
Android UI Design

Plan, design, and build engaging user interfaces for your
Android applications

Jessica Thornsby

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Android UI Design

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1180516

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-742-0

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Author

Jessica Thornsby

Copy Editor

Yesha Gangani

Reviewer

Leonardo Risuleo

Project Coordinator

Sanchita Mandal

Commissioning Editor

Edward Gordon

Proofreader

Safis Editing

Acquisition Editor

Larissa Pinto

Pratik Shah

Indexer

Rekha Nair

Content Development Editor

Samantha Gonsalves

Production Coordinator

Aparna Bhagat

Technical Editor

Shivani K. Mistry

www.allitebooks.com

http://www.allitebooks.org

About the Author
Jessica Thornsby studied poetry, prose, and scriptwriting at Bolton University before
discovering the world of open source and technical writing, and has never looked back
since. Today, she is a technical writer and full-time Android enthusiast residing in sunny
Sheffield, England.

She enjoys writing about rooting and flashing mobile devices, Java, Eclipse, and all things
Android and Google. She is also the co-author of iWork: The Missing Manual.

When not wordsmithing about technology and obsessing over the latest Android
developments, she keeps a blog about her local food scene and writes about looking after
exotic pets. On the rare occasions that she's dragged away from her computer, she enjoys
beer gardens, curry houses, the great British seaside, scary movies, and spending lots of
time with her house rabbits and chinchillas.

I'd like to thank the entire team at Packt Publishing for their support and encouragement on this
project. I also have to thank all my friends and family for putting up with me during the writing
process (and in general!), with special thanks to my parents, Peter and Pauline, and my fiancé, Toby.
Last, but not least, I'd like to thank my menagerie for keeping me company even when deadlines keep
me shackled to my keyboard: my chinchillas Taco, Buca, Churro, and house bunnies Peanut and
Stewart.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer
Leonardo Risuleo is the owner and creative director at Small Screen Design. He is a
designer and developer with several years of experience in mobile, new media, and user
experience. Leonardo is a highly dedicated professional, and he's passionate about what he
does. He started his career back in 2003, and during past few years, he has worked on a
variety of different mobile and embedded platforms for a number of well-known brands
and studios. Leonardo designs, prototypes, and develops mobile applications, games,
widgets, and web sites.

He has had the honor of being Nokia Developer Champion, a recognition and reward
program for top mobile developers worldwide, for 3 years in a row (2008 to 2010). In 2008,
Leonardo founded Small Screen Design (www.smallscreendesign.com), a design and
development studio focused on mobile design and user experience. In 2015, he became
Digital Champion for Squillace, an ambassador for Digital Agenda, to help every European
become digital.

www.allitebooks.com

http://www.smallscreendesign.com
http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.packtpub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://cdp.packtpub.com/endtoendtesting/wp-content/uploads/sites/52/2015/12/image_10_002.png
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Chapter 1: Introducing the Android UI 7

What is a user interface anyway? 8
Is developing UIs for Android really that different from other platforms? 11
What are the characteristics of an effective UI? 12
Why is UI essential for the success of your app? 13

Instant familiarity 13
Easy and enjoyable to use 13
Consistency 14
Preventing user frustration 14
Helping users fix their mistakes 14
Providing a better overall Android experience 15

The UI case study – Google+ 15
The action bar 16

Navigational controls 16
Action buttons 17
The action overflow 18

Floating action button 19
Menus 20
Settings 21
Dialogues 23
Toasts 24
Search 24
Input controls 26
Styles and themes 26

Summary 27
Chapter 2: What Goes into an Effective UI? 28

What is a view? 28
What is a layout? 29
Building your UI – XML or Java? 30

Declaring your UI with XML 30
Declaring your UI programmatically 33
Using both programmatic and XML layouts 34

Deep dive – exploring layouts 35
Defining the size of your layouts 35

www.allitebooks.com

http://www.allitebooks.org

[ii]

A supported keyword 35
A dimension value 36
Setting the layout size programmatically 36

Exploring different layouts 37
Everything you need to know about LinearLayout 37
Everything you need to know about RelativeLayout 39

Relative to the parent container 39
Relative to other elements 41
Aligning with other elements 42

Creating views 43
Assigning the ID attribute 44
Setting a view's size 45
Android gravity and layout gravity 45
Setting the background – working with color 46
Assigning a weight value 49

Adding and customizing view objects 51
TextView 51

Brightening up your text 52
Setting the size of your text 53
Emphasizing your text 53
Setting the typeface 54
How many lines? 55

EditText 55
Controlling keyboard behavior – setting the inputType 57
android:imeOptions 59
Giving the user a hint 60

ImageView 60
Supporting multiple screens 61

Supporting different screen densities 62
Creating density-specific images 64

Adding ImageView 65
Buttons and ImageButtons 66

Creating buttons with text labels 67
Creating buttons with image labels 67
Creating buttons with text and image labels 67

State list resources 68
Summary 70

Chapter 3: Expanding your UI – Fragments, Resources, and Gathering
User Input 71

More resource types 71

www.allitebooks.com

http://www.allitebooks.org

[iii]

Creating and styling string resources 72
Creating string arrays 73
Defining dimensions in dimens.xml 74
Color state lists 77

Working with 9-patch images 79
How do I create 9-patch images? 81

Registering the user input 83
Handling click events 83

Handling onClick Via Java 83
Handling onClick Via XML 84

Registering the EditText input 84
The example app 85

Working with fragments 89
Why do we need fragments? 90
The fragment life cycle 92
Creating a fragment 93

Fragments and backwards compatibility 94
Creating your fragment class 95
Adding a fragment to your activity declaratively 97

Adding a fragment to an activity at runtime 98
Fragment transactions and the back stack 100

Adding a fragment 101
Removing a fragment 101
Replacing a fragment 101

The multi-window support in Android N 102
How does the multi-window mode work? 103
Getting your app ready for multi-window mode 103

Testing your app's multi-window support 104
Picture-by-picture mode 105

Summary 107
Chapter 4: Getting Started with Material Design 108

The Material Design ethos 109
Case study – Hangouts 110
Case study – Google Calendar 111
Case study – Google Maps 112

Getting started with Material Design 113
Applying the Material theme to your app 113

Choosing your color scheme 116
Backwards compatibility 116

Creating a sense of depth 117

www.allitebooks.com

http://www.allitebooks.org

[iv]

Creating a Material Design structure 119
Floating action buttons 119
Bottom sheets 121
CardView 123
Lists and RecyclerView 126
Animations and transitions 127

Reinforcing the Material Design illusion 128
Providing the user with a visual feedback 129

Animations – a word of warning 129
The finishing touches 129

Designing your product icon 130
System icons 131

Typography and writing 132
Typefaces 132
Text opacity 132
Writing guidelines 133

Summary 134
Chapter 5: Turning Your Bright Idea into a Detailed Sketch 135

Brainstorming – taking advantage of mobile hardware 136
Touch and gestures 136
GPS 137
Vibration 137
Audio input/output 137
Interacting with other devices 138

The difference between UX and UI 139
Brainstorming your app 139

Writing a concept 140
Creating an ultimate features list 140
Identifying your app's primary task 140
Is this application right for mobile? 141
Do you have the budget? 141

Planning your app 142
Identifying your target audience 142

Creating a persona 143
The mobile persona 145

Creating use cases 146
Deciding on a feature list 147
Taking a critical look at your target audience 148

Does your target audience need a mobile app? 148
Is your target audience on Android? 148

www.allitebooks.com

http://www.allitebooks.org

[v]

Okay, so your target audience is on Android, but does it own a suitable
Android device? 149
Do they use this “type” of application? 149
Would your target audience be willing to pay for this application? 150
Are there enough people in your target audience for your project to be
profitable? 151

Identifying user and product goals 152
Product goals 153
User goals 153

Creating a roadmap 154
Some final things to think about 156

What devices should you support? 156
How should you market your app? 156

Designing your application 157
The high-level flow 157
Creating a screen list 159
Creating a screen map 159

Grouping screens into multi-pane layouts 160
Navigation 161

What are your app's most important tasks? 162
Are there any tasks you can group together? 163
Is my navigation consistent? 163

Common navigation patterns 163
The embedded navigation 163
Buttons and simple targets 163
Lists 164
Grids, cards, and carousels 164
Tabs 165
Horizontal paging (swipe views) 166

The social layer 167
Summary 169

Chapter 6: Turning Your Sketches into Wireframes 170
What is wireframing? 171

What are the benefits of wireframing? 171
Creating a Wireframe 174

Creating your first wireframe 175
Exploring more wireframes 176

Wireframing a details screen 177
Wireframing search screens 181

The search screen as a fragment 184
Digital wireframes 186

[vi]

Adding content to your wireframes 188
What is paper prototyping? 190

Usability testing 190
Rapid prototyping 191

Summary 192
Chapter 7: Building a Prototype 193

Creating a prototype in Android Studio 194
Creating your first prototype 198
Creating your second prototype 204
Finalizing your design 211

Visuals 212
Background music and sound effects 212
Your text 212
Your app's personality 214

Creating themes and styles 215
Defining styles 216

Inheritance 219
Working with themes 220

Get ready for errors! 222
User input errors 222

Summary 225
Chapter 8: Reaching a Wider Audience – Supporting Multiple Devices 226

Supporting different versions of Android 227
Specifying minimum and target API levels 228

minSdkVersion 228
targetSdkVersion 229
compileSdkVersion 229

Check version at runtime 229
Supporting different screens 230

Configuration qualifiers 231
How Android selects the perfect resource 232
Creating alias resources 233

Screen density 235
Converting dpi into pixels and vice versa 237

Providing different layouts for different screen sizes 237
238
239

smallestWidth – sw<N>dp
Available screen width – w<N>dp
Available screen height – h<number>dp 239

Designing for different screen orientations 240
Reacting to orientation changes 241

[vii]

Testing across multiple screens 242
Showing off your screen support 244

Attracting an international audience 244
Identifying the target languages and regions 245

Providing alternate text 245
What other resources might you need localizing? 247
Why default resources are important 247

Which configuration qualifiers are the most important? 249
Getting your app translated 249

Getting the most out of your translations 250
Putting your strings in context 251
Using terms consistently 251
Getting your strings in order 252
Not creating unnecessary strings 252
Always marking non-translatable text 252

Other things to consider 254
Right to left support 254
Formatting values 254

Localizing your app – best practices 255
Design a single set of flexible layouts 255
Create alternate languages only when needed 256

Testing your app across different locales 256
Testing for different locales 257

Look for common localization issues 258
Testing for default resources 259
Plan a beta release in key countries 260
Get ready for lift off! 261

Localize your Google Play store listing 262
After launching your project 264

Following a successful launch – supporting international users 264
Monitor your app's international performance 265

Summary 266
Chapter 9: Optimizing Your UI 267

Timing your code 267
Identifying overdraw 271
Simplifying your Hierarchy View 277

Tree View 278
Tree overview 279
Layout View 279

Spotting memory leaks 282
Memory monitor 282

[viii]

Heap tab 284
Object allocation – understanding memory churn 286

Debugging your project 288
Working with breakpoints 290

Configuring your breakpoints 292
Examining your code with Lint 293
Optimizing your code with ProGuard 296
Scrutinize each pixel 297

Pixel Perfect pane 298
Pixel Perfect tree 299
Pixel Perfect Loupe pane 299

Processes and threads 299
Terminating processes 300

Foreground processes 301
Visible processes 301
Service processes 301
Background processes 301
Empty processes 302

Re-using layouts with > and <merge/> 302
Loading views only when needed 303

Summary 304
Chapter 10: Best Practices and Securing Your Application 305

Keeping user data secure 305
Connecting to a network 306

Requesting permissions 308
The new permissions model – backwards compatibility 311
Permission groups 312
Declaring permissions 313

Verifying permissions 314
Handling the permissions request response 315

316Permissions and <uses-feature>
Best practices for app permissions 318

Making as few permission requests as possible 318
Requesting critical permissions up front 319
Providing extra information where necessary 319
Paying attention to permissions required by libraries 320
Being transparent about accessing the camera and microphone 321
Considering alternatives 321

Notifications 322
Notification best practices 323

[ix]

Providing the right content 323
Using notifications sparingly 323
Giving users a choice 324
Categorising notifications 324
Making use of actions 325
Using expanded layouts 326

Big text style 326
Big picture style 326
Inbox style 326

Direct reply notifications 326
Bundled notifications 327

Application widgets 329
Declaring an AppWidgetProvider class in your project's Manifest 329
Creating an AppWidgetProviderInfo file 330
Creating the widget's layout 331

App widget best practices 331
Including margins for earlier versions of Android 332
Providing flexible graphics and layouts 332
Not updating too often 333

Accessibility best practices 333
Adding descriptive text to your UI controls 334
Designing for focus navigation 335
Custom view controls 337

Providing alternatives to audio prompts 337
Testing various font sizes 337
Using recommended touch target sizes 338
Providing alternatives to affordances that time out 338

Testing your application's accessibility features 338
Summary 340

Index 341

Preface
Your UI is your most direct communication with your users, but all too often in app
development, design is an afterthought, or something that "just happens" along the way.

In order to develop a great app, you need to take your UI design seriously. Even if your app
delivers great functionality, if its user interface is clunky, laggy, difficult to navigate, or just
an all-around eyesore, then no one is going to want to use it.

Android isn't the easiest platform to design for. Creating an app that looks great across
countless different devices, all with different combinations of hardware, software, and
screens, is no mean feat. But if you put some thought into the design process, you can create
a UI that delivers a great experience across the entire Android ecosystem.

This book will help you become a design-minded developer. Over the course of 10 chapters,
you'll learn how to design, refine, test, and develop an effective, engaging UI that people
will love using and that delivers the best possible experience regardless of device specifics.

From the fundamentals of layouts and views right through to creating responsive, multi-
pane layouts, and from sketching your screens, through to using Android Studio's tools to
scrutinise your view hierarchy and hunt out memory leaks, this book covers everything you
need to create the perfect Android UI.

What this book covers
Chapter 1, Introducing the Android UI, explains why designing and developing an effective UI
is essential to the success of your app.

Chapter 2 , What Goes into an Effective UI?, teaches you how to master the building blocks of
every Android UI: layouts and views. Learn how to create and style common UI
components including text, images, and buttons.

Chapter 3 , Expanding your UI – Fragments, Resources, and Gathering User Input, helps you take
your UI to the next level using arrays, dimensions, state lists, and 9-patch images. Using
fragments, you'll learn how to create a flexible UI that reacts to the user's specific screen
size.

Chapter 4 , Getting Started with Material Design, teaches you how to master Google's new
design principles and delight your users with a UI that feels like a seamless extension of the
Android operating system.

Preface

[2]

Chapter 5 , Turning Your Bright Idea into a Detailed Sketch, helps you become a design-minded
developer by introducing roadmaps, flowcharts, screen lists, and screen maps to your
Android app "To Do" list.

Chapter 6 , Turning Your Sketches into Wireframes, shows you how to transform the high-level
plans from the previous chapter into detailed screen designs using paper prototypes and
wireframes.

Chapter 7 , Building a Prototype, put your plan to the test! By the end of this chapter, you'll
have created a complete digital prototype.

Chapter 8 , Reaching a Wider Audience – Supporting Multiple Devices, teaches you how to
attract a wider audience with an app that supports a wide range of hardware, software,
screen sizes, screen densities, orientations, versions of the Android platform, and even
different languages.

Chapter 9 , Optimizing Your UI, shows you how to create a smooth and responsive UI that
people will love using. If your app is laggy, prone to crashing, gobbles up data and
memory, or drains the user's battery, then no one is going to want to use it!

Chapter 10, Best Practices and Securing Your Application, guides you through putting the
finishing touches to your UI, including using notifications from the upcoming Android N
release.

What you need for this book
You will need the Android SDK and Android Studio (preferred) or Eclipse.

Who this book is for
If you are a Java developer with a keen interest in building stunning Android UIs for your
applications in order to retain customers and create great experiences for them, then this
book is for you. A good knowledge of XML and some grounding in Android development
is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

Any command-line input or output is written as follows:

cd /Users/username/Downloads/android/sdk/platform-tools

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

For this book we have outlined the shortcuts for the Mac OX platform if you are using the
Windows version you can find the relevant shortcuts on the WebStorm help page h t t p s : /
/ w w w . j e t b r a i n s . c o m / w e b s t o r m / h e l p / k e y b o a r d - s h o r t c u t s - b y - c a t e g o r y . h t m l.

https://www.jetbrains.com/webstorm/help/keyboard-shortcuts-by-category.html
https://www.jetbrains.com/webstorm/help/keyboard-shortcuts-by-category.html

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://www.packtpub.com/books/info/packt/authors

Preface

[5]

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / A n d r o i d - U I - D e s i g n. We also have other code bundles from our rich catalog of
books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check them
out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
http://www.packtpub.com/sites/default/files/downloads/AndroidUIDesign_C

oloredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/Android-UI-Design
https://github.com/PacktPublishing/Android-UI-Design
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/AndroidUIDesign_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/AndroidUIDesign_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/AndroidUIDesign_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/AndroidUIDesign_ColoredImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Introducing the Android UI

If you've picked up this book, then it's because you want to develop user interfaces that
people will love to use.

Developing for the Android platform is a mix of exciting opportunities and headache-
inducing challenges; and designing and building your app's UI is no different.

Some of the challenges that you'll face when building your UI are very precise and technical
(such as creating a UI that'll correctly display across Android 5.0 and Android 5.1), whereas
others are more personal, such as resisting the temptation to do crazy and unusual things
with your UI, simply because you can.

That's where this book comes in.

Over the course of 10 chapters, you'll gain some design skills and the technical know-how
that you'll need to seize all the opportunities and overcome all the challenges of developing
UIs for the Android platform.

We're going to be covering the entire design and development process from using plans,
sketches, and wireframes, to turning that initial spark of inspiration into a step-by-step
blueprint of how we're going to build the perfect user interface, before finally putting this
plan into action by building, testing and refining your UI. Along the way, we'll cover all the
latest best practices, including Material Design principles and some of the new UI features
coming up in Android N.

Since creating a UI that your users will like isn't quite good enough, we'll go one step
further and use a range of tools and techniques to analyze and optimize every part of our
user interface. By the end of this book, you'll know how to develop a UI that your users will
love.

Let's start with the basics.

Introducing the Android UI

[8]

What is a user interface anyway?
This may seem like an obvious question. After all, we interact with UIs every day, whether
it's on our computer, mobiles, tablets, or other electronic devices. But sometimes, the
simplest questions are the hardest to answer.

The technical definition of a user interface is the junction between a user and an app or a
computer program. A user interface is everything the user can see and interact with, and
unless you're developing a very special (or very unusual) kind of Android app, then every
app you develop will have some form of user interface.

When it comes to creating your app's UI, the Android platform gives you the freedom to
bring your vision to life. Just flick through a few of the apps installed on your Android
device, and chances are that you'll encounter UIs that look very different from one another.

Although these UIs may look different on the surface, they do share lots of common
elements, whether they're the layouts working quietly behind the scenes, or visible elements
such as buttons, menus, and action bars.

Here are a few UIs from different Android apps. Although they each have their own look
and feel, they also have a lot of UI elements in common:

Introducing the Android UI

[9]

Google Photos isn't just a gallery, it also gives snap-happy Android users new ways to
enjoy their media by organizing photos and videos based on factors such as location, date,
and subject matter. Since the Photos app wants to encourage you to spend time exploring
and enjoying its photo and video content, it's no surprise that the most prominent UI
element is the floating Search button in the bottom-right corner, which allows users to
search their media based on factors such as location and subject.

Introducing the Android UI

[10]

Announced at the 2014 Google I/O conference, and later making an appearance in Android
5.0, Material Design is a new design language that provides a more consistent user
experience across Google products-including Android. Taking its cues from paper and ink,
Material Design uses shadows, edges, dimensions, and the concept of sheets of material to
create a striking, minimal experience.

Many apps now implement Material Design. This helps to provide a more seamless UI
experience, even when the user is switching between apps created by entirely different
developers. The previous screen shows the Dashlane password manager app, which has a
Material Design theme.

Introducing the Android UI

[11]

The UI elements you'll find in the Maps app are carefully designed to stay out of the way,
so the main body of content (that is, the map part of Maps) is clearly visible and
uninterrupted. This is a good example of a UI that strikes a tricky balance between being
unobtrusive, while also ensuring all the UI elements you could possibly need are always
within easy reach. Another example of this kind of UI is the YouTube app.

Is developing UIs for Android really that
different from other platforms?
If you have experience developing for platforms besides Android, then you may feel
confident that you can turn out a pretty good UI, whether it's the UI for an iPhone app or a
piece of software that's destined to run on the latest version of Windows.

There are two factors that make developing Android UIs different to some of the other
platforms you may be used to:

It's an open platform. As already mentioned, Android gives you the freedom to
express yourself and create whatever UI you want. Even the latest Material
Design principles are merely recommendations and not hard and fast rules that
you need to follow if Google are going to allow your app into the Play Store
(although it's highly recommended that you do follow these design principles!).

This means you have the freedom to make some really innovative UI
decisions that your users will love, but it also means you're free to make
some really innovative design decisions that your users will hate
(sometimes, the reason why you've never seen something done before is
because it's a bad idea). Restraining yourself is a big part of designing
and developing effective UIs for the Android platform.

It's a varied platform. When you release an Android app, there's no telling where
it might end up! Your app could potentially wind up on all sorts of different
devices consisting of different hardware, software, and screens, including
different versions of the Android operating system itself.

Design a UI that's flexible enough to handle all these variables, and your app has the
potential to wow a wide and varied audience. Design a UI that isn't quite up to the
challenge, and your users will have an inconsistent experience, where your UI looks great
and functions perfectly on some devices and runs less-than-perfectly on others. A poorly
designed UI might even make your app appear completely broken on certain devices.

Introducing the Android UI

[12]

What are the characteristics of an effective
UI?
Over the course of this book, you'll learn how to create an effective UI, but before we get
stuck into this, it's helpful to have the end goal in sight.

A successful Android UI should be as follows:

Clear…
Your UI is how your app communicates with your users. Make sure it's clear
what your app is trying to say!
If the user can't glance at every single screen within your app and immediately
know what the screen's asking them to do, then your UI isn't clear enough.
….But not too clear!
How can a user interface be too clear?
Imagine a screen that feels the need to explain each and every UI element. Sure,
this kind of UI would be clear, but would you persevere with such an app? Or
would you look for an alternative app, one that isn't crammed full of unnecessary
and, most likely, irritating text, such as Tap the Submit Results button to submit
your results?
An effective UI strikes a balance between being clear and concise. If you design
your UI well, the user will immediately know that the + icon in your music-
playing app means add new track to playlist, without you cluttering up your UI
with additional text.
Responsive
No matter how great your app's content, if the UI is laggy and prone to freezing,
no one is going to want to use it.
An effective UI is responsive, smooth, and plays out like a conversation between
the user and your application. For example, imagine you've just downloaded a
new app and your first task is to create a new account. You fill in a form and tap
Submit. Then, suddenly you're taken to an entirely new section of the app with
no explanation of what's happened. Have you just created an account? Are you
already logged into your new account? What's going on?
In this scenario, an effective UI would respond to you tapping the Submit button
even if it's just a simple Thank you for registering your details – you're now
logged into your account! popup.
Easy on the eye

Introducing the Android UI

[13]

In an ideal world, it wouldn't matter how attractive your UI is (or isn't). After all,
if your content is good, what does it matter if your buttons aren't perfectly
aligned? Or if your images aren't quite as high-definition as they could be?
The simple truth is that it does matter. A lot.
It's not enough for your UI to be clear, consistent, and responsive—it has to look
nice, too.

It's also worth noting that creating an appealing, professional-looking UI may mean
forgoing your own tastes and sticking with the safe option. Maybe you have a fondness for
neon colors and have always thought that orange and green is a criminally underrated color
combination, but remember that you're trying to attract as wide an audience as possible; is
this aesthetic really going to appeal to the masses?

Why is UI essential for the success of your
app?
To fully understand why mastering the art of the effective UI is so important, let's look at
some of the things your app's UI can help you achieve, if you get it right.

Instant familiarity
If you follow best practices and Material Design guidelines, your app will reflect the UI
principles the user has encountered many times before in other Android apps. Your users
will feel instantly at home and also understand how to interact with many elements of your
app, even if they're launching it for the very first time. For example, once the user has
encountered a floating action button in one app, they'll know that tapping this button will
give them access to important actions (also known as promoted actions).

Easy and enjoyable to use
Your app's UI determines how easily users can make your app do what they want. Create a
UI that helps users get the value out of your app quickly and with the minimum amount of
effort, and you're well on your way to racking up those 5 star Google Play reviews.

Introducing the Android UI

[14]

Although providing valuable content is still a crucial part of developing an effective app,
remember that your app's UI is equally important. If your app's useful features and great
content is hidden behind a clunky and generally unpleasant UI, then no one is going to
hang around long enough to discover just how much your app actually has to offer.

Make sure you put as much effort into designing and developing your UI as you put into
crafting your app's content and features.

Consistency
A good UI establishes the rules of your app early on and sticks with them throughout. Once
users feel comfortable interacting with a single screen in your app, they should be able to
find their way around your entire app.

Preventing user frustration
Your UI should ensure users never feel confused or frustrated by your app, by gently
guiding them toward the tasks they need to complete next in order to get value from your
application.

Whether your UI takes the subtle approach (such as using size and color to make certain UI
elements stand out) or a more obvious approach (for example, highlighting the text field the
user needs to complete next), you should make sure the user never has to sit back and ask,
“So what am I supposed to do next?“

Helping users fix their mistakes
A good UI is like a helpful, non-judgmental friend, gently pointing out where you've gone
wrong and giving you advice on how to fix it.

Imagine your app contains a form that users need to complete before tapping Submit. The
user completes this form and taps the Submit button, but nothing happens. At this point,
your app can either leave them scratching their head and wondering whether the Submit
button is broken, or your UI can step in and show them what's wrong by underlining the
one text field they forgot to fill in.

Introducing the Android UI

[15]

Providing a better overall Android experience
Because it isn't all about your app.

If you design your UI well and follow Material Design principles, your app will feel like a
seamless extension of the Android platform and an extension of the other apps users have
installed on their device.

By putting the effort into designing your UI, you can actually improve the user's overall
Android experience. No pressure, then!

The UI case study – Google+
When developing apps for Android, you never have to start completely from scratch, as the
Android platform does a really good job of supplying a wide range of prebuilt UI
components that you can simply drop into your UI.

This means that the same UI elements crop up time and again in all sorts of Android apps.
So, it's well worth spending some time seeing what we can learn from other Android
applications—particularly apps that do UI well.

In this section, we'll analyze the Google+ app, which comes preinstalled on many Android
devices, and is also available to download for free from Google Play. We'll work our way
through all the core UI components that Google uses in this app and look at what makes
them so effective.

www.allitebooks.com

http://www.allitebooks.org

Introducing the Android UI

[16]

The action bar
The action bar runs along the top of the screen and typically contains action and navigation
elements:

Google+'s action bar contains three important UI elements that you'll typically want to
include in your own Android UIs.

Navigational controls
Action bars tend to persist throughout an app, which makes them perfect for providing
your users with a consistent, easily accessible way of navigating your UI.

Navigational controls can either be straightforward, such as the standard Back button, or
they can be more complicated, such as view-switching controls.

The main Google+ action bar contains a navigational control that gives users the ability to
switch between their Google+ accounts, which is handy for anyone who has multiple
accounts, such as a work Google+ account and a personal account.

Introducing the Android UI

[17]

Action buttons
The action bar is also ideal for providing easy access to your app's most important actions,
based on the user's current context. The actions that appear in the action bar are known as
action buttons.

In the following screenshot, the Google+ action bar contains two action buttons:

You'll typically represent an action button with an icon and/or text. Android provides a
range of ready-made action buttons that you should use wherever possible, as they ensure
that the average user will be familiar with at least some of the action buttons that you use in
your UI.

Introducing the Android UI

[18]

The action overflow
Depending on the app and the available screen space, it's possible that all your action
buttons won't always fit into the action bar. If this is the case, the Android system will
automatically move some of these action buttons into the action overflow, which is the
dotted icon that appears in the upper-right corner throughout the Google+ app:

How many action buttons wind up hidden in the action overflow depends on the user's
screen. At the extreme ends of the scale, a tablet held in the landscape mode will have much
more space available for the action bar, compared to a smartphone held in portrait mode.

When designing your action bar, make sure you place the most important action buttons
toward the left of the screen, so they're less likely to wind up in the action overflow. Actions
that your users are less likely to need can be placed toward the end of the action bar where
they have a greater risk of winding up in the action overflow.

Although the action overflow does help to reduce action bar clutter, in some scenarios, you
may want to display a large number of actions without risking any of them ending up in the
action overflow on smaller screens. If this is the case, you may want to use a split action bar:

Introducing the Android UI

[19]

In the previous screenshot, the Google+ app uses a split action bar to reduce action bar
clutter without relegating any actions to the action overflow. A split action bar is also useful
to prevent the action overflow from growing out of control and becoming unmanageable.

Floating action button
The main Google+ screen is the home screen, which happens to contain a special kind of
action button that was introduced as part of Google's Material Design overhaul.

This is known as a floating action button (FAB), and it's displayed prominently in the
bottom-right corner of the Google+ home page:

As the name suggests, FABs are circular buttons that float above the main user interface.
These floating buttons give you a handy way of highlighting the primary action within the
current context.

Google+ uses its prominent floating action button as a way of encouraging the user to join
in the conversation by writing a status update.

Introducing the Android UI

[20]

Menus
Menus are one of the main ways of navigating an app, and they are an essential component
of most Android UIs.

Menus present the user with a list of options, which are usually represented by a single
word or one line of text at the most:

Google+ features lots of different menus, but the one that deserves a special mention is the
context menu.

Context menus are special because they dynamically update to include the actions that are
relevant to the selected content only. Context menus appear when you long press an
onscreen element. The context menu you've probably encountered the most often is the
Select All/Cut/Copy/Paste menu, which appears when you long press some text:

Introducing the Android UI

[21]

Settings
Settings is a mainstay of many Android applications as it gives users a way to tweak an
app's behavior to better suit them. If users can modify your app in any way, you'll need to
provide them with some form of settings screen.

The main challenge when creating a settings screen is ensuring your users will be able to
understand all the available options and their current values at a glance. This means
designing your settings in such a way that each screen only ever contains a manageable
number of options (usually less than 10).

Introducing the Android UI

[22]

If you have lots of options you want to include in your app's settings, resist the temptation
to display them as one long list. Instead, divide them into groups of related options. Then
you can either display your settings as a single screen formatted as multiple lists of related
items, or you can take a leaf out of Google+'s book and move each group of related options
to its own page.

If you opt for the latter, your main settings screen can then serve as an index, linking the
user to each subpage, which is exactly the approach Google+ takes with its main Settings
screen:

For ease of use, you should prioritize your settings so the options users are most likely to
need are always within easy reach at the top of the settings screen.

This can also be seen in Google+'s settings where obscure options, such as Delete Google+
Profile, are confined to the very bottom of the settings screen.

Introducing the Android UI

[23]

Dialogues
From time to time, you may need to really grab the user's attention, and the UI elements that
can help you with this are dialogues.

A dialogue is a small window that can contain text and buttons and is typically used for one
of the following purposes:

Giving the user some important information, such as terms and conditions, or a
disclaimer they need to read before they can progress to the next task
Requesting additional information, for example, a dialogue that prompts users to
enter their password
Asking users to make a decision; for example, if you draft a Google+ update and
then try to navigate away without posting that update, Google+ uses a dialogue
box to check whether you really do want to discard your post

Introducing the Android UI

[24]

Toasts
A toast is a small popup that provides the user with simple feedback.

Unlike dialogues, the app underneath the toast remains active the entire time the toast is
visible. Opt for a toast rather than a dialogue when you want to convey a short and simple
message to the user, and crucially, you don't require any user input—toasts don't support
any kind of user input.

In Google+, you'll occasionally see a toast when new posts are available to view on the
home screen. This toast will prompt you to swipe the screen to see updates.

Search
Android users typically expect to be able to search all the data that's included in your app,
so most UIs include some form of search functionality.

The good news is that the Android platform has a ready-made search framework that you
can implement in your UI. Using this standard search framework isn't just easier for you,
it's also easier for your users, as most Android users will immediately know how to interact
with Android's standard search functionality, since they'll have encountered the underlying
framework many times before (even if they weren't aware of it):

Introducing the Android UI

[25]

You can use Android's standard search framework to implement searching in one of the
following ways:

A search dialogue: This dialogue is hidden by default. When activated by the
user, it appears as a floating search box at the top of the current activity. The
search dialogue component is controlled by the Android system.
A search widget: This is an instance of SearchView that you can place anywhere
in your app's UI. If you do decide to use the search widget, you'll need to do
some additional work to get the Android system to handle search events that
occur via this widget.

Introducing the Android UI

[26]

Input controls
Input controls are a variety of components provided by the Android platform that the user
can interact with. Boot up any Android app on your device, and chances are it'll contain
some form of input control—whether it's a button, a checkbox, a text field, or something
else.

Since your average Android user will have encountered these standard input controls many
times before, including them in your UI guarantees that the majority of users will
immediately know how to interact with at least some of your app's core UI elements.

Input controls are a crucial part of almost any Android UI, so we'll be
covering them in much greater detail in the next chapter.

Styles and themes
We've looked at lots of different UI elements you can find in the Google+ app, but what ties
all these elements together and ensures your UI feels consistent?

The answer is styles and themes.

While Android does give you the power to customize the look and feel of every part of every
screen of your UI, you'll have to balance this against providing a consistent UI experience
for your users. Themes and styles are powerful tools that can help you provide this app-
wide consistency.

Styles and themes allow you to define a group of attributes once and then use them
throughout your app. So, you could create a style that specifies that text should be blue
with the monospace typeface, and then you can apply this style across your entire
application. Instantly, all your text will have the same formatting.

Styles and themes can be simple, such as our text example, or you can create long lists of
attributes that dictate how every element of your UI should look and feel, from the shade of
the action bar, to the background image and the amount of padding used throughout your
layout.

Introducing the Android UI

[27]

Although they're often talked about together, there is a one crucial difference between styles
and themes:

Style: This is a collection of properties that you can apply to an entire activity or
application, or to an individual view
Theme: This is a style that you can apply to an entire activity or application, but
not to an individual view

The Android platform provides plenty of predefined themes and styles that you can use in
your Android apps (including some crucial Material themes), or you can create your own.

Although you can create themes and styles completely from scratch, you'll usually want to
take Android's ready-made themes and styles as your starting point, and then define any
properties that you want to add, change, or remove. This is called inheritance, and it's one
of the quickest and easiest ways of creating a UI that feels familiar and professionally
designed but is still subtly unique to your app.

Summary
In this section, we looked at why the quality of your user interface is crucial to creating an
app that'll have no problems winning over a wide audience, before taking a closer look at a
real-life example of an effective and well-designed Android UI.

In the next chapter, we'll take a closer look at the building blocks of every Android UI:
Views, ViewGroups, and layouts. Although we touched on input controls in this chapter, in
the next chapter we'll look at them in more detail, including how to implement some of the
most common input controls in your own user interfaces.

2
What Goes into an Effective UI?
In this chapter, we'll look at the core components of every Android user interface: layouts
and views. You'll learn how to add these elements to your Android projects and all the
different ways you can customize these UI building blocks to meet your exact design needs.
We'll also look at how to enhance our UI using strings, colors resources, and state lists, and
we'll begin to look at how we can create a user interface that looks crisp and clear regardless
of the screen it's being displayed on.

Although we'll be exploring layouts and views in greater detail throughout this chapter, the
two are intrinsically linked. Before you can add a view to your app, you need a layout, and
a layout without any views isn't likely to win your app any fans.

So, before we dive into the finer details of UI design, let's get an overview of how views and
layouts come together to create an effective Android UI.

What is a view?
As you're already aware, Android apps are made up of Activities. Typically, one Activity is
displayed at a time and this Activity occupies the entire screen.

What Goes into an Effective UI?

[29]

Each Activity is made up of views, which are the most basic component of a user interface.
Views always occupy a rectangular area, although a view can display content of any shape:

Some examples of the most commonly used views are
TextView, EditText, ImageView, Button, and ImageButton.

What is a layout?
A ViewGroup is a container that groups other child views and ViewGroup objects together.

One of the most common examples of a ViewGroup is a layout, which is an invisible
container that's responsible for positioning the child elements on the screen. For example,
LinearLayout is a ViewGroup (also sometimes known as a layout manager) that arranges
its child elements (views or ViewGroups) into vertical or horizontal rows:

What Goes into an Effective UI?

[30]

In this chapter, I'll mostly be focusing on layout managers, as these are the ViewGroup
you'll typically use most often; but just be aware that other kinds of ViewGroup also exist.

Building your UI – XML or Java?
The easiest way of defining your user interface (and the views, ViewGroups, and layout
elements that it contains) is via your project's XML file.

Declaring your UI with XML
Android provides a straightforward XML vocabulary that gives your user interface a
human-readable structure, and creates a separation between the code that defines your UI
and the code that controls your app's behavior. You define your layouts in XML in a
dedicated layout resource file. This helps to keep both sets of code cleaner, and it gives you
the ability to tweak and refine your UI without having to touch your app's underlying code.
For example, you can update your layout to support an additional language without having
to touch the previously-tested code.

What Goes into an Effective UI?

[31]

Declaring your UI in XML also makes it easier to provide alternate layouts; for example, at
some point, you may want to create an alternative version of your layout that's optimized
for landscape mode. If you declare your original layout in XML, providing a landscape-
optimized layout is as easy as creating a res/layout-land directory, and then filling this
folder with XML files that define your app's landscape-optimized layouts.

When you create an Android project in Eclipse or Android Studio, the IDE's project creation
wizard automatically generates a layout resource file for your application's main activity:

What Goes into an Effective UI?

[32]

You'll find this layout resource file in your project's res/layout folder:

Each layout resource file must contain exactly one root element, which can either be a view
or a ViewGroup. For example, you can use the vertical LinearLayout element as your
layout's root element:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent">

</LinearLayout>

What Goes into an Effective UI?

[33]

You can also use the <merge> element as your root element. We'll cover
merging in Chapter 9, Optimizing your UI.

Once you've defined your layout resource file's root element, you're ready to build a view
hierarchy by adding objects such as TextViews, Buttons, and ImageViews.

To load a layout resource file, you need to reference it from your application's onCreate()
callback implementation. For example, open your project's MainActivity.java file and
you will see something like this:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_layout);
}

Here, your project calls setContentView() and passes it the reference to your project's
automatically-generated resource file; in this instance, it is R.layout.main_layout. When
the user loads your application, MainActivity will read this referenced layout resource
file and display its content to the user.

Declaring your UI programmatically
The second option is to create your UI programmatically at runtime. This approach isn't
generally recommended, as it means that your app's underlying code and the UI code get
mixed up. So, tweaking an element of your app's UI becomes much more difficult than it
needs to be.

However, sometimes you will need to define certain aspects of your user interface
programmatically, and occasionally you may even need to define the whole thing in Java.

As we've already seen, when you define your layout resource in XML, you load it from
your application code:

setContentView(R.layout.activity_main);

Here, you're telling your Activity to load the main_activity.xml layout resource file, but
if you're creating your layout programmatically, you need to remove this bit of code so that
your Activity doesn't go looking for a layout resource file.

What Goes into an Effective UI?

[34]

For example, take a look at the following:

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

 // Create a LinearLayout object that will contain all the views in this
Activity//

 LinearLayout linearLayout = new LinearLayout(this);

//Set the LinearLayout's orientation. In this instance, it's set to
horizontal//

 linearLayout.setOrientation(LinearLayout.HORIZONTAL);

 // Create a LayoutParams object to be used by the LinearLayout//

 LayoutParams linearLayoutParam = new
LayoutParams(LayoutParams.MATCH_PARENT, LayoutParams.MATCH_PARENT);

 // Set LinearLayout as the screen's root element//
 setContentView(linearLayout, linearLayoutParam);
 }

Using both programmatic and XML layouts
Sometimes the best solution maybe to use both programmatic and XML layouts. This
approach helps you to keep some separation between your UI and application code by
defining the bulk of your UI in XML, while also allowing you to create a more dynamic user
interface by modifying the state of some onscreen elements at runtime.

For example, your app may contain a slideshow that's controlled by a single button. When
the user taps the button, a new image appears. To create this effect, you can define the
button in XML, and then add a new image programmatically whenever the user taps the
button.

Since XML is the easiest and most efficient way of defining your UI, this chapter mainly
focuses on creating and customizing views, ViewGroups, and layouts in XML. However,
occasionally you may need to define parts of your UI programmatically, so I'll also include
some snippets of Java along the way.

What Goes into an Effective UI?

[35]

Deep dive – exploring layouts
Now that you have an idea of how views, ViewGroups, and Layouts come together to
create a user interface, and how to create your user interface programmatically and in XML,
it's time to look at each of Android's most common UI components in more detail. We'll
start with the component that pretty much lays the foundation of any user interface: a
layout container.

The Android platform supports a range of layouts, so your first task is deciding which
layout best meets your design needs. If you're struggling to make this decision, keep in
mind that you can nest layouts within one another to create your perfect layout container.

Don't go overboard with the nesting as this can have a negative impact on
your app's performance. If you find yourself nesting multiple layouts,
then this could be a sign that you're using the wrong kind of layout!

Before you create any kind of layout, here are a few rules, regulations, and attributes that
you need to get to grips with.

Defining the size of your layouts
Whenever you create a layout, you need to tell the Android system how big this layout
should be.

The XML attributes you use to define the size of your layouts are
android:layout_height and android:layout_width. As their names suggest, these
attributes set the height and width of your layouts respectively.

Both accept the following values:

A supported keyword
Android screens come in lots of different sizes. One of the easiest ways of ensuring your
user interface is flexible enough to cope with all these differently-sized screens is to set your
layout's width and height to one of the following supported keywords:

match_parent: This makes the height or width expand to completely fill the
available onscreen space
wrap_content: This sets the height or width to the minimum size required to fit
the element's content and no larger

www.allitebooks.com

http://www.allitebooks.org

What Goes into an Effective UI?

[36]

You can also use match_parent and wrap_content to set the size of
other onscreen elements, including views and ViewGroups.

A dimension value
Alternatively, you can set the size of your layout using one of the units of measure
supported by the Android system:

Density-independent pixels (dp): This is an abstract unit which is based on the
screen's physical density. The dp unit is relative to 1 physical pixel on a 160 dots
per inch screen. At runtime, Android automatically adjusts the number of pixels
used to draw 1 dp by a factor that's appropriate for the current screen's dp. Using
density-independent measurements is a straightforward solution to creating a UI
that can adjust automatically across a range of screen sizes.
An absolute unit: Android supports a number of absolute units of measure
(specifically pixels, millimeters, and inches), but you should avoid defining your
layout using absolute sizes as this makes your UI very rigid, and can prevent it
from resizing itself to suit a range of screens. Unless you have a very good reason
not to, stick to relative measurements, such as dp, match_parent, and
wrap_content.

Setting the layout size programmatically
You can also set the size of your layout programmatically by creating the LayoutParams
object:

LayoutParams linearLayoutParam = new LayoutParams

You can then set its width and height as follows:

LayoutParams linearLayoutParam = new LayoutParams
(LayoutParams.MATCH_PARENT, LayoutParams.MATCH_PARENT);

What Goes into an Effective UI?

[37]

Exploring different layouts
Now that you know how to create layouts in XML and Java, and how to set their height and
width, you can take a closer look at two of the most commonly used layouts: the
straightforward and easy-to-use LinearLayout layout and the incredibly flexible
RelativeLayout layout.

Everything you need to know about LinearLayout
LinearLayout aligns all its children in a single horizontal or vertical row, stacking them
one after the other.

You set the direction of your LinearLayout layout using either of the following:

android:orientation="horizontal.": The views are placed next to each
other in rows. A horizontal LinearLayout layout is only ever one row high.
android:orientation="vertical.": The views are placed below each other
in columns. A vertical LinearLayout layout only ever has one child per row.

Here's a simple LinearLayout layout with a horizontal orientation:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/okButton"
 android:text="Ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <Button
 android:id="@+id/cancelButton"
 android:text="Cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

What Goes into an Effective UI?

[38]

Here's how this horizontal LinearLayout layout appears on an Android device:

Here's the same LinearLayout based UI with the orientation set to
android:orientation="vertical" instead:

What Goes into an Effective UI?

