tab-
Control to examine its individual pages. Each page contains a Label and
either a CheckedListBox or ListBox control. The ListBox on the last tab
page (named Finish) has no border, and its SelectionMode property has been
set to None. This was done because the user will not be called on to make
a selection.

Open the code view of the main form. Notice first that a class named
TourType contains a tour name and a tour type. The variable named Type
holds an integer between 0 and N — 1, assuming that there are N different
types of tours:

Class TourType
Public Name As String
Public Type As Integer
Public Overrides Function ToString() As String
Return Name
End Function
End Class

The class contains a ToString method because we plan to insert TourType

objects in list boxes. When the items display in the list box, their ToString
method is called automatically.

Next you will see three arrays of strings. The first array, ExperienceDescrip,
contains the entries for the list box that asks for the user’s level of experience.
The second array, EnduranceDescrip, contains the entries for the list box that
asks for the user’s endurance level:

Private ReadOnly ExperienceDescrip() As String = {"Never",
"One time", "2 to 4 times", "5 to 6 times", "7 to 9 times",
"10 times or more"}

Private ReadOnly EnduranceDescrip() As String = {'"Unknown",
"A few minutes", "15 minutes", "30 minutes", "60 minutes",
"120 minutes or more"}

You may wonder why we did not insert these lists into list boxes in
design mode. The choice was made to do it this way because it is easier
to modify string array variables if the values change in the future. Later,
we will show an easy way to insert these arrays into their appropriate
list boxes.

The third string array contains descriptions of the various types of tours.

Private ReadOnly TourTypes() As String = {"Beginning class",
"Two hour", "Half day", "Full day", "Overnight",
"Multi-day backcountry"}

The next two arrays, MinExperience and MinEndurance, are aids to decision

making. At some point, we will have to write code that determines which

types of tours are appropriate to which experience and endurance levels. The
integers in these two arrays indicate the minimum acceptable levels for the
tour types at the same index positions.

95

926

Chapter 2

Input Validation and User Interfaces

Step 5:

Private ReadOnly MinExperience() As Integer = {0, 1, 2, 3,

4, 5}
Private ReadOnly MinEndurance() As Integer = {0, 2, 3, 4, 4, 5}
Table 2-5 shows how TourTypes, MinExperience, and MinEndurance are par-
allel arrays. For a customer to be advised to go on a half-day tour, for exam-
ple, his or her experience must equal level 2 or higher, and his or her
endurance must equal level 3 or higher.

Table 2-5 Parallel arrays: TourTypes, MinExperience, MinEndurance

TourTypes MinExperience MinEndurance
Beginning class 0 0
Two hour 2
Half day 2 3
Full day 3 4
Overnight 4 4
Multi-day backcountry 5 S

To understand the numeric experience and endurance levels, refer to the
ExperienceDescrip and EnduranceDescrip arrays declared earlier. Table 2-6
shows how the level numbers match the descriptions in the ExperienceDescrip
array. This array contains experience levels based on the number of times a
person has been kayaking before.

Table 2-6 Experience levels

Experience Level Description

0 Never

One time

2 to 4 times
5 to 6 times

7 to 9 times

L A W N =

10 times or more

Returning to the program listing, the last two variables to be declared are
FilePath and Tours. FilePath identifies the path to the data file. (We discussed
relative file paths in Section 1.5 of Chapter 1.) The Tours array holds a list of
all the tours read from the input data file.

Private ReadOnly FilePath As String = "..\..\Tours.txt"
Private Tours() As TourType

Create the ReadTourList method, which opens the data file and reads all the
tour names into an array. (Omit the line numbers.)

1: Public Function ReadTourList() As Boolean

2 Dim infile As StreamReader = Nothing

39 Try

4 infile = OpenText(FilePath)

5 Dim count As Integer = CInt(infile.ReadLine)

Step 6:

Step 7:

Step 8:

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard

6: ReDim Tours(count - 1)

78 For i As Integer = 0 To count - 1

8: Dim entireLine As String = infile.ReadLine()
98 Dim fields() As String = entireLine.Split(","c)
10: Tours(i) = New TourType

11: Tours(i).Type = CInt(fields(0))

12: Tours(i).Name = fields (1)

13: Next

14: Return True

15: Catch ex As Exception

16: Return False

17: Finally

18: If infile IsNot Nothing Then infile.Close()
19: End Try

20: End Function

Line 5 gets the number of kayak tours (named count) from the first line of the
input file, and line 6 uses that value to resize the Tours array. Line 9 splits the
input line into two array values (the fields array). Each element in the Tours
array is a TourType object, so lines 11 and 12 assign values to its two fields
(Type and Name).

Next, create the Load event handler for the form by typing in the following code;
1: Private Sub MainForm Load() Handles MyBase.Load

28 lstEndurance.Items.AddRange (EnduranceDescrip)

33 lstExperience.Items.AddRange (ExperienceDescrip)

4: If Not ReadTourList() Then

58 MessageBox.Show("Cannot open file containing list of " _
6: & "tours. Ending program now.", "Error")

78 Me.Close()

8: End If

9: End Sub

Lines 2 and 3 fill the IstEndurance and IstExperience list boxes by passing the
array variables to the Items.AddRange method. Lines 5-7 display an error
message and close the application if the data file cannot be read.

Insert the following Click handlers for the Next and Back buttons. They per-
mit the user to move forward and backward through the pages of the Tab-
Control by incrementing and decrementing its SelectedIndex property.

1: Private Sub btnNext Click() Handles btnNext.Click
2 If btnNext.Text = '"&Done'" Then

3 Me.Close()

4: Else

58 tabCtrl.SelectedIndex += 1

6 End If

7: End Sub

8

9: Private Sub btnBack Click() Handles btnBack.Click
10: tabCtrl.SelectedIndex -= 1
11: End Sub
On lines 2-3, the form is closed if the user has reached the last tab page (when
the caption of the Next button becomes Dozne).

Next, you will create the UpdateTourTypes method. First, let’s design the logic
for this method in pseudocode:

clear the list box
if either the user’s experience or endurance 1is missing, exit

97

98

Chapter 2

Input Validation and User Interfaces

Step 9:

Step 10:

for each type of tour, do:
if the user’s experience >= minimum required for the tour
and the user’s endurance >= minimum required for the tour,
add the tour to the tour types list box
endif
next

Now you can write the code. In lines 6-10, it gathers the experience level and
endurance level from the list boxes in the first two pages:

1l: Private Sub UpdateTourTypes ()
' based on the customer attributes, create the list of
' eligible tour types (lstTourTypes).

lstTourTypes.Items.Clear()

Dim experience As Integer = lstExperience.SelectedIndex
Dim endurance As Integer = lstEndurance.SelectedIndex
If experience < 0 OrElse endurance < 0 Then

OF Return

10: End If

o Ul WN
e es s s es ee ee

11:

12: For i As Integer = 0 To TourTypes.Count - 1

13: If experience >= MinExperience(i) _

14: AndAlso endurance >= MinEndurance(i) Then

158 Dim tour As New TourType ' add object to the listbox
16: tour.Name = TourTypes(i) ' name of the tour type

17: tour.Type = i ' tour type ID

18: lstTourTypes.Items.Add(tour)

119 End If

20: Next

21: End Sub

Line 12 begins a loop that determines which members of the TourTypes array
can be inserted into the list box named IstTourTypes. Lines 13-14 verify that
the user has sufficient experience and endurance to qualify for the type of tour
located in the current position of the TourTypes array. Notice in particular a
useful trick in lines 15-18, where a TourType object is inserted directly into the
list box. Normally we insert strings into list boxes, but here we need to save
both the name of the tour type as well as its tour type (an integer) for later use.

Create a single SelectedIndexChanged event handler for both the IstExperi-
ence and IstEndurance list boxes. This event fires whenever the user selects a
different experience or endurance level, so we have to update the list of tour
types (on the third page of the TabControl).

Private Sub lstExperience_ SelectedIndexChanged()
Handles lstExperience.SelectedIndexChanged,
lstEndurance.SelectedIndexChanged

UpdateTourTypes ()
End Sub

Next, you will create the BuildTourList method. Before writing the actual
code, let’s design the pseudocode for this method:

for each tour type selected by the user, do:
for each actual tour, do:
if the actual tour matches the tour type,
add it to the list of possible tours
endif
next
next

Step 11:

Step 12:

Step 13:

2.7 Focus on Problem Solving: Kayak Tour Scheduling Wizard

This method loops through the list of items that the user has checked inside
the IstTourTypes list box. The Checkedltems collection indicates which items
were selected by the user. Now you can write the code:

1: Private Sub BuildTourList()

2 lstPossibleTours.Items.Clear()

3 For Each item As TourType In lstTourTypes.CheckedItems
4 For Each tour As TourType In Tours

5 If tour.Type = item.Type Then

6: lstPossibleTours.Items.Add(tour)

7 End If

8 Next

9 Next

10: End Sub

A loop beginning on line 3 examines each member of the CheckedItems col-
lection. As each item is examined, line 4 starts another loop that goes through
the Tours array. Line 5 examines each tour to see if its type matches the tour
type of the current member of the CheckedlItems collection. Each matching
tour is inserted into the IstPossibleTours list box.

Create the ShowSelectedTours method. In the last page of the TabControl, it
displays the list of tours selected by the user:

1: Private Sub ShowSelectedTours ()

28 lstSelectedTours.Items.Clear()

BY For Each tour As TourType In lstPossibleTours.CheckedItems
4: lstSelectedTours.Items.Add(tour)

58 Next

6: End Sub

Lines 3-5 copy each checked item from the IstPossibleTours list box to the Ist-
SelectedTours list box. Notice that each entry in the IstPossibleTours list is a
TourType object.

Next, you will create the SelectedIndexChanged event handler for the Tab-
Control. This event fires when the user navigates from one page to another,
either by clicking the tabs at the top of the control, or by clicking the Nexz
and Back buttons at the bottom of the form:

1: Private Sub tabCtrl SelectedIndexChanged()

2: Handles tabCtrl.SelectedIndexChanged

Bi 'The user has moved to a new tab page

4: btnBack.Enabled = tabCtrl.SelectedIndex > 0
58 If tabCtrl.SelectedTab.Text <> "Finish" Then

6: btnNext.Text = "&Next"
78 End If
8: End Sub

On line 3§, if the current tab is not the last tab, the caption (Text) is set to
&Next.

Create a handler for the IstAvailableTours list box. In other words, when the
user changes the selection of the types of tours he or she wants to see, we
rebuild the list of actual tours:

Private Sub lstTourTypes SelectedIndexChanged()
Handles lstTourTypes.SelectedIndexChanged
BuildTourList()

End Sub

929

100

Chapter 2

Input Validation and User Interfaces

Step 14:

Step 15:

Create a Click handler for the Cancel button:

Private Sub btnCancel Click() Handles btnCancel.Click
Me.Close()
End Sub

Create an Enter event handler for the last tab page. Its job is to build the
list of selected tours and change the button at the bottom of the form to
Done.

Private Sub Finish Enter() Handles Finish.Enter
' If the user is on the last panel, build
' the list of selected tours.
ShowSelectedTours()
btnNext.Text = " &Done"

End Sub

Notice how several wizard pages were filled according to user selections on
previous pages. In this application, for example, the list of tour types in Step 3
depended on the user’s selections in Steps 1 and 2. This was accomplished by
the UpdateTourTypes method. Similarly, the list of available tours in Step 4
depended on which tour types were selected by the user in Step 3. This was
accomplished by the BuildTourList method.

Finally, verify that a Click handler exists for the About this wizard LinkLabel
control:

Private Sub lnkAbout LinkClicked() Handles lnkAbout.LinkClicked
AboutForm.ShowDialog()
End Sub

Testing Plan

Step 16:

Step 17:

Next, you will conduct the first series of manual tests of the Kayak Tour Wiz-
ard application. Carry out the following manual tests and verify the operation
of the navigation buttons.

Input Expected output

Start the application. In the Step 1 Step 2 is displayed.

tab page, click the Next button.

Click the Next button. Step 3 is displayed.

Click the Next button. Step 4 is displayed.

Click the Next button. The Finish step is displayed, and

the Next button’s caption has
changed to Done.

Click the Back button. Step 4 is displayed, and the Done
button’s caption has changed to
Next.

Click the Cancel button. The application ends.

Carry out the second series of manual tests (shown in the table below) and
verify the results.

Input

Chapter Summary 101

Expected output

In Step 1, select Never, and go to
Step 2. Select Unknown, and go
to Step 3.

Select Beginning class and go to
Step 4.

Select Beginning Kayak Class and
go to the step Finish step.

Go to Step 1, select One time, go to
Step 2 and select 15 minutes,
and go to Step 3.

Select Two hour and go to Step 4.

Select any two tours and go to the
Finish step.

Go to Step 1, select 2 to 4 times, go
to Step 2 and select 30 minutes,
and go to Step 3.

Select Half day and go to Step 4.

Go to Step 1, select 5 to 6 times,
go to Step 2 and select 60 minutes,
and go to Step 3.

Select Half day and Full day and
go to Step 4.

Select all tours and go to the
Finish step.

Click the Done button.

The recommended tour type is
Beginning class.

Step 4 displays Beginning

Kayak Class.

Beginning Kayak Class is listed,
and the Next button’s caption has
changed to Done.

The recommended tour types are
Beginning class and Two hour.

The list of tours contains Garden
Cove, Pennecamp Park, and
Rattlesnake Key.

The tours selected in Step 4 are
listed.

The recommended tour types are
Beginning class, Two hour, and
Half day.

The list of three tours contains
Garden Cove to Pennecamp, Largo
Sound, and Blackwater Sound.

The recommended tour types are
Beginning class, Two hour,

Half day, and Full day.

Six tours are listed: Garden Cove
to Pennecamp, Largo Sound,
Blackwater Sound, Sunset Cove,
Flamingo Park, and Deer Key.

All tours you selected are listed.

The application ends.

Summary

Software wizards such as the one presented in this tutorial are useful for end users because
they simplify and organize tasks. At the same time, programming a wizard can entail quite
a bit of debugging because you must control and organize the visible choices as the user
moves from one step to another.

Chapter Summary

2.1

Input Validation

Applications should do their best to detect and handle errors resulting from user input.
When performing input validation, you will often use methods from the Char class.
One use for Char methods is when scanning a string to look for certain classes of char-
acters. Another way to use Char methods is when you are validating keyboard input.

102

Chapter 2

Input Validation and User Interfaces

2.2

24

2.5

The TextChanged event associated with the TextBox control fires each time the user
changes its contents. The TextBox control also fires a KeyPress event every time the
user presses a key while the input focus is on the control.

The StatusStrip control is the ideal container for displaying status and error messages
to the user.

The ErrorProvider control provides a simple way to validate input fields by displaying
an icon and error message for any field containing invalid data.

Exception Handling

When a program encounters an error while running, we say that an exception was
thrown. Sometimes, the error is severe enough to cause the application’s behavior to
become unreliable.

An exception is usually handled by alerting the user, retrying the operation that caused
the error, or by terminating the application.

Exceptions are objects. In other words, a program that throws an exception is really
throwing an instance of one of the .NET exception classes.

Most often, a program handles exceptions that were caused by a user’s invalid input.
When possible, try to prevent exceptions by checking all input.

Handling an exception is accomplished using a Try—Catch—Finally statement.
When a Try block contains multiple statements (and it usually does), not all statements
in the block may be able to execute.

ListBox, ComboBox, and CheckedListBox

ListBox, ComboBox, and CheckedListBox are collectively known as list-type controls.
The CheckedBoxList control has the same properties and behavior as a ListBox, except
with added check boxes next to each item.

The CheckedListBox.CheckedIndices property contains a collection of the indexes of the
checked items. Similarly, the Checkedltems collection contains the items that were
checked.

The SelectedIndex property returns the index position of the most recently selected item
of a list-type control. The SelectedItem property returns the item selected by the user.
The SelectionMode property of a ListBox can be configured to allow the user to make
multiple selections.

The SelectedItems collection contains all selected items. The SelectedIndices collection
contains the indexes of all selected items.

You can define a class and insert instances of the class into the Items collection of a
list-type control.

FlowLayoutPanel, WebBrowser, SplitContainer, and TabControl

The FlowLayoutPanel control is a general-purpose container into which you can insert
any type of control.

The WebBrowser control displays online Web pages and local HTML document files.
To load an HTML page into a WebBrowser control, call the Navigate method.

The SplitContainer control divides a form into panels. At runtime, the user can change
the sizes of panels by dragging a splitter bar.

The TabControl is a control that provides a convenient way for you to divide a form
into separate pages. Each page (a TabPage object) belongs to a TabPageCollection
stored in the property named TabPages.

Focus on Problem Solving: Kayak Tour Scheduling Wizard

This application uses a software wizard to guide customers of the Kayaking Outfitter
Company through the process of selecting one or more kayaking tours.

Review Questions

® A software wizard is an application that leads the user through a series of predescribed
steps. In each step, the user may be given choices that influence subsequent steps. Wiz-
ards are particularly useful when completing tasks that are complicated or need to be
completed in a specific sequence.

o In the Kayak Tour Scheduling wizard, the user is asked for his or her experience and
endurance levels. A list of appropriate tour categories is displayed. The user selects one
or more categories, and based on these selections, the wizard displays a list of matching
tours. The user then selects individual tours, and a final report lists the selected tours.

103

Key Terms

catching an exception
Char data type
CheckedListBox control
DateTimePicker control
ErrorProvider control
Finally block
FolderBrowserDialog control
Input validation
KeyPress event

ListBox control
List-type control

RichTextBox control
software wizard
SplitContainer control
StatusStrip control
structured exception handling
System.Exception class
TabControl control
TextChanged event
throwing an exception
uncaught exception
unhandled exception

ProgressBar control

WebBrowser control

Review Questions

True or False

Indicate whether each of the following statements is true or false.

1.

@ BN

10.
11.
12.

13.

If an exception is thrown midway through a Try block, the appropriate Catch block exe-
cutes immediately.

The IsDigit method is a shared method in the Char class.
After a Catch block executes, any remaining statements in the Try block are executed.
The Finally block always executes, whether or not an exception was thrown.

An exception must be caught inside the same method as the method throwing the
exception.

Catch blocks should be sequenced so the most specific types of exceptions occur first,
followed by more general exception types.

A Catch block does not have to declare an exception variable.

Only the first Catch block (in a series of Catch blocks) is permitted to catch an Appli-
cationException.

A separate ErrorProvider control is required for each TextBox on a form.
A Char data type holds a 16-bit Unicode character.
To convert a string to a Char array, call the MakeArray method.

The SetError method of the ErrorProvider method has a single parameter, which is a
string.

The Leave event fires when the input focus moves away from a control.

104

Chapter 2

Input Validation and User Interfaces

14.
15.

16.

17.

18.
19.
20.

An uncaught exception always causes an application to stop.

If an exception is thrown inside a Try block, all statements in the Try block execute
anyway.

If an exception is thrown inside a Try block, all statements in the Finally block execute
anyway.

When a Catch block finishes executing, execution resumes in the Try block where the
exception was thrown.

The Finally block is optional.
The Items.Remove method of a ListBox receives an integer index parameter.

You cannot directly add a DateTime object to another DateTime object.

Short Answer

1.
2.
3.

10.
11.

12.
13.
14.

15.
16.

17.

18.

19.
20.

What do we call an exception that is never caught?
What type of exception should be thrown by methods in your own classes?

What type of exception is thrown when the format of an argument passed to a method
does not match the format of the formal parameter?

Which exception property returns a string containing the sequence of method calls that
led up to the exception being thrown?

Which control lets you divide a form into separate pages?

Which ErrorProvider method must be called to create a pop-up error message for a par-
ticular control?

Which Char method checks if a character is a member of the alphabet?

. Which Char method converts a character to uppercase?

Which event handler is created when you double-click a TextBox control in design
mode?

Which TextBox event fires each time the user presses a keyboard key?

Which control automatically docks at the bottom of a form and often contains a Label
control?

Which control provides a visual cue to the validation status of an input field?
Which exception is thrown when an array subscript is out of bounds?

Which collection in the CheckedListBox control contains a list of the indexes of all
checked items?

Which ListBox property must be modified to permit the user to select multiple items?

If you insert your own type of objects in a ListBox, which method in your class must be
implemented?

Which control is shown in this chapter as a way for the user to select a date from a
calendar-like display?

If you want to add 10 days to the current date, which DateTime method should you
call?

What types of buttons can be added to a ToolStrip control?

If you want to display text in a ToolStripButton, which property must be set to Text?

21.
22.

Programming Challenges

Which control lets the user drag a vertical or horizontal bar between two panels?

Which WebBrowser method must you call when displaying a Web page?

What Do You Think?

1.
2.

Why might the user prefer to have all fields on a form validated at the same time?

Do you prefer that applications prevent you from making input mistakes, or would you
rather make the mistakes and be notified later?

. Do you think an OutOfMemoryException should be caught by application programs?
. How might the Finally block be useful in a program that reads from a file?

. What characteristics define a wizard-type application?

Algorithm Workbench

1.

Suppose you want to create a wizard application to help the user set up a sprinkler sys-
tem with a timer that would turn off and on at the same time each day. Make a list of
the questions the wizard would ask the user.

. Write a sequence of statements that set e.Cancel to True if a TextBox control named

txtZip does not contain five decimal digits.

. Write a statement that passes an error message to an ErrorProvider control named

errProvider under the following condition: txtName.Text does not contain two words.

. Show an example of creating a TimeSpan object from 3 hours, 10 minutes, and 0 seconds.

Get the current date and time, and add 3 hours and 10 minutes using the Date.Add
method.

Programming Challenges

1.

Bank Teller with Totals

Extend the solution program you wrote for the Bank Teller with Totals program in the
Programming Challenges for Chapter 1. Add the following error checking:

e The Account.Deposit method must throw an ArgumentException if the amount
parameter is less than zero. Pass a string containing “Deposit must be a positive
value.”

e The Account.Withdraw method must throw an ArgumentException if the amount
parameter is less than zero. Pass a string containing “Withdrawal must be a positive
value.”

e The Account.Withdraw method must throw an ArgumentException if the amount
parameter is greater than the current account balance. Pass a string containing
“Insufficient funds for withdrawal.”

All exceptions must be caught by the main form, which displays the exception messages.

Club Committee Organizer

Your student computer club needs to keep a record of which club members have joined
committees. Your task is to write an application that will make the process easy. In
Figure 2-42, the user is about to select the name of a committee from a combo box. Then
in Figure 2-43, the user has selected several members from the general members list on
the left side. The user is about to click the button containing an arrow pointing to the
right, which will copy the selected member names into the Current Members list box. In
Figure 2-44, the members have been copied, and automatically unselected from the list

105

106

Chapter 2

Input Validation and User Interfaces

Figure 2-42 Club Committee Organizer, selecting a committee

Adams, Ben
Baker, Sam
Chong, Anne
Davis, Sandra
Easterlin, John
Femandez, Jose
Fox, Barbara
Gomez, Ignacio

(a2 Club Committee Organizer

General Member List

Select a Committee

m

e &

Activities
Community Services

| |Executive

Membership
Programming Team
Scholarship

Sports

Travel

Volunteer Tutoring

Cluit

rs

Figure 2-43 Club Committee Organizer, selecting several members

Chong, Anne
Davis, Sandra

Fox. Barbara
Gomez, Ignacio

(a2 Club Committee Organizer

General Member List

d
Baker, Sam

n
Femnandez. Jose

Select a Committee [Membemhip

=)o =)
-]

box on the left side. If the user should try to select and copy a member who already
belongs to the committee list on the right side, nothing will happen. In Figure 2-45 the
user has selected two committee members and is about to click the button with the
arrow pointing leftwards. These members will be removed from the committee.

Both list boxes permit multiple items to be selected. Insert the following list of commit-
tees into the combo box: Activities, Community Services, Executive, Membership, Pro-
gramming Team, Scholarship, Sports, Travel, Volunteer Tutoring. Make up your own
list of at least ten names for the list box containing the general membership.

Error checking: Make sure the user selects a committee name before you permit mem-

bers to be copied into the list box on the right side.

Programming Challenges

Figure 2-44 Club Committee Organizer, membership committee contains four people

8 Club Committee Organizer

Select a Committee | Membership

E=S[Ie |

|

- |
|

General Member List

Adams, Ben -
Baker, Sam
Chong, Anne
Davis. Sandra
Easterlin, John !
Fermandez, Jose

Fox, Barbara

Gomez, Ignacio 2

m

i

Chuit

Current Members

Adams, Ben
Baker, Sam
Easterlin, John
Femnandez. Jose

Figure 2-45 Club Committee Organizer, two members about to be removed from the

committee

8 Club Committee Organizer

Select a Committee | Membership

SleEs

]

General Member List

Adams. Ben -
Baker, Sam
Chong, Anne
Davis, Sandra
Easterlin, John —

Femandez, Jose r

Fox. Barbara =—
Gomez, Ignacio X

m

Chuit

Current Members

Adams. Ben

Easterlin, John

3. Winter Sports Rentals

A winter sports rentals store needs an application that will let the user (a store clerk)
enter information about each customer’s rental. The user should be able to select multi-
ple equipment items, a rental duration, and insurance. Figure 2-46 shows a sample
design, after the user has selected all items and clicked the Calculate button. Include a
check box showing that a liability waiver was signed, and let the user input the deposit
amount. Use a combo box to list the rental durations, but do not let the user type in an
arbitrary duration. When the user clicks the Calculate button, the application should
calculate the subtotal, tax, and balance due. Also, use a LinkLabel control (Weather
forecast) to display a second form containing a WebBrowser control.

107

108 Chapter 2 Input Validation and User Interfaces

Figure 2-46 Winter Sports Rentals, prices calculated

a5 Winter Sports Rentals

F=Scl~|

Select all Equipment to December 15, 2011

be Rented

Skis, advanced
Snowboard, beginner
Snowboard, advanced
Ski boots

Snowboard boots
Helmet, standard

Helmet. deluxe

Rental duration

|1 week - Subtotal

297.00

Tax | 20.79

Damage insurance

Deposit 100

[T Liability waiver

Bal due $217.79

Weather forecast [Calculate Close

Figure 2-47 Winter Sports Rentals, showing weather forecast links

P

=1 EO8 >3

a5 Weather Forecast

Go Close

Web Images Videos Maps MNews Shopping Gmail more v 2

| Settings v | Sign out |=
GO L)8 le breckenridge weather

Search
*8 Everything » Weather for Breckenridge, CO - Add to iGoogle
[C] Images 5°F I °C Fri Sat Sun Mon |
. - W W (
Current: Sunny 4
B Videos Wind: N at 7 mph m m m
¥ | More Humidity: 74% "

ITF | 13°F 26°F | 9°F 25°F [10°F 27°F | 16°F
Detailed forecast: The Weather Channel - Weather Underground - .*:'.Cf.".l'."."ﬁ'

L m | L3

The form containing the WebBrowser control, shown in Figure 2-47, should display a
series of links to weather forecasts for the area near the winter sports rental store. Place
a ToolStrip container at the top of the form; it should contain a text box (for entering a
Web address), a Go button to navigate to the address typed into the text box, and a
Close button that closes the browser window. Note: We do not endorse any particular
Web search engine, so you may substitute another of your choosing.

Error Checking: When the user clicks the Calculate button, make sure that at least one
item has been selected from the equipment list box. Also, a rental duration must have
been selected, and the Deposit amount must be a positive number. Use the ErrorProvider
control to display all error messages.

The following rental durations should appear in the combo box: 1 day, 2 days, 3 days,
1 week, 2 weeks.

Calculations: Each equipment item has a rental rate based on different durations. Cre-
ate a two-dimensional array containing all possible rental rates. Each row should contain

Programming Challenges 109

the rental rates for a single item, using the different rental durations. The following first
row of the array, for example, contains rental rates for Skis, beginner:

35,45,80,150,280

For this equipment, the rates are $35.00 for 1 day, $45.00 for 2 days, $80.00 for 3 days,
$150.00 for a week, and $280.00 for 2 weeks. Damage insurance costs 10 percent of
the total rental charge before taxes.

4. Winter Sports Rentals Classes

Using the Winter Sports Rentals program from Programming Challenge 3 as a starting
point, make the following improvements:

e Create a class that holds all the rental rates. This class should contain a function
named GetRentalPrice that returns a single rental price if passed the type of equip-
ment and the rental duration. Inside the class, define an enumerated type for the type
of duration (1 day, 2 days, etc.), and another enumerated type for the equipment type
(skis, snowboard, boots, etc.). Use these enumerated types to define the parameter
types for GetRentalPrice. For example:

Public Function GetRentalPrice(ByVal duration As DurationType,
ByVal equip As EquipmentType) As Double

e Also, create a readonly property that returns the cost of damage insurance (10 per-
cent of the total rental charge before taxes):

Public Shared ReadOnly Property InsuranceCost(
ByVal rentalAmount As Double) As Double

5. Calculating Flight Times

Imagine that you plan to apply for a programming position at an airline. Before inter-
viewing, you need to have a good idea of how airlines calculate flight arrival times. There-
fore, you will create a simple application that explores this concept. Your application will
calculate the arrival time of any airline flight. The user selects the local departure date and
time, the departure airport, and the arrival airport. Then the application calculates the
local arrival date and time. It displays this information, along with the trip duration.

It is reasonable to assume that airlines use Coordinated Universal Time (UTC) when cal-
culating departure and arrival times. (Appendix B explains how to convert between local
time and UTC time, with examples.) Figure 2-48 shows information for a flight from
Miami to Honolulu. The departure date is selected in a DateTimePicker control, and the

Figure 2-48 Information for a flight from Miami to Honolulu

w5 Schedule a Flight o[-]
Depart from: Arrive at:
MIA - HML -
Departure Date: Arrival Date/Time:
6/ 52000 B~ 6/5/2010 at 03:30 PM

Travel time is 12 hours.

Departure Time
8:30

Go

110

Chapter 2

Input Validation and User Interfaces

departure time is entered into a text box. When the user selects a departure airport,
arrival airport, date, and time and clicks the Continue button, the arrival date and time
appear on the right side of the form. Figure 2-49 shows information for an overnight
flight from Honolulu to Miami. Notice that the arrival date is one day later than the
departure date.

Figure 2-49 Information for a flight between Honolulu and Miami

s Schedule 2 Flight = [=[]
Depart from: Arrive at:
HML - MIA -
Departure Date: Arrval Date/Time:
§ 1200 @8- 8/2/2010 at 10:15 AM

Travel time is 12 hours.

Departure Time
1715

Go

Implementation Notes

If the user clicks the Continue button without selecting departure and arrival airports,
use an ErrorProvider control to signal the error. Do not let the program calculate dates
and times until airports are selected. Create some application data, similar to the fol-
lowing;:
Private airports As String() = {"MIA", "JFK", "HNL", "LAX", "DFW"}
Private utcOffsets As Integer() = {-4, -4, -10, -7, -5}
Private travelTimes As Double(,) = {{0, 3, 12, 8, 2.5},

{3, 0, 14, 8.5, 3.5}, {12, 14, 0, 4.5, 8.5},

{8, 8.5, 4.5, 0, 3.5}, {2.5, 3.5, 8.5, 3.5, 0}}

The airports array holds several airport identification codes. The utcOffsets array holds
the UTC offsets of the corresponding airports. The travelTimes array holds the esti-
mated travel time, in hours, between two airports and all the other airports. It is a two-
dimensional array. Row 0, for example, represents the time to travel between MIA
(Miami) and the following airports: MIA, JFK, HNL, LAX, and DFW. Row 1 represents
the time to travel between JFK (New York) and the following airports: MIA, JEK, HNL,
LAX, and DFW. The times listed here may very well be incorrect, so feel free to change
them.

A suggested approach is to use three steps in your calculations: (1) Convert the local
departure time into UTC time; (2) add the trip’s duration, resulting in the UTC arrival
time; and (3) convert the UTC arrival time into the arrival airport’s local time.

. Simple Image Album

The Simple Image Album application in Tutorial 2-3 has a fatal flaw—it runs out of
memory when more than a small number of images are load into its array of PictureBox
controls. Your challenge is first to display the images as thumbnails. Then, when the user
clicks a thumbnail, your application will display the full-size image in a separate win-
dow. This means that you will have to add a click handler to each PictureBox control,
but fortunately you can use the same handler for all the buttons.

Collections

CHAPTER

3.1 Arraylists 3.3 List and Dictionary Classes
Tutorial 3-1: ArrayList of test Tutorial 3-3: Creating a text
scores concordance

3.2 ArraylLists of Custom Objects 3.4 (Language Integrated Query (LINQ)
Tutorial 3-2: Building an ArrayList of Tutorial 3-4: Performing LINQ queries
Student objects on a list

This chapter introduces some of the most useful and powerful collection classes in the NET
library, with the idea that collections of objects help to build concepts that can be applied
later to databases. We show how to create and use ArrayLists, strongly typed Lists, and Dic-
tionary objects. The chapter finishes with examples that show how to use Microsoft’s new
Language Integrated Query (LINQ) technology to search lists of objects.

ArraylLists

In the most general terms, a collection is any sequenced or unsequenced group of values. In
a sequenced collection known as a list, the values retain their relative positions to each other.
For example, we might refer to a list of temperature samples taken every hour during the
day. Arrays can be considered lists. Another type of collection is a set, which does not have
any particular sequence. We might refer to the set of all people with green eyes, for exam-
ple, with the understanding that there is no particular ordering within that group. Another
type of collection is often called a Dictionary or map, which associates keys with corre-
sponding values. If you wanted to look up a student’s academic transcript, for example, you
would use his or her student ID as what is known as a key. The value associated with each
key in the dictionary would be the student’s transcript.

The .NET Framework has classes that implement different types of collections. In this chap-
ter, we will present a few, such as ArrayList, List, and Dictionary.

111

112 Chapter 3 Collections

There is a Visual Basic data type named Collection that was introduced in early versions
of Visual Basic. It addresses a need for an array-type structure that can expand when new
items are added. Also, it allows items to be stored with associated key values, which can
be used in searches. In that sense, a Visual Basic Collection object is a dictionary. But the
Collection type continues to have some drawbacks and has been overshadowed by newer
classes in the NET framework. For that reason, we will not use the Visual Basic Collec-
tion type from this point onward.

ArraylList Class

The most fundamental .NET collection is the ArrayList class, an expandable list-type col-
lection that contains references to objects. ArrayList belongs to the System.Collections
namespace. Like arrays, ArrayLists also permit subscripts to randomly access their elements.
ArrayLists are more powerful and flexible than arrays in the following aspects:

® An ArrayList expands as new items are inserted, whereas an array does not.

e An ArrayList contains methods to find, insert, and remove items, whereas an array
does not.

® You can insert different types of objects into the same ArrayList object.

Figure 3-1 helps to show some of the relationships between an ArrayList and the items it
contains. Table 3-1 lists some of the most common ArrayList properties and methods.

Figure 3-1 Overview of ArrayLists

ArrayList
finds Matching Value

grows i items by
contains

namica
Y Y which
Items are Class Types

Table 3-1 Selected ArrayList properties and methods

Property or Method Description
Add(element As Object) Adds a new item to the end of the list
Clear() Removes all items from the list

Contains(element As Object) As Boolean Returns True if the list contains the given item
Count() As Integer Returns a count of the number of items in the list

Insert(index As Integer, element as Object) Inserts an item into the list at a specified index
position.

Item(index As Integer) As Object Returns a reference to the list item at a specified
index position

Remove(element As Object) Removes the first occurrence of a specified item
from the list

RemoveAt(index As Integer) Removes the item at a specified index position

3.1 ArraylLists

Creating an ArraylList

Use the New operator to create an instance of the ArrayList class. For example:

Dim customers As New ArrayList

You can also pass an array, an ArrayList, or any other object type that implements the
ICollection interface to the ArrayList constructor. In the following code, for example, the
ArrayList receives a copy of the scores array:

Dim scores() As Integer = {80, 66, 75}
Dim scoreList As New ArrayList(scores)

Adding and Inserting Items

One way to add items to an ArrayList is by calling the Add method. Here’s an example:
customers.Add('"Baker")

You can also use the Insert method to put an item into the list at a specified index:

scoreList.Insert(1l, "Ramirez")

There is no limitation on inserting duplicate items, so if your application requirements dis-
allow duplicate items, you should first test to see if the item is in the list.

Removing Items

The RemoveAt method removes an ArrayList item. You pass to it the index position of the item
you want to remove. The following statement removes the customer at index position 2:

customers.RemoveAt (2)

The Remove method removes the first item that matches the item you pass as an input
parameter. The following statement removes “Baker” from the customers ArrayList:

customers.Remove("Baker")

Finding ltems

The Contains method returns a Boolean value indicating whether a certain value exists in
an ArrayList. In the following example, the found variable will equal True if the value 66
exists in the ArrayList named scoreList:

Dim found As Boolean = scoreList.Contains(66)

The IndexOf method returns an integer that identifies the index position of an item. If the
item is not found, the return value is —1. The following code calls IndexOf and displays a
message if the customer name is not found:

Dim index As Integer = customers.IndexOf("Baker'")

If index = -1 Then
1blStatus.Text = '"Customer not found"
End If

Retrieving and Replacing Items

The Item property returns a reference to an ArrayList element. You pass to the Item prop-
erty an integer index between 0 and ArrayList.Count — 1. For example, the following code
retrieves the value stored at index position 2 in the customers ArrayList:

Dim name As String = CStr(customers.Item(2))

Because the customers.Item(2) expression returns a plain Object data type, we must convert
it into a String type before assigning it to the name variable.

113

114

Chapter 3

Collections

Item is known as a default property, so the following statement implicitly gets the element
at index position 2:

Dim name As String = CStr(customers(2))

You can use the Item property to replace an item in an ArrayList. The following lines show
two ways to replace the item at index 2 with “Johnson”:

customers.Item(2) = "Johnson"
customers(2) = '"Johnson"

IndexOutOfRangeException

An IndexOutOfRangeException is thrown if you pass an index to the Item property that
does not match the index of any item in an ArrayList. The following code example shows
how to handle the exception:
Try
Dim index As Integer = CInt(txtIndex.Text)
Dim cust As String = CStr(customers.Item(index))
Catch ex As IndexOutOfRangeException
MessageBox.Show(ex.Message)
End Try

The same rule applies when you call the RemoveAt method, which also must receive a valid
index.

The Count Property

The Count property indicates the number of items stored in an ArrayList. The following
code uses the Count property to display the size of the customers list:

lblInfo.Text = "The collection size is " & customers.Count

Loops

The preferred way to loop through an ArrayList is to use a For Each statement. During each
loop repetition, the variable declared in the loop represents the current item value. The fol-
lowing code, for example, loops through scoreList and adds each score to a list box:

For Each score As Integer In scorelList
lstBox.Items.Add(score)
Next

Similarly, the following code loops through the customers ArrayList and adds each element
to a list box:

For Each cust As String In customers
1stBpx.Items.Add(cust)
Next

In Tutorial 3-1, you will examine an application that builds an ArrayList of test scores.

Tutorial 3-1:
ArrayList of test scores

In this tutorial, you examine and test an application that has a Student class containing
an ArrayList of test scores. As each test score is entered by the user, it is added to the
list. A read-only property in the class calculates the test average. The class also contains
a shared variable that holds the college name, with a corresponding shared property.

3.1 ArraylLists

Figure 3-2 shows the application’s output after the user has entered a student ID and
name, and has clicked the Save button. Then, when the user enters a few test scores and
clicks the View button, the sample output is the same as that shown in Figure 3-3. The
user can continue to enter more test scores and click the View button as many times as

necessary.

Figure 3-2 After clicking the Save button

Test average:

(student information saved)

| Save | l View l (college)

- Student Test Score Collection =]
Student ID: 200032 Enter a test score:
Last name: Johnson Add

Figure 3-3 After adding two scores and clicking the View button

Test average: |89.45

200032, Johnson

l Save I | View My University

o2 Student Test Score Collection
Student ID: 200032 Enter a test score:
Last name: Johnson 864 Add

S

Tutorial Steps

Step 1: Open the ArrayList of Test Scores project in the chapter examples folder. The

named controls used in this application are:

e TextBox controls: txtIdNumber, txtGrade, txtLastName
e Label controls: IblTestAverage, IblStudent, 1blCollege
e Buttons: btnAdd, btnSave, btnView

Step 2: Open the Student class in the code editor and view the following code:

1l: Public Class Student

2: Public Property IdNumber As String

3: Public Property LastName As String

4: Public Shared Property CollegeName As String
5: Private mTestScores As New ArrayList

7: Public ReadOnly Property TestAverage() As Double

8: Get
9: Dim testSum As Double = 0.0

115

116

Chapter 3

Collections

Step 3:

Step 4:

10: For Each grade As Double In mTestScores
11: testSum += grade

12: Next

13: If mTestScores.Count > 0 Then

14: Return testSum / mTestScores.Count
15: Else

16: Return 0.0

17: End If

18: End Get

19: End Property

The ArrayList is declared on line 5. Line 13 checks the value of mTest-
Grades.Count, to avoid accidentally dividing by zero when no test scores
have been added to the collection. Line 14 calculates and returns the test
average.

The remaining methods consist of a constructor, a method to add a single test
grade to the collection, and a ToString method:

Public Sub New(ByVal pIdNumber As String,
Optional ByVal pLastName As String = " ")
IdNumber = pIdNumber
LastName = pLastName

End Sub

Public Sub AddTestGrade(ByVal grade As Double)
mTestScores.Add(grade)
End Sub

Public Overrides Function ToString() As String
Return IdNumber & ", " & LastName
End Function
End Class

Open the code window for MainForm.vb and inspect the following code:

Public Class MainForm

Private objStudent As Student
The Form_Load event handler sets the value of the CollegeName shared prop-
erty in the Student class.

Private Sub Form Load() Handles MyBase.Load

Student.CollegeName = "My University"
End Sub

Find the Click handler for the Save button:

Private Sub btnSave Click() Handles btnSave.Click
objStudent = New Student (txtIdNumber.Text,
txtLastName.Text)

lblStudent.Text = " (student information saved)"
btnAdd.Enabled = True
End Sub

This method creates a new Student object from the two text boxes. Notice
how the Add button is enabled only after the user clicks the Save button. This
is necessary to prevent the program from trying to add a test score before a
Student object has been created. The Add button lets the user add test grades
to the student’s collection of scores.

Step 5:

Step 6:

Step 7:

3.1 ArraylLists

Find the Click handler for the View button, which displays the student (ID
and last name), the college name, and the student’s test average:

Private Sub btnView Click() Handles btnView.Click
1blStudent.Text = objStudent.ToString
lblCollege.Text = Student.CollegeName

lblTestAverage.Text =
End Sub

objStudent.TestAverage.ToString("n")

The Click handler for the Add button takes the test grade from the txtGrade
text box and calls the Student.AddTestGrade method. This method adds the
grade to the student’s collection of grades.

Private Sub btnAdd Click() Handles btnAdd.Click

Dim testGrade As Double

If Double.TryParse(txtGrade.Text, testGrade) Then
objStudent.AddTestGrade (testGrade)

Else

MessageBox.Show(" Test grade must be a number", "Error")

End If
End Sub

Test the application using the following testing sequence. Restart the applica-

tion for each test.

Test 1

Input

Expected output

Enter 200032, Johnson, and
click the Save button. Next,
click the View button.

The ID and name should appear
in the label, and the test average
should appear as 0.0. The college
name should appear as My
University on all tests.

Test 2

Input

Expected output

Enter any ID and name, and
click the Save button. Enter a
single test score (92.3), click the
Add button, and click the View
button.

The ID and name should appear
in the label, and the test average
should appear as 92.3.

Test 3

Input

Expected output

Enter any ID and name, and
click the Save button. Enter the
test scores 92.3 and 85.1, click

the Add button, and click the
View button.

The ID and name should appear
in the label, and the test average
should appear as 88.70.

117

118 Chapter 3

Collections
Test 4
Input Expected output
Enter any ID and name, and The ID and name should appear
click the Save button. Enter the in the label, and the test average
test scores 92.3 and 85.1, click should appear as 0.00. (By clicking
the Add button, click the Save the Save button, you created a new
button, and click the View button. Student and erased the existing

collection of test scores.)

Test 4 was included to show how an unsuspecting user might click the Save button with-
out realizing that it would erase all the test scores. For practice, decide how you would
warn the user before erasing the scores.

Summary

The ArrayList class is a lightweight, powerful, and easy alternative to using arrays. It is the
ideal container to use when a list must expand at runtime, or when you must search for items.
So far, we have shown only how to create ArrayLists containing standard data types. In the
next section, we will show how to create ArrayLists containing user-defined class types.

Checkpoint

1.
2.

What is the subscript of the first element in an ArrayList object?

Which type of collection can more easily delete an element: an ArrayList or an
Array?

. Yes or no: Do ArrayList entries have key values?

Which ArrayList property returns a member of a collection at a given index
position?

. What type of exception is thrown if you pass an invalid index value to the Item

method?

What is the preferred type of loop to use on an ArrayList?

ArraylLists of Custom Objects

You have seen how to create ArrayLists of standard data types, such as Strings and Doubles.
Before long, you will also want to create lists containing instances of your own classes. Sup-
pose we want to build a list of Student objects. The following tasks are commonly performed
on lists:

e Loop through the list and display each student
e Search for a student

e Sort the list

e Remove a student from the list

We must create a new instance of the Student class each time we insert a new object, to avoid
creating an ArrayList in which all items reference the same object. Also, the Student class
needs to implement the Equals and CompareTo methods.

3.2 Arraylists of Custom Objects

References and Copies

When an item in an ArrayList is a value type such as Integer or Single, the Itemn method
returns a copy of the item. For example, the following code inserts an integer into an
ArrayList named numbers:

Dim numbers As New ArrayList
numbers.Add(10)

Next, the following code retrieves the integer stored at index 0 and modifies its value:

Dim intNum As Integer = CType(numbers.Item(0), Integer)
intNum = 99

But intNum is only a copy of the item in the collection, so the item stored in the ArrayList
at index O still equals its original value, 10.

But when an ArrayList item is a reference type, the Item method returns a reference to the
object. The reference can be used to modify the object inside the list. To illustrate, we can
create an ArrayList named students and insert a Student object:

Dim students As New ArrayList
students.Add(New Student(' Johnson"))

Next, we use the Item method to obtain a reference to the same student:

Dim studentRef as Student = CType(students.Item(0), Student)

Next, we assign a new last name to the student reference:

studentRef.LastName = "Griffin"

By doing this, we have also modified the name of the Student object inside the ArrayList.
That is because the Item method always returns a reference to an object in an ArrayList.

Common Error: Multiple References to the Same Object

Understanding how references work can really help you to avoid a common error when
working with collections—that of storing multiple references to the same object. The fol-
lowing code (located inside the Click handler for a button named Add) shows the correct
way to insert an object into an ArrayList:

1l: Private AllStudents As New ArrayList

Private Sub btnAdd Click() Handles btnAdd.Click
Dim objStudent As New Student (txtIdNumber.Text,
txtLastName.Text, CDbl(txtAverage.Text))
AllStudents.Add(objStudent)
End Sub

N o0 e W N
e ee e ee ee ee

Line 4 creates a new Student object, using values from the text boxes. Line 6 adds the stu-
dent to the ArrayList. Next, let’s look at similar code that contains a common bug:

Private AllStudents As New ArrayList
Private objStudent As New Student

Private Sub btnAdd Click() Handles btnAdd.Click
objStudent.IdNumber = txtIdNumber.Text
objStudent.LastName = txtLastName.Text
objStudent.TestAverage = CDbl(txtAverage.Text)
AllStudents.Add(objStudent)

End Sub

W oo JOo Ul & WN
s ee es s s s ee ee e

Can you see the error? A single Student object is created on line 2. Then, on lines 5-7, its
properties are assigned values from text boxes. On line 8, the object is added to the

119

120

Chapter 3

Collections

ArrayList. But each time the loop repeats, line 8 adds the same Student object to the
ArrayList again and again. The ArrayList entries end up referencing the same object, as
shown in Figure 3-4. So the lesson to be gained from this example is this: You must create
a new instance each time you insert an object into an ArrayList.

Figure 3-4 When ArrayList members reference the same object

All Students (1)

references
All Students (2) \
references
>;‘ ObjStudent
references
All Students (3)
references

All Students (4)

Comparing Objects with CompareTo

When you sort an array or ArrayList of custom objects, you must define how they will be
compared, using a method named CompareTo method. This method has the following
parameter list and return type:

Function CompareTo(ByVal obj As Object) As Integer
Given two objects A and B, CompareTo is called like this:

Dim result As Integer = A.CompareTo(B)
The return value of CompareTo when comparing two objects A and B is as follows:

e If A is less than B, A.CompareTo(B) returns a negative integer.
e If A is equal to B, A.CompareTo(B) returns zero.
e If A is greater than B, A.CompareTo(B) returns a positive nonzero integer.

If a class does not contain a CompareTo method, a list of instances of the class cannot be
sorted. In common terminology, the objects are not comparable. To demonstrate, let’s create
the following Student class:

Class Student
Public Property Id As String
Public Property Name As String
Public Sub New(ByVal pId As String, ByVal pName As String)

Id = pId
Name = pName
End Sub
End Class

Next, we insert the students in an ArrayList and attempt to sort it:

Dim list = New ArrayList()

list.Add(New Student("2001", "Jones"))

list.Add(New Student("1004", '"Thomas"))
list.Add(New Student("1050", "Adams'"))

list.Sort()

3.2 Arraylists of Custom Objects

Upon running the application, an unhandled exception like the one shown in Figure 3-5
says: Failed to compare two elements in the array. To put it another way, we failed to include
a CompareTo method in the Student class. But before showing how to create a CompareTo
method, we need to explain about Interfaces in .NET.

Figure 3-5 Attempting to sort an ArrayList

/& InvalidOperationException was unhandled X

Failed to compare two elements in the array.

Troubleshooting tips:

| Get general help for this exception. § -
Get general help for the inner exception. E|
i

Search for more Help Online...
Actions:

View Detail...

Copy exception detail to the clipboard

Interfaces

An interface defines a set of methods and properties that can be implemented by other
classes. The classes that implement the interface are guaranteed to contain these methods
and properties. When a class implements an interface, we learn something important about
the class: We learn what it can do.

An interface is declared in much the same way as a class. For example, this is how .NET
defines the IComparable interface:

Interface IComparable
Function CompareTo(ByVal obj As Object) As Integer
End Interface

Notice that the CompareTo method does not contain a body—only the method signature,
we call it, which is the line you see here. A method signature consists of the word Sub or
Function, followed by the method name, parameter list, and return type (if it is a function).

If a class implements the IComparable interface, the class must contain a CompareTo
method with the same signature as the one defined in the I[Comparable interface. Also, the
CompareTo method in the implementing class must contain a body. Next, we’ll show how
the Student class can implement the IComparable interface.

CompareTo Example

Suppose we have created a Student class, and we want to compare Student objects by their
ID numbers. Then our Student class will implement the IComparable interface. The
shaded areas of the following code listing show which parts relate to the IComparable
interface:

: Class Student

3 Implements IComparable
Public Property Id As String
Public Property LastName As String

Public Sub New(ByVal pId As String, ByVal pName As String)
: LastName = pName
End Sub

1
2
3:
4:
5:
6: Id = pId
7-
8:
9:

121

122

Chapter 3

Collections
10: Public Function CompareTo(ByVal obj As Object) As Integer _
11: Implements IComparable.CompareTo
12: Dim S As Student = CType(obj, Student)
13: Return Me.Id.CompareTo(S.Id)
14: End Function

15: End Class

Line 2 states that this class implements the [Comparable interface. Line 11 states that the
CompareTo method in this class implements the CompareTo method specified in the ICom-
parable interface. Line 12 casts the obj parameter into a Student object, allowing us to refer
to the Id field on line 13. On that line, the Id value of the current student (identified by Me)
is compared to the Id value of the student who was passed as the parameter to this method.
(The Me qualifier is not required, but it helps to clarify which object is which.)

The CompareTo method looks very similar in every class that implements it. Only a few lines
of code refer specifically to the type of objects being compared. For example, if we compared
two Account objects by their balances, CompareTo would look like this:

Public Function CompareTo(ByVal obj As Object) As Integer _
Implements IComparable.CompareTo
Dim A As Account = CType(obj, Account)
Return Me.Balance.CompareTo(A.Balance)

End Function

The shaded lines identify the code lines that are specific to this class.

If you think you will need to sort an ArrayList, every type of object you put into that
ArrayList should be an instance of a class that implements IComparable. The same is true
for an Array of objects. But IComparable is easy to implement and it’s a great convenience.
Although you rarely need to do so, it is also possible to define your own interface types.
(Refer to Appendix B for details about interfaces.)

Related Topic: IList and IListSource Interfaces

It is possible to assign an Array, ArrayList, or List object to the DataSource property of a
ListBox, but you cannot do it with most other types of objects. Any object assigned to the
DataSource property must implement either the IList or [ListSource interface. As it happens,
the Array, ArrayList, and List classes implement IList, which contains methods named
Contains, Add, IndexOf, Insert, Remove, and RemoveAt.

You can also assign a DataTable to the DataSource property of a ListBox because the DataT-
able class implements the IListSource interface. It turns out that IListSource is just a con-
venient wrapper for the IList interface. If you would like to see this information for yourself,
open the Object Browser window from the View menu in Visual Studio, and search for IList,
ArrayList, List, and IListSource.

Comparing Objects with the Equals Method

You learned in Chapter 1 that the Equals method compares all standard .NET types. It
returns a value of True if the objects contain equal values. For the two strings shown below,
the expression A.Equals(B) is True:

Dim A As String = "abcde"
Dim B As String = "abcde"
A.Equals(B) 'True

But the Equals method is not automatically configured for your own custom classes. The fol-
lowing code examples compare two Student objects. Assuming that we have not created a
custom version of the Equals method in the Student class, the expression s1.Equals(s2) is
False.

3.2 Arraylists of Custom Objects 123

Dim sl As New Student(1001)
Dim s2 As New Student(1001)
sl.Equals(s2) 'False

Naturally, it would be helpful to compare Student objects or other custom types in a useful
way. We might want to search for Student objects in an ArrayList by calling the Contains or
IndexOf methods, for example. In order to do that, we will have to override the Equals
method in the Student class.

Overriding the Equals Method

To override the Equals method means to create an Equals method in your own class that has
the same signature as the Equals method in the Object class. The signature of the Equals
method is shown here.

Public Overrides Function Equals(ByVal obj As Object) As Boolean

The following Student class contains an Equals method that compares students by their ID
numbers:
1l: Class Student

Public Property Id As String
Public Property LastName As String

Return Me.Id.Equals(CType(obj, Student).Id)
End Function

2
3
4:
5: Public Overrides Function Equals(ByVal obj As Object) As Boolean
6
7
8 End Class

Line 6 casts the obj variable into a Student object, and gets the object’s Id property value.
This value is compared to Me.Id, the ID of the current Student object. This Equals method
returns True if two students have the same ID number.

You can select any properties, variables, or calculated values to be compared when imple-
menting the Equals method. In general, you should choose a property or combination of
properties that will uniquely identify each object. It is important that the class properties
compared by the Equals method are either standard .NET types, or types that have them-
selves implemented the Equals method.

@‘1 TIP: If your class also implements the IComparable interface, it’s a good idea for the
Equals and CompareTo methods to use the same property for comparisons.

In Tutorial 3-2, you will examine an application that inserts Student objects into an
ArrayList. The Student class contains an Equals method that compares ID numbers.

d Tutorial 3-2:
Building an ArrayList of Student objects

In this tutorial, you will examine an application that creates an ArrayList of Student
objects. The Student class will implement the Equals method.

Tutorial Steps
Step 1: Open the project named ArrayList of Students from the chapter examples folder.

Step 2: Run the application, input the following values into the text boxes, and click
the Add to Collection button:

124 Chapter 3 Collections

Student ID 10000
Last name Smith
Test average 82.5

Step 3: Enter two more students, using the following data, and click the Add to
Collection button after each set of data has been entered:

10022, Jones, 90
20000, Ramirez, 79.5

Step 4: Click the View All button. Figure 3-6 shows the expected output.

Step 5: Next, you will search for a student by ID number. Enter 10022 into the TextBox
in the lower left corner, and click the Find by ID button. The program should
find the matching student and display it in the ListBox, as shown in Figure 3-7.

Step 6: Enter a nonexistent student ID into the textbox at the bottom left corner of
the form and click the Find by ID button. A message should say that the stu-
dent was not found.

Figure 3-6 After inserting three Students into the collection

s N

a5 Collection of Students =[]]
Student ID: 20000 Test average: /9.5
Last name: Ramirez Add to Collection |

110000, Smith, Test average = 82.50
10022, Jones, Testaverage =90.00
20000, Ramirez, Test average = 79.50

Find by ID

Figure 3-7 After searching for a student ID

-

4! Collection of Students E=s o8 T

Student ID: 10022 Test average: 90.00

Last name: Jones Add to Collection

View All 110022, Jones, Test average = 90.00

Step 7:

Step 8:

Step 9:

3.2 Arraylists of Custom Objects

Examine the source code for the Student class. It has Id, LastName, and
TestAverage properties, a constructor, a ToString method, and an Equals
method.

Public Class Student
Public Property Id As String
Public Property LastName As String
Public Property TestAverage As Double

Public Sub New(ByVal pId As String,

Optional ByVal pLastName As String = " ",
Optional ByVal pTestAverage As Double = 0.0)
Id = pId

LastName = pLastName
TestAverage = pTestAverage
End Sub

Public Overrides Function ToString() As String
Return Id & ", " & LastName _
& ", Test average = " & TestAverage.ToString('"n2'")
End Function

Public Overrides Function Equals(ByVal obj As Object)
As Boolean
Dim other As Student = CType(obj, Student)
Return Id = other.Id
End Function
End Class

Examine the source code for the MainForm Class. The btnAdd_Click method
creates a Student and adds it to the collection. The btnView Click method
loops through the collection and inserts each item into a ListBox. The
binFind_Click method searches for a student ID and displays the matching
Student in the ListBox.

Public Class MainForm
Private allStudents As New ArrayList

1

2

3

4 Private Sub btnAdd Click() Handles btnAdd.Click

58 Try

6: Dim objStudent As New Student (txtIdNumber.Text,
7 txtLastName.Text, CDbl(txtAverage.Text))

8: allStudents.Add(objStudent)

oF Catch

10: MessageBox.Show(" Invalid test average", "Error")
11: End Try
12: End Sub

Lines 6-7 create a student from the contents of the text boxes, and line 8§
inserts the student into the allStudents ArrayList.

Continuing in the same class, find the Click handler for the View button.

1l: Private Sub btnView Click() Handles btnView.Click

2: lstStudents.Items.Clear()
38 For Each stu As Student In allStudents
4: lstStudents.Items.Add(stu.ToString)

: Next

6: End Sub

125

126 Chapter 3

Collections

This method clears the list box and uses a For Each statement to traverse the
ArrayList. Each student is inserted into the IstStudents list box.

Step 10: View the Click handler for the Find button.

1: Private Sub btnFind Click() Handles btnFind.Click

28 lstStudents.Items.Clear ()

38 Dim S As New Student(txtFindId.Text)

4: Dim index As Integer = allStudents.IndexOf(S)

58 If index <> -1 Then

6: S = CType(allStudents(index), Student)

78 lstStudents.Items.Add(allStudents(index).ToString)
8: ' update the text boxes, to be consistent

OF txtIdNumber.Text = S.Id

10: txtAverage.Text = S.TestAverage.ToString('"n")

11: txtLastName.Text = S.LastName

12: Else

13: lstStudents.Items.Add(" Student ID was not found")

14: End If

15: End Sub

Let’s look at some details in this code. Line 3 creates a Student object from the
ID number in the txtFindIld text box, and line 4 calls IndexOf to search for
the student in the ArrayList. If the index returned by IndexOf is not equal to
1, line 6 gets a reference to the matching Student object in the list. Because
the value returned by allStudents(index) is type Object, we must cast it into a
Student type. Then, line 7 adds the student to the list box. Lines 9-11 copy
the student’s property values into the three text boxes on the form, so they will
show the same data as the list box.

Summary

A great many applications build, search, and maintain lists of objects. The ArrayList class is
an ideal tool for storing objects because of its rich set of methods and properties. Remem-
ber, if you want to call the Contains or IndexOf methods to search for objects, the class
defining the items in the collection must override the Equals method.

Checkpoint

7. If you plan to call the IndexOf method on an ArrayList containing custom objects,
the class defining the objects must contain which method?

8. If you plan to sort an ArrayList containing custom objects, the class defining the
objects must implement which interface?

9. True or false: In an ArrayList containing objects, the IndexOf method returns —1 if
an item is not found.

10. In the tutorial that builds an ArrayList of students, how were the objects uniquely
identified?

List and Dictionary Classes

The ArrayList class does not limit the types of items that may be inserted in a single list.
Therefore, we say that ArrayList is a weakly typed collection. Although this may seem like
an advantage because it offers the flexibility to create a collection containing various types

3.3 List and Dictionary Classes

of objects, it can lead to unintended runtime errors. For example, an application might
throw an exception if a reference to one of the ArrayList members turned out to be a dif-
ferent type than expected. In that case, a call to the CType method could generate an invalid
cast exception.

Invalid Cast Example

Let’s look at an example of how the weak typing in an ArrayList can cause problems. In the fol-
lowing code, Student and Employee objects are inserted in the same ArrayList named #2yList:

Class Student

End Class
Class Employee

'
. e

End Class

Sub Test()
Dim myList As New ArrayList
myList.Add(New Student)
myList.Add(New Employee)

' The next line throws an exception.
For Each item As Student In myList
lstItems.Add(item.ToString())

Next
End Sub

But when the code loops through the list with the For Each statement, an InvalidCastException
is thrown. Figure 3-8 shows the resulting error message. Runtime conversion errors like this are
difficult to catch during manual testing. The application might appear to work correctly during
numerous tests. But at a later time, a certain sequence of inputs could cause the application to
fail. There are workarounds, of course. You could surround every For Each statement with Try
and Catch statements that would catch this type of conversion error. But doing so would require
the inconvenience of extra work and planning. To avoid the type of conversion error we have
been talking about, modern programming languages support strongly typed collections.

Figure 3-8 InvalidCastException

Weak Typing with ArrayList @

lUnhandled exception has occured in your application. F you click
Continue, the application will ignare this emor and attempt to continue.
you click Quit, the application will close immediatehy.

Unable to cast object of type Weak_Collection. Employee’to type
Weal_Collection. Student”.

Cortinue] l Quit

Strongly Typed Collections

A strongly typed collection is a collection that contains only a single type of object. The most
common way to implement such a collection is through the use of generic classes, which can
be found in the .NET Systems.Collections.Generic namespace. A generic class is a class that
takes on a specific data type only when an instance of the class is created. From that point
on in the application, the class is bound to the data type of its elements. (Another type of
object can be inserted only if there exists an automatic conversion from that type to the type
declared in the collection.)

127

128

Chapter 3

Collections

Table 3-2 describes a few generic classes related to lists and dictionaries, which we demon-
strate in this chapter. The .NET Library contains other generic classes, which you can read
about in the online MSDN documentation at http://msdn.microsoft.com.

Table 3-2 Selected classes in the System.Collections.Generic namespace

Class or Structure Description

List(Of Type) A sequential list containing objects of the
same type.

Dictionary(Of KeyType, ValueType) A class that represents a collection of keys and

values. The keys must all be unique. Each
value is associated with a single key.

SortedDictionary(Of KeyType, ValueType) A Dictionary class in which the keys are kept
in sorted order.

KeyValuePair(Of KeyType, ValueType) Represents a single Dictionary entry.

List(Of Type)

List(Of Type) is a class that holds strongly typed sequential collection of items. It is a useful
substitute for the ArrayList class. It has nearly identical methods and properties as ArrayList,
and it enforces strict type checking on the items you insert into it. Table 3-3 lists some of the
more commonly used List properties and methods.

Table 3-3 Selected ArrayList properties and methods

Property or Method Description

Add(item As Type) Adds a new item to the end of the list.

Clear() Removes all items from the list.

Contains(item As Type) As Boolean Returns True if the list contains the given item.
Count() As Integer Returns a count of the number of items in the list

Insert(index As Integer, item As Type) Inserts an item into the list at a specified index

position.

Item(index As Integer) As Type Returns a reference to the list item at a specified
index position.