[39]

Everything you need to know about
RelativeLayout
RelativeLayout is one of the most flexible layouts at your disposal, giving you the
freedom to position every child element based on its relationship with any other child
element, with its parent container.

For example, you have the flexibility to position TextView so that it aligns with the edge of
the RelativeLayout container, and then you can position a Button 100 density-
independent pixels above TextView.

Using RelativeLayout to optimize your UI
In addition to giving you control over where each element appears on the
screen, RelativeLayout can improve your app's overall performance by
reducing nesting. If you find yourself using several nested
LinearLayouts, you maybe able to flatten your layout hierarchy by
replacing them with a single RelativeLayout.

Since RelativeLayout is all about giving you the flexibility to position your UI elements
wherever you want, it's no surprise that this layout supports a long list of attributes that let
you position your UI elements relative to their parent container and relative to one another.

Relative to the parent container
All the following attributes accept the true value; for example,
android:layout_alignParentTop="true" and
android:layout_alignParentStart="true.":

android:layout_alignParentTop: This aligns the top edge of a view with the
top edge of its parent
android:layout_alignParentBottom: This aligns the bottom edge of a view
with the bottom edge of its parent
android:layout_centerInParent: This centers a view horizontally and
vertically within its parent
android:layout_alignParentRight: This aligns the right edge of a view with
the right edge of its parent
android:layout_alignParentLeft: This aligns the left edge of a view with
the left edge of its parent

What Goes into an Effective UI?

[40]

android:layout_centerHorizontal: This centers a view horizontally within
its parent
android:layout_centerVertical: This centers a view vertically within its
parent
android:layout_alignParentStart: This aligns the start edge of a view with
the start edge of its parent
android:layout_alignParentEnd: This aligns the end edge of a view with the
end edge of its parent
android:layout_alignWithParentIfMissing: If the view references an
element that's missing, this attribute will align the view with the parent instead

What Goes into an Effective UI?

[41]

Relative to other elements
You can also position UI elements relative to other onscreen elements; for example, you
may want to position the back_button view to the left of forward_button and position
titleTextBox above subheadingTextBox.

All the following attributes should reference the ID of the element you're using as your
reference point (we'll look at IDs in more detail shortly, but essentially a view's ID is the
value of its android:id element in your layout resource file, for example, the ID of
android:id ="@+id/viewName" is viewName):

android:layout_above: This places a view above the specified element; for
example, android:layout_above="@+id/subheadingTextBox" will place the
UI element above subheadingTextBox
android:layout_below: This places a view below the specified element
android:layout_toLeftOf: This places a view to the left of the specified
element
android:layout_toRightOf: This places a view to the right of the specified
element
android:layout_toStartOf: This aligns the end edge of a view with the start
of the specified element
android:layout_toEndOf: This aligns the start edge of a view with the end
edge of the specified element

What Goes into an Effective UI?

[42]

Aligning with other elements
You can also position a UI element by specifying how it aligns with other on-screen
elements. Again, the value for all the following attributes is the ID of the element you're
using as your reference point:

android:layout_alignBottom: This aligns the bottom of a view element with
the bottom of the specified onscreen element. For example,
android:layout_alignBottom="@+id/back_button" aligns the bottom of a
UI element with the bottom of back_button.
android:layout_alignLeft: This aligns the left edge of a view with the left
edge of the specified element.
android:layout_alignRight: This aligns the right edge of a view with the
right edge of the specified element.

What Goes into an Effective UI?

[43]

android:layout_alignTop: This aligns the top edge of a view with the top
edge of the specified element.
android:layout_alignStart: This aligns the start edge of a view with the
start edge of the specified element.
android:layout_alignBaseline: This attribute is a bit different. Baseline is a
typography term for the invisible line that text sits on. So, this attribute aligns a
view's baseline with the baseline of the specified element. For example, if you
have two TextViews, you may want to use alignBaseline to create the
impression that the text in both views is written on the same invisible line.

Creating views
Views are the basic building blocks of a user interface.

Most of the time you'll create view objects by adding them to your Activity's corresponding
layout resource file. You can either edit the XML code directly, or you may want to drag UI
elements from your IDE's palette and drop them onto the UI preview:

What Goes into an Effective UI?

[44]

You also have the option of creating views programmatically. For example, if you wanted to
instantiate a TextView programmatically, you would add TextView to your Activity's
onCreate() method:

 @Override protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
 LinearLayout linearlayoutLayout = (LinearLayout)
findViewById(R.id.rootlayout);
//Create a new TextView and assign it the ID txview//
 TextView txView = new TextView(this);

//Set the text programmatically//

 txView.setText("Hello World");

//Add the txView TextView object to your layout//

 linearLayout.addView(txView);
 }
}

Assigning the ID attribute
An ID gives you a way of identifying individual views within your layout. For example, if
you create two buttons, you can distinguish between them by assigning them the IDs
yesButton and noButton.

You assign an ID to a view using the android:id attribute:

<Button android:id="@+id/backButton"

You can then use the ID to reference this particular view:

android:layout_below="@id/backButton"

You can also use the ID to locate a view programmatically using findViewById(id):

findViewById(R.id.myButton)

Once this method returns the desired view, you can interact with the view
programmatically.

What Goes into an Effective UI?

[45]

Setting a view's size
In the same way you need to set the size of your layout container, you need to set the size of
all the views you add to your layout resource file.

The good news is that you can use exactly the same attributes and values, which means you
can add android:layout_width and android:layout_height to your layout resource
file, and then choose from the following values:

wrap_content: This sets the view's height or width to the minimum size required
to accommodate the view's content. For example, if you apply wrap_content to
a button that contains a text label, the system will size the button so it's just big
enough to contain the button's text label.
match_parent: This expands the view's height or width to fill all the available
space.
Density-independent pixels (dp): When you assign a dp measurement, the
Android system scales the view up or down based on the specific density of the
user's screen.
An absolute unit: Although this is not recommended, you can also use absolute
units of measurements: pixels, millimeters, or inches.

Android gravity and layout gravity
The gravity attribute specifies how an object should be positioned along the X and Y axis
inside its enclosing object. This may sound straightforward, but there's a catch: you'll
encounter two different gravity attributes in Android. Although they look similar, they can
actually yield very different results:

android:gravity: This positions the content that's inside a view, for example,
the text inside a TextView
android:layout_gravity: This positions a child view inside its parent
container, for example, a TextView inside a LinearLayout

Both accept a wide range of values, including several values that won't change the size of
the object you're applying the gravity attribute to:

top: This positions the object at the top of its parent container. For example,
android:gravity="top" will position the text at the top of TextView, while
android:layout_gravity="top" will position TextView at the top of
LinearLayout.

What Goes into an Effective UI?

[46]

Left: This positions the object to the left-hand side of its parent container.
center_vertical: This positions the object in the vertical center of its parent
container.
Start: This positions the object at the beginning of its parent container.

Both gravity attributes also support several values that do alter the object's size, including
the following:

fill_vertical: This expands the object vertically, so it completely fills its
parent container. For example, android:gravity="fill_vertical" will
expand an image vertically to fill its ImageView container, while
android:layout_gravity="fill_vertical" will expand ImageView
vertically to fill its RelativeLayout container.
fill_horizontal: This expands the object horizontally and vertically so that it
completely fills its parent container.

For the full list of supported values, see
http://developer.android.com/reference/android/widget/LinearLayout.html

#attr_android:gravity.

You assign gravity programmatically using the setGravity attribute, for example,
Gravity.CENTER_HORIZONTAL. You could also use setHorizontalGravity and
setVerticalGravity.

Setting the background – working with color
When it comes to background, some views have a completely transparent background, such
as TextViews, while others have a standard background color, for example buttons, which
are grey by default.

If you're not a fan of a view's default background, you can always change it. Android gives
you several options for adding a splash of color to your UI.

Firstly, the Android system does support a number of colors out of the box, so if you want
to use any of the following hues, then you're in luck, because the Android system has
already done all the hard work for you:

black

white

holo_blue_bright

http://developer.android.com/reference/android/widget/LinearLayout.html#attr_android:gravity
http://developer.android.com/reference/android/widget/LinearLayout.html#attr_android:gravity

What Goes into an Effective UI?

[47]

holo_blue_dark

holo_blue_light

holo_green_dark

holo_green_light

holo_orange_light

holo_orange_dark

holo_purple

holo_red_dark

holo_red_light

darker_gray

To apply any of these ready-made color resources to a view, add the android:background
attribute, but set its value to "@android:/color" followed by the color of your choice:

android:background="@android:color/holo_red_light"

Android also supports values such as primary_text_dark and
widget_edittext_dark for specific UI elements. You'll find the
complete list of predefined colors in the official Android docs at
http://developer.android.com/reference/android/R.color.ht

ml.

However, this list is pretty limited! Sooner or later Android's predefined colors just aren't
going to cut it, and you'll want to create your own color resources, which means using hex
codes.

If you have a particular shade in mind, you can usually find its hex code by performing a
quick Google search, for example, by searching for cyan hex code or light pink hex
code. Alternatively, you can go window shopping by browsing the Android style guide,
which contains a wide range of colors and their corresponding hex codes. This is available
at h t t p s : / / w w w . g o o g l e . c o m / d e s i g n / s p e c / s t y l e / c o l o r . h t m l # c o l o r - c o l o r - p a l e t
t e.

Once you have your hex code, you can take the quick and easy route of entering the code
directly into your layout resource file:

android:background="#0000ff"

http://developer.android.com/reference/android/R.color.html
http://developer.android.com/reference/android/R.color.html
https://www.google.com/design/spec/style/color.html#color-color-palette
https://www.google.com/design/spec/style/color.html#color-color-palette

What Goes into an Effective UI?

[48]

This may seem quick, but it might just end up costing you more time in the long run. Since
consistency is a big part of providing a great user experience, chances are that you'll use the
same colors multiple times throughout your application, and typing out the entire hex code
every single time you want to use that color can really add up.

Although it may require a bit of initial effort, most of the time it makes sense to define your
colors as color resources in your project's res/values/colors.xml file. You can then
reference these color resources as many times as you want without having to type out entire
hex codes.

If your project doesn't contain the colors.xml file, you can create one by right-clicking on
your project's values folder and selecting New, followed by Values resource file. Give
your file the name of colors.xml:

Open the colors.xml file and define all the colors you want to use in your app using the
following format:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="cyan">#00FFFF</color>
</resources>

What Goes into an Effective UI?

[49]

You can then use this color resource anywhere in your app, including in the background of
your views:

android:background="@color/cyan"

You can also change the background of your entire UI by adding the
android:background attribute to your layout container such as follows:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@color/cyan" />

Alternatively, you can use images as the backdrop to your views, whether it's a simple
textured background image or a high definition photo. We'll cover images in greater detail
when we take a look at ImageViews, but as a quick overview, you just need to add the
image to your project's res/drawable folder and then reference the image in your layout
file:

android:background="@drawable/imagename"

If you want to set your app's background programmatically, use the
setBackgroundResource method.

Assigning a weight value
When you're positioning views inside LinearLayout, you can control how much space
each view occupies onscreen by assigning it a weight value.

When you assign weight values to your views, any remaining space in the layout is
assigned to your views in the proportion of their declared weight. For example, imagine
your layout contains three buttons with different weight values:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="A"
 android:id="@+id/button1"

What Goes into an Effective UI?

[50]

 android:layout_weight="1"/>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="B"
 android:id="@+id/button2"
 android:layout_weight="1"/>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="C"
 android:id="@+id/button3"
 android:layout_weight="2"/>

</LinearLayout>

Button3 is declaring that it's more important than Button1 and Button2, so it'll be
assigned half of any remaining space, while Button1 and Button2 have to share the rest of
the available space equally:

What Goes into an Effective UI?

[51]

Just be aware that other attributes may interact with your layout_weight values. For
example, imagine your layout contains three TextViews and all of them are set to
android:layout_width="wrap content". In this scenario, the Android system
calculates how wide each TextView needs to be in order to accommodate their text and
only then does it divide up the remaining space. So, if one TextView needs to accommodate
much more text than the other two TextView, this will have an impact on your weight
results.

All views have a default weight of 0, unless you specify otherwise.

Adding and customizing view objects
The easiest way to add view objects to your layout is via the layout resource file in your
project's res/layout folder, although you can also add views programmatically as and
when required.

Over the next few sections, I'll show you how to create some of Android's most commonly
used views, specifically TextViews, EditText, ImageViews, Buttons, and
ImageButtons. Once you've created each view, I'll show you how to configure that view so
it looks and functions exactly as you want it to.

TextView
It may not be the most exciting part of your user interface, but the vast majority of Android
apps feature some kind of text. You display text to your users via TextView.

To create TextView, add the <TextView> tag to your project's layout resource file, and
then tell the TextView what text it should display either by:

Adding the text directly to the layout: This is pretty straightforward. Just add
the android:text attribute and your text to the TextView XML code, for
example, android:text="Hello world!".

What Goes into an Effective UI?

[52]

Referencing a string resource: Most of the time, if your app needs to display text,
then this text belongs in your project's resources and not in your actual
application code. This separation helps to keep your app's code clean and
readable, and it also means that you can tweak and change your app's text at any
point without ever having to touch your app's underlying code. To create a string
resource, open your project's res/values/strings.xml file and add your text
in the following format:

<resources>
 <string name="helloWorld">Hello world!</string>
</resources>

You can then reference this string resource from your layout file:

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/helloWorld"
 android:id="@+id/textView" />

This is all you need to know in order to display basic text, and sometimes this may be
enough. However, text does have the potential to be a bit dry and boring! If you want to
create more visually appealing text, you have several options.

Brightening up your text
You can use the android:textColor attribute to change the color of the text inside a
TextView. To reference one of the default colors supported by the Android system, use the
following:

android:textColor="@android:color/"holo_green_dark"

If you're referencing a color that you defined yourself in your project's
res/values/colors.xml file, the value is laid out slightly differently:

android:textColor="@color/mycustomcolor"

If you want to set the color of your TextView programmatically, use the setTextColor()
method.

What Goes into an Effective UI?

[53]

Setting the size of your text
You can make your text larger or smaller using android:textSize.

Once again you need to remember that Android screens come in all sorts of different sizes,
and your text needs to be easily readable regardless of the screen it's being displayed on.

To further complicate things, Android users can actually change the size of the font that's
displayed on their device by opening their device's Settings, tapping Display, and selecting
Font Size. This is a really useful feature for people who have vision problems.

The easiest way of ensuring that your text is flexible enough to adapt to the user's font
preferences and screen size is to use scale-independent pixels (sp) units:

android:textSize="30sp"

Android also supports three relative font size styles that you may want to use in your
application:

TextAppearance.Small, such as
style="@android:style/TextAppearance.Small."

TextAppearance.Medium

TextAppearance.Large

Emphasizing your text
You can add bold or italic emphasis to your text using the android:textStyle attribute.
The possible values are normal, bold, and italic, or you can combine bold and italic by
separating the two values with a pipe character (android:textStyle="bold|italic"):

What Goes into an Effective UI?

[54]

Setting the typeface
By default, Android applies the normal typeface to your text, but the system also supports
sans, monospace, and serif typefaces, which you set using android:typeface:

android:typeface="monospace"

To set the typeface programmatically, you need to use the setTypeFace method.

What Goes into an Effective UI?

[55]

How many lines?
By default, the content of your TextView will run across multiple lines depending on how
much text it has to display. If you want more control over the span of your TextView, you
have a few options, as follows:

android:lines: This makes TextView exactly X number of lines tall, for
example, android:lines="2"
android:minLines. At a minimum, TextView will be this many lines tall
android:maxLines: This limits the TextView to this many lines tall

EditText
While TextViews are great for displaying text, if you want the user to be able to input text,
you should use EditText instead.

One of the most common examples of EditTexts in action is a form that requests user
data. In this example, each input field is a separate EditText:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
tools:context=".MainActivity">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Please complete this form:"
 android:textSize="20sp"
 android:id="@+id/TextView" />

 <EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="textPersonName"
 android:hint="Name"
 android:id="@+id/editText" />

 <EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

What Goes into an Effective UI?

[56]

 android:inputType="textEmailAddress"
 android:hint="Email address"
 android:id="@+id/editText2" />

 <EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="textPostalAddress"
 android:hint="Postal address"
 android:id="@+id/editText3" />

 <EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="textPassword"
 android:hint="Password"
 android:id="@+id/editText4"
 android:layout_gravity="center_horizontal" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Sign up"
 android:id="@+id/button" />
</LinearLayout>

What Goes into an Effective UI?

[57]

Here's how this simple form looks on the user's device:

Since the EditText class is derived from the TextView class, many of the TextView
attributes are also applicable to EditText, including textColor, textSize, textStyle,
and typeface. However, EditText also supports a range of XML attributes that are
specific to the EditText class.

Controlling keyboard behavior – setting the
inputType
By default, when the user taps the EditText field, the standard keyboard appears and they
can enter whatever characters they like. However, you may want to restrict the kind of data
users can enter into your EditText fields using the android:inputType attribute.

What Goes into an Effective UI?

[58]

This restriction prevents the user from entering invalid data, but some inputType values
also prompt the Android system to optimize the virtual keyboard for a particular kind of
content. For example, if you specify that the EditTextinputType value is a phone number
(android:inputType="phone") the Android system will display the numerical keyboard,
which makes it easier for the user to input the required data.

Some inputType values also prompt the keyboard into other useful behavior; for example,
if you set inputType to textCapWords, the keyboard will capitalize every new word
automatically. This is handy when you're asking the user to enter data that should always
be capitalized, such as their name or address.

Here are the different inputType values you can use:

text: This displays the standard text keyboard
textEmailAddress: This displays the standard text keyboard with the addition
of the @ character
textUri: This displays the standard text keyboard with the addition of the /
character
number: This displays the basic numerical keyboard
phone: This displays the phone-style keyboard

All the following values display the standard text keyboard, but modify other keyboard
behavior:

textCapSentences: This automatically capitalizes the first letter of every new
sentence.
textCapWords: This automatically capitalizes every word.
textAutoCorrect: This automatically corrects commonly misspelled words.
textPassword: This masks the user's password by transforming every inputted
character into a dot. This is the behavior you typically encounter when entering
passwords on your Android device. Another way of creating this masking effect
is via the XML attribute android:password="true.".
textMultiLine: By default, the EditText field is constrained to a single line.
This attribute allows the user to enter multiple lines of text.

What Goes into an Effective UI?

[59]

You can also combine multiple values using the pipe character. For example, if you're
asking the user to create a password, you could automatically capitalize every new word
while also masking their input:

android:inputType="textCapWords| textPassword"

To specify keyboard behavior programmatically, use the setRawInputType method.

While we're on the subject of controlling user input, you can restrict what
numbers the user can enter into an EditText using android:digits
(android:digits="12345.").

android:imeOptions
Once the user has entered information into the EditText field, they'll usually confirm their
input by tapping the action key that appears in place of the keyboard's usual carriage return
key.

If you don't specify what action key the system should display, the Android system defaults
to the following:

actionNext: If there's at least one focusable field to move on to, the system
displays the Next action key.
actionDone: If there's no subsequent focusable fields, the system displays the
Done key. In our form example, the Done key would appear once the user has
completed the final EditText field.

Sometimes, you may want to override this default behavior and specify which action key
the keyboard should display. You can do this using the android:imeOptions attribute
and one of the following values:

actionGo: This displays the Go key (android:imeOptions="actionGo")
actionNext: This displays the Next key
actionDone: This displays the Done key
actionSearch: This displays the Search key
actionSend: This displays the Send key

What Goes into an Effective UI?

[60]

Giving the user a hint
Even though EditTexts are designed to collect user input, you may want to prompt the
user for a specific input by displaying temporary, greyed-out text in your EditText fields.
These hints are useful when it isn't immediately obvious what information the user is
supposed to enter.

You display hints using the android:hint attribute:

Enter the hint into your layout resource file directly (android:hint="Please
enter your password")
Create and reference a string resource
(android:hint="@string/messageHint.")

ImageView
Images are a handy way of conveying information to your users without forcing them to
read lots of on-screen text. Although you can add images to lots of different areas within
your app, (such as your layout's background and the background of onscreen elements,
such as buttons), the Android SDK provides a dedicated view for displaying images, called
ImageView.

We've already discussed how you can use density-independent and other relative units of
measure to create a user interface that displays correctly across a range of different screens.
However, ensuring your images look crisp and clear across a range of different screen sizes
isn't quite so straightforward.

This makes ImageView one of the more complicated views, but since images are such an
integral part of most Android UIs, it's well worth taking the time to properly master
Android's ImageView.

In this section, I'll show you how to add drawables to your UI and the steps you should
take to ensure these images display properly across the full range of possible screen sizes.

A drawable just means “something that can be drawn on the screen,” and
is often used to describe your app's graphical content.

What Goes into an Effective UI?

[61]

Supporting multiple screens
Let's get the tricky stuff out of the way first: how to create images that display correctly
across a wide range of different screens.

Although the Android system scales your content automatically to fit the current screen
configuration, you shouldn't rely on the system to do all the hard work for you, especially
when it comes to ImageViews as this can result in blurry or pixelated images.

To provide the best possible user experience, you'll need to provide alternate versions of all
the images you use in your app. These versions should be optimized for different screen
densities.

The good news is that you don't have to provide images for every screen density imaginable,
as the Android system groups all possible screen densities into generalized density spans.
As long as you provide a version for each density span, the Android system will choose the
version that's the best match for the current screen configuration.

Android supports five main generalized screen densities:

Low: ldpi 120dpi
Medium: mdpi 60dpi
High: hdpi 240dpi
Extra-high: xhdpi 320dpi
Extra-extra-high: xxhdpi 480dpi

Android actually supports a sixth screen density: extra-extra-extra-high,
also known as xxxhdpi. This 640dpi density span is a bit different from
the others as it only applies to your application's launcher icon. Some
devices, such as tablets, may display extra-large app icons in their
launcher. To make sure your app's icon doesn't end up looking fuzzy on a
large screen with an xxxhdpi display, you should supply an extra-extra-
extra high density version of your app's icon. You don't need to provide
xxxhdi versions of any other UI elements.

What Goes into an Effective UI?

[62]

Supporting different screen densities
So, how do you let Android know which image is optimized for hdpi displays, and which
image is optimized for xhdpi displays? The answer is to create directories that are tagged
with the ldpi, mdpi, hdpi, xhdpi, xxhdpi, and xxxhdpi qualifiers. Android will
recognize that these directories contain resources that target a specific screen density, and
then select an image from the appropriate directory based on the current screen
configuration.

When you create an Android project in Eclipse or Android Studio, the project typically
contains the default res/drawable directory only, so you'll need to create the following
directories manually:

drawable-ldpi

drawable-mdpi

drawable-hdpi

drawable-xhdpi

drawable- xxhdp

drawable-xxxhdpi

Remember, this directory should contain the extra-extra-extra-high density version of your
app's launcher icon only.

To create these density-specific directories, perform the following steps:

Right-click on your project's res folder and select New, followed by Android1.
resource directory.
In the window that appears, open the Resource type dropdown and select2.
Drawable.
In the Available qualifiers section, add Density as Chosen qualifier.3.

What Goes into an Effective UI?

[63]

Open the Density dropdown and select the desired density from the list, for4.
example, Low Density if you're creating the drawable-ldpi directory, or XXX-
High density if you're creating a drawable-xxxhdpi directory. You'll notice that
when you select the density, Directory name gets updated automatically:

When you're happy with the information you've entered, click OK. Your IDE will5.
then create the new directory.
Repeat! You'll typically want to create a directory for each of the generalized6.
screen densities.

If you're working with a project in Android Studio, sometimes you may create all your
density-specific directories and then realize that none of them are appearing in Android
Studio's Project view. If this happens, the problem may be that you have the Android view
selected instead of Project view. To switch views, click on the Android label in Android
Studio's Project view, and then select Project from the drop-down menu:

What Goes into an Effective UI?

[64]

You'll notice your project structure has changed. Open the app/src/main/res folder, and
you will see all the density-specific directories you created earlier.

Creating density-specific images
Now that you've updated your project structure, it's time to actually create those optimized
images and add them to your project.

Android supports several different image types, but you'll typically use one of the
following:

Bitmaps: Android supports bitmap files in three formats: .png (preferred), .jpg
(acceptable), or if you really must, .gif (discouraged).
Nine-patch file: This is a .png file with a difference! Nine-patch files allow you
to define stretchable regions that help your image resize more smoothly. We'll
explore nine-patch images in more detail in the later chapters.

What Goes into an Effective UI?

[65]

The key to creating alternate bitmaps and nine-patch files is to adhere to a 3:4:6:8:12:16
scaling ratio. For example, if you have an image that's 68 x 68 pixels and targets medium-
density screens, you'd need to create the following alternatives:

LDPI: 51 x 51 pixels (0.75% of the original size)
MDPI: 68 x 68 pixels (original size)
HDPI: 102 x 102 pixels (150% of the original size)
XHDPI: 136 x 136 (200% of the original size)
XXHDPI: 204 x 204 (300% of the original size)
XXXHDPI: 272 x 272 (400% of the original size)

When you're creating your alternate images, you must use the same filename for each
version of the image. This is essential if the Android system is going to recognize these files
as alternate versions of the same image.

The final step is placing each file inside the appropriate directory.

Adding ImageView
Creating the correct drawable directory structure and providing multiple versions of the
same image may feel like a lot of work, but once you've done all this groundwork,
displaying drawable content in ImageView is a fairly straightforward task.

Most of the time, you'll create your ImageView by adding an <ImageView> element to your
Activity's layout resource file:

<ImageView
 android:id="@+id/imageView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
 android:src="@drawable/myImage"
/ >

Note the android:src attribute. This is how you tell your ImageView what drawable to
display. Assuming you've provided several versions of the myImage file, the Android
system checks each drawable directory for the most suitable version, and then it displays
this image.

If you'd prefer to set your ImageView content programmatically, you can use the
setImageResource() method instead.

What Goes into an Effective UI?

[66]

Buttons and ImageButtons
Buttons (and by extension, ImageButtons) are UI components that react to the user
tapping the screen. Whenever you add a button to your UI, it should be immediately clear
to the user what this button will do when they touch it.

While you could inform the user about a button's purpose with an accompanying TextView
(something along the lines of tap the button below to move onto the next screen) this is wordy
and inefficient. Most of the time, you'll want to communicate a button's purpose by adding
a label to this button.

Android provides you with several labeling options:

A text label, for example Next, Submit, or Cancel.
An image icon, such as a checkmark or a cross icon.
Both! If the button represents an unusual, unexpected, or complicated action, you
may want to clear up any potential confusion by labeling the button with both
text and an image:

Depending on whether you want your button to display text, an icon, or both, you can add
a button to your layout resource file in one of three ways.

What Goes into an Effective UI?

[67]

Creating buttons with text labels
To create a basic button with a text label, insert a <Button> element into your layout
resource file:

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_text" />

You set the button's text label using the android:text attribute. As with TextViews, you
can either insert the text into your layout directly (android:text="Submit") or you can
create a string resource in your project's res/values/strings.xml file, and then
reference the string resource (android:text="@string/submitText").

To set the button's text programmatically, use setText:

 button.setText("Submit!");

Creating buttons with image labels
As the name suggests, ImageButton is a button with an image label.

To insert ImageButton into your UI, you need to add the <ImageButton> tag to your
layout resource file:

<ImageButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageButton"
 android:src="@android:drawable/send" />

Recognize the android:src attribute? It's referencing a drawable resource, in exactly the
same way an ImageView references a drawable reasource.

Creating buttons with text and image labels
If you want to leave the user in no doubt about what'll happen when they touch a button,
you can label that button with both text and an image. This involves utilizing the Button
class with the addition of android:drawableLeft:

<Button
 android:layout_width="wrap_content"

What Goes into an Effective UI?

[68]

 android:layout_height="wrap_content"
 android:id="@+id/imageButton3"
 android:text="Send"
 android:drawableLeft="@android:drawable/send" />

Change your button's background
If you feel like these three options aren't enough, you can also change a
button's background using android:background and then referencing a
color value or an image.

State list resources
Your typical button has three states:

Default: This button is neither pressed nor focused
Pressed: This button is in a pressed state
Focused: This button is currently in focus

All the button attributes we've discussed so far (text labels, image labels, and backgrounds)
apply to a button element regardless of its current state. But sometimes you'll want your
button to give the user visual clues about its current state. For example, when the user taps
a button, you may want it to briefly display a darker color while it's in its pressed state, so
users know that their devices have successfully registered the touch event.

If you want your button to react to its current state, you need to create a state list resource,
which is an XML file that defines three different images or colors to use for each of the
button's states.

To create this state list resource, do the following:

Create three drawables to use as your button's background. These drawables1.
represent each of the button's states.
Give each drawable a name that reflects the state it represents, for example,2.
button_pressed, or button_default.
Add these drawables to the appropriate res/drawable directory.3.
Create a new XML file in your project's res/drawable directory, by right-4.
clicking on the drawable directory and selecting New, followed by Drawable
resource file. Give the XML file a descriptive name, such as button_states, and
then click on OK.

What Goes into an Effective UI?

[69]

Open your new drawable resource file and define all the drawables you want to use for
each state by adding them as separate <list> elements inside a single <selector>
element:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:drawable="@drawable/button_pressed"
 android:state_pressed="true" />
 <item android:drawable="@drawable/button_focused"
 android:state_focused="true" />
 <item android:drawable="@drawable/button_default" />
</selector>

In the preceding code, we're defining which drawable the button should use when it's in
each state:

When pressed = true, the button should use the button_pressed drawable.
When focused = true, the button should use the button_focused drawable.
If the button isn't pressed or focused, it should use the button_default
drawable.

The order of the <item> elements in your state list resource is important, as when you
reference this state list, the system moves through the <item> elements in order and uses
the first <item> element that's applicable to the button's current state. Since the default
state is always applicable, you must always place the default drawable at the end of the list,
to ensure it's only used if the system has checked and discarded android:state_pressed
and android:state_focused first.

To apply a state list resource to a button, you need to reference it as a single drawable in
your Activity's layout resource file:

<Button
 android:id="@+id/button_send"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_send"
 android:background="@drawable/button_custom" />

What Goes into an Effective UI?

[70]

You can also create state list resources that use colors instead of images. These kinds of state
lists are known as color state list resources. You use the same <selector> and <item>
elements; the only difference is that each <item> element references a color rather than a
drawable:

<item android:drawable="@android:color/holo_red_light"
 android:state_pressed="true" />

Or

<item android:drawable=""#0000ff"
 android:state_pressed="true" />

Summary
In this chapter, we covered some of the most commonly used views and layouts, and we
looked at all the different ways to customize them to suit our specific design needs.

Even though there are views and layouts we haven't covered yet, many of the attributes
we've explored in this chapter are applicable to the views and layouts that we'll encounter
in later chapters, for example, layout_width, android:src, android:id and the relative
units of measure.

In the next chapter, we'll expand on using resources such as strings, nine-patch images,
colors, and state lists, and also take a look at some new resources, including arrays and
dimensions.

Finally, you'll learn all about an important aspect of UI design that we haven't touched on
yet: fragments.

3
Expanding your UI –

Fragments, Resources, and
Gathering User Input

In the previous chapter, we concentrated on creating a strong foundation for your app's
user interface. In this chapter, we'll build on these foundations using additional resources,
such as arrays, dimensions, and 9-patch images.

Once we've perfected the appearance of your UI, we'll explore how to make the UI react to
user input, before taking a look at one UI component that can help us make the most out of
devices with larger screens: fragments. And since fragments aren't the only way to take
advantage of the extra screen space, we'll also take a look at the multi-window and picture-
in-picture modes coming up in Android N.

More resource types
If your app features any text, then as a general rule, the text belongs in your project's
res/strings.xml file as a string resource and not in your application code. Although
we've touched on string resources in the previous chapter, they're such an integral part of
the vast majority of Android applications that it makes sense to look at them in more detail,
particularly in regards to some of the more complex tasks you can perform with string
resources, such as creating string arrays.

Expanding your UI – Fragments, Resources, and Gathering User Input

[72]

Creating and styling string resources
A string is a simple resource that you define once in your project's
res/values/strings.xml file, and then use it multiple times throughout your project.

You define string resources using the following syntax:

<resources>

<string name="string_name">This is the text that'll appear whenever you
reference this string resource.</string>

</resources>

You also have the option to add style attributes to your string resources, so every time you
use the string resource in your application, it has exactly the same styling. Android
supports the following HTML markup:

 for bold text
<i> for italic text
<u> for underlined text

Wrap your chosen HTML markup around the text you want to style:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="Hello World">Hello world, welcome to my app!</string>

<string name="click">Please click the <i>button</i> to continue</string>

</resources>

Although you'll typically reference string resources from your application's layout resource
files, you can also reference a string via your Java code:

String string = getString(R.string.string_name);

Expanding your UI – Fragments, Resources, and Gathering User Input

[73]

Creating string arrays
A string array is exactly what it sounds like: an array of string resources.

String arrays are useful when you have multiple related strings that always appear
together, such as a list of options in a recurring menu.

While you could define every item as a separate string resource and then reference each
string individually, this is pretty time consuming, plus you'll need to remember a long list
of different string IDs! It usually makes more sense to add all your string resources to a
single array, so you can display all these strings just by referencing a single string array.

You typically create string arrays in a dedicated res/values/arrays.xml file. For
example, the following XML defines a string array called ingredients that consists of five
string resources:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string-array

//Create your string array//

name="ingredients">

//Give your array a descriptive name//

 <item>Self-raising flour</item>

//Add each string to your array//

 <item>Butter</item>
 <item>Caster sugar</item>
 <item>Eggs</item>
 <item>Baking powder</item>
 </string-array>

</resources>

To load this string array, use the getStringArray() method of the Resources class:

Resources res = getResources();
String[] ingredients = res.getStringArray (R.array.ingredients);

Expanding your UI – Fragments, Resources, and Gathering User Input

[74]

String arrays are also useful for rapidly populating spinner controls. Assuming the spinner
control's options are static and predetermined, you can define all these options in a string
array and then load the array inside the spinner control.

A spinner is a UI element where the user selects one value from a list of
options. When the user touches the spinner control, a drop down appears
displaying all the available options. The user can then select an option
from the list, and the spinner control then displays this selected option in
its default, unopened state.

To populate a spinner using a string array, add the spinner control to your activity's layout
resource file, and then reference the array using android:entries:

<Spinner
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:id="@+id/spinnerOfIngredients"
 android:entries="@array/ingredients">
</Spinner>

Defining dimensions in dimens.xml
Android supports several different units of measurement that you can hardcode into your
project using XML or Java, such as android:textSize="20sp". However, you can also
define the dimensions you want to use in advance in your project's
res/values/dimens.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="textview_width">26dp</dimen>
 <dimen name="textview_height">35dp</dimen>
 <dimen name="headline_size">41sp</dimen>
 <dimen name="bodytext_size">20sp</dimen>
</resources>

Expanding your UI – Fragments, Resources, and Gathering User Input

[75]

Then, you can set the size of your UI components by referencing the corresponding value
within your dimens.xml file:

<TextView
 android:layout_height="@dimen/textview_height"
 android:layout_width="@dimen/textview_width"
 android:textSize="@dimen/headline_size"/>

You can also apply values from your dimens.xml file using Java:

textElement.setWidth(getResources().getDimensionPixelSize(R.dimen.headline_
size));

But why go to the extra effort of using the dimens.xml file, when you can just add
dimension information to your layout directly?

Though this may seem like the quickest option, it isn't good practice to mix your
dimensions with your layout and application code. Similar to string resources, the
dimens.xml file provides a single, dedicated place where you can change your project's
dimensions without having to touch the rest of your code. It also helps you create a
consistent user interface, as it encourages you to define a set of values once and then use
these same values throughout your app.

Secondly, you can use multiple dimens.xml files to create a more flexible user interface.
Using the dimens.xml files in this way does require a bit of prep work, as you'll need to
create multiple res/values folders that target Android's different generalized densities. In
the same way you, create multiple drawable folders to manage your project's images.

Open your project's res folder and create the following folders:

values-ldpi: Targets 120dpi devices
values-mdpi: Targets 60dpi devices
values-hdpi: Targets 240dpi devices
values-xhdpi: Targets 320dpi devices
values-xxhdpi: Targets 480dpi devices

Expanding your UI – Fragments, Resources, and Gathering User Input

[76]

Then, create a dimens.xml file inside each folder:

This may seem like a lot of work, but once you have this structure in place, you can use
your dimens. files to define the sets of values that are optimized for each screen density
category. Then, when the Android system loads your layout, it'll select the most
appropriate dimens.xml file for the current screen configuration and apply the file's
dimensions to your layout.

Downloading the example code
You can download the example code files for this book from your account
at h t t p : / / w w w . p a c k t p u b . c o m. If you purchased this book elsewhere,
you can visit h t t p : / / w w w . p a c k t p u b . c o m / s u p p o r t and register to have
the files e-mailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your e-mail address and1.
password.

http://www.packtpub.com
http://www.packtpub.com/support

Expanding your UI – Fragments, Resources, and Gathering User Input

[77]

Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code5.
files.
Choose from the drop-down menu where you purchased this6.
book from.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button
on the book's webpage at the Packt Publishing website. This page can be
accessed by entering the book's name in the Search box. Please note that
you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

Color state lists
Each time the user interacts with a UI element, your app will signal that it's registered this
interaction. Sometimes, this signal will be built-in: a new screen loads up, a pop up opens,
or a tick appears in a checkbox. However, if it isn't immediately obvious that a UI element
has registered the user's input, you should give them a visual clue. One possible method is
to use the color state list.

A color state list defines a series of states and assigns a color to each of these states. When
you apply a color state list to a view, the view displays different colors from the list based
on its current state.

Color state lists are most commonly applied to buttons. For example, a grey button may
briefly turn a darker shade of grey when it's in a depressed state, leaving the user in no
doubt about whether the button has registered their interaction.

Expanding your UI – Fragments, Resources, and Gathering User Input

[78]

Color state lists are similar to the state list resources that we looked at in
the previous chapter—we're just signaling changes of state using colors
rather than images.

To create a color state list, open your project's res/drawable folder and create a new XML
file; give the file a name that indicates its purpose, such as
res/drawable/button_background.xml. Then, fill this file with all the different states
that you want to trigger a color change and the colors you'd like to use.

The potential states include the following:

android:state_pressed="true/false."

android:state_focused="true/false."

android:state_selected="true/false."

android:state_checkable="true/false."

android:state_checked="true/false."

android:state_enabled="true/false."

android:state_window_focused= "true/false."

In this example, we're going to add two states to a color state list:

<selector xmlns:android="http://schemas.android.com/apk/res/android" >

//A color state list must be inside a single selector element//

<item

//Add each state and color as a separate <item>//

android:state_pressed="true"

//If the current state is pressed...//

android:color="@color/green" />

//....Apply the color green to this view//

<item

android:color="@color/blue/>

//If the View is in its default state, apply the color blue instead. We're
using blue as the default that'll be applied to the view when none of the

Expanding your UI – Fragments, Resources, and Gathering User Input

[79]

above states are relevant//

The order you place your <item> element within the selector element is
crucial, as the system works its way through the color state list in order
and selects the first item that applies to the view's current state. As you
saw in the preceding example, you can create a default color that'll be
applied to the view when none of the other states are applicable. If you
create a default state, then you must always place it at the very end of the
color state list as a final resort.

The only thing left to do is apply the color state list resource to your view:

<Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/button_text"
 android:background:="@drawable/button_background" />

You can also refer to your color state list resource in Java using
R.drawable.button_text.

Working with 9-patch images
A 9-patch graphic is a stretchable bitmap that allows you to define which areas the system
can and can't stretch when it needs to resize your image to fit the current screen.

When you convert a regular image into a 9-patch image, you add an extra 1-pixel-wide
border around your image's top and left areas. This 1-pixel border pinpoints exactly which
pixels the system should replicate if it needs to create a stretched effect rather than simply
resizing the entire image:

Expanding your UI – Fragments, Resources, and Gathering User Input

[80]

Your border doesn't have to be a continuous line; if there's any area you don't want the
system to stretch, just leave the area as a gap in your border. In the previous example, the
system can stretch the drawable horizontally and vertically by replicating the pixels marked
with the black line. However, the corners aren't marked, so these will remain the same size,
creating a sharper, more defined corner.

Converting an image into 9-patch format adds an extra pixel to your
image's perimeter. Keep this in mind when you're creating images with
the intention of converting them into 9-patches!

Although your image can include multiple stretchable sections, your lines must be exactly 1
pixel wide for the Android system to correctly recognize these lines; stretch your image
accordingly (if appropriate), and then remove the lines from the finished image. If you add
any lines that are thicker than one pixel, the system will treat these lines as just another part
of your image.

If you do use 9-patches, you still need to provide alternate versions of these images for each
of Android's generalized screen densities (ldpi, mdpi, hdpi, xhdpi, and xxhdpi). When
the system loads your app, it'll select the 9-patch image that's the best fit for the current
screen density, and then it will stretch the image's stretchable sections if required.

9-patch images can stretch, but they can't shrink. For the best results when
creating 9-patch images that target the different density folders, you
should target the lowest common resolution for each density category.

Expanding your UI – Fragments, Resources, and Gathering User Input

[81]

How do I create 9-patch images?
There are lots of different PNG editors out there, but I'll be using Draw 9-patch as this
editor is included in the Android SDK, so chances are you already have it installed on your
computer.

You'll find the Draw9patch.bat program in your computer's sdk/tools folder. Launch
the editor and import your image by dragging it into the Draw 9-patch window.

The 9-patch workspace consists of the following:

Left pane: This is the drawing area where you define your image's stretchable
sections.
Right pane: This is the preview area, which displays a preview of how your
graphic will appear when stretched. As you're editing your image in the left
pane, make sure you keep an eye on this preview.

Expanding your UI – Fragments, Resources, and Gathering User Input

[82]

To define the area that can be stretched horizontally, draw a line along the top of your
image by clicking. Every time you click, a new pixel will be added to your line.

If you make a mistake, you can remove pixels by holding the Shift key while clicking each
pixel you want to remove.

To define the area that can be stretched vertically, click to draw a line along your image's
left edge.

Once you're happy with the results, save your 9-patch image by selecting File | Save 9-
patch. This saves your image with the .9.png extension. You can then add this graphical
resource to your project as normal.

If you're not a fan of Draw 9-patch, or you just want to try an alternative,
there are several free online tools that you can use to create 9-patch
images, including h t t p : / / d r a w 9 p a t c h . c o m /.

http://draw9patch.com/

Expanding your UI – Fragments, Resources, and Gathering User Input

[83]

Registering the user input
Input controls are your UI's interactive components, such as buttons, EditText fields, and
checkboxes.

We've already seen how you can drop input controls into your UI, but input controls don't
register user input out of the box.

To turn UI components, such as buttons and EditText fields, into fully-functioning
interactive components, you'll need to write some extra code.

Handling click events
Click events are one of the most common input events your UI will have to handle. A click
event is simply where the user touches an onscreen element, such as tapping a button or a
checkbox.

A button cannot process clicks on its own; you'll need to create a listener and then assign it
to the button. When the user taps the button, the listener registers the tap and executes the
code from your onClick method.

Let's imagine that your layout contains a single button, and you want that button to register
click events. As with many things in Android, you can create the same effect via XML or via
your application code.

Handling onClick Via Java
Here's how you can handle these events using Java.

Button button = (Button) findViewById(R.id.button1

//Get a reference to the view you want to assign the listener to//
button.setOnClickListener(new View.OnClickListener() {

//Assign the setOnClickListener listener to this view//

 @Override
 public void onClick(View view) {

//Override the onClick method//

....

....

Expanding your UI – Fragments, Resources, and Gathering User Input

[84]

// This is where you'd implement the code that tells your app what action
it needs to perform whenever it registers a click event, for example you
might want your app to launch a new activity, open a menu, or start playing
a video//

}
 });

Handling onClick Via XML
You can create the same functionality via your layout resource file by adding the
android:onClick attribute to your view, and then adding the onClick method to the
corresponding Java file:

<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="buttonClicked"
 android:text="Click me" />

Whenever the user clicks this button, the buttonClicked method will be executed, so the
next step is to add this method to your Java file:

public void buttonClicked(View v) {
Toast.makeText(this, "The button has been clicked!",
Toast.LENGTH_LONG).show();

//So you can test whether the buttonClicked method is working correctly,
we'll tell the app to display a "The button has been clicked" message
whenever buttonClicked is executed//

 }

Registering the EditText input
When you drop EditText into your UI, the user can type text into the field, but by default,
EditText cannot read or use this information.

Expanding your UI – Fragments, Resources, and Gathering User Input

[85]

For EditTextto acquire user input, you need to do the following:

Get a reference to the EditText field using findViewById.1.
Get the text from the EditText field using getText().2.

You may then want to display this text elsewhere in your UI using setText().

Now that you know how to register click events and retrieve the user input from EditText,
let's look at an example app that combines all this functionality.

The example app
We'll create a simple app that asks users to enter their name into EditText and then tap a
Submit button. The app will then retrieve the user's name from the EditText field and
display it in TextView as the part of a welcome message.

Create a simple layout that contains these three onscreen elements:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/form"
 android:textColor="@color/blue" />

//Add the TextView. Initially this view will display instructions, but once
the user has submitted their name it'll update to display our welcome
message instead//

 <EditText
 android:id="@+id/editText1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

//Add the EditText//

 android:background="@color/grey"

www.allitebooks.com

http://www.allitebooks.org

Expanding your UI – Fragments, Resources, and Gathering User Input

[86]

//Depending on your app's color scheme, an empty EditText may blend into
the background, so you may want to give the EditText its own background
color//

 android:hint="@string/yourName"
 android:ems="10" >

//Make it clear what information the user needs to enter, using
android:hint//

 <requestFocus />
 </EditText>

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="@color/blue"
 android:text="@string/submit"
 android:textColor="@color/white" />

//Add the Submit button//

</LinearLayout>

Next, open res/values/strings.xml and create your string resources:

<resources>
<string name="app_name">Form</string>
 <string name="form">Please complete the form below</string>
 <string name="yourName">Enter your name</string>
 <string name="submit">Submit</string>
</resources>

Expanding your UI – Fragments, Resources, and Gathering User Input

[87]

Now that you have your UI, it's time to give these on-screen elements the ability to register
and process the user input.

In this example, we create an event listener and assign it to our submitButton. When the
user taps the Submit button, the app registers this interaction and retrieves whatever text is
currently in the EditText field. It then sets this value to TextView, replacing the default
Please complete the form below text with the EditText value, plus two other bits of text,
to create our complete welcome message:

package com.example.jessica.myapplication;

import android.os.Bundle;
import android.app.Activity;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class MainActivity extends Activity {

Expanding your UI – Fragments, Resources, and Gathering User Input

[88]

 Button submitButton;
 EditText nameEdit;
 TextView welcomeText;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 submitButton = (Button)findViewById(R.id.button1);

 submitButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {

//Assign the setOnClickListener to your submitButton//

 nameEdit = (EditText) findViewById(R.id.editText1);

//Get a reference to the EditText//

 welcomeText = (TextView)
findViewById(R.id.textView1);

//Get the text from nameText and set it to the welcomeText TextView. At
this point, I'm adding a bit of extra text (Welcome, and !) to create a
nicer greeting//

 welcomeText.setText("Welcome " +
nameEdit.getText().toString() + "!");
 }
 });
 }

}

Expanding your UI – Fragments, Resources, and Gathering User Input

[89]

This is it—boot up your app and try interacting with the different UI elements.

Working with fragments
When you're developing your UI for pre-Android N devices, one of the major restrictions
you'll encounter is that you can only ever display a single activity on the screen at any one
time. Fragments give you a way to overcome this restriction; although technically you can
still only display one activity at a time; each activity can consist of multiple fragments.

Android N introduced multi-window mode, which gives users the ability
to display more than one app at a time, allowing them to see multiple
activities at once, albeit from different applications! We'll take a closer look
at multi-window mode later in this chapter.

Expanding your UI – Fragments, Resources, and Gathering User Input

[90]

A fragment is a self-contained, modular section of your app's user interface that you embed
inside an activity. You cannot instantiate a fragment as a standalone application element.
Think of a fragment as a kind of sub activity that has its own life cycle, behavior, and
(usually) its own user interface.

Why do we need fragments?
The Android team introduced fragments in Android version 3.0, also known as
Honeycomb, mainly to help developers make better use of all the extra screen space
available on larger devices, such as tablets. Using fragments, you can divide each activity
into distinct components and then control each part separately.

You can also create multiple layouts that combine your project's fragments in different ways
depending on the current screen configuration. For example, you could create a multi pane
layout that combines multiple fragments in a single activity; and you could create a single
pane layout that displays each fragment separately, which is better suited to smaller
screens. Your app can then select the most appropriate layout (multi pane or single pane)
depending on the current device.

In this way, fragments are useful for making the most out of devices with larger screens,
while also providing a good user experience for users viewing your app on smaller screens.

You may also want to use fragments to create layouts that are optimized
for devices held in landscape and portrait orientation. For example, you
can create a layout for landscape devices that displays multiple fragments
in a side-by-side configuration, and you can create a single-pane layout
that displays one fragment at a time when the device is in portrait mode.

The final major benefit of using fragments is that when a fragment's host activity is running,
you can add, remove, and replace each fragment independently to create a truly dynamic
user interface.

Let's take a look at an example of how an app that provides single-pane and multi-pane
layouts may work.

Expanding your UI – Fragments, Resources, and Gathering User Input

[91]

Imagine an activity (Activity 1) that contains two fragments: Fragment A and Fragment B.
Fragment A displays a list of items. When the user selects an item in Fragment A, Fragment
B updates to display information related to the selected item.

This app includes two different layouts, and it selects which layout to display based on the
size of the device's screen. If the screen is large enough to accommodate both Fragment A
and Fragment B, the app displays these fragments side-by-side in Activity 1, in a multi-
pane layout.

If there isn't enough room to accommodate both fragments, the app will display each
fragment separately, as different screens in a single-pane layout.

Expanding your UI – Fragments, Resources, and Gathering User Input

[92]

In this scenario, Activity 1 displays Fragment A only. When the user selects an item from
Fragment A, the screen updates to display Fragment B. This means your app creates an
entirely new activity (Activity 2) that exists simply to host Fragment B:

While fragments are important tools that can help you create more flexible
layouts, fragments aren't a magical cure. Even if you do include fragments
in your user interface, you'll still need to follow all the usual guidelines
and best practices in addition to using fragments.

The fragment life cycle
Although a fragment has its own life cycle, the life cycle is directly affected by the life cycle
of the host activity. Each life cycle callback for the host activity results in a similar callback
for all its fragments; for example, when the host activity's onStop() method is called, all
the fragments within the activity also receive a call to onStop(), and when the activity is
destroyed, so are all its fragments.

You can only manipulate a fragment's life cycle independently while the host activity is in
its resumed state. At this point, you can add, remove, and replace fragments. However,
once the host activity leaves its resumed state, all its fragments lose their independence and
are once again dependent on the host activity's life cycle.

Expanding your UI – Fragments, Resources, and Gathering User Input

[93]

Like an activity, a fragment can exist in three states:

Resumed: The fragment is visible in the running activity.
Paused: Another activity is in the foreground and has focus, but the fragment's
host activity is still visible.
Stopped: Either the host activity has been stopped, or the fragment has been
removed from the activity and added to the back stack. A stopped fragment is
still alive, but it's no longer visible to the user.

One major difference between the life cycle of an activity and the life cycle of a fragment is
how you restore each one and get its state back:

Activity: When an activity is stopped, it's placed into a back stack of activities
that's managed by the system.
Fragment: When a fragment is stopped, it's only placed into a back stack that's
managed by the host activity if you explicitly request that the instance should be
saved. To make this request, call addToBackStack() during the transaction that
removes the fragment.

What is the back stack? And why is it so important?
The back stack keeps track of all the actions the user can reverse by
tapping the device's Back button, whether that's a physical back key or
one of Android's illuminated soft keys. If you add a fragment to the back
stack, then the user can backtrack to that fragment. If you don't add a
fragment to the back stack, the user cannot recover that fragment.

Creating a fragment
In this section, I'll show you how to create a simple fragment. The first step is defining the
fragment's UI component:

Open your project's res folder.1.
Right-click the layout folder and select New, followed by Layout resource file.2.
Give your layout resource file a descriptive name, such as list_fragment.3.
Select the Root Element option you want to use.4.
Double-check the Directory name option is set to layout.5.
Click OK.6.

Expanding your UI – Fragments, Resources, and Gathering User Input

[94]

Open your new layout resource file and define your fragment's UI:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This is a fragment"
 android:id="@+id/textView" />

</LinearLayout>

Before we create the actual fragment, let's take a moment to look at the issue of backwards
compatibility; specifically, how you can reap the benefits of fragments even on devices that
run pre-Honeycomb versions of Android.

Fragments and backwards compatibility
When you're developing an app, you should aim to support as many versions of Android
as possible, as this will give you the widest potential audience. Since fragments didn't find
their way into Android until version 3.0, if you want your app to be compatible with
devices running anything earlier than Android Honeycomb, you'll need to add v4 of
Android Support Library to your project.

Android Support Library is a handy set of code libraries that enable you to
use features and APIs that wouldn't otherwise be available to the earlier
versions of the Android platform.
Once you add the v4 library to your project, you can use fragments while
remaining backwards compatible with devices running versions as low as
Android 1.6.

To add this library to your project, launch Android SDK Manager, open the Extras folder
and download the Android Support Library (if you're using Eclipse) or Android Support
Repository (if you're using Android Studio).

Expanding your UI – Fragments, Resources, and Gathering User Input

[95]

If you're using Android Studio, add the library to your project by opening its module-level
build.gradle file and adding the support library to the dependencies section:

dependencies {
....
....
....
 compile 'com.android.support:support-v4:23.1.0'
}

If you're developing in Eclipse, perform the following:

Create the libs directory in the root of your project.1.
Locate the support library called the JAR file in your Android SDK directory (for2.
example, <sdk>/extras/android/support/v4/android-support-v4.jar).
Copy this JAR into the libs directory you created in the previous step.
Right-click the JAR file and select Build Path, followed by Add to Build Path.3.

You'll also need to import the fragment class from the v4 support library (import
android.support.v4.app.Fragment) and extend FragmentActivity instead of the
usual Activity class (public class ListFragment extends FragmentActivity).

There are no hard and fast rules about which versions of the Android
system you should support, though you'll generally want to support as
many versions as you feasibly can without compromising on your app's
functionality. If you do decide against supporting the earlier versions of
the Android platform, then you don't need to use the support library. If
you're unsure, it may help you to look at Google's stats about the
percentage of Android devices currently running each version of the
Android platform, available at h t t p : / / d e v e l o p e r . a n d r o i d . c o m / a b o u
t / d a s h b o a r d s / i n d e x . h t m l.

Creating your fragment class
In addition to creating a layout, you need to have a class associated with your fragment.
This class must extend Fragment or FragmentActivity.

To add a new class to your project, perform the following:

Open your Java folder and right-click on your project's package name.1.
Select New followed by Java Class.2.
Give your class a descriptive name, for example, ListFragment.3.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

Expanding your UI – Fragments, Resources, and Gathering User Input

[96]

Open your new ListFragment class; it will look similar to this:

package com.example.jessica.myapplication;

public class ListFragment {
}

You'll want to make the following changes:

package com.example.jessica.myapplication;

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class ListFragment extends Fragment {

//Remember, if you want your app to work on devices running anything
earlier than Honeycomb, you need to extend FragmentActivity rather than
extending the Fragment class//

 @Override

//To inflate your fragment's layout inside the current activity, you need
to override the onCreateView() method//

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

//Your implementation of onCreateView() must return a View, which is the
root of your fragment's layout//

Bundle savedInstanceState) {

///savedInstanceState is a Bundle that passes data about the previous
instance of the fragment, just in case this fragment is being resumed//

 View view = inflater.inflate(R.layout.list_fragment,
 container, false);
 return view;

//Inflate a new view hierarchy from the specified layout resource file. In
this example, that's list_fragment.xml//

Expanding your UI – Fragments, Resources, and Gathering User Input

[97]

 }
}

The inflate() method (in the preceding code) takes the following arguments:

The layout file that's being inflated (R.layout.list_fragment).
The parent ViewGroup where the inflated fragment layout should be inserted
(container).
The false Boolean that indicates the inflated layout should be attached to the
ViewGroup during inflation.

The next step is to add the fragment to your activity. You have two options:

Embed the fragment in your activity's corresponding XML layout file
Add the fragment at runtime via your application code

The most straightforward option is embedding your fragmentinside a layout file; however,
this does have one big drawback—when you add a fragment declaratively, the fragment is
static and will remain on the host activity until it's destroyed. You won't be able to add or
remove this fragment during the host activity's life cycle.

Adding a fragment to an activity via your application code gives you more freedom and
flexibility, but it is more difficult to implement a fragment programmatically.

Since it's the most straightforward approach, let's start by looking at how to add a fragment
via your layout resource file.

Adding a fragment to your activity declaratively
You can add a fragment to an activity using <fragment> in the same way you declare a
view:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">

 <fragment
 android:id="@+id/listFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

//Add the fragment//

Expanding your UI – Fragments, Resources, and Gathering User Input

[98]

 class="com.example.jessica.myapplication.ListFragment" />

//Identify the fragment you want to instantiate, using the class
attribute//

</LinearLayout>

Alternatively, you can identify the fragment using android:name:

<fragment android:name="com.example.jessica.myapplication.ListFragment"
android:id="@+id/listFragment"
android:layout_width="match_parent"
android:layout_height="match_parent" />

When it's time to create this activity's layout, the system will instantiate the specified
fragment, retrieve its layout, and then display it in place of the original <fragment> tags.

Adding a fragment to an activity at runtime
If you want to add, remove, or replace your fragments during the life cycle of the host
activity, things get a bit more complicated, as you'll need to place these fragments in your
activity at runtime, which means delving into your application code.

In this example, we'll be using the same list_fragment.xml file and the
ListFragment.java class we created earlier. However, instead of the <fragment>
placeholder, we'll be using FrameLayout, a special container view that indicates where the
fragment will eventually be displayed in the layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">

 <FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</LinearLayout>

Expanding your UI – Fragments, Resources, and Gathering User Input

[99]

You then need to tell your activity to replace the FrameLayout container with your
fragment at runtime:

package com.example.jessica.myapplication;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class MainActivity extends FragmentActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 if (findViewById(R.id.list_fragment) != null) {

 if (savedInstanceState != null) {
 return;
 }

 // Create a new Fragment//
 ListFragment firstFragment = new ListFragment();
 firstFragment.setArguments(getIntent().getExtras());

// If this activity was started with special instructions from an Intent,
pass the Intent's extras to the fragment as arguments//
 getSupportFragmentManager().beginTransaction()

// Call the beginTransaction() method on the fragment manager instance//

 .add(R.id.list_fragment,

//Call the add() method of the fragment transaction instance, and pass it
the resource ID of the view that'll contain the fragment
(R.id.list_fragment) and the fragment class instance(firstFragment)//

firstFragment).commit();

//The final piece of the above code calls the commit() method of the
fragment transaction//

 }
 }
}

Expanding your UI – Fragments, Resources, and Gathering User Input

[100]

When you add a fragment at runtime, you're free to add, remove, and replace this fragment
as and when required. These changes are known as fragment transactions.

Fragment transactions and the back stack
Fragment transactions are changes you commit to an activity in response to user interaction.

Whenever you perform a fragment transaction, you have the option to save this transaction
to the back stack. If you do add a transaction to the back stack, the user can navigate back to
this fragment state by pressing the device's physical back button or the softkey.

If you perform a transaction that removes or replaces a fragment and doesn't add the
transaction to the back stack, when you commit that transaction, the fragment is destroyed
and the user can't navigate back to it.

If you want the option to add a fragment transaction to the back stack, make sure you add
the fragment to the host activity during that activity's onCreate() method. You can then
add the fragment to the back stack by calling transaction.addToBackStack before you
commit a transaction that'll remove the fragment.

In the next section, you'll learn how to add, remove, and replace fragments. Regardless of
the kind of fragmenttransaction you're performing, you'll need to get an instance of
FragmentTransaction from the FragmentManager class:

import android.support.v4.app.FragmentTransaction;
import android.support.v4.app.FragmentManager;

//Add the FragmentTransaction and FragmentManager import statements//

FragmentManager fragmentManager = getSupportFragmentManager();
FragmentTransaction fragmentTransaction =
fragmentManager.beginTransaction();

//Get the FragmentTransaction instance//

You can then perform the following fragment transactions.

Expanding your UI – Fragments, Resources, and Gathering User Input

[101]

Adding a fragment
You can add a fragment to an activity using the add() method.

Pass the add() method to ViewGroup where you want to place the fragment, identify the
fragment you want to add, and then commit the transaction. For example, take a look here:

fragmentTransaction.add(R.id.fragment_container, firstFragment).commit();

Removing a fragment
To remove a fragment from an activity, you need to use the remove() method. This
method takes a reference to the fragment instance you want to remove, plus the
aforementioned commit() method.

In this example, we're removing a fragment called previousFragment:

fragmentTransaction.remove(previousFragment).commit();

Replacing a fragment
To replace one fragment with another fragment at runtime, you need to call the replace()
method of the fragmenttransaction instance.

The following example shows you how to replace one fragment with another fragment
(newFragment) so that the user has the option to navigate back to the previous fragment.
We'll also add the replaced fragment to the back stack:

Fragment newFragment = new Fragment();

// Create a new fragment//

FragmentTransaction transaction =
getSupportFragmentManager().beginTransaction();

//Create a new transaction//

transaction.replace(R.id.list_fragment, newFragment);

//The replace() method takes two arguments: the id of the view containing
the fragment that's being replaced, and an instance of the new fragment//

transaction.addToBackStack(null);

//Give the user a way of reversing the transaction by adding the replaced
fragment to the back stack. Note that addToBackStack() takes an optional

Expanding your UI – Fragments, Resources, and Gathering User Input

[102]

String parameter that identifies this fragment state on the back stack. If
you don't need this parameter, you can just pass null, similar to what
we're doing in this example//

transaction.commit();

// Commit the transaction//

If you add multiple changes to the transaction and then call
addToBackStack(), all changes applied before you called commit() are
added to the back stack as a single transaction.

The multi-window support in Android N
Beginning with Android N, the Android operating system supports multi-window natively
on both tablets and smartphones.

This new multi-window mode gives users the option to display more than one app at a time
in a split-screen environment, either side-by-side or arranged one above the other. The user
can resize these split-screen apps by dragging the dividing line that separates them, making
one app larger and the other one smaller.

Giving users the ability to view multiple apps simultaneously is good news for
productivity, paving the way for multi-app multitasking, such as bringing up a restaurant's
address in Google Chrome and then typing the address directly into Google Maps, or
replying to an incoming SMS without having to abandon the video you were watching on
YouTube.

Another major benefit of the multi-window support is that users can drag data from one
activity and drop it into another activity directly, whenever these activities are sharing the
same screen. Since this direct drag and drop can come in handy for all sorts of everyday
tasks, if your app doesn't already support drag and drop, then you should enable it for
Android N.

Expanding your UI – Fragments, Resources, and Gathering User Input

[103]

How does the multi-window mode work?
Android smartphone and tablet users can switch to multi-window mode in the following
ways:

This can happen by opening the Overview screen (also known as the recent apps
screen or task list) and long pressing an activity title. The user can then drag the
activity to a highlighted portion of the screen to open that activity in the multi-
window mode.
This can happen by opening the activity they want to view in the multi-window
mode and then pressing the Overview button. The device will then put the
current activity in multi-window mode and open the Overview screen ready for
the user to select another activity to share the screen.

In the multi-window mode, only one activity is active at any given time; that's the activity
the user has most recently interacted with, also known as the topmost activity. All other
activities are placed in a paused state even though they're still visible to the user. This
means that certain activities may need to continue running even when they're paused; for
example, video-playing activities should continue playing video content even when they're
not the topmost activity.

If you're developing a video-playing app, the solution is to pause the
video in onStop and resume playback in onStart, rather than in your
app's onPause handlers.

When the user interacts with a paused activity, the activity is resumed and it's the other
app's turn to be placed in a paused state.

Getting your app ready for multi-window mode
If your app targets Android N or higher and you don't specify whether your app supports
multi-window mode, the Android system assumes that your app does include multi-
window support.

Expanding your UI – Fragments, Resources, and Gathering User Input

[104]

However, it's good practice to explicitly state whether your app or activity supports multi-
window mode by adding the new android:resizeableActivity attribute to the
<activity> or <application> sections of your project's Manifest file:

android:resizeableActivity="true.": This app or activity can be launched
in multi-window mode on phones and tablets.

android:resizeableActivity="false.": This app or activity cannot be
launched in multi-window mode. If the user attempts to launch this activity in
multi-window mode, the app will take over the entire screen instead. If you want
to ensure that the system only ever displays your app in full-screen mode, you'll
need to use android:resizeableActivity="false" to explicitly disable
multi-window support.

You can also set minimum allowable dimensions so that users cannot shrink your UI
further than a specified size; you can do so using the android:minimalSize attribute. If
the user tries to resize the activity so it's smaller than android:minimalSize, the system
crops the activity to the size the user requests instead of shrinking your content.

Since your app may need to behave differently when it's in multi-window mode, Android
N extends the Activity class so you can query an activity to find out whether it's in multi-
window mode:

Activity.inMultiWindow: This is called to find out whether the current
activity is in multi-window mode. The Fragment version of this method is
Fragment.inMultiWindow.
Activity.onMultiWindowChanged: This is called whenever the activity
switches into or out of multi-window mode. The fragment version of this method
is Fragment.onMultiWindowChanged.

Testing your app's multi-window support
If your app targets Android N or higher and you haven't explicitly disabled multi-window
support, then you'll need to test your app in multi-window mode to ensure you're
providing the best possible user experience.

In particular, you should check the following:

Your app switches between full-screen and multi-window mode smoothly. Launch your
app in a full-screen mode, and then switch to multi-window mode. Check that
this action happens quickly, smoothly, and doesn't cause your app to lag.

Expanding your UI – Fragments, Resources, and Gathering User Input

[105]

Your app resizes properly in multi-window mode. Launch your app in multi-window
mode, open another app, and then drag the divider line to test your app across a
range of sizes. In particular, check that all UI elements remain visible and
reachable, check that touch targets never shrink to the point where they become
difficult to interact with, and check that your app's text remains readable. Test
how your app handles resizing when it's sharing space with another app in both
side-by-side and one-above-the-other configurations. You should also check that
performing multiple resizing operations in quick succession doesn't result in lag
or cause your app to crash.
The system respects your app's minimum dimensions. If you have specified a
minimum dimension, check that the system will prevent users from shrinking
your app beyond this android:minimalSize value, by dragging the divider
line.
Your app behaves as expected when it's visible but not active. For example, if you've
developed a video-playing app, you should verify that your app continues to
play video as expected when it's not the topmost activity.

If you explicitly disable multi-window support (by including
android:resizableActivity="false" in Manifest), then you should also install your
app on an Android N device and verify that it's not possible to view your app in multi-
window mode.

Picture-by-picture mode
Android N doesn't restrict the multitasking fun to smartphones and tablets! Android 7.0
also introduces a multitasking feature especially for Android TV users.

This new picture-in-picture (PIP) mode gives Android TV users the ability to watch a
pinned window in a corner of the screen, while another activity runs in the background.
The user can then toggle between the PIP window and the full-screen mode. If the user tries
to play another video on the main screen, the PIP window will automatically close.

To use this feature in your Android TV apps, you need to register your app's video activity
by adding android:resizeableActivity="true" and
android:supportsPictureInPictur="true" to Manifest. You can then decide what
events trigger the PIP mode in your app by calling
getActivity().enterPictureInPicture.

Expanding your UI – Fragments, Resources, and Gathering User Input

[106]

When your activity switches to PIP, the system considers the activity to be in a paused state
and calls your activity's onPause method. However, the whole point of PIP is that your app
continues to play video in the corner of the screen. Therefore, it's crucial that your app
checks whether an activity is paused because it's in the PIP mode. If it is, your app will
continue to play its video content:

@Override
public void onPause() {

 // If onPause is called due to PIP, do not pause playback//
if (inPictureInPicture()) {
 // Continue playback//

 ...
 }

 // If the activity isn't paused due to PIP mode, then pause playback if
necessary//

 ...
}

Bear in mind that in PIP mode, your video content is displayed in a small overlay window.
This means users won't be able to clearly see small details or interact with any UI elements.
So, if your video activity features either of these, you should remove them when your
activity enters PIP. You can then restore these UI elements when your activity switches back
to the full-screen mode.

For example, look at this:

@Override
public void onPictureInPictureChanged(boolean inPictureInPicture) {
 if (inPictureInPicture) {

 //This is where you'd hide the controls in PIP mode//

 ...
 } else {

 //This is where you'd restore any controls that are hidden when the
activity enters PIP mode//

 ...
 }
}

Expanding your UI – Fragments, Resources, and Gathering User Input

[107]

Summary
In this chapter, we saw how to take a basic UI to the next level using arrays, dimensions, 9-
patch images, and color state lists. We also looked at how to create a more flexible user
interface by incorporating fragments and multi-window mode into your design.

Now that we've spent a few chapters looking at the mechanics of how to build an effective
UI, it's time to switch things up a bit and look at the theory behind creating a great Android
user interface.

There's no shortage of best practices and guidelines that have come and gone with the
different versions of the Android platform, but in version 5.0, the Android team announced
a completely new direction for the Android UI.

It's called Material Design, and it's the subject of our next chapter.

4
Getting Started with Material

Design
Announced at the 2014 Google I/O conference and making its first appearance in Android
Lollipop, Material Design is the new design language from Google.

This is particularly big news for Android, as Material Design's whole purpose is to provide
a more consistent user experience; and as an open platform Android is particularly
vulnerable to inconsistencies. Open your Android device's app drawer and spend some
time flicking through your apps, and chances are you'll encounter at least a few apps that
will look and feel very different from one another.

Material Design sets out to change all this by providing the tools and guidelines that you
need to deliver a more unified user experience.

By adhering to Material Design principles, you can create apps that look good, run
smoothly, and feel like a seamless extension of the Android platform. And who wouldn't
want that?

However, Material Design is more than just a bunch of technical specifications about how
much shading you should apply to a button and how opaque your UI's primary text should
be. So, before we get into how to create a UI that perfectly compliments Google's new design
direction, let's get a better understanding of what Material Design is by looking at the
theory behind it.

Getting Started with Material Design

[109]

The Material Design ethos
Material Design is based on the idea of translating the physical properties of real-world
materials into the virtual screen, and it takes much of its inspiration from paper, ink, and
print techniques.

Material Design encourages designers and developers to create on-screen objects that seem
to possess the same qualities as real-world objects. This means using techniques such as
shadows, light, and elevation to create a sense of depth and edges.

The way Material Design objects move also mimics how objects move in the physical world;
for example, two real-world objects cannot occupy the same space simultaneously or pass
through one another, so your on-screen objects shouldn't either.

To help you create this illusion, Material Design introduces the concept of a simulated 3D
space where all UI objects possess X, Y, and Z coordinates. The Z coordinate is particularly
important, as the positive Z axis extends outward toward the user, creating that sense of
depth that's so very crucial to Material Design.

In Material Design, every object occupies a position on the Z axis, and
iteach object has a standard 1dp thickness.

Everything happens within Material Design's simulated 3D environment; objects appear,
disappear, and transform into new objects without ever breaking the illusion of a
continuous 3D environment.

When objects move through the Material Design space, they mimic how paper can be
shuffled and bound together. For example, you can bind two sheets of material together
along a common edge or seam, so they move together. By contrast, when two sheets of
material overlap but occupy different positions along the Z axis, they're not bound together,
and so can move independent of one another.

These design principles may give your user interface a distinct look and feel, but Material
Design isn't just about how your UI looks. You can use Material Design elements such as
depth and shadow to give your users visual clues about your interface's hierarchy, subtly
guiding them toward the UI elements that they need to interact with next. If used correctly,
Material Design can help to ensure that your users instinctively know how to navigate and
interact with your app's user interface.

Getting Started with Material Design

[110]

One of the most effective ways of getting to grips with Material Design is to look at some
examples of Material Design that are done well, so you know what you're aiming for.

Since Material Design is Google's design language, what better place to look for pointers
than Google's own apps?

Case study – Hangouts
The Hangouts app has undergone a major overhaul to bring it into line with Material
Design.

One of the most notable UI changes is the Create New Message button, which now appears
as a floating action button, also known as a FAB. As the most important action, this FAB is
prominently and conveniently located in the bottom-right part of the main Hangouts
screen, so it's always within easy reach when the user needs to create a new message.

Getting Started with Material Design

[111]

The Hangouts app uses two Material Design staples—elevation and shadows—to create the
sense that the FAB is floating above all the other UI elements. This naturally draws the
user's attention toward the screen's most important task; in this instance, the most
important task is creating a new message.

Case study – Google Calendar
Material Design encourages the use of bold colors and large images. You'll find both of
these in the updated Google Calendar app.

Google Calendar is a great example of a UI where colors and images not only make the app
fun to look at, but also serve a purpose by helping the user pick up important information
about their schedule at a glance. For example, a quick glance at the previous calendar image
is all that's needed to see I have running club coming up on Monday night, thanks to the
large, colorful picture of the running shoes.

Calendar is also a great example of Material Design animations. Spend some time moving
around the Calendar app, and you'll encounter different animated flourishes, such as the
on-screen elements moving on and off the screen, assembling into new views.

Getting Started with Material Design

[112]

These short animations make navigating through the Google Calendar app a more fluid,
natural, and generally much more enjoyable experience.

Case study – Google Maps
Google Maps uses Material Design's concept of bottom sheets to create an immersive
experience, where the user selects a location and then explores all the information related to
this location without leaving the Maps environment.

Open the Google Maps app and select a location (whether it's a huge tourist attraction, a
famous landmark, or simply your local pub), and you'll notice a bottom sheet peeking up
from the bottom of your screen. In its default state, this bottom sheet displays a few facts
about your chosen location, but when you drag the sheet upward, it expands to fill the
entire screen. This expanded sheet contains much more information, including opening
times, contact details, photos, and user reviews of your chosen location:

Bottom sheets use shadows and elevation to create the impression that some components
are positioned higher than others. In our Google Maps screenshot, the photo component is
styled, so it appears to be lower than the rest of the bottom sheet.

Getting Started with Material Design

[113]

Once you've read everything the bottom sheet has to offer, you can dismiss it by dragging
the sheet off the screen. The bottom sheet will fold away, revealing the main Google Maps
screen, leaving you with the impression that this main screen was hiding behind the bottom
sheet the entire time.

Getting started with Material Design
Now that we've explored the major concepts behind Material Design and seen a few
examples of Material Design done well, it's time to look at how you can apply some of the
core Material Design principles to your own Android apps.

The next few sections will show you how to give your app a Material Design makeover
using visual techniques such as shadows and elevation. You will also learn how to make
some more fundamental changes to the way your app functions, by adding things such as
FABs, cards, and RecyclerView. Let's start by making sure your app looks the part.

Applying the Material theme to your app
Applying the Material theme is the quickest and easiest way to get a consistent Material
Design look across your entire app.

Android provides light and dark variations for you to choose from:

Theme.Material: This is the dark version of the Material theme. This is
considered the default Material theme.
Theme.Material.Light: This is the light variation of the Material theme.
Theme.Material.Light.DarkActionBar: This is the light version of the theme
but with a dark action bar.

To apply the Material theme to your app, you need to create a new style that inherits from
the version of the theme that you want to use (Theme.Material, Theme.Material.Light,
or Theme.Material.Light.DarkActionBar). Open your
project's res/valus/styles.xml file, and create a new style that inherits from the theme
of your choice:

<resources>
 <style name="AppTheme" parent="android:Theme.Material">

//Inherits from the standard Theme.Material//

Getting Started with Material Design

[114]

 </style>
</resources>

To give your app its own identity while maintaining the look and feel of Material Design,
you may want to add your own customizations to your inherited Material Design style. One
of the most common customizations is changing the theme's base colors; for example, you
may want to change the color of the action bar to match your app's primary color.

Material Design uses two kinds of colors: primary and accent. As the name suggests, the
primary color is the main color that's used throughout your app—in Google Hangouts the
primary color is green.

The accent color is a brighter shade that you use to draw attention to your app's most
important elements, such as the floating action button or title. By using a consistent primary
color with the occasional splash of bolder accent color, you can create a user interface that's
colorful and vibrant but doesn't distract the user from your application's content.

When it's time to customize the colors used in your inherited Material Design theme, there
are several available attributes you can use:

colorPrimary: This sets the color of the action bar's background. This is your
app's primary color.
colorAccent: This is your app's accent color. This should compliment your
app's primary color, and is a good way of drawing the user's attention toward
important UI elements.
colorControlNormal: This sets the color of your app's framework controls
when they're in their default, non-activated state.
colorControlActivated: This sets the color of your framework controls when
they're in their activated state. This attribute overrides colorAccent.
android:textColorPrimary: This sets the color of the text on your controls.
On devices running a pre-Lollipop version of Android, this attribute sets the
color of the overflow menu and the action bar title.

The following attributes only work on devices running Android 5.0 or higher:

colorPrimaryDark: This is a dark variant of your app's primary color. This
attribute sets the color of your navigation bar (via navigationBarColor) and
status bar (via statusBarColor).

Getting Started with Material Design

[115]

colorControlHighlight: This is the color applied to your app's framework
control highlights, such as ripple animations. You can use this attribute to
provide visual feedback that compliments your app's color scheme. Just don't get
carried away—too much visual feedback and you're running the risk of
overwhelming the user.
colorSwitchThumbNormal: The user interacts with a toggle switch by dragging
the switch's Thumb section back and forth. This attribute sets the color of
the Thumb element when it's in the off position.
android:colorButtonNormal: This sets the color of a button when it's in its
default, non-pressed state.
android:colorEdgeEffect: This sets the color of your app's overscroll effect,
which occurs when the user tries to scroll beyond your content's boundaries.
android:navigationBarColor: This sets the color of the navigation bar, which
is the bar that appears at the bottom of your device and contains the Back, Home,
and Recent softkeys.

To create your own variation of the Material theme, add any of the preceding attributes to
the style we created earlier:

<resources>

 <style name="AppTheme" parent="android:Theme.Material">

 <item name="android:colorPrimary">@color/blue</item>

//Specifies that the theme's primary color should be blue//

 <item name="colorPrimaryDark">@color/darkblue</item>

//Specifies that the navigation bar and status bar should be dark blue//

 <item name="colorAccent">@color/white</item>

//Specifies that the app's accent color should be white//

<item name="colorSwitchThumbNormal">@color/white</item>

//All the switches should have a white thumb element//

 </style>

</resources>

Getting Started with Material Design

[116]

Now, you know how to customize the colors in your Material-inspired theme, but what
colors should you use? Once again, Material Design has the answers.

Choosing your color scheme
Choosing your color scheme is one of the most important UI decisions you need to make, as
the colors you pick will affect every single part of your user interface.

To help you make this crucial design decision, the Android team released a complete
palette of primary and accent colors that are designed to compliment one another. You can
find the complete Material Design palette at
https://www.google.com/design/spec/style/color.html#.

When choosing your app's color scheme, you should select three hues from the primary
palette (that's any color marked 500) and one accent color from the secondary palette (that's
any color except the 500 colors).

Need some help selecting your palette?
Struggling to choose from the massive selection of colors and shades on
offer? You may want to check out one of the many websites that can
generate a complete Material Design palette for you. Simply select two
colors, and the website generates a complete palette of primary and accent
colors based on your selection. There's plenty of palette generators
available online, but one of the simplest and easiest to use is Material
Palette at http://www.materialpalette.com/.

Backwards compatibility
The Material theme is only available in Android 5.0 (API level 21) and upwards, so in its
default state you cannot use the Material theme or any other custom theme derived from it
on devices running earlier versions of Android.

However, you can make the Material theme available to users running API 7 and higher
using the AppCompat library.

To add this library to your project, make sure you've downloaded the latest version of
Android Support Library (if you're using Eclipse) or Android Support Repository (if
you're using Android Studio). AppCompat relies on the v4 support library so make sure
you've also added this library to your project.

https://www.google.com/design/spec/style/color.html
http://www.materialpalette.com/

Getting Started with Material Design

[117]

Android Studio users need to add AppCompat as a dependency in their module-level
build.gradle file:

dependencies {
 ...
 compile 'com.android.support:appcompat-v7:23.1.0'
}

Eclipse users will need to locate the AppCompat library in their Android SDK directory,
copy the library into their project's libs directory, right-click on the JAR file and
select Build Path, followed by Add to Build Path.

To use AppCompat, make sure all your project's activities extend AppCompatActivity:

import android.support.v7.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

Your theme must also inherit from Theme.AppCompat:

<style name="AppTheme" parent="Theme.AppCompat">

After this, you're free to customize the Material theme as normal.

Creating a sense of depth
Material Design combines three visual techniques to create a sense of depth:

Lights: In Material Design's simulated 3D environment, virtual lights illuminate
the on-screen objects and allow them to cast shadows. Lighting takes the form of
either key lights (which cast directional shadows) or ambient lighting (which
create soft shadows from all angles).
Shadows: These give your users important visual clues about each object's depth.
When an object moves, shadows continue to supply important information
including the direction the object is moving toward, and whether the distance
between this object and other on-screen objects is increasing or decreasing. The
shape an object casts is defined by the object's background and not its content, so
a circular button will cast a circular shadow, regardless of the shape of the
button's icon.
Elevation: Each UI element has its own elevation, which is the object's elevation
along the Z axis. Elevation can help you communicate the importance of each
screen's different UI elements, naturally drawing the user's eye toward the most
important on-screen elements.

Getting Started with Material Design

[118]

You can create shadows by specifying an object's elevation. When you add an elevation, the
framework automatically casts a shadow across the items behind the object. An object's
elevation determines the appearance of its shadow; a view with a higher Z value will cast a
larger, softer shadow.

To set a view's elevation, use the android:elevation attribute:

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:elevation="20dp"
 android:text="Hello down there!" />

Just keep in mind that all material elements have a thickness of 1dp, so
elevation is the distance from the top of one surface to the top of another.

If you want to set a view's elevation programmatically, use the View.setElevation
and View.getElevation methods.

Every object has a default resting elevation that should be consistent across your app. For
example, if you position a floating action button at 10dp on one screen, it should be
positioned at 10dp on every screen.

Objects can also have a responsive elevation, which is where they temporarily change their
elevation in response to a user action. For example, if the user selects a picture in a gallery
app, this picture may temporarily increase its elevation to indicate its selected status.

Responsive elevations should also be consistent across your app, so if the picture in a
gallery app changes elevation by 5dp, all other images that have responsive elevations must
display the exact same 5dp behavior.

If an object changes elevation, it should return to its resting elevation as soon as
possible—typically as soon as the input event is completed or cancelled.

When adding components with responsive elevations, check that there's no possibility of
one component encountering another component while it is changing elevation. Remember
that in Material Design, objects cannot pass through one another! If the space is tight, then
one solution is to use animations to temporarily move objects out of the way; for example,
you could animate one object a few pixels to the right in order to clear the way for an object
that's changing its elevation.

Getting Started with Material Design

[119]

Creating a Material Design structure
At this point, you've selected your color palette, created a customized version of the
Material theme, and know how to add elevation to your user interface.

The next step is to look at some of the new structural elements you can add to your app, so
it doesn't just look like a Material app, it acts like a Material app, too.

Let's start with one of the most familiar Material Design features: floating action buttons.

Floating action buttons
A FAB is a circular sheet of material that appears to float above the user interface (hence the
name). If you have a persistent action that needs to be readily available to the user, you
should consider displaying it as a FAB.

Floating icon buttons represent a single promoted action, and use the familiar system icons.

You can find all the system icons at h t t p s : / / w w w . g o o g l e . c o m / d e s i g n /
i c o n s /.

Adding a FAB to your project via XML is fairly straightforward, as it uses many attributes
you're already familiar with, such as android:id and layout_width. However, in our
FAB example, we're going to use a new element called CoordinatorLayout. This attribute
lets you control the way your UI elements interact, and is particularly useful for telling
FABs how they should react when the user scrolls the screen; should they move or remain
anchored in the same place?

In this example, we're placing our FAB inside CoordinatorLayout and telling it to remain
anchored to the bottom of the toolbar:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
.........
.........
..........

<android.support.design.widget.FloatingActionButton
 android:id="@+id/myfab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:layout_anchor="@id/actionbar"

https://www.google.com/design/icons/
https://www.google.com/design/icons/

Getting Started with Material Design

[120]

//The FAB should stay anchored to the action bar//

 app:layout_anchorGravity="bottom|right|end"
 android:layout_margin="@dimen/fab_margin"
 app:elevation="20dp"

//Set the button's elevation so it appears to hover above the rest of the
UI, and casts a shadow across the items behind it//

 android:src="@android:drawable/ic_dialog_email" />

//This references the icon that the FAB should display. In this example,
I'm using the create new email icon//

</android.support.design.widget.CoordinatorLayout>

You may notice that we haven't specified the FAB's background color; that's because the
FAB defaults to your theme's colorAccent property unless you specify otherwise.

You can add a click event in the usual way. So, to make things interesting, I'll throw in
another new element from Material Design: the Snackbar.

Snackbars are similar to Toasts, but the key difference is that users can interact with them.
The user dismisses a Snackbar by swiping it off the screen. Snackbars appear at the bottom
of the screen. So, they are perfect for displaying a message that relates to our FAB, which
also happens to be positioned towards the bottom of the screen:

fab.setOnClickListener(new View.OnClickListener() {
 @Override public void onClick(View v) {
 Snackbar.make(content, "The FAB has been clicked!",
Snackbar.LENGTH_SHORT).show();

//Create a snackbar and display the message "The FAB has been clicked!"//

 }
});

When creating FABs there are a few guidelines you should keep in mind:

Be positive: Only use FABs for positive actions such as Create, Like, Share,
or Navigate, and never for destructive actions such as Archive or Trash.
Use consistent spacing: On mobile devices, you should place your FABs 16dp or
more from the edge. On tablet-sized devices, floating action buttons should be a
minimum of 24dp away from the edge.

Getting Started with Material Design

[121]

Avoid customized FABs: Always use the standard circular icon, and don't be
tempted to give your action button extra dimensions. If you do want to put your
own spin on a FAB, you can always animate the icon inside the button.
Don't include overflow actions: Overflow menus belong intoolbars, not in FABs.

Impress with FAB animations
As a prominent UI element, FABs are the perfect opportunity to surprise
and delight your users with animated flourishes. For example, you could
design your Create new email FAB, so it transforms into a new e-mail
when tapped. Experiment with different animations and transitions, but
don't get carried away! Animations should be subtle, finishing touches
and never get in the user's way or run the risk of distracting them from
your app's actual content.

Bottom sheets
A bottom sheet is a sheet of material that slides up from the bottom of the screen in
response to user action, for example the sheet that appears when you select a point of
interest in Google Maps.

A bottom sheet's initial height is relative to the height of the list items it contains, but a
bottom sheet's initial height shouldn't be more than its 16:9 ratio.

Bottom sheets initially only cover a portion of the screen, but they do expand to fill the
entire screen when the user swipes upward. When a bottom sheet is expanded to its full
height, the user can scroll through its content; again, the Google Maps app is a perfect
example of this functionality.

Bottom sheets are best suited to displaying three or more actions that don't require a
description. If you want to display fewer than three actions, or you want to include detailed
descriptions, then you should consider using a dialogue or menu instead.

There are two types of bottom sheets:

Persistent bottom sheets:

These are persistent structural elements that appear throughout your
application. They display in-app content that supplements the main view.
Persistent bottom sheets remain visible even when they're not actively in use,
and they rest at the same elevation as the rest of your app. Persistent bottom
sheets are useful for drawing the user's attention toward important content
by presenting it in a unique way.

Getting Started with Material Design

[122]

Modal bottom sheets:

This is a temporary sheet of material that rests at a higher elevation than the
rest of your content.

You can use modal bottom sheets to present actions in a list or grid format as
an alternative to menus and simple dialogues. It's impossible for the user to
overlook a modal sheet; when an active modal bottom sheet slides onto the
screen, the rest of the screen dims. Users have to dismiss the modal sheet
before they can interact with the underlying content. Modal bottom sheets
are handy if you need to present the user with a list of actions, and there's no
suitable place in your user interface where you can insert a menu button.

However, on larger screens where space is less restricted, components such as dialogues
and menus may be more appropriate than modal bottom sheets. This is because bottom
sheets, as the name suggests, always appear at the bottom of the screen. For a user
interacting with your app on a larger device, such as a tablet held in portrait mode, a modal
sheet may appear at a significant distance from where the user triggered the sheet. This
might not sound like a big deal, but little annoyances like this can really add up, chipping
away at the user's overall experience of your app.