Remove(item As Type) Removes the first occurrence of a specified item
from the list.

RemoveAt(index As Integer) Removes the item at a specified index position.

Sort() Sorts the list.

ToArray() As Array(of Type) Returns a strongly typed array of objects from

the ArrayList

Example: List of Integers

The following code declares a List(Of Integer) object and adds three integers to the list:

Dim intList As New List(Of Integer)
intList.Add(30)
intList.Add(10)
intList.Add(20)

http://msdn.microsoft.com

3.3 List and Dictionary Classes

The Clear method removes all items.
intList.Clear()

The Item property retrieves a reference to a list item, using an index to identify the item’s position.
Dim X As Integer = intList.Item(1l)

The For Each statement loops through a List. The following lines copy the List items to a ListBox:

For Each M As Integer In intList
lstBox.Items.Add (M)
Next

The Contains method returns True if a matching value is found.
Dim found As Boolean = intList.Contains(20)

The IndexOf method returns the index position of a matching item, or —1 if the item is not found.
Dim index As Integer = intList.IndexOf(20)

The Remove method removes a matching item. If the value is not found, the statement has no
effect.

intList.Remove(30)
The RemoveAt method removes an item at a given index position.

intList.RemoveAt (0)

The Sort method sorts the elements in ascending order.
intList.Sort()

The ToArray method returns an array containing the list items.
intList.ToArray()

The List class contains many other methods, which you can read about in the online MSDN
documentation.

If You Want to Know More:
Sorting with a Comparator

Sometimes, you may want to sort a List in a nonstandard way, such as sorting in descend-
ing order. Or, you might want to sort on some other property than the one used by the Com-
pareTo method. To do so, you need to define a method called a comparator, which compares
any two list elements based on your needs. The method must have this general format:

Public Function MethodName(ByVal vall As Type,
ByVal val2 As Type) As Integer

You can use any identifiers you like for MethodName, vall, and val2. The two parameters
represent any pair of values that are compared during the sorting process. The Type in this
general format must match the type of objects in the List.

Sorting functions always perform comparisons between pairs of arrays or list items. A com-
parator by itself, does not sort a list—you must still call the Sort method from the List class.
You just need to tell the Sort method how you want the list items to be compared.

Student Comparator Example

Suppose we want to sort a list of Student objects. We will assume that the Student class
already contains a CompareTo method that compares Students by their ID numbers. We
might create the following list of Students and call the Sort method:

Dim stulList As New List(Of Student)
stuList.Add(New Student(1234, "Jones"));

129

130

Chapter 3

Collections

stuList.Add(New Student (4023, "Baker'"));
stuList.Add(New Student(5612, '"Gonzalez'"));
stuList.Add(New Student(1001, "Chong"));
stuList.Sort()

The list would now be sorted in ascending order by ID number:

1001 Chong
1234 Jones
4023 Baker
5612 Gonzalez

But we might also want to sort the list in ascending order by last name. To accomplish that, we
would first create a comparator method that compares the LastName properties of the objects:

Public Function CompareNames(ByVal X As Student,
ByVal Y As Student) As Integer
Return X.LastName.CompareTo(Y.LastName)

End Function

Then we would sort the list by passing the address of the comparator to the Sort method:

studentList.Sort (AddressOf CompareNames)

After sorting, the list of students would be sorted in ascending order by last name:

4023 Baker
1001 Chong
5612 Gonzalez
1234 Jones

Dictionary(Of KeyType, ValueType)

The Dictionary(Of KeyType, ValueType) class maps a set of keys to a set of values. In other
words, each key in the dictionary has a single value associated with that key. The keys must
be unique, but the values need not be unique. A Dictionary is optimized for searching
through a large number of keys. If you had 20 million items in a Dictionary, for example,
the key of a single item would be found instantly. If you were to search for an item in an
ArrayList, the search would take a good deal longer. We say that each Dictionary entry is a
pair, consisting of a key and a value.

It’s important to select a suitable property in your class to use as a Dictionary key. Look for
a property whose value will be unique for every item you insert in the Dictionary. If you were
inserting employees, for example, the ID property of the Employee class would probably be
a good choice for a key. On the other hand, the LastName property would not make a good
key because two employees might have the same last name.

The classes of dictionary keys must implement the IComparable interface, and they must
override the Equals method. Therefore, it is easiest to use a standard .NET data type as a
Dictionary key. Common choices are Integer and String. The associated values can be any
data type, with no special restrictions.

Creating a Dictionary

When you declare a Dictionary object, supply the types of its key and value pair. The gen-
eral format is:

Dim varName As New Dictionary(Of keytype, valuetype)

For example, the following code declares a Dictionary named salaries, using integers as keys
and Decimals as the values associated with the keys:

Dim salaries As New Dictionary(Of Integer, Decimal)

3.3 List and Dictionary Classes

Adding Entries to a Dictionary

The Add method adds a key/value pair to a Dictionary. The following lines, for example,
add several employee IDs and salary values to the salaries Dictionary:

salaries.Add (3001, 50000D)

salaries.Add (2020, 45000D)

salaries.Add (3125, 64500D)
salaries.Add (2501, 32800D)

When inserting key/value pairs, their data types must match the data types used when declaring
the Dictionary. That is why we call the Dictionary a strongly typed collection. The following
statement would be incorrect because it tries to insert a string key and a salary of type Double:

salaries.Add('"1002", 34000.2)

On the other hand, we can pass an integer as the second argument because integers are auto-
matically converted to Decimals:

Dim N As Integer = 35000
salaries.Add("1002", N)

So to be more precise, the argument types must be assignment-compatible with the param-
eter types of the Add method.

The Count property indicates the number of Dictionary entries. The following statement
assigns the count to a Label:

1lblCount.Text = "There are " & salaries.Count & " entries"

The Clear method removes all entries from a Dictionary.

Looping Through Dictionary Entries

Each entry in a Dictionary is a KeyValuePair object, containing two properties: Key and
Value. When you declare a KeyValuePair, you must be specific about the types of the key
and the value. This is how we must declare it for the salaries Dictionary:

Dim entry As KeyValuePair(Of Integer, Decimal)

Then we can use the entry variable when coding a For Each statement. It holds the key and
value of each Dictionary entry. The following code adds several entries to the salaries dic-
tionary and then copies the entries to a ListBox:

salaries.Add (3001, 50000D)
salaries.Add (2020, 45000D)
salaries.Add (3125, 64500D)
salaries.Add (2501, 32800D)

For Each entry In salaries
lstBox.Items.Add(entry.Key & "-->" & entry.Value)
Next

The loop produces the following output:

3001-->50000
2020-->45000
3125-->64500
2501-->32800

Finding, Modifying, and Removing Entries

You cannot use an integer index to access a particular position in a dictionary. To find a Dic-
tionary entry, you must pass the key you want to find to the Item property. The following
statement returns 45,000, the salary of the employee whose ID number is 2020:

Dim salary As Decimal = salaries.Item(2020)

131

132

Chapter 3

Collections

If you try to get the value associated with a nonexistent key, the Item property throws a
KeyNotFoundException.

If you assign a value to the Item property and reference an existing key, the Dictionary
replaces the value associated with the key. For example, the following statement replaces the
salary of employee 3001:

salaries.Item(3001) = 62000D

If you assign a value to the Item property and reference a key that is not in the Dictionary,
a new entry is created and inserted. The following statement inserts a new entry in the Dic-
tionary, assuming that the key 2025 does not already exist:

salaries.Item(2025) = 72000D

The Remove method removes the entry whose key matches the method’s input parameter. Its
general format is:

dictionaryName.Remove (key) As Boolean

If the key is found and the item is removed, Remove returns True. Otherwise, Remove
returns False. For example, the following statement removes the entry whose key is 3125:

salaries.Remove(3125)

Extension Methods

Extension methods are a feature in .NET that let developers add new methods to existing classes.
The Dictionary class has a large number of such methods associated with its Keys and Values col-
lections. A few of the most common ones are listed in Table 3-4. Here are a few examples:

Dim average As Decimal = salaries.Values.Average()
Dim sum as Decimal = salaries.Values.Sum()
Dim minVal As Decimal = salaries.Values.Min()

Table 3-4 Sample extension methods in a Dictionary entry

Extension Method Description

Values.Average Returns the average of the values
Values.Sum Returns the sum of the values

Values. ToArray Returns an array containing the values
Values.Max Returns the largest value

Values.Min Returns the smallest value

Keys.Max Returns the largest key

Keys.Min Returns the smallest key

SortedDictionary Class
A SortedDictionary is a dictionary that maintains its keys in a specific order. Here is an example:
Dim orderedSalaries As New SortedDictionary(Of Integer, Decimal)

All of the methods and properties we discussed for the Dictionary class apply equally well
to the SortedDictionary class.

You can pass an existing Dictionary object to the constructor of a SortedDictionary, as long
as their key and value types are the same. For example, the following statement makes a
copy of the salaries Dictionary when creating orderedSalaries:

Dim orderedSalaries As New SortedDictionary(Of Integer, Decimal)
(salaries)

3.3 List and Dictionary Classes

0

Tutorial 3-3:
Creating a text concordance

In this tutorial, you will create an application that builds a concordance, which is a cat-
alog of words found in a document. The input file will be a text file containing words
separated by spaces. The set of words will be saved as the keys collection in a Dictio-
nary object, and each value associated with a key will be a List(Of Integer) containing
the line numbers where the word was found in the input file. The Dictionary will be

declared like this:
Private wordDict As New Dictionary(Of String, List(Of Integer))

When the application starts, the user will be able to select the Open command from the
File menu, as shown in Figure 3-9. An OpenFileDialog control will appear and let the
user select the input file. The file is read into a string list, and each word from the file
is inserted into the dictionary. In Figure 3-10, the application is now ready to let the user
search for a word. The user types in a single word and clicks the Find button to view a
list of all lines from the file that contain the word (Figure 3-11). The file we have used
as a sample contains the first ten chapters of Moby Dick by Herman Melville, available
from the Project Gutenberg foundation (www.gutenberg.org). The performance of the
program is excellent: It catalogs 4,256 words with no noticeable time delay. Searching
for a single word is also instantaneous. If the user clicks the All button, the entire list of
dictionary words appears in a multicolumn list box (Figure 3-12).

Before starting to create the application, we will briefly review the OpenFileDialog con-
trol, which was covered in our Starting Out with Visual Basic 2010 book.

Figure 3-9 On startup, the user will select the input file

a7 Searching Text [
[File +|| (nofile) b Al

| Open !
Exit

4

Figure 3-10 Input file loaded and ready to search for a word

a=' Searching Text ==
File = | Filename: moby.bd Find =

i\

N\

133

www.gutenberg.org

134

Chapter 3

Collections

Figure 3-11 Displaying lines containing the selected word whale

a5 Searching Text
File » | Reading: moby.bt whale Find All

158, chief among these motives was the overwhelming idea of the great whale

161: undeliversble, namelezs perls of the whale: these, with all the attending

171 there floated into my inmost soul, endless processions of the whale, and, mid

150: -the Tyre of this Carthage; -the place where the first dead American whale

321 dismantled masts alone visible; and an exasperated whale, purposing to spring

334 and run away with by a whale, years afterward slain off the Cape of Blanco.
565 striking a whale. Of things not propery belanging to the room, there was a
1021: boats’ crews of the Ship Hliza, Who were towed out of sight by a Whale, On
1027 his boat was killed by a Sperm Whale on the coast of Japan, August 3d,

1171: = The ribs and temors in the whale, Arched over me a dismal gloom, While
1176: complaints — No more the whale did me confine. With speed he flew to my
1280: the whale shall hold him in the smallest of his bowels wards. Screwed at

1312: the far rush of the mighty whale, which even now with open mouth is cleaving
1384: awaiting him; and the whale shoots4o all his ivory teeth, like the Lord out

1363: deliverance of him from the sea and the whale. Shipmates, | do not place

1380: God came upon him in the whale, and swallowed him down to living guifs of
1355 hell" ~when the whale grounded upon the ocean’s utmost bones, even then, God
1397: fish; and from the shuddering cold and blackness of the sea, the whale came

Figure 3-12 Displaying the entire dictionary

al Searching Text
File = | Filename: moby.bd Find All

chapter ...my of drizzly an off-then himself
i purse warld november upper account upon
loomings and it soul hand high his
call nothing is involuntarity that time sword
me particular way pausing requires sea quiethy
ishmael to have before strong as take
s0me interest driving coffin moral s000N ship
years on off warehouses principle can there
ago-never shore spleen bringing prevent this surprising
mind thought regulating up from substitute i
hiow would circulation rear deliberately for they
long sail whenever every stepping pistal but
precisehy about find funeral into ball kenew
little a myself meet street with almost
or zee growing especialy methodicaly philosophical all
no the arim hypos knocking flourish mern
money watery mouth get people’s cato their
in part damp such hats throws degree

<« p

OpenFileDialog Control

The OpenFileDialog control lets the user select a file in a standard Windows dialog. It
has an InitialDirectory property that allows the dialog to point to a particular direc-
tory when it opens. Let’s assume that the control is named ofdOpenFile. The follow-
ing statement assigns to it the application’s current directory value, returned by the
GetCurrentDirectory method:

ofdOpenFile.InitialDirectory = Directory.GetCurrentDirectory()

In addition, we can ask the dialog to display only certain types of files by setting the
Filter property to a description, separated by a vertical bar from a wildcard name
(*.txt):

ofdOpenFile.Filter = "Text files|*.txt"

3.3 List and Dictionary Classes 135

The ShowDialog method displays the dialog window. The user clicks either the Open
or Cancel button to close the dialog window. The method returns a DialogResult value
that we can use to find out which button was clicked.

Dim result As DialogResult = ofdOpenFile.ShowDialog()
A simple If statement checks for the Open button (listed as DialogResult. OK).
If result = DialogResult.OK Then

If a file has been selected, the dialog’s FileName property will now contain a complete
path to the file.

The OpenFileDialog has an OpenFile method that opens the file selected by the user
and returns a System.[O.Stream object. We can pass that object to the constructor for

the StreamReader class, so the application can use the infile variable to read lines from
the file.

Dim infile As StreamReader = New StreamReader (ofdOpenFile.
OpenFile())

Filtering a String

When reading words from the input file in this tutorial, we want to remove any trailing
punctuation marks such as commas and periods. We can define a string containing com-
mon punctuation characters and convert the string to a character array.

Dim filterOut As Char() = ("?':;.,!" " ").ToCharArray()

Later, when we have read a word from the file, we can call the TrimEnd method, pass-
ing it the character array that holds all characters that we want to trim from the
string.

word = word.TrimEnd(filterOut)
So, a word like “Street;” would be converted to “Street”.

We can also convert the input word to lowercase letters, making it easier to find match-
ing words later on.

word = word.ToLower ()

When examining a word, we might want to know if the first character is a letter. The
Char class has a convenient method that returns either True or False.

If Char.IsLetter(word(0)) Then

Tutorial Steps
Step 1: Create a new application named Concordance Builder.

Step 2: Copy the file named moby.txt from the chapter examples folder into your
project folder.

Step 3: Add the controls listed in Table 3-5 to the form. Refer again to Figure 3-9 for
the control locations. The DropDownButton on the tool strip contains a File
menu with two subitems: Open and Exit. The tool strip also contains a few
separators, which are optional.

136 Chapter 3 Collections

Table 3-5 Controls in the Concordance Builder application

Control Type Control Name Properties

Form Text: Searching Text
ToolStrip

ListBox IstBox ColumnWidth: 100
ToolStripLabel IblFileName Text: (no file)
ToolStripTextBox txtSearchWord

ToolStripDropDownButton

ToolStripMenultem mnuFileOpen Text: Open
ToolStripMenultem mnuFileExit Text: Exit
ToolStripButton btnFind Text: Find
ToolStripButton btnAll Text: All
OpenFileDialog ofdOpenFile

Step 4:

Step 5:

Step 6:

Open the startup form’s code window and add an Imports statement above
the class, as follows:

Imports System.IO

Inside the class, insert the following declarations:

Private infile As StreamReader

Private wordDict As New Dictionary(Of String, List(Of Integer))
Private rawText As New List(Of String)

The rawText variable holds all input lines from the file, so we can display
these lines later in the list box when the user searches for a word.

Add the OpenlnputFile function, which returns True if a file was selected by
the user. We have already discussed the mechanics of the OpenFileDialog.

1: Private Function OpenInputFile() As Boolean

2 ' Displays an OpenFileDialog control and lets the user
3 ' select the input file.

4 With ofdOpenFile

58 .InitialDirectory = Directory.GetCurrentDirectory()
6 .FileName = "*.txt"

7 Dim result As DialogResult = .ShowDialog()

8 If result = DialogResult.OK Then

9: infile = New StreamReader(.OpenFile())

10: lblFileName.Text = "Filename: "

11: & Path.GetFileName(.FileName)

1zg Return True

13: Else

14: Return False

15: End If

16: End With

17: End Function

Line 10 copies the filename from the OpenFileDialog control into a label on
the tool strip. The call to Path.GetFileName returns just the filename after
stripping off the long directory path.

3.3 List and Dictionary Classes

Step 7: Next, add the following Click handler for the File | Open menu command:

Step 8:

1: Private Sub mnuFileOpen Click() Handles mnuFileOpen.Click
28 ' The user has clicked the File | Open menu item.

38 If Not OpenInputFile() Then Return

4:

58 ' Read each line and insert each new word into the

6: ' dictionary. For each existing word, add its line
78 ' number to the list for that word entry.

8: Dim linenum As Integer = 0

9: Dim filterOut As Char() = ("?2':;.,!" " ").ToCharArray()
10:

11: Do While Not infile.EndOfStream()

12: Dim temp As String = infile.ReadLine()

13: If temp.Trim().Length = 0 Then Continue Do

14:

15: rawText .Add (temp)

16: Dim words() As String = temp.Split(" "c)

17:

18: For Each word As String In words

19: word = word.TrimEnd(filterOut) .ToLower ()

20: If word.Length > 0 AndAlso Char.IsLetter(word(0)) Then
21: If Not wordDict.ContainsKey(word) Then

22: wordDict.Add(word, New List(Of Integer))

23: End If

24: wordDict (word) .Add(linenum)

253 End If

26: Next

27: linenum += 1

28: Loop

29: End Sub

This is a long method, so let’s go through the code carefully. Line 3 calls
OpenlnputFile, and exits if the user canceled the dialog. Line 8 creates a vari-
able named linenum, which will keep track of the line read most recently from
the file. Line 11 repeats the loop until the end of the input file. Line 12 reads
a complete line of input from the file, and line 15 adds the line to the rawText
list we declared earlier. Line 13 skips the rest of the loop if a blank line is
found and goes right back to line 11. Line 16 splits the input line into an array
of words.

Line 18 begins a new loop whose job is to take each word in the array, trim it
and convert it to lowercase (line 19), and make sure it is not blank and it begins
with a letter (line 20). Then on line 21, we check if the word is already in the
dictionary. If it is not, we add the word to the dictionary (line 22) and give it
a new empty line number list. On line 24, we add the current line number to
the list associated with the current word. Line 27 increments the line number,
and the loop goes back to read another line from the file (line 12).

Add a Click handler for the All button, which displays all words in the dictionary.

Private Sub btnAll Click() Handles btnAll.Click
lstBox.MultiColumn = True
1stBox.Items.Clear()

For Each entry As KeyValuePair(Of String,
List(Of Integer)) In wordDict
lstBox.Items.Add(entry.Key)

Next

End Sub

137

138

Chapter 3

Collections

Notice how the code sets the MultiColumn property in the list box to display
as many words as possible at the same time.

Step 9: Create a Click handler for the Find button. Its job is to look for the user’s
word in the dictionary and then pull out all matching lines from the rawText

list.

1: Private Sub btnFind Click() Handles btnFind.Click
2: lstBox.MultiColumn = False

38 lstBox.Items.Clear()

4: If wordDict.ContainsKey (txtSearchWord.Text) Then
58 For Each lineNum As Integer In wordDict(

6: txtSearchWord.Text)

78 lstBox.Items.Add(lineNum & ":" & vbTab _
8: & rawText(lineNum))

oF Next

10: Else

11: lstBox.Items.Add(" (word not found)")

12: End If
13: End Sub

Line 4 calls ContainsKey to find out if the word (in txtSearchWord.Text)
exists in the dictionary. This type of search executes very quickly. If the word
is found, the following expression returns a List(Of Integer) object containing
the line numbers where the word was found in the input file:

wordDict (txtSearchWord.Text)

Line 5 loops through the list of line numbers. Line 7 uses each line number as
an index into the rawText List object, and inserts the text line into the list box.
Finally, if the user’s word is not found, line 11 displays a failure message in
the list box.

Step 10: Finally, insert a Click handler for the File | Exit menu item.

Private Sub mnuFileExit Click() Handles mnuFileExit.Click
Me.Close()
End Sub

Step 11: Save the project and run the application. Open the moby.txt file from your
project directory. Click the All button to display all words found in the file.

Step 12: Input a word into the text box that you would like to find, and click the Find
button. You should see a list of the lines from the file that contain your word.

If you have another file you would like to search, repeat the process shown in
Steps 11 and 12.

Summary

There is no limit to the ways in which lists and dictionaries can be combined. For example,
you could create a list of dictionary objects. Each dictionary object might contain a key and
an associated list (as we did in Tutorial 3-3). Each member of that list could be a Dictionary
that holds yet another list.

The Dictionary class offers outstanding performance when you have a large number of
items, or when you want to perform advanced operations on its data. Also, it does not
require you to implement the Equals method in the class defining values inserted in the dic-
tionary. The Dictionary keys, on the other hand, must be comparable.

3.4 Language Integrated Query (LINQ) 139

') Checkpoint

11. What is a weakly typed collection?
12. What is a generic class?
13. Which generic classes were described in this chapter?

14. When calling the List.Contains method, what restriction is placed on the class that
defines the list elements?

15. Why is a comparator useful?

Language Integrated Query (LINQ)

Language Integrated Query (LINQ), is a query language built into .NET that can be used to
display information from different types of data sources. For example, LINQ can query col-
lections of objects (arrays, Lists, ArrayLists) in memory, databases, XML files, Excel spread-
sheets, and so on.

A group of smart people at Microsoft had a good idea: If SQL is such a powerful language
for searching (querying) databases, why not invent a similar type of language in .NET that
can query many types of data, not just databases? And so, LINQ was born. In this chapter,
we introduce a simple type of LINQ known as LINQ for Objects.

The simplest LINQ query revolves around four clauses: From, Where, Select, and Order By

e From—TIdentifies the data source, which can be object such as an array or List

e Where (optional)—Holds a Boolean expression that selects which values will be copied
from the data source

o Select—Identifies the name of the field(s) that will be returned by the query

® Order By (optional)—Indicates how the results of the query will be ordered

The From and Select clauses are required.

Array Example

We will show how to use LINQ to query an array of integers. Let’s begin with the following
array declaration:

Dim intNumbers() As Integer = {4, 104, 2, 102, 1, 101, 3, 103}

The following LINQ statement returns all array values that are greater than 100:

Dim query = From item In intNumbers
Where item > 100
Select item

Let’s take a closer look at the statement. First, notice that the statement begins with Dim
query. We are declaring an object named guery that defines a LINQ query, but we have not
specified a data type. Visual Basic automatically determines the data type for the object, a
technique known as type inference.

On the right side of the = operator is the query definition, which examines each item in the
intNumbers array to see if the value is greater than 100, and if it is, to select the value.

From item In intNumbers
Where item > 100
Select item

Once the query has been defined, you can use it in different ways. You can loop through it,
you can build another query from it, or you can pass the query to another method.

140

Chapter 3

"

Collections

For example, the following code segment loops through the query (executing it) and adds
each value to a list box named IstResults:

For Each intNum As Integer In query
lstResults.Items.Add(intNum)
Next

Because the intNumbers array contains {4, 104, 2, 102, 1, 101, 3, 103}, our query will show
the values 104, 102, 101, and 103 in the list box, in that order.

To sort the results of the LINQ query in ascending order, we can use the Order By operator,
as shown here:

Dim query = From item In intNumbers
Where item > 100
Select item
Order By item

LINQ uses operators such as Where, Select, and Order By, which are similar to operators in
the SQL database query language. The operators are part of Visual Basic and can be checked
by the compiler before the application runs. This makes it easier to know if you have made
a mistake.

TIP: Anonymous types are data types that are not explicitly declared anywhere in a
program. Some expressions, particularly those created by LINQ queries, have types that
can be determined only at runtime. So Visual Basic uses type inference to figure out the
expression’s type at runtime. You can create an anonymous type yourself, as we do in the
following code:

Dim aCustomer = New With {.Name = "Joe Smith",
.Age = 22, .City = "Miami"}

Example: Selecting Even Integers from an Array

In this example, we query an array of integers, looking for the even values (evenly divisible
by 2). Also, we sort them in ascending order:

Dim numbers() As Integer = {4, 3, 2, 1, 6, 9, 7}

Dim evensQuery = From num In numbers
Where (num Mod 2 = 0)
Order By num
Select num

The expression num Mod 2 returns the remainder after dividing num by 2. If the

remainder equals zero, the number must be even. The values produced by evensQuery
are {2, 4, 6}.

You can modify a query after it has been created. For example, the following statement
reverses the order of the values generated by evensQuery:

evensQuery = evensQuery.Reverse()

What type of variable is evensQuery? It is defined as a strongly typed interface named
IOrderedEnumerable(Of Integer). The important point here is that the elements produced
by this query “know” that they are Integers. We’ll see how that matters when we start pro-
ducing queries from lists of more complex objects, such as Students or Accounts.

3.4 Language Integrated Query (LINQ)

Building a Query from an Existing Query

The evensQuery produced the even numbers {2, 4, 6}. We can build a second query that
further limits the values produced by evensQuery. The following query named evensLarge
produces just one value, 6:

Dim evensLarge = From num in evensQuery
Where num > 4
Select num

Extension Properties and Methods

An extension method is a method that returns a modified version of the output from a LINQ
query. One such extension method is named Count.

evensQuery.Count ()

It is important to realize that evensQuery does not contain actual data—instead, it is a vari-
able that contains a query. You can modify the query, pass the variable as a parameter, or
assign it to another variable. LINQ uses deferred execution, which means that a LINQ query
does not execute until we actually use it. That might be when we fill a list box with the val-
ues or use the items in some other way.

In the following code, we copy the list of output values generated by evensQuery to a List-
Box and then display the average value of the integers produced by evensQuery:

For Each number In evensQuery
lstBox.Items.Add(number.ToString())
Next

' Display the average value of evensQuery.
lblAverage.Text = '"Average = " & evensQuery.Average()

Querying a List of Objects

LINQ makes it easy to query lists and dictionaries of objects. In particular, you can refer to
object properties by name. To show how this works, we will create a List(Of Student) and
design LINQ queries that work with the list. We will assume that the following Student class
has been defined, and it has a constructor with parameters:

Public Class Student
Public Property Id As String
Public Property LastName As String

Public Property Status As Integer 'values: 1,2,3,4
Public Property Gpa As Double 'grade point average
Public Property Major As String
'etc.

End Class

We can populate a List with Student objects, as follows:

Dim studentList As New List(Of Student)
With studentList

.Add(New Student("1241", "Jones", 1, 3.2, "BIO"))
.Add(New Student("1641", "Baker", 2, 3.9, "ENG"))
.Add (New Student("1001", "Charles", 1, 2.6, "BIO"))
.Add(New Student("2205", "Smith", 2, 3.1, "MTH"))
.Add(New Student('"1961", "Davis", 2, 2.2, "ENG"))
.Add(New Student("2210", "Chong", 3, 2.4, "BIO"))
.Add(New Student("1975", "Perez", 3, 4.0, "ENG"))

End With

141

142

Chapter 3

Collections

The following LINQ query selects all students from studentList and sorts the results in
ascending order by the Student.Id property:

Dim query = From aStudent In studentList
Select aStudent
Order by aStudent.Id

The following query selects all students from the list and sorts by Last name:

Dim query = From aStudent In studentList
Select aStudent
Order by aStudent.LastName

You can very easily assign a query’s output to a DataGridView control, as shown in Figure 3-13.
Just convert the query’s output to a List and assign it to the DataSource property of the grid.

dgvStudents.DataSource = query.ToList()

If you want to display only some of each object’s properties, you can list them in the Select
clause, as follows:

Dim query = From aStudent In studentList
Select aStudent.Major, aStudent.LastName
Order By Major

dgvStudents.DataSource = query.ToList()

The result is a convenient listing of students by major, as shown in Figure 3-14.

Figure 3-13 Displaying a LINQ query in a DataGridView control

— —
a2l List of Students s
Sortby Select
Id LastName Status Gpa Major
bﬁhaﬂes 1 26 BIO
1241 Jones 1 32 BIO
1641 Baker 2 39 ENG
1961 Davis 2 22 ENG
1975 Perez 3 4 ENG
2205 Smith 2 31 MTH
2210 Chong 3 24 BIO
Figure 3-14 Listing of students by major
a
ac! List of Students [=E3a]
Sortby Select View

Major LastMame

BID Jones

BIO Charles

BIO Chang

ENG Baker

ENG Davis

ENG Perez

MTH

3.4 Language Integrated Query (LINQ) 143

Filtering the Rows

The Where operator in a LINQ query provides the filtering, or selecting of rows from a data
source. You can use any combination of object properties, comparison operators, method
calls, and compound operators. Let’s look at some examples.

The following query selects only students with a grade point average (GPA) over 3.0 and
sorts the results in descending order:

Dim query = From aStudent In studentList
Select aStudent
Where aStudent.Gpa > 3.0
Order By aStudent.Gpa Descending

The following query selects only students with a GPA under 3.2 who are biology (BIO) majors:

Dim query = From aStudent In studentList
Select aStudent
Where aStudent.Gpa < 3.2 And aStudent.Major = "BIO"
Order By aStudent.Gpa Descending

Rather than using constant values for comparison, you can use values in text boxes:

Dim query = From aStudent In studentList
Select aStudent
Where aStudent.Gpa < CDbl(txtGpa.Text) And
aStudent.Major = txtMajor.Text
Order By aStudent.Gpa Descending

We could write code that loops through studentList and perform the comparisons ourselves,
of course. But LINQ does this type of work so much more easily. In Tutorial 3-4, you will
look at various ways to query a list of students and to calculate useful statistics on the list.

Tutorial 3-4:
Performing LINQ queries on a list

In this tutorial, you will examine an application that uses LINQ queries to display, sort,
filter, and calculate statistics on a list of students. The startup form has a menu with
selections that let the user choose different sorts and filters. The results of the queries
are displayed in a DataGridView control. Figure 3-15, for example, shows the output
from a LINQ query that sorts by last name in descending order.

Figure 3-15 Sorting students by last name in descending order

a2 List of Students

Sortby Select View

Id LastName Status Gpa Major
hsmh 2 31 MTH
1575 Perez 3 4 ENG
1241 Jones 1 32 BIO
1961 Davis 2 22 ENG
2210 Chong 3 24 BIO
10M Charles 1 26 BIO
1641 Baker 2 39 ENG

144

Chapter 3

Collections

The Statistics form in Figure 3-16 displays statistics gathered from the list, using
LINQ queries and extension methods. It shows the average GPA of all students, the
range of GPA values from smallest to largest, and the average GPA of the major that
was selected by the user from a list box. The list box itself is populated by a LINQ

query.

Figure 3-16 Statistics form displays information about the student list

a2 Statistics ==
Average Gpa: |3.06 Average GPA of selected major: 337

BIO
GPA Range: |2.20-4.00

MTH

Tutorial Steps

Step 1:
Step 2:

Step 3:

Step 4:

Open the sample project named LINQ List of Students.
Examine the main menu items.

Sort by

ID, ascending

Last name, descending
Select

Students with GPA > 3.0

BIO majors with GPA < 3.2
View

Statistics

Open the code window and examine the following code:

Dim studentList As New List(Of Student)

Private Sub Form Load() Handles MyBase.Load
With studentList
.Add (New Student("1241'", "Jones'", 1, 3.
.Add(New Student("1641'", "Baker", 2, 3.
.Add (New Student("1001'", "Charles", 1
.Add(New Student("2205", "Smith",

2, "BIO"))
9, "ENG"))
.6, "BIO"))
1

~

2
0 IIMTHII))
2

14 14
2y 3o
.Add(New Student("1961", "Davis", 2, 2.2, "ENG"))
.Add (New Student('"2210", "Chong", 3, 2.4, "BIO"))
.Add (New Student("1975", "Perez", 3, 4.0, "ENG"))
End With
End Sub

The studentList variable is declared as a List of Student objects.

Examine the Click handler for the Sort by / ID, ascending menu item:

Private Sub mnuSortById Click() Handles mnuSortById.Click
' Sort by ID, ascending
Dim query = From aStudent In studentList
Select aStudent
Order By aStudent.Id
' Convert to List(Of Student)
dgvStudents.DataSource = query.ToList()
End Sub

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

3.4 Language Integrated Query (LINQ)

Examine the Click handler for the Sort by / Last name, descending menu item:

Private Sub mnuSortByName Click() Handles mnuSortByName.Click
' Sort by last name, descending
Dim query = From aStudent In studentList
Select aStudent
Order By aStudent.LastName Descending
dgvStudents.DataSource = query.ToList()
End Sub

Examine the Click handler for the Select / Student with GPA > 3.0 menu
item:

Private Sub mnuSelectHighGpa Click()
Handles mnuSelectHighGpa.Click
' Students with GPA greater than 3.0
Dim query = From aStudent In studentList
Select aStudent
Where aStudent.Gpa > 3.0
Order By aStudent.Gpa Descending
dgvStudents.DataSource = query.ToList()
End Sub

Examine the Click handler for the Select / BIO majors with GPA < 3.2 menu
item:

Private Sub mnuSelectBIO Click() Handles mnuSelectBIO.Click
' BIO majors with GPA less than 3.2
Dim query = From aStudent In studentList
Select aStudent
Where aStudent.Gpa < 3.2 And aStudent.Major = "BIO"
Order By aStudent.Gpa Descending
dgvStudents.DataSource = query.ToList()
End Sub

Examine the Click handler for the View / Statistics menu item:

StatisticsForm.StudentList = studentList
StatisticsForm.ShowDialog()

Run the application and verify that all queries based on menu items work cor-
rectly. Then stop the application.

Statistics Form

Step 10:

Step 11:

Open the code window for the Statistics form. It contains a property that
holds a reference to the list of students that was created in the MainForm
class:

Public Class StatisticsForm
Public Property StudentList As New List(Of Student)

Examine the Form_Load event handler, which calculates the average GPA.
Because we want only GPA values, the Select clause specifically identifies
aStudent.Gpa:

Private Sub StatisticsForm Load() Handles MyBase.Load
'Calculate the average GPA.
Dim GpaQuery = From aStudent In StudentList
Select aStudent.Gpa
lblAverageGpa.Text = GpaQuery.Average().ToString("n")

145

146 Chapter 3 Collections

The extension method named Average returns the average value of all the val-
ues found by GpaQuery.

Continuing in the same event handler, extension methods are applied to the
GpaQuery object to get the smallest (Min) and largest (Max) values returned
by the query:

'Calculate the min and max GPAs.
lblGpaRange.Text = GpaQuery.Min().ToString("n")

& " - " & GpaQuery.Max().ToString("n")
Finally, the code fills the ListBox control with a single instance of each major.
This is done first with a query (named majors) and then by calling the exten-
sion method named Distinct.

'Fill the list box with major names.
Dim majors = From aStudent In StudentList
Select aStudent.Major
Order By Major
lstMajors.DataSource = majors.Distinct().ToList()
End Sub

Step 12: Examine the SelectedIndexChanged event handler for the ListBox.

Private Sub lstMajors_SelectedIndexChanged()

Handles lstMajors.SelectedIndexChanged
This method calculates the average GPA of students having the selected major,
in two steps: First, it assigns a list of students who match the selected major
to majorQuery.
Dim majorQuery = From aStudent In StudentList

Select aStudent

Where aStudent.Major = lstMajors.SelectedItem.ToString

Then, it uses majorQuery as the source for a second query that selects just the
Gpa property of each student.

Dim gpaQuery = From aStudent In majorQuery

Select aStudent.Gpa
Finally, when gpaQuery is assigned to the Label control, the Average exten-
sion method calculates the average GPA.

1blAvgGpaSelected.Text = gpaQuery.Average().ToString('"n")

It is possible to combine the foregoing queries into a single nested query.

gpaQuery = From aStudent In (From aStudent In StudentList
Select aStudent Where aStudent.Major =
lstMajors.SelectedItem.ToString)
Select aStudent.Gpa

Summary

This tutorial presented a few of the simplest types of queries available in LINQ for objects.
It is worth noting that the types of operations performed on the data (min, max, average,
select, sort) would require quite a bit of coding if LINQ were not used. Notice how easy it
was to assign the results of the queries to a DataGridView control, just as you might do with
an SQL Server DataTable.

3.4 Language Integrated Query (LINQ)

Querying a Dictionary

You can perform LINQ queries on a Dictionary. Using the same Student class that we used
in the previous examples, the following code fills the Dictionary with the same entries that
we used for a List:

Dim studentColl As New Dictionary(Of Integer, Student)
With studentColl

.Add (1241, New Student('"1241", "Jones", 1, 3.2, "BIO"))
.Add (1641, New Student('"1641", "Baker", 2, 3.9, "ENG"))
.Add (1001, New Student('"1001", "Charles", 1, 2.6, "BIO"))
.Add (2205, New Student(™"2205", "Smith", 2, 3.1, "MTH"))
.Add (1961, New Student('"1961", "Davis", 2, 2.2, "ENG"))
.Add (2210, New Student('"2210", "Chong", 3, 2.4, "BIO"))
.Add (1975, New Student('"1975", "Perez", 3, 4.0, "ENG"))

End With

Writing a LINQ query to process a Dictionary is a little different from writing a query for a List.
Each entry in a Dictionary is of type KeyValuePair, which has two properties named Key and
Value. The Select operator in a LINQ query needs to reference the Value property of the pair.

The following query selects all students from the Dictionary and sorts them by ID number:

Dim query = From aPair In studentColl
Select aPair.Value
Order By Value.Id

Because the expression aPair. Value returns a Student object, the Order By operator needs to
use Value.Id to indicate the specific Student property for sorting the query results.

A simple alternative is to run the LINQ query on the Values collection of the Dictionary,
which is itself a List. An example is shown here.

Dim query = From aStudent In studentColl.Values
Select aStudent
Order By aStudent.Id

Classes Containing Other Lists

One of the most powerful features of LINQ is its ability to access and search a list that may
be inside another class. Suppose, for example, that a program declares a list of Account
objects, as follows:

Dim accountList As List(Of Account)

Each Account contains an ID and a list of stocks.

Class Account

Public Property ID As Integer

Public Property Stocks As List(Of Stock)
End Class

A Stock object contains a Ticker symbol and a price.

Class Stock
Public Property Ticker As String
Public Property Price As Double
End Class

First, we can write a LINQ query that selects a single account that matches the ID number
stored in a variable named AcctldToFind.

Dim queryOne = From acct In accountList
Where acct.ID = AcctIdToFind
Select acct

147

148

Chapter 3

Collections

Now that queryOne contains the selected Account object, we can call the ElementAt exten-
sion method to return a reference to the Account object and get its list of stocks.

Dim stockList As List(Of Stock) = queryOne.ElementAt(0).Stocks

Many programmers save space by combining all of this into a single query. Notice how
parentheses must surround the first query before calling ElementAt:

stockList = (From acct In accountList
Where acct.ID = AcctIdToFind
Select acct).ElementAt(0).Stocks

Summary

LINQ has assumed an increasing level of importance in the .NET world over the past few
years. Its greatest appeal is that it is designed to work directly with objects. Objects tend to
be hierarchical in nature, so that a Student might reference a list of courses, each of which
might then reference course catalog information. LINQ can save you a lot of coding time
with its huge set of operators and extension methods.

'/ Checkpoint
1

6. What does LINQ stand for?
17. What are the three basic keywords in LINQ queries?
18. What data type is used when declaring a variable that holds a LINQ query?
19. What is an extension method?

20. When does a query execute?

Summary

3.1 Arraylists

e The most fundamental .NET collection is the Collections.ArrayList class. It is the best
replacement for the older Visual Basic Collection type, which has many limitations.

e The ArrayList class defines an expandable collection of references to objects.

e ArrayLists let you find, insert, and remove items; arrays do none of these tasks.

e The Add and Insert methods add new items to an ArrayList.

e The Remove and RemoveAt methods remove items.

e The Contains and IndexOf methods search for items.

e The Item property retrieves and replaces items.

e The Count property returns the number of items.

3.2 Arraylists of Custom Objects

e When filling an ArrayList with instances of your own user-defined class, be sure to
override the Equals method and implement the CompareTo method in your class.

e Always create a new instance of the user-defined class each time you insert a new
object. You don’t want to build an ArrayList in which all the items reference the same
object.

e When an item in an array or ArrayList is a value type such as Integer or Single, the
Item method returns a copy of the item.

e A reference to an item in an ArrayList can be used to modify the object that it references.

Key Terms

An interface defines a set of methods and properties that can be implemented by other
classes. The classes that implement the interface are guaranteed to contain these meth-
ods and properties.

To override the Equals method means to create an Equals method in your own class
that has exactly the same method signature as the Object.Equals method. You can
select any property, variable, or method return value in your class to be compared
when overriding Equals.

3.3 List and Dictionary Classes

o A strongly typed collection is a collection that contains only a single type of object.

e The most common way to create a strongly typed collection is through the use of generic
classes, which can be found in the .NET Systems.Collections.Generic namespace.

o A generic class is a class that takes on a specific data type only when an instance of the
class is created. From that point on in the application, the class is bound to the data
type of its elements.

e The List(Of ValueType) class is a strongly typed List class.

* A comparator is a method that compares two list elements in a specific way.

e The Dictionary class maps a set of keys to a set of values. In other words, for each key
in the dictionary, there is a single value associated with that key. The keys must be
unique, but the values need not be unique.

® When you declare a Dictionary object, you supply the types of its key and value pair.

e Each entry in a Dictionary is a KeyValuePair object. It has two properties: Key and Value.

e A SortedDictionary is a dictionary that maintains its keys in a specific order.

3.4 Language Integrated Query (LINQ)

e LINQ, which stands for Language Integrated Query, is a query language built into Visual
Basic that can be used to display information from different types of data sources.

e A query variable uses type inference to get its type based on the data returned by the
query on the right side of the assignment operator.

e LINQ uses operators such as Where, Select, and Order By, which are similar to oper-
ators in the SQL database query language.

e LINQ operators are part of .NET and can be checked by the compiler before the appli-
cation runs.

e LINQ provides many useful extension properties and extension methods that perform
additional operations on queries.

e The Where operator in a LINQ query provides filtering, or selecting of rows from the
data source.

Key Terms

anonymous types

ArrayList class

collection

comparator

CompareTo method

Dictionary(Of KeyType, ValueType) class
extension method

generic class

IComparable interface

interface

KeyValuePair

Language Integrated Query (LINQ)

LINQ for objects

list

List(Of Type)

map

method signature

override the Equals method
SortedDictionary

strongly typed collection
type inference

weakly typed collection

149

150

Chapter 3

Collections

Review Questions

True or False

Indicate whether each of the following statements is true or false.

1.

N

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.
20.
21.
22.

23.
24.

You must declare the size of an ArrayList when it is created.

. An ArrayList can contain duplicate items.
. If the ArrayList.IndexOf method does not find a matching item, it returns a value of zero.

2
3
4.
5
6

If the ArrayList.Item property does not find a matching item, it throws an exception.

. The ArrayList.Add method always adds the item at the end of the list.

. When an item in an array or ArrayList is a value type such as Integer or Single, the Item

method returns a copy of the item.
The CompareTo method in the Student class always has two Student parameters.

An interface defines a set of methods and properties that can be implemented by other
classes.

The IComparable interface contains two methods.

The CompareTo method returns a Boolean result.

The Equals method always has a single Object parameter.

The Equals method always uses the Overrides keyword.

The List class can be used to create a strongly typed collection.
A generic class is often used to create a weakly typed collection.

The values in a Dictionary must be instances of a class that implements the CompareTo
method, but the keys have no such restriction.

In a Dictionary, the values must be unique, but the keys need not be unique.

If you assign a value to the Item property and reference a key that is not in the Dictio-
nary, a new entry is created and inserted.

The Dictionary class does not contain a Sort method.

A Dictionary automatically stores its keys in sorted order.

The OpenFileDialog control’s OpenFile method returns a StreamReader object.

To get the application’s current directory, call the Directory.GetCurrentDirectory method.

To get just the name of a file from a complete directory path, call the My.Applica-
tion.GetFileName method.

To find out if a Dictionary has a certain key value, call the Contains method.

When you use LINQ to query a Dictionary of objects, you can refer to the object prop-
erties by name.

Short Answer

1.

2.

Why is it easier to insert a new item into index position 5 of an ArrayList than to do the
same with an array?

If you want to sort an ArrayList containing Account objects, which interface must be
implemented in the Account class?

14.

15.

16.
17.

18.

Review Questions

If you want to call the Remove method in an ArrayList containing Account objects,
which method must be implemented in the Account class?

Of the ArrayList methods and properties discussed in this chapter, which ones can throw
an IndexOutOfRangeException?

. What is the preferred way to loop through an ArrayList?

. What common error is caused if you forget to use the New operator to create a separate

object each time an object is inserted in an ArrayList?

Consider the following call to the CompareTo method:

Dim result As Integer = A.CompareTo(B)
What does result equal when object A is found to be less than B?

What happens if you call the Sort method on an ArrayList of Students, but there is no
CompareTo method in the Student class?

. Which generic class in this chapter has two data types in its definition?
10.
11.
12.
13.

Show how to declare a new List(of Student) objects named stuList.
What type of object is in each item of a Dictionary?
Show how to convert a List named stuList to an array of Student objects.

What type of method must you create if you want to sort a List of objects in a way that
is different from the ordering implied by the objects’ CompareTo method?

Write a definition of a Dictionary object named myAccounts in which the keys are
strings and the values are Accounts.

Write a statement that adds a new entry to the Dictionary you created in Short Answer
question 14.

What are the two properties of an item in a Dictionary?

If a String named myLine contains words separated by commas, show how to split it
into an array of Strings named words.

Which Directory class method returns True when a certain key value is contained in its
Keys collection?

Algorithm Workbench

Assume the following class declaration:

Public Class Account

Public Property Id As String

Public Property Name As String

Public Property Balance As Double

Public Property CreationDate As DateTime

Public Property BalanceHistory As List(Of Double)
End Class

Assume that the following List contains a set of Account objects:

= 2=

Dim accountList As New List(Of Account)

Write a LINQ statement that lists the accounts in ascending order by ID.

Werite a LINQ statement that lists accounts created before 1/1/2005.

Write a LINQ statement that returns only the Name and Balance of the items in accountList.

Write LINQ statements that obtain the BalanceHistory of the account whose ID equals
“10021.” Assign the BalanceHistory property to a List variable.

151

152

Chapter 3

Collections

Programming Challenges

1. Accounts Dictionary

Create an application that lists accounts from a Dictionary object. Create an Account
class that contains an ID, name, and balance. Display the accounts in a ListBox, as
shown in Figure 3-17. If the user enters new values, she or he can click on the Add but-
ton to add a new account to the dictionary. Or if the user clicks the Replace button, she
or he can replace a dictionary item. Use exception handlers to catch errors caused by
invalid input values, or an attempt to add a duplicate Account ID to the dictionary.

Figure 3-17 Adding an Account to the dictionary

15 Accounts Dictionary @

Account ID- 1041 Accounts:

1050, Jones, 800.50

_ 1001, Adams. 750.18
Account Name: Chong 1020, Gonzalez, 1.800.21
1032, Chong, 120050

Balance: 2300

l Add] [Replace

2. Stock Comparators

Write an application that sorts a List of Stock objects three different ways: by their
ticker symbols (such as MSFT), their prices, and their price-to-earnings (P/E) ratios.
The user can ask to sort in both ascending and descending order. Figure 3-18 shows
the output after the user has clicked the Sorz by Ticker button. In Figure 3-19, the
list is sorted in descending order by stock price. In Figure 3-20, the list is sorted in
ascending order by the P/E ratio.

Create a class named Stock, with the following properties: Ticker (String), Price (Dou-
ble), Earnings (Double). Create a constructor that initializes these three values. Also, cre-
ate a ReadOnly property named PeRatio that returns the stock’s price divided by
earnings.

In your startup form, create comparator methods and pass them to the List.Sort
method.

Figure 3-18 Sorting in ascending order by ticker symbol

o5 Ordering Stocks @

This application sorts a list of stocks in different ways

Sort by Ticker ABC, price = 80.00, P/E = 4.00
LLT, price = 43.00, P/E = 8.60
MMA, price = 40.00, P/E = 8.00

; SBA. price = 42.00, F/E=6.00
XYZ, price = 77.00, P/E = 19.25
Sort by PE Ratio
[7] Descending order

Programming Challenges 153

Figure 3-19 Sorting in descending order by price

o' Ordering Stocks @

This application sorts a list of stocks in different ways

Sort by Ticker ABC, price = 80.00, P/E = 4.00
XYZ, pice = 77.00, P/E=19.25
LLT, price = 43.00, P/E = 8.60

- SBA, price = 42.00, F/E =6.00
MMA, price = 40.00, F/E =8.00
Sort by PE Ratio

Descending order

Figure 3-20 Sorting in ascending order by P/E ratio

a2 Ordering Stocks @

This application sorts a list of stocks in different ways

Sort by Ticker ABC, price = 80.00, P/E = 400
SBA, price =42.00, P/E =6.00
MMA, price = 40.00, P/E = 8.00

; LLT, price = 43.00, P/E = 8.60
XYZ, price = 77.00, P/E = 19.25
Sort by PE Ratio

[[] Descending order

3. Bank Teller Transaction Collection

Using the Bank Teller application presented in this chapter, build a list of transactions
that you can display in a separate window. You should create a Transaction object and
add it to a List or ArrayList inside the startup form class for the times when a user ini-
tiates a deposit or withdrawal. Add a button to the startup form that displays the trans-
actions in a separate window called the Transaction Log form, shown in Figure 3-21.

Figure 3-21 Transaction Log window

o' Transaction Log EI@

10000, 5/15/2010 11:08:21 AM, 200.50, 700.50
100040, 5/15/2010 11:08:28 AM, -87.50, 613.00
20000, 5/15/2010 11:08:42 AM, 364.00, 1564.00
20000. 5/15/2010 11:08:46 AM. -29, 1535.00
11111, 5/15/2010 11:09:15 AM. 400, 122550
111711, 5/15/2010 11:09:22 AM, -82, 1143.50

154

Chapter 3

Collections

Create a Transaction class that holds information about a single transaction. It should
contain the following properties: Account Number (String), TransactionDateTime,
Amount (Decimal), and Balance (Decimal). The Balance property holds the account
balance after the transaction was processed. A positive transaction amount indicates
that a deposit was made. A negative amount indicates a withdrawal. The Transaction
class should contain a constructor that initializes all properties, and a ToString method.

TIP: Pass the transaction list to the Transaction Log form before calling the Form.Show-
Dialog method.

4. Bank Teller Transaction Log

Using the solution program you wrote for Programming Challenge 3 as a starting point,
modify it as follows. Log all transactions to a file. Transaction logging can be useful in
a number of ways—when producing monthly account statements, for example, or when
verifying and auditing account transactions. The log file should contain a separate
printed line for each deposit and withdrawal transaction on customer accounts.

Replace the list of Transaction objects in the program’s startup form with a single Trans-
actionLog object. Continue to display the list of transactions in a separate window as
before. But in the same button click handler, save the transaction log to a file by calling
the TransactionLog.Save method.

TransactionLog Class

Create a TransactionLog class that is responsible for collecting transaction information
and writing it to a text file. It should contain the following properties and methods:

Declaration Description

ReadOnly Property Items() As Collection Returns the collection of transactions stored

inside the class.

Property FilePath() As String Gets and sets the file path for the transaction
log file.

ReadOnly LastError() As String Displays the most recent error message that
was generated by the class.

Sub Add(ByRef trans As Transaction) Adds a new transaction to the log.

Function Save() As Boolean Appends all logged transactions to the

transaction file. Returns True if successful.

Internally, the TransactionLog class should use a List or ArrayList to hold the logged
transactions. The Save method iterates over the collection and writes each transaction
to a file. It must catch exceptions and set the LastError property if an exception is
thrown.

. Club Committee Collections

Using the Club Committee Organizer application that you wrote for Programming
Challenge 2 in Chapter 2, make the following improvements:

e Create a class named Committee that contains a list of the students who are members
of a single committee. The class should have a ReadOnly property that returns a ref-
erence to the class’s internal collection variable.

e When the user selects different committees from the combo box, the application must
remember which people were assigned to each committee. The only way to do this is

Programming Challenges 155

to store each list of names in a collection. Suppose the user adds Adams, Baker, and
Chong to the Community Services committee, as in Figure 3-22. Next, the user selects
another committee and adds some people to that one. If the user then returns to the
Community Services committee, he or she should see Adams, Baker, and Chong in the
list of current members.

In the startup form class, create a list of Committee objects. (Initialize the list with a loop
in the Form_Load event handler.) When members are selected and copied into the com-
mittee list box, your code must add these members to the appropriate Committee object.
Use the Committee list box’s SelectedIndex property as a subscript that points to an ele-
ment in the list of Committee objects.

Figure 3-22 Community Services contains three people

a5 Club Committee Organizer E = @
Select a Committee |Community Services vl
General Member List Current Members
Adams, Ben = Adams, Ben
Baker, Sam Baker, Sam
Chaong. Anne = Chong, Anne

Davis, Sandra

Easterlin, John
Fernandez. Jose

Fox, Barbara

Gomez, Ignacio 57

6. FirstPlay Sports Rental

Create an application named FirstPlay Sports Rental that keeps track of the inventory
for a sports rental store.

Requirements Specification

e The user can input a new rental item and add it to the store inventory.

e The user can select an item’s ID Number from a list and remove the item from the
inventory.

e The user can select an item’s ID Number from a list and display the item’s properties.

® When the application starts, it reads an inventory list from a file (text format).

® When the application ends, it writes the inventory list back to the same file.

User Interface Details

Display a single sports rental item in a window, as shown in Figure 3-23. Each item has
an ID number; a description; daily, weekly, and monthly rental rates; and the quantity
on hand. When the application starts, it reads all item information from a file into a col-
lection (implemented as a Dictionary) and copies the item ID numbers into a combo box
on the form. The user can select an ID number from the combo box, and display or
remove existing items. The user can also add new items to the collection. When the pro-
gram ends, it writes the collection to the same file.

156 Chapter 3 Collections

Figure 3-23 Preparing to add a new item

! FirstPlay Sports - Rental ltem ==

1D Number

LKD0260 jv Description

|Tri-Fin Surfboard, high-performance

Rates Add Current Item

Daily [45
Weekly [250
Monthly |600 Display ltemn

Close

Remaove Current ltem

Cuantity |5

Startup Form

The application’s startup form displays inventory items and lets users carry out each of
the following actions:

e Input fields for a new rental item, and add that item to the inventory.
e Select an item’s ID Number and remove the item from the inventory.
e Select an item’s ID Number and display the item’s properties.

When the form loads, the combo box should contain a list of all inventory ID Numbers.

Returning to Figure 3-23 for a moment, we see that it shows a new item about to be added
to the store inventory. When the Add Current Item button is clicked, the button’s handler cre-
ates a new Item object and passes it to the class that handles the store inventory. Figure 3-24
shows an example of searching for an item by ID Number. When the user clicks the Display
Item button, the remaining item fields are filled in. When the user clicks the Rermove Current
Item button, the program confirms the operation with the user, as shown in Figure 3-25. If
the answer is yes, the program removes the item identified by the ID Number.

Figure 3-24 Searching for an item selected by ID Number

! FirstPlay Sports - Rental frern @

|0 Mumber

ABD0300]v Description

Rates

Daiy [
Weekly
Monthly Display ltem

Close

Add Current [tem

Remove Current [tem

CQuantity

Programming Challenges 157

Figure 3-25 Confirm before removing an item

About to Delete 23

Classes

We suggest that the application define three classes: Item, Inventory, and InventoryFile.

e The Item class encapsulates a single inventory item.

® The Inventory class represents a collection that contains all items and provides meth-
ods for adding, finding, and removing items. Internally, it should hold the items in a
Dictionary object.

® The InventoryFile class is responsible for reading the inventory data from a text file,
and writing all Inventory data back to the file.

7. Student Course Collection

Create an application that collects information about students and the courses they have
completed, and holds this information in collection, implemented as a List or ArrayList
object. You can use Tutorial 3-2 as a starting point for this project. The main form, dis-
played when the application starts, should have the same fields as shown in the tutorial.
A sample of the main form is shown in Figure 3-26.

In addition, do the following;:

e Create a class named Course with the following properties: Courseld As String, Cred-
its As Integer, Grade As Double.

e Add a class-level variable to the Student class that holds a list of courses.

e Create a new form named Course Information that contains the following input
fields: course ID, credits, and grade. A sample is shown in Figure 3-27. The list box
displays all courses in the student’s transcript.

Figure 3-26 The main form, with the new Course Information button

= Student Course Collection == 3]

Student ID: 10000

| Add to Collection |

Last name: Smith

Test average: 825 ’ Course Information]

10000, Smith, Testaverage =825

158 Chapter 3 Collections

Figure 3-27 Sample Course Information form

o5 Course Information Form =] =)

Student name: 10000. Smith
Existing Courses:
Add Course Info ENC1101, 3CR, grade: 35
COP2210.4 CR. grade: 3

Course number COP2210 Credits 4

Grade 3.0

e On the main form, add a Course Information button. Use this button to display the
Course Information form. The button should initially be disabled; it is enabled when
the user clicks either the Add to Collection button or the Find by ID button.

Figure 3-28 shows the relationships between the classes and objects in this application.

Figure 3-28 Concept view of Student Course Collection

displays —)[Course Information form

contains references
Student Collection]— contains Student
contains

)

Course Collection

Input Requirements

The following input requirements are designed to prevent the program from throwing
an exception or storing invalid data:

. No two Student IDs can be the same.

. No input fields can be blank.

. The Grade field must be a positive numeric value between 0.0 and 4.0.

1
2
3
4. The course credits field must be a positive integer between 0 and 6.
5. A duplicate course number cannot be added to the list of courses.
6

. Error messages must be specific, identifying exactly which field has a missing or
incorrect value.

Each of these requirements is included in the testing steps that we have outlined for this
programming challenge.

Programming Challenges 159

Suggestions

1. In the main form, create a class-level variable of type Student so it can be accessible
to different event handlers. This will affect the event handlers for both the Add and
Find buttons.

2. The Student class should have a ReadOnly property that exposes its ArrayList. This
will be useful when your program needs to display the courses in a list box or add a
new course to the list.

3. The Form_Load event handler for the Course Information form should fill the list
box with the list of courses belonging to the current student. It should also clear all
text boxes on the form.

4. Use the ErrorProvider control to display error messages.

Testing Steps

Bugs can be hidden in this application in quite a few ways. That is why we have created
a detailed testing plan to help you verify that your application has satisfied the project
requirements. The following table contains a sequence of manual testing steps that
should (eventually) be completed without closing or restarting the program. If your pro-
gram produces a response that does not match the expected output, you will probably
need to halt the program, fix the error, and restart the test.

Input On the main startup form, leave all fields blank and click the Add to

Expected output

Collection button.

A message box says: Student ID cannot be blank.

Input
Expected output

Enter 10000 as the Student ID and click the Add to Collection button.

A message box says: Last name cannot be blank.

Input

Expected output

Enter Smith as the last name value and click the Add to Collection
button.

A message box says: Test average must be numeric.

Input
Expected output

Enter 82.5 as the test average and click the Add to Collection button.

The Course Information button becomes enabled.

Input
Expected output

Click the Course Information button.

The Course Information window appears, showing the student ID
and last name that you just entered. All input fields are blank.

Input

Expected output

Input the following values for Course number, Credits, and Grade,
respectively: ENC1101, 3, 3.5. Then click the Save button.

The course information appears in the Existing Courses list box.

Input
Expected output

Click the Save button, leaving all input fields blank.

A red ErrorProvider icon blinks next to the course number input
field. When you hover the mouse over the icon, the following
message appears: Course number cannot be blank.

Input

Expected output

Enter COP3350 as the course number; leave the other input fields
blank.

A red ErrorProvider icon blinks next to the course credits input
field. When you hover the mouse over the icon, the following
message appears: Credits must be an integer between 0 and 6.

Input
Expected output

Enter -2 as the course credits and click the Save button.

The following message appears: Credits must be an integer between
0 and 6.

160

Chapter 3

Collections

Input
Expected output

Enter 4 as the course credits and click the Save button.
A red ErrorProvider icon blinks next to the course grade input field.

When you hover the mouse over the icon, the message says: The
grade must be a numeric value between 0.0 and 4.0.

Input
Expected output

Enter 6.0 as the grade value and click the Save button.

An error message says: The grade must be a numeric value between
0.0 and 4.0.

Input
Expected output

Enter 3.0 as the grade value and click the Save button.

The Existing Courses list box contains the two courses you added.

Input
Expected output

Click the Save button again.

A red ErrorProvider icon blinks next to the Save button. The error
message says: Cannot add a duplicate course. The contents of the
list box do not change.

Input
Expected output

Click the Close button.

The Course Information window closes, and you are now back in
the main startup form.

Input
Expected output

On the main form, click the Add to Collection button.

A message box pops up and says: Cannot add a duplicate Student
ID to the collection.

Input

Expected output

In the Student ID, Last name, and Test average fields, enter 20000,
Jones, 87.2, respectively, and click the Add to Collection button.
Then, click the View All button.

Both students (Smith and Jones) appear in the list box, with the
same data values you have already entered.

Input
Expected output

Click the Course Information button.

The Course Information window opens, containing the following
student ID and name values: 20000, Jones. All input fields are blank.

Input

Expected output

Input the following values for course number, credits, and grade,
respectively: COP2210, 4, 2.5. Then click the Save button.

The course information appears in the Existing Courses list box.

Input
Expected output

Click the Close button.

The Course Information window closes, and you are now back in
the main startup form.

Input

Expected output

In the text box at the lower left corner of the window, enter 19999
and click the Find by ID button.

In the list box, a message says: Student ID was not found.

Input

Expected output

In the text box at the lower left corner of the window, enter 10000
and click the Find by ID button.

The text boxes fill with the following values: 10000, Smith, 82.50.
The student also appears in the list box.

Input
Expected output

Click the Course Information button.

The Course Information window appears, showing student ID
10000 and last name Smith. All input fields are blank. The list box
displays information about the student’s two saved courses:

ENC1101, 3, 3.5, and COP3530, 4, 3.0.

Input

Input the following values, respectively, for Course number, Credits,
and Grade: MTH20035, 5, 3.0. Then click the Save button.

Programming Challenges

Expected output The new course you entered has been added to the courses in the list
box.

Input Click the Close button.

Expected output The Course Information window closes, and you are now back in
the main startup form.

Input Close the main startup form.

Expected output The application closes.

8. Students and Course Lists (LINQ)

Use a LINQ query to fill a DataGridView with a list of students. When the user selects
a student in the grid, display all courses taken by the student in a separate grid. Use
another LINQ query to fill the second grid. A sample is shown in Figure 3-29, in which
Student 1001 (Charles) was selected when the user clicked the button on the left side of
his row. The grid on the right fills with the list of courses taken by the selected student.

Figure 3-29 Displaying courses taken by a selected student

o' List of Students @
Id LastMame Status Maijor Id Credits Grade

y 4 32

. 1241 Jones 1 BIO COP3337 3 5

1641 Baker 2 ENG CEN2030 3 3
1961 Davis 2 ENG ENG1101 3 275
1575 Perez 3 ENG
2205 Smith 2 MTH
2210 Chaong 3 BIO

The two DataGridView controls should be inserted into panels belonging to a SplitCon-
tainer control. The user can drag the divider between the two panels to adjust their size.
The SplitContainer’s Dock property equals Fill, so the user can expand the form and cre-
ate more space for the two grids. In the grid on the left, the RowHeadersVisible property
should equal True, but in the grid on the right, the same property should equal False.

The Student class contains the following properties: Id (Integer), LastName (String), Sta-
tus (Integer), Major (String), Courses (List(Of Course)). The Course class contains the
following properties: Id (String), Credits (Integer), Grade (Double). All the student data
must be read from a data file named Studenis.txt, supplied for you in the example pro-
grams folder for this chapter.

When the user selects a DataGridView row, a SelectionChanged event is fired. You can
write code in the handler that gets the contents of the first column of the selected row,
using the following expression: dgvStudents.SelectedRows(0).Cells(0).Value.
Note, however, that the DataGridView fires SelectedltemChanged events when the form
is being loaded, before the grid becomes visible. You will have to find a way to avoid
responding to those events.

9. Cruise Selection Wizard

Selecting a cruise vacation can be tricky. We all have different preferences when it comes to
details like the location of the cruise, the size of the ship, the average age of the passengers,
and so on. Your job is to make this selection process easier. Create a wizard application that

161

162

Chapter 3

Collections

guides the user through selecting a cruise that suits his or her preferences. Create a class
named Cruise that contains properties that represent the characteristics of a single cruise.
Use the following: (1) size of ship, (2) geographical region, (3) formal versus informal attire,
and (4) average passenger age. Next, create a class that contains a strongly typed List(Of
Cruise) object. Use the constructor of this class to fill the list with cruise information.

User Interface

Ask the user for the relative importance of each cruise criterion, as shown in Figure 3-30.
Next, ask the user for his or her individual preferences for each of the criteria. For exam-
ple, in Figure 3-31 the user is asked for the ideal ship size; in Figure 3-32, the user is
asked for an ideal geographical region; in Figure 3-33, the user is asked about the aver-
age age of the passengers with whom they would prefer to sail. In Figure 3-34, the user
is shown a list of cruises, with a percentage next to each that shows the percentage sim-
ilarity of the cruise to the user’s preferred criteria. The user can select different radio but-
tons to filter the display so it shows cruises that meet various thresholds.

Figure 3-30 Cruise Selection Wizard, startup form

a5 Cruise Selection Wizard == =]

This wizard will assist you in selecting a cruise that most closely matches
your interests. Please assign percentage weights to the following criteria.

Ship size (number of passengers): 25
Geographical region: 25 Total must
equal 100

Formal dining expected: 25

Average age of passengers: 25

Ext | | Begin
Figure 3-31 Cruise Selection Wizard, ship size
Step 1: Select Ship Size =3

What is your ideal ship size. in terms of number of passengers?

Prov

Figure 3-32 Cruise Selection Wizard, geographical region

Programming Challenges

(Step 2: Select Region

Which geographical region do you prefer?

Western Europe

Caribbean

Prev

Figure 3-33 Cruise Selection Wizard, average age of passengers

Prewv

'Step 4: Average Passenger Age

What should be the average passenger age?

Figure 3-34 Cruise Selection Wizard, summary

-

' Summary

Based on your preferences, the following are recommended cruises. The percentage
match with your criteria is shown on the left. Select the minimum matching percentage to

display:
© 100 @ 75) 50 © 25)0
Cruise Mame Region Passengers Formal Avg Age
75% - Hords of Morway, 4 days Westem Europe 2000 Falze 3H
7h% - Ireland, 3 days Westem Europe 2000 Falze 3H
1007% - Alaska - Glacier, & days Alaska 1300 False 35
T - Maska - Glacier Bay . 4 days Alaska 1200 False 25

[F‘rev]

[Close]

163

164

Chapter 3

Collections

Use weighted criteria to help find the cruises that best match the user’s preferences. Here
is an example of the types of variables we used in our solution program:

NumPassengersWt As Single ' Number of passengers
RegionWt As Single ' Geographical region
FormalWt As Single ' Formal attire expected?
AverageAgeWt As Single ' Average passenger age

The algorithm for determining the percentage match of a cruise to the user’s preferences
must take into account the percentages the user assigned to the individual criteria. Let’s
call these percentages pcl, pc2, pc3, and pc4. The user’s actual preferences can be called
rl, r2, r3, and r4. For each cruise, let’s say that it has characteristics c1, c2, ¢3, and c4.
We will call tp the total percentage match value for this cruise:

tp = 0

if ¢l = rl then tp = tp + pcl

if ¢c2 = r2 then tp = tp + pc2

if ¢3 = r3 then tp = tp + pc3

if c4 = r4 then tp = tp + pc4

Let’s use an example, and the following table. Suppose the user has assigned the fol-
lowing values to the four preferences:

User’s Preferred Percentage Weight for
Preference Value Each Preference
size of ship (r1) 1500 pcl = .25
geographical region (r2) Alaska pc2 = .45
formal versus informal (r3) informal pc3 =.20
average age (r4) 45 pc4 = .10

This sample user seems mainly concerned with the geographical region (45 percent) and
the size of the ship (25 percent). We’ll say that the ship size matches if it is within 500
feet of the user’s preferred value. The age matches if it is within five years of the user’s
preferred age for the passengers. Next, let’s look at a couple of sample cruises:

Cruise X holds 1,700 passengers, goes to Alaska, emphasizes formal wear, and has an
average passenger age of 55. Its percentage match is 70 percent:

.25 + .45 + 0 + 0 = .70

Cruise Y holds 2,500 passengers, goes to the Caribbean, emphasizes informal wear, and
has an average passenger age of 45. Its percentage match is only 30 percent:

0+ 0+ .20 + .10 = .30

Based on these two sample cruise evaluations, this user would be advised to select Cruise
X because it has a higher percentage match value. But another user might place more
emphasis on different criteria and produce a different set of percentages.

Suggested Classes

Cruise class—contains information about a single cruise, which in turn contains the fol-
lowing properties:

NumPassengers As Integer ' number of passengers
Region As String ' geographical region
Formal As Boolean ' formal attire expected?
AverageAge As Single ' average passenger age

CruiseCollection class—contains a List(Of Cruise) object, a constructor, and a read-only
property that returns the list of available cruises.

CHAPTER

Using SQL Server
Databases

4.1 Database Basics Tutorial 4-6: Creating the Karate
4.2 SQL SELECT Statement School Manager startup form
4.3 Using the DataGridView Control Tutorial 4-7: Karate School Manager:
Tutorial 4-1: Showing a database table Listing all members
in a DataGridView control Tutorial 4-8: Karate School Manager:
4.4 Selecting DataSet Rows Addln.g new members
Tutorial 4-2: Filtering rows in the :!th.rlal 4-9: I;arati)School Manager.
SalesStaff table inding members by name
4.5 Data-Bound Controls Tutorial 4-10: Karate School Manager:

Listing all payments
Tutorial 4-3: Displaying the Members

table in a ListBox Tutorial 4-11: Karate School Manager:

Showing payments by one member
Tutorial 4-4: Inserting rows in the

Karate Payments table

Tutorial 4-5: Adding a total to the
Insert_Karate_Payments application

4.6 Focus on Problem Solving: Karate
School Manager Application

This chapter focuses on the basics of displaying and updating databases using .NET con-
trols. We show how Visual Studio enables data binding, which is the connecting of the user
interface directly to database components. We also discuss some basic database concepts,
and show how to execute SQL queries, sort and filter database data, display data in a grid,
and bind individual controls to database tables. After reading this chapter, you should be
able to display and update database tables rapidly and with almost no programming.

Database Basics

A database is a collection of one or more tables, each containing data related to a particu-
lar topic. A table is a logical grouping of related information. For example, a database might
have a table containing information about employees. Another table might list information
about weekly sales. Another table might contain a store inventory. Let’s look at a table
named Departments, shown in Table 4-1, which contains information about departments
within a company. Each row of the table corresponds to a single department. The sample
table contains the ID number, name, and number of employees in each department.

165

166

Chapter 4

Using SQL Server Databases

Table 4-1 Table of departments

dept_id dept_name num_employees
1 Human Resources 10

2 Accounting S

3 Computer Support 30

4 Research and Development 15

Each row of the table is also called a record. In the Departments table, the first row contains
1, Human Resources, 10. When discussing a table, we refer to their columns by name. In the
Departments table, the columns are named dept_id, dept_name, and num_employees. Table
columns are also called fields. Each table has a design that specifies the column’s name, data
type, and range or size. Table 4-2 describes the design of the Departments table. The SQL
data types used in the table are in# (integer) and varchar (string). The varchar type always
has a maximum length count.

Table 4-2 Departments table design

Field Type

dept_id int (primary key)
dept_name varchar (30)
num_employees int

Primary Key

In the Departments table, the dept_id column is called a primary key because it uniquely
identifies each department. In other words, no two departments can ever have the same
dept_id value. Primary keys can be either numbers or strings, but numeric values are
processed by the database software more efficiently. In the Departments table, the primary
key is a single column. Sometimes a primary key will consist of two or more combined
columns, called a compound primary key. The primary key’s value is often generated auto-
matically by the database server each time a new row is added to the table. This type of field
is called an auto-generated field, or identity field. Generally, each new row’s key value is gen-
erated by adding an integer to the value in the previous row.

SQL Server Data Types

We will be using Microsoft SQL Server databases. When you use Visual Basic to read a data-
base, you must select variable types that match the type of data in the table. Fortunately,
Microsoft SQL Server data types, .NET data types, and Visual Basic data types are similar.
Table 4-3 shows a partial list of SQL Server data types, which are recognized by SQL Server
when you pass parameters to database queries.

Designing Database Tables

Choosing Column Names and Types

A database schema is the design of tables, columns, and relationships between tables. Let’s
look at some of the elements that belong to a schema, beginning with tables. Suppose you
want to create a database to keep track of club members. We might want to store each

4.1 Database Basics

Table 4-3 Comparison of common SQL Server and .NET data types

SQL Server Data Type

Compatible .NET Data Type

bit

datetime

float

int

money

nvarchar

real

smalldatetime

smallint

text

varchar

Boolean. An unassigned numeric value that can be 0, 1, or a null
reference. Can be assigned the values true and false.

DateTime. Date and time data ranging in value from January 1,
1753 to December 31, 9999 to an accuracy of 3.33 milliseconds.

Double. A floating point number in the approximate range
10398,

Int32. Large signed integer. Visual Basic data type: Integer.
Decimal. Precise monetary values in the approximate range
+263,

String. A variable-length stream with a maximum length of
4,000 Unicode characters.

Single. Floating-point number, in the approximate range 1038,

DateTime. Date and time data from 1/1/1900 through 6/6/2079,
with an accuracy of 1 minute.

Int16. A signed integer between —32,768 and +32,767; Visual
Basic data type: Short.

String. A variable-length stream of nearly unlimited size.

String. A variable-length stream with a maximum length of
8,000 non-Unicode characters.

member’s first and last names, phone number, email address, date joined, number of meet-
ings attended, and a field indicating whether the person is a club officer. Table 4-4 contains
a possible design. Choosing the lengths of text fields involves some guesswork because we
do not want to risk truncating individual field values. When in doubt, it is best to make fields
a little larger than necessary.

Table 4-4 Sample design for the Members table

Column Name Type
First_Name varchar (40)
Last_Name varchar (40)
Phone varchar (30)
Email varchar (40)
Date_Joined DateTime
Meetings_Attended smallint
Officer bit (Boolean)

TIP: Although you can embed spaces in a column name, avoid doing so because it
causes SQL queries to be more complicated.

Suggestions on Choosing Column Types

Table 4-5 contains some of the more common types of data you might be likely to insert in
database tables. The table suggests types of database columns to use for each type of data.

167

Using SQL Server Databases

Table 4-5 Recommended database column types

Type of Data

Recommended Column Type

Primary keys, unique identifiers such as ID numbers

int or smallint

Variable-length strings, such as names of people,
departments, countries, companies, book titles,
descriptions, and street addresses

varchar for 8-bit ANSI characters,
or nvarchar for Unicode
characters

Fixed-length strings, such as account numbers, and
Social Security numbers

char or nchar (Unicode) type. This
type pads all trailing positions in

the field with blanks.

ANSI strings longer than 8,000 bytes, documents
and other extended text

text

Financial values

decimal or money type, to avoid
loss of decimal precision

Measured values as real numbers; ratios

float

True/False (logical) values

bit

Dates and/or times

datetime or smalldatetime,

depending on how accurate you
want to be

Image and document files image

Avoiding Redundancy by Using Linked Tables

Well-designed databases keep redundant data to a minimum. When designing a table of
employees, for example, it might be tempting to include the complete name of the depart-
ment in which an employee works. A few sample rows are shown in Table 4-6. There are
problems with this approach. We can imagine that the same department name appears many
times within the Employee table, leading to wasted storage space. Also, someone typing in
employee data might easily misspell a department name. Finally, if the company decided to
rename a department, it would become necessary to find and correct every occurrence of the
department name in the Employee table (and possibly other tables).

Table 4-6 Employee table with department names

Emp_Id First. Name Last Name Departments

1000 Ignacio Fleta Accounting

1001 Christian Martin Computer Support

1002 Orville Gibson Human Resources

1003 Jose Ramirez Research and Development
1004 Ben Smith Accounting

1005 Allison Chong Computer Support

Rather than inserting a department name in each employee record, a good designer would
store a department ID number in each row of the Employee table, as shown in Table 4-7. A
data entry clerk would require less time to input a numeric department ID, and there would be
less chance of a typing error. Then one would create a separate table named Departments con-
taining all department names and IDs, which is shown in Table 4-8. When looking up the name
of an employee’s department, we can use the department ID in the Employee table to find the
same ID in the Departments table. The department name will be in the same table row. Data-
bases make it easy to create links between tables such as Employees and Departments.

4.1 Database Basics 169

Table 4-7 Employee table with department ID numbers

Emp_Id First_Name Last_Name Dept_Id
1000 Ignacio Fleta 2
1001 Christian Martin 3
1002 Orville Gibson 1
1003 Jose Ramirez 4
1004 Ben Smith 2
1005 Allison Chong 3

Table 4-8 Departments table

Dept_Id Dept_Name Num_Employees
1 Human Resources 10

2 Accounting S

3 Computer Support 30

4 Research and Development 15

One-to-Many Relationship

* Databases are often designed using the relational model of data. In the relational data-
base model, relationships exist between tables. A relationship consists of a common
field value to connect rows from two different tables. In the relationship diagram
shown in Figure 4-1, Dept_Id is the common field that links the Departments and
Employee tables.

Figure 4-1 One-to-many relationship between Departments and Employee tables

Departments Employees
% Deptld % Empld

Dept_MName First_Mame

Mum_Employees Last_Mame
Dept_Id

e In the Departments table, Dept_Id is the primary key. In the Employee table, Dept_Id is
called a foreign key. A foreign key is a column in one table that references a primary
key in another table. The column can contain duplicate values. Along the line connect-
ing the two tables, the 1 and 8 symbol indicate a one-to-many relationship. A particu-
lar Dept_Id (such as 4) occurs only once in the Departments table, but it can appear
many times (or not at all) in the Employee table. At first, we will work with one table
at a time. Later, we will show how to pull information from two related tables.

'/ Checkpoint

1. How is a table different from a database?

2. In a table of employees, what column makes a good primary key?

170 Chapter 4 Using SQL Server Databases

3. Which .NET type is equivalent to the bit column type in SQL Server?

4. Why would we not want to spell out the name of each person’s department name in
a table of employees?

5. How is a foreign key different from a primary key?

SQL SELECT Statement

Structured Query Language (SQL) was developed as a universal language for creating,
updating, and retrieving data from databases. The American National Standards Institute
(ANSI) has ratified different levels of standard SQL, which are followed to a greater or lesser
degree by database vendors. ANSI standards are identified by their year of ratification and
a level number. In this section, we introduce the most important of all SQL statements—
SELECT. It is used to retrieve rows from database tables.

SELECT Statement

The SELECT statement retrieves rows from one or more database tables. The most basic for-
mat for a single table is as follows:

SELECT column-list
FROM table

The members of column-list must be table column names separated by commas. The fol-
lowing statement selects the ID and Salary from the SalesStaff table:

SELECT ID, Salary
FROM SalesStaff

In a Visual Basic program, the DataSet produced by this query would have two columns, ID
and Salary. There is no required formatting or capitalization of SQL statements or field
names. The following queries are equivalent:

SELECT ID, Salary FROM SalesStaff
select ID, Salary from SalesStaff
Select id, salary from salesstaff

As a matter of style and readability, you should try to use consistent capitalization. If field
names contain embedded spaces, they must be surrounded by square brackets, as in the fol-
lowing example:

SELECT [Last Name], [First Name]
FROM Employees

The * character in the column list selects all columns from a table.

SELECT *
FROM SalesStaff

Aliases for Column Names

Column names can be renamed, using the AS operator. The new column name is called an
alias, as in the following example that renames the Hire_Date column to Date_Hired:

SELECT

Last_Name, Hire Date AS Date Hired
FROM

SalesStaff

4.2 SQL SELECT Statement

Renaming columns is useful for two reasons. First, you might want to hide the actual col-
umn names from users. Second, column headings in reports can be made more user-friendly
if you substitute your own names for the column names used inside the database.

Creating Alias Columns from Other Columns

A query can create a new column from one or more existing columns in the same table. For
example, we might want to combine Last_Name and First_Name from a table named
Members. We can insert a comma and space between the columns, as shown here:

SELECT Last_Name + ', ' + First Name AS Full Name
FROM Members

Now the Full_Name column can be inserted into a ListBox or ComboBox. In general, when
strings occur in queries, they must always be surrounded by single quotes. The + operator
concatenates strings.

Calculated Columns

You can create new columns whose contents are calculated from existing column values.
Suppose a table named Payroll contains columns named employeeld, hoursWorked, and
hourlyRate. The following statement creates a new column named payAmount, using
hoursWorked and hourlyRate:

SELECT employeeId, hoursWorked * hourlyRate AS payAmount
FROM PayRoll

Setting the Row Order with ORDER BY

The SELECT statement has an ORDER BY clause that lets you control the display order of
the table rows. In other words, you can sort the data on one or more columns. The general
form for sorting on a single column is the following:

ORDER BY columnName [ASC | DESC]

ASC indicates sorting in ascending order (the default) and DESC indicates sorting in
descending order. Both are optional, and you can use only one at a time. The following
clause orders the SalesStaff table in ascending order by last name:

ORDER BY Last_ Name ASC

We can do this more simply as follows:
ORDER BY Last Name

The following sorts the table in descending order by Salary:
ORDER BY Salary DESC

You can sort on multiple columns. The following statement sorts in ascending order first by
last name; then within each last name, it sorts in ascending order by first name:

ORDER BY Last Name, First Name

For a more complete example, the following SELECT statement returns the first name, last
name, and salary, sorting by last name and first name in the Members table of the Karate
database:

SELECT

First Name, Last Name, Date_Joined
FROM

Members
ORDER BY Last Name, First Name

171

172

Chapter 4

Using SQL Server Databases

Selecting Rows with the WHERE Clause

The SQL SELECT statement has an optional WHERE clause that you can use to filter, or
select zero or more rows retrieved from a database table. The simplest form of the WHERE
clause is as follows:

WHERE columnName + value

In this case, columnName must be one of the table columns and value must be in a format
that is consistent with the column type. The following SELECT statement, for example,
specifies that Last_Name must be equal to Gomez:

SELECT First Name, Last_Name, Salary
FROM SalesStaff
WHERE Last Name = 'Gomez'

Character comparisons are case-insensitive by default, so the following WHERE clause is
equivalent to the previous one:

WHERE Last Name = 'gomeZzZ'

Because Last_Name is a string-type column, it must be assigned a string literal enclosed in
single quotes. If the person’s name contains an apostrophe (such as O’Leary), the apostro-
phe must be repeated:

SELECT First Name, Last_Name, Salary
FROM SalesStaff
WHERE Last Name = 'O''Leary'

Relational Operators

Table 4-9 lists the operators that can be used in WHERE clauses. The following expression
matches last names starting with letters B . . . Z.

Table 4-9 SQL relational operators

Operator Meaning

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to
BETWEEN between two values (inclusive)
LIKE similar to (wildcard match)

WHERE Last_Name >= 'B'
The following expression matches nonzero salary values:

WHERE Salary <> 0

Bit Field (Boolean) Values

SQL Server stores Boolean values in columns that use the bit type. You can compare this
type of column to bit constants such as 1, 0, “True’, and ‘False’. A value of 1 indicates True,
and 0 indicates False. Here are examples:

WHERE Full Time = 1
WHERE Full_Time = 'True'

4.2 SQL SELECT Statement

WHERE Full Time = 0
WHERE Full_Time <> 'False'

Numeric and Date Values

Numeric literals do not require quotation marks. The following expression matches all rows
in which Salary is greater than $30,000:

WHERE (Salary > 30000)
DateTime literals must be enclosed in single quotation marks:

WHERE (Hire Date > '12/31/2005")

The following expression matches rows containing hire dates falling between (and including)
January 1, 2005 and December 31, 2009:

WHERE (Hire Date BETWEEN '1/1/2005' AND '12/31/2009')

Following is a complete SELECT statement using the WHERE clause that selects rows
according to Hire_Date and orders them by last name:

SELECT First Name, Last_Name, Hire Date

FROM SalesStaff

WHERE (Hire_Date BETWEEN '1/1/2005' AND '12/31/2009'")
ORDER BY Last_ Name

LIKE Operator

The LIKE operator can be used to create partial matches with string column values. When
combined with LIKE, the underscore character matches a single unknown character. For
example, the following expression matches all Account_ID values beginning with X and
ending with 4:

WHERE Account_ ID LIKE 'X 4°'

The percent sign (%) matches multiple unknown characters. We also call % a wildcard
symbol. For example, the following matches all last names starting with the letter A:

WHERE Last Name LIKE 'A%’

You can combine wildcard characters. For example, the following matches all First Name
values in the table that have d and 7 in the second and third positions, respectively:

WHERE First_Name LIKE '_dr%'

The character comparisons are case-insensitive.

Compound Expressions (AND, OR, and NOT)

SQL uses the AND, NOT, and OR operators to create compound expressions. In most cases,
you should use parentheses to clarify the order of operations. The following expression
matches rows in which a person was hired after 1/1/2005 and the salary is greater than

$40,000:
WHERE (Hire Date > '1/1/2005') AND (Salary > 40000)

The following expression matches rows in which a person was hired before 2005 or after
2010:

WHERE (Hire Date < '1/1/2005') OR (Hire Date > '12/31/2010'")

The following expression matches rows in which a person was hired after 2005 and before
2010:

WHERE (Hire_Date > '12/31/2005') AND (Hire_Date < '1/1/2010')

173

174

Chapter 4

Using SQL Server Databases

The following expression matches two types of employees: (1) those who were hired after
1/1/2005 and whose salary is greater than $40,000, and (2) employees who are not full-time:

WHERE (Hire Date > '1/1/2005') AND (Salary > 40000)
OR (Full Time = False)

The following expression matches rows in which the hire date was either earlier than 1/1/2008
or later than 12/31/2010:

WHERE (Hire Date NOT BETWEEN '1/1/2008' AND '12/31/2010')

The following expression matches rows in which the last name does not begin with the letter A:

WHERE (Last_Name NOT LIKE 'A%')

'/ Checkpoint

6. Write a SELECT statement that retrieves the pay_rate, employee_id, and
hours_worked columns from a table named Payroll, and sorts the rows in
descending order by hours_worked.

7. Write a SELECT statement that creates an alias named Rate_of _Pay for the existing
column named pay_rate in the Payroll table.

8. Write a SELECT statement for the Payroll table that creates a new output column
named gross_pay by multiplying the pay_rate column by the hours_worked
column.

9. Write a SELECT statement for the Payroll table that returns only rows in which the
pay_rate is greater than 20,000 and less than or equal to 55,000.

10. Write a SELECT statement for the Payroll table that returns only rows in which the
employee_id column begins with the characters FT. The remaining characters in the
employee_id are unimportant.

Using the DataGridView Control

The DataGridView control is a convenient tool for displaying the contents of database tables
in rows and columns. Data binding is used to link database tables to controls on a program’s
forms. Special objects named components provide the linking mechanism. When you link a
control to a database, a wizard guides you through the process. We will use the following
data-related objects in this chapter:

® Data source—A data source is usually a database, but it can include text files, Excel
spreadsheets, XML data, or Web services. It keeps track of the database name, loca-
tion, username, password, and other connection information. Our data sources will be
Microsoft SQL Server database files.

o TableAdapter—A TableAdapter pulls data from one or more database tables and
copies the data into a DataSet. It can select some or all table rows, add new rows,
delete rows, and modify existing rows. It can also delete, insert, or update table rows.
TableAdapters use SQL queries to retrieve and update database tables.

e DataSet—A DataSet is an in-memory copy of data pulled from database tables. An
application can modify rows in the DataSet, add new rows, and delete rows. Changes
to DataSets become permanent when an application uses a TableAdapter to write the
changes back from the DataSet to the database. DataSets can get data from more than
one data source and from more than one TableAdapter.

e DataTable—A DataTable is a table inside a DataSet. It holds data generated by a
TableAdapter’s SELECT query. DataTables have a Rows collection that corresponds to

4.3 Using the DataGridView Control

database table rows. You can loop through the Rows collection and inspect or modify
individual column values within each row.

e BindingSource—A BindingSource object provides a link between a DataSet and one or
more controls on a form. We say that these controls are data-bound controls. If the
user modifies the data in a control, the BindingSource can copy the changes to the
DataSet.

Figure 4-2 shows the relationship among the data source, TableAdapter, DataSet, Binding-
Source, and application. Data from a data source travels across the path implied by these
components to the DataSet and application. The DataSet contents can be modified and
viewed by the application. Updates to the DataSet can be written back to the data source.
The optional BindingSource provides data-binding capabilities to controls on forms.

Figure 4-2 Two-way data flow between a data source and an application

Binding
Source

Data I 3 Table | .
Source Adapter

DataSet [« »| Application

(Information flows in both directions)

Formatting Columns in a DataGridView

To modify the columns in a DataGridView control, open the DataGridView Tasks window,
and select Edit Columns from the popup menu. Figure 4-3 shows the Edit Columns dialog
window. To format a column, select a column name in the Listbox on the left side of the win-
dow, and select the DefaultCellStyle property from the list on the right. This causes the

Figure 4-3 Editing the column properties in a DataGridView

Edit Columns
Selected Columns: Bound Column Properties
+] [0
= ontextMenutr none &
Last Mame + C M 5 'p [)
First_Name Maxdnputlength 32767
Full_Time ReadOnly Falze
Hire_Date Resizable True i
Salary SortMode Automatic £
4 Data
DataPropertyMame [M] m
4 Design
(Mame) IDDataGridViewTextBoxColu
ColumnType DataGridViewTextBoxColum =
(Name)
Indicates the name used in code to identify the object.
Add...] l Remove
oK l [Cancel

175§

176

Chapter 4

Using SQL Server Databases

CellStyle Builder window to appear, as shown in Figure 4-4. In this window you can select
the column’s alignment (Top Left, MiddleRight, and so on), padding, format, foreground and
background colors, font, and so on. The preview feature at the bottom of the window shows
standard column attributes, such as the font and foreground and background colors. It does
not show the effect of the Format property.

Figure 4-4 The CellStyle Builder window

CellStyle Builder

s Appearance
BackColor |:|
Font (none)
ForeColor |:|
SelectionBackColor |:|
SelectionForeColor I:l

4 Behavior
Format

4 Data
MullValue

4 Layout
CEr s S cdicCenter B

i Padding 0,000
WrapMode MNotSet

Preview
This preview shows properties from inherited CellStyles (Table, Column, Row)
MNormal: Selected:

| ok |[concel

Selecting Numeric and DateTime Formats

Once you have displayed the CellStyle Builder window (from the DefaultCellStyle property)
of the Edit Columns dialog, you can be specific about the formatting of the column data.
For example, you might want to format a DateTime column as a short date. When you select
the Format property, the Format String dialog window opens, as shown in Figure 4-5.

e For general number formats, select Numeric and select the number of decimal places.
e For currency formats, select Currency and select the number of decimal places.
e For DateTime formats, select Date Time and select from a variety of format samples.
e For scientific formats, select Scientific and select the number of decimal places.

Another option is to create a custom format string. If you would like to learn more about
formatting dates and times, read Section B.1 in Appendix B.

Tutorial 4-1 will lead you through the steps for displaying a database table in a DataGrid-
View control.

4.3 Using the DataGridView Control

Figure 4-5 The Format String Dialog window, activated by the CellStyle Builder

Format String Dialog

Format

Specify the format for monetary values,

Format type: Sample

Mo Formatting (§1,234.57)

Mumeric

Date Time Mull value:

Scientific

Custom Decimal places |2 =

OK l [Cancel

0

Tutorial 4-1:
Showing a database table in a DataGridView control

In this tutorial, you will display rows and columns from a table named SalesSzaff, which
is located in a database named Company. You will see how easy it is for users of your
application to sort on any column, delete rows, and insert new rows. The SalesStaff
table holds information collected about company sales employees. The table design is
shown in Table 4-10, and sample rows are shown in Table 4-11.

Table 4-10 SalesStaff table design

Column Name Type

ID int (primary key)
Last_Name varchar (40)
First_Name varchar (40)
Full_Time bit

Hire_Date smalldatetime
Salary decimal

Before you begin this tutorial, locate the Company.mdf file, which is located in the chapter
examples folder.

Tutorial Steps
Step 1: Create a new Windows application named SalesStaff 1.

Step 2: Set the Text property of Form1 to Company SalesStaff Table.

177

178

Chapter 4

Using SQL Server Databases

Table 4-11 Sample rows in the SalesStaff table

ID Last_Name First Name Full Time Hire_Date Salary

104 Adams Adrian True 01/01/2010 35,007.00
114 Franklin Fay True 08/22/2005 56,001.00
115 Franklin Adiel False 03/20/2010 41,000.00
120 Baker Barbara True 04/22/2003 32,000.00
135 Ferriere Henri True 01/01/2010 57,000.00
292 Hasegawa Danny False 05/20/2007 45,000.00
302 Easterbrook Erin False 07/09/2004 22,000.00
305 Kawananakoa Sam True 10/20/2009 42,000.00
396 Zabaleta Maria True 11/01/2009 29,000.00
404 Del Terzo Daniel True 07/09/2007 37,500.00
407 Greenwood Charles False 04/20/2008 23,432.00

Step 3: Draga DataGridView control from the Toolbox window onto the form. Click

the smart tag in the upper-right corner of the grid. You should see a small
popup window named DataGridView Tasks, as shown in Figure 4-6.

Figure 4-6 DataGridView Tasks window

DataGridView Tasks

Choose Data Source: E‘
Edit Columns...

Add Column...

Enable Adding
Enable Editing
Enable Deleting
Enable Column Reordering

Undock in Parent Container

Step 4: Click the dropdown arrow next to Choose Data Source. In the dialog that
appears (see Figure 4-7), click on Add Project Data Source.

Figure 4-7 Choosing a data source in Tutorial 4-1

® None

‘il Add Project Data Source...

Click the 'Add Project Data Source...' link to
connect to data.

Step 5:

4.3 Using the DataGridView Control

When the Data Source Configuration Wizard displays (see Figure 4-8), select
the Database icon and click the Nexz button.

Figure 4-8 Data Source Configuration Wizard

Data Source Configuration Wizard @

b Choose a Data Source Type

Where will the application get data from?

J

Database Service Object SharePoint

¥ .9{}/ -fﬁ

Lets you connect to a database and choose the database objects for your application.

e

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

The Choose a Database Model step appears next. Keep the default selection
(Dataset) and click the Next button.

The wizard asks you to choose your data connection. If you had an existing
data connection, you could select it from the dropdown list. Because this is
your first data connection, click the New Connection button (Figure 4-9).

In the Add Connection window, if the Data source entry does not say
Microsoft SOL Server Database File, click the Change button and select that
option.

Click the Browse button and locate the Company.mdf database in the chapter
examples folder. Figure 4-10 shows an incomplete path to the Company.mdf
filename because the actual path will be different on each computer.

Click the Test Connection button. Assuming that the Test Connection suc-
ceeded message displays, click the OK button two times to return to the wiz-
ard, and then click the Next button.

You will see the message shown in Figure 4-11, which asks if you want to
copy the database file to the project directory. By answering yes, you can eas-
ily move your program and its database to another computer. When you hand
in programming projects, having the database stored with the project is a
good idea. Click the Yes button to continue.

179

180 Chapter 4 Using SQL Server Databases

Figure 4-9 Choosing your data connection

Choose Your Data Connection

Which data connection should your application use to connect to the database?

~| [New Connection... |

This connection string appears to contain sensitive data (for example, a password], which is required to connect to the

database. However, storing sensitive data in the connection string can be a security risk. Do you want to include this
sensitive data in the connection string?

Mo, exclude sensitive data from the connection string. I will set this information in my application code.

Yes, include sensitive data in the connection string.

Connection string

< Previous ” Next > || Fria: |[e

Figure 4-10 Add Connection window

Enter infoermation to connect to the selected data source or click
"Change" to choose a different data source and/or provider,
Data source:
Microsoft SQL Server Database File (SqlClient) Change...
Database file name (new or existing):
c. A Company.mdf Browse..,
Log on to the server
@ Use Windows Authentication
) Use SOL Server Authentication
User narme: | |
Passweord: | |
[[] save my password
Advanced...
Test Connection] [OK] ’ Cancel l

4.3 Using the DataGridView Control 181

Figure 4-11 Option to copy the database file to your project

Microsoft Visual Studio 3

['-_-"-I The connection you selected uses a local data file that is not in the
&' current project. Would you like to copy the file to your project and
maodify the connection?

If you copy the data file to your project, it will be copied to the project's
output directory each time you run the application. Press F1 for
information on controlling this behavior.

S—r— S T ——

Step 12: Now you are given the option of saving the connection string to the applica-
tion configuration file (see Figure 4-12). Leave the option checked and click
the Next button to continue.

Figure 4-12 Saving the connection string to the application configuration file

Data Source Configuration Wizard

! _ Save the Connection 5tring to the Application Configuration File

Storing connection strings in your application configuration file eases maintenance and deployment. To save the
connection string in the application configuration file, enter a name in the box and then click Mext.

Do you want to save the connection string to the application configuration file?
Yes, save the connection as:

CompanyConnectionString

< Previous H Mext = Finish

Step 13: Next, you are asked to select which database objects you want in your
DataSet. Expand the entry under Tables, place a check next to SalesStaff, and
change the DataSet name to SalesStaffDataSet (see Figure 4-13). Click the
Finish button to complete the wizard.

182 Chapter 4 Using SQL Server Databases

Figure 4-13 Choosing database objects

[L} Choose Your Database Objects

Which database objects do you want in your dataset?

4 [H5 Tables
b [C1E] Departments
»] Employees
b C1E3 Sales
b [0 SalesStaff
O3 Views
@1 Stored Procedures
1%, Functions

Enable local database caching
DataSet name:
SalesStaffDatabet

| <Pevious || mei- [Fnisn || Cancel |

Step 14: You should see column headings in the DataGridView control (see Figure 4-14)
that match the SalesStaff columns: ID, Last_ Name, First_Name, Full_Time,
Hire_Date, Salary. If the DataGridView Tasks window is still visible, click any-
where outside the window to close it.

Figure 4-14 Column headings in the DataGridView control

Step 15:

4.3 Using the DataGridView Control

Next, you will center the Hire_Date column. Select the grid’s Columns prop-
erty and open the Edit Columns window, which is shown in Figure 4-15.
Select the Hire_Date column, and select DefaultCellStyle. This will display the
CellStyle Builder window, shown in Figure 4-16. Select the Alignment prop-
erty, and select MiddleCenter from its dropdown list. Click the OK buttons
until the Edit Columns window is closed.

Figure 4-15 The Edit Columns dialog window

Edit Columns @l
Selected Columns: Bound Column Properties
o | i =
Last_Name ContextMenuStrip (none) -
First_Name MaxdnputLength 32767
Full_Time ReadOnly False
Hire_Date Resizable True I
Salary SortMode Automatic =
4 Data ‘
DataPropertyMame D
4 Design
(Mame) IDDataGridViewTextBoxColu
ColumnType DataGridViewTextBoxColum -~
(Name)
Indicates the name used in code to identify the object.
Add...] [Remaowve
0K] l Cancel

Step 16:

Step 17:

Step 18:

Step 19:

Open the form’s Code window, and inspect the code Visual Studio inserted
into the form’s Load event handler. It calls the Fill method from the
SalesStaffTableAdapter, passing it the SalesStaff DataTable inside the
SalesStaffDataSet DataSet.

Me.SalesStaffTableAdapter.Fill (Me.SalesStaffDataSet.SalesStaff)

This is how the grid gets its data: The TableAdapter pulls data from the data-
base, using the Fill method. The Fill method holds an SQL query that deter-
mines which columns of which table will be used. The SalesStaff DataTable
is a container that holds the data while it is being displayed by the DataGrid-
View control.

Save and run the application. You should see all the rows of the SalesStaff
table, as shown in Figure 4-17.

Currently the rows are listed in ascending order by ID number. Click the
Last Name column and watch the grid sort the rows in ascending order by
last name. Click the Last_ Name column again and watch the rows sort in
descending order on the same column.

Place the mouse over the border between two columns. When the mouse cur-
sor changes to a horizontal arrow, use the mouse to drag the border to the right
or left. This is how users can change column widths at runtime.

183

184 Chapter 4 Using SQL Server Databases

Figure 4-16 The CellStyle Builder window

CellStyle Builder 5 =)

4 Appearance
BackColar |:|

Font (none)

ForeColor |:|
SelectionBackColor |:|
SelectionForeColor I:l
4 Behavior

Format
4 Data

MullValue

Alignment MiddleCenter E
> Padding 0,000
WrapMode MNotSet

Preview
This preview shows properties from inherited CellStyles (Table, Column, Row)
Normal: Selected:

N

Figure 4-17 Running the application, displaying the SalesStaff table

ID Last_Name First_Mame Full_Time Hire_Diate Salary il
3 Adams Adrian 5/20/1996 35007

114 Franklin Fay 8/22/1995 56001

115 Franklin Adiel 4/20/1986 41000 3

120 Baker Barbara 4221993 32000 §

135 Femiers Henri 1/1/1990 57000

252 Hasegawa Danny 5/20/1957 45000 L

302 Easterbrook Erin 7/9/1954 22000

305 Kawananakoa Sam 10/20/1987 42000

356 Zabaleta Maria 11/1/1985 25000

404 Del Terzo Daniel 7/9/19594 37500

407 Greenwood Charles 4/20/1956 23432

426 Locksley Robert 34171992 18300 -
4 1] »

Step 20: Try deleting a row. Click the button to the left of one of the grid rows. The entire
row is selected (highlighted). Press the Del key and watch the row disappear.
The row has been removed from the in-memory DataSet, but not the database.

Step 21:

Step 22:
Step 23:

Step 24:

After completing Tutorial 4-1, we hope you see how easy it is to display database tables. The
DataGridView control is an ideal tool for giving users a quick view of data. In our example,
the column names and ordering were taken directly from the database table. As you learn more
about the DataGridView control, you will be able to rename columns and change their order.

4.4 Selecting DataSet Rows

Next, you will insert a new row. Scroll to the bottom row of the grid and enter
the following information in the empty cells: 847, Jackson, Adelle, (check
Full-time), 6/1/2011, 65000. Press the Enter key to save your changes. (If you
do not check Full-time, the program will throw an exception.)

Sort the grid on the Last Name column, and look for the row you inserted.

Close the application and then run it again to verify that the changes you
made to the DataSet were not saved in the database. The grid rows look
exactly as they did when you first displayed the DataSet. Stop the program
again.

In Design view, notice the three components placed in the form’s component
tray by Visual Studio when you added the connection to the SalesStaff table.

e SalesStaffDataSet is the object that holds a copy of the database table in
memory.

e SalesStaffBindingSource is the object that moves data from the dataset to
the DataGridView control.

e SalesStaffTableAdapter is the object that copies data from the database into
the dataset. As another option, it can save changes to the database. The
TableAdapter contains the SQL statements that select, update, insert, or
delete database table rows.

Checkpoint
@) checkp

11. Using the application you created in Tutorial 4-1, explain how to change the
formatting of the Salary column so it displays values in currency format.

12. The technique called links database tables to controls on Visual Basic
forms.

13. Which component pulls data from a database and passes it to a DataSet?

14. When changes are made to a DataSet at runtime, what happens to the database
that filled the DataSet?

15. Which control displays DataSets in a spreadsheet-like format?

16. What type of component binds data from a DataSet to an application’s controls?

Selecting DataSet Rows

In the previous section of this chapter, you learned how to display all rows of a DataSet using
the DataGridView control. Applications often must select (or filter) only certain rows for
display. Suppose, for example, you want to display only members of the company sales staff
who are full-time. Or, you might want to display employees hired prior to 2005. You might
want to display only those employees hired within the last five years whose salaries are less
than $40,000. Using SQL queries and the tools in Visual Studio, almost any type of filtering

is possible.

185

186

Chapter 4

Using SQL Server Databases

sSQL

Structured Query Language (SQL) is a standard language for working with databases.
SQL consists of several keywords. You use the keywords to construct statements known
as queries. Queries are instructions submitted to a database, which then executes the
queries.

TIP: Although SQL is a language, you don’t use it to write applications. It is intended
only as a standard means of interacting with a database. You still need a general pro-
gramming language such as Visual Basic to write applications with user interfaces.

Modifying the Query in a Data Source

To modify (edit) a query used in a data source, locate its DataSet schema file in the Solution
Explorer window. Suppose you have created a data source named SalesStaffDataSet; then
the DataSet schema file would be named SalesStaffDataSet.xsd. Double-click the filename to
open the Dataset Designer tool, shown in Figure 4-18. The top line shows the table name
(SalesStaff). The next several lines list the columns in the table, identifying the ID column as
the primary key. The SalesStaffTableAdapter appears next, followed by a list of its database
queries. By default, there is one query named Fill, GetData() that fills the DataSet when the
form loads.

Figure 4-18 SalesStaffDataSet, in the Dataset Designer window

?
Last_Mame

First_Mame

Full_Time

Hire_Date

Salary
'8 SalesStaffTableAdapter
Fill, GetData ()

If you right-click the DataSet and select Configure from the popup menu, you can modify
the currently selected query using the TableAdapter Configuration Wizard, shown in
Figure 4-19. If the query text is simple enough, you can modify it directly in this window.
If the query is more complicated, click the Query Builder button to display a Query
Builder window. A sample is shown in Figure 4-20.

Query Builder

Query Builder is a tool provided by Visual Studio for creating and modifying SQL queries.
It consists of four sections, called panes, shown in Figure 4-21.

e The diagram pane displays all the tables used in the query, with a check mark next to
each field that will be used in the DataSet.

e The grid pane displays the query in a spreadsheet-like format, which is particularly
well suited to choosing a sort order and entering selection criteria.

4.4 Selecting DataSet Rows 187

Figure 4-19 TableAdapter Configuration Wizard

Enter a SQL Statement
The TableAdapter uses the data returned by this statement to fill its DataTable.

Type your 5QL staternent or use the Query Builder to construct it. What data should be loaded into the table?
What data should be loaded into the table?
SELECT ID, Last_Mamne, First_Mame, Full_Time, Hire_Date, Salary FROM dbo.5ales5taff -

Figure 4-20 Query Builder window

E * (All Columns)
D

|z| Last_Mame
First_Mame
[w]Full_Time

Outp... Sort Type Sort Order

SELECT 1D, Last_Mame, First_Mame, Full_Time, Hire_Date, Salary
FROM SalesStaff

|
M 4o Jofo|» b= |@]

Execute Queu

188

Chapter 4

Using SQL Server Databases

Figure 4-21 Sections of the Query Builder window

Query Builder

SalesStaff ;I

* (All Columns) =

3|

v | I

Last_Name
First_Name
[w]Full_Time |

— Diagram pane

Column Alias Table Outp... Sort Type Sort Order Filter Or...

"Last_Name SalesStaff

SalesStaff — Grid pane

|

1

SELECT
FROM

ID, Last_Name, First_Name, Full_Time, Hire_Date, Salary
SalesStaff

— SQL pane

— Result pane

Dcfﬂ b b b
] [

e The SQL pane displays the actual SQL query that corresponds to the tables and fields
selected in the diagram and grid panes. Experienced SQL coders often write queries
directly into this pane.

o The results pane displays the rows returned by executing the current SQL query. To fill
the results pane, right-click in the Query Builder window and select Run from the
context menu.

To remove and restore panes, right-click the window and select Pane from the popup menu.
The menu allows you to check or uncheck individual panes.

To add a new table to the Query Builder window, right-click inside the diagram pane and
select Add Table from the popup menu. To save the current query and close Query Builder,
click the OK button.

Adding a SELECT Query to a DataGridView

If you want to add a SELECT query to a DataGridView control, the easiest way to do it is
to use the TableAdapter attached to the grid. Suppose that the SalesStaffTableAdapter is
attached to a DataGridView displaying the SalesStaff table from the Company database.
Then in the form’s Design view, you can right-click the TableAdapter icon and select Add
Query. The Search Criteria Builder window appears, as shown in Figure 4-22. You could
modify the query so it reads as follows:

SELECT ID, Last_Name, First Name, Full Time, Hire Date, Salary
FROM SalesStaff
WHERE Salary < 45000

T\

4.4 Selecting DataSet Rows

Figure 4-22 Search Criteria Builder window

Search Criteria Builder

Choose an existing query or enter a new query below. A ToolStrip will be added
to the form to run the query. To edit an existing query or use stored procedures
use the Configure command on the TableAdapter in the DataSet Designer,
Select data source table:

SalesStaffDataSet. 5alesStaff -

Select a parameterized query to load data:
@ Mew query name: FillBy
() Bxisting query name:

Query Text:

SELECT ID, Last_Mame, First_Marme, Full_Time, Hire_Date, Salary e
FROM dbo.5ales5taff

4 | 1 | 3
Sample: SELECT ColumnMamel, ColumnMame2 FROM
TableName WHERE ColumnNamel = Queny Buider.
@Parameterfame
OK l ’ Cancel]

Figure 4-23 shows what the window looks like after adding a WHERE clause to the SELECT
statement. You can give a name to the query, such as Salary_guery. When you click the OK
button, a ToolStrip control is added to the form, with a query button. When you run the
application and click the Salary_guery button on the ToolStrip, the results are shown in
Figure 4-24. Only rows with salaries less than $45,000 are displayed.

TIP: If you dock a grid inside a form and then add a ToolStrip control, the grid’s title
bar is covered up by the ToolStrip. To avoid this problem, set the grid’s Dock property to
None, drag the grid a bit lower on the form with the mouse, and resize it so it fits. Then
set the grid’s Anchor property to Top, Bottom, Left, Right.

If you add a query to a dataset and then later delete the query from the DataSet Designer
window, you may find that your program will not run. If this happens, Visual Studio may
have left behind some extra code that had been added to the designer file when the query
was created. To work around this problem, select the Rebuild <projectName> command
from Visual Studio’s Build menu.

In Tutorial 4-2, you will create several queries that display rows in a DataGridView control.

189

190

Chapter 4

Using SQL Server Databases

Figure 4-23 Creating a query in the Search Criteria Builder

command on the TableAdapter in the DataSet Designer.

Select data source table:
| SalesStaffDataSet.SalesStaff v

Select a parameterized query to load data:

Choose an existing query or enter a new query below. A ToolStrip will be added to the form
to run the query. To edit an existing query or use stored procedures use the Configure

@ Mew query name: Salary_query

() Bxisting query name:

Query Text:

SELECTID, Last_Name, First_Mame, Full_Time, Hire_Date, Salary
FROM dbo.5alesStaff
WHERE Salary = 45000

4

WHERE ColumnMamel = @ParameterMame

Sample: SELECT ColumnMamel, ColumnMame? FROM TableMame

Query Builder...

»

—a————
Figure 4-24 Dataset rows filtered by Salary_query

ag! =5 Eem(Ex"

Salary_query
1D Last_MName First_Mame Full_Time Hire_Date Salary

3 Adams Adrian 5/20/1996 35007
15 Franklin Adiel 4/20/1986 41000
120 Baker Earbara 4/22/1993 32000
a2 Easterbrook Erin 791594 22000
305 Kawananakoa Sam 10/20/1987 42000
396 Zabaleta Maria 11/1/1985 29000
404 Del Terzo Daniel 7/9/1954 37500
407 Greenwood Charles 4/20/1956 23432
426 Locksley Robert 2/1/1992 18300
694 Rubenstein Narida 6/1/1989 22000
724 Malina Marcos 10/20/1987 15000
757 Jones Bill 10/20/1992 32000
773 Lam Lawrence 6/1/1589 5000

4.4 Selecting DataSet Rows

0

Tutorial 4-2:
Filtering rows in the SalesStaff table

In this tutorial, you will create several queries that change the way rows from the
SalesStaff table are displayed in a DataGridView control.

Tutorial Steps

Step 1:

@‘:

Step 2:
Step 3:
Step 4:

Step 5:
Step 6:
Step 7:
Step 8:

Step 9:

Copy the SalesStaff 1 folder you created in Tutorial 4-1 to a new folder named
SalesStaff 2. You may have to close Visual Studio to release its lock on the
database file.

TIP: To copy a folder in Windows Explorer, right-click its name with the
mouse and select Copy from the popup menu; right-click again and select
Paste from the popup menu. The file will be named Copy of <name>,
where <name> is the original folder name. Right-click the copied filename
and select Rename from the popup menu. Type the new folder name and
press Enter. (The same procedure works when copying files.)

Open the project from the SalesStaff 2 folder (the solution file will still be
named SalesStaff 1.sln).

Right-click the project name in the Solution Explorer window, and choose
Rename. Rename the project SalesStaff 2.

In the Design window for Form1, right-click the SalesStaffTableAdapter con-
trol in the component tray and select Add Query from the popup menu.

In the Search Criteria Builder window, name the query Full Time. Set its
query text to the following:

SELECT ID, Last Name, First Name, Full Time, Hire Date, Salary
FROM SalesStaff
WHERE (Full Time = 'True')

Click the OK button to close the Search Criteria Builder.

If your grid column headers are hidden behind the ToolStrip control, slide the
grid downward to expose the column headers. Anchor it to the four sides of
the form, using the Anchor property.

Save the project and run the application. Click the Full Time button and
observe that only full-time employees are displayed. Close the application and
return to Design mode.

Let’s look at the source code generated by Visual Studio when you added the Tool-
StripButton. It calls a method named Full_Time, using the SalesStaffTableAdapter
object. The argument passed to the method is the SalesStaff table inside the
SalesStaffDataSet DataSet:

Private Sub Full TimeToolStripButton Click() _
Handles Full TimeToolStripButton.Click
Try
Me.SalesStaffTableAdapter.Full Time
(Me.SalesStaffDataSet.SalesStaff)
Catch ex As System.Exception
System.Windows.Forms.MessageBox.Show(ex.Message)
End Try
End Sub

191

192

Chapter 4

Using SQL Server Databases

Step 10:

Step 11:

If an exception is thrown, a popup box displays the exception message. As an
alternative, you can replace the call to MessageBox.Show with a statement
that assigns a value to an ErrorProvider control.

Now you will add another button to the ToolStrip that displays all table rows.
Right-click the SalesStaffTableAdapter control, and select Add Query.

In the Search Criteria Builder, name the query All_Rows, and keep the exist-
ing Query text. Click the OK button to close the window and create the
query. Notice that a second ToolStrip has been added to the form, as shown
in Figure 4-25.

Figure 4-25 SalesStaff table in a DataGridView, with two query buttons

[- Company Sales Staff Table [===]
Full_Time
All_Rows
n] Last_MName First_MName: Full_Time Hire_Date Salary il
Adams Adrian 5/20/1996 35007
114 Franklin Fay 8/22/1995 56001
15 Franklin Adiel [4/20/1986 41000 3
120 Baker Barbara 4/22/1993 32000
135 Femiers Henri 14141530 57000 =
292 Haszegawa Danny [l h/20/1997 45000
302 Easterbrook Erin [7/9/1994 22000
305 Kawananakoa Sam 10/20/1987 42000
396 Zabaleta Maria 11/1/1985 29000
404 Del Terzo Daniel 7/9/1554 37500
*l an7 Crmmsind T =1 490 1000 29499 | . 3l

Step 12: Again, you will need to adjust the top of the grid so the column headings are

visible.

Step 13: Save the project. Run the application and click both query buttons. The dis-

play should alternate between displaying all rows, and rows containing full-
time employees only.

Step 14: End the application and close the project.

In Tutorial 4-2, you saw how easy it was to create queries that select database rows. You can
create any number of queries that filter rows on different columns and values. Later in this
chapter, we will show how to use query parameters to modify search criteria.

It is possible to place both query buttons on the same ToolStrip if you do the following:

1. In Design mode, select one of the buttons and cut it to the Windows Clipboard (press
Ctrl-X).

2. Select the other toolbar and paste the button (press Ctrl-V). Both buttons should be on
the same ToolStrip.

3. Select and delete the empty ToolStrip.

4.5 Data-Bound Controls 193

4. Open the Code window and observe that the Handles clause has disappeared from the
Click event handler associated with the button you copied. Add the Handles clause
back to the method header. For example:

Handles All RowsToolStripButton.Click

Checkpoint
@) checr

17. What does the acronym SQL represent, in relation to databases?
18. Why do SQL queries work with any relational database?

19. Write an SQL SELECT statement that retrieves the First_Name and Last_Name
columns from a table named Employees.

20. How do you add a query to a TableAdapter in the component tray of a form?

21. Write a WHERE clause in SQL that limits the returned data to rows in which
Salary is less than or equal to $85,000.

Data-Bound Controls

In this section, you learn how to bind data sources to individual controls such as TextBoxes,
Labels, and ListBoxes. We call such controls data-bound controls because they update their
contents automatically when you move from one row to the next in a DataSet. Data-bound
controls can also update the contents of fields. You will learn how to bind a DataGridView
to an existing DataSet. You will also learn how to use a ListBox control to navigate from
one DataSet row to another.

Visual Studio Copies Database Files

When a new data source is an attached SQL Server file, the dialog window shown in Fig-
ure 4-26 pops up and asks if you want to copy the database file to your project. In general,
making a local copy of the database is a good idea. The second paragraph, easily overlooked,
reminds you that a fresh copy of the database will be copied to your program’s output direc-
tory each time you run the application.

Figure 4-26 Copying a database file to the project folder

Microsoft Visual Studio |

I.-"'_-"-I The connection you selected uses a local data file that is not in the
W' current project. Would you like to copy the file to your project and
modify the connection?

If you copy the data file to your project, it will be copied to the project's
output directory each time you run the application. Press F1 for
information on contrelling this behavior.

—TTI—— | ST —nr—

If you answer Yes to the dialog window, Visual Studio copies the database file to your pro-
ject’s root folder. Each time you build the application, the database is automatically copied
to the project’s output directory. This is the database file your application will display and
update. Its location depends on how you run the program.

194

Chapter 4

Using SQL Server Databases

e If you run in Debug mode, the output directory is \bin\Debug.
e If you run without debugging, the output directory is \bin\Release.

Distributing a Compiled Database Application

Visual Basic makes it very easy for you to distribute a compiled application along with its
database. The technique is called xcopy deployment. All you have to do is copy the appli-
cation’s EXE file and database files from the \bin\Debug folder, or from the \bin\Release
folder. In Figure 4-27, for example, the application named Insert Karate Payments is bun-

dled with the karate.mdf database file.

Figure 4-27 With Visual Basic, you can distribute a compiled application with its

database
Marne Type
[insert Karate Payments.exe Application
[; karate.mdf SQL Server Database Primary Data File

Modifying a Database Connection String

To modify a database connection string, right-click the entry named My Project in the
Solution Explorer window. In the Properties window, select the Settings tab. The first line in
the grid will probably be the database connection string. Click the button with the three dots
in the Value column, as shown in Figure 4-28.

Figure 4-28 Modifying a database connection string

MName Type Scope Value
- Data
. . S o Source=\SQLEXPRESS; AttachDbFilename=|DataDirectory[\kara
karateConnectiondtring ((Cannecin Application te.mdf;Integrated Security=True;Connect Timeout=30;User
Instance=True

Renaming and Deleting Data Sources

You cannot rename a data source, for good reason: A data source represents the name of a
DataSet class generated by Visual Studio. In fact, the DataSet class contains several other
inner classes (classes declared inside classes). Renaming a DataSet class, all its related classes,
and all objects using the class names would be next to impossible. Therefore, choose a name
for your data source that you do not plan to change.

You can delete a data source easily: Select its XSD file in the Solution Explorer window
and press the Delete key. However, if your program has one or more forms that contain
BindingSources connected to the data source, be careful. After deleting the data source, you
will not be able to open any forms in the Designer window that contain BindingSources.
You will encounter an error message similar to the one shown in Figure 4-29. We recom-
mend that you keep a separate backup copy of your project to protect yourself against errors
from which it may be too difficult to recover.

TIP: Before deleting a DataSet, delete all BindingSource controls on your form that
connect to the DataSet.

Figure 4-29

4.5 Data-Bound Controls

Error message generated by Visual Studio after a data source is deleted

designer again.

The designer cannot process the code at line 26: Me.KarateDataSet = Mew DeleteMe. KarateDataSet() The code within the method Go to
9 ‘InitializeComponent’ is generated by the designer and should not be manually modified. Please remowve any changes and try opening the ‘E e

A

code

1. DeleteMe

Instances of this error (1)

Formi.Designer.vb Line:26 Column:l Show Call Stack

Binding the Data Source to a DataGridView Control

In Tutorial 4-1, you used the DataGridView Tasks window to guide you through creating a
BindingSource, TableAdapter, and DataSet. If the project already contains a suitable data
source, you can bind it to a DataGridView control just by dragging the SalesStaff table from
the Data Sources window to the open area of a form. Visual Studio adds a custom naviga-
tion bar to the form, as shown in Figure 4-30.

Figure 4-30 After dragging the SalesStaff table from the Data Sources window onto
a form

ot 5

i

Staf

4|0 off0} | b M |4 K

D Last_Name First_Mame Full_Time
*

Once the grid has been bound to a DataSet, you can set its Dock property so it will always
fill to the borders of the form. To do this, select the grid, display the Properties window,
select the Dock property, and click the center docking button. The grid expands to fill the
form. Figure 4-31 shows the SalesStaff table in a DataGridView with a toolbar at runtime.

Binding Individual Fields to Controls

If the Data Sources window contains an existing data source, you can easily create an indi-
vidual data-bound control for each column by dragging a table from the data source onto
your form. First, select Details in the dropdown list associated with the table, as shown in
Figure 4-32. (The default control type is DataGridView, which we’ve already used.) When
you drag the table name onto a form, a separate control is created for each field. As shown
in Figure 4-33, a navigation toolbar is also added to the form. (You may have to wait a few
seconds for the controls to appear.)

Sometimes data source column names such as First Name contain underscore characters.
When you bind the data source to controls, Visual Studio removes the underscores as it gen-
erates labels next to the controls.

195

196

Chapter 4

Using SQL Server Databases

Figure 4-31 After docking the grid in the center of the form (shown at runtime)

PM 41 ofd [b M |4 K |
ID Last_Name First_Mame Full_Time Hire_Diate Salary I
3 Adams Adrian 5/20/2010 35007
114 Franklin Fay 8/22/2005 56001 |
115 Franklin Adiel 342072010 41000 1
120 Baker Barbara 4,/22/2003 32000
135 Femiers Henri 14172010 57000 | |
252 Hasegawa Danny 5 20,2007 45000
302 Easterbroak Erin 7/9/2004 22000
305 Kawananakoa Sam 10/20/2009 42000
356 Zabaleta Maria 11/1/2009 25000
4 Del Terzo Daniel 7/9/2007 37500 il
< | Il — | »

Figure 4-32 Selecting a table’s binding control, Data Sources window

a SalesStaffDatabet

ﬁ DataGridView

Details

= [Mone]

Customize...

Figure 4-33 After dragging a data source onto the form

o5l Details View I=1ICEE
M 40 of 0} [b M |4 X H |
ID:
Last Mame:
First Name:

Full Time: CheckBox1

Hire Diate: Sunday . June 272010 (@~

Salany:

You may want to modify the appearance or properties of the controls. For example, if you
want the Hire_Date column to display in mm/dd/yyyy format, set its Format property equal
to Short.

By default, Text and Numeric database columns are bound to TextBox controls, Yes/No
fields are bound to check boxes, and DateTime fields are bound to DateTimePicker controls.
If you would prefer not to let the user modify a protected field such as ID, change the bind-
ing control type for individual fields in the Data Source window. For example, if you click

4.5 Data-Bound Controls

the ID field in the SalesStaff table in the Data Source window, a list of control types displays
(see Figure 4-34). If you choose the Label control type, a user can view the field but not mod-
ify its contents.

Figure 4-34 Selecting the control binding type for the ID field in the Data Sources window

TextBox

[E3 MNumericUpDown
ComboBox

Label

LinkLabel

ListBox

[Mene]

&g & & & 2]

@ b > E5

Customize...

Figure 4-35 shows a sample of the same form with a Label control for the ID field and with
some customizing of the appearance of the other controls.

Figure 4-35 Displaying one row of the SalesStaff table in bound controls

5 Details View o= e |
1 ofl | b M | ¥ H

ID: 104

Last Name: Adams

First Mame: Adrian

Full Time:

Hire: Date: 5/20/1996 [E~
Salary: 35007

If you want to have only one or two bound controls from a data source, drag individual
columns from the Data Sources window onto a form. To run and modify this sample pro-
gram, see the Binding_Example program located in the Chapter 4 examples folder.

Introducing the Karate Database

The database we will use for the next set of examples is called Karate (karate.mdf), designed
around the membership and scheduling of classes for a martial arts school. A table named
Members contains information about members, such as their first and last name, phone
number, and so on. See Table 4-12.

Related to the Members table is the Payments table, shown in Table 4-13. It shows recent
dues payments by members. Each row in the Payments table contains a Member_Id value
that identifies the member (from the Members table) who made a dues payment. The

197

198 Chapter 4 Using SQL Server Databases

Table 4-12 The Members table from the Karate database

ID Last_Name First Name Phone Date_Joined
1 Kahumanu Keoki 111-2222 2/20/2002

2 Chong Anne 232-2323 2/20/2010

3 Hasegawa Elaine 313-345S5 2/20/2004

4 Kahane Brian 646-9387 5/20/2008

5 Gonzalez Aldo 123-2345 6/6/2009

6 Kousevitzky Jascha 414-2345 2/20/2010

7 Taliafea Moses 545-2323 5/20/2005

8 Concepcion Rafael 602-3312 5/20/2007

9 Taylor Winifred 333-2222 2/20/2010

Table 4-13 The Payments table

ID Member_Id Payment_Date Amount
1 1 10/20/2009 $48.00
2 2 02/20/2010 $80.00
3 6 03/20/2010 $75.00
4 4 12/16/2009 $50.00
5 5 04/11/2009 $65.00
6 3 02/16/2009 $75.00
7 8 03/20/2010 $77.00
8 8 02/27/2010 $44.00
9 6 04/20/2010 $77.00

10 5 01/16/2010 $66.00

11 8 05/11/2010 $77.00

13 6 02/20/2010 $77.00

14 7 07/16/2009 $77.00

15 1 03/11/2010 $44.00

16 3 03/28/2010 $43.00

17 4 03/27/2010 $44.00

19 9 02/20/2010 $44.00

22 9 03/20/2010 $55.00

relationship is shown by the diagram in Figure 4-36. The line connects the ID field in the
Members table to the Member_Id field in the Payments table.

Binding Data Sources to List-Type Controls

ListBoxes and ComboBoxes are ideal tools for displaying lists of items and for permitting
users to select individual items. All you have to do is set the following properties:

® The DataSource property identifies a data table that will provide the database data.
¢ The DisplayMember property identifies the column within the table that displays in the
ListBox or ComboBox.

4.5 Data-Bound Controls 199

Figure 4-36 Relationship between the Members and Payments tables

Payments
Members i 7 I
% ID | e —— i Member_Id
Last_Mame : Payment_Date
First_Mame i Amount

Phone

Date_loined

The ValueMember property identifies the column within the table that supplies an
identifying value when an item is selected in the list box. The identifying value is returned in
the SelectedValue property of the list box. Usually, the ValueMember property contains the
name of the table’s primary key field because that field uniquely identifies every table entry.