Getting Started with Material Design

[123]

The preceding screenshot shows an example of a modal bottom sheet in its default state
before it's expanded.

CardView
Cards give you a convenient and consistent way of displaying related content, particularly
content that comprises of multiple data types. For example, you could create a card that
contains images, links, text, or video about a specific subject.

Cards are also handy when you want to display data alongside interactive features, such as
+1, comments, and user reviews. Just be wary of overloading your cards with too much
information.

Cards have a constant width and a variable height that can expand temporarily depending
on the available space.

Each card is made up of blocks of content. A typical card consists of the following:

A header or primary title. This should indicate what the card is all about.
Rich media such as images or video. Including rich media helps the user get
valuable information from your card at a glance; for example, if you're designing
a weather app, featuring a picture on every card means your users get an idea of
what the weather is going to be like just by glancing at that card.

Supporting text. Text that provides important information about the card.

Getting Started with Material Design

[124]

A primary action. This is the most important action the user can perform within
the context of this card. Think of this as the card's equivalent of a FAB.
Optional supplemental actions. These can be icons, text, or even UI controls that
give the user the ability to change the card's content. In our weather example, you
may include a slider that allows the user to scroll through the weather forecast
for each hour.

When you're designing your card's content hierarchy, you should place the most important
content at the top, whereas supplemental icons usually belong at the very bottom of the
card.

You add a card to your layout using CardView. The following code shows you how to add
an empty card to your layout via XML:

<android.support.v7.widget.CardView

 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

</android.support.v7.widget.CardView>

You add content to Cardview in exactly the same way you add content to a regular layout.
The following example demonstrates how to create a LinearLayout that contains
a Contacts card. This Contacts CardView displays each person's name and avatar:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:cardView="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"

 android:layout_height="match_parent"
 android:padding="20dp" >

 <android.support.v7.widget.CardView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/contacts" >

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

Getting Started with Material Design

[125]

<TextView
 android:id="@+id/contactName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/contactName" />

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/contactphoto"
 android:src="@drawable/avatar" />

</LinearLayout>

 </android.support.v7.widget.CardView>

</LinearLayout>

You can use CardViews on devices that are running Android 2.1 (API level 7) and higher
by adding the v7 cardview library to your project. If you're using Eclipse, you'll need to
add this library to your project's libs directory, then select Build Path, followed by Add to
Build Path. Android Studio users need to add this library as a dependency in their module-
level build.gradle file:

dependencies {
 compile
 'com.android.support:cardview-v7:21.0.+'
}

Adding a standard CardView to your layout is pretty straightforward, but if you want to
customize Android's standard CardView, you can make the following changes:

Change a card's corner radius using cardView:cardCornerRadius, for
example, card_view:cardCornerRadius="10dp". Alternatively, you can set
the corner radius via your application code using the cardView.setRadius
method.
Change a card's background color using card_view:cardBackgroundColor.
Give your card an elevation and create a shadow
using card_view:cardElevation.

Getting Started with Material Design

[126]

Lists and RecyclerView
Lists give you a way of presenting related data types in a consistent, easy-to-read format.

A list consists of continuous columns and rows that serve as containers for tiles. You should
prioritize your most important content within each tile; imagine you're designing an e-mail
app where each e-mail is represented by a tile. Typically, each tile would display the
sender's name and the subject heading in a larger font, as this is the most important
information, and then you'd provide a preview of the e-mail's text in a smaller font.

A typical list tile contains the following:

Text: In a single list, each tile contains a single line of text. In a two-line list, each
tile contains a maximum of two lines of text. If you need to display more than
two lines of text, consider using a card instead. The amount of text can vary
between tiles within the same list.
Primary actions: These are consistent throughout every tile in the list. In our e-
mail example, the primary action might be open e-mail, and this primary action
would appear on every tile within the list.
Optional supplemental actions: These usually take the form of icons or
secondary text and should be placed on the right side of each tile.

You create a list using the RecylerView, which is a container for displaying large data
sets. RecylerViews offers improved performance over ListViews, as it recycles views
directly. When item views are no longer visible to the user, RecylerView automatically
replaces their contents with a different element from the data set, resulting in smoother
scrolling.

RecylerView also offers default animations for common operations, such as removing
items from the list, and it provides layout managers to help you position the items within
those lists.

RecyclerView provides three built-in layout managers for you to choose from:

LinearLayoutManager displays items in a horizontal or vertical scrolling list
GridLayoutManager displays items in a grid
StaggeredGridLayoutManager displays items in a staggered grid

Getting Started with Material Design

[127]

To use RecylerView in your project, you need to perform the following steps:

Add the RecyclerView support library to your project's Gradle build file1.
(com.android.support:recyclerview-v7:23.1.0).
Define your data source.2.
Add RecylerView to your layout file, like you'd add a regular view:3.

 <android.support.v7.widget.RecyclerView
 android:id="@+id/recylerview"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scrollbars="vertical" />

Specify the layout manager you want to use:4.

 mLayoutManager = new LinearLayoutManager(this);
 mRecyclerView.setLayoutManager(mLayoutManager);

Create an adapter. To use RecylerView, you need to create an adapter that5.
extends the RecylerView.Adapter class:

 public class MyRecyclerAdapter extends
 RecyclerView.Adapter<MyRecyclerAdapter.ViewHolder> {

Create ViewHolder. The RecyclerView adapter relies on the ViewHolder6.
object that stores references to all your views, so you don't need to use
multiple thefindViewById() methods.

 public class ViewHolder extends
 RecyclerView.ViewHolder {

Assign the adapter to your RecylerView, via the setAdapter method.7.

Animations and transitions
Two more key features of Material Design are new animations and transitions. When used
correctly, these visual effects don't just look nice, they also serve two major purposes.

Getting Started with Material Design

[128]

Reinforcing the Material Design illusion
A crucial aspect of Material Design is the sense that on-screen elements possess the same
characteristics as physical objects, and animation is a powerful tool that can help you really
drive this point home.

In the real world, the way objects move varies depending on their physical characteristics.
By varying your animations, you can create the sense that different on-screen objects
possess different physical characteristics. For example, you can suggest that an object is
heavier than others by making it move more slowly. And if the user sees an object moving
quickly and accelerating rapidly, they'll assume that the object is lighter.

Another fundamental aspect of Material Design is the illusion that all on-screen objects
appear, disappear, and transform inside a continuous 3D space. One of the most powerful
ways of making your app feel like a real, 3D environment is to create a visual continuity
between your app's activities.

Traditionally, Android apps were designed as a sequence of screens, where each activity
was a separate screen. Material Design seeks to blur these boundaries by using transitionsto
ease the user from one activity to the next.

For example, when a new activity starts, the previous activity's elements might fade away,
while elements from the new activity animate their way on screen. And if these two
activities share common elements, you could animate these elements so that they appear to
rearrange themselves into a new layout, which is actually an entirely new activity. In this
way, you can create a more fluid and immersive user experience where users feel as though
they're moving around inside your app's environment rather than switching from one
screen to the next.

Entrances and exits
Put some thought into the way your objects enter and exit the screen, as
these are ideal opportunities to strengthen the illusion of Material Design's
continuous 3D environment. If an object enters the screen at a considerable
pace, then the user will assume that this object has been traveling for some
distance off screen, picking up speed along the way. If an object slows
down as it exits the screen, the user will assume this object will come to a
halt just off screen.
You should also look for opportunities to use these assumptions to your
advantage. For example, if you have an object that you know will be
making a reappearance, you could animate it so that it exits the screen at a
crawl, and then edges its way back on screen when the time is right,
giving the user the impression that this object has been hovering just off
screen the entire time.

Getting Started with Material Design

[129]

Providing the user with a visual feedback
Whenever the user interacts with a UI element, your app should provide them with some
form of visual confirmation that it's successfully registered their interaction.

The most common user interaction is a touch event, so this is the type of
event I'll be focusing on throughout this section. Just be aware that your
app may need to handle other forms of user input, such as the user typing
on a virtual keyboard or speaking commands into their device's
microphone.

In Material Design, a touch ripple is the main mechanism that you'll use to provide the user
with this visual confirmation.

A touch ripple effect is a particularly useful animation, as you can use it to communicate
additional information about the touch event, such as the duration of the event, the amount
of pressure applied, and where the touch event occurred (the touch ripple moves outward
from the point of input).

You may also want to animate material so that it responds to user inputs, such as animating
a photo so that it appears to lift slightly in response to the user long-pressing it.

Animations – a word of warning
Animations have the potential to be one of the most powerful or destructive tools at your
disposal.

Our eyes are experts at detecting and tracking movement, but if multiple elements are
moving at once, or moving in random patterns, then the user won't be able to keep up! Bad
animation is far worse than no animation at all.

You should also avoid using time-consuming animations that serve no purpose other than
to look pretty. Ideally, you should aim to catch your users off-guard with subtle,
unexpected uses of animation that enhance their experience in some way, rather than
simply using animation for the sake of it.

The finishing touches
Now that you've created a user interface with a Material Design look and feel and added
some structural elements, such as floating action buttons and cards, it's time to put the
finishing touches to your Material Design application.

Getting Started with Material Design

[130]

Designing your product icon
Your product icon should communicate your app's identity while also indicating your app's
purpose and core functionality.

Building your brand
If you're creating multiple apps, each product icon should be distinct, but
you should also use each icon as an opportunity to create and reinforce a
wider brand that spans all your Android offerings. Aim for some
consistency across related product icons.

Product icons should reflect the same Material Design principles that we've explored
throughout this chapter, so once again, you should take the physical qualities of paper and
ink as your main inspiration. Your product icon should appear to be cut, folded, and
illuminated exactly like other Material Design objects, but the real challenge is
communicating all this information while also creating a product icon that's clean and
simple.

Two particularly effective examples of Material Design icons are the Google Calendar and
Gmail product icons. Both of these icons use simple shapes to create a sense of shadow,
depth, and edges, while clearly communicating the app's main purpose and function.

Here is the Gmail icon:

And here's the Google Calendar icon:

Getting Started with Material Design

[131]

To make designing your product icon easier, Material Design introduces the concept of
product icon anatomy. These are standardized shapes that you can incorporate into your
design to help promote a consistent look and feel across product icons. You can view these
standardized shapes at h t t p s : / / w w w . g o o g l e . c o m / d e s i g n / s p e c / s t y l e / i c o n s . h t m l # i
c o n s - p r o d u c t - i c o n s.

Each product icon should contain the same structural elements. These elements are always
viewed straight from above, and each component is positioned at the top of the previous
component:

Finish: This is a soft tint that you should use to highlight the top edge of all your
product icon elements. You shouldn't apply this tint to your icon's left, right, or
bottom elements.
Material background: This is a sheet of material that serves as your icon's
background.
Material foreground: This is an element that's raised above the material
background, and casts a shadow across that background.
Shadows: This is a soft shadow that appears around all the edges of a raised
material element. This shadow should be slightly heavier along the product icon's
right and bottom lines.

Creating the perfect product icon
Although layering paper elements is effective for creating a sense of depth,
be careful not to overcomplicate your app by adding lots of layers. You
should aim for a product icon that has all the shadows, depth, and edges
you'd expect from a physical object, but it should still deliver a simple and
streamlined look.

You should supply your icon at 48dp with edges of 1dp.

System icons
In the previous section, we took an in-depth look at product icons, which are unique to your
application, but what about system icons?

The good news is that the Android team has already given all the system icons a Material
Design makeover. You should use these standard system icons unless you have a very, very
good reason not to.

You can grab the entire pack from h t t p s : / / w w w . g o o g l e . c o m / d e s i g n / s p e c / s t y l e / i c o
n s . h t m l # i c o n s - s y s t e m - i c o n s.

https://www.google.com/design/spec/style/icons.html#icons-product-icons
https://www.google.com/design/spec/style/icons.html#icons-product-icons
https://www.google.com/design/spec/style/icons.html#icons-system-icons
https://www.google.com/design/spec/style/icons.html#icons-system-icons

Getting Started with Material Design

[132]

Typography and writing
In this section, we'll look at everything you need to know about creating text that complies
with Material Design principles, from general writing advice through to specific guidelines
about how opaque your text should be.

Typefaces
As an Android developer, there are two main typefaces you need to know about:

Roboto: Since Android 4.0, Roboto has been the standard typeface for Android
Noto: Since the release of Android 2.2, Noto has been the standard typeface for
all languages that are not covered by Roboto

Material Design uses both of these typefaces.

Text opacity
You can give the user visual clues about how important each piece of text is using varying
degrees of opacity.

The opacity levels you should use will vary depending on the color of your text and the
color of your app's background. When you're adding light text to a dark background, you
should use the following:

Primary text: 100% opacity
Secondary text: 70% opacity
Hint text, disabled text, and icons: 30% opacity

When you're adding dark text to a light background, you should use the following:

Primary text: 87% opacity
Secondary text: 54% opacity
Hint text, disabled text, and icons: 38% opacity

When adding text to your UI, check that the color of your background doesn't make your
text difficult to read. Also, be aware that too much contrast can make your text equally
tricky to read; ideally, your text should maintain a contrast ratio of 7:1.

Getting Started with Material Design

[133]

Writing guidelines
Now that you know how your text should look on the screen, it's time to turn our attention
to what your text is actually saying.

To make sure your user interface is as user-friendly as possible, you should create text that's
as follows:

Clear: Your users will appreciate simple, direct language that doesn't require
repeat reading. Choose your words carefully, and look for the simplest way of
conveying your message; for example, it's better to say move onto question 2 rather
than navigate to question 2.
Accessible: When writing your text, bear in mind that some people may be using
your app in their second language. Even if you translate your app into other
languages, culturally-specific phrases and slang may not survive the translation
process. Your aim should be to write text that's accessible to everyone. On a
related note, when you create string resources, it's generally a good idea to
include detailed descriptions and perhaps even additional comments, so if your
app does wind up getting translated, you stand a much greater chance of it being
translated accurately.
Necessary: The whole idea of text is to help the user navigate and get value from
your app, so whenever you're tempted to add text to your UI, ask yourself—does
the user really need to know this? For example, if you create a screen that consists of
a form and a Submit button, your users will probably know what's expected of
them, without you having to add a Please complete the form and then press the
Submit button disclaimer.
Concise: The text you do decide to include should be short, sweet, and to the
point. In the interests of keeping text to a minimum, use contractions wherever
possible (so that's can't instead of can not).
Lacks punctuation: Punctuation adds visual clutter, so you should omit
punctuation wherever possible. In particular you should avoid exclamation
marks. Every time you're tempted to add an exclamation point, ask yourself—do I
really want to shout this at the user?
In the present tense: Most UI events happen in the here and now, so you should
write in the present tense unless you have a really good reason not to.

Getting Started with Material Design

[134]

Use active verbs: Make your writing more engaging by opting for active verbs
over passive ones. The only exception is if the passive version is much shorter
and simpler than the active version.
Write in the right tone: The right tone is friendly, respectful, and focused firmly
on the user. You should address the user directly as you, and avoid the
temptation of lumping yourself and the user together as we.

Summary
In this chapter, we looked at the core principles of Material Design, including creating a UI
that has that distinctive Material Design look and feel, and we covered how to incorporate
some of the new structural features into our application.

Over the course of the past few chapters, we've mainly focused on the technical aspects of
creating a great user interface. In the next few chapters, we'll shift focus and look at how to
capture the initial spark of inspiration via sketches, wireframes, and prototypes.

5
Turning Your Bright Idea into a

Detailed Sketch
There are lots of apps in the Google Play store, and not all of them have five star ratings.

Although there are all sorts of reasons why someone might give an app a low rating and a
bad review (maybe it was buggy, difficult to navigate, it was missing some functionality the
user was expecting, or the UI was cluttered and confusing), there's usually one universal
truth lurking behind all the negative Google Play reviews—the application delivered a bad
user experience.

Mobile users are an unforgiving bunch, and in today's competitive market, it isn't enough to
have an interesting idea, unusual concept, or well-thought-out features, your app has to be
enjoyable to use too.

This is why taking the time to plan your app in advance is crucial.

Strangely, even though designers and developers have the same goal (to create amazing
apps that people will love using), we tend to think of design and development as separate
from one another, but if you're going to create an amazing app, then you need to know a
little bit about both.

Regardless of whether you have a great idea for a productivity app that'll save your users a
ton of time, or a puzzle app that people will happily waste hours playing, design is
everything. Your app's design will have a massive impact on its usability, usefulness, and
ultimately, its popularity; badly-designed apps are difficult to understand and not much
fun to use!

Turning Your Bright Idea into a Detailed Sketch

[136]

Designing for mobile can be tough, but it's also one of the most exciting platforms to
develop for, as it's a fast-moving industry where new hardware is being released all the
time. This means there are lots of opportunities to come up something totally unique that'll
blow your users away.

This chapter will show you how to become a design-minded developer who knows how to
design and develop amazing apps that'll have no problems racking up rave reviews on the
Google Play store.

Brainstorming – taking advantage of mobile
hardware
When you're designing a mobile application, don't forget that your typical Android device
has lots of interesting hardware that's unique to the mobile platform. Just think of all the
things your mobile app can react to because of this unique hardware: touch gestures, tilting,
audio input and output, geolocation, and much more.

If you want your app to stand out from the crowd, you need to look for ways of using these
hardware capabilities in new and engaging ways.

Before we start planning our app, let's take a look at some of the most interesting Android
hardware capabilities that you may want to incorporate into your mobile applications.

Touch and gestures
The most common method of interacting with an app is via the device's touchscreen, so
you'll definitely want to integrate gestures into your design.

One thing to keep in mind is that users do have expectations about the gestures they can
use to interact with Android apps. They'll expect to be able to perform certain actions by
swiping, dragging, pinching, and tapping on-screen elements. And although you want your
app to stand out for its unique use of touch and gestures, you'll need to balance this against
ensuring your users intuitively know how to interact with your app.

Don't try to reinvent common gestures just for the sake of it. For example, most users will
expect to be able to move a slider by tapping or dragging it—so what's the point of
reinventing something that already works perfectly well?

As you'll find throughout this chapter, designing the perfect Android app is a balancing act
between creating something that's unique and innovative and something that feels familiar.

Turning Your Bright Idea into a Detailed Sketch

[137]

GPS
Location awareness isn't just for Google Maps-style apps!

You can use GPS coordinates in lots of different ways; for example, you may want to create
an app that suggests nearby events and tourist attractions based on the user's current
location, tags photos with the location where a picture was taken, or broadcasts the user's
coordinates to friends who may be wondering if anyone they know is nearby.

Don't fall into the trap of thinking location awareness is only useful for
getting directions. There are lots of ways you can use this hardware
feature to enhance your Android apps.

Vibration
You should use vibration when audio alerts get distracting or annoying (whether that's
annoying for your users or annoying for the people around them!). Although this hardware
feature is easy to overlook, take a moment to think about how your app might use vibration
as an additional way of communicating with the user.

One example can be a meditation app that plays soothing music or relaxing ocean noises.
Imagine you want to subtly notify the user when they've been meditating for a full 15
minutes, just in case they get carried away and lose track of time. In this scenario, an audio
notification would be jarring and would completely ruin the mood. Wouldn't it be better to
alert the user with a discrete vibration instead?

Audio input/output
When you think about audio input, chances are you think about talking to your friends or
issuing voice commands to apps such as Google Search. When it comes to output, you
probably think of audio notifications, listening to said friends, or listening to things such as
music and audiobooks.

These are all valid examples, but audio is a feature with endless possibilities, so consider
whether your app could use audio input and output in more creative and unusual ways.

Turning Your Bright Idea into a Detailed Sketch

[138]

In particular, you'll want to make heavy use of audio input and output if your app is going
to be used in situations where it might be awkward or inappropriate to interact with an app
via other methods. Issuing a quick voice command to our smartphone is often much more
socially acceptable than tapping away at a keyboard for ages, which is often be seen as
rude.

At the extreme end of the scale, audio gives your users a means of communicating with
your app when other methods might be dangerous. If you're creating an app that gives
driving directions, then encouraging the driver to take their eyes off the road in order to
read text-based directions is definitely a bad idea.

Interacting with other devices
No Android device is an island! Android smartphones and tablets can connect over
channels such as Bluetooth, Near Field Communication (NFC), Wi-Fi, and mobile networks,
which open up a whole new world of possibilities for your app.

Even more excitingly, Android smartphones and tablets can connect with less-traditional
Android devices and Google services, such as wearables, Android TVs, and beacons. Would
your app provide a better user experience if it could send and receive information from
additional devices?

Google's beacon platform allows your app to interact with simple, low-
energy devices known as beacons. Nearby beacons are useful for
providing an innovative location and proximity experience to your users.
They're beyond the scope of this book, but you can read about them at h t t
p s : / / d e v e l o p e r s . g o o g l e . c o m / b e a c o n s /.

These are just a few of the hardware-related features you may want to consider when you're
in the early stages of brainstorming your app.

If your head is currently spinning with ideas, then it's a good thing! Make a note of all the
off-the-wall ideas you come up with, so you can revisit them once you've planned your app
a bit more. And even if these ideas don't fit with the app you end up creating, then who
knows, they may turn out to be perfect fit for your next Android project!

https://developers.google.com/beacons/
https://developers.google.com/beacons/

Turning Your Bright Idea into a Detailed Sketch

[139]

Don't get carried away!
When you're brainstorming all the cool and creative features that you can
include in your app, the golden rule is not to try to squeeze anything into
your app just for the sake of it.
Even if you've come up with an idea that you're convinced is pure genius,
if it doesn't fit with your current project, then don't waste a good idea on
an app that it just isn't right for. Make a note of your idea, and remember
that just because you're not implementing it in your current project doesn't
mean it won't find its way into your next one. This is a good rule to
remember throughout the entire planning, designing, and developing
process.

The difference between UX and UI
Even though UX and UI are often used interchangeably, they're not synonymous.

UX stands for user experience. All the code you write contributes to the user experience,
whether it's UI code (such as the XML that creates a button and places it on the screen) or
non-visual code, such as the code for remembering the user's address and using it to auto-
fill all the forms throughout your app.

Non-visual and visual code come together to deliver your app's user experience, but if
looked at in isolation, visual code only delivers your app's UI.

Market Research
Throughout this chapter, I'll be encouraging you to examine how other
apps deliver an effective UI and UX. But as a general rule, if you ever find
yourself struggling to overcome a particular design problem, it may help
to flick through a few of the Android apps that you have installed on your
smartphone or tablet to see how they tackle similar design challenges.
If you're struggling for general inspiration, then looking at a few examples
of Android applications that deliver an effective UI and UX is often the
best way to kickstart your creativity.

Brainstorming your app
When you have an idea for a new Android project, the first step is to get all your thoughts
down on paper.

Turning Your Bright Idea into a Detailed Sketch

[140]

Writing a concept
A well thought-out app solves a specific (and ideally unique) problem, and the best way to
capture this information is by writing a clear concept.

A concept should be short and to the point, so try to express your app in a single sentence,
for example, “I want to create an easy note-taking app for high school students.”

Creating an ultimate features list
Now's the time to let your imagination run wild and write down all the features you'd like
your app to have. This list might include features that aren't practical, but that's okay. Think
of this as your dream features list of everything you'd include in your app if time, money,
and technical limitations weren't an issue.

Identifying your app's primary task
The most effective apps have a clear primary task. A note-taking app might have social
features, such as tagging people in notes, the ability to record videos, and support for
images, but its primary task is making quick, text-based notes. Everything else is a nice-to-
have added extra.

A good trick for getting to the core of what your application is all about is to write a quick
explanation of your app's purpose, something that's known as a product statement.

Use this template for your product definition statement:

(What makes your application stand out from the crowd) (What your application is)

Some examples of product statements are as follows:

A streamlined and simple note-taking app
A secure and encrypted SMS app
A beautiful lockscreen replacement app

This product statement should be at the forefront of your mind the entire time you're
working on your project, so you may want to scribble it on a post-it note.

Congratulations, you've just turned your spark of inspiration into a clear statement about
the kind of app you want to create. But before you progress with this idea, it's time to ask
yourself some tough questions.

Turning Your Bright Idea into a Detailed Sketch

[141]

Is this application right for mobile?
Nowadays, we can pretty much do the same things on our mobile devices as we can on our
home computers. We can send e-mails, watch YouTube videos, write lengthy text
documents, edit photos, and check Facebook all on our smartphones and tablets.

Mobile devices have also taken over the roles of many other electronic and non-electronic
items. We can add appointments to the Google Calendar app rather than scribbling them on
a paper calendar, store all our contacts in a digital phone book rather than a physical one,
and as camera phones become increasingly powerful, we no longer have to cart a bulky
digital camera around in order to snap high-quality photos.

Whenever you come up with a software idea, it's tempting to automatically assume that it
has to take the form of a mobile app. But even the most powerful mobile device has its
limitations, so always ask yourself whether your idea might actually work better on a
different platform.

Imagine you had an idea for a piece of software that'd help professional photographers
make detailed and complex edits to their photos. You may automatically assume that this
has to be a mobile application; after all, we're all taking more photos on our camera phones
than ever before. But consider your target audience; are professional photographers likely
to be snapping many photos with their camera phone? Aren't they more likely to have
specialist photography equipment? Also, consider whether in-depth image editing is a good
fit for the small touchscreen you find on your typical mobile device.

It probably makes make more sense to develop this particular idea as a piece of software for
desktop computers, perhaps with a companion mobile app that offers a handful of features
that are better suited to the mobile environment. This way, your users can snap a photo on
their camera phone and make a few simple tweaks on the go. Then, if they decide they want
to make more complex edits, they can always boot up their computer when they get home.

Do you have the budget?
Before getting stuck into a new project, it's important to take a long hard look at your
budget to see whether this particular project is realistic.

Although, the word budget implies money, a budget can also be time-related. If you're a solo
Android enthusiast who's creating an app for fun in their spare time, then chances are that
your biggest challenge will be finding spare time to devote to your project rather than
sourcing funding. Estimate how much time you can realistically dedicate to your project,
and then use this information to work out how long it'll take you to complete.

Turning Your Bright Idea into a Detailed Sketch

[142]

Be honest with yourself about what you can realistically achieve as well as how much time
and money you can invest in your project.

Whether your main restriction is money or time, you may realize that this particular project
isn't really practical; maybe you're too busy to complete the project within a reasonable
amount of time, and you know you'll run out of steam before you reach the finishing line;
or maybe your project needs a few extra hands on deck, and your budget won't stretch to
employing any more people.

If this is the case, you may want to rethink your project to make it more practical. Maybe
you can trim your features list, or free up more time by putting one of your hobbies on
hold. Although it may be disheartening to cut back on features because of time or financial
restraints, it's far less disheartening than proceeding with your project, and then a few
months down the line realizing that, realistically, you're never going to reach that finish
line.

Telling yourself some hard truths at this point will save you from investing time, effort, and
money in something that isn't realistic.

Planning your app
Planning is a step that's easy to skip, especially if you're flying solo, but taking some time to
plan your project properly not only increases your changes of creating a more effective
application, it also increases your chances of actually finishing your project, rather than
abandoning it halfway through.

Skip this stage at your peril!

Identifying your target audience
When you're in the early stages of planning your app, it's tempting to tell yourself, “This app
is such a good idea, everyone will want to use it!”

If you buy into this statement, then your app will be perfect—but only for you. Since it
doesn't make much sense to develop an app just for yourself (although, if you happen to
like the finished product, then that's an added bonus), the first question you'll need to
answer when planning your application is, “Who am I building this thing for?”

Turning Your Bright Idea into a Detailed Sketch

[143]

Too often we leave identifying our target audience until too late in the planning process, or
even worse, we get carried away and start building an app without really knowing who
we're building it for. Your target audience should influence every part of your app: from its
look and feel to the features you want to include, and even how you market and promote
the finished product.

Hopefully, you already have a rough idea of who you're targeting, but to ensure that you
create something that people actually want to use, you'll need to develop a deeper
understanding of who exactly you're targeting. One way to do that is by developing
personas and use cases:

User personas: This is where you create a specific model of the kind of person
you're creating your app for. A persona is an individual user who represents
your target audience. To encourage you to think of this persona as a real person,
you should give your user persona a name.
Use cases: This is a scenario of how, when, and where your persona might use
your app.

Creating a persona
To help you create a detailed user persona, ask your persona the following questions:

How old are you? This could be an exact age such as 18-25 year olds, or it could
be more general, such as children or young adults.
What are your interests and hobbies? Do you like football? Baking? Shopping?
Working out?
Do you identify as male or female (although not all applications will target a
specific sex)?
Where do you live? This could be a specific country, city, or a type of area such as
the countryside or by the sea.
Do you have children?
Do you have a job? And if so, what do you do?
Are you currently in school, college, or university?
Do you have any particular areas of expertise?
Why type of app do you use most often?
What other types of apps do you use?
What kind of application do you never use?
What influences you to make decisions?

Turning Your Bright Idea into a Detailed Sketch

[144]

How experienced are you with Android? Are you a pro user, or do you know just
enough to get by?
What resonates with you on an emotional level? What makes you angry, happy,
or sad?

This is by no means an exhaustive list, but these questions should be
enough to get you thinking about the kind of person you're targeting in
more detail.

Let's look at an example of how a user persona can help you plan an application. Imagine
you have an idea for a recipe app and have brainstormed a list of all the features you might
want to include:

The ability to filter recipes based on specific dietary requirements (gluten-free,
vegan, vegetarian, low fat, non-dairy), how many people they feed, and how easy
they are to cook.
An estimated calorie count for each meal.
An estimated cost for each meal.
Social media integration, so users can share their favorite recipes with friends and
family.
The ability to leave a range of feedback on each recipe; whether that's posting a
comment, uploading a photo of their attempt, or giving the recipe a star rating.
An online scrapbook where users can save their favorite recipes.
The ability to purchase ingredients through the application.
Video tutorials so the user has the option to read the instructions or follow along
with the video.
A built-in egg timer.

The more ideas you jot down, the more you'll realize that even if all your ideas are well
thought out, practical, and would add real value to your app; it simply isn't feasible to try
and incorporate every single idea into a single application.

Not only would this be a nightmare for you in terms of the time and effort required to
implement so many features, but it'd also be a nightmare for every user who opens your
app and is immediately confronted by an exhaustive, incoherent list of features—and
probably a cluttered and confusing UI to boot!

You should always aim to design the perfect app for a very specific audience rather than a
generic app that tries to appeal to everyone; chances are that this kind of app is going to end
up pleasing no one.

Turning Your Bright Idea into a Detailed Sketch

[145]

So, how do you decide which features from your initial list should make the cut? The
answer is to create a user persona and then cherry-pick all the features that'd appeal to this
particular persona.

Let's create a user persona for our recipe app. Imagine our general target audience
are university students who are facing the challenge of cooking for themselves for the first
time. To help us bring this target audience to life, let's create a single-named persona—meet
Nicole:

She's 18
She's a university student
She lives in student halls with five other students
She doesn't have a car
This is the first time she's lived outside of the family home, so she has very little
experience of cooking for herself
She's very money-conscious

The mobile persona
When you're designing a mobile app, you also need to take the mobile persona into
account. This is a set of additional characteristics that people assume when they're using a
mobile app.

If you're one of the many Facebook users who likes to keep track of your friends and family
on the go via the Facebook mobile app, then think about how the way you use the mobile
app differs from how you use Facebook on your laptop or computer. Chances are that you
automatically avoid activities that you know will drain your device's battery or eat into
your data plan, such as watching or uploading videos. But this probably isn't something
you worry too much about when you're accessing Facebook on your desktop.

When designing your mobile app, bear in mind that your typical mobile persona has the
following characteristics:

A finite data plan.
A limited amount of battery.
Usually on the go, so they may have inconsistent Internet access and mobile
network signal.

Turning Your Bright Idea into a Detailed Sketch

[146]

Rarely gives their Android device their undivided attention. Mobile users are
some of the world's best multitaskers, who glance at their device while they're at
the pub waiting for their friends, as they're killing time at the bus stop, or while
they're laid on the sofa half-watching TV. Your typical mobile user doesn't want
to be staring at your app's UI for any length of time; and if they do so, then it is
usually a surefire sign that you've done something wrong and the user is trying
to work out what they're supposed to do next.
Viewing your app on the small screen. Even your largest Android tablet has
a much smaller screen than other electronic devices, such as televisions and
laptops.
Feels an emotional connection to their Android device. The way we relate to our
smartphones, in particular, is very different to the way we relate to other
electronic devices such as computers. Our smartphones are always by our
side—whether they're in our hand, pocket, bag, or on our desk at work, and we
use them for very personal tasks, such as keeping in touch with family and
friends and snapping photos of our wild nights out and vacations. We store a lot
of sensitive information on our mobile devices, so it's only natural that we feel
protective of them! Not convinced about the special relationship we all have with
our phones? Just think about that moment of blind panic you feel when you reach
into your pocket or bag for your phone, and it isn't there. This is a feeling we've
all experienced at some point (although hopefully, your mobile turned out to be
in a different coat pocket, and it wasn't really lost).

If you disregard any of these attributes—for example, you develop a mobile app that
gobbles up mobile data, or requests unnecessary access to lots of sensitive
information—then your users are going to have a bad time. Your challenge is to create a
compelling user experience for your specific target audience while still respecting all the
characteristics of the mobile persona.

Creating use cases
When might Nicole use our recipe app? What prompted her to launch your application?
And what is she hoping to achieve by interacting with your app?

Here are a few use cases for Nicole:

It's the weekend, but it's also the last few days before Nicole's student loan comes
through, so her usual weekend takeaway treat is off the cards. She needs to cook
something that's every bit as tasty as her usual Friday night Chinese takeaway
but is within her current budget.

Turning Your Bright Idea into a Detailed Sketch

[147]

To save money, Nicole and her flatmates have decided to take it in turns to cook a
communal meal. Today, it's Nicole's turn, so she needs a recipe that'll feed six
hungry students—bonus points if there are leftovers!
Nicole's in a rush; she got up late and has just over an hour before she needs to be
at her afternoon lecture. She needs a recipe that's super easy and super quick to
make.

Deciding on a feature list
Take another look at the initial features list for our recipe app. Now, we have a very specific
persona and a few use cases; which features should we cherry-pick to include in our app?
What features are going to appeal to Nicole?

I'm going to select the following:

The ability to filter recipes based on how easy they are to cook: This is a top
priority for our first-time chef, particularly when she needs to hurry up and eat
before her next lecture.
The ability to filter recipes based on how many people they feed: If Nicole is
going to be cooking for her flat mates, then she needs easy access to recipes that'll
feed six people.
An estimated cost for each meal: As a budget-conscious student, Nicole doesn't
want to blow all her student loan on fancy ingredients. She wants to be able to
see exactly how much it'll cost her to cook each meal—particularly when it's the
last few days before her next student loan installment comes through!
Video tutorials: Nicole is an inexperienced cook, so she'd definitely appreciate
the option to watch meals being prepared, rather than just reading instructions.
She's also 18, which means she's grown up watching video tutorials on YouTube,
so the thought of cooking along to a video on her smartphone has definite appeal.
A built-in egg timer: This is the first time Nicole has lived outside of the family
home, so she hasn't had the time to build up a stash of cooking utensils yet. She
also doesn't want to waste her student loan on boring things such as egg timers,
so if your app can provide this kind of functionality, then all the better!
The option to purchase ingredients through the app: As an 18-year old, Nicole is
an expert at making online purchases, so getting the ingredients she needs
delivered direct to her door is high on her (Amazon) wishlist. Nicole also doesn't
have a car, so getting to her supermarket or local farmer's market isn't the easiest
thing in the world. Ideally, our recipe app will be able to cross-check several
vendors and suggest the place where she can purchase each ingredient at the
lowest cost, to save even more of her student loan.

Turning Your Bright Idea into a Detailed Sketch

[148]

There are other features in our list that might also appeal to Nicole; for example, she could
be a vegan or have a few tried-and-tested family recipes she'd like to upload to the app, but
be wary of getting too specific with your user personas.

While the ability to filter recipes based on dietary requirements, or giving users the option
of adding their own recipes to the app would add value for certain users, ask yourself
whether they're relevant for your target audience and not just your user persona? If you're
unsure, then try adding the features to your list and reading it from top to bottom, do these
new features fit? Or do they stick out like a sore thumb?

Even if you decide against adding certain features to your app now, they
may still find their way into subsequent releases. If you feel like a feature
has potential but isn't absolutely crucial for your app at this early stage,
then make a note of it; you can always return to it at a later date.

Taking a critical look at your target audience
You've identified your target audience, but before we progress any further take a step back
and have a critical look at your chosen audience. Does it really make sense to target this
specific group of people?

Does your target audience need a mobile app?
Is your app offering your target audience anything they're not getting already via a
different platform?

Say, you had an idea for an app that keeps track of the user's appointments; might they
already be getting this functionality elsewhere? Increasingly, places such as dentists,
doctors, and hairdressers are reminding clients of upcoming appointments via SMS
messages, or if you're targeting less tech-savvy users, they might prefer scribbling their
schedule on a paper calendar.

Even though it's tempting to assume that everything is better as a mobile app, your target
audience is unlikely to make the effort to download a mobile app if their needs are already
being met via a different medium.

Is your target audience on Android?
Gone are the days when serious business users opted for Blackberrys and all the cool kids
went with iPhones. Nowadays, the lines are blurred, and it's becoming common practice to
release an app across multiple platforms. But before you jump to conclusions, check
whether there's evidence to suggest that your target audience favors one mobile platform

Turning Your Bright Idea into a Detailed Sketch

[149]

over another. Perform a quick Google search for any recent research into mobile
demographics, and see whether there's any data out there that raises red flags about your
planned Android app.

Okay, so your target audience is on Android, but does it own a
suitable Android device?
Don't assume that your target audience automatically has access to an Android device that's
powerful enough to run your application, particularly since Android is such a fragmented
platform.

If you design an app that relies on the user having access to the latest version of the
Android operating system, then you're already limiting your audience. This may make
sense if you're developing an app for advanced Android users who are more likely to have
the latest version of Android installed on their device, but it might not be such a good idea
if you're targeting general, non-pro Android users, older users, or people who are on tighter
budgets who perhaps haven't invested in the latest Android device, such as money-
conscious students.

Do they use this “type” of application?
Even though your app will have a unique combination of target audience, features, UI, and
UX, there are still identifiable types of applications. It's worth noting that these types don't
correspond to the categories in the Google Play store, which is much more specific.

Turning Your Bright Idea into a Detailed Sketch

[150]

Application types can be grouped into four categories:

Useful tools: These include weather, news, travel, and productivity apps
Fun tools: Examples include wallpapers, social media, and image editing and
photography apps
Games: This is pretty self-explanatory and Google Play has a dedicated games
category, which makes identifying these kind of apps even easier
Entertainment: This includes music, video, drawing, audio books, podcasts, and
comic book apps

There are some crossover and grey areas between categories (for example, is a shopping
app a fun tool or a useful tool?), but the more time you spend planning your app and
identifying your target audience, the more obvious it'll become which category your app
falls into. Our recipe app is a useful tool as it helps students to cook for themselves,
potentially for the first time. However if our app contained lots of Christmas-themed
recipes and targeted experienced cooks who love baking festive treats, then it's more likely
to fall into the fun tool category.

Identify what type of app you're planning, and identify whether your target audience is
likely to use this type of app.

Would your target audience be willing to pay for this application?
You may choose to monetize your app in some way. Popular methods include requiring the
user to pay a one-time fee before they can download your app; releasing free and paid-for
version of the same app; or what sales folk refer to as upsell opportunities, which may include
unlocking special pro features or in-app extras, such as new levels, characters, in-game
currency, or extra lives. You may even choose to offer monthly or annual subscriptions.

If you do choose to monetize your app, then consider what's the most appropriate method
for the type of app you're developing for your target audience. For some people on tighter
budgets, paying for a mobile app may feel like a waste of money, or a younger target
audience may simply not have access to things such as credit and debit cards.

You should also consider your app's purpose. Part of our recipe app's appeal is that it can
save students' money by teaching them how to cook for themselves, rather than relying on
takeaways and eating out, so asking them to pay to download our app doesn't really make a
lot of sense. What student wants to spend money on an app that's supposed to be saving
him/her money?

Turning Your Bright Idea into a Detailed Sketch

[151]

Another option is to release your app for free, but ask for an optional donation to support
your work as an Android developer. This is a popular choice with developers who create
apps for more advanced Android users, or users who may also be developers themselves,
as they're more likely to appreciate all the hard work that goes into creating a great Android
app.

Another way of monetizing your app is by including adverts, but if you do go down the
advertisement route, then make sure they're as unobtrusive as possible. In our recipe app
example, adverts may be a viable option, as it doesn't require our cash-conscious students
to fork out any money directly.

Including adverts in your app
If you do decide to include adverts, then this opens up an additional
revenue stream: offering to remove the adverts if the user updates to the
pro version of your app. However, if you're targeting more advanced
mobile users, then you should consider how likely your target audience
are to use things such as ad blockers. In this scenario, you might get a
better response by requesting an optional donation to support your work
as an Android developer.

If you do decide to monetize your app, it should always reflect the value your app is
offering to your target audience. If your users do decide to invest money in your app, then
you should deliver something that's worth their hard-earned cash.

Are there enough people in your target audience for your project to
be profitable?
While it's good to be specific, your app has to appeal to enough people to make your project
profitable.

A profitable project isn't necessarily one that earns you money (although
that's always nice!) What does success mean to you? It might mean X
number of people downloading your app, or getting a 3 star+ rating on
Google Play.

We've decided that our recipe app will target students who are inexperienced cooks and
who want access to recipes that are quick, easy, and cheap to make. We could narrow our
demographic further by targeting health-conscious students who are interested in recipes
that are quick, easy, and cheap but also low-calorie and full of vitamins and minerals. While
health-conscious students definitely do exist, this is more of a niche target audience, and if
you do decide to go down this route, you should perform some additional market research
to find out whether there's actually a significant market for this very specific kind of app.

Turning Your Bright Idea into a Detailed Sketch

[152]

Hopefully, after scrutinizing your target audience, you'll come to the conclusion that your
target audience does desperately need the kind of app you have in mind. If not, then this is
the perfect time to go back to the start of this section and explore whether your initial idea
might be better suited to a different target audience.

Time to get real
For the purposes of this chapter, we created a quick and generalized user
persona and some possible use cases. However, when you're creating a
real-life Android app, you'll typically want to do some form of market
research, which means connecting with the people you're creating your
app for and getting their opinion on your project.
The good news is that if standing in the middle of your local high street
with a clipboard is your idea of hell (ditto), then the Internet is an ideal
place for market research. Places such as forums and social media can help
you connect with the people who might one day be using your app, or you
may want to try reaching out to relevant bodies to see whether they're
willing to put you in touch with your target audience. In our recipe app
example, you could try contacting local universities to see whether they'll
help you out with your market research—particularly since you're
developing a free app that'll help students overcome the challenge of
cooking for themselves for the first time.
There's no substitute for actual market research, so you should always
make the effort to get in contact with your target audience, as their input
will be invaluable for helping you create realistic personas and use cases,
and it will also help you identify what features your real-life target
audience would like to see in your app.

Identifying user and product goals
Goals are one of those things that are so obvious that they're actually easy to overlook. Why
are you releasing this app? What's in it for you? And why would someone download your
app? These can be difficult questions to answer, but they can also be crucial for the rest of
the planning process.

When you have a set of clearly defined goals, you can refer back to them whenever you're
struggling to answer a design-related question. Should you include a share to Facebook
feature? To find the answer, just consult your goals—how would this feature help your
users achieve their goals, or help you achieve your goals?

There are two types of goal you need to identify.

Turning Your Bright Idea into a Detailed Sketch

[153]

Product goals
It isn't all about the user! Creating an amazing app takes time, effort, and maybe even
money, and even if you're creating an app for fun, you should still get something out of it!
So, what do you hope to achieve by creating this amazing app?

Your product goals might include the following:

The number of downloads you want to reach
The number of reviews you want to get on Google Play
A minimum star rating on Google Play
Spreading the word about your company, products, or services
A financial reward, which may be generated through users upgrading to the pro
version of your app, in-app purchases, adverts, or the additional revenue stream
of your choice

User goals
These are the goals of the people who choose to download and use your app. What are they
hoping to achieve? In our recipe app example, one of the main user goals is finding pocket-
friendly recipes that don't break the bank.

At this point, you don't need to define how these goals should be accomplished, as there
may be multiple ways of achieving the same goal. For instance, we might add a search box
to our app's home screen so that the user can filter recipes based on how much the
ingredients cost; or you might decide to divide your recipes into categories and then display
these categories as tabs along the top of the user's screen—Recipes under £1 per
head; Recipes under £2 per head, and so on.