When you use the mouse to drag a table column from the Data Sources window onto a list
box or ComboBox, Visual Studio automatically creates the necessary data components: a
DataSet, a BindingSource, and a TableAdapter. When you click the smart tag at the top of a
ListBox or ComboBox, a tasks dialog makes it easy to set the data-binding properties. A
sample is shown in Figure 4-37.

Figure 4-37 Setting the data-binding options of a ListBox control

ListBox Tasks

Use Data Bound Iterns

Data Binding Mode

Data Source | MembersBindingSourc |Z||
Display Member |Last_Name Iz“
Value Member |ID |z||
Selected Value | (none) =]
Add Query...

Preview Data...

The data-bound ListBox or ComboBox is a great navigation tool. When the user selects an
item in the list, the form’s BindingSource repositions itself to the DataSet row that matches
the selected value. All other fields bound to the same DataSet on the form are updated auto-
matically with the current row’s data. Tutorial 4-3 will show how this happens.

d Tutorial 4-3:
Displaying the Members table in a ListBox

In this tutorial, you display the last names of members from the Members table in the
Karate database. When the user clicks a member’s name, the program displays the date
when the member joined.

Tutorial Steps

Step 1: Create a Windows desktop application named Member List.

200

Chapter 4

Using SQL Server Databases

Step 2:

Step 3:

Step 4:

Step 5:
Step 6:

Click Add New Data Source in the Data Sources window. (If you cannot see
the Data Sources window, select Show Data Sources from the Data menu.)

Follow the steps in the Data Source Configuration Wizard to create a con-
nection to the Members table in the karate.mdf database file. Name the
DataSet KarateDataSet.

Set the form’s Text property to Member List.
Add a ListBox control to the form and name it IstMembers.

Add a Label just above the list box and set its Text property to Member
Names. Your form should look like the one shown in Figure 4-38.

Figure 4-38 Member List program with list box

Step 7:

' Member List =n R ="

Member Names
IstMembers

Click the ListBox’s smart tag, which causes the ListBox Tasks window to dis-
play, shown in Figure 4-39. Select the Use Data Bound Items check box.

Figure 4-39 The ListBox Tasks window

ListBox Tasks

[[] Use Data Bound ltems
Unbound Mode

Edit Items...

The ListBox Tasks window, shown in Figure 4-40, now contains several data-

binding fields.

Figure 4-40 ListBox Tasks window

ListBox Tasks
Use Data Bound Items

Data Binding Mode
DaaSource KT =]
Display Member | [=]
Value Member | [=]

Selected Value |(ﬂ0ﬂe] E“

Step 8:

4.5 Data-Bound Controls

Select the Data Source dropdown list, expand the Other Data Sources group,
expand Project Data Sources, expand KarateDataSet, and select the Members
table (shown in Figure 4-41). Notice that Visual Studio just added three com-
ponents to the form’s component tray: a DataSet, a BindingSource, and a
TableAdapter.

Figure 4-41 Setting the list box’s DataSource property

Step 9:

Step 10:

ListBox Tasks
Use Data Bound Items
Data Binding Mode

Data Source
& None
4 [J] Other Data Sources
4 | Project Data Sources
4 [karateDataSet
[Members

While still in the ListView tasks window, set the list box’s DisplayMember
property to Last_Name.

Save and run the application. The list box should contain the last names of mem-
bers, as shown in Figure 4-42. Close the window and return to Design mode.

Figure 4-42 List box filled, at runtime

Step 11:

Step 12:

Step 13:

(= e

o' Mernber List

Member Mames

[Kahumanu |
Chong

Hasegawa

Kahane

Gonzalez
Kousevitzky

Taliafea

Concepcion

Nomis

Next, you will add a data-bound label to the form that displays the member’s
phone number. Click the Phone field in the Data Sources window, select Label
from the dropdown list, and drag the Phone field with the mouse onto the
program’s form. Set the label’s BorderStyle property to Fixed 3D.

Save and run the program. As you click each member’s name, notice how the
current phone number is displayed. For a sample, see Figure 4-43.

Let’s analyze what’s happening here. When the user selects a name in the list
box, the form’s data-binding mechanism moves to the DataSet row contain-
ing the person’s name. The Label control is data-bound to the phone number
field, so it displays the phone number of the person selected in the list box.

For each remaining field in the Data Sources window, select its dropdown list
and choose the Label control type. Then drag each field onto the form. Set the
BorderStyle property of each label to Fixed 3D. When you run the applica-
tion, it should appear as in Figure 4-44.

201

202 Chapter 4 Using SQL Server Databases

Figure 4-43 Phone number of selected member displays in Label

a=l Member List EI

Member Names

Phone: |111-2222

Kousevitzky
Taliafea
Concepcion
Nomis

Figure 4-44 Displaying the other fields in Labels

o5 Member List (= ==d

Member Names

B

Chang

Hasegawa Phone: |111-2222
Kahane

Gonzalez

Kousevitzky First Name: | Kzoki
Talizfea

Concepcion Date Joined: | 2/20/2002
Norris :

Step 14: Save the project and run the application. Click on various member names, and
verify that the Label controls change values.

Step 15: Close the application.

Adding Rows to DataTables

Using the NewRow Method

The DataTable class has two methods that help you add rows to tables in DataSets:
NewRow and Add. The NewRow method creates and returns a new, empty row having the
same structure as the other rows in the table. It is declared as follows:

NewRow() As DataRow

Here is a sample call to NewRow, using the Payments table in a DataSet named
PaymentsDataSet:

Dim row As DataRow
row = PaymentsDataSet.Payments.NewRow/()

Because NewRow returns a general DataRow type, the return value must be cast into a
PaymentsRow type before we can reference any of the fields in the Payments table. The fol-
lowing lines redefine row and show how the cast is done:

Dim row As PaymentsDataSet.PaymentsRow
row = CType (PaymentsDataSet.Payments.NewRow,
PaymentsDataSet.PaymentsRow)

4.5 Data-Bound Controls

Next, you can assign values to columns in the table. The column names are properties in the
PaymentsDataSet.PaymentRow class.

With row
.Member Id = 5
.Payment_Date = '5/15/2011"
.Amount = 500D

End With

The last step is to add the new row to the table by calling the Add method from the Rows
collection. This is how the method is declared:

Function Add(row As DataRow) As DataRow

Continuing with the same example, the following statement adds row to the Payments table:

PaymentsDataSet.Payments.Rows.Add(row)

Using the Rows.Add Method

The Rows.Add method also adds a row to a DataTable. When calling Rows.Add, pass it
the new column values. The following code adds a new entry to the Members table of
MembersDataSet:

MembersDataSet.Members.Rows.Add (15, Jones, Sam, 111-2222,
'5/15/2010")

If the underlying database table’s primary key is an auto-generated field, you should pass the
value Nothing as the corresponding Add method argument. Here is an example from the
Karate Payments table, in which the first column is auto-generated:

PaymentsDataSet.Payments.Rows.Add(Nothing, 5, '5/15/2011', 50D)

Updating a DataTable

Adding a row to a DataTable does not affect the database from which it was copied. If you
want to copy your changes back into the database, call the Update method of the
TableAdapter associated with the DataTable. The following statement, for example, writes
all pending changes in the Payments table (in the PaymentsDataSet) back to the underlying
database:

PaymentsTableAdapter.Update(PaymentsDataSet.Payments)

Because a DataSet can contain multiple tables, updating a DataSet causes all changes to its
member tables to be updated. The following statement updates all tables inside the Pay-
mentsDataSet:

PaymentsTableAdapter.Update(PaymentsDataSet)

Direct Insert Using a TableAdapter

To add a row to a database table, call a TableAdapter’s Insert method. Pass it the required
column values, ignoring auto-generated fields. In the next example, the PaymentsTableAdapter
adds a new row to the Payments table, passing the ID, date, and payment amount:

PaymentsTableAdapter.Insert(5, '5/15/2011', 50D)

Removing a Row from a DataTable

Removing a row from a DataTable requires two steps. First, get a reference to the row you
want to remove; second, call the Rows.Remove method, passing it the row reference. For

203

204

Chapter 4

Using SQL Server Databases

example, the following code calls FindByID, passing it the ID of the payment to be removed.
Then, the row object returned by FindByID is passed to the Rows.Remove method:

Dim row As DataRow = PaymentsDataSet.Payments.FindByID(36)
PaymentsDataSet.Payments.Rows.Remove (row)

In Tutorial 4-4, you will write a program that adds rows to a database table.

6 Tutorial 4-4:
Inserting rows in the Karate Payments table

In this tutorial, you will create an application that adds rows to the Payments table in

the Karate database.

Tutorial Steps

Step 1: Create a new Windows application named Insert Karate Payments.

Step 2: In the Data Sources window, add a new data source, using the Payments table
from the Karate database. Select the karate.mdf file located in the chapter

examples folder. Name the DataSet PaymentsDataSet.

Step 3: When asked if you want to copy the database file to your project, answer

Yes.

Step 4: Add three TextBox controls to the form with appropriate labels. One is
named txtMemberld, another is txtDate, and the third is named txtAmount.
Use Figure 4-45 as a guide.

Figure 4-45 The startup form in the Insert Karate Payments application

a5 Add New Payment El
ixtDate — Member ID: | <
ﬁ
Amount: <
Member_Id Payment_Date Amourt

_ 10/20/2009 $43.00

2 11/20/2010 £80.00

6 11/16/2010 £75.00

4 12/16/2009 $50.00

5 1/16/2009 $65.00

3 2/16/2009 £75.00

9 3/11/2010 £77.00

8 272772010 $44.00

3 3/11/2010 £77.00

1

| »

m

txtMemberld

txtAmount

Step 5:
Step 6:

Step 7:

Step 8:

4.5 Data-Bound Controls

Add a Button control named binlnsert and set its Text property to Insert.

Add a DataGridView control to the form and set the following properties:
Name = dgvPayments; BorderStyle = None; BackgroundColor = Control;
ReadOnly = True; RowHeadersVisible = False; Anchor = Top, Bottom, Left,
Right.

Open the grid’s DataGridView Tasks window and set its DataSource property
to the Payments table of PaymentsDataSet.

Select the grid’s Columns property, which opens the Edit Columns window.
Remove the ID column. The remaining columns are shown in Figure 4-46.

Figure 4-46 Editing the Columns property of the dgvPayments grid

Edit Columns =
Selected Columns: Bound Column Properties
Member Id + 2= =l
Payment Date ContextMenuStrip (none) -
Amount MaxInputLength 32767
ReadCnly False
Resizable True
SortMode Automatic =
4 Data
DataPropertyMame Member_Id
4 Design
(Mame) MemberldDataGridViewT ext
ColumnType DataGridViewTextBoxColum -
(Mame)
Indicates the name used in code to identify the object.
Add... l ’ Remove
[oK l ’ Cancel l

Step 9:

Step 10:

Step 11:

Step 12:

Step 13:
Step 14:

Step 15:

Still in the Edit Columns window, select the Member_Id column, and open the
DefaultCellStyle property in the right-hand list box. The CellStyle Builder
window should appear.

In the CellStyle Builder window, set the following properties: Alignment =
MiddleCenter; ForeColor = Blue. Click the OK button to close the window.

In the Edit Columns window, select the Amount column and open its
DefaultCellStyle property.

Open its Format property and select Currency. Click the OK button to close
the dialog.

Click the OK button to close the CellStyle Builder window.

Experiment with the three columns, changing colors and formats as you wish.
When you finish, click the OK button to close the Edit Columns window.

Save and run the application. You should see a list of payments in the grid, as
shown earlier in Figure 4-45. Then stop the application.

205

206

Chapter 4

Using SQL Server Databases

Step 16:

Step 17:

Step 18:

Step 19:

Next, you will add code to the Insert button’s Click event handler that lets
the user create and save new payments. In Design mode, double-click the

Insert button and add the following code to the button’s Click event
handler:

Try
PaymentsTableAdapter.Insert (CShort (txtMemberId.Text),
CDate(txtDate.Text), CDec(txtAmount.Text))
Me.PaymentsTableAdapter.Fill (Me.PaymentsDataSet.Payments)
Catch ex As Exception
MessageBox.Show(ex.Message, ''Database Error'")
End Try

We use a Try-Catch statement here to handle exceptions thrown by the database.

The code you added calls the TableAdapter’s Insert method, passing to it the
values of the three columns: member_Id, date, and amount. Each argument
must be converted to a type that matches the appropriate DataSet column
type. Then the Fill command is called so the user can see the new payment in
the grid.

Add the following lines to the form's Load event handler. As the comment
says, we want the text box to display today’s date:

' Set the text box to today's date.
txtDate.Text = FormatDateTime(Today, DateFormat.ShortDate)

Save the project and run the application. Add a new payment, using a
Member_ID value between 1 and 9. Verify that your payment appears in the
grid after clicking the Insert button.

Try to add a payment with a Member_ID equal to 152. This Member_ID does
not exist in the Members table, so you should see an error message (shown in
Figure 4-47) saying that you violated a foreign key constraint. The payment
is not saved.

Figure 4-47 Error message displayed when the user attempts to add a payment
row, using a nonexistent Member_ID

Step 20:

Step 21:

Database Error (3]

The INSERT statement conflicted with the FOREIGM KEY constraint
"FK_Payments_Members", The conflict occurred in database
"DAADWAMNCED_VE_20100CHAPTERS\CHI4\DATABASES\KARATE.MDF", table
"dba.Members", column D",

The statement has been terminated.

Add a payment that uses an invalid date format or a nonnumeric value for the
payment amount. When you click the Insert button, observe the error message
generated by the database. Your programs should recover gracefully when
users enter invalid data.

Close the application.

4.5 Data-Bound Controls 207

If you run the program again without building the project, the payments you added
during the previous run should appear. But if you build the project and then run it,
the added payments will be gone. Whenever you build a database project, Visual Studio
copies the database from the project’s root directory to its executable directory,
named bin\debug. When the application executes, it reads and writes the database in
the executable directory.

Using Loops with DataSets

Techniques you’ve learned about loops and collections in previous chapters also apply to
DataSets. You can iterate over the Rows collection of a DataTable using the For Each
statement. Usually, it’s best to create a strongly typed row that matches the type of rows
in the DataSet.

The following loop iterates over the Payments table of the PaymentsDataSet, adding the
Amount column to a total. The DataSet was built from the Payments table in the Karate
database.

Dim row As PaymentsDataSet.PaymentsRow

Dim decTotal As Decimal = 0

For Each row In PaymentsDataSet.Payments.Rows
decTotal += row.Amount

Next

In Tutorial 4-5, you will modify the Karate Student Payments application.

d Tutorial 4-5:
Adding a total to the Insert Karate Payments application

In this tutorial, you will add statements that calculate the total amount of payments
made by students in the karate school.

Tutorial Steps
Step 1: Open the Insert Karate Payments program that you created in Tutorial 4-4.

Step 2: Add a new button to the form. Set its properties as follows: Name = btnTotal;
Text = Total Payments.

Step 3: Double-click the new button and modify its Click handler so that it contains
the following code:

Dim decTotal As Decimal = 0

Dim row As PaymentsDataSet.PaymentsRow

For Each row In PaymentsDataSet.Payments.Rows
decTotal += row.Amount

Next

MessageBox.Show(" Total payments are equal to " _
& decTotal.ToString("c"), "Total")

Step 4: Save the project and run the application. Click on the Total Payments button
and observe the results. A sample is shown in Figure 4-48. (Your program’s
total may differ from the value shown in the figure.)

208 Chapter 4 Using SQL Server Databases

Figure 4-48 Calculating the total payments in the Karate Payments table

a5l Add New Payment [= ==

Member ID:

Date: 6/28/2070

Total
Amount: Payments

Member_ld| Total (23]

Total payments are equal to 51,118.00

T Tor EOT FToon

31172010 $77.00
272772010 24400
31,2010 $77.00

[=r B~ T - VLR S B O - T

| I] »

Step 5: End the application.

Checkpoint
@) crecr

22. Which Visual Studio window displays the list of data sources belonging to a
project?

23. The Configuration Wizard is a tool you can use to create a connection
to a database and select a database table.

24, 1If a certain DataTable already exists, what is the easiest way to bind it to a
DataGridView control?

25. How do you bind a single DataTable column to a text box?
26. By default, which control binds to a DateTime field in a DataTable?

27. What is the menu command for adding a new DataSet to the current project?

Focus on Problem Solving: Karate School
Manager Application

Suppose you are a black belt in the Kyoshi Karate School and you would like to create a
management application with the following capabilities:

1. Displays a list of all members.

2. Permits the user to sort on any column, edit individual rows, and delete rows.
3. Adds new entries to the members table.

4. Finds a member by letting the user enter a partial last name.

4.6 Focus on Problem Solving: Karate School Manager Application

5. Displays all payments, sorting on any column.
6. Displays a list of payments by one member.

Techniques for completing some of these tasks have been demonstrated in this chapter. Other
tasks will require new skills that will be demonstrated along the way. Before beginning to
write the application, you should consult with the application’s potential users to clarify
some user interface details. We will assume that users want the following:

e For requirement 1, use a DataGridView control.

e For requirement 2, set options that permit modifying and removing rows—the user
will be able to sort by clicking on column headings.

e For requirement 3, create a data input form with TextBox controls and a Date-
TimePicker control.

e For requirement 4, let the user type a partial last name into a text box. Display a grid
containing all members whose last names begin with the letters entered by the user.

e For requirement 5, join the Members and Payments tables and display the results in a
DataGridView control.

e For requirement 6, display a list of member names (last name, first name) in a Com-
boBox control; when a member is selected by the user, fill a DataGridView control
with payments by the member.

General Design Guidelines

Each form will have a File menu with a Close window option. A startup form will display a
menu and a program logo. Each major task will be carried out on a separate form to allow
for future expansion. When users see how easy the program is to use, they will surely request
more features.

Before we start to create the application, let’s look at the finished version to get a better idea
of how the detailed steps fit into the overall picture. Professional programmers often create
prototypes or demonstration copies of their programs. The prototype stage is where you can
try different versions of the user interface, which requires some reworking, research, and dis-
cussions with customers.

The startup form, named MainForm, displays a program logo and a menu with three main
menu items, shown in Figure 4-49. The startup form should be simple to avoid overwhelming

Figure 4-49 Karate School Manager startup form

o Karate School Manager [=] = =
File Membership Payments

Kyoshi Karate School

Management System 1.0

209

210 Chapter 4 Using SQL Server Databases

users with details. The menu makes it clear that our system handles two major types of func-
tions: membership and payments. Here are the menu selections:
File
Exit
Membership
List All
Find Member
Add New Member
Payments
All
One Member

Membership Forms

To let users view a list of all members, we have provided the All Members form, shown in
Figure 4-50. The grid allows users to sort on any column, select and delete rows, and mod-
ify individual cells within each row. If the user wants to save changes they’ve made back into
the database, they select Save changes from the File menu.

Figure 4-50 All Members form

M
D Last_MName First_MName Phone Date_Joined

_ Kahumanu Keoki 111-2222 2/20/2002
2 Chang Anne 232-3333 2/20/2010
3 Haszegawa Elzine 313-3455 2/20,2004
4 Kahane Brian 646-9387 52072008
5 Gonzalez Aldo 123-2345 6/6/2009

& Kousevitzky Jascha 414-2345 272072010
7 Taliafea Moses 545-2323 52072005
g Concepcion Rafael 602-3312 B2072007
9 Taylor Winifred 3332222 2/20/2010

The Find Member by Last Name form, shown in Figure 4-51, lets the user enter all or part
of a member’s last name. When the user clicks the Go button or presses Enter, a list of
matching member rows displays in the grid. We want name searches to be case-insensitive.

Figure 4-51 Find Member by Last Name form

(Find Member by Last Name
File

Enter a partial last nams: C

1] Last_MName First_Mame Phone Date_Joined
Chong Arine 232-3333 2/20/2010
3 Concepcion Rafael 602-3312 B20,2007

4.6 Focus on Problem Solving: Karate School Manager Application

The Add New Member form, shown in Figure 4-52, lets the user add a new person to the
Members table. After entering the fields and choosing a date from the DateTimePicker con-
trol, the user clicks the Save and Close button. If the user wants to close the form without
saving the data, he or she selects Close without saving from the File menu.

Figure 4-52 Add New Member form

a2 Add Mew Member (5]
File

ID: 99

Last Name: Smith

First Name: Roger
Phone: 333-444-3333
Date Joined: 6/29/°2010 -

Payments Forms

Now we turn our attention to the Payments subsystem of our application. When the user
selects All from the Payments menu on the startup form, the All Payments form shown in
Figure 4-53 appears. The rows are initially ordered by last name, but the user can sort on
any column by clicking on the column header (once for an ascending sort, twice for a
descending sort).

Figure 4-53 All Payments form

—
a= All Payments ==
File
D FullMame Payment_Date Amourt il
_ Mdo Gonzalez | 1/16/2009 £5.0000
10 Aldo Gonzalez 471172010 66.0000
2 Anne Chong 11/20/2010 80.0000
22 &rne Chong 3/21/2010 55.0000 s
4 Brian Kzhane 12/16/2009 50.0000
17 Brian Kahane Y2FA00 44,0000
16 Elaine Hasegawa | 3/28/2010 43.0000 L5
Elaine Hasegawa | 2/16/2009 75.0000
Jascha Kousevitz... | 3/11/2010 77,0000
Jascha Kousevitz... | 11/16/2010 75.0000
13 Jascha Kousevitz... | 6/11/2010 77.0000

The Payments by One Member form, shown in Figure 4-54, lets the user select a member
name from a ComboBox. The grid fills with the person’s payment history.

211

212 Chapter 4 Using SQL Server Databases

Figure 4-54 Payments by One Member form

- Payments by One Member [
File

Select a Member

Kousevitzky, Jascha -
Payment History

D FullMame Payment_Date Amourt
3 Jascha Kouszevitzly 111672010 75.0000
9 Jascha Kousevitzky 3112000 77.0000
Jascha Kousevitzky | 6/11/2010 77.0000

From the user’s point of view, the program should be simple. By the time you finish creating
it, you will know how to design a simple user interface, open multiple windows, create
DataSets and connections, search for database rows in various ways, and perform simple
configurations of the DataGridView control.

In Tutorial 4-6, you will create the startup form for the Karate School Manager application.

6 Tutorial 4-6:
Creating the Karate School Manager startup form

In this tutorial, the form will contain the name of the program, version information, and
a MenuStrip control. This will always be the first form to open and the last form to
close when the application shuts down.

Tutorial Steps
Step 1: Create a new Windows application named Karate School Manager.
Step 2: Rename the startup form to MainForm.vb.

Step 3: Open MainForm and set the following properties: Size = 530, 275; Text =
Karate School Manager; StartPosition = CenterScreen; MaximizeBox = False;
FormBorderStyle = FixedSingle.

Step 4: Insert a Panel control on the form and set its Size property to 390, 115. Insert
another Panel control inside the first one and set its Size property to approx-
imately 360, 80. Set the BorderStyle property of both panels to Fixed3D.

Step 5: Insert a Label control inside the smaller panel and set its Text property to
Kyoshi Karate School. We used 26.25-point, bold, italic Monotype Corsiva
font in the example shown earlier in Figure 4-49.

Step 6: Add another label control near the bottom of the form and set its Text prop-
erty to Management System 1.0. We used 11.25-point, bold Arial font in our
example.

Step 7:

Step 8:

Step 9:

4.6 Focus on Problem Solving: Karate School Manager Application

Add a MenuStrip control to the form and insert the following menu items:

&File

E&xit
&Membership

&List All

&Find Member

&Add New Member
&Payments

&A1l

&One Member

Double-click the File / Exit menu item and insert the following code into its
Click event handler:
Me.Close()

Save the project and run the application. Verify that the form closes when you
click the File / Exit menu item.

You’re done for now. Tutorial 4-7 will focus on adding the Membership sub-
system to the application.

6 Tutorial 4-7:
Karate School Manager: Listing all members

In this tutorial, you will use a DataGridView control to list all members in the Karate
school. A new data source will be added to the project, and the DataGridView will be
bound to the data source.

Tutorial Steps

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Open the Karate School Manager project, if it is not already open.

Add a new form named AllMembersForm.vb to the project. Set its
MinimizeBox and MaximizeBox properties to False. Set its Text property to
All Members.

In MainForm, create a Click handler for the Membership / List All menu item
and insert the following code:

AllMembersForm.ShowDialog()

In the Data Sources window, select Add New Data Source. Create a connec-
tion to the Karate database. In the Choose Your Database Objects window,
select the Members table and name the DataSet as KarateDataSet. Click the
Finish button to save the DataSet.

Place a DataGridView control on the AllMembersForm and name it
dguMembers. Anchor the grid to all four sides of the form. Set the following
property values: BackGroundColor = Control, BorderStyle = None, Row-
HeadersVisible = False.

On the same form, open the DataGridView Tasks window. In the Choose
Data Source list, select the Members table from KarateDataSet. Check the

213

214

Chapter 4

Using SQL Server Databases

Enable Editing and Enable Deleting check boxes only. If the grid’s column
headings do not appear as shown Figure 4-535, edit the grid’s Columns prop-
erty and use the arrow buttons next to the column names list to adjust the col-
umn order.

Figure 4-55 Column layout for the Members table

D Last_Mame First_Mame Phone Date_Joined

Step 7: While still editing the Columns property, select the Date_Joined column and
select its DefaultCellStyle property. Enter d into the Format property. (This
format specifies the short date format, in the form m/d/yyyy.) Click the OK
button twice to close the column editor.

Step 8: Add a MenuStrip control to the form. Add a File menu item, with one subitem:
Close. In the Close item’s Click handler, insert the Me.Close() statement.

Step 9: Save the project and run the application. From the startup form menu, select
Membership / List All. You should see a list of members, as shown in Figure 4-56,
which is similar to that shown earlier in Figure 4-50.

Figure 4-56 Listing all members

a5 All Members =

1D Last_Mame First_MName Phonie Date_Joined
Kahumanu Keoki 111-2222 2/20/2002

2 Chang Arine 2323333 2/20/2010
3 Hazegawa Elaine 3133455 2720/2004
4 Kahane Brian 6469357 52072008
H] Gonzalez Aldo 123-2345 6/6/2009

[Kousevitzky Jascha 4142345 2/20/2010
7 Taliafea Moses 5452323 52072005
2 Concepcion Rafael 602-3312 B/20/2007
9 Taylor Winifred 3332222 272002000

Step 10: End the application.

Using a BindingSource

A BindingSource object creates a connection between a DataSet and the data-bound con-
trols on a form. The BindingSource is attached to the DataSet, and the form’s other controls
are attached to the BindingSource. As the user changes the contents of controls, the Bind-
ingSource updates the DataSet.

"

4.6 Focus on Problem Solving: Karate School Manager Application

The BindingSource class has a DataSource property that exposes the DataSet to which it
is bound. It also has methods that let you add new rows, edit rows, and cancel an editing
operation in progress. Here are some of the more important methods in the Binding-
Source class:

AddNew—Adds a new row to the list.

® RemoveCurrent—Removes the current row from the list.
EndEdit—Applies pending changes to the data source.
CancelEdit—Cancels all changes.

When you bind a control to a data source, a BindingSource object is placed on your form
inside the component tray area (shown in Design view). In Tutorial 4-7, for example, the
DataGridView that displayed the list of members was bound to MembersDataSource. Visual
Studio automatically created a MembersBindingSource object and set the following two
important properties that bound it to the data source:

e DataSource = MembersDataSource
e DataMember = Members

The following are other important BindingSource properties:

e Count—Number of items in the list.
® Current—Returns the object at the current position of the list.
o Filter—An expression that filters the rows.

Let’s look at some examples of these properties and methods. The following statement per-
mits only those members who joined after 1/1/2005 to be displayed:

MembersBindingSource.Filter = "Date Joined > '1/1/2005'"
The following statement adds a new empty row to the list of Members:
MembersBindingSource.AddNew()
The following statement removes the current row from the list of members:
MembersBindingSource.RemoveCurrent ()

The following statement saves pending changes to the list of members back into Members-
DataSource:

MembersBindingSource.EndEdit ()
The following statement cancels all pending changes to the list of members:
MembersBindingSource.CancelEdit()

In Tutorial 4-8, you will add an Add Member form to the Karate School Manager program.

TIP: When you double-click a control in the design window for a form, an event han-
dler procedure is generated for you. It always handles the default event for the control.
But it is possible to write handlers for many other events on the same control. Here’s how
you select a different event so you can create a handler:

1. In the Design window, select the control with the mouse.

2. Select the Events button in the Properties window toolbar. It looks like a lightning
bolt.

3. Double-click on the box to the right of the name of the property for which you wish
to create a handler.

215

216

Chapter 4

Using SQL Server Databases

0

Tutorial 4-8:
Karate School Manager: Adding new members

In this tutorial, you will add a new form to the Karate School Manager program that
lets users add new rows to the Members table. The form will use data binding and write
its changes directly to the database.

Tutorial Steps

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Open the Karate School Manager project.

Add a new form to the project named AddMemberForm.vb. Set its Text prop-
erty to Add New Member. Set the following property values: MaximizeBox =
False; MinimizeBox = False; FormBorderStyle = FixedDialog.

In MainForm, locate the Membership / Add New Member menu item; double-

click the item and insert the following statement in its Click event handler:
AddMemberForm.ShowDialog()

In the Data Sources window, locate the Members table under the KarateDataSet
entry. Using the dropdown arrow to its right, select Details from the list.

Drag the Members table onto the form. Visual Studio should automatically cre-
ate data-bound fields and a ToolStrip named MembersBindingNavigator. Set
the Format property of the DateTimePicker control to Short. Use Figure 4-57
as a guide.

Figure 4-57 Add New Member form in Design mode

Step 6:

Step 7:

o2 Add Mew Member ==
File

1D:

Last Mame:

First Name:

Fhone:

Date Joined: 6/29/2010 «

Delete the MembersBindingNavigator component from the form’s component
tray. Open the form’s code window and delete the MembersBindingNaviga-
torSaveltem_Click method.

Replace the code in the form’s Load event handler with a statement that calls
AddNew.

MembersBindingSource.AddNew()

The statement clears the form’s input fields and waits for the user to enter data
for a new member.

4.6 Focus on Problem Solving: Karate School Manager Application

Step 8: Add a MenuStrip control to the form. Add a File menu item with one
subitem: Close. In the event handler for the first item, insert a Me.Close()
statement.

Step 9: Create a FormClosing event handler for the form and insert the following
statement:

MembersBindingSource.CancelEdit ()

This statement cancels any edit operation that might be in progress. The user
might have opened the form, begun to fill in the fields, changed his or her
mind, and decided to close the form.

Step 10: Rename the DateTimePicker control to dtpDate. Also, add the following line
to the form’s Load event handler:

dtpDate.Value = Today

This line is necessary to ensure that the date value will be saved in the data-
base even if the user does not explicitly select a date.

Step 11: Add a button to the form named btnUpdate. Set its Text property to Update.
Create a handler for the button. It calls EndEdit to complete the add new row
operation. Then it calls Update to save the DataSet modifications to the actual
database. Finally, it closes the form, as follows:

Private Sub btnUpdate Click () Handles btnUpdate.Click
Try
MembersBindingSource.EndEdit ()
MembersTableAdapter.Update (KarateDataSet.Members)
Me.Close()
Catch ex As Exception
MessageBox.Show(ex.Message, "Error")
End Try
End Sub

Step 12: Save the project and run the application. Click the Membership / Add New
Member menu selection and add a new member. Choose a member ID that
does not appear when you list all members. If you’re not sure, display a list of
all members first.

Using Query Parameters

When SQL queries search for selected records in database tables, you don’t know ahead of
time what values the user might want to find. While it is possible to build a query from an
existing SQL SELECT statement that contains the names of Visual Basic variables, the result
is messy. Suppose, for example, that the user has entered a name in the txtLastName con-
trol, and you want to write a query that would locate all rows in the Members table having
the same last name. You can build the following query:

Dim query As String

query = "SELECT ID, Last_Name, First Name, Phone, Date_Joined "

& "FROM Members WHERE Last Name = '" & txtlastName.Text & "'"

When typing code such as this, it is easy to make a typing mistake, and it can make your
application more vulnerable to software exploits that attempt to access sensitive database
data. A much better approach is to insert a parameter name directly into the SQL query. In

217

218

Chapter 4

Using SQL Server Databases

the following example, a parameter named @Last_Name will be assigned a specific value at
runtime:
SELECT ID, Last_Name, First Name, Phone, Date_Joined

FROM Members
WHERE Last Name = @Last Name

When the TableAdapter’s Fill method is called, we pass it a second argument. That argument
value is automatically assigned to the query parameter:

MembersTableAdapter.Fill (Me.FindMemberDataSet.Members,
txtLastName.Text)

If a query contains more than one parameter, the parameter values become additional argu-
ments for the Fill method. The following query, for example, contains two parameters,
@Last_Name and @Date_Joined:

SELECT ID, Last Name, First Name, Phone, Date_Joined
FROM Members
WHERE Last Name = @Last Name AND Date Joined <= @Date_ Joined

Notice how the call to the Fill method changes accordingly.

MembersTableAdapter.Fill (Me.FindMemberDataSet.Members,
txtLastName.Text, txtDateJoined.Text)

WildCard Matches in SQL Queries

When searching for matching rows in a database table, you may not always know the exact
value you’re trying to find. SQL has a special keyword named LIKE that uses a wildcard
character to perform partial matches. SQL Server uses the percent sign (%) character to
match any string of characters. For example, the following WHERE clause returns all rows
containing a name starting with the letter G:

WHERE Last Name LIKE 'G%'

The database returns rows containing last names such as Gomez, Gonzalez, Green, and so
on. By default, the LIKE operator is case-insensitive, so names in lowercase characters still

match G%.

In Tutorial 4-9, you will create a form that lets users search using wildcard characters.

Tutorial 4-9:
Karate School Manager: Finding members by name

In this tutorial, you will create a form for the Karate School Manager application that
lets users search for members using their last names. The query that performs the search
will accept a partial string, so if users do not know the exact spelling of a member name,
they can view a list of members with similar names.

Tutorial Steps

Step 1: Open the Karate School Manager project.

Step 2: Add a new form to the project named FindMemberForm.vb. Set its properties as
follows: Text = Find Member by Last Name; MaximizeBox = False; MinimizeBox
= False; StartPosition = CenterScreen; FormBorderStyle = FixedDialog.

Step 3:

Step 4:

Step 5:

4.6 Focus on Problem Solving: Karate School Manager Application

In MainForm, double-click the Membership / Find Member menu item and
insert the following code in its event handler:

FindMemberForm.ShowDialog()

Open FindMemberForm in Design view, add a MenuStrip control to the form,
and create a File submenu with one selection: Close. In its Click event handler,
insert the Me.Close() statement.

Add a Label control, a TextBox named #x¢LastName, and a Button named
btnGo to the form. Use Figure 4-58 as a guide. (The DataGridView control
will be added in a later step.)

Figure 4-58 The Find Member form in Design mode

Find Member by Last Mame

£2]
File

Enter a partial last name:

n] Last_Name First_Name Phone Date_Joined

Step 6:

Step 7:

Step 8:

Step 9:

Open the KarateDataSet.xsd file, right-click the MembersTableAdapter, select
Add, and then select Query. Insert the following SQL query:

SELECT ID, Last Name, First Name, Phone, Date_ Joined
FROM Members
WHERE (Last_Name LIKE @name + '%"')

After creating the SQL query, click the Nexz button. In the Choose Methods
to Generate step shown in Figure 4-59, select only the Fill a DataTable option
and name the method FindMember. After you have finished adding the query,
the MembersTableAdapter should appear as in Figure 4-60.

Place a DataGridView control on the form and name it dguMembers. Set its
properties as follows: BackGroundColor = Control; BorderStyle = None;
Anchor = Bottom, Left, Right; RowHeadersVisible = False.

Using the smart tag in the grid’s upper-right corner, set its data source to the
Members table of KarateDataSet. Disable adding, editing, and deleting of
rows.

Next, you will add a call to the Fill method in the event handler for the but-
ton that activates the search. Double-click the Go button and insert the fol-
lowing code in its event handler:

' Perform a wildcard search for the last name.
Me.MembersTableAdapter.FindMember (FindMemberDataSet .Members,
txtLastName.Text)

219

220

Chapter 4

Using SQL Server Databases

Figure 4-59 Selecting the names of the TableAdapter methods

TableAdapter Query Configuration Wizard
Choose Methods to Generate T}j
The TableAdapter methods load and save data between your application and the database. I g

Which methods do you want to add to the TableAdapter?
Fill a DataTable

Creates a method that takes a DataTable or DataSet as a parameter and executes the SQL statement or SELECT stored
procedure entered on the previous page.

Method name: FindMember
"] Return a DataTable

Creates a method that returns a new DataTable filled with the results of the SQL statement or SELECT stored
procedure entered on the previous page.

Method name:

< Previous ” MNext =] [Finish l [Cancel

Figure 4-60 The MembersTableAdapter, after adding the FindMember query

L)
Last_Mame
First_Mame
Phone
Date_Joined
B MembersTableAdapter [&]
Fill, GetData ()
= FindMember (@name)

Normally, the Fill method has only one parameter—the DataSet’s table. But
here you pass a second parameter, which is the value to be assigned to the
query parameter.

Step 10: Select the form with the mouse and set the Form’s AcceptButton property to
btnGo. This will allow the user to press the Enter key when activating the
search.

Step 11: Remove any statements that might be inside the form’s Load event handler.
(You don’t want the grid to fill with data until a member name has been
entered.)

In Tutorial 4-10, you will be able to track payments of membership dues for the Karate school.

4.6 Focus on Problem Solving: Karate School Manager Application

Step 12: Save the project and run the application. From the startup form, click

Membership / Find Member from the menu. When the Find Member form
appears, enter a partial last name, such as C or Ch, and click the Go button.
Your output should look similar to that shown in Figure 4-61.

Figure 4-61 Finding a member by last name

Find Member by Last Mame =
File

Chong Anne 2323333 2/20/2010
8

Enter a partial last name: C

D Last_MName First_Name Phone Date_Joined

Concepcion Rafael e02-3312 5/ 20,2007

Step 13: Experiment with other partial last names, checking your results against the

grid that displays all members.

0

Tutorial 4-10:
Karate School Manager: Listing all payments

In this tutorial, you will use the Payments table, which contains dates, member IDs, and
payment amounts. It does not contain member names. You will join the Payments table
to the Members table so you can display the member names along with the payments
they have made. You will create a DataSet that contains the joined tables. The applica-
tion will display the DataSet in a DataGridView control.

Tutorial Steps

Step 1:
Step 2:

Step 3:

Step 4:

Open the Karate School Manager program if it is not already open.

Add a new form to the project named AllPaymentsForm.vb. Set its properties
as follows: Text = All Payments; MaximizeBox = False; MinimizeBox = False;
StartPosition = CenterScreen.

Add a MenuStrip control to the form, and create a File submenu with one
item: Close. In the Close item’s Click handler, insert the Me.Close() statement.

In MainForm, double-click the Payments / All menu item and insert the fol-
lowing code in its event handler:

AllPaymentsForm.ShowDialog()

221

222

Chapter 4

Using SQL Server Databases

Step 5:

Step 6:

Step 7:

Next, you will create a TableAdapter that joins the Members and Payments
tables. This TableAdapter will be associated with a DataTable named Payments.
Open the KarateDataSet.xsd file from the Solution Explorer window. Right-click
in an open area of the designer window, select Add, then select TableAdapter.

When the TableAdapter Configuration Wizard starts, keep the same connec-
tion, and click the Nexz button two times. When you see the step entitled
Specify a SOL Select Statement, insert the following SQL query:

SELECT Payments.ID,
Members.Last Name + ', ' + Members.First Name AS FullName,
Payments.Payment Date, Payments.Amount

FROM Members INNER JOIN Payments
ON Members.ID = Payments.Member Id

ORDER BY Last Name

This query joins the Members and Payments tables, using the common ID
value found in the Members.ID and Payments.Member_Id columns. Also, it
concatenates the last and first names of each member, using the following
expression:

Members.Last Name + ', ' + Members.First Name AS FullName

Click the Query Builder button, and in the Query Builder window, click the
Execute Query button. If an error message appears, check your query’s
spelling and punctuation. Click the OK button to close the Query Builder
window.

Click the Advanced Options button. In the dialog window, shown in Figure
4-62, unselect the Generate Insert, Update, and Delete statements option.
We’re doing this because we generally do not update tables when they are
joined together. Click the OK button.

Figure 4-62 Advanced Options window

Advanced Options (-2 el

7] Generate Insert, Update and Delete statements

Additional Insert, Update, and Delete staterments can be generated to update the data source,

Generates Insert, Update, and Delete statements based on your Select statement.

Meodifies Update and Delete staternents to detect whether the database has changed since the
record was loaded into the dataset. This helps prevent concurrency conflicts,

Adds a Select statement after Insert and Update statements to retrieve identity column values,
default values, and other values calculated by the database.

OK l ’ Cancel

Step 8:

Click the Next button. In the Choose Methods to Generate step, select only
the Fill a DataTable option and name the method AllPayments. Also, unselect
the third check box because you do not want to create methods that send
updates directly to the database. Click the Finish button to close the wizard.

After you have finished adding the query, the PaymentsTableAdapter should
appear as in Figure 4-63.

4.6 Focus on Problem Solving: Karate School Manager Application

Figure 4-63 PaymentsTableAdapter, containing the AllPayments method

Step 9:

Step 10:

Step 11:

?
FullMarme

Payment_Date

Amount
W PaymentsTableAdapter (7
AllPayments ()

Place a DataGridView control on the form and name it dgvPayments. Set its
properties as follows: BackGroundColor = Control; BorderStyle = None;
Dock = Fill, RowHeadersVisible = False.

Click the smart tag of dgvPayments to open the DataGridView Tasks window.
For the data source, choose the Payments table in KarateDataSet. Unselect the
adding, editing, and deleting check boxes.

Save the project and run the application. Display the All Payments window.
Sample output is shown in Figure 4-64.

Figure 4-64 All Payments form

Step 12:

~ —

a2l All Payments (=3
File
n] FullName Payment_Date Amount al
_ Ado Gonzalez | 1/16/2009 £5.0000
10 Aldo Gonzalez 41120010 66.0000
2 Anne Chong 11/20/°2010 80.0000
2 Anne Cheng 3/21/2010 55.0000 3
4 Brian Kahane 12162009 50.0000
17 Brian Kahane 2000 44 D000
16 Blaine Hasegawa | 3/28/20010 43.0000 L
Elaine Hasegawa | 2/16/200% 75.0000
Jascha Kousevitz... | 3/11/2010 77.0000
Jascha Kousevitz... | 11/16/2010 750000
13 Jascha Kousevitz... | 6/11/2010 77.0000

For extra practice, you may want to center the ID column and format the
Amount column with two digits after the decimal point.

Close the application.

In this tutorial you joined two database tables, using a relationship between
the Members and Payments tables. You have seen how easily a DataSet can
contain multiple TableAdapters. In Tutorial 4-11, you will complete the last
requirement of the Karate School Manager application, which is to display
payments by one member.

223

224

Chapter 4

Using SQL Server Databases

0

Tutorial 4-11:
Karate School Manager: Showing payments by one member

In this tutorial, you will create a form that displays a single member’s payment history.
A ComboBox control will present a list of first and last names. When the user selects a
name, a DataGridView control will fill with payments made by the member.

Tutorial Steps

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Open the Karate School Manager program if it is not already open.

Add a new form to the project named MemberPaymentsForm.vb. Set its prop-
erties as follows: Text = Payments by One Member; MaximizeBox = False;
MinimizeBox = False; StartPosition = CenterScreen.

Add a MenuStrip control to the form, and create a File submenu with one
selection: Close. In the Close handler, insert the Me.Close() statement.

In the MainForm form, double-click the Payments / One member menu item
and insert the following code in its event handler:

MemberPaymentsForm.ShowDialog()

Next, you will create a TableAdapter that displays member names. Open the
KarateDataSet.xsd file from the Solution Explorer window. Right-click in an
open area of the designer window, select Add, then select TableAdapter.

When the TableAdapter Configuration Wizard starts, keep the same connect,
and click the Next button two times. When you see the step entitled Specify
an SOL Select Statement, insert the following SQL query:

SELECT ID, Last Name + ', ' + First_Name AS Name
FROM Members
ORDER BY Last Name

Click the Query Builder button, and in the Query Builder window, click the
Execute Query button. If an error message appears, check your spelling and
punctuation. Click the OK button to close the Query Builder window.

Open the Advanced Options window and unselect the Generate Insert, Update,
and Delete statements option. Click the OK button to close the window.

Click the Next button. In the Choose Methods to Generate step, unselect the
third check box because you do not want to create methods that send updates
directly to the database. Click the Finish button to close the wizard.

Rename the table and TableAdapter as shown in Figure 4-65. You rename by
right-clicking on the gray bar and select Rename from the popup menu.

Figure 4-65 MemberNames DataTable and associated TableAdapter

L. MemberNames &

? m
Mame

"8 MemberNamesTableAdapter (]
Fill, GetData)

Step 10:
Step 11:

Step 12:

Step 13:

Step 14:

4.6 Focus on Problem Solving: Karate School Manager Application

The next series of steps will be to bind a ComboBox control to the Member-
Names table. When the user selects a member name, we want the member’s
ID to be available in the ComboBox’s SelectedValue property.

Add a ComboBox control to the form and name it cboMemberName.

Open the ComboBox Tasks window. Select the Use data bound items option.
Set its DataSource property to the MemberNames table in KarateDataSet. Set
its DisplayMember property to Name. Set its ValueMember property to ID.

If you were to run the program now, you would see only a list of first and last
names in this form’s ComboBox. You need to add a grid to the form and use
it to display payments made by the member selected in the ComboBox.

First, you will create a query that selects members by ID number. Open the
KarateDataSet.xsd file from the Solution Explorer window. Right-click the
PaymentsTableAdapter, select Add, and then select Query. In the Specify an
SOL Select Statement step, insert the following SQL query:

SELECT Payments.ID,
Members.First Name + ' ' + Members.Last Name AS FullName,
Payments.Payment Date, Payments.Amount

FROM Members INNER JOIN
Payments ON Members.ID = Payments.Member Id

WHERE (Member Id = @memberId)

ORDER BY Payment Date

Click the Query Builder button and, in the Query Builder window, click the
Execute Query button. If an error message appears, check your spelling and
punctuation. Click the OK button to close the Query Builder window.

Click the Next button. In the Choose Methods to Generate step, select only
the Fill a DataTable option and name the method MemberPayments. Click
the Finish button, which closes the Wizard. You should see a new version of
the PaymentsTableAdapter in the DataSet designer window, as shown in
Figure 4-66.

Figure 4-66 Revised PaymentsTableAdapter

Step 15:

7 o
FullMame
Payment_Date
Amount

'8 PaymentsTableAdapter [#]

Sy AllPayments ()
2 MemberPayments (@memberld)

Add a Label control to PaymentsOneForm just above the ComboBox and set
its Text property to Select a Member. Add a second Label control below the
ComboBox and set its Text to Payment History.

Next, you will add a grid to the form, and write code in the ComboBox’s
SelectedIndexChanged event handler that fills the grid with payments made
by the selected member.

225

226 Chapter 4 Using SQL Server Databases

Step 16: Place a DataGridView control on the form and name it dguPayments. Set its
properties as follows: BackGroundColor = Control; BorderStyle = None;
Anchor = Top, Bottom, Left, Right; RowHeadersVisible = False.

Step 17: Open the DataGridView Tasks window by clicking the grid’s smart tag. Set
the data source to the Payments table in KarateDataSet. Unselect the Adding,
Editing, and Deleting check boxes.

Step 18: Double-click the ComboBox and insert the following code in its SelectedIn-
dexChanged event handler:

If cboMemberName.SelectedIndex = -1 Then Exit Sub
' Get the Member Id value associated with the selected
' member.

Dim member Id As Short = CShort(cboMemberName.SelectedValue)

' Fill the payments grid, passing it the member ID.

PaymentsTableAdapter.MemberPayments (KarateDataSet.Payments,
member Id)

Step 19: Modify the Form_Load event handler so it is as follows:

Private Sub MemberPaymentsForm Load() Handles MyBase.Load
Me.MemberNamesTableAdapter.Fill (Me.KarateDataSet.
MemberNames)

cboMemberName.SelectedIndex = -1
End Sub

Step 20: Save the project and run the application. Select the Payments / One Member
menu item. Select a member (Kousevitzky). Your output should be similar to
that shown in Figure 4-67.

Figure 4-67 Displaying payments by one member

= Payments by One Member [
File

Select 8 Member

Kousevitzky, Jascha -
Payment History

ID FullName Payment_Date Amount
3 Jascha Kousevitzloy 11/16/2010 75.0000
9 Jascha Kousevitzlky 3/11/,2010 77.0000

RERN Jscha Kousevitzky | 6/11/2010 77.0000

Summary

It is surprising how many simple steps are involved in creating a nontrivial application. The
Karate School Manager application is tiny by professional standards. But it is expandable,
and it even provides some usability for the customer.

4.6 Focus on Problem Solving: Karate School Manager Application

If we continued to expand this application, eventually we would find that the large number of
data sources, queries, and other data components would be overwhelming. For example, main-
tenance would be particularly difficult if the database table structure changed. Every form we
have created has components and queries that match the existing database structure. A major
problem of the application’s design is that we have no clear separation of tiers, or layers, in this
program. We have no separate layers for database access, user interface code, or business objects.

Fortunately, you will learn how to use database objects in Chapter 5. You will learn how to
implement the three-tier approach to application design. As a result, you will be able to cre-
ate applications that are expandable and maintainable.

Complete Source Code

The following is a listing of all the source code in the Karate School Manager application.
Optional parameters have been removed from the event handler methods to preserve read-
ability.

MainForm.vb:

Public Class MainForm
Private Sub ExitToolStripMenulItem Click()
Handles ExitToolStripMenuItem.Click
Me.Close()
End Sub

Private Sub ListAllToolStripMenuItem Click()
Handles ListAllToolStripMenuItem.Click
AllMembersForm.ShowDialog()

End Sub

Private Sub AddNewMemberToolStripMenultem Click()
Handles AddNewMemberToolStripMenuItem.Click
AddMemberForm.ShowDialog()

End Sub

Private Sub FindMemberToolStripMenulItem Click()
Handles FindMemberToolStripMenulItem.Click
FindMemberForm.ShowDialog()

End Sub

Private Sub AllPaymentsToolStripMenultem Click()
Handles AllPaymentsToolStripMenuItem.Click
AllPaymentsForm.ShowDialog()

End Sub

Private Sub OneMemberToolStripMenuItem Click()
Handles OneMemberToolStripMenuItem.Click
MemberPaymentsForm.ShowDialog()

End Sub

End Class

AllMembersForm.vb:

Public Class AllMembersForm
Private Sub AllMembersForm Load() Handles MyBase.Load
Me.MembersTableAdapter.Fill (Me.KarateDataSet.Members)
End Sub

Private Sub CloseToolStripMenultem Click()
Handles CloseToolStripMenuItem.Click
Me.Close()

End Sub

End Class

227

228 Chapter 4 Using SQL Server Databases

AllPaymentsForm.vb:

Public Class AllPaymentsForm
Private Sub CloseToolStripMenultem Click()
Handles CloseToolStripMenuItem.Click
Me.Close()
End Sub

Private Sub AllPaymentsForm Load()
Handles MyBase.Load
Me.PaymentsTableAdapter.AllPayments (Me.KarateDataSet.Payments)
End Sub
End Class

AddMemberForm.vb:

Public Class AddMemberForm
Private Sub AddMemberForm Load() Handles MyBase.Load
MembersBindingSource.AddNew()
dtpDate.Value = Today
End Sub

Private Sub CloseToolStripMenultem Click()
Handles CloseToolStripMenuItem.Click
Me.Close()

End Sub

Private Sub AddMemberForm FormClosing()
Handles MyBase.FormClosing
MembersBindingSource.CancelEdit ()

End Sub

Private Sub btnUpdate Click() Handles btnSave.Click
Try
Me.MembersBindingSource.EndEdit ()
MembersTableAdapter.Update(KarateDataSet.Members)
Me.Close()
Catch ex As Exception
MessageBox.Show(ex.Message, '"Error")
End Try
End Sub
End Class

FindMemberForm.vb:

Public Class FindMemberForm
Private Sub CloseToolStripMenultem Click()
Handles CloseToolStripMenulItem.Click
Me.Close()
End Sub

Private Sub btnGo Click() Handles btnGo.Click
' Perform a wildcard search for the last name.
Me.MembersTableAdapter.FindMember (KarateDataSet.Members,
txtLastName.Text)
End Sub
End Class

MemberPaymentsForm.vh:

Public Class MemberPaymentsForm
Private Sub MemberPaymentsForm Load() Handles MyBase.Load
Me .MemberNamesTableAdapter.Fill (Me.KarateDataSet.MemberNames)
cboMemberName.SelectedIndex = -1
End Sub

Summary

Private Sub cboMemberName SelectedIndexChanged()
Handles cboMemberName.SelectedIndexChanged
If cboMemberName.SelectedIndex = -1 Then Exit Sub
' Get the Member Id value associated with the selected member.
Dim member Id As Short = CShort(cboMemberName.SelectedValue)
' Fill the payments grid, passing it the member ID.
PaymentsTableAdapter.MemberPayments (KarateDataSet.Payments,

member Id)

End Sub

Private Sub CloseToolStripMenultem Click()
Handles CloseToolStripMenulItem.Click
Me.Close()

End Sub

End Class

Checkpoint
@) creceo

28. In the Karate database, which table contains the dates when students joined the
school?
29. In the AllPaymentsForm, which two database tables are required when filling the
grid?
30. Which property of a DataGridView control lets you alter the order in which
columns appear?
31. How does the MemberPaymentsForm obtain the ID number of the member selected
by the user in the ComboBox?
32. What special keyword is used in the WHERE clause of a query when you want to
search for partially matching strings?
Summary
4.1 Database Basics

A database is a collection of one or more tables, each containing data related to a par-
ticular topic. A table is a logical grouping of related information. Each row of a table
is also called a record. Table columns are also called fields.

Each table has a design, which specifies each column’s name, data type, and range or size.
A database schema contains the design of tables, columns, and relationships between
tables for the database.

A primary key column uniquely identifies each row of a table. A primary key will
sometimes consist of two or more combined columns.

When you use Visual Basic to read a database table, you must select .NET and
Visual Basic variable types that match the type of data in the table. A table at the
beginning of this chapter correlates .NET data types to Microsoft SQL Server data
types.

Well-designed databases keep redundant data to a minimum. Always try to avoid hav-
ing multiple occurrences of the same field contents in rows of a database.

A relationship is a link or relationship that relies on a common field value to join rows
from two different tables. The most common type of relationship is a one-to-many
relation.

229

230

Chapter 4

Using SQL Server Databases

4.2

4.3

44

4.5

4.6

SQL SELECT Statement

The SELECT statement retrieves rows from one or more database tables. The most
basic format for a single table is SELECT column-list FROM table. In SELECT state-
ments, column names can be renamed, using the AS operator. The new column name
is called an alias. You can also create new columns whose contents are calculated from
existing column values.

The SELECT statement has an ORDER BY clause that lets you control the display
order of the table rows.

The SQL SELECT statement has a WHERE clause that you can use to filter, or select
zero or more rows retrieved from, a database table. The LIKE operator can be used to
create partial matches with Text column values. The NOT, AND, and OR operators
can be used to create compound expressions.

Using the DataGrid View

A data source connects a program to a database, text files, Excel worksheet, XML file,
or other type of data.

A BindingSource provides a link between a DataSet object and data-bound controls on
a form.

A TableAdapter pulls data from a database (or other data source) and passes it to your
program.

A DataSet is an in-memory copy of the data pulled from database tables.

A TableAdapter’s Fill method opens a database connection, reads data from a database
into the DataSet, and closes the connection.

Selecting DataSet Rows

Applications often need to filter, or select, certain rows when retrieving data from data
sources. Filtering, or choosing rows to display in a DataSet, is done by creating a query.
In SQL, the WHERE statement limits the rows retrieved from a database table.

The TableAdapter Configuration Wizard and Search Criteria Builder can be used to
modify queries.

Data-Bound Controls

Using a data source, you can bind its fields to individual controls such as text boxes,
labels, and list boxes.

Data-bound controls update their contents automatically when you move from one
row to the next in a DataSet.

You can bind an existing data source to a DataGridView control by dragging a table
from the Data Sources window to an open area of a form. Similarly, you can create
separate data-bound controls, such as text boxes and labels, by dragging individual
fields in the Data Sources window onto the open area of a form.

ListBox and ComboBox controls have two important properties that are required
when using data binding: The DataSource property identifies the table within the
DataSet that supplies the data; the DisplayMember property identifies the column to
be displayed.

Focus on Problem Solving: Karate School Management System

The Karate School Manager program has the following capabilities:

Displays a list of all members.

Permits the user to sort on any column, edit individual rows, and delete rows.
Adds new rows to the Members table.

Displays members having similar last names.

Review Questions and Exercises

e Displays all payments.
e Permits the user to sort on any column.
* Displays a list of payments by a single member.

Key Terms

auto-generated field foreign key
BindingSource object identity field

components LIKE operator
compound primary key one-to-many relationship
database ORDER BY clause
database schema primary key

data binding query parameter
data-bound control relational database model
DataGridView control SELECT statement
DataSet Structured Query Language (SQL)
DataTable TableAdapter

data source WHERE clause
DataSource property wildcard symbol
DisplayMember property xcopy deployment

Review Questions and Exercises

True or False
Indicate whether each of the following statements is true or false.
1. A TableAdapter’s Fill method receives a DataSet argument.
. A DataSet may contain only a single TableAdapter.
. A primary key can involve only a single column of a database table.

2
3
4. A DataTable column such as Last Name can be bound to a TextBox or Label control.
5. The default type of control bound to DateTime fields is the TextBox.

6

. The Karate School Manager program joins the Members table to the Payments table
when searching for payments made by a single member.

7. The Karate School Manager program contains special event handling code that makes
sorting in a DataGridView possible.

8. When the user makes changes to a DataSet, the changes are not permanent unless other
measures are taken to write the DataSet back to a database.

9. In SQL Server, query parameter names always begin with the @ sign.

10. Query parameters are passed to DataSets as arguments when calling a TableAdapter’s
Fill method.

11. A DataSet is an in-memory copy of data pulled from one or more database tables.
12. Byte is an SQL Server table column type.

13. A .NET Double data type is equivalent to the SQL server float data type.

14. ValueMember is not a ListBox control property.

15. The MATCH keyword is used by SQL when performing wildcard matches.

231

232

Chapter 4

Using SQL Server Databases

Short Answer

1.

e
10.

Which property of a ComboBox control must be set before a program can use the
SelectedValue property at runtime?

What type of relationship existed between the Employee and Departments tables in Sec-
tion 4.1?

. If the Employees table contains a foreign key named dept_id, is it likely that the values

in this field are unique?

What type of string keeps track of the database name, location, username, password,
and other connection information?

What happens when you drag a table name from the Data Sources window onto an
open area of a form?

Werite a statement that lets the SelectedIndexChanged event handler for a ComboBox
exit when an entry has not yet been selected by the user.

Which property of a DataGridView control causes the buttons to the left of each row to
appear?

Which database design tool describes the design of tables, columns, and relationships
among tables?

Which control lets users select dates using the mouse?

What is another word for a database table row?

Algorithm Workbench

1.

Suppose a database table named Address contains fields named City and State. Write an
SQL SELECT statement that combines these fields into a new field named CizyState.

Write statements that create and show an instance of a form named AllMembersForm.
Be sure the user can click only in the form you have displayed and not in any other appli-
cation window.

Write an SQL query that retrieves the ID, Title, Artist, and Price from a database table
named Albums. The query should sort the rows in ascending order by Artist.

Werite an SQL query that uses a query parameter to retrieve a row from the Albums table
that has a particular ID value. Retrieve the ID, Title, Artist, and Price.

Write a statement that retrieves the value of an item selected by the user from a Com-
boBox named cboMembers.

Write a statement that fills a table named Members in a DataSet named
MembersDataSet. Assume that TableAdapter is named MembersTableAdapter.

Write an SQL query that retrieves the ID, Last_Name, and First_Name from the Mem-
bers table. You want only those rows having a Date_Joined value greater than or equal
to the value of a query parameter.

Programming Challenges

1.

Selecting Sales Staff

Create a program that lets the user select rows from the SalesStaff table. Fill a Com-
boBox control with the names (last, first). When the user makes a selection, the other
controls on the form should display details about the staff member selected. A sample is
shown in Figure 4-68. Hint: See the data-bound list box in Tutorial 4-3.

Programming Challenges 233

Figure 4-68 Selecting Sales Staff

a:) Selecting Sales Staff][]

Select a Name:

Adams, Adrian -

ID: 104
Full Time:

Hire Date: 5/20/2010 @~

Salary: 35007

2. Sales Staff Salaries

Using the SalesStaff table in the Company database, let the user choose between lists of
part-time versus full-time employees. Use radio buttons to display the choices. Display
the average salary of the selected group in a label. A sample is shown in Figure 4-69.
When the program starts, the Full time button is automatically selected. Hint: You can
use a parameterized query, or create a separate query for part-time and full-time employ-
ees. When the user selects a radio button, call the Fill method that matches the appro-
priate query.

Figure 4-69 Displaying average salaries of full-time employees

a Sales Staff Salaries = = (]

Select employment status: @ Fultime () Part time

Average salary: | $39.956.09

Last_MName First_MName Salary i+
Adams [35007
Baker Barbara 32000
Del Terzo Daniel 37500
Femers Henri 57000 =
Frankdin Fay 56001
Kawananakoa Sam 42000
Rubenstein Marida 22000
Smith Bill 50009 T
Wang Li Chuan 25000

3. Karate Member Dates

Create a program that uses the Members table of the Karate database. Let the user select
a date from a DateTimePicker control. The program must display all members who
joined before the selected date (see Figure 4-70). Use a parameterized query.

234

Chapter 4

Using SQL Server Databases

Figure 4-70 Finding the dates when members joined

4.

o Karate Member Dates []

Select a date: 6/ 1/2005 B~

Members who joined before this date:

Last_Mame First_MName Phone Date_Joined
Kahumaru [111-2222 2/20/2002
Haszegawa Elaine 313-3455 2/20/2004
Talizfes Moses 5452323 5/20/2005

Advanced Karate Member Dates

Enhance the program you created in Programming Challenge 3 by giving the user a
choice between displaying members who have joined before a given date and members
who have joined on or after the given date. Figure 4-71 shows members who joined
before 6/30/2007. Figure 4-72 displays a list of members who joined on or after the
same date.

Figure 4-71 Showing members who joined before the chosen date

o Karate Member Dates =5 EoR|>T)

Select a date: 6/30/2007 [E~-

View members who joined... (@ Beforsthis date () On or after this date
Last_Mame First_Mame Phone Date_Joined
D i 1112222 272072002
Hasegawa Elaine 313-3455 2/20/2004
Taliafea Mozes h4h-2323 B/ 20,2005
Concepcion Rafael 602-3312 5/ 20,2007

You might want to create two queries, one for each type of search. At runtime, when the
user switches between the radio buttons, the event handlers can call either of the two
Fill methods that you created in the TableAdapter.

Filtering the Karate Members Table

Tutorial 4-7 showed how to display the Karate Members table in a DataGridView con-
trol. In that same section of the chapter, a discussion about BindingSources explained
how to assign a value to the Filter property when you want to limit the displayed rows.
Here is the example we used:

MembersBindingSource.Filter = "Date Joined > '1/1/2005"'"

Create an alternative version of Tutorial 4-7 that displays a text box in a ToolS#rip con-
trol just below the menu. When the user types in a filter expression and clicks the Go
button, the filter expression is assigned to the Filter property of MembersBindingSource.

Figure 4-72

Programming Challenges

Showing members who joined on or after the chosen date

The rows appearing in the DataGridView change accordingly. An example is shown in
Figure 4-73. Use a Try-Catch statement to prevent unhandled exceptions caused by

- Karate Member Dates

= o]

Select a date: 6/30/2007 (@~
View members who joined... () Beforethis date @ On or after this date
Last_Name First_MName Phone Date_Joined
Arng 232-3333 272042010

Kahane Brian B46-9387 5/20/2008
Gonzalez Aldo 1232345 6/6/2009
Kousevitzky Jascha 414-2345 2/20/2010
Taylor Winifred 3332222 2/20/2010

incorrect filtering syntax.