For now, concentrate on identifying user goals and leave defining the features needed to
accomplish these goals for a later date.

Sometimes, zeroing in on meaningful user goals might not be straightforward. Maybe you
can only think of broad, generalized goals that aren't particularly helpful. For example,
imagine you have an idea for a document-editing app you're convinced could be the next
Google Drive, but the only goal you can come up with is “I want to be able to create and
edit documents.” That's not very specific! The key is to take this broad, generalized goal and
break it down. How will the user create these documents? What edits might they want to
make? And what might they want to do with the finished documents? Brainstorm your
answers.

Turning Your Bright Idea into a Detailed Sketch

[154]

After a brainstorming session, you should have a list of more specific user goals. In our
document-editing app, these might be “I want to be able to…”

Quickly and easily create a new document, so I can jot down notes on the go
Make my documents more visually appealing using a range of formatting
techniques
Share my documents with others via social media
Collaborate on documents with friends and colleagues

Creating a roadmap
A roadmap is the key to getting your app from an initial release to the version you had in
mind when you created your ultimate features list at the start of this chapter. In fact, now's
the perfect time to take a long, hard look at this list and decide what features should make it
into the first version of your app.

This initial version should include all the features that are necessary to fulfill your app's
primary task (imagine releasing a camera app with a bunch of filters but without the
functionality needed for taking photos!). It should also include other high-priority features,
which will usually be the features that cropped up time and time again during your market
research or when you were creating your user personas and use cases.

If you're unsure whether a feature is important enough to make it into the first version of
your app, ask yourself, “Is my app usable without this feature?” The first version of your
app should include must-have features only.

We're talking about the initial version of your app and not the initial release.
This is because you don't necessarily have to release the initial version to
the general public.

After all the work we've done identifying our target audience, some of the items in your
ultimate features list may no longer be relevant, so now's the time to take another look at
our list and strike out any unnecessary features.

You should be left with a list of must-have features that your app can't function without,
plus some nice-to-have extras that aren't absolutely necessary but would add value to your
app. The latter are the features that are going to form the basis of your roadmap.

Turning Your Bright Idea into a Detailed Sketch

[155]

At this point, a roadmap is more of a guideline than a strict schedule, but creating a rough
roadmap helps you visualize how your project may evolve over time. It also gives you a
rough idea of when you might be ready to release different features.

To create your roadmap, take your list of nice-to-have features and look for relationships
between them. For example, you might group together all features that relate to social
media or all the features that allow users to upload their own content.

You'll typically want to release related features together, so once you've assembled your
groups, you should rank them in their order of importance. This is the order in which you'll
release these features, so the next step is assigning these groups to different versions of your
app; for example, if you decided that social media features are more important than the
ability to upload new content, you may want to release these features in version 2.0, while
the latter may form the basis of version 3.0.

Release little and often
Don't be tempted to try and squeeze lots of features into a single release.
It's far better to release little and often, rather than including a ton of new
features in each update but leaving your users waiting months and
months between each release.
Your typical Android user will quickly forget about an app that's rarely
updated. And even if they don't forget about your app, they may still
struggle to get to grips with an update that introduces too many changes.
Releasing little and often also gives you more control over the
development process and will make it easier to meet those deadlines.
Massive releases are much harder to plan correctly and are notoriously
stressful, so do yourself and your users a favor and create a roadmap that
includes lots of small, frequent releases.

You should also try and add deadlines to your roadmap, even if they're speculative
deadlines, as they encourage you to start thinking about how long each feature will take to
develop. These deadlines could be vague, such as “in February, I want to release version
1.0,” or “I want to release version 2.0 four weeks after 1.0.” Alternatively, they might
correspond with annual events; for example, if you've developing a shopping app, you may
decide to release this app in the run-up to Christmas or during the height of the January
sales.

At the very least, you should set a deadline for when you hope to complete the first version
of your app.

Turning Your Bright Idea into a Detailed Sketch

[156]

Some final things to think about
You've nearly finished planning your app! Before we move onto the design stage, there are
a few final bits and bobs to think about.

What devices should you support?
What types of devices should you support? And what versions of Android should your app
be compatible with? These are tough questions, and unfortunately, you're going to have to
tackle them every time you start a new Android project.

Considering that an Android app will run on any device unless you specifically set it not to,
it may be tempting to think, “I'll just wait and see what devices my apps runs okay on”, but
this is a surefire way of winding up with an app that works well on your typical Android
handset but poorly on everything else.

It's up to you to provide an experience that's optimized for all kinds of tablets, phablets, and
Android smartphones held in landscape and portrait mode. Creating an app that functions
across a range of devices isn't easy, but the more effort you put into planning how your app
will support different devices and screen configurations, the easier this will be to
implement. Unless you have a very good reason not to, then now is the time to start
thinking about how you're going to support as many different Android devices as possible.

If you do decide not to support certain devices, then your users will appreciate being told
upfront rather than waiting until they launch your app for the first time and discover that
it's completely broken on their device. At the very least, be sure to give your users a heads-
up about unsupported devices in your app's Google Play description.

How should you market your app?
Most of the time, the people you're marketing your app to will be the same as your target
audience, but this might not always be the case. For example, if you're developing an
educational app to help young children learn their alphabet, this app might be more
appealing to parents rather than your target users (and in this instance, children who are
still learning to read are unlikely to be scouring Google Play, looking for apps to
download).

Turning Your Bright Idea into a Detailed Sketch

[157]

Designing your application
At this point, you should have a detailed plan about the application want to create. You've
completed the following:

A written concept
An ultimate features list
Identified your app's primary task
Written a product definition statement
Identified your target audience by creating a user persona and some use cases,
and then incorporated this information into your plan
Started to think about some tricky subjects including monetization, market
research, and marketing your app

Now, it's time to begin exploring how your app should look. The idea of designing your
application's UI may seem daunting (particularly if you don't have any design experience),
but putting extra effort into UI design can transform a good app into a great app; and don't
we all want to create great applications?

In the final section of this chapter, I'll show you how to take these first steps to designing an
effective and appealing UI.

The high-level flow
The first stage of working out your app's structure is creating a high-level flow. This is
where you draw a basic plan of the different routes the user will take through your app in
order to accomplish different tasks.

Turning Your Bright Idea into a Detailed Sketch

[158]

As you might have already guessed from the name, the most popular way of expressing an
app's high-level flow is with a flowchart. How you create this flowchart is up to you. You
may want to create a digital chart using your favorite image-editing software, or you might
go old school with paper and pencil. Pick whichever method works the best for you.

You'll typically represent screens with shapes, and express navigation using lines or arrows.
You may also want to number the screens in your flowchart, particularly if you're plotting
out a large number of screens. This way, when it's time to create a wireframe, you can
number the screens in your wireframe to correspond with the screens in your flowchart.

It's never too early to start looking for ways to improve the user experience, and one of the
easiest ways of gauging your app's UX at this early stage is to look at how many
interactions the user has to perform in order to complete different tasks.

Your flowchart is ideal for identifying any opportunities to minimize or simplify the number
of steps required to complete each task, whether that means removing screens, reordering
screens, or changing your app's navigation. For example, you may decide to include a menu
on Screen A, so the user can jump directly to Screen E and Screen F.

You should also identify which screen should be your app's main or home screen. A home
screen should help users complete your app's primary task. Since our recipe app is
designed to help users locate recipes that are quick, cheap, and easy to make, we may
decide to select the Search for recipes screen as our home screen.

This flowchart is also the perfect opportunity to identify any areas where you might
overwhelm the user with too many options. If you're going to include a search box on the
home screen, is it wise to display all the user's saved recipes, plus the app's main Settings
on that home screen too? You may decide to move some of this content to a different screen,
or temporarily hide it in a side-menu or separate tab.

Turning Your Bright Idea into a Detailed Sketch

[159]

Alternatively, you may decide that if you design your app carefully enough, you can get
away with displaying all this content on a single screen without overwhelming the user. If
you opt for the latter, then make a note that you should devote some extra time to this
screen, just to ensure the user experience really is as straightforward as possible.

Be a critic
While working on your high-level workflow, it may help to take a critical
look at how other apps handle the challenge of getting users from the first
screen to their desired location with as little friction as possible.
Take a look through the apps installed on your Android device, and if
there's an app you particularly like, make a quick flowchart for this app.
Try to identify why this flow works so well. It may also help to sketch the
flow of an app you're not so keen on, and then try to work out why this
flow doesn't work for you. These exercises will help you get into the habit
of being critical about application flow, which is essential if you're going
to effectively analyze and refine your own app's flowchart.

Creating a screen list
Once you've created a high-level flow, make a list of all the screens you'll need to create if
the user is going to be able to accomplish their various tasks and goals.

The screen list for our recipe app will look something like this:

Home screen
A list of categories
A list of recipes for a given category
A list of saved recipes
Detailed recipe view
Search box
Search results

Creating a screen map
Now it's time to combine our flowchart and screen list, and create a screen map that
expresses the navigational relationships between all the different screens that make up our
app.

Turning Your Bright Idea into a Detailed Sketch

[160]

If in doubt, refer back to your flowchart and review the different paths the user might take
through your app.

Here is an example of how the screen map for our recipe app might look:

One screen doesn't necessarily equate to one activity. One screen might
also equate to one fragment that's displayed as a part of a multi-pane
layout.

Grouping screens into multi-pane layouts
We didn't design our screen map with any particular Android device in mind, but Android
apps must be flexible enough to adapt to a wide range of different devices, from small
handsets right through to large tablets.

To present content to your users in the most effective way, you may want to group related
screens together. You can then present these fragments in different combinations,
depending on the user's device and screen configuration.

Smaller screens are generally only suitable for displaying one pane of content at a time, so
each screen in our map will typically equate to one screen on a smaller device.

However, sometimes they'll be more on-screen space available, for example, when a user is
viewing your app on a tablet, phablet, or even on an Android smartphone held in landscape
mode. When there's more space available, your app should take full advantage, and one
way to do this is using fragments.

Turning Your Bright Idea into a Detailed Sketch

[161]

Fragments help you create an app that can adapt across a range of different device types,
screen sizes, and screen orientations. Combining screens into multi-pane layouts also helps
to minimize the number of interactions users have to perform in order to complete each
task.

How might we group the different screens in our recipe app, so we can effectively display
multiple fragments in a multi-pane layout and a single fragment in a single-pane layout?

On a smaller screen, we might want to display the recipe app's home screen as a single,
standalone fragment. However, if the user is viewing our app on a larger screen, then what
other information might it make sense to display alongside the home screen fragment?

Let's run through all the tasks the user might want to perform when they're located on the
home screen. They might want to perform the following:

Access a list of categories
Access their saved recipes
Perform a search
Access a recipe

Allowing the user to perform any of these tasks from the home screen would add value, but
I'm going to go with Perform a search as I feel this is the most common task users will want
to perform in our recipe app. So, on a smaller screen, I want the user to see the home screen;
but on a larger device, I want the user to see the home screen fragment and the search
fragment in a multi-pane layout.

Work your way through your screen map, and look for any additional ways of grouping
your screens into multi-pane layouts for users accessing your app on larger devices.

When you're displaying multiple panes of content, the accepted
convention is to arrange your content from left to right in increasing
detailed order.

Navigation
Your app's navigation should feel intuitive and effortless, to the point where even new
users should be able to navigate around your app with ease. Since you've already created a
screen map, determining your app's navigation should be a doddle.

Turning Your Bright Idea into a Detailed Sketch

[162]

It should be easy to navigate to the most important destinations within your app; for
example, in our recipe app, the home screen will be the most prominent and accessible
screen.

When you prioritize a screen by placing it higher in the navigational hierarchy, this screen
is called a parent. The less important screens, which you typically place beneath a parent
screen, are referred to as children. Continuing this theme, screens that have the same parent
are known as siblings, and they usually have equal priority. You may also hear the
term collections, which is sometimes used to refer to multiple screens that share the same
parent.

Navigation can be broken into the following:

Descendent navigation: When the user navigates deeper into your application,
they're descending from a higher level of hierarchy to a lower level of hierarchy.
Moving from a parent to a child screen is an example of descending navigation.
Lateral navigation: This is where the user moves between sibling screens.

To help you determine the type of navigation that best suits your app, ask yourself the
following.

What are your app's most important tasks?
Identify all the tasks users might want to perform, and then assign a priority level to each of
these tasks. You should make it easy for users to accomplish high-priority tasks by featuring
them prominently in your app's navigation hierarchy. For instance, if you're designing a
music app, you should make it easy for users to play music (a high-priority task) while
lower-priority tasks, such as being able to tweet a link to the song you're currently listening
to, can be placed lower in the navigational hierarchy.

Turning Your Bright Idea into a Detailed Sketch

[163]

Are there any tasks you can group together?
You should create some form of navigational relationship between related features; for
example, you could include them in the same menu, in the same screen, or in a row of tabs
within the same parent screen.

In our music app example, being able to search for more albums by a particular artist,
taking a peek at this week's top 10 tracks, browsing new releases, and checking what tracks
your friends are currently listening to are all features that help you discover new music, so
you might decide to place them together in your app's navigational structure.

Is my navigation consistent?
Consistency is crucial. Even if you design your navigation to be as simple as possible, if the
navigation varies from one screen to the next, then you're going to end up with some
seriously frustrated and confused users.

Common navigation patterns
When planning your app's navigation, you should focus on how to best meet the needs of
your target audience and the tasks they'll want to perform in your application. However,
there are some common navigation patterns that can give you a head start in crafting a
unique navigation structure that suits your particular application.

The embedded navigation
If your app has a simple structure, you may choose to embed navigation inside your
content. The major drawback is that embedding navigation in this way does reduce the
space available to display your application's content, so it may not be ideal for devices with
smaller screens.

Buttons and simple targets
One of the most straightforward navigation patterns is to include touchable targets, such as
buttons in your app's parent screen. When the user taps one of these targets, a child screen
opens, which may contain further touchable targets.

This kind of navigation is easy to understand, but be aware that including lots of touchable
targets on a single screen can make your app difficult to navigate on smaller devices.

Turning Your Bright Idea into a Detailed Sketch

[164]

Lists
If you need to display lots of text, then vertically scrolling lists (such as the classic, text-
based menu) can provide a straightforward way of navigating your app.

Just be wary of creating a navigational hierarchy where lists lead to more lists, as this type
of navigation can cause the number of touches required to complete each task to spiral out
of control.

Grids, cards, and carousels
When you need to display lots of visual content, such as videos or photos, you may want to
use vertically scrolling grids of items, horizontally scrolling carousels, or cards:

An example of grid-based navigation

Turning Your Bright Idea into a Detailed Sketch

[165]

Tabs
Although Android's traditional navigation model is hierarchical (moving from parent
screens to child screens), there are some instances where a horizontal navigation may make
more sense, particularly if your app features lots of sibling screens.

Tabs are one common examples of horizontal navigation. If your app includes lots of
grouped content, sibling screens, and categorized data sets or content that's equally
important, then tabs are an ideal form of navigation as they allow you to embed multiple
screens in a single parent container. Tabs give the user a way of accessing all this content
directly without them having to navigate back to the parent view every time they want to
access a different sibling screen.

Tabs are also a useful way of ensuring that users are aware of all your app's sibling screens.
With tabs, users don't need to go exploring any hidden menus as all your app's sibling
screens are lined up along the top of the screen.

Turning Your Bright Idea into a Detailed Sketch

[166]

If you do opt for tab-based navigation, there are several best practices you should keep in
mind:

Whenever the user selects a tab, new content may appear but the tabs themselves
should remain constant.
Tab labels should consist of either icons or text only. If you do opt for text labels,
you should keep them as short as possible.
Don't treat switching between tabs as history. If the user switches from tab A to
tab B, pressing their device's Back button shouldn't take them back to tab A.
Arrange tabs horizontally along the top of the screen as a single row. Tabs should
never run along the bottom of the screen. If you do want to display actions along
the bottom of the screen, use a split action bar instead.
Reserve swipe gestures for navigating between tabs. Don't include any in-tab
content that supports swipe gestures, as your users may end up swiping between
tabs by accident.
Don't include further tabbed content inside a tab. Remember that movie
Inception? No one wants a tab-ception.
If you suspect your users are likely to keep switching between tabs in order to
compare their content, then this is a sign that you should combine your content
into fewer tabs. Or perhaps, tabs aren't the right navigational solution for your
app after all?
Tabs are great for displaying multiple sibling views, but you should limit tabs to
no more than four per parent screen. If you do need to display more than four
sibling views, then once again, tabs might not be right for your particular app.

Horizontal paging (swipe views)
Horizontal paging is another popular method of navigating between sibling screens, and is
sometimes known as swipe views. Like tabs, horizontal paging is useful when your app
features multiple sibling screens.

As you might have guessed from the name, swipe views are a form of navigation where one
screen is displayed at a time, and the user navigates between the screen's siblings using a
swipe-from-the-right or swipe-from-the-left gesture.

Horizontal paging works the best when your app has a small number of sibling screens,
and there's an ordered relationship between those screens; for example, calendar apps
typically use horizontal paging for navigating between different months.

Turning Your Bright Idea into a Detailed Sketch

[167]

The social layer
In our recipe app, we briefly touched on the idea of letting users share their favorite recipes
with friends and family via social media. Even simple social features like this can add real
value to an application, so it's worth considering whether your app might benefit from a
few social features. At the very least, giving your users the option to share your app's
content via social media is a quick and easy way of promoting your application.

Adding a social aspect to your app isn't mandatory! You should only
include social features if they add value to your app in some way; not
every application has to have a social aspect.

When you're deciding whether to include a social layer ask yourself the following:

What would your users get out of the proposed social features?
How would a social layer enhance the user experience?
What specific social features might add the most value for your target audience?
What social features might help to create a sense of community?
How much effort would the proposed social features require from the user? What
are the potential rewards? Are these features worth it from the user's perspective?
What are the advantages of adding a social layer to your app?
What are the potential disadvantages?

When you think about social features, chances that are social media apps, such as Facebook
and Twitter, immediately spring to mind. However, there are a multitude of ways of subtly
integrating social features into your app without turning it into a social media app.

Turning Your Bright Idea into a Detailed Sketch

[168]

Some examples of non-social media apps that have an effective social aspect are Google
Calendar and Spotify.

Whenever you create a new event in Google Calendar, the app prompts you to dip into
your device's Contacts and invite friends, family, work colleagues, and other contacts to
your event. Each contact can then either accept or decline this invitation, and you get the
added security of knowing that everyone who accepts your invite will receive automatic
Google Calendar reminders as your event draws near.

Turning Your Bright Idea into a Detailed Sketch

[169]

Spotify uses social features to help you find new tracks to listen to. If you open Spotify and
navigate to Activity, you'll find a list of all the music your Spotify friends have been
listening to, and if you don't have any Spotify buddies, the app will suggest a few people
for you to follow.

Summary
In this chapter, we created a detailed plan for a new Android project by writing down our
user and product goals and identifying our target audience. We created a concept, product
definition statement, features list, and considered our options for monetizing our app.

We then started to sketch out our app by creating a roadmap, flowchart, screen list, and
screen map with complete navigation. In the next chapter, you'll see how to turn this rough
sketch into a detailed paper or digital wireframe and populate this wireframe with dummy
content.

6
Turning Your Sketches into

Wireframes
In the previous chapter, we concentrated on planning our screens at a very high level by
creating things such as screen maps and flowcharts. In this chapter, we'll move on from
high-level planning to start designing the screens that'll make up our app.

During the screen designing process, you'll usually complete the following steps:

First draft wireframing: This is where you begin to layout your screens by
making quick sketches with paper and pencils. A wireframe is a low-fidelity,
visual representation of your app's layout; sometimes, it is referred to as a
skeleton, outline, page schematic, or screen blueprint. To help you focus on each
screen's layout, functionality, and usability, wireframes are usually stripped of all
look and feel elements, and at least initially, most content and text.
Digital wireframe: Once you're happy with your pencil-and-paper wireframes,
it's time to refine these first drafts using digital software. This step is also where
you check whether your emerging designs are suitable for the kind of content
you want to display, by starting to add the content and text that each screen will
eventually display.
Prototyping: The next step is creating a prototype based on your digital
wireframe using paper and pencil.
Usability testing: This is where you test your paper prototypes on an actual user.
This type of testing is crucial for highlighting any issues with your navigation
and helping you get an idea of how easy your user interface is for users to
understand.

Turning Your Sketches into Wireframes

[171]

In design, low-fidelity refers to a rough representation of concepts, design
alternatives, and screen layouts. By creating low-fidelity prototypes and
wireframes, you can test various ideas without having to invest too much
time and effort in the design process. The high-fidelity design is where
you fill in all the details missing from a design's low-fidelity predecessors.
In this chapter, we'll create low-fidelity wireframes using paper and
pencils, and then develop these initial ideas into more detailed, high-
fidelity digital wireframes.

What is wireframing?
Think of a wireframe as a skeleton of a screen's layout that describes how major UI
components should be arranged in the screen's hierarchy. The purpose of wireframing is to
focus on things such as functionality, usability, behavior, and the positioning and priority of
your content. Wireframing isn't about graphic design. In fact, at this stage, it's better to
leave out all design-related elements. You may even want to make your wireframes look
very rough and sketch-like on purpose to help you focus on what each screen does and not
what it looks like.

Your wireframes typically won't include color, unless you're using color to distinguish
certain elements of your UI; for example, you might want to grab a colored pencil and draw
a box around related content groups, or to add elements that don't have a physical onscreen
presence such as interaction and movement.

You can create wireframes using pencil and paper, by scribbling on a whiteboard or using a
wide range of free and commercial software applications. However, for the first drafts, it
makes sense to wireframe via quick sketches using a pencil and paper.

What are the benefits of wireframing?
Wireframing may sound straightforward, but these deceptively simple sketches are an
important step in designing more effective application screens. Here are a few of the
reasons why it's well worth breaking out your pencil case, grabbing a notebook, and
wireframing your app:

Turning Your Sketches into Wireframes

[172]

Wireframing is ideal for rapidly testing different layouts.

Creating sketches is quick and easy, which means wireframing is the
perfect opportunity to explore lots of different potential layouts.

Wireframes encourage you to get creative and experiment with different
positioning and sizing of UI elements as well as different navigation.
They're also an easy ways of mapping out the relationship between your
UI elements.

By wireframing lots of different possibilities, you can discover the
optimal layout for each screen that makes up your app.

While technically there's nothing stopping you from getting experimental
at every stage of the design process, the more time and effort you invest
in your project, the less inclined you'll be to experiment with new ideas
and alternate layouts.

One thing you should be aware of while wireframing lots of different
layouts is that wireframes are static representations of your screens.
Wireframes aren't very good at displaying interactive details or moving
elements. You'll need to use your imagination to get a better idea of how
any interactive or moving elements work in your layouts, or spend some
extra time prototyping and testing your layouts, which is something
we'll cover later on in this chapter.

They help you identify problems early in the design process.

As with everything in life, sometimes things work better in theory than
they do in practice, so what seemed like a good idea on a screen map or
in your head may break down as soon as you try and implement it.

Whether your app goes through multiple extensive design changes or
simply a few tweaks, design changes are an inevitable part of creating a
mobile app, so isn't it better to discover potential problems as early as
possible? Wireframing is one of the quickest and easiest ways of
uncovering issues with your designs, and revising a wireframe is
approximately 1 billion times easier than revising a high-fidelity
mockup or, even worse, a user interface that's already under
development.

Turning Your Sketches into Wireframes

[173]

Discovering issues at the wireframing stage also means you're more
likely to make whatever changes are necessary to properly resolve the
issue, even if it means drastically changing your design. When you
uncover issues further down the line, you're naturally going to be
tempted to look for workarounds and quick fixes that'll patch the issue
without causing too much disruption to your design. This approach may
make your life easier in the short term, but it probably isn't going to
make for very happy end users in the long run.

They encourage you to capture a complete design rather than winging it.

Do you feel like you have a crystal-clear picture in your mind's eye of
how your app should look? Maybe you've had this vision before you
even started the planning process.. If this is the case, then great, but you
still need to capture this vision on paper!

Mental pictures have a tendency to be a bit fuzzy around the edges, and
sometimes, you don't even quite realize how fuzzy they are until you try
to capture them on paper. Once you start trying to recreate what you see
in your mind's eye, you may realize that there are still a few question
marks hanging over certain parts of your design.

And as you move through the design process, it's far easier to redraft
and refine something that's physically there in front of you, rather than
an image that's floating around in the ether.

They give everyone a common design language.

At their core, wireframes are basically just labeled and annotated
sketches, so they're something that everyone can understand. This is
good news if your app is a team effort, as wireframes help to bridge the
gap between developing an app and designing an app without resorting to
any developer or designer lingo.

If you're developing an app for a client, wireframes are also a great way
of making sure your client has a clear picture of how their project is
progressing. You can then get the client's input and, hopefully, their
sign-off on your design before you move onto the next stage of your
project.

Turning Your Sketches into Wireframes

[174]

People are naturally more reluctant to pick fault with a design that
someone's clearly spent hours, perhaps even days, perfecting. Although
it's nice to want to spare a team member's feelings, this isn't going to
help you create the best possible app in the long run.

Make sure your wireframe looks like a quick sketch, and even the politest
member of your team should feel comfortable pointing out its flaws.

They encourage you to start thinking about navigation in more detail.

It's impossible to overestimate the negative impact of poorly-designed
navigation. If a user can't navigate through your app with ease, they're
going to navigate straight out of your app.

We touched on navigation in the previous chapter, but up until now,
navigation has been nothing more than a set of up, down, and side-to-
side arrows on a screen map. Wireframing is the perfect opportunity to
start thinking about how you're going to implement your app's
navigation. How exactly are your users going to move from the home
screen to the Settings screen? Via tabs, action bars? How about their
device's Back button? Wireframing is an essential step in designing
effective navigation. In fact, whenever you create a wireframe, the first
thing you'll need to do is decide what navigational elements should
appear on the screen, as you'll see later on in this chapter.

Creating a Wireframe
Creating a wireframe may seem fairly straightforward. Anyone can slap a bunch of sketches
together, right? While wireframing is supposed to be quick and easy, if you're going to get
the maximum value out of your wireframing sessions, then you'll want to put as much
thought as possible into your wireframes.

For the early drafts, the most effective method of wireframing is to simply sketch out your
screens using paper and pencils. Ideally, you should produce several versions of each
screen, and paper sketches are the quickest way to test out a few ideas. Once you've
finished sketching, simply place your sketches side by side and decide which is the most
effective design, or you may even decide to combine elements from multiple sketches to
create the perfect layout.

Turning Your Sketches into Wireframes

[175]

Even if you prefer the thought of digital wireframing and are itching to sit down in front of
your computer and boot up your favorite image-editing program, you should still take the
time to create rough sketches first, as this is the perfect way to get your ideas flowing, and
quickly test out multiple designs before moving onto the more time-consuming process of
digital wireframing.

Creating your first wireframe
During your wireframing sessions, it's helpful to have your screen map handy, so you can
keep referring to it. When approaching a new project, it usually makes sense to start with
the first screen the user will see when they launch your app. In our recipe app, this just so
happens to be the home screen.

Draw a rough outline of your screen, and then work out what navigational elements you
need to include. For our recipe home screen, these are as follows:

The screens the user can reach the home screen from. Essentially, you need to
consider how the user will navigate back to the previous screen. A lot of the time,
this is handled automatically by the device's Back button, but you can also
provide backward navigation via the left-point caver that appears in the action
bar or a UI element, such as a Return to previous screen button. To keep things
simple, let's assume that the backward navigation is handled automatically by the
device's Back softkey.
The screens the user can navigate to. In our recipe example, this is the list of
saved recipes, the list of categories, and the search screen. To present all these
options in a compact way, I'm going to add them to a menu that'll appear along
the left-hand side of the screen:

Turning Your Sketches into Wireframes

[176]

Next, decide what content you need to display. Start by adding the most important content
such as images, headings, subheadings, and other large blocks of content, and then work
your way down the content hierarchy.

For my home screen, I want to display the app's title and logo, plus a few tantalizing images
of the meals that users can cook by following the recipes included in this app:

Feeling uninspired?
If you're struggling for inspiration, then taking a critical look at other apps
is a great way to kickstart the creative process. The best places to draw
inspiration from are high-rated apps on the Google Play store or Google's
own suite of apps. The latter are particularly useful as they're usually good
examples of the latest best practices and design principles, particularly
Material Design.
Spend some time flicking through the different screens and ask yourself
what you like about each screen's layout and whether there are any
improvements you could make. It may help to create wireframes of any
screen you particularly like, and then look for any similarities, elements, or
just general design principles that you can use in your own wireframes.

Exploring more wireframes
Every time you create a wireframe, the process will differ slightly depending on factors
such as the kind of app you're creating, the content you want to display, the screen's
purpose, and your target audience. However, it is possible to identify certain types of
screens that occur across multiple apps as these often share similar characteristics and UI
elements.

Turning Your Sketches into Wireframes

[177]

Case in point: our home screen wireframe. Many apps have some form of home screen, and
these screens often feature things such as headings, logos, and main menus—exactly like
our recipe app home screen. In addition to the home screen, this app is a great example of a
few other common types of screens. Since you're likely to encounter these screens in your
own projects at some point, let's look at how you can approach creating wireframes for each
of these screens.

I'll start with what I'm going to call a details screen. This is a screen that appears when the
user selects an item on a previous screen, and the app displays a new screen containing
more information about the selected item. In our recipe app, the screen containing each
recipe is a details screen; users scroll through a list of recipes, spots one they like the look of,
and then tap the recipe. At this point, they're taken to a separate screen containing all the
information they need to recreate this meal.

In our screen map, we have referred to this screen as the detailed recipe
view.

Wireframing a details screen
As the name suggests, details screens are all about displaying information, which is
typically a mix of text and media, such as images, videos, or audio.

Let's follow the same process we used for wireframing our home screen and start by
identifying all the navigational elements we need to add. Taking a look at the screen map, I
can see that I need to add the following:

The screens the user can reach the detailed recipe screen from. Since we glossed
over backward navigation in our home screen wireframe, let's explore it in more
detail here. According to the screen map, the user can reach the detailed recipe
screen from the search results screen, the list of recipes for a given category, and
the list of saved recipes. Although we could potentially rely on the user tapping
their device's Back softkey to return to the previous screen, wireframing is all
about exploring different options, so I'm going to try something different and add
a Back to previous screen button to this particular wireframe.

Turning Your Sketches into Wireframes

[178]

The screens the user can navigate to. In our simple screen map, the detailed recipe
screen looks like it's the final screen in the app, but in reality, you rarely
encounter this kind of dead end in a mobile application. When users add this
recipe to their list of saved recipes, I think it'd be helpful if the app takes users to
their online scrapbook, so they can view all their saved recipes. To create this
effect, I'm going to add an Add to scrapbook button that, when pressed,
performs this action and takes the user to their online scrapbook.

Now, it's time for content. In no particular order, I want this screen to display the following:

The recipe's title
How difficult the recipe is to make
An estimate of how long it takes to cook
An estimate of how much the ingredients cost
How many people the recipe feeds
An enticing, mouth-watering photo of the finished result
The recipe itself

Do you really need a details screen?
The golden rule of creating a details screen is that it must contain enough
information to warrant its status as a separate screen. For example,
imagine you've just downloaded an app where you can check what films
are being shown at your local cinema.
The first screen is a timetable that displays all the films alongside their
showing times. You can tap every film in the timetable and the app will
load a new screen that's dedicated to the selected film. What new
information might you expect to find on this screen? Maybe a synopsis or
a list of the lead actresses and actors? How about a star rating or links to
reviews, so you can decide whether this is a film that you need to see on
the big screen with popcorn, or whether you should just wait for it to
come out on Netflix instead?
Now, imagine you didn't see any of this additional information, and the
details screen simply reiterated the information that you'd already seen on
the main screen. Would you feel like this was a well-designed app that
was giving you a great user experience? The answer is a resounding nope.
If you do decide to include a details screen, then make sure it contains
some new information. If it doesn't, then it has no value, and therefore, it
has no place in your app.

Turning Your Sketches into Wireframes

[179]

As always, add the most important content to your wireframe first. In this example, that's
the Heading, an image of the finished product, and the Recipe itself:

As you work your way down the content hierarchy, you may encounter content that could
work in numerous positions in your screen layout. If you do, then this is the ideal time to
experiment with different layouts by creating multiple wireframes. You can then place
these drawings side by side and decide which layout you prefer, or you can combine
elements from multiple wireframes to create your perfect layout. Here's a selection of the
wireframes I created for the detailed recipe screen:

Turning Your Sketches into Wireframes

[180]

This wireframe contains several elements that could conceivably work in different
locations—specifically, the text boxes that contain the estimated time, estimated cost, and
the number of people this recipe feeds, plus the recipe's star rating. Wireframing gives you
a quick and easy way of testing out these elements in several different positions.

While wireframing these elements in various positions, I've decided to keep the major
content areas the same in all these wireframes:

Turning Your Sketches into Wireframes

[181]

There's lots more content we could add to this screen; for example, it
might be nice for users to be able to post comments, upload photos, or
award each recipe a rating out of 10. You might also want to include
multiple photos of the finished results, so the user can scroll through these
photos. To keep this chapter short, I'm not going to wireframe all these
options, but if you're feeling creative, you might want to grab a piece of
paper and a pencil, and create your own wireframes that include all this
additional content.

Wireframing search screens
Many apps have some form of search functionality, and our recipe app is no exception, so
let's take a look at wireframing the search screen.

You know the drill by now! Look at the screen map and work out all the navigational
elements you need to include:

All the screens the user can reach the search screen from. According to the screen
map, users can reach the search screen from the home screen only.
All the screens the user can navigate to. The only screen the user can reach from
the search screen is the search results screen.

In the previous wireframes, we handled backward navigation by relying on the device's
Back softkey and by creating a Return to previous screen button, so let's try something
different this time around! I'm going to use a left-facing caret in the action bar.

When you're creating Android apps in real life, you'll typically select one
method of navigation and use it across your app, rather than the mixture
we're using in this chapter. Although I'm experimenting with lots of
different navigational options, just be aware that in a real-life project,
you'd select one form of navigation and apply it across your entire app to
avoid confusing and frustrating your users.

Let's create our search functionality. I'm going to keep things simple and use the following:

An EditText where users can enter the keyword(s) they want to search for.
A button the user presses to submit their search term(s). I'm going to label this
button with the standard search system icon to ensure that the user instantly
knows what action this button performs.

Turning Your Sketches into Wireframes

[182]

You might have noticed that in the previous wireframes, we were talking in general terms,
such as heading boxes and images, and now, we're using the technical term EditText. This is
because there are no strict rules when it comes to wireframing, so if you already have an
idea of how you're going to create certain UI elements, and you want to add this
information to your wireframes, then go ahead!

The only exception is when you're planning on sharing your wireframes
with other people, particularly if these people aren't Android developers
themselves! If you're creating wireframes as a collaborative effort with
non-Android types, then you should stick to civilian terms such as text
boxes and images.

While there's nothing wrong with this layout, there's no denying that it's pretty basic. It
would be better if our users could search for recipes based on a few different criteria:

How easy a recipe is to make
How much the ingredients cost to purchase
How many people the recipe feeds

There are lots of ways of implementing this functionality, but the two that immediately
spring to my mind are here:

Give the user the ability to filter recipes based on different criteria by adding
checkboxes to the existing search screen wireframe. Users can then enter any
keyword they want to search for and select the relevant checkboxes; for example,
they might search for recipes that contain the words prawn madras (yum, yum)
and then select the checkboxes marked Costs £2-£3 and Takes 15-20 minutes to
cook.

Turning Your Sketches into Wireframes

[183]

Stick with our simple search screen, but add filters to the search results screen.
The user searches for keywords as normal and is taken to the search results
screen, which contains additional filters that allow the user to narrow down their
search results.

Both of these are viable options, so I've quickly wireframed each approach. This is a great
example of how you can use wireframes to quickly test out various layouts:

In this wireframe, the user performs a search as usual, but the search results screen contains
three new buttons (Price,Time, and Feeds…), which they can use to filter their search
results based on different criteria.

Turning Your Sketches into Wireframes

[184]

The following wireframe is a new version of the Search screen where users enter their
search terms into the EditText as normal, but then uses various checkboxes to be more
specific about the search results they want to see:

The search screen as a fragment
Regardless of where you are in the design and development process, you should always be
thinking about how to support as many different Android devices as possible.

When you're busy wireframing, it's easy to fall into the trap of designing with one device in
mind. Although this does make wireframing easier, it won't make for a very effective UI in
the long run.

Wireframing for landscape and portrait
Playing around with the sizing and positioning of your content during the
wireframing phase not only helps you work out how you might better
support multiple screen configurations, but it also helps you to design an
app that functions equally well in both landscape and portrait modes.

Planning for multiple screens may mean creating several wireframes that target different
screen configurations, or it could mean combining your content in different ways using
fragments.

Turning Your Sketches into Wireframes

[185]

In the previous chapter, we mentioned displaying our search screen as a standalone activity
on smaller devices, but displaying it as a fragment alongside the home screen on devices
with larger screens. Since we've already wireframed the first possibility, it only seems right
to wireframe how the search screen might function as part of a multi-pane layout.

To speed up this process, I'm going to reuse the home screen wireframe that we created
earlier as well as the original, basic search screen wireframe.

As always, let's start with navigation. Most of the navigational elements from our home
screen wireframe are still valid apart from the Search for recipes item in the left-hand
menu. Since the search box will appear alongside the home screen in this scenario, we can
remove this link from the menu.

Similarly, the original search wireframe included an action bar with a left-facing caret that's
no longer necessary; since the fragment appears as part of the home screen, there's nowhere
for the user to navigate back to apart from exiting the app, and we don't want to help them
do that!

With navigation sorted, let's look at the content. All the content from the original home
screen and search wireframes is still relevant, and therefore, it has a place in our multi-pane
layout.

Let's take a look at the finished result:

Turning Your Sketches into Wireframes

[186]

Feeling overwhelmed?
Working out the best position for each element while also trying to design
for multiple devices may leave you staring at a blank sheet of paper and
wondering where do I start? If you're feeling overwhelmed, then it may
help to think of wireframes as a series of drafts.
When creating you first draft, you should wireframe without stressing
about trying to support multiple devices. Instead, concentrate on defining
how your app looks in its natural state. How wide would you like that
heading to be, if you didn't have to worry about running out of space on
smaller handsets? Ideally, how far would that button be placed from the
edge of the screen? And do you really want to display two images side by
side? Are you sure you wouldn't prefer three? Or four? How about five?
Grab a pencil and wireframe without a care in the world. Then, after
you've finished patting yourself on the back for an excellent first draft, you
can start worrying about how this wireframe might translate across
different devices.

Digital wireframes
Once you're satisfied with your paper wireframes, you should develop them further. This
may mean creating a more detailed, thought-out sketch using your trusty pencil and paper,
or it may mean developing these paper wireframes into digital wireframes.

If you do decide to digitize your wireframes, there's plenty of wireframing software out
there, from professional image-editing programs such as Adobe Photoshop, Illustrator, and
Fireworks, right through to tools created specifically for wireframing, such as Pidoco,
Axure, InDesign, Sketch, Omnigraffle, and Balsamiq Mockups.

Turning Your Sketches into Wireframes

[187]

The previous image is an example of our recipe app home screen, created with the Balsamiq
digital wireframing tool.

If you're unsure about what tool to use, then a quick Google search will return lots of
potential wireframing software, at which point you'll be faced with a whole new
problem—too much choice!

If you're struggling to decide between several potential wireframing tools, then ask yourself
the following questions:

Does this tool have all the features I need? Before taking the plunge, you should
make sure your chosen tool has all the features you need to quickly and easily
create wireframes for your specific project. This is especially important if you're
investing cold hard cash in professional wireframing software. If you download
free wireframing software, and then realize that it isn't quite right for you, then at
least you haven't wasted any of your hard-earned cash! To avoid being swayed
by persuasive website copy, jot down all the features your ideal wireframing tool
should include. You can then check whether each potential tool meets your list of
criteria; and if it doesn't, then you can move onto the next one.

Turning Your Sketches into Wireframes

[188]

Is it customizable? Being able to tweak the wireframing program to meet your
exact needs is always positive, but this is particularly important if you're
developing an unusual or niche UI.
Can you store reusable elements? You'll typically use many UI elements across
multiple screens such as action bars, menu, and buttons. To supercharge the
wireframing process, keep an eye out for tools that allow you to easily store and
reuse visual elements.
What's the learning curve? Professional vector illustration tools may sound like
just the thing your project needs, but complex tools may leave you scratching
your head, particularly if you're not overly familiar with design. The whole
purpose of wireframing is to save yourself time by quickly testing out multiple
layouts. However, this whole exercise becomes pretty pointless if you end up
spending hours with your head buried in the program's user manual rather than
actually creating wireframes.
Are you already familiar with software that has wireframing potential? Even if
this program isn't the most modern or feature rich, if you can use it to create
effective wireframes in a reasonable amount of time, then it may make sense to
use this old favorite, rather than investing time in getting to grips with some new
software.

If you're struggling with the sheer variety of wireframing tools out there, then you may
want to focus on free wireframing software, rather than jumping headfirst into purchasing a
professional image-editing tool. The huge benefit of free tools is that you can see firsthand
whether they're right for you by downloading a few and giving them a quick trial
without racking up a massive bill.

Adding content to your wireframes
Up until now, we've made a point of not adding content to our wireframes; but at some
point, you'll need to test whether the way your screens are shaping up is suitable for the
kind of content you want to display. Once you have a set of digital wireframes you're
happy with, it's time to test whether your content fits into these wireframes, or you need to
make some adjustments to said wireframes.

Content, mainly copy, doesn't really look appealing on any platform, but this is even
more true on mobile devices. The smaller screen of a smartphone or tablet can make large
blocks of undifferentiated text seem even larger.

Turning Your Sketches into Wireframes

[189]

If you're going to present your app's copy in an elegant way, then you need to put some
thought into its design, and wireframes are the perfect place to start.

As you move into digital wireframing territory, you can start experimenting with design
elements, such as different fonts, text sizes, bullets and numbered lists, as well as headings
and subheadings. The end result? A UI that blends your sparkling, engaging copy with
appealing presentation and design—basically, text that your users will actually want to
read.

If you leave content and copy design issues until you have the final screen design in front of
you, then chances are that you'll try and convince yourself that it isn't really that big a
problem; or you'll look for the quickest and easiest workarounds even if they don't make for
the best screen design.

When adding content to your wireframes, it's crucial to keep in mind what real content
looks like. It's tempting to use text that just so happens to be the right size and length to fit
neatly into your wireframe. Unfortunately, unless you're very lucky, this simply isn't the
way real content works, so it's important to use realistic text in your wireframes.

Although you can use the classic Lorem ipsum Latin filler text or some dummy content, the
best way to test that your layout is suitable for the kind of content you want to display is to
use the same copy that'll eventually appear on the screen.

In the case of our recipe app, this presents a bit of a problem as the text on each detailed
recipe screen will be different. For example, each recipe title will be a different length, so
how do we ensure all these titles will fit into the available space?

The answer is to look at the full range of titles that are ultimately going to have to fit into
the heading box, and then work out the average length. You should also go out of your way
to find awkward content, as this'll help you plan how your UI will support these edge cases.
In this instance, this means finding the longest and shortest recipe titles, and then working
out how to display them effectively.

When the detailed recipe screen has to display a short title, will the size of the heading box
remain fixed or will it shrink? And if it does shrink, how can we prevent lots of empty
whitespace appearing around the newly shrunken box? Will the box expand to
accommodate recipes with unusually long-winded titles? Will the text wrap onto multiple
lines?

You don't have to wireframe every possibility, but you should try to identify all the major
problems varying copy and content could cause your layout. Only then will you be able to
create a wireframe that's flexible enough to take unusual copy and content in its stride.

Turning Your Sketches into Wireframes

[190]

What is paper prototyping?
Once you've created a digital wireframe that you're relatively happy with, it's a good idea
to put this design to the test via paper prototyping.

Paper prototyping is where you create rough drawings of the different screens that make
up your app, representing each screen as a separate sheet of paper. You then test this paper
prototype on a user (or ideally, users) and incorporate the user's feedback into your digital
wireframes. This method of usability testing may seem simple, but it's actually a valuable
way of reviewing and refining your design so it's the best it can possibly be.