Figure 4-73 Letting the user interactively filter the Members table

a5 All Members

File

Last_Mame > 'H' Go

D First_Name Last_Name Phone Date_Joined
_ Keoki Kahumanu 1112222 2/20/2002
3 Elaine Hasegawa 313-3455 2/20/2004
4 Brian Kahane B46-9387 B20/2008
& Jascha Kousevitzky 414-2345 27202010
7 Moses Taliafea h452323 /20,2005
9 Winifred Taylor 333-2222 2/20/2010

6. Editing and Deleting Karate Members

The DataGridView that displays all members in the Karate School Manager application
has options checked that let the user edit and delete members. But when you run the
application, these operations do not seem to be enabled. Your task is to enable those
operations and find a way to write the changes to the underlying database. Hinz: Call

the TableAdapter’s Update method.

235

This page intentionally left blank

CHAPTER

5.1

Database Applications

Creating Databases

Tutorial 5-1: Creating an SQL Server
Express database

Tutorial 5-2: Adding the Appointments
table to the RepairServices database
Tutorial 5-3: Adding the RepairTypes
table to the RepairServices database

Tutorial 5-4: Creating relationships
between the RepairTypes, Appointments,

Tutorial 5-6: Adding the Appointments
class to the middle tier

Tutorial 5-7: Creating the main startup
form

Tutorial 5-8: Adding classes to the
middle tier

Tutorial 5-9: Adding controls to the
New Appointment form

Tutorial 5-10: Searching for appointments

and Customers tables Tutorial 5-11: Modifying existing

Tutorial 5-5: Changing the database appointments
connection from the SQL Express
server to a database file

5.2 DataTables

5.3 Updating Databases Using SQL

5.4 Home Repair Services Application

Tutorial 5-12: Selecting appointments
to modify

Tutorial 5-13: Deleting an appointment
Tutorial 5-14: Displaying a joined
appointment list

This chapter focuses on database programming, using the ADO.NET library, which is part
of the .NET Framework. You may think of it as an extension of the database concepts and
database binding from Chapter 4. Here, you are able to integrate your knowledge of multi-
tier application design with objects and databases. The chapter concludes with an extended
sample application that schedules appointments for an imaginary home repair services
company.

Creating Databases

Server Explorer

The Server Explorer window in Visual Studio lets you view and manage connections to local
and remote databases. From the View menu, select Server Explorer to open the window. In
Figure 5-1, the Server Explorer window contains a connection to the karate.mdf database

237

238

Chapter 5

Database Applications

file we used in Chapter 4. A connection refers to a way of linking to the database so that
you can modify its design and data. Each folder under a connection contains different types
of objects associated with the database, as follows:

The Database Diagrams folder contains graphical diagrams that show relationships
between and among tables.

The Tables folder contains all tables in the database.

The Views folder contains a list of views, which are alternate ways of viewing the
contents of tables; views often combine columns from different tables into what look
like new tables.

The Stored Procedures folder contains compiled SQL queries.

The remaining folders are beyond the scope of this book and will not be discussed.

To add an existing database file to the Server window, right-click on Data Connections,
select Add Connection, and browse to the file’s location. (Server Explorer also lets you con-
nect to a full version of SQL Server, either on the local machine or at a network location.)
You can add multiple database connections to the Server Explorer window. It retains con-
nections you created when other projects were open. You can display this window whether
or not a project is open.

Figure 5-1 Server Explorer window, connected to the Karate database

Server Explorer *rOAX
ERGRRCY. |
4 ,_'j] Data Connections
4 | [4; karate.mdf
> [Database Diagrams
[d Tables
» 3 Views
» [Stored Procedures
» [Functions
> [Synonyms
> [l Types
A Assemblies
. 4 Servers

Creating a New Database

You can create a new database inside the Server Explorer window. Here’s a quick summary
of the basic commands you need to use:

Open the Server Explorer window, right-click on Data Connections, and select Create
New SQL Server Database.

To add a table to an existing database, right-click the Tables folder below the database
name and select Add New Table.

To insert data into an existing table, right-click the table name and select Show Table
Data.

To modify a table’s structure (called the schema), right-click the table name and select
Open Table Definition.

To rename a table, right-click its name and select Rename from the popup menu.

In Tutorial 5-1, you will create a database that will be used throughout the chapter.

5.1 Creating Databases

0

Tutorial 5-1:
Creating an SQL Server Express database

Homeowners always need to have something fixed, and many companies offer a variety of
home repair services. Managing appointments is a common task for the company, because
they continuously update their customer list and appointment schedule. The company may
also vary the types of repairs they offer. Therefore, our limited vision of the database needs
of such a company includes a Customers table, a RepairTypes table, and an Appointments
table. The Customers table will keep track of information such as customer ID, name, and
phone. The RepairTypes table will include a description of each type of repair. The Appoint-
ments table will contain information about the type of repair being done, a description of
the repair, licensing requirements, the customer’s ID, and the scheduled date/time. Later in
the chapter, we will create an application that displays and maintains this information.

In this tutorial, you will create the database, add a Customers table, and define a
DataSet containing table adapters that connect to the database. Finally, you will display
the Customers table in a DataGridView control.

Tutorial Steps
Step 1: Create a new Windows Forms project named Repair Services.

Step 2: Open the Server Explorer window. Then right-click on Data Connections and
select Create New SQL Server Database.

Step 3: In the dialog window that appears, select Computername\SQLEXPRESS from
the Server name dropdown list. (Computername is the machine name of your
computer.) Then, name the database RepairServices. An example is shown in
Figure 5-2. Click OK to close this window.

Figure 5-2 Creating a new database in Server Explorer

I ™

Create Mew S0L Server Database @

Enter information to connect to a SQL Server, then specify the
name of a database to create.

Server name:

MYMACHINE\SQLEXPRESS -

Log on to the server

@ Use Windows Authentication

71 Use SQL Server Authentication

Save my password

Mew database name:

RepairServices

oK] ’ Cancel

239

240 Chapter 5 Database Applications

Step 4: Expand the entries under the RepairServices.dbo entry under Data Connections
in the Server Explorer window. Right-click the Tables folder and select Add
New Table. This will display a table editor window, as shown in Figure 5-3.

Figure 5-3 Adding a table to the RepairServices database

dbo.Tablel: Table(sunset\sqlexpress.RepairServices) *OX
Column Mame Data Type Allow Nulls

b]

Column Properties

Step 5: Click under the Column Name heading and insert the database columns
shown in Figure 5-4. Right-click the Custld column and select Set Primary
Key from the popup menu.

Figure 5-4 Design of the Customers table

Column MName Data Type Allow Nulls
p7 | Custld smallint
MName nvarchar(50)
Phone nvarchar{30)

Step 6: Close the designer window and save the table. When prompted for a name, as in
Figure 5-5, name it Customers and click the OK button to save the table name.

Figure 5-5 Naming the Customers table

rCh:mse Mame

Enter a name for the table:

Customers

OK] [Cancel

Step 7:

5.1 Creating Databases

In the Server Explorer window, right-click the Customers table and select
Show Table Data. In the window that appears, enter the data shown in
Figure 5-6.

Figure 5-6 Customers table rows

Custld Name Phone

1000 Johnson, David 303-404-3333
1010 Smith, Linda 303-222-3333
1020 Chong, Susan 303-444-5555
1030 Kahane, Sam 303-555-4444
1040 Martinez, Maria 303-666-3333
1050 Ramirez, Jose 303-999-2222

Creating a DataSet

Next, you will create a dataset named RepairServicesDataSet.

Step 8:

Step 9:

Step 10:
Step 11:

Step 12:

Step 13:

Open the Data Sources window and add a new data source that connects to
the Customers table in your new database. If there is an existing database
connection, use it rather than creating a new one. Name the DataSet as
RepairServicesDataSet.

In Solution Explorer, open the RepairServicesDataSet.xsd file. In the designer
window, you should see the Customers table and the CustomersTableAdapter.
Next, you will display the Customers table in a DataGridView control, to verify
that the data source was created correctly.

Rename the project’s startup form as CustomersForm.vb.

Open the design window for CustomersForm and set its Text property to
Customers.

Add a DataGridView control named dgvCustomers to the form and attach it
to the Customers table in RepairServicesDataSet. Set the grid’s Dock property
to Fill, and set other properties as you wish.

Run the application. The customers table should appear as in Figure 5-7.

Figure 5-7 Displaying the Customers table in a DataGridView control

[a2 Customners (=3)
Custld MName Fhone
RN Johnson, David | 3034043333
1010 Smith, Linda 303-222-3333
1020 Chong, Susan 303-444-5555
1030 Kzhane, Sam 303-555-4444
1040 Martinez, Maria 303-666-3333
1050 Ramirez, Jose 303-995-2222

241

242 Chapter 5 Database Applications

Summary

We hope you can see how easy it is to use the database tools in Visual Studio. In just a
few steps, you were able to create a database and a table, and display the data on a form.

@1 TIP: A quick way to add a new TableAdapter to an existing DataSet is to drag a table
from the Server Explorer window onto the DataSet’s design surface. You can also drag
one or more columns from a table in the same manner.

6 Tutorial 5-2:
Adding the Appointments table to the RepairServices database

Any useful database requires more than one table to represent its data. In this tutorial,
you will add an Appointments form that displays repair appointments in a grid. You will
also add a table named Appointments to the RepairServices database. This table will con-
tain the following information about scheduled repair appointments:

e Apptld—a unique ID number.

e Typeld—identifies the type of repair to be done.

e Description—a description of the repair.

o Licensed—true/false field that indicates whether a licensed repairperson is
required.

e Custld—customer ID number.

o Scheduled—the date and time when the appointment is scheduled.

Tutorial Steps

Step 1: Open the RepairServices Database project from Tutorial 5-1.

Step 2: In the Server Explorer window, right-click the Tables folder under the database
name and select Add New Table. This table will be named Appointments.

Step 3: In the editor window, add the columns shown in Figure 5-8. Then select the
Apptld column and set its (Is Identity) property to True in the lower panel, as
shown in Figure 5-9. Set Identity Seed to 1000, and Identity Increment to 1.
Right-click the Apptld column and make it the primary key. Close the window
and save your changes.

Figure 5-8 Design of the Appointments table

Column MName Data Type Allow Nulls
7 Apptld int =
Typeld smallint =
Description nvarchar(100)
Licensed bit [l
Custld smallint]
Scheduled smalldatetime [}

5.1 Creating Databases 243

Figure 5-9 Identity specification for the Apptld column

4 Identity Specification Yes
(Is Identity) Yes
Identity Increment 1
Identity Seed 1000

Step 4: In the Server Explorer window, right-click the Appointments table and select
Show Table Data. Then input the data shown in Figure 5-10.

Figure 5-10 Contents of the Appointments table

Apptld Typeld Description Licensed Custld Scheduled

1000 1 Replace 3 internal door frames False 1000 10/1/2011 9:00:00 AM
1001 3 Repair wall next to kitchen False 1020 10/1/2011 10:00:00 AM
1002 7 Replace tile in kitchen False 1010 10/2/2011 11:00:00 AM
1003 4 Clean air conditioning coils False 1030 10/2/2011 3:00:00 PM
1004 5 Install hot water pipe True 1020 10/2/2011 2:00:00 PM
1005 6 Replace breaker switches True 1040 10/3/2011 9:30:00 AM
1006 2 Repair refrigerator icemaker False 1050 10/3/2011 10:00:00 AM
1007 8 Repair loose tiles on roof False 1040 10/3/2011 1:00:00 PM
1008 9 Replace living room bay window True 1030 10/4/2011 8:00:00 AM

Step 5: Add the Appointments table to the RepairServicesDataSet by dragging it
from the Server Explorer window into the designer window for
RepairServicesDataSet.xsd.

Step 6: Add a new form to the project named AppointmentsForm.vb. Set its Text prop-
erty to Appointments. Add a DataGridView control named dgvAppointments
to the form and attach it to the Appointments table in RepairServicesDataSet.
Set the grid’s Dock property to Fill.

Step 7: Change the application’s startup form to AppointmentsForm.vb.

Step 8: Save the project and run the application. You should see the Appointments
table in a DataGridView control. Close the application window.

Summary

The Appointments table is central to this application because we want to be able to dis-
play, create, and edit appointments. Two of the columns (Typeld and Custld) enable us
to link to other tables with supplemental information. Fairly soon in this chapter, we
will show how to create relationships between the tables. In Tutorial 5-3, you will create
a table that lists the Repair types.

Tutorial 5-3:
Adding the RepairTypes table to the RepairServices database

In this tutorial, you will add a new table named RepairTypes to the RepairServices data-
base. It will contain repair ID numbers that link it to the Appointments table.

244

Chapter 5

Database Applications

Tutorial Steps
Step 1: Open the Repair Services project from Tutorials 5-1 and 5-2.

Step 2: In the Server Explorer window, right-click the Tables folder under the database
name and select Add New Table.

Step 3: In the New Table window, name the table RepairTypes and add the columns
shown in Table 5-1. Close the window to save your changes.

Table 5-1 Design of the RepairTypes table

Column Name Data Type Length Allow Nulls Primary Key
Typeld smallint 2 No Yes

Description nvarchar 20 No No

Step 4: In the Server Explorer window, right-click the RepairTypes table and select
Show Table Data. Then input the data shown in Figure 5-11.

Figure 5-11 Contents of the RepairTypes table

Typeld Description

Carpentry
Appliance
Masonry
Heat/Air
Plumbing
Electrical
Flooring

Roof
Window/Door

O o s v N e L ha

One-to-Many Relationships

A one-to-many relationship exists between two database tables when the primary key of one
table links to a column called a foreign key in another table. For example, the Customers
and Appointments tables have such a relationship, as shown in Figure 5-12. The infinity sign

Figure 5-12 One-to-many relationship between the Customers and Appointments tables

Appointments *

% Apptld
Typeld
Description
Customers * Licensed
% Custld [0 Custld
Name Scheduled
Phone

5.1 Creating Databases

next to the Custld column of the Appointments table implies that the same customer ID can
occur multiple times in this table. It is the many side of the relationship. The key symbol at
the other end of the line touching the Customers table indicates that Custld is the primary
key for that table. It is the one side of the relationship.

When a one-to-many relationship exists between two tables, the table on the one side is
called the parent table. The table on the many side is called the child table. In our current
example, Customers is the parent table and Appointments is the child table.

A one-to-many relationship is useful when applications need to find child table rows that
match the rows in a parent table. Given a certain Customer ID, for example, we could find
all Appointments pertaining to that customer. SQL Server can also join tables together, using
columns defined in one-to-many relationsships.

Many-to-Many Relationships

Another type of relationship that links database tables is called a many-to-many relationship.
This occurs when the linking column is a foreign key in both tables. Imagine, for a moment,
that a table named Employees exists in our RepairServices database. Let us assume that
multiple employees can be assigned to the same appointment, working together to get the job
done. Also, we assume that multiple appointments can be assigned to the same employee.
Clearly, we cannot create a one-to-many relationship between the Employees and Appoint-
ments tables. Therefore, a linking table is created that matches Employees to Appointments.
Suppose employee number 105 has been scheduled to work on appointments 1002, 1004, and
1005. Also, suppose that employees 107 and 108 are scheduled for appointment 1004. We can
create a table named EmployeeAppointments that contains the rows shown in Table 5-2. The
table shows how each employee is assigned to each appointment.

Table 5-2 Design of the EmployeeAppointments table

EmplId Apptld
105 1002
105 1004
105 1005
107 1004
108 1004

We will not add the Employee and EmployeeAppointments tables to our database at this
time. But it should be possible to see that tables such as this can prove very useful in real-
world applications.

Database Constraints

A database constraint is a rule that is inserted into a database by a database designer. A con-
straint helps to preserve the integrity of the data by preventing errors caused by the incor-
rect insertion, modification, and deletion of data. A constraint relieves individual application
programs from having to verify the integrity of the data. Rather than inserting validation
statements into every application that uses a database, it is more efficient to embed con-
straints in the database.

A primary key constraint requires that all values in a primary key are unique. If an attempt
is made to add a table row containing a primary key value that already exists in the table, the

245

246

Chapter 5

Database Applications

database signals that a primary key constraint has been violated. The row is not added to the
table. For example, if we were to add a new row containing Custld = 1030 to the Customers
table, a primary key constraint would be violated and the message shown in Figure 5-13
would be displayed.

Figure 5-13 Primary key constraint violation

rMicrosof‘t Yisual Studic @

Iﬁl Mo row was updated.
" The datain row 7 was not committed.
Error Source: .Met S5qlClient Data Provider.
Error Message: Violation of PRIMARY KEY constraint 'PK_Customers’,
Cannot insert duplicate key in object 'dbo.Customers’,

The staternent has been terminated.

Correct the errors and retry or press ESC to cancel the change(s).

(S—rae | —T—

A column check constraint is a rule that defines whether data are valid when adding or
updating an entry in a table. The constraint is applied to each table row. It may involve one
or more column values. For example, values assigned to a Salary column could be required
to be positive. Also the data types of the inserted data must match the data types of the table
columns.

A referential integrity constraint, or foreign key constraint, applies to the relationship
between two tables that have a one-to-many relationship. The parent table is required to
contain a primary key value that matches each foreign key value found in the child table.

In Figure 5-14, for example, customer ID 1020 appears twice in the Appointments table
(Custld column). Suppose an application updated the Customers table, changing 1020 to

Figure 5-14 Customers and Appointments tables

Custld Mame Phone

1000 lohnsen, David 303-404-3333

1010 Smith, Linda 303-222-3333

1020 Chong, Susan 303-444-5555

1030 Kahane, 5am 303-555-4444

1040 Martinez, Maria 303-666-3333

1050 Ramirez, lose 303-999-2222
Apptld Typeld Description Licensed Custld ScheduledAt
m 1 Replace 3 internal door frames False 1000 10/1/2011 9:00:00 AM
1001 3 Repair wall next to kitchen False 1020 10/1/2011 10:00:00 AR
1002 7 Replace tile in kitchen False 1010 10/2/2011 11:00:00 AM
1003 4 Clean air conditioning coils False 1030 10/2/2011 3:00:00 PM
1004 5 Install hot water pipe True 1020 10/2/2011 2:00:00 PM
1005 5] Replace breaker switches True 1040 10/3/2011 9:30:00 AM

1022. If no constraints were in effect, the Appointments table would contain two (and pos-
sibly more) rows that could no longer link to the Customers table. In effect, the rows would
become orphan rows. In a large database, errors like this might go undetected and cause seri-
ous data integrity problems. Similarly, if Customer 1020 were deleted from the Customers
table, all rows in the Appointments table that contained Custld = 1020 would become

orphans.

Another way to violate a referential integrity constraint is to add a new row to the Appoint-

5.1 Creating Databases

ment table that includes a Custld value that does not exist in the Customers table.

0

Tutorial 5-4:
Creating relationships between the RepairTypes,
Appointments, and Customers tables

In this tutorial, you will add two relationships to the RepairServices database: one
connects RepairTypes to Appointments, and the second connects Customers to
Appointments.

Tutorial Steps

Step 1:

4

Step 2:

Step 3:

-
-
-

In the Server Explorer window, under the RepairServices database name,
right-click the Database Diagrams folder and select Add New Diagram.

TIP: A message may pop up saying that Visual Studio needs to install an
additional component. You can let it do that.

The Add Table window should appear. Select the Appointments, Repair-
Types, and Customers tables. Click the Add button, then click the Close
button.

Drag the mouse from the selection button just to the left of the Custld col-
umn in the Customers table to the selection button next to the Custld col-
umn of the Appointments table. When you release the mouse button, the
Tables and Columns dialog window appears, as shown in Figure 5-135.
Notice that Customers is selected as the Primary key table, and Appoint-
ments is selected as the Foreign key table. The Custld column is selected in
both tables. If any of these values are different in your window, you can cor-
rect them now.

TIP: You might have to drag the mouse a couple of times before getting
the line to appear between the tables. It’s tricky. If you see a dotted line
following the cursor as you drag the mouse, you are doing it correctly.

247

248 Chapter 5 Database Applications

Figure 5-15 Creating a Relationship between the Customers and Appointments tables

(Tables and Columns

Relationship name:

FK_Appeintments_Customers

Primary key table: Foreign key table:
Customers - Appointments
Custld Custld

OK l ’ Cancel

Step 4: Click the OK button to save the relationship. That should expose the Foreign
Key Relationship window, shown in Figure 5-16. In here, you can modify spe-
cific options that control the table relationship. For example, the Enforce For-
eign Key Constraint option equals Yes. That means the database will throw an
exception if an application tries to delete a row from a parent table in such a

Figure 5-16 Foreign Key Relationship window

7 Foreign Key Relationship 5

Selected Relationship:

FK_Appeintments_Customers™ Editing properties for new relationship. The Tables And Columns

Specification’ property needs to be filled in before the new relationship will be
accepted.

4 (General);
Check Existing Data On Creation Or Re-Enabling Yes
[Tables And Columns Specification
Database Designer
Enforce For Replication Yes

Enforce Foreign Key Constraint Yes
[> IMSERT And UPDATE Specification
4 Identity

(Name) FK_Appointments_Cus|

Description

OK] [Cancel

5.1 Creating Databases

way that some child table rows would no longer be able to link to the parent
table.

Step 5: Create another relationship between the RepairTypes and Appointments tables,
using the Typeld field as the common link.

Step 6: Save the database diagram and give it a name, such as Relationships.

Step 7: Use the mouse to drag the RepairTypes and Appointments tables into the
DataSet designer window. When you do that, lines indicating relationships
should connect the tables, as shown in Figure 5-17. (The lines do not neces-
sarily line up with the column names they represent.)

Figure 5-17 DataSet designer window

L. RepairTypes
P Typeld
Description

'8 RepairTypesTableAdapter [%] Typeld

Fill, GetDiata () Description

Licensed

L. Customers Custld
Scheduled

" AppointmentsTableAdapter [
% Fill GetData ()

t@_ CustomersTableAdapter
@ Fill GetData ()

Summary

A database diagram is an essential tool for describing database table relationships and
constraints. Database diagrams also provide a visual reference to the links between
tables, which can help when the database grows beyond a few tables.

Copying a Database File

Rather than using a database directly connected to a server such as SQLEXPRESS, you may
want to connect to a database file. It is possible, but you need to make a copy of the data-
base first.

SQL Server Express stores its database files in a standard directory. You can find it by
looking for the SQL Server installation directory. For example, on our computer, the
RepairServices.mdf is located here:

C:\Program Files\Microsoft SQL Server\MSSQL.10.SQLEXPRESS\MSSQL\DATA

You can make a copy of the file. First, however, right-click the database in Server Explorer
and select Close Connection. Or, you can close Visual Studio before copying the file.

249

250 Chapter 5 Database Applications

@‘: TIP: If you're working in a college computer lab, the directory permissions might pre-
vent you from directly accessing the data directory for SQL server. In that case, your
instructor may be able to give you a copy of the database file.

In Tutorial 5-5, you will switch the database connection from SQL Server Express to a data-
base file.

6 Tutorial 5-5:
Changing the database connection from the SQL Express
server to a database file

If your application were to continue connecting to SQL Server Express to view and
update the RepairServices database, all changes would be permanent. This could be a
problem, for example, if you delete multiple appointments. For testing purpose, it’s
much better to work with a local database within your project directory, as we did in
Chapter 4 with the Karate database. This tutorial takes you through the steps of fixing
your database connection.

Tutorial Steps
Step 1: Close Visual Studio, so any existing connection to the server will be terminated.

Step 2: Locate the RepairServices.mdf file within your SQL Server data directory.
Most likely, it will be in a path similar to C:\Program Files\Microsoft SOL
Server\MSSQL.1\MSSQIL\Data. You may have to ask your lab administrator
or instructor for help. Copy this file to your Repair Services project directory.

Step 3: Open the Repair Services project in Visual Studio.

Step 4: In the Solution Explorer window, right-click the project name, select Add, and
select Existing Item. Select the RepairServices.mdyf file (to see the filename,
you may have to change the filename filter to All Files). Click the Add button
to close the dialog window.

Step 5: Double-click My Project in the Solution Explorer window. This will bring up
the Project Properties window.

Step 6: Select the Settings tab and note the single entry in the window. Click inside the
Value column and change it to the following single line:

Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory | \RepairServices.mdf;
Integrated Security=True;User Instance=True

We have broken the line to fit on the printed page, but you should keep all
this text in a single line when typing it into the settings.

Step 7: Save your changes to the project properties.

Step 8: Open the Server Explorer window and delete the old connection to the data-
base. Create a new connection to the local database file. From now on, your
project will use the local database file.

5.2 DataTables 251

Summary

Visual Studio gives you some flexible options in how you connect to a database. It’s a
good idea for you to develop a practical working knowledge of how to create, delete,
and modify database connections.

From this point on, you will be using the local RepairServices.mdf database file. A fresh
copy of the file will be created every time you build the project. Any tables that were
modified while running the application will be restored to their original values.

Checkpoint
) checp

1. Which Visual Studio window lets you view and manage connections to databases?
2. How do you create a relationship between two tables?

3. In the RepairServices database, how are the Appointments and Customers tables
related?

4. Which column connects the Appointments and RepairTypes tables?

5. If there were an Employee table in the RepairServices database, what would be the
reason for creating an EmployeeAppointments table that connects the Employee
and Appointments tables?

DataTables

A DataTable is an object that represents the contents of a table from a data source. The
.NET DataTable class is used as the basis for creating more specialized DataTable types.
When you add a data source to a project, Visual Studio creates a specialized DataTable class,
such as CustomerDataTable or MembersDataTable.

A DataTable class describes a collection of rows and columns and is used to hold data from
a database, XML file, or some other data source. A DataTable object contains a collection
of columns, which describe the type of data in the table. It also has a collection of rows that
contain the actual data.

Here are some of the most common properties in the DataTable class:

® Columns—A collection of DataColumn objects; each describes the name, type, and
other characteristics of a column.

® DefaultView—A DataView object that lets you filter (select) the table rows or sort the
rows on any column.

e PrimaryKey—An array of DataColumn objects that serve as the table’s primary key;
each row is guaranteed to hold a unique value in the column or columns.

® Rows—A collection of DataRow objects, each holding the data in each row of the table.

For a conceptual view, Figure 5-18 describes the Columns and Rows properties of a DataTable.

Figure 5-18 DataTable properties

llection DataColumn
Columns co

- collection DataR
Rows) ataRow
- Of Objects

Data Table properties

252

Chapter 5

Database Applications

Binding Controls to a DataTable

If you want to display the contents of a DataTable on a form, you can bind it to a ListBox,
ComboBox, or DataGridView control. Assign the table reference to the control’s DataSource
property. The following statement, for example, binds a DataTable object named customersTable
to a DataGridView control named dgvCustomers:

dgvCustomers.DataSource = customersTable

Filtering and Sorting DataTable Rows

The DataTable class contains a DefaultView property. This property, in turn, has two impor-
tant subproperties:

® RowFilter property—Holds a comparison expression that is similar to the WHERE
clause in an SQL SELECT statement.

e Sort property—Identifies one or more columns to be used in the sort; also specifies the
order as ASC (ascending) or DESC (descending).

You assign values to these properties in order to filter or sort the rows in a DataTable. The fol-
lowing statement, for example, sorts the rows of customersTable in ascending order by Name:

customersTable.DefaultView.Sort = "Name"
The following statement sorts customersTable in descending order by Custld:
customersTable.DefaultView.Sort = "CustId DESC"

The following statement restricts the table rows to those in which the Name field is greater
than M:

customersTable.DefaultView.RowFilter = "Name > 'M'"

DataRow Objects

A DataRow object describes a row in a DataTable. You can add columns to a DataRow, fill
the row with values, add the row to a table, and remove a row from a table. To construct
an empty DataRow, call a DataTable’s NewRow method:

Dim table As New DataTable
Dim row As DataRow = table.NewRow()

The Item property of a DataRow lets you get and set column values. Assuming that our table
contains a column named Last_Name, the following statement assigns a value to the current row:

row.Item("Name") = "Johnson, Sam"
Item is the DataRow’s default property, so you can shorten the previous statement:
row("Name") = "Johnson, Sam"

You can also refer to columns by their index positions, which begin at 0. The following state-
ment assigns a person’s name to the first column in the row object:

row.Item(0) = "Johnson, Sam"
The ItemArray property returns an Object array containing all the column values:

Dim columns As Object() = row.ItemArray

Strongly Typed DataTables

When you create a DataSet based on a database table, Visual Studio creates a set of cus-
tom classes. The custom classes match the structure of the tables in your DataSet. The

5.3 Updating Databases Using SQL 253

RepairServicesDataSet class, for example, contains an inner class (a class inside another
class) named CustomersDataTable. It contains some useful methods and properties, such as:

® AddCustomersRow—A method that adds a new row to the table.

* NewCustomersRow—A method that returns an empty row having the same columns
as the table.

o RemoveCustomersRow—A method that removes a row from the table.

® FindByCustld—A method that searches for a row using a customer ID number.

e Couni—A property that returns the number of table rows.

Another inner class named CustomersRow contains properties that represent the different
columns in the Customers table. You can use these properties to set column values in your
program code:

e Custld As Short
e Name As String
® Phone As String

In addition, this class has a method named GetAppointmentsRows, which returns a collec-
tion of rows from the Appointments table that match the current row’s customer ID number.

You will find, when writing code to view and update the RepairServices database, that hav-
ing classes such as CustomersDataTable and CustomersRow greatly simplifies your work.

Checkpoint

6. Which TableAdapter method usually returns a DataTable object?

7. Which DataTable property returns an object that can be filtered and sorted?
8. What types of objects are stored in the Columns property of a DataTable?
9

. Which DataGridView property holds a reference to a DataTable when the table is
displayed in the grid?

Updating Databases Using SQL

In Chapter 4, you learned how to add, update, and delete rows from database tables, using
data-bound controls. The database was modified by SQL queries working behind the scenes.
Now is the time for you to learn how update operations are done in the SQL language.

e The INSERT INTO statement adds a new row to a table.

e The UPDATE statement modifies one or more existing table rows.
e The DELETE FROM statement deletes one or more rows from a table.

Inserting Table Rows

The SQL INSERT INTO statement inserts a new row into a table, using the following
syntax:

INSERT INTO tablename
(fieldl[,field2[,...11)
VALUES(valuel,[,value2[,...])

The following query inserts a row into a table named Payroll:

INSERT INTO Payroll (EmpId, PaymentDate, HoursWorked, HourlyRate)
VALUES('1002', '1/15/2012', 47.5, 27.50)

254

Chapter 5

Database Applications

All column names should be listed in the same order as the corresponding values. String and
date literals must be enclosed in single quotes.

Query Parameters

INSERT INTO statements do not usually contain literal column values. Instead, query
parameters are used so that values may be passed to the query at runtime. A parameter name
must begin with the @ symbol. If possible, let each parameter name match the name of a
table column.

The following statement inserts a row in the Payments table (Karate database) using three
query parameters:

INSERT INTO Payments(Amount, Member Id, Payment Date)
VALUES (@Amount, @Member Id, @Payment Date)

The primary key of this table is assumed to be an identity field, so there is no need to include
its value in the INSERT statement. The database will generate a new primary key value each
time a new row is inserted into the table.

Updating Table Rows

The SQL UPDATE statement modifies the contents of one or more rows in a database table.
It has the following basic syntax:

UPDATE tablename

SET fieldname = newvalue

[SET fieldname = newvalue]
[WHERE criteria]

UPDATE has the potential to modify every row in a table. For example, the following
query increases the values in the HourlyRate column of all rows in the Payroll table by
S percent:

UPDATE Payroll
SET HourlyRate = HourlyRate * 1.05

Usually you want to update only certain rows, so you can include a WHERE clause with
selection criteria. The following query, for example, increases the hourly pay rate for
employees who were paid after the date stored in the @PaymentDate parameter:

UPDATE Payroll
SET HourlyRate = HourlyRate * 1.05
WHERE PaymentDate > @PaymentDate

If you want to update a single row, the WHERE clause must uniquely identify the selected
row. Ordinarily, you would use an expression containing the table’s primary key. For exam-
ple, the following increases the hourly pay rate for a single employee whose ID number is
specified by the @Empld parameter:

UPDATE Payroll
SET HourlyRate = HourlyRate * 1.05
WHERE EmpId = @EmpId

We could also use a query parameter for the rate multiplier:

UPDATE Payroll
SET HourlyRate = HourlyRate * @RateMultiplier
WHERE EmpId = @EmpId

5.3 Updating Databases Using SQL

Karate Database Example

The following query updates the Payments table (Karate database). It sets Amount to the
value in the @Amount parameter for the row in which the Payment_Id equals the value in
@Payment_Id:

UPDATE Payments
SET Amount = @Amount
WHERE Payment Id = @Payment_Id

Deleting Table Rows
The SQL DELETE FROM statement deletes rows from a table. This is the general syntax:

DELETE FROM tablename
[WHERE criteria |

Once a row has been deleted, it cannot be recovered. The following statement deletes all
rows from the Payments table:

DELETE FROM Payments

The WHERE clause selects which rows to delete. The following code deletes all payments
prior to the date in the @Payment_Date parameter:

DELETE FROM Payments
WHERE Payment Date < @Payment Date

The following statement deletes a single payment, assuming that Payment_Id is the primary
key column:

DELETE FROM Payments
WHERE Payment Id < @Payment Id

Deleting Rows from Related Tables

Be careful when deleting rows from a table that participates in a one-to-many table rela-
tionship. For example, in the RepairServices database, a one-to-many relationship exists
between the Customers and Appointments tables. Customers is the parent, and Appoint-
ments is the child. If we deleted a row from Customers whose Custld value matches any
rows in the Appointments table, we would be left with appointments that had no matching
customer rows. This deletion would violate a referential integrity constraint in the database,
causing an exception to be thrown (see Figure 5-19).

Figure 5-19 Referential integrity constraint was violated

Home Repair Services

Unhandled exception has occumed in your application. I you click
Continue, the application will ignare this emor and attempt to continue.
you click Quit, the application will close immediately.

The DELETE statement corflicted with the REFERENCE congtraint
"FK_Appointments_Customers". The conflict occumred in database
"RepairServices", table "dbo_Appointments”, column Custld’.

The statement has been teminated.

e [

2585

256

Chapter 5

Database Applications

In Tutorial 5-4 we included referential integrity constraints when creating the DataTable
relationships inside the DataSet designer window. Because we would like to be able to delete
customers, we can use one of the following approaches:

1. We could mark the Customer row as inactive without physically deleting it. This would
require us to add another column to the Customers table that might be named Active.
Then we would have to modify all queries that use the Customers table, to make sure they
include only active customers. This approach would require a significant amount of work.

2. An easier approach would be to delete the customer’s appointments from the Appoint-
ments table before deleting the customer from the Customers table. That seems rea-
sonable, although some companies might prefer to copy the affected appointments to
an historical database before deleting them.

The situation for the Appointments table is different. You can delete its rows without any
constraints. It is not the parent of another table, so no other tables depend on its data.

Summary

If you would like to learn more about the SQL language, there are many excellent books on
the subject and many reference sources on the Web. First and foremost, the Microsoft MSDN
library is a great reference. Go to bttp://msdn.microsoft.com and search for terms like SOL
Insert, or SQL Delete, or SOQL Update. Another excellent site is htp://w3schools.com/sql.

Checkpoint
10. Which SQL statement is used when adding new rows to a table?

11. Which SQL statement modifies one or more existing rows of a table?

12. If no WHERE clause is given in a DELETE FROM statement, how many rows are
deleted?

Focus on Problem Solving: Home Repair
Services Application

Through the following series of tutorials (Tutorials 5-6 through 5-14), we will gradually build
an application named Home Repair Services. Its purpose is to enable company personnel to
schedule repair services for residential customers. It will be a three-tier application, with a
presentation tier made of windows forms, a middle tier containing three classes (Appoint-
ments, RepairTypes, and Customers), and a data access tier made up of DataSet classes. It will
permit the customer to display appointments, search for appointments, create appointments,
modify appointments, and display customers. As limited as it is, this application is designed
to be expandable, so that it might include all of the features required by an actual company.

In Tutorial 5-6, you will create a middle tier class for this application.

d Tutorial 5-6:
Adding the Appointments class to the middle tier

In this tutorial, you will begin to create the Home Repair Services application. Your first
task will be to create a middle tier class named Appoiniments containing a method that
inserts new appointments into the database. You will also test this method from a new
form that you add to the project.

http://msdn.microsoft.com
http://w3schools.com/sql

5.4 Focus on Problem Solving: Home Repair Services Application

Tutorial Steps

Step 1:

Step 2:
Step 3:

Figure

Open the RepairServices Database project that you last worked on in Tuto-
rial 5-3.

Open RepairServicesDataSet.xsd from the Solution Explorer window.

In the DataSet Designer window, right-click the AppointmentsTableAdapter
and select Properties, as shown in Figure 5-20.

5-20 AppointmentsTableAdapter properties window

Step 4:

Step 5:

Step 6:

Step 7:

Properties * B X
AppointmentsTableAdapter TableAdapter -
M=
BaseClass System.ComponentModel.Component +
> Connection RepairServicesConnectionString (MySet
ConnectionModifier Friend
[DeleteCommand (DeleteCommand)
GenerateDBDirectMethods True E
4 InsertCommand (InsertCommand)

INSERT INTO Appointments ()
CommandType Text 4
Parameters (Collection)

Modifier Public

MName AppointmentsTableAdapter 2L
CommandText
Text command to run against the data source

In the Properties window, find the InsertCommand property and expand it so
you can view its CommandText subproperty. Click on the button containing
three dots to open the Query Builder window.

Verify that the SQL query is the following, and change it if necessary:

INSERT INTO Appointments
(TypeId, Description, Licensed, CustId, Scheduled)
VALUES (@TypeId,@Description,@Licensed,@CustId,@Scheduled)

Add a middle-tier class named Appointments.vb to the project. In this class,
declare the following class-level variables:

Private adapter As New _
RepairServicesDataSetTableAdapters.AppointmentsTableAdapter
Public Shared Property LastError As String

The variable named adapter is an instance of the TableAdapter that you will
use to carry out actions on the database. LastError will hold error messages
generated by the TableAdapter methods.

Create a new method named Insert.

1: Public Function Insert(ByVal typeId As Short,
2: ByVal description As String, ByVal licensed As Boolean,
38 ByVal custId As Short, ByVal Scheduled As DateTime)

As Boolean

257

258

Chapter 5

Database Applications

<

Step 8:

4: ' Insert a new row into the Appointments table. Return
5: ' True if successful. If an exception is thrown,
6: ' LastError will hold an error message.

78 Try

8: LastError = String.Empty

oF adapter.Insert(typeId, description, licensed,
10: custId, Scheduled)

11: Return True

12: Catch ex As Exception

138 LastError = ex.Message

14: Return False

15: End Try

16: End Function

Line 8 clears any error message that might be left over in the LastError vari-
able from a previous operation. Line 9 calls the Insert method from the
AppointmentsTableAdapter class. If no exception is thrown, line 11 returns
True, indicating success. On the other hand, if the call to Insert on line 9
throws an exception, ErrorMessage is assigned a string and the method
returns False.

TIP: There is one possible outcome that we are ignoring in the code for
the Insert method. The call to adapter.Insert might not throw an excep-
tion, but it might somehow fail to insert a table row. It would complicate
your code to check for this remote possibility, so you can leave the code
as is.

Add a Shared method named CombinedDateTime that receives a date and a
time and returns a combined date/time value.

Public Shared Function CombinedDateTime(ByVal aDate As DateTime,
ByVal aTime As DateTime) As DateTime
Dim ts As New TimeSpan(aTime.Hour, aTime.Minute, 0)
Return aDate.Add(ts)

End Function

It is not possible to directly add a time to a date, but you can add a TimeSpan
object to it. The code above does just that. It is a shared method because it
does not use any class-level variables in the Appointment class, and therefore
does not require the user to create an Appointment object.

New Appointment Form

Next, you will create a New Appointment form, which will test the Appointments.Insert
method. For the moment, we will not create a user interface.

Step 9:

Add a new form named NewAppointmentForm.vb to the project. Set its Text
property to New Repair Appointment. Add the following line of code to the
form’s class:

Private mAppointments As New Appointments

This line creates an instance of the middle-tier Appointments class inside the
form, so we can call its Insert method.

5.4 Focus on Problem Solving: Home Repair Services Application

Step 10: Add a button to the form, with the Text equal to Save. Insert the following

code in the button’s Click handler:

mAppointments.Insert(2,"Fix disposal",False, 1020,

$10/5/2011 9:00 AM#)
AppointmentsForm.ShowDialog()
The first statement insert a new appointment in the database. The second
statement displays the complete list of appointments in a separate form, so
you can verify that the appointment was created.

Step 11: Set the project’s startup form to NewAppointmentForm and run the applica-

tion. You should see the Appointments table appear in a grid, with the new
appointment added to the end. A sample is shown in Figure 5-21.

Figure 5-21 Appointments table, with new row added

-

a5 Appointments == R)
Apptld Typeld Description Licenzed Custld ScheduledAt

1 Replace 3 intemal door frames B 1000 104152011 9:00 AM
1001 3 Repair wall next to kitchen [l 1020 104172011 10:00 AM
1002 7 Replace tile in kitchen B 1010 104252011 11:00 AM
1003 4 Clean air conditioning coils [l 1030 10/2/2011 3:00 FM
1004 L] Install hot water pipe 1020 104252011 2:00 PM
1005 [Replace breaker switches 1040 10/3/2011 9:30 AM
1006 2 Repair refrigerator icemaker [l 1050 10/3/2011 10:00 AM
1007 8 Repair loose tiles on roof [l 1040 10/3/2011 1:00 FM
1008] Replace living room bay window 1030 10/4/2011 8:00 AM
1009 2 Foc disposal] 1020 10/5/2011 9:00 AM

If you should restart the application and click the button again, it would add
another row with the same information to the Appointments table. Each
appointment would have a different value in the Apptld column because that
value is generated automatically by the database.

Step 12: When you’re done, rebuild the project from the Visual Studio Build menu.

That will reset the database to its original values.

Tuto

rial 5-7:

Creating the main startup form

In this tutorial, you will create a startup form for the Home Repair Services application.
You will create a menu that displays all existing forms.

Tutorial Steps

Step 1: Add a new form named MainForm.vb to the project, and set its Text property

to Home Repair Services.

Modify the project properties to make it the application startup form.

259

260

Chapter 5

Database Applications

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Add a MenuStrip control with the following menu structure:
File

Exit
Appointments

New

View

Appointment List
Customers

View
As another option, you may want to rename the menu items to be more
descriptive than the default names assigned by Visual Studio. For example, the
names could be AppointmentsNewMenultem, AppointmentsViewMenultem,
and so on.

Create a Click event handler for the File / Exit menu item, and insert a
Me.Close() statement.

Create a Click event handler for the Appointments / New menu item, and
insert the following statement:

NewAppointmentForm.ShowDialog()

Create a Click event handler for the Appointments / View menu item, and
insert the following statement:

AppointmentsForm.ShowDialog()

Create a Click event handler for the Customers / View menu item, and insert
the following statement:

CustomersForm.ShowDialog()

Run the application and test it as follows:

Input

Select Appointments / New from the menu.

Expected result The New Appointment form displays.

Input

Close the New Appoiniment form, and select Appointments /
View from the menu.

Expected result The Appointments form displays, showing a grid that lists all

appointments.

Input Close the Appointments form, and select Customers / View from
the menu.

Expected result The Customers form displays, showing a grid that lists all
customers.

Input Close the Customers form. Select File / Exit from the menu.

Expected result The startup form closes and the application ends.

Summary

It is useful to create a menu on the startup form so you can use it as a branching point
to all the other forms in the application. Then, as you add each new form to the proj-
ect, you will create a click handler for the appropriate menu item. In Tutorial 5-8, you
will add more classes and methods to the application’s middle tier.

5.4 Focus on Problem Solving: Home Repair Services Application

Tutorial 5-8:
Adding classes to the middle tier

In this tutorial, you will add the Customers and RepairTypes classes to the Home Repair
Services application’s middle tier. These classes will provide important links to the Cus-
tomersTableAdapter and RepairTypesTableAdapter, which are part of the data access
tier. You will also add methods that retrieve lists of repair types and customer names.

Tutorial Steps

Step 1:
Step 2:

Step 3:

Step 4:
Step 5:

Step 6:

Add a new middle-tier class named RepairTypes to the project.

Add the following class-level variable to the RepairTypes class:

Private adapter As New _
RepairServicesDataSetTableAdapters.RepairTypesTableAdapter

Create a ReadOnly property named Items that returns a DataTable contain-
ing all of the repair types.

1: Public ReadOnly Property Items() As DataTable
2 Get

3 Dim table As DataTable = adapter.GetData()
4: table.DefaultView.Sort = "Description"

5 Return table

6 End Get

7: End Property

A middle-tier class gives you the opportunity to refine the data returned by a
table adapter. In the Item method shown here, line 3 calls the table adapter’s
GetData method, which returns a DataTable containing all the repair types
listed in the RepairTypes database table. Line 4 sorts the data by description,
and line 5 returns the sorted table.

Add a new middle-tier class named Customers to the project.

Add the following class-level variable to the Customers class:

Private adapter As New _
RepairServicesDataSetTableAdapters.CustomersTableAdapter

Create a ReadOnly property named Items that returns a DataTable contain-
ing all of the Customers:

Public ReadOnly Property Items() As DataTable
Get
Dim table As DataTable = adapter.GetData()
table.DefaultView.Sort = "Name"
Return table
End Get
End Property

Summary

Step by step, you are building up the classes in the middle tier. As you may have noticed,
you do not have to invest very much time in these classes at the beginning. It is best to
keep them short and wait until you need some new operation before adding more code.
Building the classes in the middle tier should always be done before finishing the user
interface in the presentation tier. Then the presentation tier will be able to call methods
and properties in these classes. At this point, you have created all the necessary support
for the New Appointments form.

261

262

Chapter 5

Database Applications

Runtime Data Binding

Runtime data binding means to bind a control to a data source at runtime, using code
statements. One example of this is to assign a DataTable object to the DataSource property of
a DataGridView control. In Chapter 4, you used Visual Studio to create TableAdapter,
BindingSource, and DataSet components on every form. But multi-tier applications automati-
cally separate the presentation layer from the data components. Therefore, the best approach is
not to fill a form with data component objects, but instead to perform runtime data binding.

If you want to fill a grid or list box using runtime data binding, do the following: Declare a
variable in the form’s code that is an instance of a middle-tier class. Then call a method from
that class that returns a DataTable. Assign the DataTable to the DataSource property of a
ListBox, ComboBox, or DataGridView control. In ListBox and ComboBox controls, you
also need to set two other string properties:

* DisplayMember—The name of the DataTable column that will be displayed in the list.

o ValueMember—The name of the DataTable column that will provide a reference value
when the user selects a member of the list. The reference value will be available in the
SelectedValue property at runtime.

For example, let’s assume that the variable mRepairTypes is an instance of the RepairTypes
class. In that class, the Items property returns a DataTable object. We want the Description
column of the table to display in the combo box, and we want the Typeld column to be
returned in the combo box’s SelectedValue property when the user makes a selection. This
is the appropriate setup code, which would be in the Form_Load event handler of the form:

cboRepairType.DataSource = mRepairTypes.Items
cboRepairType.DisplayMember = "Description"
cboRepairType.ValueMember = "TypeId"

Formatting DataGridView Columns at Runtime

A disadvantage to runtime data binding is that it does not give you a chance to format
DataGridView columns in design mode. There is a simple workaround: You can temporarily
bind the grid to an existing data source just long enough to format the columns in design
mode. Then, at runtime, you can still assign a DataTable to the grid’s DataSource property.

On the other hand, if you just need to make only minor formatting changes to grid columns,
you can assign values to each column’s DefaultCellStyle property. This is done at runtime,
usually in the Form_Load event handler. The following lines, for example, set column 2 to
a numeric format, centered, with two decimal places, in a blue color:

With dgvCourses.Columns(2).DefaultCellStyle

.Format = "n"

.ForeColor = Color.Blue

.Alignment = DataGridViewContentAlignment.MiddleCenter
End With

In the MSDN documentation, you can discover the other column formatting properties.

SelectedindexChanged Event

If your Form_Load event handler assigns a value to the DataSource property of a ListBox
or ComboBox control, a SelectedIndexChanged event is fired immediately, before the grid
has been filled with data. If there is a handler for this event that responds to user selections,
your program code might think that a selection has already been made by the user. Such a
situation can cause an exception to be thrown. Here is a workaround: First, declare a
Boolean variable that is initially set to True. Then set it to False at the end of the Form_Load
event handler. Then in the SelectedIndexChanged event handler, process the event only if the

5.4 Focus on Problem Solving: Home Repair Services Application

Boolean variable equals False. Here is an outline of the code we have described, using a
ComboBox named cboCustomers:

Private formLoading As Boolean = True

Private Sub Form Load() Handles MyBase.Load
cboCustomers.DataSource = mCustomers.Items

formLoading = False
End Sub

Private Sub cboCustomer SelectedIndexChanged() _
Handles cboCustomer.SelectedIndexChanged
If Not formLoading Then
' OK to process the event
End If
End Sub

In Tutorial 5-9, you will build the user interface for the New Appointment form.

Tutorial 5-9:
Adding controls to the New Appointment form

In this tutorial, you will add controls to the New Appointment form in the Home
Repair Services application. This form permits the user to input appointment data and
add a new row to the Appointments database table. Your code will call methods from
three middle-tier classes: Customers, Appointments, and RepairTypes.

Tutorial Steps

Step 1: Open the design window for NewAppointmentForm.vb. Using the example in
Figure 5-22 and the list of named controls in Table 5-3, add the necessary con-
trols to the form.

Figure 5-22 New Appointment form

(New Repair Appointment @‘
Date Time Customer
7/ 42010 E- -
Repair type =[] Must be licensed

Description (0-100 chars)

00

o0

Save] ’ Cancel

263

264 Chapter 5

Database Applications

Table 5-3 Controls on the New Appointment form

Control Type Control Name Property Settings

Form NewAppointmentForm Text = New Repair Appointment,
AcceptButton = btnSave
CancelButton = btnCancel
FormBorderStyle = FixedDialog
MaximizeBox = False
MinimizeBox = False
Font.Size = 10

TextBox txtTime

TextBox txtDescription MultiLine = True

DateTimePicker dtpDate Format = Short

ComboBox cboCustomer

ComboBox cboRepairType

CheckBox chkLicensed Text = Must be licensed

Label IbIStatus AutoSize = False

Button btnSave Text = Save

Button btnCancel Text = Cancel

ErrorProvider errProvider

Step 2:

Step 3:

The two combo boxes are important because they provide lists of customers
and repair types. When the user selects values from these lists, their corre-
sponding ID values will be saved in the new repair appointment. Next, you
will add code to the form that calls methods from the Appointments, Repair-
Types, and Customers classes in the middle tier.

Open the form’s code window and add new class-level variables so you now
have the following:

Private mAppointments As New Appointments
Private mRepairTypes As New RepairTypes
Private mCustomers As New Customers

Each object declared here is an instance of a middle-tier class. This is a com-
mon pattern that will repeat itself in nearly every form.

Create the following Form_Load event handler:

Private Sub NewAppointmentForm Load() Handles MyBase.Load
' Fill the Repair Types combo box.
cboRepairType.DataSource = mRepairTypes.Items
cboRepairType.DisplayMember = "Description"
cboRepairType.ValueMember = "TypeId"

' Fill the Customers combo box.
cboCustomer.DataSource = mCustomers.Items
cboCustomer.DisplayMember = "Name"
cboCustomer.ValueMember = "CustId"

1
2
3
4
58
6:
7-
8
9
0
1l: End Sub

Step 4:

Step 5:

5.4 Focus on Problem Solving: Home Repair Services Application

The purpose of this code is to fill the two combo boxes with lists of cus-
tomers and repair types. Line 3 calls the Items property from the RepairTypes
class, which returns a DataTable that lists all the possible repair types. Lines
8-10 bind another combo box with a DataTable containing customer names
and IDs.

Create the following Click handler for the Save button. You may already have
a Click handler, so replace it with this one:

1: Private Sub btnSave Click() Handles btnSave.Click
2 Dim Scheduled As DateTime

3 Try

4 Scheduled = Appointments.CombinedDateTime (

bY dtpDate.Value.Date, CDate(txtTime.Text))

6 Catch

7 errProvider.SetError (txtTime,

8 "Please enter a valid appointment time")
oF Return

10: End Try

11: Dim typeId As Short = CShort(cboRepairType.SelectedValue)
12: Dim custId As Short = CShort(cboCustomer.SelectedvValue)
138 Dim licensed As Boolean = chkLicensed.Checked

14: If mAppointments.Insert(typeld, txtDescription.Text,
15: licensed, custId, Scheduled) Then

16: Me.Close()

17: Else

18: lblStatus.Text = "Cannot Add Appointment. " _

19: & Appointments.LastError

20: End If

21: End Sub

Lines 4-35 call the utility method from the Appointment class that combines
a date and a time, and assigns the result to the Scheduled variable. If the
date conversion throws an exception, it will be caught on line 7, where the
ErrorProvider control will display an error message.

Lines 11-12 get the repair-type ID and the customer ID from the two
combo boxes, and line 13 gets the licensed value from the check box. Line
14 calls the Insert method in the Appointments class, passing all the
required values. If the Insert method returns False, an error message is dis-
played by line 18. Finally, line 16 closes the form as soon as the appoint-
ment is saved.

Add the following Click handler for the Cancel button, and save the project.

Private Sub btnCancel Click() Handles btnCancel.Click
Me.Close()
End Sub

Code Listing

Check the following complete code listing of the NewAppointmentForm.vb class, to
make sure you haven’t left anything out:

Public Class NewAppointmentForm
Private mAppointments As New Appointments
Private mRepairTypes As New RepairTypes
Private mCustomers As New Customers

265

266

Chapter 5

Database Applications

Private Sub NewAppointmentForm Load() Handles MyBase.Load

cboRepairType.DataSource = mRepairTypes.Items

cboRepairType.DisplayMember = "Description"
cboRepairType.ValueMember = "TypeId"
cboCustomer.DataSource = mCustomers.Items
cboCustomer.DisplayMember = "Name"
cboCustomer.ValueMember = "CustId"

End Sub

Private Sub btnSave Click() Handles btnSave.Click

Dim scheduledAt As DateTime
Try
scheduledAt = Appointments.CombinedDateTime (
dtpDate.Value.Date, CDate(txtTime.Text))
Catch
errProvider.SetError (txtTime,
"Please enter a valid appointment time")
Return
End Try
Dim typeId As Short CShort (cboRepairType.SelectedValue)
Dim custId As Short CShort (cboCustomer.SelectedValue)
Dim licensed As Boolean = chkLicensed.Checked
If mAppointments.Insert(typeld, txtDescription.Text,
licensed, custId, scheduledAt) Then
Me.Close()
Else
lblStatus.Text = "Cannot Add Appointment. "
& Appointments.LastError
End If

End Sub

Private Sub btnCancel Click() Handles btnCancel.Click

Me.Close()

End Sub
End Class

Ready to Test

Step 6: Double-click on My Project in Solution Explorer and verify that the project’s
startup form is MainForm.

Step 7: Run the application. Select Appointments / New from the menu to display the
New Appointment window. Input and save an appointment. From the main
menu, select Appointments / View and verify that the appointment you added
is now visible in the grid.

Step 8: Add a few more appointments and verify that they were saved.

Step 9: Close the application. Then rebuild the project from the Visual Studio Build
menu to erase the appointments you added to the database.

Summary

After writing code for the New Appointment form, we hope that you are beginning
to see how the classes in a three-tier application communicate with each other. For
example, when creating a new appointment, the NewAppointmentForm class calls
the Insert method in the Appointments class. To do that, the form must contain an
Appointment object. Then the Appointments.Insert method calls the Insert method in

5.4 Focus on Problem Solving: Home Repair Services Application

the AppointmentsTableAdapter class. To do that, the Appointments class must contain
a TableAdapter object. These steps are shown by a concept diagram in Figure 5-23.

In Tutorial 5-10, you will add the ability for users to search for appointments.

Figure 5-23 Communication between classes when adding a new appointment

NewAppointmentForm e Button Click
class handler

contains calls

Appointments has | Insert
object ”| method
contains calls

|

AppointmentsTableAdapter e Insert
object method

Tutorial 5-10:
Searching for appointments

In this tutorial, you will add searching capabilities to the Home Repair Services appli-
cation. You will modify both the Appointments form and the Appointments class.

Tutorial Steps

Step 1:

Step 2:

Open the Appointments.vb class and insert the following method, which
returns all the rows of the Appointments table in the database:

Public ReadOnly Property Items As DataTable
Get
Return adapter.GetData()
End Get
End Property

Create the GetByCustomerld method, which returns a DataTable containing
appointments for a single customer:

1 Public Function GetByCustomerId(ByVal custId As Short) As
DataTable

2 Dim table As DataTable = adapter.GetData()

3 table.DefaultView.RowFilter = "CustId = " & custId
4 Return table

5 End Function

Line 2 gets all rows from the Appointments table, and line 3 applies a filter
expression that limits the rows to a single customer ID. Line 4 returns the fil-
tered table. This method is a good example of how code in the application’s

267

268 Chapter 5 Database Applications

middle tier can enhance the methods that already exist in a TableAdapter. It
was not necessary to create a separate query in the TableAdapter class.

AppointmentsForm Class

Step 3: Open the AppointmentsForm.vb class in the design window. Delete the data-
binding components from the form, and delete all event handlers from the
form’s code window.

Step 4: Undock the grid and resize it to make room for a ToolStrip control at the top
of the form.

Step 5: Add a ToolStrip control to the form and add the controls listed in Table 5-4.
Optionally, you can insert separator controls between the ToolStrip items.
Figure 5-24 shows the form at runtime, to give you a guide as to the place-
ment of the buttons.

Table 5-4 Controls on the Appointments Form

Control Type Control Name Property Settings

DataGridView dgvAppointments BackgroundColor = Control
BorderStyle = None

Anchor = Top, Bottom, Left, Right
ToolStrip (default)
ToolStripButton btnAll AutoSize = False
Size.Width = 50
DisplayStyle = Text
Text = All
ToolStripSeparator (default)
ToolStripLabel (default) Text = Customer:

ToolStripComboBox ~ cboCustomer

Figure 5-24 The AppointmentsForm, shown at runtime

s Appointments [[=]
All Customer -
Apptld Typeld Description Licensed Custld ScheduledAt
1 Replace 3 inteml door frames B [woo [101/2011 9:00 Am
1001 3 Repair wall next to kitchen 1] 1020 10/1/2011 10:00 AM
1002 7 Replace tile in kitchen [} 1010 104242011 11:00 AM
1003 4 Clean air conditioning coils [l 1030 10/2/2011 3:00 PM
1004 5 Install hot water pipe 1020 104242011 2:00 PM
1005 6 Replace breaker switches 1040 10432011 9:30 AM
1006 2 Repair refrigerator icemaker [} 1050 10372011 10:00 AM
1007 2 Repair loose tiles on roof [l 1040 10/3/2011 1:00 PM
1008] Replace living room bay window 1030 10/4/2011 8:00 AM

Step 6: Open the form’s code window and add the following variable declarations:

Private mAppointments As New Appointments
Private mCustomers As New Customers
Private formLoading As Boolean = True

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

5.4 Focus on Problem Solving: Home Repair Services Application

The first two variables are instances of middle-tier classes. The third variable
will help us avoid responding to combo box events while the form is loading.

Create a Click event handler for the All button and insert the following line
of code, which fills the grid with all rows of the Appointments table:
dgvAppointments.DataSource = mAppointments.Items

Run the application and test the All button in this form. It should display all
appointments. Stop the application.

Your next task will be to let the user search for appointments by customer

name.

Create the following Form_Load event handler, whose job it is to fill the
combo box with a list of customer names; it gets the list from the Items prop-
erty of the Customers object:

1: Private Sub AppointmentsForm Load() Handles MyBase.Load
28 With cboCustomer.ComboBox

39 .DataSource = mCustomers.Items

4: .DisplayMember = "Name"

58 .ValueMember = "CustId"

6: .DropDownStyle = ComboBoxStyle.DropDownList

74 .SelectedIndex = -1

8: End With

9: formLoading = False

10: End Sub

Lines 3-5 initialize fields that help us display the list of customers in the
combo box. (You wrote the same code in the NewAppointmentForm class.)
Line 6 sets a property in the combo box that prevents the user from directly
typing in a name at random. You can usually set this property in design mode,
but because this combo box is on a ToolStrip, the Visual Studio Property win-
dow does not display the ComboBoxStyle property. Line 7 sets SelectedIndex
to —1 so no customer name will be displayed when the form is first displayed.
Line 9 sets formLoading to False, to indicate that the form has finished the
loading process.

Create the following SelectedIndexChanged event handler for the ComboBox
control:

Private Sub cboCustomer SelectedIndexChanged()
Handles cboCustomer.SelectedIndexChanged
If Not formLoading Then
Dim custId As Short =
CShort (cboCustomer.ComboBox.SelectedValue)
dgvAppointments.DataSource =
mAppointments.GetByCustomerId(custId)
End If
End Sub

The If statement checks the formLoading variable to see if this event was fired
during the form’s initial loading process. If the variable equals True, we do not
perform any searches for appointments.

Run the application, select View from the Appointments menu, and experi-
ment by selecting different customer names from the combo box. An example
is shown in Figure 5-25. Also, click the All button to verify that all appoint-
ments are displayed.

269

270 Chapter 5 Database Applications

Figure 5-25 Displaying appointments for one customer

a5 Appointments = o2
All Custorner: Chong, Susan <
Apptld Typeld Description Licensed Custld ScheduledAt
L : Repairwal next to kitchen [1020 10/1/2011 10:00 AM
004 |5 Install hiot water pipe 1020 10/2/2011 2:00 PM

Code Listing

Check following complete code listing of the AppointmentsForm class to see if you’ve
left anything out:

Public Class AppointmentsForm
Private mAppointments As New Appointments
Private mCustomers As New Customers
Private formLoading As Boolean = True

Private Sub btnAll Click() Handles btnAll.Click
dgvAppointments.DataSource = mAppointments.Items
End Sub

Private Sub AppointmentsForm Load() Handles MyBase.Load
With cboCustomer.ComboBox

.DataSource = mCustomers.Items
.DisplayMember = "Name"
.ValueMember = "CustId"
.DropDownStyle = ComboBoxStyle.DropDownList
.SelectedIndex = -1

End With

formLoading = False

End Sub

Private Sub cboCustomer SelectedIndexChanged()
Handles cboCustomer.SelectedIndexChanged
If Not formLoading Then
Dim custId As Short =
CShort (cboCustomer.ComboBox.SelectedValue)
dgvAppointments.DataSource =
mAppointments.GetByCustomerId(custId)
End If
End Sub
End Class

Summary

You are starting to create code that can be reused (with small modifications) through
the application. A great feature of the multi-tier design approach is that your applica-
tion becomes easily expandable, with new types of searches and updates.

Copying a Class Within a Project

In the next tutorial, you will be asked to copy the NewAppointmentForm class and make
changes to the copy. Here are the basic steps for copying a class:

1. Close Visual Studio, to detach it from its project files.

5.4 Focus on Problem Solving: Home Repair Services Application 271

2. In the Solution Explorer window, right-click the name of the class you want to copy,
and select Copy from the popup menu.

3. In the same window, right-click the project name and select Paste from the popup
menu. After doing that, you will see a new file named Copy of original filename.

4. Rename this new file to a different name that matches the name of your new class.

5. Open the copied file in the code editor and change the name of the class.

In Tutorial 5-11, you will make a copy of the New Appointment form and modify the copy
so it permits the user to modify existing appointments.

Tutorial 5-11:
Modifying existing appointments

In the Home Repair Services application, we want to permit the user to modify an exist-
ing appointment. In this tutorial, you will create a form that satisfies that need.

Tutorial Steps

Step 1: In the Dataset Designer window, right-click the AppointmentsTableAdapter
and select Properties. Then expand the UpdateCommand property and select
CommandText. The Query Builder window will appear.