Creating a paper prototype is an important step in the design process for two main reasons:

They're great for identifying any usability problems that you might have
overlooked: Spotting the faults in your own design isn't always easy. Paper
prototyping gives you a way of testing your app on your target audience without
you having to write any code. And as we've already discussed, the earlier you
can identify flaws in your design, the easier it is to fix those flaws.
They help you test your app's navigation up-front: Designing easy and
frictionless navigation is an essential part of creating a successful app, but it's
difficult to properly evaluate navigation until you have actually experienced that
navigation. Prototypes are a way of taking your planned navigation for a test
drive and seeing first-hand how easy or difficult it is for users to navigate your
app. If you skip the paper prototyping stage, the danger is that you won't realize
there's a problem with your navigation until you've actually started to build your
app. And since navigation should be consistent across your app, if you realize
that you need to tweak the navigation on one screen, you may find that you need
to change the navigation across all your screens; and this is not something you
want to discover at the last minute! Paper prototyping increases your chances of
getting navigation right the first time around.

Usability testing
Paper prototypes are perfect for usability testing. Ideally, you'll want to test your
prototypes on a member of your target audience, but colleagues, friends, and family
members make good stand-ins as long as they haven't been involved in the design process.

For the most effective usability testing, you'll want someone's genuine reaction to
approaching your app blind, just as a regular user would after downloading your app from
the Google Play store. If you enlist the help of someone who has insider knowledge of your
project, then this isn't really replicating the typical user experience.

Turning Your Sketches into Wireframes

[191]

In usability testing, your test subject interacts with the paper prototype while you
manipulate the prototype to reflect the user's actions. For example, if they tap a Go to home
screen button, you should switch pages and present them with your home screen
prototype. Okay, so this may sound a bit silly, but it's also one of the most effective ways of
discovering potential usability issues before you invest any more time in designing and
developing your app, so it's well worth feeling a bit silly for.

Ask the user for feedback as they're interacting with your paper prototype, and be sure to
prompt them to explain why they're performing each action and what they expect to
happen next. You should also encourage them to speak up about anything that confuses
them, or if there's anything about your UI that they don't like. Do they understand how to
navigate to the next screen? Do they immediately understand what task they need to
perform on each new screen, or do they need to stop and think about it?

Ideally, you'll get enough information to warrant making some revisions to your digital
wireframes. If you do make any significant changes to your wireframes, then consider
creating a new set of paper prototypes and testing them on the same user. Repeat this
process until your test subjects are navigating your paper prototypes with ease and have no
further feedback or suggestions.

At this stage, you should have a set of digital wireframes that you feel confident about.
We'll be using these wireframes to create more detailed, digital prototypes in the next
chapter.

Rapid prototyping
If your app is a team effort, you may want to consider using paper prototyping as part of a
rapid prototyping approach.

In rapid prototyping, each team member creates a paper prototype and tests it on a single
user. The team then comes together to share their feedback and ideas, at which point each
person creates a second prototype. Again, each prototype is tested on a single user before
the team meets again to share their feedback. You can then update your digital wireframes
based on the collective feedback. This is one of the quickest and easiest ways of collecting
feedback from multiple users and incorporating all this valuable information into your
design.

Turning Your Sketches into Wireframes

[192]

Summary
When it comes to developing Android apps, it's impossible to overestimate the value of
planning.

In this chapter, we looked at how to translate the high-level plans that we made in the
previous chapter into actual screen designs. We created quick paper wireframes, and then
used them as the basis for detailed digital wireframes complete with content and copy.
Finally, we created paper prototypes and looked at how usability testing can help you
refine your screen designs, making them the best they can possibly be. In the next chapter,
we'll look at how to create more complex and polished digital prototypes using Android
Studio and the Android SDK.

If this chapter was your first taste of wireframing and prototyping, then you may still be
feeling overwhelmed, but the important thing to remember is that as long as you're doing
some form of wireframing and prototyping, then you're already doing much more planning
than you were before.

The only word of warning is don't invest too much time and effort perfecting your screen
designs early on in the design process. Your designs should start off very rough around the
edges and gradually become more refined and detailed as you move through the different
planning stages.

If you're still unsure, then take another look at the recipe wireframes included in this
chapter and ask yourself “how could I improve these designs?” Then, wireframe the results!
You may even want to create prototypes based on these wireframes. Alternatively, boot up
one of your favourite Android apps and create wireframe and prototype versions of all the
main screens. These are both valuable ways of refining your skills so that by the time you
come to plan your own real-life Android projects, you'll be a wireframing and prototyping
pro.

Now that we've got a rough design for our application, it's time to dive into some
development work. In the next chapter, you'll use Android Studio to create a working
digital prototype based on your wireframes and paper prototypes.

7
Building a Prototype

After doing much of the initial design work in the previous chapters, it's now time to move
past designing and into the early stages of developing. And the first development task is to
create a digital prototype.

After creating multiple wireframes and paper prototypes, you may be itching to start some
real development work, but digital prototyping is a crucial step in the design process.

Despite all the time and effort you've already invested in your design, at this point it's still
just a plan. Digital prototyping is where you put this plan to the test to see whether it works
in the real world. Also, digital prototyping is just plain fun as it allows you to go from no
code to a working version of your app in no time at all.

By the end of this chapter, you'll have developed a working digital prototype of your app.
You'll have also finalized your design by planning the finer details of your app, which
means starting to think about graphic design.

As it's the recommended development environment for Android, this
chapter focuses on creating digital prototypes using Android Studio. If
you don't have Android Studio installed, you can grab it from h t t p : / / d e
v e l o p e r . a n d r o i d . c o m / s d k.
If you prefer to use a different IDE, such as Eclipse, then the steps
involved in creating a digital prototype will be similar, so you will still be
able to follow along in the IDE of your choice.

http://developer.android.com/sdk
http://developer.android.com/sdk

Building a Prototype

[194]

Creating a prototype in Android Studio
Conveniently, one of the best tools for creating Android prototypes is something you
probably already have installed—Android Studio.

This IDE features an advanced layout editor that's ideal for rapidly creating digital
prototypes. This layout editor automatically opens whenever you open any XML layout
resource file in Android Studio.

Building a Prototype

[195]

The quickest way of creating a digital prototype is to select the editor's Design tab (where
the cursor is positioned in the previous screenshot). A new area will open displaying
a canvas preview of your app's layout, plus a Palette containing lots of ready-made UI
elements called widgets. You can quickly create a prototype by dragging widgets from
the Palette and dropping them onto the canvas.

When creating prototypes (and Android apps in general), you should use
the default widgets unless you have a very good reason not to. Not only
do these ready-made widgets make your life as a developer easier, but
most Android users will already be familiar with them. So they'll instantly
know how to interact with at least some elements of your app's UI.

If you need to make more specific changes to your app's layout, you can access its
underlying XML by selecting the Text tab, making your tweaks at the code level, and then
nipping back to the Design tab to see these changes rendered on the canvas. Using this
approach, you'll have a working prototype in no time, which you can then test on your own
Android device or in an emulator.

Creating prototypes in Android Studio is also a great way of testing how your design looks
and functions across a range of different screen configurations. If you simply happen to
have multiple Android devices lying around, you can install your prototype on all of them,
but most Android developers test their project across difference devices by creating
multiple Android Virtual Devices (AVDs).

We'll explore deploying and testing your digital prototypes in more detail
in the next chapter.

Building a Prototype

[196]

You can also get a quick preview of your prototype across different devices using Android
Studio's built-in Preview pane. To access this pane, make sure the Text tab is selected, and
then click on the Preview tab along the left-hand side of the screen (where the cursor is
positioned in the following screenshot):

Building a Prototype

[197]

With this tab open, you'll see a preview of your app as it appears on a single Android
device. To check how your layout will appear on a different Android device, click on the
name of the currently selected device (where the cursor is positioned in the following
screenshot), and then choose a new device from the drop-down menu. You can even
preview your UI across multiple devices at once by selecting Preview all screen sizes from
the drop-down menu:

Building a Prototype

[198]

Creating your first prototype
You can start by prototyping any screen in your app, but I find that it makes sense to start
with the first screen users see when they launch your app. In our recipe app example, this is
the home screen, so this is the first screen I'm going to prototype.

Referring back to my wireframe, I can see that the home screen should include a welcome
message and photos from some of the recipes featured in the app. I also want to include a
menu, so users can easily navigate to the app's most important screens. Specifically, I want
this menu to include a link to the search screen, the user's recipe scrapbook, and all the
different recipe categories.

Since this menu needs to include quite a few options, I'm going to use a navigation drawer.
A navigation drawer is an effective solution here, as it's scrollable and can be neatly tucked
out of the way when it's no longer needed.

If you're not familiar with the concept of navigation drawers, then you
may want to look at Android's Material Design guidelines, which has a
whole section dedicated to navigation drawers h t t p s : / / w w w . g o o g l e . c o
m / d e s i g n / s p e c / p a t t e r n s / n a v i g a t i o n - d r a w e r . h t m l.

Boot up Android Studio and create a new project. Choose whatever settings make the most
sense for your particular project, but if you're following along with this example, then select
the Navigation Drawer template. As you might already have guessed from the name, this
template has a built-in navigation drawer, which will make creating your home screen
digital prototype much easier.

Click on Finish to go ahead and create your project. By default, this project already includes
quite a bit of code and resources. My mission is to modify all this automatically generated
code to match my home screen wireframe. Let's start with the most straightforward task:
creating the screen's welcome message and adding our images.

Open the project's content_main.xml file and make sure it's using RelativeLayout as
the parent container. Then, select the Design tab and drag one TextView and
two ImageView widgets from the Palette, and drop them onto your canvas.

Next, populate these widgets with text and images. Create a string resource that contains
the welcome text of your choice. Find two images you want to use and add them to your
project's drawable folder (in my project, I'm using mushroomtoast.jpeg
and sundayroast.jpeg). Update TextView to display the string resource, and
update ImageViews to display your chosen images.

https://www.google.com/design/spec/patterns/navigation-drawer.html
https://www.google.com/design/spec/patterns/navigation-drawer.html

Building a Prototype

[199]

Digital prototyping: Don't waste your time!
A this point, you may be tempted to invest lots of time positioning your
ImageView and TextView objects so that they look exactly as they should
in your finished app. However, be wary of spending too much time
perfecting your prototypes.
The key thing to remember is that the purpose of digital prototyping isn't
to create an early version of your project but to test the theory of your
project's design. If you spend too much time getting your digital
prototypes perfect, then you might as well have started creating the first
version of your app!
Your digital prototype may end up highlighting some underlying
problems with your design, which means you'll need to go back and make
some changes to your wireframes or even redo them completely. If this
happens, then at least you can console yourself with the knowledge that
it's better to uncover problems with your design at this early stage, rather
than after you've actually started building your app. Digital prototyping is
a powerful and time-saving tool in your early detection arsenal—but only
if you don't invest lots of time in perfecting your prototypes.
Don't fall into the trap of worrying about the finer details; instead, aim to
create your prototypes as quickly as possible. This usually means creating
screens that are only a rough representation of how the finished screen
will look, and that typically has little or no functionality.

Here is the XML for my home screen prototype. Since this is only a prototype, I haven't
invested too much time in aligning each UI element:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="com.example.jessica.myapplication.MainActivity"
 tools:showIn="@layout/app_bar_main">

 <ImageView
 android:layout_width="175dp"
 android:layout_height="225dp"
 android:id="@+id/imageView2"

Building a Prototype

[200]

 android:src="@drawable/mushroomtoast"
 android:layout_below="@+id/textView2"
 android:layout_toEndOf="@+id/textView2" />

 <ImageView
 android:layout_width="175dp"
 android:layout_height="225dp"
 android:id="@+id/imageView3"
 android:src="@drawable/sundayroast"
 android:layout_below="@+id/imageView2"
 android:layout_alignStart="@+id/imageView2" />

 <TextView
 android:paddingTop="10dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="40sp"
 android:text="@string/welcome!"
 android:id="@+id/textView2"
 android:layout_alignParentTop="true"
 android:layout_alignParentStart="true" />

</RelativeLayout>

Check how this looks on your emulator or Android device:

Building a Prototype

[201]

The next task is more complex: adding our own menu items to the navigation drawer.

You'll find all the navigation drawer code in the project's
res/menu/activity_main_drawer.xml file. There's already quite a bit of code
in activity_main_drawer.xml, but this code nicely illustrates how to add items to the
navigation drawer, so rather than simply deleting it, let's use it as our template.

Currently, the activity_main_drawer.xml file looks like this:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group

//This is an optional, invisible container that groups related <items>
together in the navigation drawer//

android:checkableBehavior="single">

//This is another optional element that defines the checkable behavior for
either individual menu items (via the android:checkable attribute in an
<item> element) or for an entire group, via android:checkableBehavior in a
<group> element. In this example, we're marking all <items> in this <group>
as checkable. The "single" value means that the user can only select one
item at a time, within this group. The other potential values are "none"
(the user can't check any items in the group) or "all" (the user can select
multiple items in this group at any one time)//

 <item

//Creates a new menu item//

 android:id="@+id/nav_camera"

//Assigns the menu item a unique resource ID so the app recognizes when the
user selects this item in the menu//

 android:icon="@drawable/ic_menu_camera"

//Defines what drawable to use as this item's icon//

 android: />

//The text you want to display in the navigation drawer//

 <item

Building a Prototype

[202]

 </group>

//This is the end of this particular group//

 <item android:>
 <menu>

//This is the start of a new group//

 </menu>
 </item>

</menu>

As already mentioned, the menu items I want to add are the scrapbook, the search screen,
and the different recipe categories. The first task is deciding what icons I want to use for
each of these menu items.

Wherever possible, you should use the system icons as most users will already be familiar
with them, and will therefore know what they mean. You'll find the entire list of Material
Design system icons at h t t p s : / / d e s i g n . g o o g l e . c o m / i c o n s /.

From this long list of icons, I'm going to use the standard Search icon, so download this
image and drop it into your project's drawable folder. Finding icons for all the other items
isn't quite as straightforward, but since this is just a prototype, I'm going to use some
placeholder icons for now. I have decided to use the Description icon as it kind of looks like
a notebook (or a scrapbook), and I'm also going to use the knife-and-fork local dining icon
for each of the recipe categories.

Once all these images are safely tucked away in the drawable folder, it's time to add a few
new entries to the navigation drawer code:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group android:checkableBehavior="single">
 <item
 android:id="@+id/breakfast"
 android:icon="@drawable/ic_local_dining"

https://design.google.com/icons/

Building a Prototype

[203]

 android: />
 <item
 android:id="@+id/lunch"
 android:icon="@drawable/ic_local_dining"
 android: />
 <item
 android:id="@+id/dinners"
 android:icon="@drawable/ic_local_dining"
 android: />
 <item
 android:id="@+id/healthy"
 android:icon="@drawable/ic_local_dining"
 android: />
 <item
 android:id="@+id/lightmeals"
 android:icon="@drawable/ic_local_dining"
 android: />
 <item
 android:id="@+id/vegan"
 android:icon="@drawable/ic_local_dining"
 android: />
 <item
 android:id="@+id/budget"
 android:icon="@drawable/ic_local_dining"
 android: />

 </group>

 <item
 android:id="@+id/scrapbook"
 android:icon="@drawable/ic_scrapbook"
 android: />
 <item
 android:id="@+id/search"
 android:icon="@drawable/ic_search"
 android: />

</menu>

Building a Prototype

[204]

And that's it! Run the finished prototype on your Android device or emulator, but this time,
be sure to open the navigation drawer by dragging it on the screen. You will see some new
additions to this drawer:

Creating your second prototype
Wireframing gives you a clearer picture of your UI, but sometimes even wireframes can't
effectively illustrate how every version of a certain screen will look. This is the case with our
app's search results screen, as this screen will vary depending on what the user has
searched for. So, how do we create a single prototype that effectively represents our search
results screen?

The answer is to create a flexible prototype layout, and feed it some fake data. This fake
data should accurately represent the complete range of real-life content this screen will
ultimately have to display. You should go out of your way to find the most awkward
examples of your app's content, so you can really put your design to the test. In our recipe
app example, this means using recipes that have unusually long or short titles.

Building a Prototype

[205]

To create a prototype of the tricky search results screen, I'm going to create ListView, and
then I will create the arrays of sample recipe titles and images, which I'll feed to ListView.
The ListView will then display these arrays in my layout as though they're real search
results.

Once you've created your first prototype, you can either add more screens to this project or
create each subsequent prototype as a separate project. Personally, I feel like the latter is the
most straightforward option, so I'm going to create my search results prototype as a new
project—this time using a blank template.

If you also decide to prototype each screen as a separate project, then make sure you give
each project a different package name, so you can install and test them all on the same
Android device.

Referring back to my wireframes, I can see that the search results screen needs to include a
list of recipe titles and accompanying images along with a header. Let's start with the most
straightforward task: creating the header. Open your project's strings.xml file and create
a string that'll provide the search screen's header text:

<string name="sResults">Search Results...</string>)

Open the activity_main.xml file and make sure its parent container is a
vertical LinearLayout. Create a TextView and set it to display the sResults string.

Next it's time to tackle the part of the wireframe that makes this screen more difficult to
prototype: the search results. As already mentioned, I'm going to create a ListView and
feed it some fake data, so the first step is adding the ListView to our layout resource file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/textview"
 android:text="@string/sResults"
 android:textSize="30dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:paddingTop="10dp"
 android:paddingLeft="10dp"/>

 <ListView
 android:id="@+id/listview"

Building a Prototype

[206]

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

</LinearLayout>

ListViews, adapters, and list items
A ListView is a view group that displays items as a vertical, scrollable
list. Users can select any item in the list by giving it a tap, which
makes ListViews perfect for displaying our search results, as eventually
we want the user to be able to open a recipe by tapping its title.
To see an example of a ListView in action, grab your Android device and
take a look at the stock Contacts app. It contains a scrollable list of all your
contacts; you can tap any item in the list to see more information about
that particular contact. Sound familiar?
Once you've identified one ListView, you'll start noticing
them everywhere. Flick through a few of the apps installed on your device,
and chances are you'll be surprised by just how often you come
across ListViews.
ListViews are made up of list items. Each list item is displayed as a row
in the ListView, and these items have their own layout that you define in
a separate XML file. You can create a simple layout for your list items, or
you can also create more complex list items that feature multiple pieces of
text and several images arranged in a RelativeLayout.
The final piece of the puzzle is an adapter that acts as a bridge between the
ListView and its underlying data. The adapter pulls content from a
specified source, such as an array, and adapts this content into views. The
adapter then takes each view and places it inside the ListView as an
individual row.
In this chapter, I'm going to be using SimpleAdapter, which is a type of
adapter that maps static data to views defined in an XML file. This is a
pretty straightforward adapter, but it does have one
catch: SimpleAdapter require an ArrayList of Maps in order to define
each row in the ListView.
If you want to learn more about ListViews and the different kinds of
adapters, the best place to go is the official Android docs: h t t p : / / d e v e l o
p e r . a n d r o i d . c o m / g u i d e / t o p i c s / u i / l a y o u t / l i s t v i e w . h t m l.

http://developer.android.com/guide/topics/ui/layout/listview.html
http://developer.android.com/guide/topics/ui/layout/listview.html

Building a Prototype

[207]

Let's define the layout of the individual items/rows that'll appear in our ListView. Create a
new layout resource file called simple_list_layout.xml, and then create TextView
and ImageView that will eventually hold the recipe titles and accompanying images:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >

 <ImageView
 android:id="@+id/images"
 android:layout_width="250dp"
 android:layout_height="150dp"
 android:paddingTop="10dp"
 android:paddingRight="5dp"
 android:paddingBottom="10dp" />

 <TextView
 android:id="@+id/recipe"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="20dp"
 android:paddingRight="10dp"/>

 </LinearLayout>

Next, add all the images for your fake search results. I'm adding the following to my
project's drawable folder:

blueberrypancake.jpg

brownies.jpg

calamari.jpg

chilli.jpg

fryup.jpg

kashmiricurry.jpeg

pie.jpeg

redberrypancake.jpeg

scallops.jpeg

surfandturf.jpg

sweetandsourprawns.jpeg

tuna.jpeg

Building a Prototype

[208]

I'm going to add all these images plus the corresponding recipe titles to separate arrays.
Then, I'm going to feed these arrays to the ListView via an adapter.

This is much more complex than the first prototype, so to speed things up
I'm writing this code as quickly as possible, forsaking a bit of efficiency
and optimization along the way.

Open your project's MainActivity.java and add the following:

package com.example.jessica.myapplication;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

import android.app.Activity;
import android.widget.ListView;
import android.os.Bundle;
import android.widget.SimpleAdapter;

public class MainActivity extends Activity {

 String[] recipes = new String[] {

//Create a recipes array//

 "Easy veggie chilli",
 "Deep fried calamari with garlic and lemon mayo",
 "Best-ever chocolate brownies",
 "Everyday fish pie with cheesy sauce",
 "Seared tuna with stir-fried veggies",
 "American style blueberry pancakes with strawberry and banana",
 "Full English fry up",
 "Kashmiri curry",
 "Red berry pancakes with cream",
 "Sticky sweet and sour prawns",
 "Surf and turf for two"
 };

//Add all the preceding titles to the recipes array//

 int[] images = new int[]{

//Create an images array//

 R.drawable.chilli,

Building a Prototype

[209]

 R.drawable.calamari,
 R.drawable.brownies,
 R.drawable.pie,
 R.drawable.tuna,
 R.drawable.blueberrypancake,
 R.drawable.fryup,
 R.drawable.kashmiricurry,
 R.drawable.redberrypancake,
 R.drawable.sweetandsourprawns,
 R.drawable.surfandturf
 };

//Add all the preceding image files to the images array//

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 List<HashMap<String,String>> aList = new
 ArrayList<HashMap<String,String>>();

//Create an array list, called aList//

 for(int i=0;i<10;i++){
 HashMap<String, String> myMap = new
 HashMap<String,String>();
 myMap.put("recipe", recipes[i]);
 myMap.put("images", Integer.toString(images[i]));
 aList.add(myMap);
 }

//Add recipes and images to aList//

 String[] from = { "images","recipe", };

 int[] to = { R.id.images,R.id.recipe};

//Use the ImageView and TextView from simple_list_layout.xm//

 SimpleAdapter adapter = new
 SimpleAdapter(getBaseContext(), aList,
 R.layout.simple_list_layout, from, to);

//Create a new SimpleAdapter and feed it three parameters. The first
parameter is the context reference (getBaseContext); the second is the
collection of data we want to display (aList), and the third is the layout
we want to use for each row (simple_layout_list.xml)//

Building a Prototype

[210]

 ListView listView = (ListView)
 findViewById(R.id.listview);

//Get the ListView object//

 listView.setAdapter(adapter);

//Assign the adapter to the ListView object//

 }
}

Attach your Android device to your computer or boot up the emulator and take a look at
the results:

Spend some time interacting with your prototype and testing it across different screen
configurations, whether that's via Android Studio's preview function or by creating
multiple AVDs.

Now you have two working prototypes; ask yourself whether there's any way you can
improve these prototypes. In particular, be on the lookout for any opportunities to split
your UI into fragments that you can then combine into multipane layouts that adapt to
different screen configurations.

Building a Prototype

[211]

If your digital prototypes spark any new ideas, then grab a piece of paper and try
wireframing these ideas. If these new paper-and-pencil wireframes have potential, then
ideally you should put them through the same vigorous digital wireframing, paper
prototyping, and usability testing stages that we covered in the previous chapter. At the
very least, you should create a digital prototype of your new designs, and spend some time
testing these prototypes—again—across as many different screen configurations as
possible.

This may feel like taking a step backward, but this is all invaluable for ensuring that your
design really is the best it possibly can be; and if it improves your app, then it's time well
spent. If you release the first version of your app when you suspect you could have
improved the underlying design, you're not going to have a good time—and neither are
your users.

Also, that old cliché is right—you don't get a second chance to make a first impression. Your
average user is going to be far more excited by an amazing app that seems to come out of
nowhere, rather than version 2.0 of an app they tried ages ago but weren't too keen on.

Even if you explore your ideas and then discard them in favor of your original design, at
least you'll be confident that you really are releasing the best possible version of your app.
Basically, if your digital prototypes have stirred up any new ideas, then now's the time to
explore them.

If you do create a new series of wireframes and prototypes, it's always
good to get a second opinion, so you may want to consider performing
another round of user testing—especially if you find yourself torn
between two different design directions for your app.

Once you have a set of digital prototypes that you're 100% happy with, it's time to finalize
these designs.

Finalizing your design
At this point, you should have a firm grasp of the fundamentals of your app's design,
including what UI elements should appear on each screen, where they'll appear on the
screen, and the navigation patterns that you want to use. However, we still haven't put
much thought into the finer details of our app's look and feel. What kind of font are you
going to use for the headings? What color should the buttons be? Will there be any
background music or sound effects? And how is your app going to use Material Design
properties such as elevation and shadow?

Here are some of the things you need to consider when finalizing your design.

Building a Prototype

[212]

Visuals
This is the finer point of how your UI elements will look. Although you should try and use
Android's standard widgets wherever possible, there's still lots of scope for putting your
own twist on standard elements such as buttons and menus, particularly in terms of the
color palette you use, plus Material Design elements such as elevation and shadow.

The ratio of your visual content is also important; should your screen feature lots of images
and animation, or should it be more text heavy? As always, make sure you're designing
something that'll appeal to your specific target audience. An app that features lots of images
and a bright and bold palette might be appropriate for a fun app that's targeting a younger
audience, but it's probably not so appropriate for an app that helps busy professionals
balance their finances.

Background music and sound effects
Sound is a powerful way of setting the mood, evoking an emotional response, and giving
your users an immediate feeling of what they can expect from your app.

However, don't feel like you have to include sound in your app; there's nothing wrong with
silence, and in some situations, a completely silent app is preferable, especially if people are
likely to use your app in situations where noise could be annoying or inappropriate.

If you do include some form of sound, always consider how integral sound should be to the
user being able to successfully interact with your app. As a general rule, your app should be
usable regardless of whether users have their volume turned way up, way down, or if
they're in a location where they can't hear your app clearly, such as in a busy bar or
restaurant.

The only exceptions are apps that fundamentally rely on sound, such as music streaming
apps, an app that gives the user driving directions, or some gaming apps. In these instances,
you can be confident that no one will expect to be able to use your app without turning up
the volume on their device.

Your text
Text is your most direct method of communicating with your users. When crafting your
text, you need to consider its content along with its visual appearance.

Building a Prototype

[213]

Your text's appearance has a massive impact on how easily your users can read and
understand what that text is saying, but appearance can also send your users subtle
messages about the text. For example, you can use textSize to communicate how
important each piece of text is and what category it falls into, such as whether it's a heading,
a caption, or a block of code.

To create text styles that really speaks to your users, you can use the following attributes:

Text size: You should decide the size of all your app's major types of text early in
the design process and not on a screen-by-screen basis. By limiting yourself to a
selection of predefined sizes and using them consistently, your users will quickly
learn what each textSize means. They can then use this information to decipher
each new screen they encounter in your app, since they'll instantly know which
text is the subheading, the body text, and so on, based on its size. You specify the
font size with the android:textSize attribute, for
example, android:textSize="10sp.". The most common method of
setting textSize in advance is to use themes and styles, which we'll discuss later
in this chapter.
Text style: Android supports bold, italic, and underlined effects, but make sure
you use them sparingly. If you use these effects too often, you're adding lots of
visual clutter that can make your text difficult to read, plus you'll end up
diminishing the effect's impact. You apply bold, italic, underlined,
and bold|italic effects using the android:textStyle attribute, for
example, android:textStyle="bold.". The underlining text is a bit trickier, as
you'll need to create a string resource and apply underlining to the text inside
that resource, for example, <string name="main_title"><u>This text is
underlined</u>This text isn't</string>. Then, reference this resource
from your project's layout resource file
(android:text="@string/main_title"), and the text will appear underlined
in your UI.
Capitalization: Like bold, italic, and underlined effects, you should use
capitalization sparingly so you don't reduce its impact. You should also avoid
using all capitals, as the all-caps text is commonly interpreted as shouting, plus
it's much harder for your users to read.

The next thing you need to worry about is what your perfectly styled text is actually saying.

Think of text as your app's voice. This voice should align with your app's overall design. If
your design is colorful and upbeat with cheerful music, then your text should be equally
friendly. If your design is a bit more edgy, then you may want to give your text more
attitude.

Building a Prototype

[214]

Just don't get carried away! Most of the time, it won't make sense to go to extremes with
your text, and you should opt for a plain and neutral tone instead. Remember that the tone
and content of your text should reflect the rest of your app's design. So, if your UI is
streamlined with a focus on getting the job done, then chances are you'll want your text to
be equally to the point.

If in doubt, play it safe with a neutral tone.

Your app's personality
I've left this one until last as it's a bit of a vague concept that incorporates a little bit of
everything we've discussed so far.

Your app's personality is a combination of lots of different design elements, from visuals,
through to background music and the tone of your text.

If your app is going to make a clear and distinct impression on your users, then all these
different aspects need to align. If these design elements aren't consistent, then chances are
that you're going to leave your users with the uneasy feeling that something is a little
off about your app.

Imagine you created an app that uses a neutral, pretty pastel palette; is packed full of cutesy
graphics and ends every line of cheerful, upbeat text with at least three exclamation
points—but the background music is trash metal!

Take a critical look at all the design decisions you've just made so far. Do they all come
together to form a cohesive whole? Or does one (or more) elements stick out like the
proverbial sore thumb?

Rules are made to be broken!
Although most of the time you will want all your design aspects to align,
occasionally you may decide to throw the user a curveball in the form of
an element that intentionally clashes with the rest of your app. This
technique can create some very powerful effects; for example, you might
combine cheerful colors and enthusiastic text with unsettling music to
create a creepy and unnerving experience, or you may want to combine
cutesy graphics with dry and sarcastic text to get your users laughing.
If you do decide to break the rules, just make sure you have a clear idea of
what you're trying to achieve and how you're trying to achieve it, as it's
easy to get this technique wrong!

Building a Prototype

[215]

If you're struggling to decide what your app's overall personality should be, then think
about what'll appeal the most to your target audience.

As always, if you're struggling for inspiration, head over to the Google Play store and hunt
down a few apps that are similar to your project or that target the same audience.

Since we want our recipe app to appeal to students, I'm going to visit the Play store and
search for apps that include the word student. Instantly, I see a whole bunch of timetable
and agenda apps, forums that specifically target university students, and homework
planners. In this scenario, I'd download a few of the most highly-rated apps, and then
spend some time flicking through them to get a feel for their personality. I'd also probably
download a few 5 star-rated recipe apps and give them the same treatment before
combining all my findings and using them to influence the look and feel of my own recipe
app.

Creating themes and styles
Now that you've made some decisions regarding the finer details of your UI, it's time to
think about how you might implement them. This is where themes and styles come in
useful, as they're one of the quickest and easiest ways of implementing design decisions
consistently across your views, activities, and even your entire application.

Once you've made these design decisions, it's a good idea to create styles and perhaps even
a theme to help you implement your designs easily and consistently.

Styles and themes are essentially the same thing: a collection of properties. These properties
can be anything from the color of your text, to the size of an ImageView, or even
the "wrap_content" attribute. The difference isn't how you create this collection of
properties, but how you apply them to your project:

Styles are the groups of properties that control what a view looks like; for
example, you might apply a style to a TextView to specify the size and color of
all the text within it.
Themes are groups of properties that you apply to an activity or even an entire
application. When you apply a theme to an activity, every view inside the activity
will use any property that applies to it. If you apply a theme to an app, every view
throughout that app will use all the applicable properties from this theme. You'll
typically extend another theme rather than create one from scratch.

Building a Prototype

[216]

Styles and themes do take a bit of prep work, so why should you go to the effort of creating
themes and styles, when you could just apply properties to views directly? There are a few
reasons:

It's efficient: If you're going to use the same collection of attributes multiple
times throughout an app, then defining these properties in advance makes
applying them much easier—as easy as typing style="@style/captionFont"
in fact.
It's consistent: Defining a collection of attributes as a style or theme helps create a
consistent look and feel across your app. And as we've already discussed,
users love consistency.
It's flexible: Design changes are pretty much a fact of life, so you should expect
to be tweaking your app's visuals throughout the entire development process.
Themes and styles provide a central place where you can make changes once and
have them appear instantly across your app. Decided that your headings should
be 10dp larger? Easy, just increase the android:textSize attribute in
your style="@style/heading".

Remember when we were talking about the textSize attribute and how
using only a small selection of text sizes can help users decode your UI?
This rule also applies to styles. If you use a limited number of styles, your
users will quickly pick up what these styles mean, and then use this
information to help them decipher new screens. To get the most out of
styles (and, to a lesser extent, themes) pay attention to that old cliché: less
is more.

Defining styles
To create a style (or series of styles), you need to create a styles.xml file in your
project's res/values folder, if it doesn't contain this file already.

You can then create styles using the following format:

<?xml version="1.0" encoding="utf-8"?>
<resources>

//<Resources> must always be the root node of your styles.xml file //

 <style name="FooterFont" parent="@android:style/FooterText">

//Create a new style and assign it a name. In this example, I'm using
FooterFont//

Building a Prototype

[217]

 <item name="android:layout_width">match_parent</item>

//Add each property to your style using the <item> element//

 <item name="android:layout_height">wrap_content</item>

//The value of each <item> can be a string, a color, a reference to another
resource, or another valid value. You'll find a few examples of possible
<item> elements below//

 <item name="android:layout_width">wrap_content</item>
 <item name="android:textColor">#ffff0000</item>
 <item name="android:textSize">12sp</item>
 <item name="android:typeface">sans_serif</item>

 </style>

//End of the FooterFont style//

<style name="CodeFont" parent="@android:style/TextAppearance.Medium">

//Start of a new CodeFont style//

//This is where you'd define the CodeFont attributes//

 </style>

//End of the CodeFont style//

</resources>

Okay, so this may look like a lot of work, but bear in mind that you wouldn't create a style
to use just once. Typically, you'll define a style in advance, and then use it multiple times
throughout your project. Plus once you've defined a style, you can use inheritance to create
variations of this style (which we'll explore in more detail later in this chapter).

What's in a name?
Put some thought into what you call each style, as a style's name can
communicate valuable information about its purpose and relationship
with other styles.
For the best results, always name your styles based on their purpose rather
than their appearance, as this might change as you refine your UI.

Building a Prototype

[218]

As an example, CaptionStyle is a good name
but ItalicsLightCaption isn't, as your UI might evolve to a point
where light, italicized text no longer fits with the rest of your UI. At this
point, you have two options. You can continue using this inconsistent style
name, which is potentially confusing, especially if you're collaborating on
this project with others.
Alternatively, you'll need to open styles.xml, and give your style a new
name, but you'd then also need to manually change every reference to this
style throughout your project. As you can see, neither of these are ideal
solutions!

Once you've created your style, applying it to a view is straightforward; just open an XML
layout resource file and use the @style attribute, followed by the name of the style you
want to apply:

<TextView
 style="@style/CodeFont"
 android:text="@string/helloworld" />

Not all views accept the same style attributes; for example, an ImageView won't accept
an android:textAlignment. The official Android docs is the best place to check what
properties a particular view supports, specifically the view's corresponding class reference
where you'll find a table of supported XML attributes. For example, if you were creating a
text style, then you might want to take a look at the TextView class reference (h t t p : / / d e v
e l o p e r . a n d r o i d . c o m / r e f e r e n c e / a n d r o i d / w i d g e t / T e x t V i e w . h t m l). Also, bear in
mind that some views extend other views, so if you were creating a style to apply
to EditText, it'd be worth taking a look at the TextView class reference too,
as EditText extends the TextView class.

Sometimes, you'll inadvertently apply incompatible properties to a view, particularly when
you're applying a style to an entire activity, or when you're applying a theme. So, what
happens then? The answer is not much. A view will only accept properties that it supports,
and it'll ignore the rest.

When you apply a style to a view, this style is applied to that view only. If
you apply a style to ViewGroup, the child view elements won't inherit the
style's properties. If you want to apply a style to multiple views at once,
then you should apply the style as a theme instead.

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html

Building a Prototype

[219]

Some style properties are not supported by any view, and you can only apply them as a
theme to an activity or across an entire app. For example, properties that hide the
application title won't have any impact when applied to a single view. These attributes are
easy to spot as they all begin with window, such as windowNotTitle, windowTitleSize,
and windowNoDisplay. You'll find the complete list at the R.attr reference that's available
as part of the official Android docs at h t t p : / / d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c e / a n d
r o i d / R . a t t r . h t m l.

Inheritance
You can quickly and easily create variations on existing styles by using them as parent
styles and inheriting their attributes.

Use the <parent> attribute to specify the style you want to inherit from. You can then add
properties and change the existing properties by overriding them with new values. You can
inherit from the styles that you've created yourself or from the styles that are built into the
Android platform, such as the following:

<style name="MyAppTheme" parent="Theme.AppCompat.Light.DarkActionBar">

//Creates a new style/theme called MyAppTheme that inherits from the
Theme.AppCompat.Light.DarkActionBar platform theme. MyAppTheme will inherit
all the characteristics of its parent//

 <item name="colorPrimary">@color/colorPrimary</item>

 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>

//Define whatever properties you want to add or change. Here, I'm
overriding the parent theme's colorPrimary, colorPrimaryDark and
colorAccent values with values I've defined in my project's colors.xml
file//

</style>

If you want to inherit from the styles that you've defined yourself, you don't have to use the
<parent> attribute. However, it's generally considered best practice to prefix the name of
the parent style to the name of your new style, and separate the two with a full stop.

http://developer.android.com/reference/android/R.attr.html
http://developer.android.com/reference/android/R.attr.html

Building a Prototype

[220]

Imagine I wanted to create a new style that inherits from a custom FooterText style
which I created earlier, but that increases the textsize from 12sp to 20sp. I'd do this with
the following code:

 <style name="FooterText.Large">

//Notice there's no parent attribute in the <style> tag. Instead, I'm using
the name of the original style (FooterText), and affixing the name of the
new style (Large)//

 <item name="android:textSize">20sp</item>
 </style>

You reference this inherited style in exactly the same way as any other style; in this instance
that's style="@style/FooterText.Large".

You can continue inheriting like this as many times as you like; just keep chaining these
style names together with full stops. There's nothing stopping you from creating
FooterText.Large.Blue, FooterText.Large.Italic, FooterText.Large.Blue.Bol
d, and so on.

However, to make it easier to remember all your style names correctly and help distinguish
between styles, it's a good idea not to get carried away! After all,
FooterText.Large.Blue.Bold.Underlined.Monospace isn't the easiest thing to
remember.

Inheriting properties by chaining style names together only works for
styles you create yourself. If you want to inherit from Android's built-in
styles, you need to use the parent attribute.

Working with themes
At this point you may be wondering why we've spent so much time focusing on styles
without really discussing themes. This is because you define a theme in exactly the same
way you define a style. You could take any of the styles we've defined above, and apply
them as a theme.

Building a Prototype

[221]

To apply a theme, open your project's Manifest.xml and add the android:theme
attribute to either of the following:

The <application> tag: If you want to apply a theme across your entire app, find
the <application> tag and add the android:theme attribute, plus your style
name, for example, <application android:theme="@style/FooterFont">
The <activity> tag: To apply your theme to a specific activity,
add android:theme to the relevant <activity> tag

When you apply a theme, every view within the activity or across the app will use all the
theme properties that it can support. If you apply FooterFont to an activity,
all TextViews (and views that extend TextView) within that activity will use this collection
of properties. If you apply FooterFont across your app, all TextViews and views that
extend TextView will assume these properties, but any view that doesn't support
the FooterFont properties will simply ignore them. And if a view supports some of
the FooterFont properties and not others, it'll apply the supported properties and ignore
the rest.

To save you time and effort, the Android platform includes many predefined themes that
you can use, including a selection of Material themes. You'll find a list of all the available
styles in the R.style section of the official Android docs (h t t p : / / d e v e l o p e r . a n d r o i d . c o
m / r e f e r e n c e / a n d r o i d / R . s t y l e . h t m l). To use any of the platform styles and themes,
replace all the underscores in the style name with a period, so Theme_Dialog
becomes "@android:style/Theme.Dialog".

If you want to customize a built-in theme, you should use the theme as the <parent> tag of
your own custom theme, and then add your own properties or override the existing
properties, as follows:

<style name="MyTheme" parent="android:Theme.Light">

//Create a new style called MyTheme, that inherits from the
android:Theme.Light platform theme//

 <item
 name="android:windowBackground">@color/custom_theme_color</item>

//This is where you add your own attributes, or override existing
attributes//

 <item name="android:colorBackground">@color/custom_theme_color</item>

</style>

http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html

Building a Prototype

[222]

The final step is updating your project's Manifest to use your new theme. So, if you
wanted to use MyTheme in a specific activity, you'd write the following:

<activity android:theme="@style/CustomTheme">

To use MyTheme across your entire application, you'd write the following:

<application android:theme="@style/CustomTheme">

Get ready for errors!
In a perfect world, users will only ever interact with your app under ideal conditions. If
your app pulls content from the Internet, people will only ever open your app when they
have a lightning-fast connection to the World Wide Web. Your app will never have to deal
with interruptions such as pesky incoming calls or SMS messages, and your users will
certainly never enter their username or password incorrectly.

Sadly, this isn't the way the real world works. Your users will make mistakes, run out of
storage space, lose their Internet connection, and get phone calls when they're midway
through the final boss battle in your RPG app. Your app must be able to handle all these
less-than-ideal conditions and errors.

It may seem strange to plan for errors, but unfortunately errors happen to the best of us.
Not only should your app be able to handle errors when they do occur, but it should handle
them gracefully.

In the final section of this chapter, we'll look at how to design your app so that it can handle
whatever the real world throws at it.

User input errors
User input errors are where users enter incorrect information or leave a field blank. The
most common places where user errors occur are forms such as login screens or payment
screens.

Assuming that you clearly communicated what information the user needed to enter,
technically these errors aren't your fault, but you should still design your app to be able to
cope with these kinds of error.

Building a Prototype

[223]

When user errors occur, your app should clearly communicate what's happened and give
the user enough information to be able to fix the problem. Simply displaying a popup that
says Error isn't going to cut it.

Ideally, your error messages will include an action that helps the user fix the error. In our
popup example, once the user has dismissed the popup, our app could automatically select
the EditText where the user had entered the incorrect information, ready for them to start
typing.

You should only offer actions that you can actually support, so if the error is caused by the
user running out of storage space, then offering them a Try Again button isn't going to
solve the problem. If you can't help the user resolve an error, it's far better to explain to
them what the error is, what's caused it, and how they can fix it, rather than offering an
empty gesture that's probably going to leave them feeling even more frustrated.

When your app does encounter user error, it should try to preserve as much user-entered
information as possible. So, if a user fills in a form but then enter their password incorrectly,
your app should preserve their username, address, and any other fields they've filled in
correctly, while highlighting the fact that they've entered the wrong password.

However, while you handle user input errors, don't overlook the importance of good
design. If your app is going to fail, then it might as well fail in style! A well-designed error
message should feel like a natural extension of your app. In our popup example, we could
edit the popup so its colors better complement our app's overall color scheme, or we could
change the font or include a custom sound effect that reflects our app's personality.

Even though I've used a popup message as an example, you should always look for ways to
make your error messages as unobtrusive as possible, and popups aren't particularly subtle.
More unobtrusive methods include underlining, highlighting, automatically selecting a
field where the user has entered something incorrectly, reloading the screen with the
addition of some text explaining the error that's occurred, or taking the user back to the
screen where they have entered the wrong info.

Although user input is one of the most common causes of errors, there are other errors and
less-than-ideal conditions that your app needs to be able to handle. These include the
following:

Lack of connectivity: If the user is offline and tries to access a feature that
requires the Internet or network access, you should display an unobtrusive
message explaining that they need an Internet connection in order to complete
this action.

Building a Prototype

[224]

Incompatible state: These errors occur when the user attempts to run conflicting
operations, such as trying to send a message via an online messaging app when
they're offline. When these errors occur, your app should display a message
explaining the error and ideally provide the user with an easy way of changing
their current state.
Missing permissions: If the user selects an action that requires a certain
permission, your app should notify the user and give them the option of granting
that permission. If the user denies this permission request, you should disable all
related features, so the user doesn't keep trying to access features that your app
can't currently support. You should also give the user an easy way of granting
previously denied permissions, just in case they change their mind. If certain
permissions are essential for your app, you should request them in advance.
We'll look at permissions in much more detail in Chapter 10, Best Practices and
Securing Your Application.
Empty states: These occur when your app can't display regular content; for
example, a ListView that contains no search results. You should design your
app to be able to deal with missing content, although the best way to handle the
situation will vary depending on the context and the type of content that's
missing. In our search results example, you could create a No results found
screen, or the app could automatically widen the search query and display
content that's the best possible match. For example, if the user searches
for burito, your app could display all recipes that include the word burrito
instead of displaying nothing.

If you do decide to take a best-possible-match approach, then you
should signal that this content isn't an exact match. In our search
results example, we might display a message along the lines of
“We couldn't find any results for burito, did you mean burrito?”

Content unavailable: This is subtly different to empty states as it involves
content that should appear in your app but for some reason isn't available. For
example, perhaps your UI includes images or videos that need to be downloaded
from the Internet, but the user is currently offline. If your app includes this kind
of content, you should create placeholders that'll appear in your layout when the
content is unavailable. If you don't, then there's the risk that your layout will
suddenly jump about as the missing content becomes available and is inserted
into the layout, something you may have encountered before when browsing
slow-to-load webpages on your mobile device. Creating placeholders also
ensures that your layout retains its intended structure even when some of its
content is missing.

Building a Prototype

[225]

Summary
In this chapter, you learned how to quickly create digital prototypes based on your
wireframes. Although you created paper prototypes previously, digital prototyping is
particularly useful for testing how your screen designs will look and function on a real
Android device and across different screen configurations.

The most important thing to take away from this chapter is that wireframes are a way of
planning how your screens will look and function in theory, but digital prototypes are how
you put that theory to the test. Sometimes, you may find that the theory doesn't work in
practice and that you need to make some changes to your wireframes or even redo them
completely, but that's okay—discovering problems with your design is all part of creating
the best possible version of your app.

Now that you've finalized your design, in the next chapter we'll take a closer look at how
you can ensure this newly finalized design translates correctly across as many different
Android devices as possible.

8
Reaching a Wider Audience –

Supporting Multiple Devices
Android is a mobile operating system that places very few restrictions on hardware.
Manufacturers are free to create Android devices that are packed with high-end hardware
such as DSLR-worthy cameras, huge internal memories, and lightning-fast CPUs; or they
can create more budget-friendly devices that take a no-frills approach to hardware. Android
screens can also come in all sorts of sizes, shapes, and screen densities.

The only thing these devices have in common is that they all run the Android operating
system—and even in this, Android smartphones and tablets are inconsistent. The current
Android smartphone and tablet market is made up of lots of different versions of the
Android operating system—from legacy versions, right through to the very latest release of
Android. And even if two devices are running exactly the same version of Android, there's
no guarantee that they'll be exactly the same, as manufacturers have a nasty habit of
tweaking the Android operating system to come up with their own original equipment
manufacturer (OEM) versions. A Samsung smartphone running Android 7.0 may not
necessarily be the same as a Sony smartphone running Android 7.0.

This flexibility is great for manufacturers who can make their devices stand out from the
competition by coming up with new and innovative hardware, software, and screen
configurations. It's also good news for consumers who can shop around and find exactly the
Android device that's right for them.

But is this good for developers? Sort of.

Reaching a Wider Audience – Supporting Multiple Devices

[227]

All these variations on hardware, software, and screen configuration mean lots of
opportunities to innovate and come up with a truly original app. However, it also poses a
massive challenge, as you'll need to create an app that provides a consistent experience
across all the different hardware, software, and screen configurations that your app might
encounter.

Unfortunately, there's no quick fix. Essentially, the key to creating a flexible UI is to provide
a wide range of alternate resources that are optimized for all the different hardware,
software, screen configurations, languages, and region settings that your app may
encounter, which is arguably the most time-consuming part of Android app development.

In this chapter, I'm going to cover all the major aspects you need to bear in mind, if you're
going to create a flexible app that's compatible with as many different Android devices as
possible.

Supporting different versions of Android
While most new versions of the Android platform introduce exciting new features that
you'll be desperate to use in your app, if you're going to reach the widest possible audience
then you'll also need to support as many older versions of the Android platform as possible.

This is a delicate balancing act. Supporting older versions of the Android platform takes
time and effort, and the further you go, the harder you'll have to work to get your app
playing nicely with older versions of Android.

If you continue striving to support older and older versions of Android, at some point you'll
inevitably find yourself compromising your app's UI, functionality, and general user
experience as you encounter versions of Android that simply aren't powerful enough to
support the kind of app you originally wanted to create. In our recipe app example, we're
relying on the device being powerful enough to load multiple high-res images whenever
the user performs a search. If the user is running an older version of the Android operating
system, processing these images may cause the search results to load more slowly.
Although the problem lies with the user's device, your typical Android user is far more
likely to blame your app than their outdated smartphone or tablet.

We could shrink the images or even remove them completely, but would you want to try a
recipe when you hadn't even seen a photo of the finished product? At this point, you should
take a step back and ask yourself whether all this time, effort, and compromise is really
worth it.

Reaching a Wider Audience – Supporting Multiple Devices

[228]

To identify the point at which supporting older versions of Android becomes more trouble
than it's worth, you'll need to look at the current Android market—especially how many
devices are running each version of the Android operating system. Once you have this
information in front of you, you can make an informed decision about the point at which it
no longer makes sense to keep supporting the older versions of Android.

One source of this information is Google's Dashboard (h t t p : / / d e v e l o p e r . a n d r o i d . c o m
/ a b o u t / d a s h b o a r d s / i n d e x . h t m l), which gives you a percentage of the relative number
of devices running each version of Android. Just be aware that this information is gathered
in a very specific way. It's essentially a snapshot of all the devices that visited the Google
Play store in the previous 7 days. This data is collected from the Google Play app, and is not
necessarily representative of the current state of the entire Android market. It's also worth
noting that the Google Play app is only compatible with Android 2.2 and higher, so any
device running versions of Android lower than 2.2 aren't included in this data; although
according to Google way back in August 2013, devices running versions lower than
Android 2.2 only accounted for about 1% of devices, so we're talking about a very small
percentage here.

Spend some time exploring the Dashboard data, and come to a decision about which
versions of Android you're going to support and which versions you aren't.

Specifying minimum and target API levels
Once you've decided what versions of Android you're going to support, you need to
include this information in your project. How you add this information will vary depending
on the IDE you're using, so you'll need to open one of the following files:

Manifest file (Eclipse)
Module-level build.gradle file (Android Studio)

We will discuss the components of this file in the next section.

minSdkVersion
This attribute identifies the lowest API level that your app is compatible with, for example,
minSdkVersion 16. Google Play will use your app's minSdkVersion attribute to
determine whether a user can install it on device.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

Reaching a Wider Audience – Supporting Multiple Devices

[229]

When debating your app's minSdkVersion value, make sure you consult the Dashboard
stats as this provides a snapshot of your potential audience. Ultimately, you'll need to
decide whether supporting each additional slice of this audience is worth additional time
and effort.

targetSdkVersion
This attribute identifies the highest API level that you've tested your app against.

The targetSdkVersion value is particularly important for forward compatibility, as the
system won't apply any behavior changes introduced in new Android releases until you
update your app's targetSdkVersion value. To ensure your app benefits from the latest
Android features, you should aim to set your app's targetSdkVersion value to the very
latest version of Android. Updating your app to target a new SDK should always be a high
priority whenever Google release a new version of Android, but you should only do this
after thoroughly testing your app against the latest SDK release. Never blindly update
your targetSdkVersion value without testing it first.

Ideally your targetSdkVersion and compileSdkVersion value should always
correspond to the very latest version of the Android SDK.

compileSdkVersion
This attribute tells Gradle what version of Android SDK it should compile your app with.

Your compileSdkVersion value is not included in your published APK; it's purely used at
compile time. Changing your compileSdkVersion value does not change the runtime
behavior, so it's recommended you always compile with the latest SDK.

Check version at runtime
Sometimes, you'll have a clear cut-off point where it makes sense for your app to stop
supporting earlier versions of Android, but this line may not always be so clear cut.

Imagine your app includes a non-essential feature that isn't supported on Android 5.0 and
earlier versions, but apart from this feature, your app is compatible with earlier versions of
Android. Since this Marshmallow-and-higher feature isn't essential, it doesn't make sense to
prevent everyone running Android 5.0 or earlier versions from installing your app. In this
scenario, you can disable this feature by ensuring any code that depends on higher API
levels is only executed when these APIs are available. Basically, this feature won't be

Reaching a Wider Audience – Supporting Multiple Devices

[230]

available to users who are running Android 5.0 or a lower version, but these users will still
be able to install and use your app.

You achieve this using the Build constants class to specify when the related code should
run; for example, the following code verifies whether your app is running on Lollipop or a
higher version:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP)

Android provides a unique code for each platform version, which you should use alongside
the Build constants class (in this example, the code is LOLLIPOP). You'll find a complete list
of these codes at the official Android docs (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c
e / a n d r o i d / o s / B u i l d . V E R S I O N _ C O D E S . h t m l).

Supporting different screens
Android devices come in many different shapes and sizes. Your task, as a developer, is to
create a UI that looks just as good on the small space available to a budget-friendly
smartphone, as it does on the large space available to a top-of-the-line Android tablet and
everything in between.

So let's break it down. Android categorizes screens in two ways:

Screen sizes: Traditionally, Android supported four generalized screen
sizes: small, normal, large, and xlarge. However, Android 3.2 (API level 13)
introduced some new configuration qualifiers that allow you to be more specific
about screen sizes.
Screen densities: A device's screen density is a combination of its resolution and
display size, and is measured in dots per inch (dpi). The higher a device's dpi,
the smaller each individual pixel, which means greater clarity and more detail
per inch. Android supports six generalized densities: low (ldpi), medium
(mdpi), high (hdpi), extra high (xhdpi), extra-extra-high (xxhdpi), and extra-
extra-extra-high (xxxhdpi).

You can anticipate that your app will be installed on devices spanning a wide range of
screen sizes and densities. And you should aim high; it's not good enough for your app to
be compatible with these different screen configurations, you should give users the
impression that your app was designed specifically for their particular screen, whatever
size and density that screen happens to be.

http://developer.android.com/reference/android/os/Build.VERSION_CODES.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html

Reaching a Wider Audience – Supporting Multiple Devices

[231]

In this section, I'll show you how to create an app that can handle a wide range of different
sizes and densities. The underlying theme you'll encounter time and time again is that your
app's layout and drawables must render at a size that's appropriate for the current screen.
The Android system is clever enough to handle most of this rendering work automatically,
and it will scale your layouts and resources to fit the current size and density, but you
shouldn't rely on the Android system to do all the hard work for you.

Android's automatic rendering alone won't provide the best possible user experience. You'll
need to give it a hand by providing multiple versions of your app's resources that are
optimized for different screen sizes and densities. These resources could be strings, layouts,
graphics, or any other static resources that your app requires.

To add these resources to your project, you'll need to create alternate versions of your
project's directories, and then tag them with the correct configuration qualifiers; for
example, if you have a layout that's optimized for landscape orientation, you'll need to
create a res/layout-land directory, and then place your landscape layout file inside this
directory. Then, when a user runs your app, the Android system will automatically load the
resource that best matches the current screen configuration, whether that's the default
layout or your landscape-optimized res/layout-land layout.

Configuration qualifiers
Android supports a wide range of configuration qualifiers that you can append to your
project's resource directories. These configuration qualifiers are the key to controlling which
version of a resource the system displays.

Configuration qualifiers specify the characteristics that a resource was designed for, such as
an image that was designed for a particular screen size or screen density. You'll find a
complete list of valid configuration qualifiers in the official Android docs, specifically Table
2 of the Providing Resources page (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / g u i d e / t o p i c s / r
e s o u r c e s / p r o v i d i n g - r e s o u r c e s . h t m l # A l t e r n a t i v e R e s o u r c e s).

The configuration qualifiers you'll need to use will vary depending on your app and the
kind of devices you're targeting, but as a minimum, you'll typically use size, density, and
screen orientation qualifiers to provide drawable resources and layouts that are optimized
for different screen configurations.

To use a configuration qualifier, create a new directory in your project's res/ directory and
name it using the following format:

<resources_name>-<config_qualifier>

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Reaching a Wider Audience – Supporting Multiple Devices

[232]

So, if you were creating a directory to hold layouts that were optimized for devices held in
landscape mode, you'd use the land qualifier and create a res/layout-land directory,
then place your layout-optimized layouts inside this directory.

Never place any resources directly inside your project's res/ directory as
this will cause a compiler error. You also cannot nest alternative resources,
so you cannot create a res/drawable/drawable-xxhdpi/ directory.

You can use more than one qualifier at a time by separating each qualifier with a dash; for
example, a res/drawable-en-hdpi directory would contain drawable resources that are
designed for devices set to the English language (en) with a screen density that falls into the
high-density bucket. If you do use multiple qualifiers, the order they appear in your
directory name is crucial. They must appear in the same order as in the Providing
Resources page (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / g u i d e / t o p i c s / r e s o u r c e s / p r o v i d
i n g - r e s o u r c e s . h t m l # A l t e r n a t i v e R e s o u r c e s). If you use qualifiers in the wrong
order, the Android system won't recognize the directory, and will subsequently ignore all
the resources that it contains.

Don't worry about the case you use for your directory names, as the resource compiler
converts directory names into lowercase before processing anyway. If your project includes
directories with long-winded names consisting of multiple configuration qualifiers, then
you may want to take advantage of this automatic conversion, and use capitalization to
make your directory names easier to read.

Naming is also important for the resources that you place inside your directories. When you
create multiple versions of the same resource, they must all have exactly the same name as
the default resource. Any variation and the Android system won't recognize them as
alternate versions of the same resource.

If your project contains resources that the system should never scale to suit
the current screen configuration, place these resources in a directory with
the nodpi configuration qualifier, for example, res/drawable-nodpi.

How Android selects the perfect resource
When your app features multiple versions of the same resource, the Android system
follows a strict set of rules when deciding which version it should display at runtime.

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Reaching a Wider Audience – Supporting Multiple Devices

[233]

When the Android system is looking for a resource based on the screen size or density, it
starts by searching for an exact match that it can display without scaling. If it can't find a
suitable size or the density-specific version, then Android switches to plan B and searches
for a version that's designed for screens smaller than the current screen.

If the only available resources are larger than the current screen, the system will use the
default version of the resource instead. The Android system assumes that your project's
default resources are designed for the baseline screen size and density, which is a normal
size and medium-density. Therefore, the system scales default resources up for high-density
or larger screens, and down for low-density screens.

If the system can't find a suitable density-specific resource, or even a default version of the
required resource, then your app will crash—which is why it's essential that you provide a
default version of every resource.

Even if you're confident that you've provided all the alternative resources your project
could ever need, it's possible that your app may wind up on a device that has hardware,
software, screen size, screen density, or language settings that you hadn't anticipated and
therefore didn't provide specific resources for. In this scenario, the system may fall back on
your project's default resources, and if your app doesn't include these default resources,
then your app will crash.

Default resources are all the resources that are stored in a directory
without a configuration qualifier, such as res/drawable.

Creating alias resources
Sometimes, you'll have a resource that's suitable for more than one configuration qualifier;
for example, you might have a drawable that you want to add to both your project's
res/drawable-hdpi and res/drawable-xhdpi directories.

You can't create a directory that uses multiple configuration qualifiers of
the same type, so it's not possible to create a res/drawable-hdpi-xhdpi
directory.

You could copy/paste the resource so that it appears in both directories; but this isn't very
efficient, plus duplicating resources increases the size of your project, which is bad news for
your end users. The best solution is to use an alias.

Reaching a Wider Audience – Supporting Multiple Devices

[234]

Imagine you have a scene.png drawable that you want to use for both hdpi and xhdpi
screens; this is the perfect opportunity to use an alias. In this scenario, you need to place the
default version inside your project's res/drawable folder as normal. Then, save the
version of the image you want to use for hdpi and xhdpi screens inside
the res/drawable folder, but give it a different name to the default resource, for
example, scenery_alias.png.

At this point, you have two drawables:

res/drawable/scenery.png

res/drawable/scenery_alias.png

Next, create an XML file inside both of the density-specific directories. Inside these XML
files, add some code that points toward your project's
res/drawable/scenery_alias.png resource:

<?xml version="1.0" encoding="utf-8"?>
<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/scenery_alias" />

When the Android system tries to load the scenery resource from res/drawable-hdpi
or res/drawable-xhdpi, it'll recognize the alias and
display res/drawable/scenery_alias.png instead. In this way, you can replace
memory-hogging and inefficient duplicate resources with small XML files.

You can also use the alias function to reuse the same layout resource files in multiple
directories, as follows:

Create a default layout (main.xml), and place it in your project's res/layout1.
directory.
Create the layout you want to use across multiple directories. Give this layout a2.
different name to the default layout (I'm going to use main_alias.xml), and
place it inside your project's res/layout directory.
Create XML files in all the directories where you want to use3.
the layout_alias.xml file.

Add some XML code that references layout_alias.xml:4.

<?xml version="1.0" encoding="utf-8"?>
<merge>

<include layout="@layout/main_alias"/>
</merge>

Reaching a Wider Audience – Supporting Multiple Devices

[235]

Although less commonly used, you can also create aliases for strings and other simple
values, as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="yellow"> #ffff00
</color>
 <color name="highlightColor">@color/yellow</color>
</resources>

In this example, highlightColor is now an alias for yellow. You can also create aliases
for strings:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="title">Student Recipe</string>
 <string name="appTitle">@string/title</string>
</resources>

In this example, appTitle is now an alias for title.

Screen density
When designing your UI, you should aim to achieve density independence. This is where
the Android system preserves the physical size of your UI elements across screens with
different densities.

Density independence is crucial to providing a good user experience. A high-density screen
has more pixels per inch, which means the same amount of pixels fits into a smaller area.
Low-density screens have less pixels, so the same amount of pixels fits into a much larger
area. If you use absolute units of measure, such as specifying UI elements in pixels, then
your UI elements are going to appear larger on low-density screens and smaller on high-
density screens.

It's a common misconception that devices with the same screen resolution
automatically have the same screen density. Even if two devices have the
same screen resolution, these screens may be different sizes. This means
the screens are displaying their content in a different amount of space,
which equates to a different number of dpi.

If your UI elements change sizes on different devices, then this is going to lead to problems
in your layout and usability issues, and this will make for a generally poor user experience.

Reaching a Wider Audience – Supporting Multiple Devices

[236]

In most cases, you can ensure density independence by specifying your layout dimensions
in density-independent pixels, and by replacing static, hardcoded sizes with more flexible
elements such as "wrap_content" and "match_parent".

When it comes to drawables, Android automatically scales each drawable based on the
current screen's density, so your drawables render at the appropriate physical size for the
current device. However, this automatic scaling can result in blurry or pixelated images. To
make sure your drawables look their very best, you need to create alternate versions of each
drawable, which are optimized for different screen densities.

The problem is that the Android marketplace includes more screen densities than you could
ever hope to support; and even if you could, providing so many alternate drawables would
cause the size of your project to balloon out of control, to the point where it's unlikely it'd
even fit onto your average Android smartphone or tablet.

This is why Android groups screen densities into the following generalized density
buckets:

ldpi (low-density): 120dpi
mdpi (medium-density): 160dpi
hdpi (high-density): 240dpi
xhdpi (extra-high-density): 320dpi
xxhdpi (extra-extra-high-density): 480dpi
xxxhdpi (extra-extra-extra-high-density): 640dpi

The first step to a flexible layout is to create a directory for each of these density buckets, for
example, res/drawable-ldpi, res/drawable-mdpi, and so on. Then, just create a
version of each resource that targets these different density buckets, and the Android
system will handle the rest.

To create optimized drawables for each density bucket, you need to apply the 3:4:6:8:12:16
scaling ratio across the six generalized densities. For the best results, start by creating a
version of the image at the largest supported density, and then scale this graphic down
proportionally for each subsequent density bucket.

Most of the time, creating a graphic at the largest supported density means
creating an image for the xxhdpi density bucket and not the xxxhdpi
bucket. This is because the xxxhdpi directory is reserved for launcher
icons.

Reaching a Wider Audience – Supporting Multiple Devices

[237]

Converting dpi into pixels and vice versa
Since different screens have different pixel densities, the same number of pixels will
translate into different physical sizes on different devices. Pixels aren't a density-
independent unit of measurement, so 40 pixels isn't the same size on every device.

For this reason, you should never use absolute pixels to define distances or sizes.
Occasionally, you may need to convert dpi values into pixel values and vice versa. You do
this using the following formula: dpi = (width in pixels * 160) / screen density.

Android uses mdpi (160dpi) as its baseline density where one pixel neatly
equates to one density-independent pixel. This is where the 160 value in
the formula comes from.

Let's try this with some numbers:

(180 px x 160) / 120 = 240 dpi

You may also want to use an online converter (h t t p : / / j e n n i f t . c o m / d p i c a l . h t m l) to
play around with dpi values.

If you want to convert a dpi value into pixels, then use the following formula:

dp * (dpi / 160) = px

For example, take a look at the following:

120 x (240 / 160) = 180

Providing different layouts for different screen
sizes
Android supports a wide range of screen sizes, and it automatically resizes your UI to fit
the current screen. As I've already mentioned, you shouldn't rely on the Android system to
do all the hard work for you, as this autoscaling often doesn't make the best use of the space
available on larger screens, particularly tablet-sized devices.

http://jennift.com/dpical.html

Reaching a Wider Audience – Supporting Multiple Devices

[238]

If you thoroughly test your app across a range of different screen sizes using the emulator
and multiple Android Virtual Devices (AVDs), you may encounter your app struggling to
display or function correctly on certain screens. For example, you may discover that
Android's automatic scaling makes your UI look cramped once the device's screen dips
below a certain dpi value; or at the other end of the scale, you may find that your UI has
large areas of empty space on larger, tablet-sized screens.

If your UI is having problems with certain screen sizes, you should create layouts that are
optimized for these screens.

The process for providing alternate layouts is the same as providing any alternate resource:
create directories that have the appropriate configuration qualifiers. Then, create layout
resource files that are optimized for specific screen sizes, and make sure these layouts have
the same name as the corresponding default layout. The Android system will then select the
appropriate layout based on the current screen configuration.

However, the screen size configuration qualifiers aren't as straightforward as the density
configuration qualifiers, as Android 3.2 introduced some new configuration qualifiers that
allow you to define the specific width and/or height required by each of your layouts, in dpi
units. These new configuration qualifiers give you greater control over your resources, but
they are a bit more difficult to get your head around.

Prior to version 3.2, Android supported screen-size groups:
small, normal, large, and xlarge. In order to accommodate a greater
variety of screen sizes, the Android team replaced these groups with new
configuration qualifiers. This chapter focuses on the new configuration
qualifiers, but if you want to find out more about the now-deprecated
screen size groups, you can find more information at the official Android
docs at (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / g u i d e / p r a c t i c e s / s c r e e n
s _ s u p p o r t . h t m l).

These powerful new qualifiers are discussed in the next sections.

smallestWidth – sw<N>dp
As the name suggests, you use the smallestWidth qualifier to define the minimum width
in dpi that must be available before the Android system can use a particular layout. For
example, if your layout requires a minimum of 700dpi, the smallestWidth configuration
qualifier would be sw700dp. In this scenario, you'd create a res/layout-sw700dp
directory and place your layout inside. The system will only use this layout when the
current device has at least 700dpi of available width.

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html

Reaching a Wider Audience – Supporting Multiple Devices

[239]

This qualifier is particularly useful as width is often a major factor when designing your
layouts. Many apps scroll vertically, but it's pretty rare to encounter a UI that scrolls
horizontally. Most apps have strict constraints about the minimum space they need
horizontally, and this configuration qualifier gives you a way of specifying that minimum
as a dpi value.

A device's width is a fixed characteristic that doesn't change when the user switches
between portrait and landscape mode. The user's perception of their screen's width and
height may change, but the system's perception of a device's smallestWidth never does,
even when users switch their device from portrait to landscape mode and vice versa.

Available screen width – w<N>dp
Sometimes, your app may need to react to how much width or height is currently available,
which means taking the device's current orientation into consideration. For example,
imagine your UI has the option to display two fragments side by side in a multi-pane
layout. If the user is viewing your app in landscape mode, it makes sense to display the
multi-pane layout, but as soon as the user switches the device into portrait mode, there may
no longer be enough width available to display these fragments side by side.

This is where the sw<N>dp configuration qualifier comes in. You can use this qualifier to set
the minimum width a resource requires, for example, res/layout-w700dp. However,
unlike the smallestWidth qualifier, w<N>dp represents the width that's currently available
to your UI, taking into account the current screen orientation. This allows your app to react
to the width currently available to it and not just the device's fixed smallestWidth value.

Available screen height – h<number>dp
As already mentioned, your typical Android app is pretty flexible about the minimum
height it needs. However, if you do need to specify the minimum screen height a layout or
resource needs, you can use the h<number>dp qualifier, for example, res/layout-h720dp.

The value the system assigns to the screen height changes when the screen's orientation
changes, so similar to w<N>dp, you can use this qualifier to detect whether your app is
currently being viewed in portrait or landscape mode.

While using these new configuration qualifiers may appear more complicated than using
the traditional screen size groups, they do give you more control over how your UI
translates across different screens, and they allow you to specify the exact point at which
your app switches from a layout that's optimized for Android smartphones, to a layout
that's optimized for tablets.

Reaching a Wider Audience – Supporting Multiple Devices

[240]

Not all versions of Android support all qualifiers, for example sw<N>dp
was introduced in API level 13. However, when you use a qualifier in
your project, the system automatically and implicitly adds the platform
version qualifier, so older versions of Android can at least recognize
unsupported qualifiers and subsequently ignore them.

Designing for different screen orientations
You may also want to create versions of your layouts that are optimized for landscape and
portrait orientations. You can provide layouts that are optimized for alternate orientations
in the same way you provide layouts for different screen sizes and densities: you create an
extra directory with the correct orientation qualifier and place your orientation-specific
layouts inside that directory.

Even though Android supports two orientations—portrait and landscape—you only ever
need to create one additional directory, since you'll use your project's default res/layout
directory for one of these orientations.

Choose which orientation you want to use as your app's default, and then create a directory
for the other orientation, so your project may consist of a res/layout directory that
contains your default/portrait layouts and a res/layout-land directory which contains
your project's landscape layouts.

Alternatively, if you want to use landscape orientation as your project's default, create a
res/layout-port directory and use res/layout for your project's landscape layouts:

Reaching a Wider Audience – Supporting Multiple Devices

[241]

When it's time to test your app, make sure you test it in both landscape
and portrait mode across a range of screen configurations.

Reacting to orientation changes
Sometimes, your app will need to register configuration changes and then modify its
behavior accordingly.

One of the most common scenarios is reacting to whether the screen is in landscape or
portrait mode. For example, imagine your app consists of two fragments: one fragment
displays a list and the other fragment displays information about the currently-selected
item. The app displays each fragment separately on smaller screens in a single-pane layout
and side by side on larger screens in a multi-pane layout. When the user selects an item in
the multi-pane layout, the information is displayed in the same activity. However, when the
user selects an item in the single-pane layout, your app will need to display this information
in a new activity. In this scenario, your app needs to know what layout the user is currently
viewing (single or multi-pane), so it can react accordingly.

One method is to identify a view that's only visible in the multi-pane layout, and then query
whether this view is currently visible:

public class MyActivity extends FragmentActivity {
 boolean mIsDualPane;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_layout);

//Check whether detailsView is currently visible//

 View detailsView = findViewById(R.id.article);
 mIsDualPane = detailsView != null &&
 detailsView.getVisibility() ==
 View.VISIBLE;

//If this view is visible, and we're in multi-pane mode....//

if (mDualPane) {

...

...

Reaching a Wider Audience – Supporting Multiple Devices

[242]

//This is where you'd define your app's multi-pane behavior//

} else {

//If this view isn't visible, then we're in single-pane mode//

...

...

//This is where you'd define your app's single-pane behavior//

You can retrieve the device's current configuration using getConfiguration():

Configuration config = getResources().getConfiguration();

To retrieve the device's current screen orientation and act on the results, run the following
code:

if (getResources().getConfiguration().orientation

//If the screen is currently in landscape mode...//

 == Configuration.ORIENTATION_LANDSCAPE) {

...

...

//This is where you'd define your app's landscape behavior//

} else

//If not, then the device is in portrait orientation//

...

...

//This is where you'd define your app's portrait behavior//

Testing across multiple screens
Before publishing your app, you should thoroughly test it across all supported screen sizes
and screen densities, in both landscape and portrait mode. Unless you happen to have
access to a bunch of different Android smartphones and tablets, the most practical way is to
use the emulator that comes as part of the Android SDK.

Reaching a Wider Audience – Supporting Multiple Devices

[243]

When you launch the AVD Manager and select Create Virtual Device…, you can choose
from a wide range of ready-made Android Virtual Devices (AVDs) that are based on real-
life devices, or you can create your own by selecting New Hardware Profile. When creating
a new AVD, you can then choose whether your AVD supports landscape and/or portrait
mode, but you should typically test your app in both landscape and portrait orientation
on every AVD you create.

You can also enter the screen size and resolution of your choice. As you enter these settings,
you'll see the Density of this particular device displayed in the window's right-hand pane:

To test your app's screen support, you'll need to create multiple AVDs that represent all the
most common Android screen configurations. There's no shortcut here, and generally
speaking, the more time you spend testing your app, the better the user experience will be,
regardless of the device it winds up on.

I'll be using the emulator that comes as a part of the Android SDK
throughout this book, but if you're not a fan of this default emulator, there
are alternatives available. One popular alternative is Genymotion (h t t p s :
/ / w w w . g e n y m o t i o n . c o m).

https://www.genymotion.com
https://www.genymotion.com

Reaching a Wider Audience – Supporting Multiple Devices

[244]

Showing off your screen support
When it's finally time to prepare your app's Google Play listing, you should use screenshots
that show your app in the best possible light. Ideally, you should take all your screenshots
on a large, high-density screen that's running the very latest version of Android, so
potential users can see the most impressive version of your UI.

If you need to create promotional images for your website, blog, social media accounts, or
anywhere else, then you should place your screenshots in context by wrapping them in
device artwork. The easiest way to do this is using Android's drag-and-drop Device Art
Generator (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / d i s t r i b u t e / t o o l s / p r o m o t e / d e v i c e - a
r t . h t m l).

Attracting an international audience
Your Android app has the potential to reach a worldwide audience, but only if you invest
time and effort into localizing your app.

Your biggest task when localizing a project is translating its text into your target language,
but you'll also need to translate any drawables that contain text, any video that features text
or dialogue, and audio that contains dialogue. You'll also need to ensure that any numbers,
currency, times, or dates are formatted correctly for your target audience, as formatting can
vary between languages and countries.

You provide these alternate resources in the same way you provide any other resources:
create new directories and use an appropriate configuration qualifier.

When it comes to localization, you'll need to use locale configuration qualifiers, which
consist of the following:

A language code: These are two-letter lowercase ISO codes, as defined by ISO
639-1 (h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / I S O _ 6 3 9 - 1).
Country or regional code (optional): Two-letter uppercase ISO codes as defined
by ISO 3166-1 (h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / I S O _ 3 1 6 6 - 1 _ a l p h a - 3)
and proceeded by a lowercase r. You can use country/region codes in
combination with the language code to provide resources that target devices set
to a particular language and located in a specific country or region. For example,
you could provide resources for French speakers located in Canada by combining
the language code (fr) with the regional code (CA) plus a lowercase r, so your
directory would be res/values/fr-rCA. You can't use a country or regional
code on its own; it must always be preceded by a language code.

http://developer.android.com/distribute/tools/promote/device-art.html
http://developer.android.com/distribute/tools/promote/device-art.html
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

Reaching a Wider Audience – Supporting Multiple Devices

[245]

Although it's tempting to think of a locale as being synonymous with a
country, this isn't always the case. While you may create a directory that
uses the French language and country code, you can also create a directory
that combines the French language code with the Canadian country code.

Identifying the target languages and regions
The first step to localizing your app is to identify the languages, regions, and countries you
want to support.

Put your business head on and look for locales where there's a potential market for your
app. In particular, you should look for languages, regions, or countries where:

There's a large or growing number of Android users
International languages, such as English, aren't widely used
There's a gap in the market for an app of your genre or subject

All the preceding factors mean that localizing your app for this locale could be particularly
lucrative.

Decide what countries or regions you want to target first, and then determine what
language(s) your app needs to support in order to appeal to people in this part of the world.

Once you have a list of all the locales you're going to support, grab their language codes
from ISO 639-1 (h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / I S O _ 6 3 9 - 1), plus any necessary
region or country codes (h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / I S O _ 3 1 6 6 - 1 _ a l p h a - 3).

Providing alternate text
Since translating your app's text is usually the biggest localization task, we're going to
tackle this first.

Open your project's res folder and create all the alternate values directories your app
needs to support your target locales. So, if you wanted your app to support the Spanish
language, you'd create a directory called res/values-es. If you wanted to provide
Spanish text that targets Spanish-speakers in Mexico, you'd create a res/values-es-Rmex
directory.

https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

Reaching a Wider Audience – Supporting Multiple Devices

[246]

Create the strings.xml files inside each of these directories:

Place all your translated string resources inside the corresponding strings.xml file (we'll
look at some options for getting your text translated in a moment).

Continuing with our Spanish theme, our res/values-es/strings.xml file may look
something like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello_world">Hola Mundo</string>
</resources>

At runtime, the Android system logs the device's locale settings, checks your project for any
suitable locale-specific resources, and then loads either the resources from the
corresponding locale-specific directory or falls back on your project's default resources.

Keep your text separate from your application code
It's good practice to keep the localized aspects of your app separate from
your application code and to never hardcode any text into your app, as this
will make your text far more difficult to localize. Instead, declare all your
text as string resources, as it's easy to extract strings from your project,
send them to a translator, and then integrate them back into your app
without making any changes to your compiled code.

Reaching a Wider Audience – Supporting Multiple Devices

[247]

What other resources might you need localizing?
A large part of the localization process is translating your project's text, specifically its sting
resources, but you may also want to provide locale-specific versions of other resources. For
example, you may want to provide translated versions of the following:

Drawables that feature text
Video that contains text or dialogue
Audio that features dialogue

You may also want to provide alternate versions of resources that aren't appropriate for the
locale you're targeting. For example, you may want to provide alternatives to scenes that
feature a particular city or scenery if this image isn't representative of the locale you're
targeting. Sun-drenched beaches and crystal-clear seas aren't your typical scenery in every
country (unfortunately).

You should also be aware that some images maybe considered inappropriate or offensive in
certain cultures.

You provide locale-specific versions of any resource in exactly the same way you provide
alternate string resources; create a new directory and use the same combination of the
language and country/region code. For example, if you wanted to provide multiple versions
of a typical_highshcool.jpg drawable, you'd create multiple drawable folders, such
as res/drawable-ja-rJPN, res/drawable-en-rUSA, and res/drawable-sv.

Why default resources are important
The key to ensuring that your app runs correctly on devices with any language, country, or
region settings is to provide a complete set of default resources.

One of the most important default resources you need to provide is
res/values/strings.xml. This is where you'll define every string resource used
throughout your project in your app's default language.

The default language is the language that's spoken by the majority of your
target audience. This may not necessarily be your audience's first
language.

Reaching a Wider Audience – Supporting Multiple Devices

[248]

If you don't provide a default version of every string resource, then your app will crash
whenever it winds up on a device with locale settings that you haven't provided a specific
string resource for. Even if the user doesn't understand your app's default language, this is
still preferable to your app crashing or refusing to open.

You'll also need to provide a default version of every other locale-specific resources you use
in your app, because if your project is missing one default resource, then it may not run on
devices with unsupported locale settings.

Default string resources are also crucial when there's some text you want to keep consistent
across your app, regardless of the device's locale settings. One common example is your
app's title, which you may want to keep consistent across all versions of your app.

To use text consistently across locales, you just need to define the string once in your
project's default strings.xml file, and then omit it from all your locale-
specific strings.xml files. Then, when the system tries to load your app's title from a
locale-specific strings file, it'll realize that this string is missing and fall back on the default
version. The end result is that the same string resource will be used in every version of your
app.

Should I translate my app's title?
There's no straightforward answer to this tricky question. Having multiple
titles makes an app more difficult to maintain, and it can make usually
straightforward decisions more complex; if your app goes by multiple
names, then what should your app's Twitter handle be? Do you need to
create multiple versions of your app's logo and app icon? Do you need to
create multiple support e-mail addresses?
You'll also have to work much harder to promote a product that goes by
several different names, particularly when it comes to things such as
Search Engine Optimisation (SEO).
Despite all these drawbacks, there are a few good reasons why you might
want to publish your app under multiple names. The most common
reason is that your app's title may not make much sense to people who
aren't fluent in your app's default language. If we decided to call our
recipe app Best Student Recipes, English-speaking users would instantly
know what to expect, but for users who speak different languages, best
student recipes could be completely meaningless. A nonsensical title isn't
particularly appealing to potential users who stumble across your app in
the Google Play store, so you may want to consider releasing your app
under multiple names.
There's no real right or wrong answer here. All that matters is that you
make the best decision based on the app you're developing and your

Reaching a Wider Audience – Supporting Multiple Devices

[249]

target locales.
Whatever decision you do make, make sure you stick to it! Changing your
app's name after you've launched it is only going to confuse your users.

Which configuration qualifiers are the most important?
At this point, we've covered quite a few different configuration qualifiers: locale-specific
qualifiers, screen orientation, screen density, and screen size qualifiers.

If you use a mixture of these in your projects, there's a strong possibility that more than one
version of a resource is going to be suitable for the current device. Imagine your app winds
up on a device with a high-density screen and Spanish language settings, and that's
currently being held in landscape mode. The system needs to display a drawable, but
multiple versions of this drawable are suitable for the current device:

res/drawable

res/drawable-es

res/drawable-land

res/drawable-hdpi

Which drawable will the system use? When Android is spoilt for choice, it follows a strict
set of rules. Of all the qualifiers you can use, locale almost always gets preferential
treatment. In this example, the device is configured to use Spanish, so Android would load
the graphic from the res/drawable-es directory even though the device in question also
has a high-density screen and is currently in landscape mode.

The only qualifiers that take precedence over locale qualifiers are mobile
country codes (MCC) and mobile network codes (MNC). If you use any
of these codes in your project's directories, they'll always take precedence
over your locale qualifiers.

Getting your app translated
Translating your app's resources is a crucial part of the localization process, and unless
you're fluent in the language that you're targeting, at some point you'll need to enlist the
help of a translator, whether that's a paid professional or a kind volunteer.

Reaching a Wider Audience – Supporting Multiple Devices

[250]

Although you may be tempted to go down the quick and easy route of a machine translator,
services such as Google Translate can never compare to a human translator, and relying on
machine translators will almost always result in a bad experience for your international
users.

If you do decide to hire a professional translator, you should start contacting translators as
early as possible, so you can get an idea of turnaround time and incorporate this
information into your development plan. It also gives you time to shop around and find the
best possible translator for your budget.

You can find translators online, or you may want to explore the Google Play app
Translation service, which is offered through Developer Console.

To access these services, perform the following steps:

Log in to the Developer Console (h t t p s : / / p l a y . g o o g l e . c o m / a p p s / p u b l i s h).1.
If you haven't already done so, upload your APK by selecting Add new2.
application.
Once you've uploaded your app, it'll appear in your All Applications dashboard.3.
Select the app you want to purchase translation services for.
Make sure APK is selected in the left-hand menu.4.
Under APK Translation Service, select Start.5.
Select the source language used in your original text.6.
Under Translate API, add the XML source file that contains the strings that you7.
want to translate.
Select your target languages.8.
Choose a translation vendor.9.

Just be aware that even though you're making a purchase through the Developer Console,
this is a direct business agreement between you and your chosen vendor, so you'll need to
work with the translator directly. After purchasing a translation through the Developer
Console, you will receive an e-mail from your vendor, and it's your responsibility to
manage the project from there.

Getting the most out of your translations
The quality of your translations depends on the skill of the translator, but it also depends on
the quality of your input. If you provide your chosen translator with a higher quality input,
then it stands to reason that you're going to get a higher quality output.

https://play.google.com/apps/publish

Reaching a Wider Audience – Supporting Multiple Devices

[251]

In this section, I'll show you how to increase your chances of receiving a high quality,
accurate translation.

Putting your strings in context
When you're declaring your string resources, you should provide as much information
about each string as possible, as this will help your translator to better understand your
string resources.

At the very least, you should give each string a descriptive name, but ideally you should
also supply a comment that explains what this string is for, along with the information
about when and where the string will appear in your app, plus any restrictions such as the
maximum amount of characters this part of your UI can display. For example, take a look at
the following:

<string name="search_submit_button">Search</string>

//Text that appears on a button that can fit 9 characters. Must be one
word. The user taps this button to submit a search query//

If your app features any specialist language or technical terms, then you should thoroughly
explain what each term means. If this turns out to be too much text to fit into a comment, or
you find yourself explaining multiple strings, then you may want to create a separate
glossary document that explains the meaning and use of all the specialist terms used
throughout your strings.xml file. You can then send this additional document to the
translator along with your strings.

Using terms consistently
You can greatly increase your chances of a successful and accurate translation by using
terms consistently throughout your app. For example, if the main method of navigating
your app is via a series of buttons that allow the user to progress to the next screen, you
should label these buttons consistently, instead of using a mix of terms that all mean the
same thing, such as Forward, Next, OK, and Submit. This will make the translator's job
much easier.

Using terms consistently will improve your app's general user experience
too.

Reaching a Wider Audience – Supporting Multiple Devices

[252]

Getting your strings in order
To help the translator make sense of your project's string resources, you should take a few
moments to perform some admin on your strings.xml file. Remove any unused strings
that you might have added early on and then never actually used in your project, and
remove the strings that have disappeared from your project over time. You should also
remove any duplicate strings, and be on the lookout for any spelling mistakes or typos.
Finally, make sure your strings are formatted correctly and consistently. This housekeeping
may seem simple, but it can make your translator's job much easier, particularly if they're
not an Android developer themselves.

Not creating unnecessary strings
More strings mean more work! Even if you're supporting several languages, you probably
won't need to create a locale-specific version of every string in every language your app
supports.

There may be pieces of text that you want to use consistently across all locales, such as your
app's title, which means there's no need to add this string to every locale-specific
strings.xml file. Remember, if you don't include a particular string in a locale-specific
directory, your app will use the default string instead.

Your app may also support languages that are variations of the same parent language. For
example, imagine your app's default language is British English, but it also supports
American English. Chances are that most of the resources you define in your project's
res/values/strings.xml file will be suitable for your American English audience. You
should still create a res/values-en-rUSA/strings.xml file, but this file should only
contain the strings where American English spelling differs from British English spelling.

Always marking non-translatable text
Your project may include some string resources that you don't want translating, such as
your app's title, URLs, promotional codes, social media links, and e-mail addresses. You
should clearly mark all the text you don't want translating before handing your project over
to the translator.

Wrap the <xliff:g> tags around the text that you don't want translating, and use an id
attribute to explain why this text shouldn't be translated:

<string name="name"> This text will be translated<xliff:g id="This is my
explanation">this text won't be translated</xliff:g> this text will be
translated.</string>

Reaching a Wider Audience – Supporting Multiple Devices

[253]

Imagine you want to display a welcome message that includes your app's title. You want
the actual welcome text to be translated, but you want the app's title to remain consistent
across all locales. In this scenario, you'd use the following XML:

<string name="welcomeMessage"> Welcome to the<xliff:g id="appTitle">Student
Recipes</xliff:g>app.</string>

Finally, to prevent your project from throwing an error, you need to update the resources
tag in your strings.xml file:

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">

Marking dynamic values as non-translatable
Sometimes, you'll want to combine some predetermined and dynamic text
in a single string. For example, your app could ask the student for their
name, take their input, combine it with some of the predetermined text,
and then display the Welcome to the Student Recipe app, Nicole!
message.
So, what does this have to do with translation? When you create strings
that feature dynamic text, you represent the dynamic text with a
placeholder, such as follows:
<string name="name">Welcome to the app %1$s</string>

You should make it clear to your translator that this placeholder isn't an
error or typo, and therefore, they shouldn't try to translate it. This becomes
particularly important when you're working with a translator who isn't
familiar with Android development.
To make it clear that a placeholder shouldn't be translated, you can use the
regular <xliff:g> tags and the id attribute. However, for the sake of
clarity, you should also provide an example of the kind of content this
placeholder text might eventually display. In our welcome message
example, this looks something like the following:
<string name="welcomeMessage">Welcome to the Recipe
App<xliff:g id="userName"
example="Nicole">%1$s</xliff:g>!</string>

Reaching a Wider Audience – Supporting Multiple Devices

[254]

Other things to consider
Although language may be the most obvious factor, there are several less obvious things
you need to take into consideration if your app is really going to make a splash on the
international market.