Step 2: Replace the existing update query with the following;:

UPDATE Appointments

SET TypeId = @Typeld, Description = @Description,
Licensed = @Licensed, CustId = @CustId, [Scheduled] =
@Scheduled

WHERE (ApptId = @ApptId)

This query updates the Appointments table by assigning new values to each
of the fields in a single row. The Apptld column is not updated because it is
the table’s primary key. (Modifying a primary key could cause a referential
integrity error in the database.) The Scheduled column name conflicts with an
SQL language keyword, so the column name must be enclosed in brackets
when you use it in a query.

Step 3: Open the Appointments.vb file and add the following Update method to the
Appointments class:

Public Function Update(ByVal typeId As Short,
ByVal description As String, ByVal licensed As Boolean,
ByVal custId As Short, ByVal Scheduled As DateTime,
ByVal apptId As Integer) As Boolean

' Update a row into the Appointments table. Return
' True if successful. If an exception is thrown,
LastError will hold an error message.
LastError = String.Empty
Try
adapter.Update(typeld, description, licensed,
custId, Scheduled, apptId)
Return True
Catch ex As Exception
LastError = ex.Message
Return False
End Try
End Function

272

Chapter 5

Database Applications

Step 4:

<

"

This method is very similar to the Insert method you created in Tutorial 5-6.
You may want to copy and paste your old code and change a few lines.
There’s one extra parameter (apptld), and in this version, you are calling the
adapter’s Update method rather than Insert. The comments are different, also.

Add the FindByApptld method to the class:

Public Function FindByApptId(ByVal apptId As Short) _
As RepairServicesDataSet.AppointmentsRow

Dim table As RepairServicesDataSet.AppointmentsDataTable
table = adapter.GetData()
Return table.FindByApptId(apptId)

End Function

N oUW N

Line 2 declares the return value as a specific type of DataRow, to enable the
caller to access the database column names as object properties (you will see
this when we create the form). Line 4 also declares a specific DataTable type.
Line 5 calls the GetData method from the AppointmentsTableAdapter, which
returns all rows of the Appointments table. Line 6 calls the FindByApptld
method that was generated by Visual Studio. This method call returns a sin-
gle row of the Appointments table, exactly what we will need when we dis-
play the appointment in a form.

TIP: If the Appointments table were large, it could be argued that calling
GetData is inefficient when all you really want is a single table row. In that
case, the solution would be to add a new SQL query to the TableAdapter
that selects only one row. This type of improvement would be easy to do
any time in the future.

Build the Modify Appointment Form

Now you are ready to create the Modify Appoiniment form. The easiest way to do
this is to make a copy of the New Appointment form and make a few changes to the

copy.
Step 5:

Step 6:

Step 7:

Step 8:

Make a copy of the NewAppointmentForm.vb class file and name it
ModAppointmentForm.vb. Open its code window and rename the class to
ModAppointmentForm. Rebuild the application from the Project menu.

In the design window, rename the form’s Text property to Modify Appointment.

In the form’s code window, add the following property, which will be initial-
ized by another program just before it displays the Modify Appointment
form:

Public Property AppointmentId As Short

Add the following code to the end of the Form_Load event handler, which ini-
tializes the form fields to a single selected appointment:

Dim row As RepairServicesDataSet.AppointmentsRow
row = mAppointments.FindByApptId(AppointmentId)

dtpDate.Value = row.Scheduled.Date

txtTime.Text = row.Scheduled.TimeOfDay.ToString

chkLicensed.Checked = row.Licensed

U s W N

Step 9:

5.4 Focus on Problem Solving: Home Repair Services Application

6: txtDescription.Text = row.Description
78 cboRepairType.Selectedvalue = row.TypeId
8: cboCustomer.SelectedValue = row.CustId

Line 2 gets a single row from the Appointment table by calling the Find-
ByApptld from the middle-tier class. This row is a very specific type of
DataRow object (see line 1). Your code must copy the row fields into the cur-
rent form’s controls. Fortunately, the row contains property names that tell us
how to get the data. Line 3 gets the date portion of the Scheduled column, and
line 4 gets the time portion of the same column. (The Scheduled column con-
tains both a date and a time.)

Line 5 copies the Licensed field value (Boolean) to the chkLicensed check
box. Line 6 copies the appointment description. Lines 7 and 8 copy the
Typeld and Custld values directly into the SelectedValue properties of the
two combo boxes. This will make the boxes display the currently selected
type of repair and customer name, using values from the database row.
For example, if the current row contains a Custld value of 1020, the
customer combo box will select the name of the customer having that ID
number.

Modify the shaded lines below in the Click handler for the Save button:

1: Private Sub btnSave Click() Handles btnSave.Click
2 Dim Scheduled As DateTime

3 Try

4 Scheduled = Appointments.CombinedDateTime(_
58 dtpDate.Value.Date, CDate(txtTime.Text))

6: Catch

7 errProvider.SetError(txtTime, _

8 "Please enter a valid appointment time")
OF Return

10: End Try

11: Dim typeId As Short = CShort(cboRepairType.SelectedValue)
12: Dim custId As Short = CShort(cboCustomer.SelectedValue)
13: Dim licensed As Boolean = chkLicensed.Checked

14: If mAppointments.Update(typeId, txtDescription.Text,
15: licensed, custId, Scheduled, AppointmentId) Then

16: Me.Close()

17: Else

18: lblStatus.Text = "Cannot update the Appointment."
198 & Appointments.LastError

20: End If

21: End Sub

On line 15, the Update method in the Appointment class has one more param-
eter (Appointmentld) than the Insert method did. Line 16 closes the window
right after the appointment is updated. Basically, as soon as the user clicks the
Save button, the window closes.

Code Listing

Check the following complete code listing of the ModAppointmentForm.vb class to
make sure you haven’t left anything out:

Public Class ModAppointmentForm
Private mAppointments As New Appointments
Private mRepairTypes As New RepairTypes

273

274 Chapter 5 Database Applications

Private mCustomers As New Customers
Public Property AppointmentId As Short

Private Sub Form Load() Handles MyBase.Load
' Fill the Repair Types combo box.
cboRepairType.DataSource = mRepairTypes.Items
cboRepairType.DisplayMember = "Description"
cboRepairType.ValueMember = "TypeId"
' Fill the Customers combo box.
cboCustomer.DataSource = mCustomers.Items
cboCustomer.DisplayMember = "Name"
cboCustomer.ValueMember = "CustId"

' Get the selected appointment and display in the form's
' controls.

Dim row As RepairServicesDataSet.AppointmentsRow
row = mAppointments.FindByApptId(AppointmentId)
dtpDate.Value = row.Scheduled.Date
txtTime.Text = row.Scheduled.TimeOfDay.ToString
chkLicensed.Checked = row.Licensed
txtDescription.Text = row.Description
cboRepairType.SelectedValue = row.TypeId
cboCustomer.SelectedValue = row.CustId

End Sub

' The user wants to save the appointment.
Private Sub btnSave Click() Handles btnSave.Click
Dim scheduledAt As DateTime
Try
scheduledAt = Appointments.CombinedDateTime (
dtpDate.Value.Date, CDate(txtTime.Text))
Catch
errProvider.SetError (txtTime,
"Please enter a valid appointment time")
Return
End Try
Dim typeId As Short = CShort(cboRepairType.SelectedValue)
Dim custId As Short = CShort(cboCustomer.SelectedValue)
Dim licensed As Boolean = chkLicensed.Checked
If mAppointments.Update(typeld, txtDescription.Text,
licensed, custId, scheduledAt, AppointmentId) Then
Me.Close()
Else
lblStatus.Text = "Cannot update the Appointment."
& Appointments.LastError
End If
End Sub

Private Sub btnCancel Click() Handles btnCancel.Click
Me.Close()
End Sub
End Class

Testing the User Interface

At this point, it is important for you to test the Modify Appointment form. Later, we
will show you how to display this form from the applications main menu.

Step 1: Insert the following line of code at the beginning of Form_Load (it will be
removed later):

AppointmentId = 1004

5.4 Focus on Problem Solving: Home Repair Services Application 275

This line initializes the Appointmentld property to an ID that we know is in
the database. The form will display the data for this appointment.

Step 2: Double-click on My Project in Solution Explorer and change the project’s
startup form to ModAppointmentForm.

Step 3: Run the application. You should see the Modify Appointment window, as
shown in Figure 5-26. Change all of the column values and click the Save but-
ton. The window will close.

Figure 5-26 The Modify Appointment form at runtime

Medify Appointment 3]
Date Time Customer
10/ 2/2011 E~ 14.00:00 Chong, Susan -
Repair type Plumbing - Must be licensed

Description (0-100 chars)

Install hotwater pipe

[Save] [Cancel]

Step 4: Run the application again and verify that all the changes you made were
saved.

Step 5: Remove the line of test code that you inserted in Step 1, and save the project.

This tutorial was an important step in learning how to display and edit a sin-
gle database row. Although this type of editing could have been accomplished
by using data-bound controls, that approach would violate the basic premise
of multi-tier applications: The presentation layer (Windows forms) should not
communicate directly with the database. In fact, the application you’re writ-
ing now will show up as a Web application in a later chapter. A multi-tier
design makes it easy to move an application from the desktop to the Web.

In Tutorial 5-12, you will launch the Modify Appointment window from
another page.

0

Tutorial 5-12:
Selecting appointments to modify

In this tutorial, you will add a button to the Appointments form that lets the user launch
the Modify Appointment window. You will add a second button that closes the
Appointments window.

276

Chapter 5

Database Applications

Tutorial Steps

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Open AppointmentsForm.vb in design mode.

Set the RowHeadersVisible property of the DataGridView to True. (This will
display a button to the left of each row in the grid, which can be used to select
the row.)

Add a ToolStripSeparator to the ToolStrip control. Then add a ToolStripBut-
ton control and set the following property values: Name = btnEdit, Dis-
playStyle = Text, Text = Edit.

Add a ToolStripSeparator to the ToolStrip control. Then add a ToolStripBut-
ton control and set the following property values: Name = btnClose, Dis-
playStyle = Text, Text = Close.

Create a Click handler for the Close button and insert a Me.Close()
statement.

Create a Click handler method for the Edit button and insert code to create
the following method:

1: Private Sub btnEdit Click() Handles btnEdit.Click
2 If dgvAppointments.SelectedRows.Count > 0 Then
3 Dim apptId As Short = CShort(dgvAppointments.
4 SelectedRows (0).Cells(0).Value)
53 Dim frm As New ModAppointmentForm
6 frm.AppointmentId = apptId
7 frm.ShowDialog()

8: dgvAppointments.DataSource = mAppointments.Items

oF Else

10: MessageBox.Show("Please select the appointment to edit")
11: End If

12: End Sub

This code displays the Modify Appointment form. Line 1 verifies that a row
was selected by the user. Line 4 gets the appointment ID value from the first
cell in the selected row belonging to the grid’s SelectedRows collection. (It
is possible to select more than one row in a grid, although doing so would
not be useful here.) Line 5 creates an instance of the Modify Appointment
form, and line 6 assigns the appointment ID to the form’s Appointmentld
property. Line 7 displays the Modify Appointment form, and line 8 refreshes
the grid with the complete list of appointments (to reflect the changes that
were made).

Double-click on My Project in Solution Explorer and change the project’s
startup form to MainForm.

Run the application, select the Appointments / View menu item, click the
All button, and select one of the grid rows. An example is shown in Fig-
ure 5-27.

Click the Edit button, and the Modify Appointment window should
appear. Make some changes to the appointment, and click the Save
button. You should see the changes you made in the appropriate row of
the grid.

5.4 Focus on Problem Solving: Home Repair Services Application 277

Figure 5-27 Selecting an appointment from the grid in the Appointments form

' Appointments EE
All Customer: - Edit

HApptld Typeld Description Licensed Custld ScheduledAt

1000 1 Replace 3 intemal door fra... [} 1000 10/1/2011 5:00 AM

1001 3 Repair wall next to kitchen [} 1020 10/1/2011 10:00 AM
DMl oz 7 Foecienuom B ou iz nmom

1003 4 Clean air conditioning coils [} 1030 10422011 3:00 FM

1004 L Install hot water pipe 1020 10/2,2011 2:00 PM

1005 6 Replace breaker switches 1040 10/3/2011 5:30 AM

1006 2 Repair refrigerator icemaker [l 1050 1043,2011 10:00 AM

1007 8 Repair loose tiles on roof [} 1040 10/3/2011 1:00 FM

1008 9 Replace living room bay win... 1030 10/4,2011 8:00 AM

Summary

The Appointments form offers some interesting possibilities. You could add a
Delete button to the ToolStrip that would let the user delete a single appointment.
Or, you could let the user search for appointments by their repair types. To do that,
you might add another combo box to the tool strip that displays the RepairTypes
table. Then you would write code that is similar to the code for the Customers
combo box.

In Tutorial 5-13, you will add a Delete button to the Appointments form.

Tutorial 5-13:
Deleting an appointment

In this tutorial, you will make it possible for the user delete a selected appointment in
the Home Repair Services application.

Tutorial Steps
Step 1: Open the RepairServices.xsd DataSet in the designer window.

Step 2: Select AppointmentsTableAdapter and open its Properties window.

Step 3: Expand the DeleteCommand property and open its CommandText subprop-
erty. The default SQL query is very long because the code tries to match all of
the columns. Replace it with a much simpler version that only matches the
Apptld column with a single query parameter.

DELETE FROM Appointments
WHERE ApptId = @ApptId

Save your changes.

278

Chapter 5

Database Applications

Step 4: Open the Appointments.vb file and add the following Delete method:

Public Function Delete(ByVal apptId As Integer) As Boolean
Dim rowsAffected As Integer = adapter.Delete(apptId)
Return rowsAffected > 0

End Function

The adapter.Delete method call returns a count of the number of rows affected
by the query. We expect the count to be equal to 1, so the method returns True
if at least 1 row was affected.

Step 5: Open the AppointmentsForm.vb file in the designer window, add separator,
and then a Delete button to the ToolStrip at the top of the form, and name it
btnDelete.

Step 6: Add the following Click handler for the Delete button:

1: Private Sub btnDelete Click() Handles btnDelete.Click

2 If dgvAppointments.SelectedRows.Count > 0 Then

3 Dim apptId As Short = CShort(dgvAppointments.

4 SelectedRows (0).Cells(0).Value)

5 If mAppointments.Delete(apptId) Then

6: dgvAppointments.DataSource = mAppointments.Items

7 Else

8 MessageBox.Show("Unable to delete this appointment")
9 End If
0 End If
1: End Sub

Lines 2-4 were borrowed from the Click handler that you wrote earlier for
the Edit button. They verify that a grid row was selected, and then they get
the appointment ID from the first cell in the selected row. Line 5 calls the
Delete method from the Appointments class and checks the Boolean return
value. If an appointment was deleted, line 6 refreshes the grid by displaying
all appointments. If the selected appointment was not deleted (because of an
unknown error), line 8 displays an error message.

Step 7: Run the application, open the Appointments form, click the All button,
select an appointment, and click the Delete button. The appointment should
disappear.

Summary

Let’s review the steps that were required to add the Delete operation to the Appointments
window. First, you simplified the query in the TableAdapter’s DeleteCommand property.
Second, you added a Delete method to the Appointments class. Third, you added a
Delete button with a Click handler to the Appointments form. Deleting an appointment
was fairly easy because it is not the parent table in any table relationships. All you had
to do was pass the ID of the appointment to be deleted to the Delete method.

Creating Queries That Join Tables

The columns in a table often hold numeric codes that are difficult for the end user to decipher.
This is certainly the case with the Appointments table, which contains a customer ID and a
repair type ID. No doubt, you have viewed this table more than once, trying to remember the
meaning of these codes. Therefore, it’s good to join tables together so the numeric codes can

5.4 Focus on Problem Solving: Home Repair Services Application

be replaced by user-friendly text values. Figure 5-28, for example, shows a join of the Appoint-
ments, Customers, and RepairTypes tables that leaves no doubt in our minds as to which cus-
tomer has scheduled which type of repair. Some of the table columns, such as Apptld, Custld,
Typeld, and Licensed are not shown, but that information is available elsewhere.

Figure 5-28 Tables joined together

p

a5 Appointment List [-=-|[E3]
Name 4 Description RepairType Scheduled

Chong, Susan Repair wall next to kitchen Masaonny 10/1/2011 10:00 AM
Chonag, Susan Install hot water pipe Plumbing 10/2/2011 2.00 PM
Johnson, David Replace 3intemal door frames Carpentry 10/1/2011 5:.00 AM
Kahane, Sam Clean air conditioning coils Heat /i 10/2/2011 3:00 PM
Kahane, Sam Replace living room bay window | Window./Door 10/4/2011 8:.00 AM
Martinez, Maria Replace breaker switches Electrical 10/3/2011 5:30 AM
Martinez, Maria Repair loose tiles on roof Roof 10/3/2011 1:.00 PM
Ramirez, Jose Repair refrigerator icemaker Appliance 10/3/2011 10:00 AM

3 Smith, Linda Replace tile in kitchen Flooring 10/2/2011 11:00 AM

When you add a SELECT query to an existing TableAdapter, the query’s columns should
match the columns in the DataTable associated with the TableAdapter. For example, if we
were to add a query to the AppointmentsTableAdapter that omits some columns, the mes-
sage shown in Figure 5-29 would appear. Therefore, we would create a new TableAdapter
with columns that match our query.

Figure 5-29 TableAdapter warning message

'Mlcmsnﬂ Visual Studic E

The new command text returns data with schema different from the
£ l % schema of the main query. Check your query's command text if this is
not desired.

INNER JOIN Statement

The INNER JOIN operator in SQL joins two tables, using fields from each table that are
expected to contain matching values. The joining process takes place in the part of the query that
selects which tables will be used. For example, when you use only one table, it looks like this:

SELECT field-1,..., field-n FROM tablename

But if you have two tables, you have to identify which column in each table will link the
tables together. For that, you use the INNER JOIN operator. Here is the general format:

FROM tablel INNER JOIN zable2 ON tablel.key = table2.key

The ordering of the names zablel and table2 is not important. The items labeled key can be
the primary key or foreign key of the table. The idea is that the two columns contain

279

280

Chapter 5

Database Applications

essentially the same data. For example, the following query links the Appointments and Cus-
tomers tables, using their common Custld column:

FROM Appointments INNER JOIN Customers
ON Appointments.CustId = Customers.CustId

You may recall that we designed the RepairServices database so that the Custld column in
each appointment matched one of the Custld values in the Customers table. That is how we
could identify which customer had scheduled the appointment.

INNER JOIN returns only those rows in which the two tables have matching values. To
illustrate this idea, let’s use simplified versions of the Appointments and Customers tables,
as follows:

Appointments Table

ApptId Description CustId
1000 Replace frames 1000
1001 Repair wall 1020
1002 Replace tile 1010
1004 Install pipe 1020
1005 Replace breaker 1040

Customers Table

CustId Name

1000 Johnson, David
1010 Smith, Linda
1020 Chong, Susan

Let us consider the following query:

SELECT Description, Name, Customers.CustId
FROM Appointments INNER JOIN Customers
ON Appointments.CustId = Customers.CustId

When the query executes, it returns only rows that contain matching values in the Custld
column:

Replace frames Johnson, David 1000
Repair wall Chong, Susan 1020
Replace tile Smith, Linda 1010
Install pipe Chong, Susan 1020

Notice that the last row of the Appointments table (Apptld = 1005) does not appear in the
output because its Custld value (1040) does not appear in the Customers table.

Nested Join

A nested join is an SQL query that joins three or more tables. The FROM clause in the fol-
lowing query does this:

FROM Appointments INNER JOIN Customers

ON Appointments.CustId = Customers.CustId
INNER JOIN RepairTypes

ON Appointments.Typeld = RepairTypes.Typeld

First, the Appointments table is joined to the Customers table. Then the resulting table is
joined to the RepairTypes table, using Typeld as the linking column.

Although the syntax for inner joins appears complicated, it should not trouble you. Visual
Studio makes it very easy to join tables inside the Query Designer window. In Tutorial 5-14,
you will add a new form to the project that displays a list of appointments, using data that
was joined from three tables.

5.4 Focus on Problem Solving: Home Repair Services Application

0

Tutorial 5-14:
Displaying a joined appointment list

In this tutorial, you will add a new form that displays the appointment list in an easier-
to-read format. To do that, you will create a new TableAdapter that joins the Cus-
tomers, RepairTypes, and Appointments tables.

Tutorial Steps
Step 1: Open the designer window for RepairServicesDataSet.xsd.

Step 2: Right-click in an open area of the window and select Add; then select
TableAdapter. The TableAdapter Configuration Wizard window should
appear.

Step 3: Click the Next button until you reach the Enter a SOL Statement panel. Click
the Query Builder button.

Step 4: The Add Table window should appear. If it does not, right-click in the upper
pane and select Add Table. Add all three tables to the query. Then place a
check mark in each of the following columns, in order: Customers.Name,
Appointments.Description, RepairTypes.Description, Appointments.Scheduled.
The tables are shown in Figure 5-30.

Figure 5-30 Joining the Appointments, RepairTypes, and Customers tables

Appointments [_] RepairTypes [_]
[1* (all Columns) [I* (All Columns)
[Appiid f [Typeld
[Typeld [w] Description
[] Description Customers [_}]
[Clicensed [I* (&l Colurmns)
[Ccustld [| Custid
[w]Scheduled | tiame
:Phone

Step 5: Because there are two columns named Description in the query, you will need
to find the place in the query that says AS Expr1 and change it to AS Repair-
Type. After doing so, the query should be the following:

SELECT Customers.Name, Appointments.Description,
RepairTypes.Description AS RepairType, Appointments.
Scheduled

FROM Appointments INNER JOIN Customers
ON Appointments.CustId = Customers.CustId

INNER JOIN RepairTypes
ON Appointments.TypeId = RepairTypes.Typeld

The formatting of the lines will be different in Query Builder, but that is not
important. This query joins together the Customers, Appointments, and
RepairTypes tables, using columns that are common to each pair of tables.

281

282

Chapter 5

Database Applications

Step 6:

Step 7:

Step 8:

Click the OK button to close the Query Builder window. In the Wizard win-
dow, click the Advanced Options button and unselect the Generate Insert,
Update and Delete statements option. Click OK to save.

Click the Finish button to save the query. You have just created a new
TableAdapter.

In the DataSet designer window, select the table named DataTablel, right-
click, select Rename, and rename it to AppointmentList. Also, rename the
TableAdapter to AppointmentListTableAdapter.

Add the AppointmentList Property to the Appointments Class

Step 9:

Open the Appointments class and add the following AppointmentList property:

Public ReadOnly Property AppointmentList As DataTable
Get
Dim listAdapter As New RepairServicesDataSetTableAdapters.
AppointmentListTableAdapter
Return listAdapter.GetData()
End Get
End Property

In this property procedure, you have declared an instance of your new type of
TableAdapter. When your code calls GetData, it returns a DataTable contain-
ing all appointments.

Let’s review what you have accomplished so far. You created a new
TableAdapter, using an SQL query that joins all three tables in the database.
Then you renamed the DataTable and TableAdapter classes to Appoint-
mentList and AppointmentListTableAdapter. Finally, you added a new prop-
erty to the middle-tier Appointments class that calls the GetData method from
your new TableAdapter.

Add AppointmentListForm to the Project

In the next series of steps, you will add an Appointment List form to the project, insert
a DataGridView in the form, write a Form_Load handler in the form, and then add a
new entry to the Main form’s menu that displays your new form.

Step 10:

Step 11:

Step 12:

Step 13:

Step 14:

Add a new form to the project named AppointmentListForm.vb. Set its Text
property to Appointment List.

Add a DataGridView to the form and name it dgvAppointments. Set its Dock
property to Fill. Right-click its smart tag and uncheck the Adding, Editing,
and Deleting options.

In the form’s code window, add the following Load event handler:

Private Sub Form Load() Handles MyBase.Load
Dim mAppointments As New Appointments
dgvAppointments.DataSource = mAppointments.AppointmentList
End Sub

Open the MainForm class file and add a new entry to the Appointments
menu: Appointment List.

Create a click handler for the new menu item, and insert the following code:

AppointmentListForm.ShowDialog()

Summary

Step 15: Run the application, and select Appointment List from the Appointments

menu. Your new form should appear as shown in Figure 5-31.

Figure 5-31 Displaying the Appointment List form

a5 Appointment List [==
Name Description RepairType Scheduled

Chonag, Susan Repair wall nexd to kitchen Masaonny 10/1/2011 10:00 AM
Chong, Susan Install hot water pipe Plumbing 10/2,2011 2.00 PM
Johnson, David Replace 3 intemal door frames Carpentry 10/1/2011 5:00 AM
Kahane, Sam Clean air conditioning coils Heat/Air 10/2/2011 3.00 PM
Kahane, Sam Replace living room bay window | Window./Door 10/4/2011 8:00 AM
Martinez, Maria Replace breaker switches Blectrical 103,201 9:30 AM
Martinez, Maria Repair loose tiles on roof Roof 10/3/2011 1:.00 PM
Ramirez, Jose Repair refrigerator icemaler Appliance 104342011 10:00 AM

» Smith, Linda Replace tile in kitchen Flooring 10/2/2011 11:00 AM

By joining tables, you can combine their most useful columns to create an
informative view of the database. Although the SQL JOIN query syntax takes
some practice to master, you can rely on the Query Builder tool in Visual Stu-
dio to make joining an easy task.

Summary

5.1

Creating Databases

The Server Explorer window in Visual Studio lets you view and manage connections
to local and remote databases.

When examining a database connection in Server Explorer, the Database Diagrams
folder contains graphical diagrams that show relationships between tables. The Tables
folder contains all tables in the database. The Views folder contains a list of views,
which are alternate ways of viewing the contents of tables; views often combine
columns from different tables into what look like new tables. The Stored Procedures
folder contains compiled SQL queries.

A one-to-many relationship exists between two database tables when the primary key
of one table links to a column called a foreign key in another table. The table on the
one side is called the parent table. The table on the many side is called the child table.
A many-to-many relationship occurs between two database tables when the linking
column is a foreign key in both tables. A third linking table must be created that has
a one-to-many relationship with the first two tables.

Database constraints are rules in a database that help preserve data integrity, prevent-
ing errors caused by the insertion of invalid data.

A referential integrity constraint, or foreign key constraint, applies to the relationship
between two tables. In a one-to-many relationship, the parent table is required to con-
tain a primary key value that matches each foreign key value found in the child table.

283

284

Chapter 5

Database Applications

5.2

5.4

DataTables

The Server Explorer window in Visual Studio lets you view and manage connections
to local and remote databases.

A DataTable is an object that represents the contents of a table from a data source. The
NET DataTable class is used as the basis for creating more specialized DataTable
types. When you add a data source to a project, Visual Studio creates a specialized
DataTable class, such as CustomerDataTable, or MembersDataTable.

The Columns property holds a collection of DataColumn objects; each describes the
name, type, and other characteristics of a column.

The DefaultView property holds a DataView object that lets you filter (select) the table
rows or sort the rows on any column.

The PrimaryKey property holds an array of DataColumn objects that serve as the table’s
primary key; each table row is guaranteed to hold a unique value in the column or columns.
The Rows property holds a collection of DataRow objects, each holding the data in
one row of the table.

A DataRow object describes a row in a DataTable. You can add columns to a DataRow,
fill the row with values, add the row to a table, and remove a row from a table.

Updating Databases Using SQL

The INSERT INTO statement adds a new row to a database table.

The UPDATE statement modifies one or more existing database table rows.

The DELETE FROM statement deletes one or more rows from a database table.

Be careful when deleting rows from a table that participates in a one-to-many table
relationship. If you delete a row from the parent table, you may cause a violation of a
referential integrity constraint.

Home Repair Services Application

Tutorials 5-4 through 5-14 build the Home Repair Services application, whose purpose
is to enable company personnel to schedule repair services for residential customers.
Home Repair Services is a three-tier application, with a presentation tier made of win-
dows forms, a middle tier containing three classes (Appointments, RepairTypes, and
Customers), and a data access tier made up of the RepairServicesDataSet classes.
Runtime data binding describes the assigning of a DataTable to the DataSource prop-
erty of a control at runtime. To perform runtime data binding, you need to declare a
variable in the form’s code that is an instance of a middle-tier class. Then you call a
method from the class that returns a DataTable.

Many times, database table columns hold numeric codes that are difficult for the end
user to understand. It’s a good idea to join tables together, so numeric codes can be
replaced by more descriptive text values.

The INNER JOIN operator in SQL joins two tables, using fields from each table that
are expected to contain matching values. INNER JOIN only returns rows in which the
two tables have matching values.

A nested join operation uses the result of joining two tables together to form another join
expression. Using that principle, almost any number of tables can be joined in a query.

Key Terms

child table DELETE FROM

column check constraint foreign key

database constraint foreign key constraint
database diagram INNER JOIN

DataRow object INSERT INTO

DataTable many-to-many relationship

Review Questions

nested join referential integrity constraint
one-to-many relationship runtime data binding

parent table Server Explorer

primary key constraint UPDATE

Review Questions

True or False

Indicate whether each of the following statements is true or false.

1.

7o N

@ Noen

10.

11.

12.

13.

14.

Dragging a table from Server Explorer onto a DataSet design surface has no effect on
the DataSet.

The Apptld column in the Appointments table uses an identity seed.
The Licensed column in the Appointments table holds Boolean values.
A database constraint limits the number of rows that can be added to a table.

It is possible to create table relationships in a database without enforcing referential
integrity constraints.

A table’s primary key must contain only a single column.
A DefaultView is an object that lets you filter and sort the rows of a DataTable.
The rows of a DataTable are usually a specialized type of DataRow.

The Insert method in a TableAdapter returns a Boolean value indicating whether the
row insertion was successful.

The Delete method in a TableAdapter returns an Integer value indicating the number of
deleted rows.

In the Repair Services application, the presentation-tier classes often called
TableAdapter methods.

A SelectedIndexChanged event is fired when the DataSource property of a ComboBox
is assigned at runtime.

The default TableAdapter query for deleting a single row from a table has a single query
parameter for the primary key column.

When you write a query that joins two tables in a DataSet, you must create a separate
TableAdapter with columns that match the query columns.

Short Answer

1.

(O8]

Ny T g

When you create a database in the Server Explorer window, where is the database data
file stored?

. How do you create a database in Server Explorer?

What type of relationship exists between the Appointments and Customers tables in the
Home Repair Services application?

How is the Data Sources window different from the Server Explorer window?
Name at least four folders that are grouped under a database name in Server Explorer.
Which column joins the Customers and Appointments tables?

Which column joins the RepairTypes and Appointments tables?

285

286

Chapter 5

Database Applications

10.
11.
12.
13.

14.
15.
16.
17.

18.

In what type of relationship does a parent table participate?

Which table in a relationship contains a foreign key: parent or child?

In what type of relationship is a foreign key used as a linking field in both tables?
Name three types of database constraints mentioned in this chapter.

What types of objects appear in a database diagram?

If an application contains RepairServicesDataSet, what will probably be the fully quali-
fied name of the TableAdapter class that holds the Customers table?

In the Repair Services application, what are the names of the middle-tier classes?
What is the definition of runtime data binding in this chapter?
Which ListBox properties are set when performing runtime data binding?

Which event fires when you assign a table to the DataSource property of a ComboBox
or ListBox?

The DataTable class contains a method that lets you search by the primary key field.
Suppose the primary key were named ID. What would be the name of the correspon-
ding search method?

Programming Challenges

1.

Search for Appointments by Repair Type

Modify the Home Repair Services application as follows. In the Appointments form, add
a combo box to the toolbar containing a list of repair types. When the user selects a repair
type, restrict the list of appointments to those that match the selected repair type.

Search for Appointments by Date

Modify the Home Repair Services application as follows. In the Appointments form,
find a way for the user to search for appointments by date. For example, you could ask
the user to enter a starting date and the number of days forward from the given date.
Once he or she has made the selection, you can limit the list of appointments displayed
in the grid to the chosen date range. If the ToolStrip seems too small to input all of the
search information, you can use a button on the ToolStrip to display a small dialog win-
dow that gets the date information from the user.

. Add New Customer

Modify the Home Repair Services application as follows. Create a form that lets the user
input a new customer. The Custld column in the database is not autogenerated, so you
might want to use a query to get the list of IDs, find the highest one, and create a new ID
that is larger. Do not permit any of the customer fields to be blank. Do not permit the
new customer’s phone number to be the same as an existing customer’s phone number.

. Modify Customer

Modify the Home Repair Services application as follows. Create a form that lets the user
modify an existing customer’s name and phone number. Do not permit the customer ID
field to be modified. When the user clicks a button to save their changes, the form must
call an Update method in the Customers class, which in turn calls the TableAdapter’s
Update method.

. Training Workshops

Use the Programming Challenge 3 from Chapter 1 as a starting point for this challenge.
This version will be a 3-tier application.

1. Add an ID property to the Workshop class.

Programming Challenges

. Create a database to replace the data file that was used for input in Chapter 1. In it,
create a database table named Workshops that contains the workshop ID, category
ID, number of days, cost of the workshop, and workshop title. Also in the database,
create a Categories table that contains category ID and category description columns.

. Create a DataSet containing table adapters based on the two database tables. In addi-
tion, create a TableAdapter that joins the two tables and contains the workshop ID,
workshop category name, number of days, cost, and workshop description.

. The Workshop class represents the middle tier. In this class, declare an instance of the
TableAdapter class so you can call the TableAdapter methods. Provide properties and
methods in the Workshop class that are called by your MainForm and DetailsForm
classes.

. Display the list of workshops in a DataGridView control, as shown in Figure 5-32.
When the user selects a workshop in the grid, display the Worshop Details form, as
shown in Figure 5-33. The combo box is filled from the Categories TableAdapter. The
user must be able to modify a workshop in this window and save his or her changes.
When the details form closes, the grid must be refreshed, so the user can see the
changes he or she made.

Figure 5-32 Displaying the Training Workshops list

o Training Workshops | =] || =] || 2 |
ID Category Days Cost Description -
» m Application Development 3 200 Programming in Java
110 Application Development 3 300 Programming in Visual Basic
120 Application Development 3 800 Programming in CH# =
130 Application Development 5 1500 Advanced Java
140 Application Development 5 1500 Advanced Visual Basic
150 Application Development 5 1500 Advanced CH 4
160 Application Development 5 1500 Web Application Programming
170 Networking 3 700 Intro to Networking
180 Networking 5 1500 Advanced Networking
190 MNetwordng 3 G00 Mobile Metworss i
Figure 5-33 Displaying the Workshop Details form
Workshop Details (23]
Title Advanced CH
Category Application Development -
Days 5
Cost 1.500.00
Save and Close] [Cancel

287

288

Chapter 5

Database Applications

6. Investment Tracking

Use Programming Challenge 4 from Chapter 1 as a starting point for this programming
challenge. In this version, create a database containing the following tables:

e Prices (ticker symbol, price)—holds the current price of each investment, identified by
a unique ticker symbol.

e Investments (ID, ticker symbol, InvestmentType, price per share, purchase date, num-
ber of shares).

Choose column types that seem appropriate to you. The InvestmentType column should
contain an integer that matches one of the enumerated InvestmentType values already
defined in your program.

Create a DataSet that contains TableAdapters for the Prices and Investments tables. The
existing classes named Investment and PriceType will exist as middle-tier classes.

When the user clicks the Confirm button, shown in Figure 5-34, collect the data from the
form and call the Insert method in the Investment class, which will, in return, call the Insert
method in the InvestmentTableAdapter class. In that way, the form’s information will be
inserted into the database. Then when the user clicks the Show list button, another form,
shown in Figure 5-35, displays the current list of investments in a DataGridView control.

Figure 5-34 After clicking the confirm button

a5 Investment Tracking EI!E'@

Investment Purchase Information

Investment type: ’ v]

Ticker symbol: BCHS Price per share: 4210

Purchase date: 10/12/2011 E~

Number of shares: 50 Total amount: |$2,105.00

Confrm | | Close

Figure 5-35 Showing the list of investments

a5 InvestmentListForm E\@
ID Ticker Investment Type Price PerShare PurchaseDate MumShares

R octs 2 2 10/12/2011 50

102 XYZ 1 hh 11/5/2011 20

103 DNGA 0 77 11/6/2011 35

104 FBNS 3 814 101272011 22

6 Advanced Classes

CHAPTER

6.1 Structures Tutorial 6-5: Creating more unit tests
6.2 Components for the IntArray class

Tutorial 6-1: Creating a Component Tutorial 6-6: Testing the

and referencing it from another Advisor.MaxCredits method

Application 6.4 Events

Tutorial 6-2: Adding an Advisor class Tutorial 6-7: The WeatherStation

to the RegistrationLib component Events application

Tutorial 6-3: Using the Advisor and 6.5 Inheritance

Student classes Tutorial 6-8: Student Inheritance
6.3 Unit Testing application

Tutorial 6-4: Creating a Unit Test

Project

In this chapter, we show how to define structures, which are simple containers for variables,
properties, and methods. Then we explain how to create components, which are classes
that are grouped for some common purpose into a library. Components have a valuable
purpose in distributed computing because they can be located on different computers in a
network. Then we introduce unit testing, the industry standard for automated testing of
individual units of code. This is followed by a brief introduction to defining and using cus-
tom event types in classes. The chapter ends with inheritance, an essential topic in object-
oriented programming.

Structures

A Structure defines a container into which you can include variables, properties, methods,
and events. A structure might be thought of as a lightweight type of class. When you declare
a structure variable, the .NET runtime doesn’t have to allocate a separate area of memory
and return a reference, as it does with classes. Instead, the structure occupies memory “in
place,” much like an Integer or Boolean.

289

290 Chapter 6 Advanced Classes

Following are some differences between structures and classes:

® You can declare a structure variable without using the New operator.

® When you pass a structure to a method using the By Val qualifier and the method mod-
ifies the structure’s contents, the changes are not retained when the method returns.

® The assignment operator (=) copies the contents of a structure variable.

e If you compare two structure variables with the Equals method, they are compared
using the values of their fields.

A well-known structure in .NET is Point, defined in the System.Drawing namespace. It
appears in simplified form here:

Structure Point
Public Property X As Integer
Public Property Y As Integer
End Structure

Constructors

Structure types can contain constructors and other methods. Following is a constructor for
the Point structure that initializes the X and Y properties:

Public Sub New(ByVal xVal As Integer, ByVal yVal As Integer)

X = xVal
Y = yval
End Sub

If you want to call this constructor, you must use the New operator, as follows:

Dim p As New Point(10,20)

Structures as Method Parameters

Structure parameters declared ByVal behave just like integer parameters—in both cases, a
copy of the structure or integer is passed to the called method. The method can modify the copy,
but doing so will not affect the original. Let’s consider the following code example:

Sub DoesNotModify(ByVal pPoint As Point)
pPoint.X = 998
pPoint.Y = 999

End Sub

Sub Examplel()
Dim P As New Point (10, 20)
DoesNotModify (P)
lblResult.Text = P.ToString
End Sub

In the code above, the method named Examplel passes a Point object to the
DoesNotModify method. The pPoint parameter is declared with the ByVal keyword, and the
method modifies the X and Y properties of pPoint. When DoesNotModify returns,
Examplel displays P in a Label control. The output displays as 10, 20 because P was passed
by value.

For a contrasting example in the following code, the Example2 method calls the
ModifiesPoint method, which declares pPoint using the ByRef keyword.

Sub ModifiesPoint(ByRef pPoint As Point)
pPoint.X = 998
pPoint.Y = 999

End Sub

Sub Example2()

6.2 Components

Dim P As New Point (10, 20)

ModifiesPoint (P)

1blResult.Text = P.ToString
End Sub

At the end of Example 2, P displays as 998,999 because it was passed by reference.

The same ByRef/ByVal behavior is true for Integers, Doubles, Boolean, and all other types
considered to be value types in NET. But if you were to declare Point as a class, it would be
a reference type, and the variable named P would always be modified, whether or not the
parameter was declared ByRef or ByVal. To test this idea, just change the word Structure to
Class in the declaration of Point and execute the sample code.

Comparing Structure Objects

When you compare two structures using the = operator, they are considered equal if the val-
ues of their fields are equal. The following code, for example, finds the two points to be equal:

Dim pl As New Point (10, 20)
Dim p2 As New Point (10, 20)
If pl.Equals(p2) Then
1blResult.Text = "The points are equal"
End If

You cannot compare two structures using the = operator unless you define an overloaded =
operator method inside the structure. Operator overloading is an advanced technique that
will not be covered in this book.

Structure Array

An array of structure objects is declared just as you would any other array. For example:
Dim aShape(10) As Point

As an option, you can initialize each array element by calling its constructor. The following
statement declares and initializes an array of two Point objects:

Dim aLine() As Point = {New Point(0, 5), New Point(2, 10)}

Components

Assemblies

A .NET assembly is an application building block. It represents a basic unit of deployment,
consisting of types and resources that work together. To see a Visual Basic project’s assem-
bly information, open My Project in the Solution Explorer window, and click the
Application tab. Figure 6-1, for example, shows the assembly information for a project
named ArrayLib in this chapter.

In its simplest form, an assembly consists of a single .dll file, which contains the following parts:

Assembly manifest—Contains information about the contents of the assembly itself.
Type metadata—Contains information about the data types defined inside the assembly.
MSIL code—The result of compiling the application source code.

® Resources—Such as bitmaps, icons, and strings.

You might imagine that a .NET assembly is like a published book. A book contains a table
of contents (assembly manifest), a glossary (type metadata), chapters (MSIL code), and a col-
lection of figures and tables (resources).

291

292

Chapter 6

Advanced Classes

Figure 6-1 Assembly information for ArrayLib

Assembly Information
Title: ArrayLib
Description: Integer Array Library
Company: Irvine_and_Gaddis Inc.
Product: Super Excellent Array Library
Copyright: Copyright @ 2011
Trademark:
Asszembly version: 1 0 0 0
File version: 1 0 0 0
GUID: 0e5f8860-170e-4ebc-9a09-4f9bc1 21860
MNeutral language: English (United States) -
[] Make assembly COM-Visible
oK] ’ Cancel

Components

A component (also known as a class library) is a collection of related classes that belong to a
single assembly and have been compiled and stored so they are easily available to other appli-
cations. Most companies that write software tend to recycle a great deal of their code in multi-
ple applications. The same is true for computer consultants, who adapt and customize the same
software application for multiple clients. In such situations, it would make no sense to insert
duplicate copies of source code into each application. Imagine what would happen if a bug were
found? Every single copy of the source code would have to be examined, fixed, and recompiled.

The primary advantage to using a component is that it makes it easier for you to reuse exist-
ing code. This advantage becomes even more important when a component contains detailed
or tricky logic. If the component is debugged thoroughly, there is no need to write and debug
the same code in every application that needs the same functionality. Over time, when new
features and modifications are added to the component, a new version is distributed to all
applications that use it.

Components fall into two general classes: (1) user interface components, such as Visual Basic
controls, and (2) code components, such as those found in the middle tier or data tier. The
former type of component is known as a Custom Control in .NET and is quite difficult to
create. The latter type is easy to create, so we will demonstrate how in this chapter.

Using a Component in Visual Studio

Visual Studio has excellent support for components. You can create a component as a proj-
ect, and then reference the component from other applications. We show how to do that in
the following steps:

1. Create a Class Library project. In it, define one or more public classes.

2. With the solution name selected in Solution Explorer, add a Windows Forms Applica-
tion project.

3. Add a reference from your new desktop project to the component.

6.2 Components 293

@‘: TIP: The same component can be used by both Windows Forms applications and ASPNET
applications.

Component Versions

A component is compiled by Visual Studio into a DLL file (filename with .dll extension).
Also known as a dynamic link library, this file could be used by any .NET application. If we
were in the component sales business, we might sell the DLL file to other Visual Basic devel-
opers, who would plug it into their applications.

A component has a version number (such as 1.2.0) associated with it, which is very useful
when it is modified at a future time. The component’s developer increments either the major
version number (first digit), the minor version number (second digit), or the service release
number (third digit).

Given a current version number of 1.2.0, the new version number might be 2.1.0, 1.3.0, or
1.2.1, depending on the importance of the release. Over time, some clients might have mul-
tiple versions of the DLL file on their computer, so they would check each file’s version num-
ber to find the one they wish to use.

@- TIP: When you add a component reference to your project, its version number will
appear in the Properties window, under the name Runtime Version.

6Tutorial 6-1:
Creating a component and referencing

it from another application

In this tutorial, you will create a Class Library project containing a single class. Then
you will create a Windows Forms application that references your component. Before
starting this tutorial, make sure that the solution name is visible in the Solution Explorer
window. If it is not, open the Tools menu, select Options, select Projects and Solutions,
and select the Always show solution option.

Tutorial Steps

Step 1: First, you will create a blank Visual Studio solution. From the File menu, select
New, select Project, select Other Project Types, select Visual Studio Solutions,
and select Blank Solution. Save the solution with the name Registration Library.

Step 2: Next, you will create a class library project. From the File menu, select New,
select Visual Basic, select the Class Library template as shown in Figure 6-2,
and assign the name RegistrationLib to the library. Click the OK button to
create the project.

Step 3: A class named Class1.vb is created for you. Rename the file to Student.vb.
Open its code window.

@‘: TIP: Any classes in a library that you want to be visible to other appli-
cations should be declared Public.

294 Chapter 6 Advanced Classes

Figure 6-2 Creating a component

p

Add Mew Project

Installed Templates

4 Visual Basic

Windows
Web
Cloud
Reporting
Silverlight
Test
WCF
Workflow

Visual C#

Visual C++

Database
Test Projects

MName:

Location:

Other Project Types

Online Templates

Recent Templates [.NET Framework 4 ~ | sort by: | Default

Vi

()

il
£

i

| %

b 1=

-;
w®

“e

RegistrationLib

Windows Forms Applicatinon

WPF Application

Console Application

ASP.NET Web Application

Class Libnary

ASP NFT MVC 2 Weh Applicatinn

Silverlight Application

Silverlight Class Library

WCF Service Application

ASP.NET Dynarnic Dala Enlilies Web Applicalivn

Enable Windows Azure Tools

Activity Library

Vizual Rasic

Visual Basic

Visual Basic

Visual Basic

Visual Basic

Vizual Racic

Visual Basic

Visual Basic

Visual Basic

Visual Basic

Visual Basic

Visual Basic

| Search Installed Templates P|

m

Chdata\advancedVB_2010\chapters\ch06\Examples

Type: Visual Basic

A project for creating a VB class library
.din

- Browse...

Step 4: Replace the code in the Student.vb file with the following:

Public Enum YearLevel
LowerDivision
UpperDivision
Graduate

End Enum

Public Enum AcademicStatus
Honors
Normal
Warning
Probation
End Enum

Public Class Student

Public
Public
Public
Public

Public

ByVal pLevel As YearLevel,

ByVal pGradeAverage As Double,

AcademicStatus)

Credits = pCredits
Level = pLevel

Property Credits As Integer
Property Level As YearLevel
Property GradeAverage As Double

Property Status As AcademicStatus

Sub New(ByVal pCredits As Integer,

ByVal pStatus As

Step 5:

Step 6:

6.2 Components

GradeAverage = pGradeAverage
Status = pStatus
End Sub
End Class

Notice that we have used enumerated type declarations to make the meanings
of the Level and Status properties clearer.

Create a Windows Forms application named Registration UI. It will access
the classes in the RegistrationLib library.

Next, you will add a reference from this application to the RegistrationLib
project. In the Solution explorer window of the current application, right-
click the project name and select Add Reference from the popup menu. The
Projects tab should be selected as in Figure 6-3, and the names of all projects
in your current Visual Studio solution should be listed there. Select Registra-
tionLib and click the OK button.

Figure 6-3 Adding a reference to a component from an application

p

@0 Add Reference

Projects | Browse | Recent

Project Mame

RegistratienLib

Project Directory
Cihdata\advancedVB_2010%chapters\.ch06\Examples\RegistrationLib

—T———

Step 7:

Step 8:

Verify that the reference was added by opening the My Project window and
selecting the References tab. Notice that the complete path of the file is
displayed.

Right-click the RegistrationLib reference and select Properties. Examine the
properties window (shown in Figure 6-4). Notice in particular that it contains
the directory path of the library’s DLL file, and a runtime version number. If
we were to release an update to our library, we would modify the runtime ver-
sion number so programmers using our library would be able to verify that
they were using the correct version.

295

296

Chapter 6

Advanced Classes

Figure 6-4 Reference properties window

[Properties * B X
Registrationlib Reference Properties -

2

m RegistrationLib
Copy Local True

Culture

Description

Embed Interop Types False

File Type Assembly
Identity RegistrationLib
Path Chdata\advancedVB_2010hchap
Resohved True

Runtime Version v4.0.30319
Specific Version False

Strong Mame False

Version 1.0.00

(Name)

Display name of the reference.

Step 9: Open the code window of the application’s startup form and declare the fol-
lowing Student variable at the class level:

Private aStudent As New RegistrationLib.Student(10,
RegistrationLib.YearLevel.LowerDivision, 2.75,
RegistrationLib.AcademicStatus.Normal)

This statement calls the Student constructor, passing to it the four required

parameters. Notice how the Student class name must be preceded by the Reg-

istrationLib namespace. The same is true for the two enumerated types.

Clearly, this type of coding gets tedious, so you can add an Imports statement

to the form.

Step 10: Insert the following statement on the very first line of the code file:
Imports RegistrationLib

Step 11: Simplify the variable declaration by removing the namespace from each class
and enumerated value.

Private aStudent As New Student(10, YearLevel.LowerDivision, 2.75,
AcademicStatus.Normal)

Summary

This tutorial represented the first step in setting up a component that is accessed from
another application. We simplified the process by creating both applications as projects
within the same Visual Studio solution. You can also reference a component anywhere
on your computer or on a network by connecting to a DLL file. In future tutorials, you
will add another class to this component.

References Outside the Current Solution

6.2 Components

Sometimes you may need to reference a component from outside a Visual Studio solution.
In fact, you can reference a library anywhere on your computer or on a network. Here’s
what to do:

1. Create a new Windows Forms application in its own Visual Studio solution.
2. Right-click the project name and select Add Reference. The Add Reference dialog win-

dow will appear, as shown in Figure 6-5. Click the Browse tab. Use the browser tool
to find the RegistrationLib.dll file, most probably located in the bin\Debug folder of
the RegistrationLib project from Tutorial 6-1. Select the file and click the OK button

to close the dialog.

the References tab.

. Verify that the reference was added by opening the My Project window and selecting

If a component’s location changes, you must remove it from your project’s references list.
Then you can add it again, with the correct location. To remove a component reference from
an application, open the My Projects window, select References, and select the component
name from the list. Click the Remove button, or press the Del key. Then you can click the
Add button to add the new reference.

In Tutorial 6-2, you will add another class to the RegistrationLib component.

Figure 6-5 Adding a reference to a component DLL file

@0 Add Reference
| MET | CoM | P‘rojects| Browse |Recent|
lookin: || Debug - & 5 Il
MName = Date modified Type Size
|%| RegistrationLib.dll 7/15/201010:18 AM Application extens... 15KB
File name: -
Files of type: | Component Files (*dl;* th:* olb;* ocx;* exe;” manifest) ']
OK l l Cancel l

0

Tutorial 6-2:
Adding an Advisor class to the RegistrationLib component

In this tutorial, you will add a class named Advisor to the RegistrationLib component.
This class will evaluate the number of college credits a student may take, based on cri-
teria such as grade point average, student status, and student year level.

297

298

Chapter 6

Advanced Classes

Tutorial Steps

Step 1:

Step 2:
Step 3:

Step 4:

Step 5:

Open the solution file that you created in Tutorial 6-1. The file should be
named Registration Library.sln. After opening the solution, verify that it con-
tains two projects: (1) RegistrationLib, and (2) Registration UL If either is
missing, right-click the solution name, select Add, select Existing Project, and
select the project’s .vbproj file.

Add a class named Advisor.vb to the RegistrationLib project.

Insert the following declarations into the class:

Enum SemesterType
Fall
Spring
Summer A
Summer B

End Enum

Private Shared ReadOnly regDates() As String =
{"Aug 15", "Dec 10", "April 15", "May 30"}

You have declared an enumerated type that lists each of the college-year
semesters (these vary from one college to another). Also, you have declared an
array of student registration dates, one for each semester.

Insert the following shared method that returns a single registration date,
based on the value of its SemesterType argument:

Public Shared ReadOnly Property RegistrationDate(
ByVal semester As SemesterType) As String
Get
Return regDates(semester)
End Get
End Property

The Shared qualifier is used throughout this class because users will not need
to create an instance of the Advisor class.

Create the following method named MaxCredits, which determines the max-
imum number of credits a student can take, depending on the student’s situa-
tion (year in school, academic status, and grade point average):

Public Shared Function MaxCredits (
ByVal aStudent As Student) As Integer
With aStudent
Select Case .Status
Case AcademicStatus.Probation
Return 6
Case AcademicStatus.Warning
If .Level = YearLevel.LowerDivision Then
Return 6
ElseIf .Level = YearLevel.UpperDivision Then
Return 9
ElseIf .Level = YearLevel.Graduate Then
Return 7
End If
Case AcademicStatus.Normal
If .Level = YearLevel.LowerDivision Then
If .GradeAverage > 2.5 Then
Return 12

6.2 Components 299

Else
Return 10
End If
ElseIf .Level = YearLevel.UpperDivision Then
Return 18
ElseIf .Level = YearLevel.Graduate Then
Return 14
End If
Case AcademicStatus.Honors
If .Level = YearLevel.LowerDivision Then
Return 18
ElseIf .Level = YearLevel.UpperDivision Then
Return 22
ElseIf .Level = YearLevel.Graduate Then
Return 22
End If
End Select
End With
Return 0
End Function

The MaxCredits method is a little long because it implements a series of hypo-
thetical college rules regarding the advising of students. (We make no claim as
to the validity of these rules.) In any event, this is precisely the type of code
that we would 7ot want to rewrite in each application related to student reg-
istration. Instead, we put this code in a component, test and debug it once,
and use the component in as many applications as we wish.

If the rules shown in Step 5 were to change in the future, we could modify the
component, test it again, and release it with a new version number.

Step 6: Add the CanRegister method to the class. It receives a Student object and
returns a Boolean value that indicates whether or not the student can register.
The Student object (named aStudent) contains a Credits property that indi-
cates the number of credits the student would like to enroll in during the com-
ing semester.

Public Shared Function CanRegister(

ByVal aStudent As Student) As Boolean

Return aStudent.Credits <= MaxCredits(aStudent)
End Function
The student can enroll in the desired number of credits as long as he or she
does not exceed the maximum number of allowed credits for someone in his
or her situation.

Step 7: Save and build the component.

In Tutorial 6-3, you will add code to the Registration Ul application that calls
methods in the Advisor and Student classes.

Tutorial 6-3:
Using the Advisor and Student classes

In this tutorial, you will add code to the Registration Ul application that lets it call meth-
ods in the Advisor and Student classes belonging to the RegistrationLib component.

300 Chapter 6 Advanced Classes

Tutorial Steps

Step 1: Open the solution file that you modified in Tutorial 6-2. The file should be
named Registration Library.sin.

Step 2: In the Registration UI project, open the startup form and insert the named
controls listed in Table 6-1 and displayed in Figure 6-6. You will also add
descriptive labels.

Table 6-1 Controls in the Registration Ul application

Control Type Control Name Properties

Form (default) Text: Registration User Interface
Font.Size: 10pt

ComboBox cboYearLevel Items: Lower division, Upper
division, Graduate

ComboBox cboAcademicStatus Items: Honors, Normal, Warning,
Probation

TextBox txtGradeAverage

TextBox txtCredits

Button btnCheck Text: Check

Label IbIResult AutoSize: False

BorderStyle: Fixed3D

Figure 6-6 User interface for the Registration Ul application

a- Registration User Interface IEI
Enter information about the student:
Year level: Lower division -
Academic status: MNormal -

Grade average: 275

Number of

requested credits: 18 Check

Step 3: Open the form’s code window and delete the following statement:

Private aStudent As New Student(10, YearLevel.LowerDivision, 2.75,
AcademicStatus.Normal)

Step 4: Create the following Click handler for the Check button:

1 Private Sub btnCheck Click() Handles btnCheck.Click
2 Try

3 Dim credits As Integer = CInt(txtCredits.Text)
4 Dim level As YearLevel = CType(cboYearLevel.

Step 5:

6.2 Components

5: SelectedIndex, YearLevel)

6: Dim gpa As Double = CDbl(txtGradeAverage.Text)

78 Dim status As AcademicStatus = CType(cboStatus.

8: SelectedIndex, AcademicStatus)

OF

10: Dim aStudent As New Student(credits, level, gpa, status)

11:

12: If Advisor.CanRegister(aStudent) Then

13: 1blResult.Text = "The student can register!"

14: Else

15: 1blResult.Text = "The student cannot register "

16: & "for so many credits. Maximum = " &
Advisor.MaxCredits (aStudent)

17: End If

18:

19: Catch ex As Exception

20: 1blResult.Text = "Please check all input fields"

21: End Try

22: End Sub

Lines 3-8 collect Student field information from the form’s controls. The
combo boxes are set up so their SelectedIndex values exactly match the order
of the YearLevel and AcademicStatus enumerated types. Line 10 creates a Stu-
dent object from the values entered by the user. Line 12 calls the CanRegister
method from the Advisor class in the RegistrationLib component. It is a
shared method, so it can be invoked using the class name (as in Advisor.
CanRegister).

If CanRegister returns False, lines 15-16 build a response message that

includes the maximum number of credits the student is permitted to take.
Notice that it calls MaxCredits to get this information.

Run the application and enter the values shown in Figure 6-7. When you click
the Check button, the output should appear as it does in the figure.

Figure 6-7 Testing the Registration Ul application

a5 Registration User Interface @

Enter information about the student:
Year level: Lower division -
Academic status: Probation -

Grade average: 221

Number of

requested credits: Chock

The student cannot register for so many credits. Maximum =6

301

302

Chapter 6

Advanced Classes

Summary

More testing needs to be done on this application to verify its accuracy. Rather than
doing it manually, we will wait until later in this chapter to show how we can use auto-
mated testing to achieve the same result.

Checkpoint
@) checkp

1. What is a synonym for component?
2. What is the major advantage to using class libraries?

3. Which page in the My Project window identifies which components are used by an
application?

4. Which statement in the code window of a client application simplifies references to
component classes?

Unit Testing

In Chapter 1, you learned how important it is to test your software. Software engineers have
found that testing is very effective when it is an integral part of the development process.
One conventional approach to testing and debugging has been to begin testing at the end of
a project after all code is written. But that approach can create a lot of stress and result in
errors. Strict deadlines often force an application to be released before all defects are found.
A test/debug cycle at the end of a project often follows this pattern:

1. A bug (also known as a defect) is found by a tester, and added to a list of known bugs.

2. A programmer attempts to reproduce all known bugs while stepping through the code
with a debugger. This may take some time because the application is large, and many
steps may be involved.

. The programmer fixes all known bugs by modifying the project’s source code.

4. The software tester tests the application again to verify that all known bugs are fixed.
In doing so, the tester discovers new bugs that were caused when the code was modi-
fied in Step 3.

5. Steps 2—4 are repeated until (1) no more bugs are found, or (2) the product’s release
deadline has been reached.

O8]

Step 3 is often complicated by the fact that the programmer may have written the applica-
tion code many months before and may not remember many details. This makes the code
harder to fix. All too often, software is released with undiscovered bugs, leaving the cus-
tomers to find them.

Naturally, developers using this approach may work extremely long hours near the end of a
project. To complicate matters, managers may be tempted to add some last-minute features
to the application to keep up with products released by competing companies. Many com-
mercial software products are revised every few months, making this traditional testing
model difficult to follow.

Continuous Software Testing

A fairly recent trend in software development uses a methodology known as continuous
software testing, which requires programmers to test new code immediately, as soon as
it is added to a project. Particularly when software must be created in short development

£

6.3 Unit Testing

cycles (to keep up with the competition), applications must be nearly defect-free all the
time. Therefore, a significant amount of time is invested in testing while the application
is being written. Then when a new version of the application is about to be released, its
code has already been tested. Near the release deadline, some amount of manual testing
must still be done, but fewer defects are found than if testing had begun at the end of the
project.

But don’t well-disciplined programmers test their own code? Yes, many programmers
manually test their own code, as you (hopefully) did in Chapters 1-5. At the same time,
they may be under pressure to write more code that will move the product closer to a fin-
ished state. As a result, programmers usually do not redo a long sequence of manual tests
every time they add a small amount of code to an application.

A central principle of continuous software testing is that you must rerun all existing tests as
soon as you modify the application’s source code. This type of testing is known as regression
testing. But here’s a basic problem—if regression testing were performed using manual tests,
as you did in Chapter 1, a company would need an army of human testers to validate even
a medium-size application. So it makes sense to let a computer do the testing instead, using
a practice known as automated testing.

Automated Unit Tests

An automated test is a program that executes all or part of an application without input
from a live user. There are different types of automated tests, but we will focus on just one
type that is very easy to learn. A unit test is a method that executes and tests a single unit of
code (such as a method) in an existing application. The unit test is designed to verify that
the code being tested is working correctly.

Let’s use an example from computer hardware. Desktop computers are assembled from dif-
ferent components such as motherboards, power supplies, memory chips, and a central pro-
cessing unit (CPU). If you’ve tried this, you know how important it is that each component
has already been tested. Then, when assembling the computer, you have only to do some
final tests to verify that the components are compatible with each other (known as
integration testing). Similarly, when creating a Visual Basic application, you can be sure that
the TextBox, ListBox, and other controls have been used and tested by a great many people.
That allows you to focus on your application code, without having to worry that the con-
trols themselves might be defective.

Programmers usually write a series of unit tests at the same time they write the application
that is being tested. They run the unit tests immediately, and if a test fails, they fix the appli-
cation code before rerunning the test. In fact, when any new code is added to an application,
all of the existing unit tests are run again to verify that the new code has not caused one of
the tests to fail.

A central philosophy of unit testing can be expressed by the phrase pay as you go, rather
than paying at the end. In other words, the time you invest in creating unit tests while devel-
oping an application saves you lots of testing and debugging time at the end of a project.

Unit Testing Basics

Unit testing falls under the general category of white box testing. This type of testing visu-
alizes the application as a transparent box, permitting the tester to view all of the source

303

304

Chapter 6

Advanced Classes

code of the class being tested. In contrast, black box testing is used when the tester cannot
view the source code of an application being tested. The application is like an opaque box
into which one can only pass inputs and view outputs.

Each unit test is designed to test one particular code unit of an application. The unit being tested
is usually a property or method. It is customary to create numerous unit tests for the same class.

When a unit test fails, it stops executing and returns immediately. In other words, it behaves
as if it were throwing an exception. If the test contains any method calls following the point
of failure, you will not know if they would have executed successfully. For that reason, each
unit test should test just one method in the application being tested.

Unit tests do not run in any particular sequence. Each unit test should be independent of all
other unit tests. Do not create dependencies between unit tests, so that, for example, the out-
come of unit test B depends on the successful completion of unit test A.

Design your unit tests so they completely exercise your application’s code. The goal is to
have 100 percent code coverage of the class or method being tested. If the method contains
nested If statements, for example, you should devise a unit test for each possible branch.

Unit tests are usually executed by a utility program known as a test engine. As it executes each
test method, it reports the success or failure of the test in a visual display. It also stores infor-
mation about which line of code was executing when the test failed, the time and date, and
the data values that were being compared at the time. This information helps the person read-
ing the output to pinpoint the source of the error that caused the test to fail. Some well-known
test engines are MBUnit, NUnit, JUnit, and, of course, the Visual Studio test engine.

Unit Testing in .NET

Unit testing in .NET is supported by classes in the Microsoft. VisualStudio. Test Tools. Unit Testing
namespace. Visual Studio provides excellent support for unit testing. This is the basic work-
ing sequence you will follow:

1. Create a set of classes for your application that contain your program logic and basic
operations. These classes are not forms, so they have no user interface.

2. Create a Visual Studio test project, which is automatically configured to run unit tests.

3. Add one or more unit tests to your test project. Each unit test identifies the class in
your application that you wish to test. You can, if you wish, choose to test only cer-
tain methods and properties in the class.

4. Run the automated testing tool from the Visual Studio menu. You are shown a report
that lists the outcome of each test—whether it completed as expected or it failed by
producing the wrong output.

Creating a Test Project

To add a test project to the current Visual Studio solution, right-click the solution name,
select Add, and select New Project. In the Add New Project window, which is shown in
Figure 6-8, select Test Documents under the Test Projects heading. Select the Test Project
template, give it a name, and click the Add button.

Running a Test

To run one or more unit tests, select the Test menu, select Run, and select either All Tests in
Solution or Tests in Current Context. Before making the latter selection, you should select a
test project, test class, or test method. The test output will appear in the Test Results win-
dow. A green circle containing a check mark will appear next to the name of each test
method that passes.

Figure 6-8

6.3 Unit Testing

Adding a Test Project to the current Visual Studio solution

Add New Project

Recent Templates [.NI:—I' Framework 4 >] Sort by: [Default -]

Installed Templates

Visual Basic
Visual C#

Visual C++

Other Project Types

Database

4 Test Projects

Test Docurments

Online Templates

Mame:

Location:

| Search Installed Tem @ |

Type: Test Documents
E Test Project Test Documents ype
A project that contains tests.

TestProjectl
Chdata\advancedVB_2010\chapters\chlB'\Exarnples - Browse...

Running a Test in Debug Mode

To run a test in debug mode, wet a breakpoint inside the test that you wish to debug. Then,
from the Test menu, select Debug and select Tests in Current Context.

Unit Testing Attributes

The .NET languages use attribute names to identify classes and methods that are unit tests.
It does this so Visual Studio can identify and execute the tests when requested by the user.
The two most common attribute names are TestClass and TestMethod:

o <TestClass()>—Identifies a class that contains unit tests.
e <TestMethod()>—Identifies a method that performs a unit test by executing methods
in the application class.

These attribute names appear at the beginning of a class or method declaration. For exam-
ple, the following statement declares a class for unit testing named AccountTest:

<TestClass()> Public Class AccountTest

The following statement declares a method that will be executed as a unit test:

<TestMethod()> Public Sub AccountConstructorTest()

A unit test method normally produces a Boolean return value that indicates whether the test
passed or failed. It does this by calling one of the Assert class methods. For example, the fol-
lowing statement returns True if the values in the expected and actual variables were equal:

AreEqual(expected, actual)

Later in this section, we will talk about the Assert class methods in more detail. The
AreEqual method is used 90 percent of the time. In Tutorial 6-4, you will create your first
unit test.

305

306

Chapter 6

Advanced Classes

0

Tutorial 6-4:
Creating a Unit Test project

In this tutorial, you will create unit tests for a class that finds the largest value in an array
of integers. You will create two projects. The first will contain a class named IntArray,
which performs operations on an array of integers. This is the class that will be tested.
The second project will be a test project that contains a class named IntArrayTest that
performs tests by calling methods in the IntArray class. When you tell Visual Studio to
run the unit tests, it will execute each method in the IntArrayTest class. Figure 6-9 con-
tains a diagram that expresses the relationships between these two classes.

Figure 6-9 Relationships between the IntArray and IntArrayTest classes

IntArrayTest creates IntArray
class instance of class

contains contains

test methods that call

application
methods

Tutorial Steps

Step 1:
Step 2:

Step 3:

Step 4:

Create a Class Library project named ArrayLib.

Add a class file to the library named IntArray.vb. It should contain a property
that holds an array of integers, and a method named GetLargest.

Public Class IntArray
Public Property Data As Integer()

Public Function GetLargest() As Integer
Return Data(0)
End Function
End Class
When completed, the GetLargest method will return the element of the array
that has the largest value. For now, it returns only the first element of the
array.

Next, you will create a test project named ArrayLib Test. In Solution
Explorer, select the solution name, right-click and select Add, then select
New Project. In the Add New Project window, select Test Projects, select
Test Documents, and select the Test Project template in the middle pane.
Name this project ArrayLib Test and click the OK button to close the dia-
log window.

Next, you will add a unit test to the test project. In the Solution Explorer win-
dow, delete the existing .vb file inside the ArrayLib Test project. Then right-
click the project name, select Add, and select Unit Test. The Create Unit Tests
dialog will appear, as in Figure 6-10. Open up the tree below ArrayLib,
expand the entries and find the ArrayLib.IntArray class. Select the GetLargest
method and click the OK button to close the dialog.

6.3 Unit Testing

Figure 6-10 Creating a unit test for the ArrayLib.GetLargest method

Step 5:

Step 6:
Step 7:

Create Unit Tests
Current selection: Filter =
Types
4 D@ Arraylib -

4 [C]{} ArrayLib)
4 [T ArayLibIntArray ‘=‘
[=% IntArray()
[[]=% Getlargest()
DE Data i

Qutput project: ﬁArra}fLib Test

e] [Add Assembly:. OK

Next, you will edit the IntArrayTest class that was just created by Visual Stu-
dio. Open its source file and edit the code until it looks like this:

1: Imports Microsoft.VisualStudio.TestTools.UnitTesting
2: Imports ArrayLib

4: <TestClass()> _
5: Public Class IntArrayTest

6:

78 <TestMethod()> _

8: Public Sub GetLargestTest()

o) Dim target As IntArray = New IntArray()
10: target.Data = {40, 16, 12, 22, 0, -33}
11: Dim expected As Integer = 40

12: Dim actual As Integer = target.GetLargest
138 Assert.AreEqual (expected, actual)

14: End Sub

15: End Class

The GetLargestTest method passes an array of integers to the IntArray class,
and then calls IntArray’s GetLargest method to see if it returns the right value.
Line 9 creates an instance of the IntArray class, which is the class we want to
test. Line 10 creates an array of integers and assigns it to the Data property
of the IntArray class. Line 11 sets expected to the largest value in the array,
40. Line 12 calls the IntArray.GetLargest method and stores the return value
in the variable named actual. Line 13 compares the expected and actual val-
ues by calling the Assert.AreEqual method. At this point, the test will either
pass or fail.

Notice the use of the TestClass and TestMethod attributes, which are required
markers for unit tests. Each method labeled as such will be executed by Visual
Studio’s test engine.

Build the project. Next, you will run the unit test.

From the Test menu, select Run, and then select All Tests in Solution. You
should see the Test Results window appear as in Figure 6-11, showing a green
dot next to the GetLargestTest method name. The green dot indicates that the
test passed, and the correct value was returned by the GetLargest method.

307

308 Chapter 6 Advanced Classes

Figure 6-11 Showing the results for a single unit test

Test Results > OX
3= 73 | §3 | Kip@KAILUA 2010-07-1812:11:47 ~|| %, Run ~ @ Debug ~ Il W | F~ & F |
I¥) Test run completed Results: 1/1 passed; Item(s) checked: 0
Result Test Name Project Error Message
o_"].ﬁ Passed GetlargestTest ArrayLib Test
i n | 3
Summary

At this point, one might imagine that the GetLargest method was correct. Or, were we
just lucky based on the arrangement of the numbers in the test array? You can inspect
the test data and the GetLargest method to answer that question. In Tutorial 6-5, you
will create more tests to determine whether GetLargest works correctly.

Tutorial 6-5:
Creating more unit tests for the IntArray class

Let us assume that the single test you created in Tutorial 6-4 for the GetLargest
method was not sufficient to verify that the method worked correctly. In this tuto-
rial, you will add more tests that properly test GetLargest and fix any defects you
might find.

Tutorial Steps

Step 1:

Step 2:

Open the IntArrayTest class and examine its test method.

<TestMethod()> _

Public Sub GetLargestTest()
Dim target As IntArray = New IntArray()
target.Data = {40, 16, 12, 22, 0, -33}
Dim expected As Integer = 40
Dim actual As Integer = target.GetLargest
Assert.AreEqual (expected, actual)

End Sub

Let’s rearrange the values in the test array to see if the order matters when
looking for the largest value. Make a copy of the method, rename it, and
change the line containing the array. The shaded line in the following code
needs to be modified:

<TestMethod()> _

Public Sub GetLargestTest 2()
Dim target As IntArray = New IntArray()
target.Data = {16, 40, 12, 22, 0, -33}
Dim expected As Integer = 40
Dim actual As Integer = target.GetLargest
Assert.AreEqual (expected, actual)

End Sub

Step 3:

6.3 Unit Testing

Run all unit tests. A red circular icon should appear next to the new test in
the Test Results window, as shown in Figure 6-12. Double-click the line con-
taining this test, which will open the Test Details window, shown in Figure 6-13.
Of particular importance are the error message, which explains why the test
failed, and the stack trace, which contains a hyperlink that takes you to the
statement in the source code that was executing when the test failed. Another
interesting bit of information is the execution time, which can be useful if a
test fails after running an unusually long time.

Figure 6-12 Showing the results for both unit tests

Test Results

m——

3= 5= | Gy | Kip@KAILUA 2010-07-1814:10:37 ~|| % Run = b¢] Debug ~ Il 4 | F ~ & 3 | i
Q Test run failed Results: 1/2 passed; Item(s) checked: 1

- [X

Result Test Name Project Error Message
d\f Passed GetlargestTest ArrayLib Test
v Q_‘]Q Failed GetlargestTest 2 ArrayLib Test Assert.AreEqual failed. Expected:<40>, Actual:<16>,

q|

T | 3

Figure 6-13 Test Details window

GetLargestTest_2 [Results] * O X

»

—| Common Results

Test Run: Kip@KAILUA 2010-07-19 14:50:36

Test Name: GetlargestTest 2

Result: D Failed

Duration: 00:00:00.0020236

Computer Name: KAILUA

Start Tirme: 7/19/2010 2:50:37 PM

End Tirne: 7/19/2010 2:50:37 PM 3
—| Error Message Copy

Aszert.AreEqual failed, Expected:<40>, Actual:<16>,
—| Error Stack Trace

Arraylib_TestIntArrayTest.GetlargestTest_2()
Chdata\advancedVB 20104 chapterschl6\Examples\Arraylib : line 22
Test\IntArrayTest.vb -

]

The test’s error message indicates that the expected value was 40, but the
GetLargest method returned 16. Clearly, the position of the number 40 seems
to matter because the method fails to return the correct result when 40 is
moved to the second position. Let’s examine the code in GetLargest:

Public Function GetLargest() As Integer
Return Data(0)
End Function

Of course, we must add more code to this method! This type of mistake is
common because programmers often create an incomplete stub method

when designing a class. They always intend to complete the code, but they
often forget.

309

310

Chapter 6 Advanced Classes

Step 5:

Step 4: Revise the GetLargest method by writing some plausible-looking code:

Public Function GetLargest() As Integer
Dim largest As Integer
For i As Integer = 1 To Data.Length
If Data(i) > largest Then
largest = Data(i)
End If
Next
Return largest
End Function
The loop iterates through the array, comparing each element in Data(i) to
the variable named largest. Whenever a larger value is found in the current
array position, it is copied into largest. As you may have noticed, it contains
a bug.

Run the tests again. This time, both tests generate exceptions, as shown in
Figure 6-14. You may already be able to identify the bug in this code, because
it is very simple. But more complex methods in actual applications are often
harder to fix, requiring you to trace them in the debugger.

Figure 6-14 Testing Getlargest after adding a loop to the method

Test Results

*AX

G-

3= 73 | @3 | Kip@KAILUA 2010-07-18 14:18:37 ~| | %p Run = h<] Debug ~ Ul W | & - &5 3 |

O Test run failed Results: 0/2 passed; Item(s) checked: 2

Result

v gjo Failed
vl =)D Failed

Test Mame Project Error Message
GetLargestTest Arraylib Test Test method ArrayLib_Test.IntArrayTest.GetlLargestTest threw exception: ...
GetlargestTest 2 Arraylib Test Test method ArrayLib_TestIntArrayTest.GetlargestTest 2 threw exception: ..

Step 6:

Step 7:

Set a breakpoint on the first line of GetLargest and run the tests in debug
mode. This is how to do it: From the Test menu, select Debug, and select All
Tests in Solution. When the debugger hits the breakpoint, inspect the value of
Data.Length. It should equal to 6. Open a Watch window and insert the vari-
ables i and largest. Step through the code and watch the values change.

Notice that when i = 6, the program throws an IndexOutOfRangeException.
Assuming that you were running the first test method (in which 40 was the
first array element), notice that largest was never assigned the value 40. So it
appears that the array index (i) should have started at 0 and ended at 5, which
is the last position in the array. The length of the array could be different each
time GetLargest is called, so let’s end the loop at Data.Length — 1.

Revise the GetLargest method as shown:

Public Function GetLargest() As Integer
Dim largest As Integer
For i As Integer = 0 To Data.Length - 1
If Data(i) > largest Then
largest = Data(i)
End If
Next
Return largest
End Function

Step 8:

Step 9:

Step 10:

6.3 Unit Testing

Run the tests again, see that they pass, and celebrate your success for a few seconds.

Are you convinced that you have thoroughly tested the GetLargest method?
Perhaps not. Let’s create some more tests that change the length of the array,
reorder the elements, and include some duplicate values.

Insert the following test methods and run the tests again:

<TestMethod()> _

Public Sub GetLargestTest 3()
Dim target As IntArray = New IntArray()
target.Data = {12, 16, 45, 12, 22, 0, -33}
Dim expected As Integer = 45
Dim actual As Integer = target.GetLargest
Assert.AreEqual (expected, actual)

End Sub

<TestMethod()> _

Public Sub GetLargestTest 4()
Dim target As IntArray = New IntArray()
target.Data = {16, 40, -33, 40, 0, 12, 22, 0, 49}
Dim expected As Integer = 49
Dim actual As Integer = target.GetLargest
Assert.AreEqual (expected, actual)

End Sub

<TestMethod()> _

Public Sub GetLargestTest 5()
Dim target As IntArray = New IntArray()
target.Data = {0, 0, O, 1, 1, 1, 0, O, O}
Dim expected As Integer = 1
Dim actual As Integer = target.GetLargest
Assert.AreEqual (expected, actual)

End Sub

All the tests pass, so we might be tempted to declare that GetLargest is cor-
rect. But it still contains a serious flaw, which further tests can uncover.

Add a test for an array containing all negative integers. The largest value should
equal —3.

<TestMethod()> _

Public Sub GetLargestTest 6()
Dim target As IntArray = New IntArray()
target.Data = {-5, -6, -33, -42, -10}
Dim expected As Integer = -5
Dim actual As Integer = target.GetLargest
Assert.AreEqual (expected, actual)

End Sub

This test fails, with the following message: Assert.AreEqual failed.
Expected:<—5>. Actual:<0>. If you trace the code in the debugger, you’ll find
that the Boolean condition in the If statement is never true, so largest remains
equal its default value, 0.

If Data(i) > largest Then ' Never equals True
largest = Data(i)
End If

Therefore, largest was never explicitly initialized by our code, and it defaulted
to the value 0. This is a common mistake when coding this algorithm. Let’s
fix it by initializing largest to the first value in the array.

311

312

Chapter 6

Advanced Classes

Step 11:

Step 12:

Step 13:

Step 14:

Step 15:

Step 16:

Revise the second line of GetLargest by initializing it to the value in the first
array element:

Public Function GetLargest() As Integer
Dim largest As Integer = Data(0)
For i As Integer = 0 To Data.Length - 1
If Data(i) > largest Then
largest = Data(i)
End If
Next
Return largest
End Function

We could also choose to change the starting value of i in the loop, but let’s
leave it for now.

Run the tests again. All tests pass!

Let’s create what is known as a degenerate test case by passing an empty array.
It’s not clear what value the expected variable should contain, so you can set
it to 0. Add the following test method:

<TestMethod()> _

Public Sub GetLargestTest 7()
Dim target As IntArray = New IntArray()
target.Data = {}
Dim expected As Integer = 0
Dim actual As Integer = target.GetLargest
Assert.AreEqual (expected, actual)

End Sub

Run the tests again and notice that the new test generates an IndexOut-
OfRangeException. Of course, that makes sense when we look at the second
line of GetLargest:

Dim largest As Integer = Data(0)

An empty array doesn’t have a value at index position 0, so we cannot ini-
tialize largest to the first array element. Instead, we can initialize largest to the
smallest value an integer could ever have, known as Integer.MinValue (defined
in the .NET library). Then we will expect that value to be returned if the unit
test passes an empty array to GetLargest.

Revise the second line of the GetLargest method:

Public Function GetLargest() As Integer
Dim largest As Integer = Integer.MinValue
For i As Integer = 0 To Data.Length - 1
If Data(i) > largest Then
largest = Data(i)
End If
Next
Return largest
End Function

Modify the GetLargestTest_7 method by replacing the following line:

Dim expected As Integer 0
with this line:

Dim expected As Integer = Integer.MinValue

6.3 Unit Testing 313

Step 17: Run the tests again. Now, finally, all the tests pass. It appears that we’ve
finally written and tested a completely bulletproof version of GetLargest.

What if the array passed to the Data property of the IntArray class were null (Nothing)?
Then we could expect an exception to be thrown. But we won’t fix that right now.

Summary

We hope that you can see from this tutorial that even the most trivial bit of code has
the potential to contain undiscovered errors. The unit tests you created were able to
uncover and fix the errors in the GetLargest method that may not have been obvious
when reading the code. As a chapter exercise, we will ask you to add two more meth-
ods to the IntArray class (GetSmallest and GetMedian) and write accompanying sets of
unit tests.

Grouping and Viewing Unit Tests

Visual Studio was designed to be easy for students to use, but it also has features that ben-
efit professional developers. Developers can use tools to manage large numbers of unit
tests and view the results of previous tests. They can also copy a test result to the Win-
dows clipboard, paste it into an email message, and send it to another person on the devel-
opment team.

Test List Editor

When you are testing more than one class, the Test List Editor is a useful tool for managing
lists of tests and setting individual test properties. To display the window, select Test from
the menu, then select Windows, and select Test List Editor. The window shown in Figure 6-15
has three selections in the left-hand pane. You can display lists of tests that have been pre-
defined, tests that have not yet been added to a list, and all tests.

Figure 6-15 The Test List Editor window

Test List Editor A X
“b = 2] &5 %] | Group By: | [None] =/ | [All Colurm ~|| <Type keyword> ~|]
(1) Item(s) checked: 0

4 [1ga Lists of Tests
2l GetlLargest Method Tests
dj Tests Mot in a List
9] All Loaded Tests

There are no items visible at this level. Click here to add a test list.

In the right-hand pane, you can click the hyperlink to add a new test. The Create New Test
List window appears, and you can define a new list, as is being done in Figure 6-16. After
defining a list, you can return to the Tests Not in a List pane and drag test names onto your
new list, shown under the Lists of Tests heading. You can also select a group of tests and
drag them all at once. Once you have assigned tests to lists, the list names will appear in the
All Loaded Tests pane, shown in Figure 6-17.

314

Chapter 6

Advanced Classes

Figure 6-16 Adding a new test list to the Test List Editor

[Create New Test List =<

Mame:
Getlargest Method Tests

Description:

These tests are directed at the IntArray.GetLargest method. -

Select where in test list hierarchy to place this list:
g Lists of Tests

ok || Cancel
Figure 6-17 Viewing all loaded tests
Test List Editor O X
“h = 2] %2 & | Group By: |[None] 'l | |[AIICqumr 'l |<T}prkE}WDI’d> '| Ed
'_D Item(s) checked: 0
a [lgA Lists of Tests Test List Full Name Test Name Project
l_] = GetLargest MEthDd Tests [42| /Lists of Tests/GetLargest Method Tests GetlargestTest ArrayLib Test
gﬂ_ﬂ Tests Not in a List [1 4] /Lists of Tests/GetLargest Method Tests GetlargestTest 2 ArraylLib Test
1 All Loaded Tests [1 4] /Lists of Tests/GetLargest Method Tests GetlargestTest 3 ArraylLib Test
[1¢2] /Lists of Tests/GetLargest Method Tests GetlargestTest 4 ArrayLib Test
[1¢=] /Lists of Tests/GetLargest Method Tests GetlargestTest_5 Arraylib Test
[]¢2] /Lists of Tests/GetLargest Method Tests GetlargestTest 6 ArrayLib Test
[]4=] /Lists of Tests/GetLargest Method Tests GetlargestTest 7 ArraylLib Test

If you want to run only the tests belonging to a list, place a check mark next to a list in the
Test List Editor, and then click the Run Checked Tests button on the editor’s toolbar.

Viewing Prior Test Results

Visual Studio saves the results of each test for later review in the Test Results window. If you
select the All option from the dropdown list in the window’s toolbar, you can view all recent
test runs. Figure 6-18, for example, shows all recent runs of the GetLargestTest_6 method.
You can double-click any test to get details about when the test was run, how it failed, and
so on.

If you have grouped your unit tests into test lists, you can sort and group them by list name
in the Test Results window, shown in Figure 6-19. Our example contains two test lists:
GetLargest Method Tests and MaxCredits Tests.

All unit test results are stored in a file having the extension .vsmdi. You can find it in
the Solution Items folder in the Solution Explorer window. You could run your tests
and email this file to your class instructor, for example. The file can be opened in Visual
Studio.

6.3 Unit Testing

Figure 6-18 Viewing a test history

Test Results *OXx
8= ?§:| Wy |AI| vl | %, Run ~ f2 Debug ~ Il @ | ff ~ &g 3 | "
I¥) 23 testrun(s), Results: 1117112 completed, 88 passed, 23 failed Results: 7/7 passed;
Result Test Nar;e Project Error Message
O éo Failed GetlargestTest & Arraylib Test Assert.AreEqual failed. Expectedi<-5>, Actual<0>, -
O @@ Passed GetlargestTest & Arraylib Test
[145]d Passed GetlargestTest & Arraylib Test
[145] Passed GetlargestTest§ Arraylib Test
[142]& Passed GetlargestTest§ Arraylib Test
O é@ Passed GetlargestTest & Arraylib Test
O é@ Passed GetlargestTest & Arraylib Test o
O @@ Passed GetlargestTest & Arraylib Test L
[145] Passed GetlargestTest§ Arraylib Test
[142]& Passed GetlargestTest§ Arraylib Test o
Figure 6-19 Viewing test results grouped by test list name
Test Results > OXx
o—- S= v

& 5 | §3 | Kip@KAILUA 2010-07-1916:26:44 ~| | % Run ~ jld Debug ~ Il & | &~ & 3 |

I\Q} Test run completed Results (Group By: Test List Name): 12/12 passed; Item(s) checked: 0

Result Test Mame
I iGetlargest Method Tests
[MaxCredits Tests

Project Error Message

B Output

Assert Class Methods

An assertion is an expression that must be true for a program to continue. An assertion can
be used to validate a method’s input parameter, for example, if the parameter absolutely
must conform to some requirement (such as being greater than 0). The designers of .NET
unit testing framework decided to use assertions to signal whether unit tests pass or fail.

The Assert class contains a set of methods that are designed to execute within unit tests. You
have already seen how the Assert.AreEqual method checks to see if two values are equal.
Table 6-2 contains a list of the more commonly used Assert methods. These methods are
shared (static) methods, so you call them using the Assert class name as the prefix, as in
Assert.AreEqual. You cannot create an instance of the Assert class.

The Assert methods are overloaded with many different parameter lists. If you are compar-
ing integers or strings, call AreEqual and pass it two values:

Assert.AreEqual (expected, actual)

Comparing Floating-Point Values

Comparing floating-point values for equality must be done in a special way because the com-
puter’s processor rounds the results of floating-point calculations. Values that should be equal fre-
quently differ by a very small amount. Therefore, when comparing Single, Double, or Decimal

315

316 Chapter 6 Advanced Classes

Table 6-2 Assert Class Methods

Method Name Description

AreEqual(expected, actual) Checks to see if expected is equal to actual. Fails
otherwise.

AreEqual(expected, actual, diff) Checks to see if the difference between expected
and actual is less than or equal to diff. Fails
otherwise.

AreNotEqual(expected, actual) Checks to see if expected is not equal to actual.

Fails otherwise.

AreNotEqual(expected, actual, diff) Checks to see if the difference between expected
and actual is larger than diff. Fails otherwise.

AreSame(expected, actual) Checks to see if expected and actual refer to the
same object. Fails otherwise.

AreNotSame(expected, actual) Checks to see if expected and actual do not refer
to the same object. Fails otherwise.

Fail(message) Fails the assertion without checking any condition,
passing a message.

IsFalse(boolExpression) Checks to see if boolExpression is False. Fails
otherwise.

IsTrue(boolExpression) Checks to see if boolExpression is True. Fails
otherwise.

IsNull(object) Checks to see if object is null (Nothing). Fails
otherwise.

IsNotNull(object) Checks to see if object is not null (Not Nothing).

Fails otherwise.

expressions, pass a third parameter to the Assert.AreEqual method that represents the maxi-
mum difference between the first two parameters that would still permit them to be considered
equal. In the following example, if expected = 4.76 and actual = 4.77, the assertion succeeds.

Assert.AreEqual (expected, actual, 0.01)

But if expected = 4.76 and actual = 4.78, the assertion fails because their difference is larger
than .01.

The Assert.AreNotEqual method is an assertion that fails if the first two parameters contain
equal values. In the following example, if expected = 4.76 and actual = 4.77, the assertion
fails because the values are just equal enough.

Assert.AreNotEqual (expected, actual, 0.01)

Comparing Object Values

If you pass objects to the AreEqual or AreNotEqual methods, the classes represented by
these objects must override the Equals method. For example, we compare two Account
objects in the following code:

Dim X As New Account(30024, "Smith")
Dim Y As New Account (10023, "Smith")
Assert.AreEqual (X, Y)

6.3 Unit Testing 317

If the Account.Equals method were to compare accounts by their ID numbers, the assertion
above would fail. On the other hand, if Account.Equals compared accounts by their names,
the same assertion would pass. If you want to read more about overriding the Equals
method, refer to Section 3.2 in Chapter 3.

Executing an Assert Method
This is how an Assert class method executes:

e If the assertion succeeds, the test method continues on to the next line.

o If the assertion fails, the test method throws an AssertFailedException, passing infor-
mation about the values that were different. The test engine catches the exception and
signals that the test has failed.

If a test method completes normally with no assertion failures, the test is flagged as success-
ful by the Visual Studio test engine.

There is an important point to be made about Assert methods: If you call more than one of
them within the same test method, the first one that fails will cause the test to fail immedi-
ately. No other Assert methods after that will execute, so you won’t be able to tell which
ones might have failed.

Adding Tests to an Existing Application

Developers are frequently called on to create unit tests for existing applications. Depending
on how the code was structured, this may not be easy. Ideally, the existing code should be
factored into methods that each focus on a single task. We say that such methods are highly
cohesive.

If at all possible, each unit test should test only a single method in the application class.
When a test fails, it is important for you to know exactly which application method failed
to return the correct value. If you were to combine several method calls into a single test, the
method calls past the failure point would not execute.

In Tutorial 6-6, you will test the Advisor.MaxCredits method of the RegistrationLib
component.

d Tutorial 6-6:
Testing the Advisor.MaxCredits method

Earlier in this chapter, we created a component named RegistrationLib that contained
two classes: Student and Advisor. In this tutorial, you will create unit tests to verify the
accuracy of the MaxCredits method in the Advisor class.

One of the realities of the software business is that as soon as an application is pub-
lished, it becomes eligible for revision and improvement. We will assume that the
MaxCredits method in the Advisor class must be revised, according to new criteria
listed in Table 6-3. Therefore, we know that the existing application will not produce
the correct output. In this tutorial, you will devise tests that identify changes that must
be made to the MaxCredits method. Notice that many cells in this table are empty.
They indicate that the particular property value is not used in the determination of
MaxCredits.

318 Chapter 6 Advanced Classes

Table 6-3 Revised registration criteria, RegistrationLib

Row

Number Academic Status Year Level Grade Average =~ Max Credits
1 Probation 6
2 Warning LowerDivision > 2.0 12
3 Warning LowerDivision = 2.0 6
4 Warning UpperDivision >2.2 10
S Warning UpperDivision £ 2,2 8
6 Warning Graduate 7
7 Normal LowerDivision > 2.5 16
8 Normal LowerDivision = 2.5 12
9 Normal UpperDivision 18

10 Normal Graduate 14

11 Honors = 3.0 22

12 Honors <3.0 16

Tutorial Steps

Step 1:

Step 2:
Step 3:

Step 4:

Add a default constructor to the Student class. This constructor will simplify
the testing process by letting you create Student objects with only the proper-
ties needed for a particular test.

Public Sub New()
End Sub

Next, add a Test Project named Test RegistrationLib to the current solution.

In the test class, create a test method that tests the first row of Table 6-3,
which relates to students on academic probation.

1: <TestMethod()> _

2: Public Sub MaxCreditsTest Probation()

3: Dim aStudent As New Student

4: aStudent.Status = AcademicStatus.Probation
58 Dim expected As Integer = 6

6: Dim actual As Integer = Advisor.MaxCredits(aStudent)
7: Assert.AreEqual (expected, actual)
8: End Sub

The expected value, 6, is taken from the Max Credits column of Table 6-3.

Create the following test method, which tests for a lower division student with
Warning status and a grade average greater than 2.0:

<TestMethod()> _
Public Sub MaxCreditsTest Warning LD 1()
Dim aStudent As New Student
With aStudent
.Status = AcademicStatus.Warning
.Level = YearLevel.LowerDivision
.GradeAverage = 2.01
End With
Dim expected As Integer = 12
Dim actual As Integer = Advisor.MaxCredits(aStudent)

Step 5:

Step 6:

6.3 Unit Testing

Assert.AreEqual (expected, actual)
End Sub

This test is based on row 2 of Table 6-3, so we set three properties for this stu-
dent. When a test class contains a large number of tests, it is often useful to
use a consistent naming scheme for the test methods. One approach is to num-
ber them consecutively. Another approach, which we have used, is to chose
names that suggest what is being tested (LD for lower division students,
Warning for students on academic warning).

Add the following test method, which tests for a lower division student with
Warning status and a grade average equal to 2.0:

<TestMethod()> _
Public Sub MaxCreditsTest Warning LD 2()
Dim aStudent As New Student
With aStudent
.Status = AcademicStatus.Warning
.Level = YearLevel.LowerDivision

.GradeAverage = 2.0
End With
Dim expected As Integer = 6

Dim actual As Integer = Advisor.MaxCredits(aStudent)
Assert.AreEqual (expected, actual)
End Sub

Run all the unit tests. The output, shown in Figure 6-20, shows that two tests
passed and one failed.

Figure 6-20 Running the first three MaxCredits tests

Test Results

*AX

o—- &

o—-

32 3 | @3 | Kip@KAILUA 2010-07-17 11:41:04 ~| | ®p Run = k4] Debug =~ Il u | & - & 3 | d

Q Test run failed Results: 2/3 passed; Item(s) checked: 1

Result Test Name Project Error Message
gﬂﬂ Passed MaxCreditsTest Warning__LD_2 Test RegistrationLib
gﬂ;ﬂ Passed MaxCreditsTest_Probation Test RegistrationLib

v q,j@ Failed MaxCreditsTest_Warning__LD_1 Test RegistrationLib Assert.AreEqual failed. Expected: <12, Actual:<@>,

It seems that the MaxCreditsTest_Warning 1. D_1 test failed because it
expected MaxCredits to return a value of 12 for a lower division student with a
Warning status and grade average greater than 2.0. Instead, MaxCredits returned
6. Let’s examine the relevant source code lines from the MaxCredits method in
the Advisor class.

Case AcademicStatus.Warning

If .Level = YearLevel.LowerDivision Then
Return 6

Clearly, the code does not take the student’s grade average into account. So let’s
revise the code in a way that is consistent with rows 2 and 3 of Table 6-3.

Case AcademicStatus.Warning
If .Level = YearLevel.LowerDivision Then
If .GradeAverage > 2.0 Then
Return 12
Else
Return 6
End If

319

320

Chapter 6

Advanced Classes

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Step 13:

Step 14:

Run the tests again. They should all pass. Our new code worked, and we did
not create errors in any existing code, as far as the tests show.

Create the following test method, which tests for an upper division student
with a warning status and a grade average greater than 2.2. It tests row 4 of

Table 6-3.

<TestMethod()> _
Public Sub MaxCreditsTest Warning UD 1()
Dim aStudent As New Student
With aStudent
.Status = AcademicStatus.Warning
.Level = YearLevel.UpperDivision
.GradeAverage = 2.21
End With
Dim expected As Integer = 10
Dim actual As Integer = Advisor.MaxCredits(aStudent)
Assert.AreEqual (expected, actual)
End Sub

Create the following test method, which tests for an upper division student with
a warning status and a grade average equal to 2.2. It tests row 5 of Table 6-3.

<TestMethod()> _

Public Sub MaxCreditsTest Warning UD 2()
Dim aStudent As New Student
With aStudent

.Status = AcademicStatus.Warning
.Level = YearLevel.UpperDivision
.GradeAverage = 2.2

End With

Dim expected As Integer = 8
Dim actual As Integer = Advisor.MaxCredits(aStudent)
Assert.AreEqual (expected, actual)

End Sub

Run all the tests. The new tests will fail, of course, because the MaxCredits
method needs to be revised.

Next, you will run the test in debug mode to discover which lines are pro-
ducing the incorrect result. Set a breakpoint on the following line in the
MaxCreditsTest_Warning__UD_1 method:

Dim actual As Integer = Advisor.MaxCredits(aStudent)

Run the test in debug mode. When the debugger stops at your breakpoint,
step into the call to MaxCredits. You should reach the following lines, which
show that all upper division students with warning status can take a maxi-
mum of 9 credits:

ElseIf .Level = YearLevel.UpperDivision Then
Return 9

Stop the debugger. Without reading beyond this point, look at rows 4 and §
in Table 6-3, and decide how you wish to fix this error.

Run the tests again. Did they all pass? If not, check the code you inserted
against the following code, which distinguishes between students having dif-
ferent grade averages:

ElseIf .Level = YearLevel.UpperDivision Then
If .GradeAverage > 2.2 Then

6.3 Unit Testing

Return 10
Else

Return 8
End If

Step 15: Run the tests again, and verify that they all pass.

Summary

At first, it seems like a lot of work to create a different unit test for each set of inputs.
It is fairly easy, however, to copy one of these methods to the Windows clipboard, paste
the copy, and make minimal changes. Also, remember the essential philosophy of unit
testing: Pay as you go, rather than paying at the end. In other words, the time you invest
in creating unit tests saves you much more time at the end of a project when you would
normally be stuck in a recurring cycle of find errors, fixing them, discovering new
errors, fixing them, and so on.

At this point, you probably recognize a working pattern, which can apply to one or
more tests:

1. Create and run a test.

2. If the test fails, locate and correct the code in the class being tested that caused the
test to fail.

3. Run the test again.

We will ask you, in Programming Challenge 5, to create tests for all specifications in
Table 6-3, and apply corrections to the MaxCredits method until all the tests pass.

Summary

All too often, programmers create complex applications without creating adequate unit
tests. The potential number of errors in their code is so large that even counting them would
be difficult. We have all used software that contains defects, and we know how aggravating
that can be. In fact, few of us would be happy flying on an airliner whose flight control soft-
ware contained defects.

Unit tests are not the only tool used in software testing, but they are the easiest to learn. They
are also created by the people who know their code the best—the programmers.

Here’s a good reason to learn about automated software testing: Many entry-level jobs are
given to software testers. You may be fortunate enough to land a position that lets you
develop your coding skills, and also learn to use industry-standard software testing tools.

Checkpoint
@) checkp

5. What type of test executes all or part of an application without input from a live user?

6. What type of test executes test methods that run individual segments of an existing
application?

7. What is the practice of rerunning all existing tests as soon as you modify an
application’s source code?

8. What type of testing technique permits the tester to view all of the source code of
the class being tested?

9. What type of testing technique deals only with the application’s inputs and outputs
and does not permit the tester to see any of the application’s source code?

321

322

Chapter 6

Advanced Classes

Events

Events provide a signaling system for messages that must be broadcast to whomever is lis-
tening. For example, when you click the mouse on a button, the Windows operating system
notices the click, creates a Click event, and adds it to an event queue. If an application is lis-
tening for events, and if the button was within the application’s window, it handles the event.

In fact, Visual Basic applications handle many kinds of events, such as TextChanged, Load,
Keypress, and Click. In regard to event handling, the following actions are important:

e A class raises an event when it wants to send a signal that something has happened
e Another class handles an event when it responds to the event

So far, you have written methods that handle events. Now we will show you how to create
classes that raise events. You will learn how to define event types, raise events, and handle
these events.

Delegates, Events, and Handlers

A delegate is a template that describes the return type and parameter list for a related group
of event handler methods. For example, this is the delegate that .NET uses for button Click
handlers:

Public Delegate Sub EventHandler(sender As Object, e As EventArgs)

Once a delegate has been defined, a class can define the types of events that it plans to raise.
For example, this is the Click event type declared in the Button class; it is raised when a user
clicks a Button control:

Public Event Click As EventHandler

Once an event type has been declared in the Button class, any class that contains an instance
of the Button class can include event handlers. For example, the following is a Button.Click
event handler for a button named btnOk; its parameter list conforms to the pattern
described by the EventHandler delegate we saw earlier:

Private Sub btnOk Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnOk.Click
End Sub

The Handles keyword is important here because it ties the btnOk_Click method to a specific
event from the Button class.

WithEvents Qualifier

When an object is declared, you must preface it with a WithEvents qualifier in order to per-
mit it to raise events. This is the general format for a class-level variable that raises events:

Private WithEvents variableName As Type

When you put a Button control on a form, Visual Studio makes it possible for the button to raise
events. This, for example, is how a Button control is declared in the form’s designer code file:

Friend WithEvents btnOk As System.Windows.Forms.Button

The WithEvents qualifier means that btnOk can raise all events declared in the Button class,
including the Click event.

TIP: By default, the designer source files for a program’s forms are hidden. To make them
appear, click the Show All Files button in the toolbar of the Solution Explorer window.

6.4 Events

Another mouse event is MouseHowver. A handler for this event uses the same delegate as the
Click event, but it has a different Handles clause:

Private Sub btnOk MouseHover (ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnOk.MouseHover
End Sub

Your own classes can raise events. You can use events to alert objects that an important field
in your class has changed value, an operation has completed, or some other important action
has taken place. In Tutorial 6-7, you will create a class that raises events.

Tutorial 6-7:
The WeatherStation Events application

In this tutorial, you will examine, test, and modify a short application that demonstrates
the raising and handling of events related to a simulated weather station. The
WeatherStation class simulates software attached to physical weather monitoring equip-
ment. It detects four types of weather conditions: normal, rain, snow, and lightning. The
class will raise a specific event for each of these conditions.

The application contains a startup form that tests the WeatherStation class. It declares a
WeatherStation object, and it contains event handlers that respond to events raised by
the object. Each event handler writes a message to the window, as shown in Figure 6-21.
The form uses a Timer control to call the MonitorTheWeather method every 2 seconds.

Figure 6-21 User interface for the WeatherStation Events application

o5 Weather Station Events @

The following event was detected:

It has begun to snow

Start monitoring

Tutorial Steps
Step 1: Open the Weather Station Events project from the chapter examples.

Step 2: Run the application, and notice that the weather station display changes.
Close the application window.

Step 3: Open the source file for the WeatherStation class.

When adding events to a class, it’s considered good style to select names that
describe the types of events you want to raise. At runtime, when your class
raises these events, other classes can listen and respond. The WeatherStation
class defines a delegate named WeatherEvent that serves as a template for
events that pass no arguments and return nothing.

Public Delegate Sub WeatherEvent ()

Next, the class declares all events it can raise, each having type WeatherEvent.

Public Event Normal As WeatherEvent
Public Event Raining As WeatherEvent
Public Event Snowing As WeatherEvent
Public Event Lightning As WeatherEvent

323

324

Chapter 6

Advanced Classes

Step 4:

Next, a random number generator is declared and is used by the ReadWeath-
erSensor method to simulate data returned by a physical weather sensor.

Private randGenerator As New Random

Private Function ReadWeatherSensor() As Integer
Return randGenerator.Next(4)
End Function

When the ReadWeatherSensor method returns an integer between 0 and 3, the
MonitorTheWeather method shown here uses the integer value to raise dif-
ferent events:

Public Sub MonitorTheWeather()
Dim sensorValue As Integer = ReadWeatherSensor()
Select Case sensorValue

Case 0

RaiseEvent Normal()
Case 1

RaiseEvent Raining()
Case 2

RaiseEvent Snowing()
Case 3

RaiseEvent Lightning()

End Select
End Sub

Open the source code for the MainForm class. First, it declares a Weather-
Station object using the WithEvents keyword so it can generate events.

Private WithEvents myStation As New WeatherStation

When the user clicks the Szart button, the Timer control is enabled and begins
to generate a Tick event every 2 seconds:

Private Sub btnStart Click() Handles btnStart.Click
Timerl.Enabled = True
End Sub

Each time the Timer control generates a Tick event, MonitorTheWeather is
called in the WeatherStation class:

Private Sub Timerl Tick() Handles Timerl.Tick
myStation.MonitorTheWeather ()
End Sub

The next four methods handle events raised by the WeatherStation object.
Each event is raised by the MonitorTheWeather method.

Private Sub myStation Normal() Handles myStation.Normal
1blEventDetected.Text = '"The weather is normal"
End Sub

Private Sub myStation Lightning() Handles myStation.Lightning
1blEventDetected.Text = "A Lightning storm is in progress"
End Sub

Private Sub myStation Raining() Handles myStation.Raining
1lblEventDetected.Text = "Rainfall has been detected"
End Sub

Private Sub myStation Snowing() Handles myStation.Snowing
1blEventDetected.Text = "It has begun to snow"
End Sub

6.5 Inheritance 325

Step 5: (Optional) Add a new event named Tornado to the WeatherStation class and
make the necessary changes so Tornado events can be raised and handled by
the application. When you are done, run and test the application.

Summary

Events and event handlers are powerful tools that can process events that happen in a more-
or-less unpredictable way. As we have seen, applications sometimes need to respond to input
from a physical sensor. In other applications, your code might initiate an operation, such as
playing a sound file, not knowing how long it will take to finish. If your application needs
to know when the sound has finished playing, the system can raise an event. The .NET con-
trols in the toolbox raise a wide variety of events that signal actions such as a mouse click,
key press, and form load. Being able to raise events in your code gives you the same power
as the .NET controls.

'/ Checkpoint
10. When a class wants to signal that some event type action has taken place, it

an event

11. A template that describes the return type and parameter list for a class of event
handler methods is a(n)

12. When an object is declared, you must preface it with a(n) qualifier to
permit the object to raise events.

13. What events are raised by the Weather Station Events application in Tutorial 6-7?

Inheritance

In object-oriented programming, inheritance refers to a parent-child relationship between
two classes. It enables classes to build on properties, methods, and events in existing classes.
Some examples of classes that exhibit this relationship suggest that the second name is a
more specific type than the first name.

Person — Student

Account - CheckingAccount
Message — EmailMessage
Vehicle — Automobile

The Inherits keyword in Visual Basic identifies an inheritance relationship between the
class being defined (called the derived class) and another class (called the base class).
Figure 6-22 shows how any number of derived classes can inherit from the same base
class. The reverse, by the way, is not true—a derived class cannot inherit from more than
one base class.

@‘1 NOTE: Other programming languages (such as Java) refer to a base class as a superclass
and a derived class as a subclass.

326 Chapter 6 Advanced Classes

Figure 6-22 One or more derived classes inherit from a base class

Base class

inherit

from
Derived Derived Derived
class #1 class #2 class #n

This is the basic syntax of declaring a derived class in Visual Basic:

Class derivedClass
Inherits baseClass

A class that defines a Windows Form, for example, inherits from the Form class in the Sys-
tem.Windows.Forms namespace:

Public Class MainForm
Inherits System.Windows.Forms.Form

Accessing Members

Unless members of a base class are declared Private, they are accessible to methods in any
classes derived from the base class. This concept is described in Figure 6-23, in which the
base class makes some of its members visible to the derived classes. By members, we mean
variables, properties, methods, events, and even types such as enumerated types, and struc-
tures or classes declared inside the base class.

Figure 6-23 Accessing base class members

Derived inherit »| Base
classes from "1 class

can

contains
access

public, friend, private
and protected members

members

Access Modifiers

Before starting to create derived classes, let’s review the various member access modifiers.
Table 6-4 lists all access modifiers from most permissive (Public) to least permissive (Private).
If no access modifier is used, methods and properties are Public. If a field is declared using
Dim, it is automatically Private.

Class Demo

Dim mCount As Integer 'Private
Property Count As Integer... 'Public
Sub Print()... 'Public

Class Inner 'Public

6.5 Inheritance

End Class
End Class

Table 6-4 Access modifiers

Modifier Description

Public No restrictions on access to the member.

Protected Friend Union of Protected and Friend access.

Friend Accessible to classes located within the same assembly (compiled

unit) as the declared member.

Protected Accessible from within the declaring class and classes that inherit
from the current class.

Private Accessible only from within the declaring class.

Creating a Derived Class

A derived class definition must include the Inherits keyword. The following indicates that
the SalariedEmployee class inherits from the Employee class:

Class SalariedEmployee
Inherits Employee

All classes implicitly inherit from the Object class, so it is not necessary to use the Inherits
keyword to reference the Object class.

Heroes and Villains Example

Let’s create a set of classes representing characters in a computerized role-playing game. We
can look for characteristics identifying the following types of characters: Hero, Villain, and
Wizard. This will be called the Heroes application, with outlines of classes shown in the fol-
lowing code listing:

Class Person

Public Property Name As String
End Class

Class Hero
Inherits Person

Public Property Ability As String
End Class

Class Villain
Inherits Person

Public Property BadDeeds As ArrayList()
End Class

Class Wizard
Inherits Person

Public Property Specialty As String
End Class

A diagram of the class relationships is shown in Figure 6-24. It uses arrows pointing from
derived classes toward Person, the common base class. Although Object is the implicit base
class of Person, it is usually not shown in diagrams such as this one.

327

328 Chapter 6 Advanced Classes

Figure 6-24 Hero class hierarchy

Person

inherit
from

[Hero] [Villain] [Wizard]

Hero, Villain, and Wizard objects implicitly contain the Name field declared in Person, as
well as fields declared in their own classes. The following code is from a test program that
illustrates the additive nature of inheritance. A Hero has a name and ability.

Dim H As New Hero
H.Name = "Superman"
H.Ability = "Invincible"

A Villain has a name, along with a list of bad deeds.

Dim V As New Villain

V.Name = "Evil Witch"
V.BadDeeds.Add(" Casts spells")
V.BadDeeds.Add(" Turns princes into frogs")

A Wizard has a name and a specialty.

Dim W As New Wizard
W.Name = "Merlin"
W.Specialty = "Wisdom"

Inheritance with Constructors

When a derived object is constructed, its base class constructors execute before the object’s
own constructor executes. When a Hero is constructed, for example, the compiler automat-
ically calls the default constructor for Person. If the Person class has a parameterized con-
structor, the first statement inside Hero’s constructor must explicitly call the Person class
constructor. In the following example, the MyBase.New statement passes the name param-
eter to the Person class constructor:

Class Person
Sub New(ByVal pName As String)
Name = pName
End Sub

Public Property Name As String
End Class

Class Hero
Inherits Person

Sub New(ByVal pName As String, ByVal pAbility As String)
MyBase.New (pName)
Ability = pAbility

End Sub

Public Property Ability As String
End Class

6.5 Inheritance

Inherited Properties and Methods

In the same way that fields are inherited, properties and methods are also inherited by
derived classes. The following statements show that a Hero can access any public member
of the Person class:

Dim H As New Hero('"Batman", '"Speed")
1blOutput.Text = H.Name

But a Person object cannot access a public member of the Hero class.

Dim P As New Person("Joe")
1blOutput.Text = P.Ability ' Error!

Assigning Object References

Object references can always be assigned upward in the inheritance hierarchy from a derived
type to a base type. This is called an upward cast.

Dim P As Person
Dim H As New Hero('"Aquaman", "Swims")
P =H

The compiler will not let you assign a base type directly to a derived type.

Dim P As New Person("Joe")
Dim H As Hero
H=P 'error

If such an assignment were permitted, a programmer might be tempted to reference a mem-
ber of Hero using an object that was, after all, just a Person. It is possible to satisfy the com-
piler using a downward cast, accomplished by calling CType, as follows:

Dim P As New Person("Joe")
Dim Z As Hero = CType(P, Hero)

The Common Language Runtime throws an exception if it discovers P holds a reference to
a Person, not a Hero.

Downward casts are legitimate and useful in certain situations when you know a variable of
a base type holds a reference to a derived type. The following example uses a valid cast:

Dim P As Person = New Hero("Aquaman", "Swims")

MessageBox.Show(CType (P, Hero).Ability) 'OK

To be on the safe side, we recommend that you surround downward casts with a Try-Catch

block.

Overriding and Overloading
The terms overriding and overloading can easily be confused with each other.

e To override a method is to replace a base class method with a derived class method
having the same signature. Properties can also be overridden.

e To overload a method is to create a new method having the same name as an existing
method in the same class or a base class. The new method must have a different param-
eter list.

Table 6-5 lists the modifiers that relate to overriding methods and properties. A method or
property must be declared Overridable before it can be overridden in a derived class. A method
or property that overrides another method must be declared with the Overrides keyword.

329

330

Chapter 6

Advanced

Classes

Table 6-5 Modifiers related to method overriding

Modifier Description

Overridable Property or method can be overridden in a class derived from the
current class.

Overrides Overrides an existing property or method in a base class.

NotOverridable Property or method cannot be overridden (default).

MustOverride Property or method must be overridden in a class derived from

the current class. (Only a prototype is used in the declaration.)

Tutorial 6-8:
Student Inheritance application

In this tutorial, you will examine a simple application that creates a collection of both
undergraduate and graduate students. There will be a Student class (for undergraduates)
and a GradStudent class. Figure 6-25 shows the startup form after the user clicked the
Create Undergrad Students button. Figure 6-26 shows the same form after the user

clicked the Create Grad Students button.

Figure 6-25 Displaying undergraduate students

a2 Student Inheritance Collection =] =]

[Create Undergrad Students l ’Create Grad Students]

Undergraduate: 1002, Smith, Mary, 3.52
Undergraduate: 1003, Chong, Susan, 3.22
Undergraduate: 1004, Hasegawa, Darnian, 3.42
Undergraduate: 1005, Philippe, Gerard, 2.92

Figure 6-26 Displaying graduate students

a2 Student Inheritance Collection [- =[]

Create Undergrad Students] [Create Grad Students l

Graduate: 2001, Danson, Ben, 2.42, B.A. English
Graduate: 2002, Sutterfield. Mary. 252, B M. Music
Graduate: 2003, Calhoun, Susan, 4.00, B.S. Comp Sci
Graduate: 2004, DeSoto, Daran, 3.89. B.S. Info Tech
Graduate: 2005, Ramirez, Jose, 3.72, B.S. Biology

Strongly Typed Collections

Strongly typed collections are specific about the type of objects you can insert. If you
List(Of String), you cannot insert Students, Accounts, Integers, or any other

declare a

6.5 Inheritance

type of objects into the list. But they do allow objects related by inheritance to be
inserted in the same collection, with one restriction: The collection type must identify
the base class. Therefore, the following declaration would let you insert both Student
and GradStudent objects in the allStudents list:

Private allStudents As New List(Of Student)

On the other hand, the following declaration would permit you to insert only Grad-
Student objects in gradList:

Private gradList As New List(Of GradStudent)

Now you are ready to examine the code in the tutorial’s sample program.

Tutorial Steps

Step 1:
Step 2:

Open the Student Inberitance project from the chapter examples folder.

Examine the code in the Student.vb file. First, a public enumerated type
defines the types of status a student might have.

Public Enum StatusType
Unknown
Undergraduate
Graduate

End Enum

The Student class appears next, containing ID, Name, Gpa, and Status
properties.

Public Class Student
Public Property ID As String
Public Property Name As String
Public Property Gpa As Double
Public Property Status As StatusType

Private ReadOnly StatusName As String() =
{"Unknown'", "Undergraduate'",6 "Graduate"}

Public Sub New(ByVal pID As String,
ByVal pName As String, ByVal pGpa As Double,
ByVal pStatus As StatusType)

ID = pID

Name = pName

Gpa = pGpa

Status = pStatus
End Sub

Public Overrides Function ToString() As String

Return StatusName(Status) & ": " & ID & ", "
& Name & ", " & Gpa.ToString("n")
End Function
End Class

GradStudent Class

Step 3:

View the GradStudent class (GradStudent.vb file), which inherits from the Stu-
dent class. Notice that this class contains one new property, PreviousDegree.

Public Class GradStudent
Inherits Student

331

332

Chapter 6

Advanced Classes

Public Property PreviousDegree As String

Public Sub New(ByVal pID As String,
ByVal pName As String, ByVal pGpa As Double,
ByVal pStatus As StatusType,
ByVal pPreviousDegree As String)

MyBase.New(pID, pName, pGpa, StatusType.Graduate)
PreviousDegree = pPreviousDegree
End Sub

Public Overrides Function ToString() As String
Return MyBase.ToString() & ", " & PreviousDegree
End Function
End Class

The GradStudent constructor has five parameters, four of which are passed to
the Student class constructor by calling MyBase.New. Notice that the
ToString method in this class overrides the ToString method in the Student
class. It doesn’t have to duplicate the existing code, however, because it calls
MyBase.ToString before appending the value of PreviousDegree.

MainForm Class

Step 4:

Open the MainForm.vb class file. It declares a List(Of Student) object at the
class level.

Public Class MainForm
Private allStudents As New List(Of Student)

The Click handler for undergraduate students creates students and adds them
to the List. Then it connects the List to the ListBox.

Private Sub btnStudents Click() Handles btnStudents.Click
allStudents.Add(New Student("1001", '"Jones, Ben'", 3.42,
StatusType.Undergraduate))
allStudents.Add(New Student('"1002", "Smith, Mary", 3.52,
StatusType.Undergraduate))
allStudents.Add(New Student("1003", "Chong, Susan", 3.22,
StatusType.Undergraduate))
allStudents.Add(New Student("1004", "Hasegawa, Darian", 3.42,
StatusType.Undergraduate))
allStudents.Add(New Student("1005", "Philippe, Gerard", 2.92,
StatusType.Undergraduate))
lstBox.DataSource = Nothing
lstBox.DataSource = allStudents
End Sub

Notice how, when modifying the DataSource of a ListBox, you must first set it
to Nothing and then assign it your array or collection. Otherwise, the listbox
contents do not change.

Next is the Click handler for creating graduate students. It creates GradStudent
objects, adds them to the List, and displays the list in the ListBox. Each object
has one additional parameter: the student’s previous degree.

Private Sub btnGradStudents Click() Handles btnGradStudents.Click
allStudents.Add(New GradStudent("2001", "Danson, Ben", 2.42,
StatusType.Graduate, "B.A. English'"))
allStudents.Add(New GradStudent("2002", "Sutterfield, Mary",
2:52

Summary 333

StatusType.Graduate, "B.M. Music"))
allStudents.Add(New GradStudent("2003", "Calhoun, Susan", 4.0,
StatusType.Graduate, "B.S. Comp Sci'"))
allStudents.Add(New GradStudent('"2004'", "DeSoto,
Darian'", 3.89,
StatusType.Graduate, '"B.S. Info Tech"))
allStudents.Add(New GradStudent('"2005", '"Ramirez,
Jose", 3.72,
StatusType.Graduate, "B.S. Biology"))
lstBox.DataSource = Nothing
lstBox.DataSource = allStudents
End Sub
End Class

Step 5: Run the application and click on both buttons. The list is not cleared, so each
time you click, a list of students will be appended to the existing list.

Summary

In actual college databases, the enrollment records of graduate and undergraduate stu-
dents exhibit numerous differences. By having separate classes, you can specialize each
according to an application’s needs. For example, undergraduate students might have
an activity fee that is not required for graduate students. Or, graduate students might
have to track the dates of their candidacy and qualifying exams. These differences can
be explored in Programming Challenge 6.

Inheriting common members from base classes helps to reduce the amount of duplicate
code you must write. Inheritance improves consistency of member names and common
operations throughout a class hierarchy. Before inheritance was introduced into pro-
gramming languages, programmers had to duplicate all variables, methods, and other
members in each class.

Checkpoint
@) checkp

14. Can more than one class inherit from a single base class?
15. Are base class methods accessible from a derived class?
16. Which keyword identifies a class as being derived from another class?

17. To a method is to replace a base class method with a derived class method
having the same signature.

Summary

6.1 Structures

e A structure defines a container into which you can place variables, properties, meth-
ods, and events. A structure might be thought of as a lightweight type of class.

e Because a structure occupies memory “in place,” much like an integer or Boolean, it is
known as a value type.

e When a structure parameter is declared with the ByVal qualifier, a copy of the struc-
ture is passed to the method at runtime.

334

Chapter 6

Advanced Classes

6.2

6.3

The assignment operator (=) copies the contents of a structure variable.
If you compare two structure variables with the Equals method, they are compared
using the values of their fields.

Components

A component (also known as a class library) is a collection of related classes that have
been compiled and stored so that they are easily available to other applications.

The primary advantage to using a component is that it makes it easier to reuse exist-
ing code.

Components fall into two general classes: (1) user interface components, such as
Visual Basic controls, and (2) code components, such as those found in the middle tier
or data tier.

A component is compiled by Visual Studio into a DLL file (filename with .dll extension).
Also known as a dynamic link library, this file could be used by any .NET application.

Unit Testing

Software engineers have found that testing is very effective when it becomes an inte-
gral part of the development process.

The traditional approach to testing and debugging has been to wait until the end of a
project.

The continuous software testing approach is to run tests on all newly written code dur-
ing the development of a project.

Regression testing is the running of a set of tests on existing code.

An automated test is a program that executes all or part of an application without
input from a live user.

A unit test is an automated test that executes and tests a single unit of code (such as a
method) in an existing application. It falls under the category of white box testing.
When a unit test fails, it stops executing sequentially and returns immediately.

Unit tests do not run any particular sequence. Each unit test should be independent of
all other unit tests.

Unit tests are typically executed by a utility program known as a fest engine. As it exe-
cutes each test method, it reports the success or failure of each test in a visual display.
The Microsoft. VisualStudio. TestTools. Unit Testing namespace provides the .NET sup-
port for unit testing.

Events

A method raises an event when it wants to send a signal that something has happened.
Another method handles an event when it responds to the event.
A delegate is a template or pattern that is used to classify event handlers.

Inheritance

Inheritance in object-oriented programming means the ability of classes to specialize
the properties, methods, and events of base classes.

Inheriting common members from base classes helps to reduce the amount of duplicate
code in an object-oriented program or code library. Inheritance improves the consis-
tency of member names and common operations throughout a class hierarchy.

When a derived object is constructed, its superclass constructors must execute before
the object’s own constructor executes.

To override a member is to replace a base class member with a derived class member
having the same name and signature.

To overload a method is to create a new method having the same name as an existing
method in the same class or a base class, but with a different signature.

Key Terms

Assert.AreEqual Method
Assert.AreNotEqual Method
Assert class

assertion

attribute name

automated test

base class

black box testing

class library

continuous software testing
delegate

component

derived class

downward cast

Review Questions

True or False

Review Questions

handle an event
inheritance
Inherits keyword
NET assembly
overload a method
override a method
Overrides keyword
raise an event
regression testing
test engine

test project

unit test

upward cast

white box testing

335

Indicate whether each of the following statements is true or false.
1. When declared using ByVal, structure parameters behave just like integer parameters.

2. The assignment operator (=) cannot be used to copy a structure unless the operator is
overloaded inside the class.

3. If you compare two structures using the Equals method, they are compared according
to the values of their fields.

4. You can compare two structures using the = operator, even if you do not overload this
operator in your structure definition.

5. A Visual Studio project can create a reference to a DLL file.
6. A reference to another project must always be within the same solution container.

7. Regression testing occurs only when you begin a new project and need to test code that
you have imported from other projects.

8. Automated testing is used only when testing the user interface of an application.
9. A unit test is always an automated test.

10. White box testing implies that the tester has full access to the application’s source code.

11. Unit tests can be written as black box tests.

12. Unit tests are supported by classes in the Microsoft. UnitTesting namespace.

13. In Visual Studio, it is possible to run a unit test in debug mode, and set breakpoints

within the test code.

14. The Assert.AreEqual method has two versions: one for integers, the other for floating-

point values.

15. When comparing floating-point numbers with Assert.AreEqual, you must supply a third

parameter that indicates the size of the difference between the first two values.

16. When Assert.AreEqual fails, execution continues at the next line in the test method.

336

Chapter 6

Advanced Classes

17.
18.

19.
20.
21.
22.
23.

24.

25.

As a general rule, you should call Assert only once within a single test method.

Events provide a signaling system for messages that must be broadcast to whomever is
listening.

The class that handles an event is usually the same class that raises the event.
When class A inherits from class B, we say that B is the derived class.

A superclass is the same thing as a derived class.

One class can inherit from multiple classes.

When a derived object is constructed, its base class constructors execute after the
object’s own constructor executes.

Although fields (variables) are inherited, properties and methods are not inherited by
derived classes.

To overload a method is to replace a base class method with a derived class method hav-
ing the same signature.

Short Answer

USSR E

[ee]

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.
20.

21.

In terms of memory usage, how is a structure different from a class?

Under what circumstance would you need use the New operator when declaring a structure?
What is a component?

What is the primary advantage to using a component?

Which type of Visual Studio project is used when creating a component?

How do you add a component reference to a project in Visual Studio?

What main difficulty does a programmer face when the test/debug cycle is at the end of
a project?

Define continuous software testing.

Define regression testing.

Define unit test.

How is a test engine used in Visual Studio?

Which .NET namespace supports unit testing?

Which .NET attribute identifies a class as one that contains unit tests?
Besides AreEqual, what other Assert class methods are listed in this chapter?
What does it mean for a class to raise an event?

What purpose does a delegate serve, in terms of class events?

When an object is declared, which qualifier must be used if the object will be permitted
to raise events?

Define inheritance in terms of object-oriented programming.
How is the Protected access modifier different from Private?

If the Student class inherits from the Person class, explain how a downward cast would
work.

Explain the term overloading a method.

Programming Challenges 337

Algorithm Workbench

1. Assuming that the Point structure has a constructor that receives two integer parameters
(X, Y), write a statement that declares and initializes an array of two Points.

2. Create a class named File that contains the following properties: ID (string), Location
(String), CreationDate (DateTime). Then derive a class named Document that has an
additional property named Owner (String). Create constructors for both classes that use
parameters to initialize all properties.

3. Show how to declare a test method, using the proper unit testing attributes for .NET.

Programming Challenges

1. FlightSchedulerLib Component

Use the Calculating Flight Times exercise (Programming Challenge 5 in Chapter 2) as a
starting point for this exercise. Create a component (class library) named
FlightSchedulerLib. In this library, define a class named Airport that contains two prop-
erties: an airport code (such as MIA or LAX) and a UTC offset. (A UTC offset is a
signed integer that represents the difference between the airport’s local time zone and the
Universal Coordinated Time zone.)

Create a class named Flight that contains properties that hold a departure airport (an
Airport object), arrival airport (an Airport object), the flight’s departure date and time,
and the flight’s duration (in hours). The class must contain a method named GetArrival
that returns the date and time of the flight’s arrival, expressed in the local time zone of
the arrival airport. This is its declaration:

Public Function GetArrival() As DateTime

Create a text file containing the following information. The Flight class should read this
text file and save the information in variables inside the Flight class.

MIA JFK HNL LAX DFW
-5 -5 -10 -8 -6

0 3 12 8 2.5

3 0 14 8.5 3.5

12 12 0 4.5 8.5

8 8.5 4.5 0 3.5

2.5 3.5 8.5 3.5 0

The first line of the file contains the five airport codes; the second line contains the UTC
offset of each airport; the next five rows contain a two-dimensional array of flight dura-
tions. For example, the duration of a flight from MIA to LAX is 8 hours. The durations
of all flights leaving MIA are in the first row of the array. The flight duration from MIA
to LAX is given in column 3 of the same row. (Column numbers start at 0.) Similarly,
the duration of a flight from HNL to MIA is 12 hours (row 2, column 0).

Add a Windows Forms project named Flight Scheduler Ul to the same Visual Studio
solution. Using the same interface shown in Programming Challenge 5 in Chapter 2, let
the user select the departure and arrival airports and enter the departure date and time.
When the user clicks a button, call the GetArrival method and display the flight dura-
tion and flight arrival time at the destination airport.

2. Testing the FlightSchedulerLib Component

Use Programming Challenge 1 as a starting point for this application. Create a test proj-
ect that tests the GetArrival method of the Flight class in the FlightSchedulerLib com-
ponent. Create five unit tests that validate flights between different sets of airports. Be
sure to include flights that begin before midnight and arrive the following day.

338

Chapter 6

Advanced Classes

3. GetSmallest Method

Add a method named GetSmallest to the IntArray class from Tutorial 6-5. The method
should return the smallest element in an array of integers. Create a complete set of unit
tests that test your method thoroughly. Create a test list in the Test Editor window for
your new tests.

. GetMedian Method

Add a method named GetMedian to the IntArray class from Tutorial 6-5. The method
should return a Double that contains the median value of a set of integers. Create a com-
plete set of unit tests that test your method thoroughly. Create a test list in the Test Edi-
tor window for your new tests.

. RegistrationLib Changes

Once again, the college registrar has again changed the rules for determining the maxi-
mum credits a student can take. Let the RegistrationLib and Test RegistrationLib proj-
ects from Tutorial 6-6 be the starting point for this challenge. Using Table 6-6, modify
all unit tests and corresponding code in MaxCredits to conform to the new criteria.

Table 6-6 Second revision of the registration criteria in RegistrationLib

Academic Status Year Level Grade Average Max Credits
Probation LowerDivision 6
Probation UpperDivision 3
Warning LowerDivision >2.2 12
Warning LowerDivision 2.2 6
Warning UpperDivision >4 10
Warning UpperDivision =24 8

Graduate <3.0

Graduate 2 3.0 12
Normal LowerDivision >2.5 16
Normal LowerDivision 2.5 12
Normal UpperDivision 18
Honors > 3.0 22
Honors < 3.0 16

6. Undergraduate and Graduate Students

Tutorial 6-8 presented classes named Student and GradStudent. In this programming
challenge, you will build on that application. Create another class named AuditStudent
that inherits from Student. Create a suitable constructor. Add a CreditsEnrolled
property to the Student class, of type Double. Add a TuitionAmount property, of type
Decimal.

Audit students and undergraduate students pay the same tuition rate per credit hour.
Graduate students pay a different rate. The two tuition rates should be initialized by
assigning values to shared properties in the two classes. The TuitionAmount property
calculates the amount due by multiplying the CreditsEnrolled by TuitionAmount. How-
ever, in the AuditStudent class, add an additional $100 to the TuitionAmount value. For
graduate students, the total tuition amount is the same for nine credits as it is for any
number of credits higher than that.

Create a user input form that lets the user select a student by name from a list, input the
number of credits enrolled, and view the student’s tuition amount.

Programming Challenges 339

7. Shapes Inheritance

In this programming challenge, you will create three classes: Shape, Rectangle, and
Circle. Shape is a base class, and Rectangle and Circle are derived classes. You will use
the existing Point structure already defined in .NET, which has two properties named
X and Y.

The Shape class has a single property named Name, a constructor with a Name param-
eter, and a MustOverride method named GetArea that returns a Double. It has a
ToString method that returns the name of the shape.

The Rectangle class has two private members of type Point that represent the upper left
and lower right corners of a rectangle. It has a constructor that initializes the two cor-
ner points of the rectangle. It overrides the GetArea method, which calculates the rec-
tangle area as the length times width. It has a ToString method that displays the two
point values.

The Circle class has two private members: the center of the circle, which is a Point
object, and the radius of the circle, which is a Double. It has a constructor that initial-
izes the center and radius values. It overrides the GetArea method by computing the area
as Math.PI times the radius squared. It has a ToString method that displays the center
point and the radius.

In the application’s startup form, create Rectangle and a Circle. Display the contents of
both shapes, as well as their calculated areas, rounded to two decimal places. A sample
is shown in Figure 6-27.

Figure 6-27 Displaying shapes and their areas

a5 Shapes Inheritance =l ===

Rectangle: {X=5Y=5}, {¥=10Y=10}, Area = 25.00

Circle: center ={X=4,Y=4}, radius = 5.4, Area = 91.61

8. Account Transactions

Create a set of classes that permit you to keep track of savings accounts and transactions.

e Define an Enum type named TransactionType with two values: Deposit, Withdrawal.

e Create a class named Tranmsaction with three properties: a transaction date, the type
of transaction (using TransactionType), and the transaction amount. For example, a
Transaction object could hold the values #05/15/2011#, TransactionType.Deposit,
and 500.00.

e The Transaction class must contain a constructor that initializes all property values.

e Create a class named Account with three properties: ID (String), Owner (String), and
CashBalance (Double). For example, an Account object could hold the values
000123, Baker, James, and 2140.55.

e The Account class must contain a constructor that initializes all property values, a
ToString method that displays all property values, and an Equals method that com-
pares account ID numbers.

340 Chapter 6 Advanced Classes

e Create a class named TransactionHistory that contains a single property named
Items, whose type is Dictionary(Of Date, Transaction).

e Create a class named SavingsAccount, with two properties: InterestRate (Double), and
TransHistory (a TransactionHistory object). This class inherits from the Account class.

Startup Form

e In the startup form, use a SplitContainer to divide the form in half. Insert a ListBox
control in each panel. A sample is shown in Figure 6-28.

e In the Form_Load event handler, create two SavingsAccount objects. Add them to a
List(Of SavingsAccount) object. For each account, create three different transactions
and add them to the account transaction history.

* Display the account IDs, owner names and balances in the left-hand ListBox control.
When the user selects an account, display the account transaction history in the right-
hand ListBox control.

Figure 6-28 Displaying Account Transaction History

a5 Accounts Manager =])
00012, Johnson, Bob, $2,500.00 5/17/2011, Deposit, $150.00

00304, Chong, Hamy, $1,500.00 5/18/2011, Withdrawal, $350.00
5/19/2011, Deposit, $425.00

9. Weather Station Summary

The purpose of this programming challenge is to show how events raised by a class can
be broadcast to more than one class. Use the Weather Station Events application from
Tutorial 6-7 as a starting point for this programming challenge. Create a Summary form,
as shown in Figure 6-29, that keeps a running count of each type of event raised by the
WeatherStation class. The Summary form’s class contains an event handler for each type
of event raised by the WeatherStation class. Just before showing the Summary form, the
main form can pass to it a reference to the same WeatherStation object declared at the
top of the main form. Use the Show (not ShowDialog) method to display the Summary
form. As events appear on the main form, the summary form counts the number of each
type of event that has been raised so far.

Figure 6-29 Weather Station Summary form and main form

o5 Summary of Weather Readings @
Nomal: 5 o5 Weather Station Events [==]
Raining:
= = The following event was detected:
It has begun to snow
Snowing: 3
Start monitoring] [Show Summarny
Lightring: 3

LINQ to SQL

[
(NN]
—
o
<
I
)

7.1 Using LINQ to Select Data 7.2 Updating Tables
Tutorial 7-1: Displaying the Karate Tutorial 7-3: Using a BindingSource to
Members table update the Members table
Tutorial 7-2: Displaying the Karate Tutorial 7-4: Using LINQ queries to
class schedule add schedule entries

This chapter introduces LINQ for SQL, a powerful tool for querying and updating database data.
LINQ for SQL offers the opportunity to use object-oriented programming (OOP) techniques to
view and update databases. Essentially, you work with databases in the same way that you did
with in-memory collections in Chapter 3. You will learn how to create entity classes that model
database tables. You will create selection queries that join multiple entity classes, using common
linking properties. You will learn how to insert, update, and delete table entries.

Using LINQ to Select Data

Language Integrated Query (LINQ) lets you work with objects and properties at the middle-
tier level by writing code that performs queries on data collections. A variant of LINQ,
named LINQ to SQL, translates object-oriented queries into SQL database syntax. LINQ
lets you work with objects that represent database tables by providing a conversion process
from one format to another. This conversion process is known as database entity mapping.

LINQ is implemented only by Microsoft .NET languages, so it is not found in Java or C++.
Fortunately, similar tools for database entity mapping exist for these other languages. We
think that once you learn how LINQ works in .NET, you will be able to learn to work with
tools in other languages.

LINQ to SQL Object Model

When you use LINQ to SQL, you do not issue commands directly to a database. Instead,
you use custom classes that represent database tables and the relationships between the
tables. When you modify properties and call methods in the classes, LINQ translates your
property and method calls into SQL commands. The following table lists some basic equiv-
alencies between LINQ’s object model and the relational data model used in databases.

341

342

Chapter 7

LINQ to SQL

LINQ to SQL Relational Database

Entity class Table

Entity property Table column

Association Relationship (foreign key)
Entity method Stored procedure or function

An entity class is a class that contains properties that match the structure of a specific data-
base table. An entity property is a member of an entity class that gets and sets the value of
a class-level variable. It also raises events that signal the application before and after the
property is modified. An association in an entity class is a reference to another class that cor-
responds to a relationship between two database tables. An entity method in an entity class
contains code that executes a database-stored procedure or function.

The following is a declaration of an entity class. Every entity class must begin with a table
attribute:

<Table(Name:="Members")> _
Public Class Member

End Class

In an entity class, you identify properties that represent database columns, using a column
attribute:

<Table(Name:="Members")> _

Public Class Member
<Column(IsPrimaryKey:=True)> _
Public MemberId As String

'
.« o o

<Column()> _
Public LastName As String
End Class

Only entity class members that are assigned a column attribute are saved when LINQ
updates the underlying database. Column attributes have an optional Boolean property
named IsPrimaryKey.

TIP: Table attributes are defined by the NET TableAttribute class, and column attrib-
utes are defined by the ColumnAttribute class. Both classes belong to the
System.Data.Ling.Mapping namespace.

Connecting to a Database

To connect to a database, you need to create a DataContext object. This object provides methods
that connect to the database, retrieve data, and submit updates to the database. The DataContext
translates your requests for objects into SQL database queries. Also, it creates objects that
return the results of SQL queries. The DataContext constructor is overloaded with different
parameter lists, but the most common constructor receives a connection string, as follows:

Dim db As New DataContext(My.Settings.karateConnectionString)

Then you can call the DataContext’s GetTable method to get a table containing the data-
base table data. In the following example, one must already have defined an entity class
named Member.

Dim Members As Table(Of Member) = db.GetTable(Of Member) ()

7.1 Using LINQ to Select Data

We recommend, however, that you let Visual Studio create a strongly typed DataContext
class that matches the database. In other words, Visual Studio creates a separate entity
class for each database table, a specific DataContext class, and methods that use the entity
classes.

Object Relational Designer

The Object Relational Designer (O/R Designer) is a Visual Studio design tool that lets you
create LINQ to SQL entity classes. You also use it to design associations between the classes.
To put it another way, the designer creates a system of objects that directly correspond to
the objects in a database. Finally, the designer creates a strongly typed DataContext that is
used to send and receive data between the entity classes and the database.

The following steps are required to create entity classes and a DataContext from an existing
database:

1. In the Server Explorer window, add a connection to the database or database file.

2. Add a LINOQ to SQL Classes item to your project, choosing a name that suggests the
database, such as KarateClasses.dbml.

3. Drag one or more database tables from the Server Explorer window into the O/R
Designer window. After doing this, you can see each table expressed as a class, as in
the sample shown in Figure 7-1.

Pluralization: Entity class names in the O/R Designer are expressed as singular (by dropping
the final -s) compared to the database table names. For example, Member is the entity class
that represents one row of the Members table from the database. This naming approach is
called pluralization, and it may be disabled from the Tools menu by selecting Options, Data-
base Tools, O/R Designer, and Pluralization of names.

The arrows appearing between the classes are called associations. Any existing relationships
between the database tables are expressed as associations in the O/R Designer.

Figure 7-1 Karate database entity classes in the O/R Designer

& —
Schedule
Day = Instructor =
B Properties
EHPropetties 00000 e » e ®yp 0000000 [E Properties
?E D = p, PE D
i y_Id
B Name B Time ey Last_Name
ﬁ Instructor_Id
% v
- ™\ 'S ~
Member Payment
= Properties = properties
75 D O——» 2EFD
ﬁ Last_Mame ﬁ Member_Id
= First_MName iy Payment_Date
ﬁ Phone ﬁ Amount
B Date_loined N 4
. A

343

344

Chapter 7

LINQ to SQL

Creating an Association

If you want to create an association manually in the O/R Designer, right-click the name of
the parent class, select Add, then select Association. Figure 7-2 shows an association being
defined that links the Day.ID member to the Schedule.Day_Id member.

TIP: When creating an association, the connecting members must be the same data type.
In fact, their nullable properties must match, too. If one member is nullable, the other
must be, too.

Figure 7-2 Creating an association between the Day and Schedule entity classes

Parent Class: Child Class:
Day v] [Schedule vl

Association Properties:

Day Properties Schedule Properties
D Day Id -

Table Property Names and Entity Class Names

It is helpful to understand how Visual Studio chooses names for table properties and entity
classes when it creates a DataContext from a database. You will use these names in your
LINQ queries.

Visual Studio chooses DataContext property names that identify strongly typed Table objects.
Examples of table types are Table(Of Member), Table(Of Payment), and so on. The table
property names are always plural (ending in -s). For the Karate database, for example, the
DataContext table property names are Members, Payments, Schedules, Days, and Instructors.

Visual Studio chooses singular names for entity classes. For example, the Member class rep-
resents a single item from the Members table in the database, the Payment class represents
an item from the Payments table in the database, and the Schedule class represents an item
from the Schedule table in the database.

Constructing a Select Query

Assuming that you have already created a DataContext class for your database, you can
begin to create LINQ to SQL queries that pull data from the database.

First, you must declare a DataContext object. Assuming that you have created one for the
Karate database, it should already contain an initialized connection string. Therefore, we
can call the default constructor as follows:

Dim db As New KarateClassesDataContext

7.1 Using LINQ to Select Data

Next, you write a query that selects each payment from the Payments table:

Dim query = From aPayment In db.Payments
Select aPayment

This query is nearly identical to the LINQ queries we demonstrated in Chapter 3. At that
time, the source of the data would have been a List(Of Payment) object. In the current con-
text, db.Payments is a Table(Of Payment), which is almost the same. The difference is that
the Table(Of Payment) class has a connection to the database.

You can assign the LINQ query directly to a DataGridView control’s DataSource
property:

dgvPayments.DataSource = query
or to a BindingSource object:

KarateBindingSource.DataSource = query

or you can iterate over the query, perhaps to accumulate the payments:

Dim total As Double = 0
For Each aPayment In query

total += aPayment.Amount
Next

If you were interested in finding the average payment amount, you could rewrite the query
to return only the payment amounts.

Dim query = From aPayment In db.Payments
Select aPayment.Amount

Then a simple function call would return the average payment amount.

Dim avg As Double = query.Average()

Formatting a DataGridView Control

The primary disadvantage to using runtime data binding with a DataGridView control is
that you cannot use format the grid columns in design mode. Although it is possible to for-
mat grid columns at runtime, it is not easy to do. But if you create an Object data source in
Visual Studio, you can bind it to the grid and edit the grid in design mode. Here’s how to
create an Object data source:

1. In the Data Sources window, select Add New Data Source. The Data Source Configuration
Wizard will appear, as shown in Figure 7-3. In the next step, shown in Figure 7-4, select
one of the entity classes, such as Member. Click the Finish button to save the data source.

Figure 7-3 Creating an Object data source

Data Source Configuration Wizard @

| ! Choose a Data Source Type

Where will the application get data from?

g & \ %

Object

g

SharePoint

Database Service

Lets you choose objects that can later be used to generate data-bound controls.

345

346 Chapter 7 LINQ to SQL

Figure 7-4 Selecting the Member entity class as a data source

Select the Data Objects

Expand the referenced assemblies and namespaces to select your objects. If an object is missing from a referenced
assembly, cancel the wizard and rebuild the project that contains the object.

What objects do you want to bind to?
a |:| WindowsApplicationl Add Reference...

a [H {} WindowsApplicationl
[Day
1% Forml
% Instructor
[C]%4 KarateDataContest
E Member
%% Payment
% Schedule

p [C]{} WindowsApplicationl.My

Hide system assemblies

o — H Next >][—][—

2. Open the DataGridView Tasks window and choose a data source for the grid. Select
the data source you just created. As shown in Figure 7-5, a BindingSource object is
automatically placed in the form’s component tray and the table columns appear in the
grid. Now you can edit the grid columns.

Figure 7-5 Binding source connects Member entity class to DataGridView control

Forml.wvb [Design]® *AX

0] Last_Mame First_MName Phone Diate_Joing

B MemberBindingSource

Summary

7.1 Using LINQ to Select Data

Runtime data binding offers great flexibility and is easily implemented in LINQ. At the same
time, data binding with an Object data source lets you take advantage of Visual Studio’s
powerful design tools.

d Tutorial 7-1:
Displaying the Karate Members table

In this tutorial, you will use Visual Studio to create an entity class named Member. Then
you will create an Object data source based on the Member class and connect to a Data-
GridView control. Finally, you will create a LINQ query that retrieves rows from the
Members table in the Karate database.

Tutorial Steps

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Create a new Windows Forms application named Karate Members Grid.

In the Server Explorer window, add a new connection to the karate.mdf data-
base file. You can find a copy in the chapter examples directory.

From the Project menu, select Add New Item, select the new Link to SOL
Classes template, and name it KarateClasses.dbml.

Drag the Karate.Members table from the Server Explorer window into the
KarateClasses.dbml design window. Answer Yes when asked about copying
the database file into the project directory. The Member class should appear
in the window. Save your changes.

In the Data Sources window, create a new Object data source. In the Select the
Data Objects step, choose the Member class. Click the Finish button to save
the data source.

Open the startup form in Design view, add a DataGridView control named
dgvMembers, and attach it to the Member entity class.

Optionally, you can set the Dock property to Fill; set RowHeadersVisible to
False; and disable adding, editing, and deleting.

Create the following Form_Load event handler:

Private Sub Forml Load() Handles MyBase.Load
Dim db As New KarateClassesDataContext
Dim query = From aPerson In db.Members

Select aPerson
dgvMembers.DataSource = query

End Sub

The KarateClassesDataContext class, created by Visual Studio, contains a
Members property that is a Table(Of Member) object. That is why the LINQ
query was able to use db.Members as its data source.

Run the application. You should see the DataGridView output shown in
Figure 7-6. Then stop the application.

347

348

Chapter 7

LINQ to SQL

Figure 7-6 Using a LINQ query to display the Members table

a2 Karate Members Grid (LING)
1D Last_MName First_MName: Phone Date_Joined

1 Kahumanu Keoki 111-2222 202072002
2 Chong Anne 2323333 2/20/°2010
3 Hasegawa Elaine 313-3455 2/20/2004
4 Kahane Brian 646-9387 5/20/2008
5 Gonzalez Aldo 123-2345 6/6/2009

[Kousevitzky Jascha 414-2345 22072010
7 Taliafea Moses 52323 52072005
2 Concepcion Rafael 602-3312 20,2007

» |9 Taylor Winifred 1332222

Step 10:

Next, you will add a filter to the query that selects only members who joined

after 1/1/2010. You will sort the rows by Date_Joined in ascending order.
Change the query definition to the following:

Dim query = From aPerson In db.Members
Where aPerson.Date Joined > #1/1/2010#
Select aPerson
Order By aPerson.Date Joined

Step 11: Run the application and verify that all Date_Joined column values are later
than 1/1/2010 and are sorted in ascending order.

Summary

You learned how to display database tables in DataGridView controls in previous chap-
ters, using TableAdapters and SQL queries. What makes the current example so differ-
ent is that the underlying SQL query is hidden, making it possible for you to work
completely in Visual Basic code.

Table Associations

As you know, an association in LINQ is the object-oriented equivalent of a database rela-
tionship. An association links two entity classes using properties that match foreign key rela-
tionships. Associations make it easy to create queries that combine columns from multiple
database tables.

The Karate database contains the related Members and Payments tables. If you drag these
two tables from the Server Explorer window into the Object Relational Designer window,
as shown in Figure 7-7, an association is automatically formed between the Member and
Payment entity classes.

When two entity classes contain an association, each class implicitly contains a property that
references the other class. So it is with the Payment and Member classes in KarateClasses-
DataContext. In the Payment class, the Member property links to the associated Member

7.1 Using LINQ to Select Data

Figure 7-7 Members and Payments tables in the DataContext Design window

KarateClasses.dbml *OX
@ =) (i _—
Member Payment
= Properties = Properties Create methods by
7 E D SERPECERREES 7 ﬁ (s} dragging items from
B Last_Name B Member Id %M__C":C
B First_ Name = Payment_Date HIs CEsIgn surace.
¥ Phone = Amount
%7 Date_Joined J
)
1 1 P

object. For example, the following query selects the ID property from the Payment class and
the Last_Name property from the Member class:

Dim query = From aPayment In db.Payments
Select aPayment.ID, aPayment.Member.Last Name

The output is shown in Figure 7-8. In the database, we know these values as the ID column
from the Payments table and the Last Name column from the Members table. But we are
currently focusing on the classes in the DataContext rather than the database tables. The
expression aPayment. Member provides the link to any property in the Member class.

Figure 7-8 Query that associates the Payment and Member entity classes

a5 Karate Payments
1] Last_Mame &
Kahumanu
Chong
Kousevitzky
Kahane

Gonzalez

Hasegawa

Taylor i

R - RS S L R L

The following query selects the ID, Payment_Date, and Amount properties from the Pay-
ment class, as well as the Last_Name property from the Member class:

Dim query = From aPayment In db.Payments
Select aPayment.ID, aPayment.Member.Last Name,
aPayment.Payment Date, aPayment.Amount
Order By ID

The output from this query is shown in Figure 7-9. If you assign this query directly to the
DataSource property of a DataGridView control, you can still format individual grid
columns at runtime. Our query created four columns, so the following statement formats the
Amount column to two decimal places:

dgvPayments.Columns(3).DefaultCellStyle.Format = "n2"

349

350

Chapter 7

LINQ to SQL

Figure 7-9 Selecting columns from both Members and Payments tables

[a-' Karate Payments (=3
D Last_Mame Payment_Date Amount o
3 Kahumanu 1042042009 43.00 =
2 Chong 11/20/2010 80.00
3 Kbusevitzky 11/16/2010 75.00
4 Kahane 12/16/2009 50.00
5 Gonzalez 1/16/2009 65.00
6 Hasegawa 2/16/2009 75.00 i

Creating Aliases for Entity Class Properties

Sometimes you may want to rename some properties produced by a query. In a LINQ query,
each alias name precedes the property name, followed by an equals (=) sign, in this format:

Alias = PropertyName

The Alias cannot contain any embedded spaces or punctuation, other than the underscore
character. The following query contains aliases named Date and Member:

Dim query = From aPayment In db.Payments
Select Date = aPayment.Payment Date,
aPayment.Amount,
Member = aPayment.Member.Last Name

The most important use of aliases is in creating combined properties. For example, we might
want to combine the first and last name of a member using an alias named Member. The fol-
lowing LINQ query does that:

Dim query = From aPayment In db.Payments
Select aPayment.Payment Date, aPayment.Amount,
Member = aPayment.Member.First Name + " "
+ aPayment.Member.Last Name

Sample output from this query is shown in Figure 7-10.

Figure 7-10 Combining columns with an alias

a- Karate Payments E
Payment_Date Amount Member &
10/20/2009 48.0000 Keoki Kahumanu
11/20/2010 80.0000 Anne Chong E
111672010 75.0000 Jascha Kousevitzky
12/16/2009 50.0000 Brian Kahane
141652009 65.0000 Aldo Gonzalez
21652009 75.0000 Elaine Hasegawa
31152010 77.0000 Winifred Taylor
273772010 44 D000 Rafael Concepcion =

Linking from the Parent Table to a Child Table

We have already seen how a child table (Payments) can link to a parent table (Members).
You can also link in the reverse direction, from parent to child. The difference is that there
might be multiple child rows that link to a single parent row.

7.1 Using LINQ to Select Data 351

Suppose we want to fill a grid with the name of each member, combined with a count of the
number of payments made by the member. The following statements do that, using a grid
named dgvPayments:

Dim query = From aMember In db.Members
Select aMember.Last Name, aMember.Payments.Count()
dgvPayments.DataSource = query

The query returns a list of Member objects. For each one of these, the expression
aMember.Payments returns a list of payments made by the member. The code calls the Count
extension method to count the number of items in the list. In Tutorial 7-2, you will put these
techniques into effect by joining multiple tables.

d Tutorial 7-2:
Displaying the Karate class schedule

In this tutorial, you will create entity classes for the Instructors, Schedule, and Days
tables in the Karate database. Then you will create a LINQ query that uses associations
among the three entity classes to display the class schedule. Essentially, you will create
a SQL join query in the background, using LINQ techniques.

Tutorial Steps
Step 1: Create a new application named Karate Class Schedule.
Step 2: Add a connection to the Karate database inside the Server Explorer window.

Step 3: Add a LINO to SQL Classes object to the project and name it
KarateClasses.dbml.

Step 4: Drag the Days, Schedule, and Instructor tables from Server Explorer into the
Object Relational Designer window. Verify that arrows appear between the
classes, showing associations based on table relationships in the database.

Step 5: Add a DataGridView control to the startup form and name it dgvSchedule.
Optionally, you can dock the grid to the form; set RowHeadersVisible to
False; and disable adding, editing, and deleting.

Step 6: Create the following Form_Load event handler:

Private Sub MainForm Load() Handles MyBase.Load
Dim db As New KarateDataContext
Dim query = From sched In db.Schedules
Select sched.Day.Name, sched.Time.TimeOfDay,
sched.Instructor.Last Name
dgvSchedule.DataSource = query
End Sub

There are some important things to notice about this code:

e The sched variable is a Schedule object, which represents one row of the
Schedules table.

e We want to display the day name, so the expression sched.Day.Name uses
the association between the Schedule and Day entity classes to locate the
day name (such as Tue or Wed).

o The expression sched. Time would return a combined date/time object, so we
change it to sched. Time. TimeOfDay, which gives us only the time portion.

e The expression sched.Instructor.Last_Name gets the Last_Name property
from the Instructor entity class.

352 Chapter 7 LINQ to SQL

Step 7:

Save and run the application. The output, shown in Figure 7-11, shows the
class day, time, and instructor. The default column names are not too great,
so add some aliases named Day, Time, and Instructor to the query:

Dim db As New KarateDataContext
Dim query = From sched In db.Schedules
Select Day = sched.Day.Name,
Time = sched.Time.TimeOfDay,
Instructor = sched.Instructor.Last Name
dgvSchedule.DataSource = query

Each alias name precedes the actual column name, followed by an equals (=) sign.

Figure 7-11 Class schedule, with columns from three entity classes

Step 8:

a2 Karate Class Schedule =3
Mame TimeOfDay Last_Mame

Tue 09:30:00 Kyoshi Sensei

Tue 10:30:00 Kyoshi Sensei

Tue 13:00:00 Gonzalez

Tue 17:00:00 Gonzalez

Wed 16:00:00 (Gonzalez
Wed 17:00:00 Gonzalez

Thr 16:00:00 Kowalshi
Thr 17:00:00 Kowalski
Fri 16:00:00 Gonzalez

o v

Save and run the application. The revised output appears in Figure 7-12 with
the new column headings.

Figure 7-12 Class schedule, with aliased column names

a-) Karate Class Schedule (23]
Day Time Instructor

Tue 09:30:00 Kyoshi Sensei

Tue 10:30:00 Kyoshi Sensei

Tue 13:00:00 Gonzalez

Tue 17.00:00 (Gonzalez

Wed 16:00:00 Gonzalez

Wed 17.00:00 Gonzalez

Thr 16:00:00 Kowalski

Thr 17.00:00 Kowalshdi

Fri 16:00:00 Gonzalez

Fi el Gonae:

For extra practice, you may want to create an Object data source for this
example. Once you have attached it to the DataGridViewControl, you can
format the Time column to just hours and minutes.

7.1 Using LINQ to Select Data

Grouping Table Rows

The Group By operator is used in LINQ to group rows on one or more columns. For each
group, you can use formulas to show the number of items in the group, the average value,
total value, minimum, maximum, and so on.

For example, the following query groups the items in the Schedule table according to instruc-
tor last names, and counts the number of items in each group:

Dim query = From sched In db.Schedules
Group sched By sched.Instructor.Last Name
Into InstructorGroup = Count()

dgvGrid.DataSource = query

Figure 7-13 shows the output from this code sample. The group is named InstructorGroup,
and Count is a built-in LINQ function.

Figure 7-13 Instructor groups counts in the Schedule table

- Karate Class Schedule
Last_MName InstructorGroup
Gonzalez [
Kiowvalski 2

Counting the members of a group may be useful, but you may prefer to display the individ-
ual members of a group. To do that, you must use the Group keyword in the last line of the
query:

Dim query = From sched In db.Schedules
Group sched By sched.Instructor.Last_ Name
Into InstructorGroup = Group

Then you can loop through the query object and display the individual group members. The
following code displays the Last_Name property of each group member in a list box:

For Each grp In query
lstBox.Items.Add("Instructor = " & grp.Last_Name)
Next

The output from this query shows that the group names are automatically sorted in ascend-
ing order:

Instructor Gonzalez
Instructor Kowalski
Instructor = Kyoshi Sensei

Displaying the Items Inside Groups

Very often, you will want to display both the group names and the items belonging to each
group in a hierarchical display. In Figure 7-14, for example, the list box groups by instruc-
tor and displays the day and time of each class. Also, it displays a footer for each group con-
taining a count value. We can use the following query to generate the group information:

Dim query = From sched In db.Schedules
Group sched By sched.Instructor.Last Name
Into InstructorGroup = Group

353

354

Chapter 7

=

-
-

LINQ to SQL

Figure 7-14 Displaying the items in each Instructor group

u:l Karate Class Schedule @

iInstructor = Gonzales
Tue, 13:00:00
Tue, 17:00:00
Wed, 16:00:00
Wed, 17:00:00
Fri, 16:00:00
Fri, 17:00:00
Count = 6

Instructor = Kowalski
Thr, 16:00:00
Thr, 17:00:00
Count = 2

Instructor = Kyoshi Sensei
Tue, 09:30:00
Tue, 10:30:00
Count = 2

Then we use a nested loop structure to display all the information. The outer loop displays
instructor names on line 2.

l: For Each grp In query

2: lstBox.Items.Add("Instructor = " & grp.Last_Name)

3: For Each aClass In grp.InstructorGroup

4: lstBox.Items.Add(vbTab & aClass.Day.Name _

5: & ", " & aClass.Time.TimeOfDay.ToString)

6: Next

7: lstBox.Items.Add(vbTab & "Count = " & _
grp.InstructorGroup.Count())

8: Next

The inner loop, beginning on line 3, selects each class within an instructor group and dis-
plays the class day and time (lines 4-5). After this loop, line 7 counts the items in each group
and displays a group footer line.

NOTE: The type of listing shown in Figure 7-14 is often called a control-break report.
There are some great tools for creating reports that group items with headers and foot-
ers, and display totals and averages. In Chapter 12, you will learn how to use the
Microsoft reporting tools.

There are other useful ways to group items in a table. In the Karate payments table, for
example, you could group payments by Member ID, and calculate the number of payments
or the total payments made by that member.

Summary

In this section, you learned about the LINQ to SQL object model, and how entity classes
and DataContext objects are created. Then you learned how to create queries that select
rows from one or more database tables, using associations among entity classes. You also
learned how to group the rows.

It may take some time to become comfortable with the use of associations and table refer-
ences in this example. The effort is well worth it because almost all nontrivial queries involve
multiple tables. Remember, LINQ queries use objects and properties, not SQL server tables
and columns.

7.2 Updating Tables 355

'/ Checkpoint

1. LINQ translates your property and method calls into commands in which database
language?

2. Which type of class contains properties that match the structure of a specific
database table?

3. What is the purpose of the TableAttribute declaration?
4. What is the purpose of a DataContext object?

5. Which Visual Studio design tool lets you create LINQ to SQL entity classes?

Updating Tables

In this section, we will show you two basic approaches to updating database tables. The first
is to use data binding, with an Object data source bound to a LINQ entity table. Almost no
code must be written when you use this approach.

The second approach to updating tables is to write LINQ code statements to do the updat-
ing. This is more work than the data-bound approach, but it can be used in the middle tier
of a multi-tier application.

Updating a Table Using a BindingSource

Perhaps the easiest way to update data on a form is to use a BindingSource component,
which pulls data from a data source and assigns the data to controls on a form. It can also
use data from the controls to update the data source.

You create a BindingSource by dragging a table or class from the Data Sources window onto
a form. Or, you can add a BindingSource from the ToolBox window and set its DataSource
property to the name of one of your LINQ entity classes.

To fill the BindingSource fields with data, you assign its DataSource property a LINQ query
that selects table rows.
BindingNavigator

A BindingNavigator component appears as a ToolStrip control on a form, with buttons that
navigate forward and backward through rows, insert rows, delete rows, and save changes,
as shown here:

M 4]0 of{n}bbld‘;-‘)(a”

The navigator’s BindingSource property can be assigned the name of an existing Binding-
Source control. If you do that, the BindingNavigator and BindingSource work closely
together to save you lots of time and effort. For example, if users click the Delete button (red
X icon), the currently displayed item is deleted from the data-bound table. If users modify
an entry and then move to a different entry, their changes are saved in the table.

By default, the Save button (floppy disk icon) is disabled. If you want to save changes to the
underlying database, you can enable the Save button and write code that updates the database
with changes made to the data-bound table. You just execute the DataContext.SubmitChanges()
method. In Tutorial 7-3, you will learn how to use a binding source to update a table in the
database.

356 Chapter 7 LINQ to SQL

d Tutorial 7-3:
Using a BindingSource to update the Members table

In this tutorial, you will display rows from the Karate Members table in individual
detail fields. You will use a BindingSource object to transfer the data from a LINQ
query. The BindingSource will also let the user insert new entries, update existing
entries, and delete entries from the table.

Tutorial Steps
Step 1: Create a new application named Karate Member Details.
Step 2: Add a connection to the Karate database inside the Server Explorer window.

Step 3: Add a LINQO to SQL Classes object to the project and name it
KarateClasses.dbml.

Step 4: Drag the Members table from Server Explorer into the Object Relational
Designer window. Verify that arrows appear between the classes, showing
associations based on table relationships in the database.

Step 5: From the Data Sources window, add an Object data source to the project
(Refer to Figure 7-3 for an example.). In the Select the Data Objects step, drill
down into Karate_Member_Details and select the Member class. Click the
Finish button to save the data source.

Step 6: In the Data Sources window, select the dropdown list next to Member and
choose Details. Change the Date_Joined control type to TextBox.

Step 7: Drag the Member class into the design surface of the startup form. A Tool-
Strip and detail fields should be created for you. Notice that a MemberBind-
ingSource object appears in the form’s component tray. Rearrange the fields,
using Figure 7-15 as a suggested layout.

Figure 7-15 Editing member details with a BindingSource

u- Karate Member Details @
1 ofd | b M| X H

ID: 1

First Name: Keoki

Last Name: Kahumanu
Date Joined: 2/20/2002

Phone: 111-2222

If you were to run the application, nothing would appear in the detail fields.
You must write a query and assign it to the binding source.

7.2 Updating Tables

Step 8: Open the form’s code window and add the following to the class:
Private db As New KarateClassesDataContext

Private Sub Form Load() Handles MyBase.Load
Dim query = From aPerson In db.Members
Select aPerson
MemberBindingSource.DataSource = query
End Sub

The job of the MemberBindingSource is to provide two-way binding
(read/write) from the individual Member object properties to the individual
TextBox and Label controls.

Step 9: Save and run the application. Scroll forward and backward through the
entries in the table. Click the Delete button (red X icon) on the ToolStrip and
watch the entries disappear. Modify two of the entries and note the changes.
Stop the application.

Step 10: Start the application and verify that no database entries were deleted or mod-
ified. Stop the application.

As you can see, changes made by the user affected only the table in memory,
but not the underlying database. To change the database, you need to call the
DataContext’s SubmitChanges method.

Step 11: Enable the Save button on the ToolStrip (set its Enabled property to True).
Create a Click event handler for the button, and insert the following code:

Private Sub MemberBindingNavigatorSaveItem Click() _
Handles MemberBindingNavigatorSaveItem.Click
Try
MemberBindingSource.EndEdit ()
db.SubmitChanges ()
Catch ex As Exception
MessageBox.Show(ex.Message)
End Try
End Sub

The call to EndEdit completes any editing that might be in progress on the
currently displayed member.

Step 12: Experiment with inserting, updating, and deleting entries from the table. After
clicking the Save button, close the application, restart the application, and
verify that all changes you made were saved in the database.

Step 13: Build the application and run it again. Your database should return to its pre-
vious state.

Updating Tables Using LINQ Statements

Updating database tables with LINQ has two important advantages over writing update
queries in SQL: You can step through your LINQ code in the debugger, and you can call
functions within your own class.

LINQ works with strongly typed Table objects, which are defined with types such as
Table(Of Member) or Table(Of Payment). When you delete, insert, or modify a row in a
table, you can continue to display and update the table as long as the application is running.

357

358

Chapter 7

LINQ to SQL

The table is only in memory. From that point of view, tables have something in common with
DataSet objects.

If you want to update the database represented by a DataContext, you must call the
SubmitChanges method. Then all pending changes made to all tables within the DataCon-
text are written to the database. After that, you can continue to make more changes to the
tables, and call SubmitChanges again later, if you wish.

Deleting Table Rows

To delete a row from a list created by a LINQ query, call the DeleteOnSubmit method
defined in the DataContext’s Table class. For example, the KarateClassesDataContext class
contains a property named Payments, which is a Table(Of Payment) object. The following
statement would delete a row, assuming that db is a DataContext, and aPayment is a refer-
ence to the row we want to delete:

db.Payments.DeleteOnSubmit (aPayment)

If you want to delete the row from the underlying database, call the SubmitChanges method:

db.SubmitChanges()

Suppose that a variable named selectedId contains the ID of the payment we want to delete.
The following code begins by finding the Payment object:

Dim db As New KarateClassesDataContext
selectedId = 5 ' we will delete payment #5
Dim query =

From onePmt In db.Payments

Where onePmt.ID = selectedId

Select onePmt

The query returns a List(Of Payment) containing just one item. We can call the extension
method named First to get a reference to the item and pass it to the DeleteOnSubmit method.

db.Payments.DeleteOnSubmit (query.First())

Finally, to submit our change to the database, we call the SubmitChanges method. It’s a good
idea to use exception handling to report possible database errors:

Try

db.SubmitChanges|()
Catch ex As Exception

' (show error message)
End Try

Deleting from Related Tables

When you carried out SQL delete operations in Chapter 5, you found that deleting a row
from a parent table in a foreign key relationship can violate a database referential integrity
constraint. The same applies to associations between entity classes. You cannot, for exam-
ple, delete a row from the Members table if it contains references to rows in the Payments
table. Instead, you can delete all payments for the member and then delete the member.

Suppose we want to delete the member named Chong, whose ID = 2. We begin by deleting
this person’s payments:

Dim query = From aPayment In db.Payments
Select aPayment
Where aPayment.Member Id = 2 ' Chong

For Each aPayment In query
db.Payments.DeleteOnSubmit (aPayment)
Next

7.2 Updating Tables

Having done that, we can now delete Chong from the Members table:

Dim query2 = From aPerson In db.Members
Select aPerson
Where aPerson.ID = 2 ' Chong

db.Members.DeleteOnSubmit (query2.First())
Finally, we submit our changes to the database:

Try

db.SubmitChanges()
Catch ex As Exception

' (show error message)
End Try

Inserting Table Rows

The InsertOnSubmit method inserts a new row in a LINQ DataContext table. You do this
operation in two steps.

First, you construct the type of object that matches the table type. The Members table is type
Table(Of Member), so the following code builds a Member object:

Dim mem As New Member With

{.ID = 23,
.First Name = "Joe",
.Last_Name = "Smith",

.Date_Joined = #5/1/2011%,
.Phone = 303-444-3333}

Notice that we use the recent VB syntax that lets us create objects by assigning values to
properties. We no longer need a parameterized constructor.

Second, we call the InsertOnSubmit method, passing it the Member object:

Dim db As New KarateClassesDataContext
db.Members.InsertOnSubmit (mem)

Up to this point, the new row is only in the DataContext’s table. To add it to the database,
we call SubmitChanges:

Try

db.SubmitChanges|()
Catch ex As Exception

' (show error message)
End Try

Updating Table Rows

To update a row in a DataContext’s table, you first need to get a reference to the row
or rows you plan to update. The following query, for example, finds the member with
ID = 25:

Dim query =
From aMember In db.Members
Where aMember.ID = 25
Select aMember

Then you can use a For Each loop to iterate through the object (or objects) returned by the
query. You can modify one or more properties of the object. Here, we modify Date_Joined:

For Each person In query
person.Date Joined = #12/1/2011#%
Next

359

360 Chapter 7 LINQ to SQL

Up to this point, only the DataContext’s table has been modified. To write the changes to
the database, we call the SubmitChanges method:

Try

db.SubmitChanges|()
Catch ex As Exception

' (show error message)
End Try

In Tutorial 7-4, you will create an application that uses LINQ queries to insert, delete, and
update rows in the Karate Schedule table.

d Tutorial 7-4:
Using LINQ queries to add schedule entries

In this tutorial, you will create an application that lets the user add new entries to the
Karate school schedule. A sample of the user interface is shown in Figure 7-16. In the
upper half of the form, the current schedule is displayed in a DataGridView control. A
splitter bar separates the upper half from the lower half, where input fields and a Save
button are available for the user to input a new schedule item and save it in the table.
The Day_Id and Instructor_Id columns are both assigned values when the user selects
the day name and instructor name from combo boxes. Users should not be expected to
remember ID values, so the combo boxes are in place to offer usable selections.

Figure 7-16 Karate Schedule Updates application

o Karate Schedule Updates Fﬂ
D Day Time: Instructor j~
3 Tue 05:30:00 Kyoshi Sensei
2 Tue 10:30:00 Kyoshi Sensei
3 Tue 13:00:00 Gonzalez =
4 Tue 17:00:00 Gonzalez
5 Wed 16:00:00 Gonzalez | &
6 Wed 17:00:00 Gonzalez
7 Thr 16:00:00 Kowalshdi
Add a New Class
ID Day + Tme Instructor -

Tutorial Steps

Step 1: Create a new Application named Karate Schedule Updates. Change the Text
property of the startup form to Karate Schedule Updates.

Step 2:
Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

7.2 Updating Tables

Add a connection to the Karate database inside the Server Explorer window.

Add a LINQ to SOL Classes object to the project and name it
KarateClasses.dbml.

Drag the Days, Schedule, and Instructor tables from Server Explorer into the
Object Relational Designer window. Verify that arrows appear between the
classes, showing associations based on table relationships in the database.

Add a SplitContainer to the startup form and set its Orientation property to
Horizontal. Tts Dock property should automatically be set to Fill.

Add a DataGridView control to the upper panel of the SplitContainer and name
it dguSchedule. Set its Dock property to Fill. Disable adding, editing, and deleting.

Add the following code to the form’s class:

1l: Private db As New KarateClassesDataContext
2: Private selectedId As Short

33

4: Private Sub Form Load() Handles MyBase.Load
5 FillScheduleGrid()

6: End Sub

78

8: Private Sub FillScheduleGrid()

OF Dim query = From sched In db.Schedules
10: Select sched.ID,

11: Day = sched.Day.Name,

12: Time = sched.Time.TimeOfDay,

13: Instructor = sched.Instructor.Last Name
14:

15: dgvSchedule.DataSource = query

16: End Sub

When the form loads, line 5 calls FillScheduleGrid. The query on lines 9-13
was adapted from Tutorial 7-2, in which you combined properties from the
Schedule, Day, and Instructor entity classes.

Save and run the application, and verify that the schedule displays correctly.
Close the application window.

Add the controls listed in Table 7-2 to the form. They will help the user add
a new class to the schedule.

Table 7-2 Essential controls in the Karate Schedule Updates application

Control Type Name Property Values
SplitContainer (default) Orientation = Horizontal
Label IblTitle Text = Add a New Class
Font = Times New Roman 14.25 Bold
TextBox txtld
TextBox txtTime
ComboBox cboDay
ComboBox cbolnstructor
Button btnSave Text = Save
DataGridView dgvSchedule Dock = Fill

361

362

Chapter 7

LINQ to SQL

Step 10:

Step 11:

Step 12:

Next, you need to create LINQ queries that initialize the ID text box with the
next available ID number. Add the PreparelnsertFields method.

1l: Private Sub PrepareInsertFields()

2: ' Choose the next ID number

BE Dim idQuery = From sched In db.Schedules
4: Select sched.ID

58 txtID.Text = (idQuery.Max() + 1).ToString
6:

78 ' Fill combo box with days of the week

8: Dim dayQuery = From aDay In db.Days

OF Select aDay.ID, aDay.Name

10: cboDay.DataSource = dayQuery

11: cboDay.DisplayMember = "Name"

12: cboDay.ValueMember = "ID"

13:

14: ' Fill combo box with instructor names

15: Dim instructorQuery = From aPerson In db.Instructors
16: Select aPerson.ID, aPerson.Last Name

17: Order By Last Name

18: cboInstructor.DataSource = instructorQuery
19: cboInstructor.DisplayMember = "Last Name"
20: cboInstructor.ValueMember = "ID"

21: End Sub

Lines 3-5 get the highest ID number from the Schedules table and add 1, thus
generating the ID number we will use when inserting a new row. Lines 8-12
fill a combo box with the days of the week. They also set the ValueMember
property so we can get the ID number of the user’s selection when the user
selects a day for the class. Lines 15-20 use a query to fill another combo box
with all the instructor names. At runtime, when the user selects an instructor,
we will take the ID from the combo box’s SelectedValue property and insert
it in the new Schedules table entry.

Add a line to Form_Load that calls the PreparelnsertFields method.

Private Sub Form Load() Handles MyBase.Load
FillScheduleGrid()
PreparelInsertFields()

End Sub

Next, add the following Click handler for the Save button that creates a
Schedule object from the user’s entries and inserts it in the Schedules table.

1: Private Sub btnSave Click() Handles btnSave.Click

2: 'Save the new class into the schedule

BE Try

4: Dim dt As Date = CDate(txtTime.Text)

5 Dim sched As New Schedule With {

6: .ID = CShort(txtID.Text),

78 .Day Id = CShort(cboDay.SelectedValue),

8: .Time = Today.Add(New TimeSpan(dt.Hour,
dt.Minute, 0)),

OF .Instructor Id = CShort(cboInstructor.
SelectedvValue)}

10: db.Schedules.InsertOnSubmit (sched)

11: db.SubmitChanges()

12: FillScheduleGrid()

138 MessageBox.Show("Class saved into the schedule")

14: Catch ex As Exception

7.2 Updating Tables

15: MessageBox.Show(ex.Message)
16: End Try
17: End Sub

Lines 5-9 use object initializers to create a new Schedule object, using values
from the txtID, cboDay, txtTime, and cbolnstructor controls. The Time prop-
erty (line 8) is a special case because it must contain both a date and a time.
We’re not interested in the date, so we set to Today (current date), and add a
TimeSpan object that was created on line 3. Line 10 inserts the Schedule
object into the Schedules table, and line 11 saves the table changes to the data-
base. Line 12 refills the DataGridView control with the updated contents of
the Schedules table.

Step 13: Save and run the application. Add a new class to the schedule and verify that
it appears at the bottom of the grid. Verify that the program cannot halt
because of invalid input.

Summary

It requires a surprising amount of code to prepare the combo boxes in this example
before the user can add a new row to the Schedules table, but the code is fairly straight-
forward. Fortunately, the code you would write to update an existing table row is
almost identical to the code you just wrote for the Save button’s click handler.

If You Want to Know More: A Close Look at the
KarateClassesDataContext

You can learn many interesting things by looking at the source code of the KarateClasses-
DataContext we have been using in the tutorials. To see this code, select the Show All Files
button in the toolbar at the top of the Solution Explorer window. Before examining this file,
drag the Members table from the Server Explorer window into the Object Relational
Designer window.

Open the KarateClasses.designer.vb file. You should not modify this file, but you can look
at it. The following lines declare the KarateClassesDataContext class, which inherit from the
DataContext class:

<Global.System.Data.Ling.Mapping.DatabaseAttribute(Name:="karate")> _
Partial Public Class KarateClassesDataContext
Inherits System.Data.Ling.DataContext

The first line above is a special attribute that must be placed before any class that will be
recognized by LINQ. The DatabaseAttribute property links this class to the karate database.

Next, an AttributeMappingSource object is declared. It is needed when you want to link up
each database table column to a property in a class.

Private Shared mappingSource As System.Data.Ling.Mapping.MappingSource
= New AttributeMappingSource/()

Next are several constructors. One of the constructors receives a connection string argu-
ment. It passes the connection string and the mappingSource variable to the constructor in
the DataContext class.

Public Sub New(ByVal connection As String)
MyBase.New(connection, mappingSource)
OnCreated

End Sub

363

364

Chapter 7

LINQ to SQL

The Members property returns a Table(Of Member) object, containing the rows from the
Members table in the database.

Public ReadOnly Property Members() As System.Data.Ling.Table(Of Member)
Get
Return Me.GetTable(Of Member)
End Get
End Property

Find the Member class, which represents a single member, or row from the Members
database table. Notice that it uses a TableAttribute property to identify the database
table.

<Global.System.Data.Ling.Mapping.TableAttribute(Name:="dbo.Members")> _
Partial Public Class Member

This is also declared as a partial class, which allows you to create a Member class in your
own code and thus to add more features to the class. Then the compiler can join the two
partial classes into a single class when the project is compiled.

Inside the Member class are private variables that match each column from the Members
table.

Private _ID As Short

Private _Last Name As String

Private _First Name As String

Private _Phone As String

Private _Date_Joined As System.Nullable(Of Date)

Each variable is accompanied by a property procedure that does some fairly complicated
work of updating the database field contents. Let’s look at one of them:

1: Public Property Last Name() As String

2: Get

3: Return Me. Last Name

4: End Get

5: Set

6: If (String.Equals(Me. Last Name, value) = false) Then
7: Me.OnLast_NameChanging(value)

8: Me.SendPropertyChanging

9: Me. Last_Name = value

10: Me.SendPropertyChanged("Last_Name")
11: Me.OnLast_NameChanged

12: End If

13: End Set

14: End Property

When a new value is assigned to the property, line 6 checks to see if the new value being
assigned is different from the existing value. Assuming that it is different, lines 7 and 8
raise events that indicate that the name property is about to change. Line 9 assigns the
new value to the private variable, and lines 10-11 raise events indicating that the prop-
erty has changed. You can inspect the SendPropertyChanging event code in this same file,
if you wish.

Why, then, are these events raised? Sometimes you may want to write code that validates a
value before it is assigned to a property. But you need to know when the change is about to
take place, and that’s where the events are useful. You can write an event handler that exe-
cutes when one of the events is raised.

You could create your own DataContext class by hand, but it’s a lot easier to let Visual Stu-
dio do it for you. The main thing is to understand what’s in there and how to use it.

Summary

Summary

There’s no doubt that expert SQL database programmers are in high demand in today’s mar-
ketplace. If you are looking in that direction, you will have many opportunities. But many
database application tasks are repetitive and time-consuming. LINQ provides an opportu-
nity to spend your time on the more interesting, analytical, and design aspects of applica-
tions. To use an analogy, if you had spent your early years making cooking fires with wood
sticks, imagine how much you would appreciate the invention of the barbecue grill!

Checkpoint
@) crecko

1

6.
7.
8.

0.

What is the purpose of a BindingSource component?
What is a BindingNavigator component?

If you want to update the database represented by a DataContext, which method
must you call?

Which method deletes a row from a list or table created by a LINQ query?

Which method inserts a new row in a LINQ DataContext table?

Summary

7.1

Using LINQ to Select Data

LINQ queries use objects and methods to view and update databases.

LINQ queries are translated to SQL queries, which are executed against the database.
When you use LINQ to SQL, you do not issue commands directly to a database.
Instead, you use custom classes that represent database tables and the relationships
between the tables.

An entity class is a class that contains properties that match the structure of a specific
database table.

An entity class property is a member of an entity class that gets and sets the value of
a class-level variable.

An association in an entity class is a reference to another class that corresponds to a
relationship between two database tables.

A method in an entity class contains code that executes a database-stored procedure
or function.

To connect to a database, you need to create a DataContext object. This object pro-
vides methods that connect to the database, retrieve data, and submit updates to the
database.

The Object Relational Designer (O/R Designer) is a Visual Studio design tool that lets
you create LINQ to SQL entity classes. The O/R Designer also creates strongly typed
DataContext classes.

An Object data source binds a LINQ entity class to controls such as DataGridView. A
BindingSource object is added to the form’s component tray.

The Group By operator is used in LINQ to group table rows based on one or more
columns. For each group, you can use formulas to show the number of items in the
group, the average value, total value, minimum, maximum, and so on.

365

366

Chapter 7

LINQ to SQL

7.2

Updating Tables

LINQ queries can be used to insert rows and delete rows from tables. They can also
be used to modify existing table entries.

The easiest way to update a table in LINQ is to use a BindingSource component (cre-
ated as an Object data source).

A BindingNavigator component appears as a ToolStrip control on a form, with but-
tons that navigate forward and backward through rows, insert rows, delete rows, and
save changes.

If you want to update the database represented by a DataContext, you must call the
DataContext.SubmitChanges method. Then all pending changes made to all tables
within the DataContext are written to the database.

To delete a row from a list created by a LINQ query, you call the DeleteOnSubmit
method defined in the DataContext’s Table class.

Deleting a row from the parent table in an association requires special care to avoid
violating a referential integrity constraint.

The InsertOnSubmit method inserts a new row in a LINQ DataContext table.

To update a row in a DataContext’s table, you first need to get a reference to the row
or rows you plan to update. Then you can use a For Each loop to iterate through the
objects returned by the query and modify their properties.

Key Terms

association Group By operator
BindingNavigator Language Integrated Query (LINQ)
BindingSource LINQ to SQL

column attribute Object data source

database entity mapping Object Relational Designer (O/R
entity class Designer)

entity method pluralization

entity property table attribute

Review Questions and Exercises

True or False

Indicate whether each of the following statements is true or false.

1.

(/]

10.

LINQ should be used in the data tier of a three-tier application.

2. LINQ is implemented only in Microsoft .NET languages.

3. A TableAttribute identifies a LINQ entity class.

4. The ColumnAttribute class belongs to the System.Data. Mapping namespace.
S.
6
7

GetTable in the DataContext class returns a strongly typed DataTable object.

. An O/R Designer file has an extension of .dbml.

. Pluralization in LINQ is the practice of creating multiple classes from a single database

table.
Associations between LINQ entity classes are always one to one.

Even if a relationship between two tables does not exist in the database, you can still
create an association between two entity classes that represent the tables.

Table(Of Member) is an example of a strongly typed table class.

11.

12.
13.
14.
15.
16.

Programming Challenges

To assign a LINQ query to a DataGridView’s DataSource property, you must call the
ToList method.

You can assign a query to a BindingSource’s DataSource property.

If you use runtime data binding with a LINQ query, you cannot format the grid columns.
To create an Object data source, you must run the Data Source Configuration wizard.
You cannot use an entity class association to link from a parent table to a child table.

Join queries are not supported by LINQ.

Short Answer

. Which relational database object is represented by a LINQ entity class?

Which relational database object is represented by a LINQ entity property?
Which relational database object is represented by a LINQ association?

In the Karate database tutorials, what was the name of the strongly typed DataContext
class?

What is the O/R Designer?

. How are associations useful in LINQ queries?

What advantage does a BindingSource offer when used to fill a DataGridView from a
LINQ query?

. How do you create an alternate column name (an alias) when creating a LINQ query?

Algorithm Workbench

1.

Write a LINQ query that selects all rows from the Karate Members table in which the
phone number starts with the digit 3.

. Write a LINQ query that selects all rows from the Karate Members table in which the

Last_Name property contains the string “ha”.

. Write a query that groups the rows of the Schedule table in the Karate database by the

instructor’s last name.

. Write a LINQ query that groups the rows of the Schedule table in the Karate database

by the Day ID number. Within each group, display the day name and class time in a List-
Box control.

. Write a LINQ query that groups payments by Member_Id into a group named pay-

mentGroup.

Programming Challenges

1.

Adding New Payments

Create an application that lets the user add new payments to the Karate database. Use
an Object data source, a LINQ query, and a BindingSource control. Do not use a
MenuStrip control, but use a Save button to save the payments. Add a Show Payments
button that displays the Payments table on a separate form in a DataGridView control.
A sample main form is shown in Figure 7-17. Catch all exceptions and display a mes-
sage box if an exception is thrown. Display a confirmation message when a row is added
successfully. Hint: Be sure to initialize the BindingSource’s DataSource property with a
LINQ Select query when the form is loaded.

367

368

Chapter 7

LINQ to SQL

Figure 7-17 Adding a new payment to the Payments table

a5 Adding New Payments @
Amourt: 450
Member Id: 2

Payment Date: 5/10/2011

Save] [Show Payments ;

2. Deleting Payments

Create an application that lets the user delete payments from the Karate database. Use
an Object data source and a BindingSource control. Add a ToolStrip control containing
a Delete button, as shown in Figure 7-18. Display all payments in a DataGridView con-
trol. When the user selects a payment and clicks the Delete button, LINQ queries that
delete the payment and refresh the grid are executed.

Figure 7-18 Selecting and deleting payments

a-' Deleting Payments @
Delete
D Member_Id Payment_Date Amount j*
1 1 10/20/2003 43.00 =
2 2 11/20/2010 80.00 | &
3 6 1141672010 75.00
4 4 12/16/2009 50.00
5 5 1/16/2009 65.00
6 3 2/16/2009 75.00 1N

3. Grouping Karate Payments

Use the Group By operator to group the Payments table by member ID. Display the mem-
ber ID in the outside group, and display the individual payment dates and amounts within
each group. Write the output to a ListBox control, as demonstrated in Figure 7-19.

Figure 7-19 Grouping payments by Member ID

a5l PaymentGroups @
Member |0 =1
43.00. 10/20/200%
44.00, 3/11/72010

| »

m

Member 1D =2
80.00, 11/20/2010
55.00, 3/21/2010

Member 1D =3
75.00, 2/16/2009
43.00, 3/28/2010

Member 1D = 4
50.00, 12/16/2009
44.00, 3/27/2010

Programming Challenges 369

4. Grouping Payments by Member Name

Use the Group By operator to group the Payments table by the members combined first
and last names. Display the member name in the outside group, and display the indi-
vidual payment dates and amounts within each group. Write the output to a ListBox
control, as demonstrated in Figure 7-20.

Hint: The Group By operator permits only a single key field, so you will have to create
an anonymous type and assign it an alias name, called MemberName here:

Group aPayment By MemberName = New With {aPayment.Member.First Name,
aPayment.Member.Last Name}

Figure 7-20 Grouping payments by member name

o5 Grouping Karate Payments @

iAnng Chong A
80.00, 11/20/2010
55.00. 3/21/2010

m

Rafael Concepcion
44,00, 2/27/2010
77.00, 5/11/2010

AMldo Gonzalez
65.00, 1/16/2009
66.00, 4/11/2010

Elaine Hasegawa
75.00, 2/16/2009
43.00, 3/28/2010 2

5. Students and Course Lists

In this programming challenge, you will use LINQ statements to display college courses
taken by selected students. You will use a CourseRegistration database, which contains
tables named Students and Courses.

o The Students table contains the following columns: Id (smallint, primary key), Last-
Name (varchar(30)), Status (smallint), and Major (varchar(5)).

e The Courses table contains the following columns: Id (varchar(10)),
Student_Id(smallint), Credits (smallint), and Grade (float). The primary key of the
Courses table consists of two combined columns: Id and Student_Id.

Figure 7-21 shows a one-to-many relationship between the Students and Courses tables.
You can find the CourseRegistration.mdf database file in the chapter examples folder.

Figure 7-21 Database relationship between the Students and Courses tables

Students Courses
7 Id @1 [%
LastMame GC: % Student_Id
Status i : Credits
Major : Grade
| |

Use a LINQ query to fill a DataGridView with a list of Student objects. When the user
selects a student in the grid, display all courses taken by the student in a separate grid.
Use another LINQ query to fill the second grid. A sample is shown in Figure 7-22, in
which Student 1001 (Charles) was selected by clicking the left side of his row. The grid
on the right fills with the list of courses taken by the selected student. Notice that the

370 Chapter 7 LINQ to SQL

rightmost column in the Student grid displays a count of the number of courses the stu-
dent has taken. This column was not in the database, but it is calculated by the LINQ
query. We showed how to do such a calculation in Section 7.1.

The two DataGridView controls should be inserted into panels belonging to a Split-
Container control. At runtime, the user will drag the divider between the two panels to
adjust their size. To format the Grade column in the right-hand grid, set its Default-
CellStyle.Format property like this:

dgvCourses.Columns(2) .DefaultCellStyle.Format = "n"

Figure 7-22 Displaying courses taken by a selected student

a5 List of Students =23
Id LastMame Status Majar Courses Id Credits Grade
1001 Charles 1 BIO 4 CEN2030 3 320
DO 241 dores 1 BIO 6 COP1170 3 250
1641 Bakcer 2 ENG 4 COP1210 4 350
1961 Davis 2 ENG 2 COP3337 3 300
1975 | Perez 3 ENG 4 ENG1101 3 400
2205 |Smith 2 MTH 3 PHI2001 3 350
2210 |Chong 3 BIO 4

Creating
Web Applications

CHAPTER

8.1 Programming for the Web 8.4 List-Type Controls

8.2 Creating ASP.NET Applications Tutorial 8-4: Signing up for a kayak
Tutorial 8-1: Creating the Click tour
application 8.5 Designing Web Forms

8.3 ASP.NET Controls Tutorial 8-5: College Advising Wizard

Tutorial 8-2: Student Picnic application 8.6 State Management
Tutorial 8-3: Tracking server events

This chapter introduces the ASP.NET runtime environment, showing how to use Visual Stu-
dio to create Web sites. You learn what happens when an ASP.NET page is processed by a
Web server. You learn about runtime events, the different categories of controls available in
ASP.NET applications, and the differences between HTML controls and ASP.NET controls.
The chapter describes application and configuration files required by ASP.NET applications.
Finally, we show how to create a simple Web application containing various types of but-
tons, labels, headings, and text boxes.

Programming for the Web

Extended HyperText Markup Language (XHTML)

When the Web first became popular, HyperText Markup Language (HTML) was the only
available markup language for creating pages with text, graphics buttons, and input forms.
Later, eXtended HyperText Markup Language (XHTML) was created to meet a need for
more advanced Web sites. XHTML not only describes the appearance of Web pages, it has
the ability to embed commands that execute on the Web server.

Many Web sites today are fully functional, interactive applications. In past years, Web
applications tended to be pasted together from a complicated combination of HTML,
scripting languages such as JavaScript, and executable programs. But now you can create
Web sites that integrate all of these elements in an easy and natural way, using Microsoft
ASP.NET.

371

372

Chapter 8

1)

Creating Web Applications

ASP.NET

ASP.NET is the name given to Microsoft’s Web development platform. It provides develop-
ment tools, code libraries, and visual controls for browser-based applications. ASP.NET
applications run under Web browsers such as Internet Explorer, Netscape, and Mozilla Fire-
fox. An application can run on the Web, on your own computer, or on a network (called a
network share). ASP.NET provides a way to separate ordinary HTML from object-oriented
program code. It also provides many powerful controls, which are similar to Windows Desk-
top controls. ASP.NET lets you transfer a lot of your Visual Basic knowledge to Web appli-
cations. Most important, ASP.NET uses a compiler to check for syntax errors before your
program executes. Visual Basic code can be stored in a file separate from a page’s text and
HTML, making it easier for you to code and maintain program logic.

Web applications written for ASP.NET generally consist of the following parts:

e Content—Web forms, HTML code, ASP.NET controls, images, and other multimedia.
* Program logic—Code written in Visual Basic or C#.
o Configuration information—Stored in a file named Web.config.

Visual Web Developer

Visual Studio makes it easy to edit pages in Source view (XHTML markup), Design view, or
Split view (both source and design). If you do not have Microsoft Visual Studio, you can
download Visual Web Developer, a free Microsoft development tool that simplifies the way
you create Web applications. It lets you do the following:

e Create powerful visual interfaces, with text boxes, color, images, buttons, list boxes,
and calendars.

e Create connections to databases, with table adapters and datasets.

e Display database data in gridl