Right to left support
Don't automatically assume that your audience will read left to right (LTR). In some
countries, reading right to left (RTL) is the norm. Depending on the locales you're targeting,
you may want to consider implementing support for RTL and LTR.

The good news is that in Android 4.2 and higher, the system automatically mirrors your
app's UI when the user switches the system language to a right-to-left script.

To take advantage of this automatic mirroring, open your project's Manifest file and add
the following line:

android:supportsRtl="true"

Then, change all your app's left/right layout properties to the start/end equivalents:

If you're targeting Android 4.2 and higher, use start and end instead of left
and right, for example, android:paddingRight
becomes android:paddingEnd
If you're targeting versions of Android lower than 4.2, you should use start and
end in addition to left and right; for example, you should use
both android:paddingRight and android:paddingEnd

Formatting values
Keep in mind that not every locale formats values, such as dates and numbers, in the same
way. You should never hardcode formats based on assumptions about the user's locale as
this can cause problems when the user switches to another locale.

Instead, always use the system-provided formats and utilities such as follows:

DateUtils (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c e / a n d r o i d / t e x t / f o
r m a t / D a t e U t i l s . h t m l) and DateFormat (h t t p : / / d e v e l o p e r . a n d r o i d . c o m /
r e f e r e n c e / j a v a / t e x t / D a t e F o r m a t . h t m l) for dates

http://developer.android.com/reference/android/text/format/DateUtils.html
http://developer.android.com/reference/android/text/format/DateUtils.html
http://developer.android.com/reference/java/text/DateFormat.html
http://developer.android.com/reference/java/text/DateFormat.html

Reaching a Wider Audience – Supporting Multiple Devices

[255]

String.format (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c e / j a v a / l a n g / S t
r i n g . h t m l # f o r m a t (j a v a . l a n g . S t r i n g , % 2 0 j a v a . l a n g . O b j e c t) or
DecimalFormat (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c e / j a v a / t e x t / D
e c i m a l F o r m a t . h t m l) for numbers and currency
PhoneNumberUtils (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c e / a n d r o i d /
t e l e p h o n y / P h o n e N u m b e r U t i l s . h t m l) for phone numbers

Localizing your app – best practices
Localizing your app is a powerful way of attracting potentially millions more users. Why
limit yourself to just one market? Implementing the following best practices will increase
your app's chances of connecting with a worldwide audience.

Design a single set of flexible layouts
Depending on the languages that you choose to support, some of your alternative string
resources may expand or shrink dramatically during the translation process to the point
where they no longer fit your layout.

To minimize the chances of this happening in your app, you should create flexible layouts
that can accommodate alternate string resources of all sizes. One useful trick is to give your
app's default text more space than it requires, so your UI already has some wiggle room
when it comes to accommodating slight variations in size.

You should design UI elements that contain text to be able to expand horizontally and
vertically in order to accommodate minor changes in text height and width, for example,
buttons that can grow and shrink depending on the size of their button labels. However,
you should also consider how these expanding and shrinking UI elements might impact the
rest of your UI. Could an expanding button make your UI look cramped or lopsided? Or
worse, could it push the neighboring buttons off the screen, rendering them unreachable?

Pay particular attention to UI elements that the user can interact with, such as buttons; if
these elements change size, it can quickly impact your user experience. Two touchable
objects that inch closer to one another as they expand can result in frustrated users who
keep catching the wrong button by accident.

If you design your layouts with flexibility in mind, then typically you'll be able to use the
same layout across all locales. However, if you're struggling to design a layout that's flexible
enough to accommodate all your alternate strings, you may want to make some changes to
your text.

http://developer.android.com/reference/java/text/DecimalFormat.html
http://developer.android.com/reference/java/text/DecimalFormat.html
http://developer.android.com/reference/android/telephony/PhoneNumberUtils.html
http://developer.android.com/reference/android/telephony/PhoneNumberUtils.html

Reaching a Wider Audience – Supporting Multiple Devices

[256]

Simple, straight-to-the-point text typically means less variation during the translation
process, so if you're struggling with text that shrinks or expands dramatically, start at the
root of the problem—your app's default text. Look for any opportunities to simplify this
text, any unnecessary text you can remove from your UI, plus any words that you can
replace with a universally understood picture or symbol, such as replacing the OK text with
a checkmark or Cancel with a cross.

Simplifying your app's text and removing any words that aren't strictly
necessary will provide a better user experience all round, regardless of
whether the user is viewing a localized version of your app or accessing
your app in its default language.

Depending on the amount of text you need to display and the locales your app supports, it
may be impossible to create a single layout that can accommodate text across all your target
languages. Layouts can only flex so far after all!

As a final resort, you can create alternate layouts specifically for the language (or languages)
that are causing your app so many problems, which leads onto the next point.

Create alternate languages only when needed
You can create a layout that targets a specific language by creating a new layout directory
with the relevant configuration qualifier. For example, if you wanted to create a version of
your project's main.xml layout that's optimized to display your tricky German translations,
you'd create a res/layout-de/main.xml directory, and then place your German layout
resource file inside this directory.

However, alternate layouts do make your app harder to maintain, so only use them as a last
resort.

Testing your app across different locales
Once you've created all your locale-specific layouts and resources, you need to make sure
that your app really is ready for an international audience. This means testing the localized
versions of your app across a wide range of AVDs with localization settings that correspond
to your different target locales, plus at least one AVD that's set to a language and locale that
your app doesn't explicitly support.

Reaching a Wider Audience – Supporting Multiple Devices

[257]

When testing your app across different locales, be sure to check for the following:

Your project is displaying the correct string resources, layouts, and any other
locale-specific resources for the device it's currently installed on. Placing
a strings.xml file in the wrong directory and missing a configuration qualifier
or even a simple typo is all it takes for your app to display Korean text
(res/values-ko/strings.xml) when it should really be displaying Kurdish
text (res/values-ku/strings.xml).
Your locale-specific resources are displaying correctly in the current layout and
aren't causing any usability problems.

You should also be aware that some screen configurations, hardware, and software may be
more common in certain locales. Make sure you research the most popular devices in all
your target locales to see whether you need to incorporate support for specific hardware,
software, or screen configurations into the localized versions of your app.

Testing for different locales
You can test your app's language settings on a physical device by opening that device's
Settings app, selecting Language, and then choosing a new language from the menu. This
is useful for getting an idea of how the localized version of your app functions across
devices with different language settings. However, you should also test how your app
functions with different country and region settings, something you can't easily change on a
physical Android device, which is where AVDs come in.

Although you can't create an AVD with specific language, locale, or region settings, you can
change these settings once you have an AVD up and running in the emulator.

Start by creating an AVD with the screen configuration, hardware, and software settings
you want to test your app against, and launch your project in this AVD.

Open your Mac terminal or Windows command prompt and change directory (cd) so it's
pointing at the directory where theAndroid Debug Bridge (adb) is located. For example,
the command I'm using is:

cd /Users/jessica/Downloads/adt-bundle-mac/sdk/platform-tools

Once your AVD is up and running, you can change its locale by issuing adb commands. To
do this, you'll need the ISO code of the language you're targeting (ISO 639-1), and any
country or region code (ISO 3166-1) you're using.

Reaching a Wider Audience – Supporting Multiple Devices

[258]

In your adb window, enter the following command:

adb shell

After a few moments, you will see a # prompt. At this point, you can enter the following
command:

setprop persist.sys.locale [ISO language code, with optional country/region
code] ;stop;sleep 5;start

For example, if you wanted to test your app on a device that's set to Spanish (es), you'd run
the following:

setprop persist.sys.locale es;stop;sleep 5;start

If you wanted to check your app on a device that's set to use the Spanish language in the
Mexican locale, you'd run the following:

setprop persist.sys.locale es-Rmex;stop;sleep 5;start

At this point, the emulator will restart with the new locale settings. Relaunch your app and
that's it—you're ready to test your app against your new locale settings.

Look for common localization issues
So, once you've set up your test environment, what specific issues should you be looking
for?

Firstly, you should check every screen in your app to make sure there's no instances of
clipped text, poor line wrapping, strange-looking word or line breaks, or incorrect
alphabetical sorting. You should also be aware of any locales where the text should run RTL
and check that this is actually what's happening in your layouts.

You should also be on the lookout for any unintentionally untranslated text; unintentional
because there may be instances where you want to use the same text consistently across
your app, such as your app's title and your contact details. If you spot any unintentionally
untranslated text, then you should dig into your app's code to see exactly what's going
wrong.

Also, be on the lookout for any wrongly translated text. This kind of error can be difficult to
spot, as chances are that you're not fluent in all the languages your app supports. This is
one of the few occasions where it's acceptable to use an online translator, such as Google
Translate, as it's often the quickest and easiest way of double-checking that your app's
Spanish text really is Spanish.

Reaching a Wider Audience – Supporting Multiple Devices

[259]

You should also look for any instances where text or other locale-specific resources don't fit
with your current layout. This could be the following:

Resources that are smaller than the default version, such as the text that shrinks
dramatically during the translation process. Shrinking resources can leave gaping
holes in your layout, or they can throw other UI elements off balance and create a
layout that, while not completely broken, does look pretty odd.
Resources that are present in some versions of your UI and missing in others.
Again, this can cause awkward gaps and aesthetic problems in your layout. If
you're intentionally omitting certain resources, you might want to look for
something to fill the gap this resource leaves behind, or as a last resort, supply an
alternative layout that's designed specifically for this locale.
Resources that are much larger than the default version, which can result in a
cluttered, cramped-looking UI or usability problems, such as touchable areas that
are pushed too close to one another.
Resources that aren't appropriate for the current screen configuration. As already
mentioned, different locales may also mean different hardware, software, and
screen configurations. If you're targeting multiple countries and regions, make
sure you research the most popular Android devices within these specific
demographics, and then test your app across AVDs that reflect the hardware,
software, and screen configurations that are most commonly used within these
different areas.

Testing for default resources
After you've tested your app across all the languages, countries, and regions that you want
to support, you should install your app on an AVD with locale settings that it doesn't
explicitly support. This may sound strange, but it's the most effective way of checking that
you've included a default version of every resource your app requires.

As I've mentioned several times throughout this chapter, including default resources means
that if your app gets into difficulties, it has something to gracefully fall back on rather than
crashing. Providing default versions of all your project's strings, drawables, and other
resources guarantees that your app will run even if it winds up on a device with locale
settings that it doesn't explicitly support.

To test your app, open your Terminal or Command Prompt window and tell your emulator
to switch to a locale that your app doesn't explicitly support. If you've provided the
necessary default resources, your app should load these resources, including the contents of
your project's res/values/strings.xml file. If your app crashes, then this is an
indication that your project is missing at least one default resource.

Reaching a Wider Audience – Supporting Multiple Devices

[260]

Plan a beta release in key countries
Once you've finished testing your app across different locales, and you're confident that it'll
functions correctly regardless of the user's language, country, or region settings, then you
may want to consider opening your app up to feedback from your potential target
audience, in particular the native speakers of all the languages your app supports. This
usually takes the form of beta testing.

Users who install beta versions of your app cannot leave reviews on your
Google Play page, so don't worry about these early versions of your app
negatively (and unfairly!) impacting your Google Play rating.

Getting real-world feedback is always valuable, but this feedback becomes even more
valuable when you're planning an international launch. Native speakers will be able to
easily pinpoint any grammar or spelling mistakes in your text, or even something that just
sounds a bit off. They can also quickly flag up anything about your app's content that's
inappropriate, confusing, or difficult for them to relate to.

This is all invaluable feedback that can help you perfect the localized versions of your app
and create something that feels like it was created specifically for this section of your target
audience, rather than a translation that was knocked together in a last-minute bid to rack up
some extra downloads.

If you're looking to launch a beta testing program, then Google Play can help. After you
sign into Developer Console and upload your APK, you can set up groups of users for beta
testing.

You may want to start small with a closed beta test, where you specify a group of testers by
entering their Gmail addresses. If you happen to have a list of testers to hand, you can
launch a closed beta program by doing the following:

Log in to the Developer Console and selecting APK from the left-hand side menu.1.
Select the Upload your first APK to beta button and following the onscreen2.
instructions to upload your APK.
Once your APK is uploaded, select Beta testing.3.
If you see a Choose a testing method option, open the accompanying drop-down4.
menu and select Set Up Closed Beta Listing, followed by Create list.
Enter the e-mail addresses of all the people who you want to participate in the5.
beta test. Click on Save.

Reaching a Wider Audience – Supporting Multiple Devices

[261]

Copy Beta opt-in URL. You can then share this link with your testers. When a6.
potential tester clicks this link, they'll see an explanation about what being a beta
tester entails. They can then decide whether to participate in the test or not.
After copying Beta opt-in URL, you'll need to enter an e-mail address or URL7.
that you'll use to collect feedback from your testers. Enter this information in
the Feedback channel field, then click on Save.

Gathering tester feedback
Since testers can't leave reviews on your app's Google Play page, you'll
need to provide them with an alternative way of sending you their
feedback. Whenever you launch a testing program through Developer
Console, it's crucial you complete the Feedback channel field as this is
your testers' primary way of communicating with you.
This feedback channel could take the form of an address or URL, but you
may also want to consider setting up a Google+ page or Google Group for
your testers. Whatever your preferred method of gathering feedback, it's
important to recognize that anyone who tests your app is doing you a
favor, so you should make it as easy as possible for them to send you their
feedback.
If providing feedback feels like hard work, then your testers simply won't
bother—they'll keep their thoughts to themselves, and your project will
suffer as a result.

After a round of closed beta testing, you may want to move on to open beta testing, where
you specify a maximum number of testers but don't specify their e-mail addresses.

To launch an open beta testing program, make sure you're logged into Developer Console,
and then select APK from the left-hand side menu. Select Beta testing, open the drop-down
menu, select Set up Open Beta Testing, and then specify the maximum number of users
who'll be able to beta test your app.

Copy Beta opt-in URL and share it with your testers. Again, make sure you enter an e-mail
address or URL in Feedback channel, and then click on Save.

Get ready for lift off!
If you want your app to make a splash in the international market, supporting multiple
languages and locales is just the beginning. You'll also need to devise some form of
international marketing campaign.

Reaching a Wider Audience – Supporting Multiple Devices

[262]

This may sound like the kind of thing that requires a massive budget and a dedicated
marketing team, but you can tailor the scope of your campaign to suit your budget and how
much free time you have to promote your app. Even if your app is a one-person project,
there's no end to budget-friendly (and in some cases, free) ways of promoting your app to
an international audience, especially when you're promoting your app online.

A marketing campaign could be as simple as writing a press release announcing the release
of your app, and then arranging for this text to be translated into the various languages
your app supports. You could then spread your press release across the World Wide Web
via social networks, free news and press release websites, your own blog, or any other
places where you can post content for free.

Don't get carried away and post your marketing materials absolutely
everywhere just for the sake of it. Spamming is only going to hurt your
app's reputation in the long run.

You should also translate any other promotional materials you create, such as banners,
virtual badges, adverts, or memes.

Even if your promotional graphics don't feature any text, you should still look for
opportunities to tweak these graphics, so they're more likely to resonate with each of your
target locales. For example, could you include any geographical or cultural references that
would make your graphics more appealing to users in specific regions? In our recipe app
example, this might mean identifying recipes that are more likely to appeal to sections of
our target audience and then featuring these recipes more prominently in the app's
promotional banners and adverts.

If you create any promotional videos, you should also create localized versions of these
videos for every language your app supports. This may mean recording entirely new audio
for every video or providing subtitles.

Remember, the key to attracting an international audience is to create the illusion that your
app was designed with each user's specific locale in mind.

Localize your Google Play store listing
Your app's Google Play listing is the first impression that international users will have of
your app. To make sure this first impression is a positive one, you'll need to localize your
store listing, which means translating its text for every locale your app supports.

Reaching a Wider Audience – Supporting Multiple Devices

[263]

You can create multiple localized versions of your app's Google Play listing via Developer
Console. Then, when a user opens your app's listing, Google Play will automatically
determine that user's location, and it'll display the version of your listing that's the most
appropriate for their language, country, or region settings. If Google Play can't find a
suitable locale-specific version of your app's listing, it'll display your app's default Google
Play page instead.

To create localized Google Play listings, log into your Developer Console account, and
select App applications from the left-hand side menu. Select the app you want to work
with, followed by Store listing.

To create a new, localized version, click on the Manage translations button. At this point,
you can purchase a translation by clicking on Purchase translations and following the
onscreen instructions:

If you already have some translated text you want to add to your localized store listing,
select Add your own translation. Select all the languages you want to create a localized
listing for (don't worry, you can always add more later on), and click on Add.

Reaching a Wider Audience – Supporting Multiple Devices

[264]

At this point, Developer Console will take you back to the store listing form, but now, if you
click on the Languages button, you'll see a drop-down list of all the languages you've just
added. Clicking on any of these languages will take you to a separate form where you can
craft an entirely new store listing, which will be displayed whenever someone views your
app in Google Play with these locale settings.

If you need to delete one of your localized pages at any point, simply click on the Manage
Translations button, followed by Remove translations, and then choose the language you
want to remove. If you want to change what version of your Google Play page is considered
the default, click on the Manage Translations button again, and select Change default
language.

Creating a localized store listing isn't just about translating your app's description; you
should also supply alternate graphics. Even when a user is viewing a localized version of
your Google Play page, they may still be unsure whether your app actually supports their
language. Don't leave any room for doubt; take screenshots of your UI in all the languages it
supports, and then upload these screenshots to the corresponding version of your app's
Google Play page.

As you're building your app's Google Play page, Developer Console will
offer hints about how your app can reach the widest possible audience.
These tips contain some useful information, so make sure you check them
out by selecting Optimization Tips from the left-hand side menu.

After launching your project
The hard work doesn't end when you successfully launch your app. Once you hit the
Publish button and send your app out into the big wild world, there's a whole new bunch
of things you can do to help that app reach the widest possible audience.

Following a successful launch – supporting
international users
Once you've attracted an international audience, you need to hang on to that
audience—which means offering support in a variety of languages.

Exactly how much support you can offer will vary depending on whether you have created
your app as part of a team, or whether you're a solo developer creating Android apps in
your spare time. But offering some level of support is crucial if you're going to hang on to
the users that you worked so hard to gain in the first place.

Reaching a Wider Audience – Supporting Multiple Devices

[265]

At the very least, you should monitor your app's Google Play reviews. The Google Play
store helpfully translates all reviews for you, and you should try and respond to any
question or suggestions that come in via Google Play, regardless of the language they're
written in.

Wherever possible, you should respond to Google Play reviews in the poster's language,
even if it means resorting to an online translation tool. Just be aware that translation tools
tend to generate responses that are a little off, so it's a good idea to let users know that
you're using a translation tool, just so they know to overlook any clunky phrasing or
grammatical errors.

Create a Google Play badge
Once you app is live, your goal is to drive as many people to its Google
Play page as possible. One way of doing this is to create a Google Play
badge. Whenever someone clicks on this badge, it'll take them direct to
your app's Google Play listing.
You can post this badge anywhere you want—on your website, blog,
social media accounts, or you can incorporate it into your e-mail signature.
Just don't get carried away; no-one likes a spammer, and spamming your
app's Play badge isn't going to earn your app a loyal following in the long
run.
You can create a badge using the Google Play Badges generator (h t t p s : /
/ p l a y . g o o g l e . c o m / i n t l / e n _ u s / b a d g e s).

Monitor your app's international performance
When you support multiple locales, your app is inevitability going to be more popular in
one part of the world than it is in others. There's a whole host of reasons why this might be
the case, ranging from things you can control (such as the quality of your translations), to
thing you can't control (such as a rival app that's already dominating the market in one of
your target locales).

Having a clear picture of your app's popularity across all supported locales is essential for
identifying areas where you need to focus more time and effort, and areas where it might
make more sense to scale back your efforts or even stop supporting them completely.

If your app is proving massively popular in one locale, you may decide to put increased
effort into meeting the needs of this part of your demographic, such as performing more
market research in this area, creating localized content specifically for these users, or even
creating language-specific user groups, such as a Google+ community, LinkedIn group, or
Facebook page.

https://play.google.com/intl/en_us/badges
https://play.google.com/intl/en_us/badges

Reaching a Wider Audience – Supporting Multiple Devices

[266]

So, how do you identify locales where users love your app? Developer Console provides
stats about the number of downloads, installs, and uninstalls that your app is racking up
across all the different locales it supports. To access this information, log in to
your Developer Console account, select the app you want to investigate, and then
select Statistics from the left-hand side menu.

But, let's be realistic, these stats aren't always going to be good news, and sometimes they
may reveal that your app is struggling to attract users in certain locales. If this is the case,
then you should try and figure out what might be hindering your app's success.

It might be something that you can fix, such as a less-than-perfect translation, or the fact
that your app has hardware, software, or screen configuration requirements that aren't
representative of the Android devices commonly used in this locale. However, the problem
may be something that isn't quite so easy to fix, such as a lack of interest in your app's genre
or subject matter, or a rival app that's already dominating the marketplace.

Depending on the reasons behind your app's poor performance, you may decide to try and
address the issue, or you may decide that it makes more sense to drop support for this
particular locale and redirect the time and effort into areas where your app has already
found an enthusiastic audience.

Just remember that launching your app internationally is only phase one. If your app is
going to find global success, then you'll have to make an ongoing effort to support users
from all over the world, as well as continuously monitor how your app is faring in all the
different locales.

Summary
In this chapter, we looked at how to reach the widest possible audience, from supporting
different versions of the Android operating system, to optimizing your app for different
hardware, software, screen sizes, screen densities, and orientations. We even covered
translating our app into different languages. We also touched on how to promote your app
via advertising and marketing campaigns.

Now that you know how to attract an audience, in the next chapter, we'll look at how to
wow this audience by optimizing our app's UI.

9
Optimizing Your UI

Your app's user interface is your most direct connection to the user, so you'll want to make
sure it's perfect.

Up until now we've concentrated on creating a beautifully designed user interface that's
packed with useful features—but this is only half the battle. If your app is going to rack up
those 5-star Google Play reviews, you'll need to create a UI that's quick to render,
responsive, and generally delivers an all-around great user experience.

Performance is crucial to creating a successful UI, and a successful app in general. If your
app is laggy, prone to crashing, gobbles up data and memory, or drains the user's battery,
then no one is going to want to use it, no matter how good your UI looks!

In this chapter, I'm going to show you how to hunt out all the most common performance
problems that may be impacting your app. Since you'll want to fix any problems you do
encounter, along the way I'll also be touching on some of the reasons why these problems
occur in the first place, and the steps you can take to address them.

By the time you've completed this chapter, you'll know how to create a smooth and
responsive UI that people will love using.

Timing your code
Don't wait for your app to start throwing errors before you go looking for performance-
related problems. Your app could be slowly leaking memory, allocating too many objects,
or struggling under the weight of a complex view hierarchy. None of these will necessarily
throw an error, but they'll definitely have a negative impact on your app's performance.

Optimizing Your UI

[268]

If you're going to create a high-performance app, you need to go looking for problems.

Timing your code is a powerful way of seeing exactly what's going on in your app,
including any sections of code that are running slower or longer than others. The first
Android SDK tool we're going to look at lets you do just that.

TraceView is a graphical viewer that can profile any Android app running on your device.

TraceView, like most of the tools we're going to cover in this chapter, can only measure a
running application. So the first step is to install the app you want to test on your Android
device, and then attach that device to your computer. Alternatively, you could use an
emulator and suitable AVD. Make sure your app is running and its UI is visible.

Before and after—measuring your app's performance
When you discover a problem with your app, obviously you're going to
want to fix that problem. But after you've made some changes, how do
you know that the problem is truly fixed?
If you use TraceView to measure your app's performance before and after
you make your changes, you'll have all the data you need to see whether
your optimizations have had any significant impact on your app's
performance. So even if you don't identify any code that needs optimizing,
TraceView's output is still valuable data that you should keep to hand and
refer back to as you work on optimizing your app.

To launch TraceView, select Tools from the Android Studio toolbar, followed by Android
and Android Device Monitor. The Android Device Monitor will open in a new window.

The Android Device Monitor is a standalone tool that's included as part
of the Android SDK. Throughout this chapter, I'll be using several tools
that are included in the Android Device Monitor. Although I'll be
accessing the Android Device Monitor via the Android Studio user
interface throughout this chapter, you can also launch the Android Device
Monitor separately. If you want to bypass Android Studio, or if you're
using Eclipse, you can launch the Android Device Monitor by finding the
monitor file in your Android SDK download and double-clicking it. The
Android Device Monitor will then open in a new window.

In the Android Device Monitor window, select the DDMS tab. Along the left-hand side of
the screen you'll find a Devices tab that lists all the currently detected devices and
emulators. Select the device or AVD that contains your app, and you'll see a list of all the
processes that are running on this device. Select the process you want to profile.

If you don't see your application in the list, check it's running and that its UI is visible.

Optimizing Your UI

[269]

Start method profiling by clicking the Start Method Profiling icon (where the cursor is
positioned in the following screenshot):

At this point, you'll be presented with two profiling options:

Trace-based profiling: Traces the entry and exit of every method, no matter how
small. This kind of profiling has a massive overhead, so you should only trace
everything when you have absolutely no idea what to profile. You can then use
this data to narrow your search for a follow-up round of sample-based profiling.
Sample-based profiling: Collects the call stacks at a frequency specified by you.
With this kind of profiling, the overhead is proportional to the sampling
frequency, so the overhead is generally much more manageable.

Make your selection and TraceView will start recording. Spend some time interacting with
your app, making sure to interact with all the sections and methods you want to profile.
Then, click the Stop Method Profiling icon and DDMS will pull the trace file from your
device and load it in the viewer.

Depending on how much recording you've done, this data may take a few
moments to launch, so you may need to be patient.

Optimizing Your UI

[270]

You'll end up with a trace file that looks something like this:

A trace file consists of:

Timeline panel:

This panel displays where each thread and method started and stopped,
so you can track how your code is executing over time.

The timeline panel displays each thread's execution on its own row, in a
different color. You'll see a spike where each method starts (the left bar)
and stops (the right bar). The line between these points is the amount of
time it took the method to execute.

If you spot any long lines of the same color, this is an indication that this
method is eating up processing time and you should gather more
information about this method. Click on any method you want to learn
more about, and its stats will appear in the Profile panel.

Optimizing Your UI

[271]

Profile Panel:

This panel provides lots of information about what happened inside the
currently selected method, including how many times that method was
called, how many times it was called recursively, and the percentage of
total CPU time used by this method, inclusive and exclusive of the
execution time of all its child methods. This data helps you identify any
methods that need optimizing.

Identifying overdraw
When Android draws the screen, it starts with the highest-level container and then draws
all the children and grandchildren on top of this parent view. This means that an individual
pixel may be drawn more than once in a single cycle, in a process known as overdraw.

Coloring pixels that are only going to end up getting covered by subsequent views is a
waste of processing power, and the more times you paint the screen, the more overdraw
you're adding.

Overdraw is a particular problem for mobile devices such as Android, which have limited
memory bandwidth to begin with and may struggle with GPU-intensive drawing tasks. By
identifying and rectifying unnecessary or excessive overdraw, you'll increase your app's
rendering speed.

Large amounts of overdraw can also indicate more serious problems with
your user interface, so checking the amount of overdraw in your app can
also point you in the direction of areas you should investigate further.

It's unrealistic to try and eliminate every instance of overdraw, as some areas of overdraw
are normal and unavoidable. If your app has a blue background, then every element you
place on top of that background is going to cause some overdraw, but this is
unavoidable—can you imagine releasing an app that's just a single blue screen, and nothing
else?

You only need to worry about excessive amounts of overdraw, such as multiple full-screen
layers, or overdraw that doesn't contribute anything to the final image the user sees on
screen, such as content that's completely hidden behind other views.

Optimizing Your UI

[272]

Android devices running 4.2 and higher have a built-in feature that lets you see the amount
of overdraw present in any app installed on your Android device (and even the amount of
overdraw present throughout the Android system, if you're curious about that sort of
thing).

To see the amount of overdraw that's occurring in your app, install the app you want to test
on a physical Android device running 4.2 or later. Then open your device's Settings,
followed by Developer options. Give Debug GPU Overdraw a tap, and select Show
overdraw areas from the pop-up that appears:

The Debug GPU overdraw pop-up contains a Show areas for
Deuteranomaly option, which serves the same purpose as the
standard Debug GPU Overdraw, but with color correction to compensate
for people with deuteranopia color blindness (reduced sensitivity to green
light).

Optimizing Your UI

[273]

With this option selected, the Android system colors each area of the screen differently,
depending on how many times each pixel has been drawn and redrawn.

These colors are your guide to areas where overdraw is a particular problem:

No Color = no overdraw: These pixels were painted once.
Blue: An overdraw of 1x, so these pixels were painted twice. In other words, the
screen was drawn once, and then drawn again on top. Although the amount of
overdraw you can afford varies from device to device, the majority of devices
should be able to handle a single level of overdraw. Large areas of blue are
acceptable, but if the entire window is blue then you may want to investigate
further to see whether you can strip away some of this overdraw.
Green: An overdraw of 2x. These pixels were painted three times. Medium-sized
areas of green are okay, but if more than half of your screen is green you should
look into whether you can optimize some of this green away.
Light red: An overdraw of 3x. Some small areas of light red may be unavoidable,
but any medium or large areas of red are a cause for concern.
Dark red: An overdraw of 4x, which means this pixel was painted at least five
times—possibly even more! You should always investigate any dark red areas.

Optimizing Your UI

[274]

When you're investigating an area of excessive overdraw, your first stop should be checking
out the layout's corresponding XML file to see whether there's any obvious areas of overlap.
In particular, be on the lookout for:

Any drawables that aren't visible to the user.
Any backgrounds that are being drawn on top of one another, particularly full-
screen backgrounds. If your UI has several layers of background before your app
even starts drawing its content, then you're inevitability going to end up with
some serious overdraw.
Any areas that draw a white background on top of another white background.
ViewGroups nested inside ViewGroups. Look into whether you can replace these
multiple ViewGroups with a RelativeLayout.

Another tool that's useful for identifying unnecessary views and nested layouts is the
Hierarchy View tool that comes with the Android SDK and is accessed through the
Android Device Monitor.

Like many of the diagnostic tools I'll be using throughout this chapter, Hierarchy View can
only communicate with an app that's running in an AVD or a physical Android device.
However, unlike the other diagnostic tools, Hierarchy View can only connect to a device
that's running a developer version of the Android operating system. If you don't have a
developer device, you can get around this restriction by adding the ViewServer class (h t t
p s : / / g i t h u b . c o m / r o m a i n g u y / V i e w S e r v e r) to your project.

If you're using a physical Android device, you also need to make sure debugging is
enabled. Open your device's Settings, followed by Developer options, and then drag
the Android debugging slider to the On position.

Open the Android Device Monitor (by selecting Tools | Android | Android Device
Monitor) and click the Hierarchy View button (where the cursor is positioned in the
following screenshot):

https://github.com/romainguy/ViewServer
https://github.com/romainguy/ViewServer

Optimizing Your UI

[275]

Select your device from the Windows tab and you'll see a list of all the Activity objects
running on the selected device, listed by component name.

To populate the various Hierarchy View panes, click the blue load the view hierarchy into
the tree view icon. Depending on how complex your app's view hierarchy is, the tree may
take some time to load.

Once your project's Hierarchy View has loaded, you may want to spend some time
exploring that hierarchy in the various windows (I'll be discussing these in more detail in
the next section), but one of the quickest and easiest ways of identifying large areas of
overdraw is to export the Activity's hierarchy as a Photoshop document.

When you create a PSD document from the Hierarchy View output, each View is displayed
as a separate layer. This means you can use the PSD document to peel back each layer of
your app, and see exactly what each layer is contributing to your UI. Inspecting each layer
can help you identify sources of overdraw, or if you already suspect that certain areas of
your app are suffering from overdraw, then you can put your theory to the test by hiding
the different layers and seeing how this impacts the final rendered image the user sees on
screen.

Optimizing Your UI

[276]

To export your hierarchy as a Photoshop document, click the Capture the window layers as
a Photoshop document icon (where the cursor is positioned in the following screenshot):

This button generates a PSD file that you can inspect in Adobe Photoshop or in any image-
editing tool that supports PSD files, such as the free and open source Gimp program (h t t p s
: / / w w w . g i m p . o r g).

https://www.gimp.org
https://www.gimp.org

Optimizing Your UI

[277]

Examining the layers of our application in GIMP

Spend some time exploring the different layers that make up your UI.

This PSD document is particularly useful for identifying one of the major causes of
overdraw: multiple white backgrounds. Multiple white backgrounds can be difficult to
spot, so one trick is to replace the white backgrounds in your PSD file with different images.
You can then check what portions of these images are visible as you move through the
different layers of your UI.

Simplifying your Hierarchy View
Another common cause of performance problems is your app's Hierarchy View.

When the Android system renders each view, it goes through three stages: measure, layout,
and draw. The time it takes the system to complete each stage is affected by the number of
views in your hierarchy, and how these views are arranged.

Optimizing Your UI

[278]

Arranging your views in deeper, more complex, hierarchies will have a noticeable impact
on your app's rendering speed. You should be on the lookout for any opportunities to
flatten your view hierarchy and remove nested layouts.

As well as highlighting areas of overdraw, Hierarchy View helps you visualize your app's
view hierarchy and provides some really useful performance information about how long
each view takes to render.

The Hierarchy View tool consists of three different windows.

Tree View
This window provides a bird's eye view of the currently selected Activity's view hierarchy:

Each node in Tree View represents a single View. When you select a node, additional
information about that View appears in a small window above the node:

View class: The object's class
View object address: A pointer to the View object
View object ID: The value of the object's android:id attribute

Optimizing Your UI

[279]

You'll also see a preview of how this View will appear on an Android device. By seeing
exactly what each View is contributing to the final UI, you can decide whether this View is
adding anything of value. If it isn't, then you should remove it from your app.

Tree overview
This window contains a map representation of the Activity's entire view hierarchy:

This high-level view of your hierarchy structure is particularly useful for seeing just how
complex your view hierarchy really is, as well as helping you identify nested layouts and
other opportunities to flatten your layout.

Layout View
This window displays a skeleton of your Activity's UI.

When you select a node in either the Tree View or Tree Overview window, the Layout
View highlights the areas that this View paints. Again, this helps you weed out redundant
Views:

Optimizing Your UI

[280]

While Hierarchy View is great for spotting nested layouts and redundant views, there are
some view hierarchy issues that you can't spot just by looking at these three windows.

To help you identify any problems that may be lurking beneath the surface, you can use the
Hierarchy View tool to measure how long it takes each View to move through each phase
of the rendering process (measure, layout, and draw). Armed with this information, you'll
know exactly what Views you need to optimize.

Hierarchy View's Tree Overview doesn't display render times by default. To add this
information to the Tree Overview, you need to select the root node of the part of the tree
you want to profile. Then click the green, red, and purple Venn diagram icon (when you
hover over this icon, you'll see an Obtain layout times for tree rooted at selected node
tooltip).

After a few moments, three colored dots will appear on each node within this section of the
view hierarchy. These dots indicate the rendering speed of this View relative to the other
profiled Views.

From left to right, these dots indicate the time it takes to:

Measure the view
Layout the view
Draw the view

Optimizing Your UI

[281]

The color of each dot indicates the time it takes the View to move through each phase of the
rendering process:

Green: This view is faster than at least half of the other profiled nodes. A green
dot in the measure position means that this view has a faster layout time than at
least 50% of the other profiled nodes.
Yellow: This view is in the slowest 50% of all the profiled nodes.
Red: This view is the slowest out of all the profiled nodes.

You can use this information to identify which Views are the slowest to measure, layout,
and draw, so you not only know which Views you need to optimize but also the part of the
rendering process you should be focusing on.

When you click a profiled node you'll also see the measure, layout, and draw times for that
View, displayed in milliseconds.

Optimizing Your UI

[282]

Just remember that these performance indicators are relative to one another, so your view
hierarchy is always going to include some red and yellow nodes.

Before you start looking for ways to optimize Views with yellow and red dots, ask yourself
whether these Views have a good reason for rendering more slowly, for example views that
have more children are always going to lag behind nodes that have less children.

Spotting memory leaks
Android may be a memory-managed environment, but you still need to scrutinize how
your app is handling memory.

Garbage collection (GC) can only remove objects that it recognizes as unreachable. If your
app allocates objects that the Android system doesn't identify as unreachable, then those
objects are never going to get garbage collected. They're going to hang around, polluting
your heap, and taking up valuable space.

As your app continues to leak objects that the system can't garbage collect, the amount of
usable space will get smaller and smaller. The Android system will try to compensate for
this shrinking memory by running longer and more frequent GC events.

While your typical GC event won't have a noticeable impact on your app's performance, as
more and longer GC events start occurring in a small space of time, your users may notice a
drop in performance, and may even encounter an OutOfMemoryError.

Memory leaks can be difficult to detect, but the Android SDK comes with several tools that
you can use to scour your app for those sometimes subtle signs of memory-management
problems.

Memory monitor
Memory monitor tracks your app's memory usage over time. This is another tool that can
only communicate with a running app, so make sure to install your app on a physical
device or an emulator before you proceed.

You can access memory monitor from the main Android Studio screen by selecting the
Android Monitor tab towards the bottom of the screen, and then selecting the Memory tab.

Optimizing Your UI

[283]

Make sure the app you want to test is visible onscreen. As soon as memory monitor detects
your running app, it'll start recording memory usage, displaying the memory your app is
using in dark blue and the unallocated memory in light blue.

Troubleshooting
If Memory Monitor displays a No debuggable applications message,
open Android Studio's Tools menu, select Android, and make
sure Enable adb integration is selected. This feature can be
temperamental, so if it doesn't work at first then try the very high-tech
solution of toggling Enable adb integration on and off a few times. If
you're using a physical Android device, it may also help to disconnect
your device and reconnect it to a different USB port.

Spend some time interacting with your app while keeping an eye on memory monitor.
Eventually your app's memory usage will swell until there's no unallocated memory left. At
this point, the system will free up some memory by triggering a GC event, causing the
allocated memory to drop.

Most GC events are perfectly normal, but if you see GC events becoming longer and more
frequent then this is an indication that a memory leak may be occurring in your app.

If you track a suspected memory leak over a period of time, you may eventually see the
Android system try to accommodate your app's insatiable thirst for memory by granting it a
higher memory ceiling. If you see this happening in memory monitor, then this is a sign
that a serious memory leak is occurring in your app, and you should investigate it in more
detail.

Optimizing Your UI

[284]

Heap tab
If you spot strange memory usage in the memory monitor, you can use the Android Device
Monitor's Heap tab to gather more information about how your app is using memory.

As the name suggests, this tab provides data about your app's heap usage, including the
kind of objects your app is allocating, the number of allocated objects, and how much space
these objects are taking up.

Android smartphones and tablets have a finite amount of heap space that can only
accommodate a certain number of objects. As the heap grows, the Android system will try
to free up memory by triggering a GC event—which we already know is bad news for
performance.

To access the heap tab, launch the Android Device Monitor, select the DDMS tab, and then
select your device or AVD from the Devices panel, followed by the process you want to
examine. Click the Update heap button (where the cursor is positioned in the following
screenshot):

Select the Heap tab and spend some time interacting with your app.

Optimizing Your UI

[285]

The heap output is only displayed after a GC event has occurred, so you'll either have to be
patient and wait for an organic GC event, or you can force a GC event by clicking the Cause
GC button. Once a GC has occurred, the Heap tab will display information about your
app's heap usage.

Spend some time interacting with your app, triggering GC events before and after you
perform different actions so you can compare how these actions impact the heap. In this
way, you can isolate the actions that are causing the memory leak, as well as any other
memory-related problems your app is experiencing.

When you're tracking down problems in your app's heap, it may to help to generate a
HPROF file, which is a snapshot of all the objects in your app's heap plus detailed
information about the related classes and instances.

Once you've generated a HPROF file, you can view it in Android Studio or in a separate
profiling tool, such as the Eclipse Memory Analyzer (h t t p : / / w w w . e c l i p s e . o r g / m a t).

To retrieve a HPROF file, click the Dump HPROF icon (next to the Update Heap icon). Give
your file a name and save it.

http://www.eclipse.org/mat

Optimizing Your UI

[286]

To analyze your heap dump in Android Studio, open your HPROF file as a new Android
project. Android Studio will automatically open the file in its Android Memory HPROF
Viewer, ready for you to analyze in more detail.

Object allocation – understanding memory churn
Another common memory problem that you should check for is memory churn.

Memory churn occurs when your app allocates lots of temporary objects in a short period of
time, which can quickly gobble up a device's available memory, triggering those
performance-sapping GC events.

You can check for memory churn using the Android SDK's Allocation Tracker, which lists
all the objects your app is allocating to memory when you perform different actions. If you
spot any suspicious-looking allocations, you can then use Allocation Tracker to inspect the
classes and threads that are responsible for allocating these objects.

Inside the Android Device Monitor, select the DDMS tab and then open the Allocation
Tracker tab. Select your device or AVD from the Devices tab, followed by the process you
want to examine.

In the Allocation Tracker tab, click the Start Tracking button and spend some time
interacting with your app. To see a list of all the objects that have been allocated since you
started tracking, click the Get Allocations button. Android Studio will then open a tab that
displays all the allocations that occurred during this sampling period.

Optimizing Your UI

[287]

Click on any allocated object to see more information about that object:

When you're ready to stop collecting data, click the Stop Tracking button.

Each row in the Allocation Tracking tab represents a specific allocation, and provides the
following information for that allocation:

Allocation order
Allocation size
Allocated class
Thread ID. This is the thread that made the allocation
Allocated In. This is the function in your code that's responsible for this allocation

Optimizing Your UI

[288]

Debugging your project
It's crucial that you thoroughly test your app for bugs before releasing it. Android Studio
provides a range of tools that you can use to debug an app running on an emulator or a
physical Android device, although these tools can only test a debuggable version of your
app, which means you'll need to run your app in debug mode.

To run your app in debug mode, open your project's module-level build.gradle file and
add the following:

apply plugin: 'com.android.application'

.........

.........
 }
 buildTypes {

debug {
debuggable true

}
 }
}

After editing your Gradle build file, make sure you sync your project. Next, click the Debug
icon or select Run from the Android Studio toolbar, followed by Debug.

Select the AVD or physical Android device where you want to install and test the
debuggable version of your app. Once your app has loaded, Android Studio's Debug
perspective should open automatically.

If the Debug perspective doesn't open automatically, select View from the
Android Studio toolbar, followed by Tool window and Debug.

The Debug perspective consists of:

Debugger: Displays threads and variables
Console: Displays the device status

To debug an app that's already running, click Attach debugger to Android process. In
the Choose Process window, select the device and the app you want to attach the debugger
to and then click OK.

Optimizing Your UI

[289]

Once you have a debuggable version of your app up and running, you can view the log
messages related to your application. To view these messages, select the Android Monitor
tab that appears along the bottom of the Android Studio screen and then select the logcat
tab:

Logcat can sometimes be a case of information overload, so Android Studio provides
several ways of filtering the logcat output. One method is to use the Log Level drop-down
menu. By default, this menu is set to Verbose, which displays all log messages, but there
are several more specific options you can choose from:

Debug: Displays log messages that are useful during development, plus message
levels lower in this list
Info: Displays expected log messages for regular usage, plus message levels
lower in this list
Warn: Displays possible issues that are not yet errors, plus message levels lower
in this list
Error: Displays issues that have caused errors, plus message levels lower in this
list
Assert: Displays issues that should never happen

Optimizing Your UI

[290]

If none of these filters meet your debugging needs, you can create custom filters. Open the
Show only selected application dropdown (towards the right side of the logcat panel) and
then select Edit Filter Configuration.

This opens a Create New LogCat Filter window, where you can craft a new filter by
providing the following information:

Filter name: If you're creating a new filter, you should give this filter a unique
name. If you're modifying an existing filter, select it from the left-hand pane and
its name will appear in this field.
Log Tag: Every log message has a tag associated with it, which indicates the
system component the message originated from. If you want to see messages that
originate from a certain system component only, you can enter that component's
tag here.
Log Message: If you only want to see messages that contain certain elements or
character strings, specify them in the Log Message field.
Package Name: If you want your filter to display messages that relate to a certain
package only, enter this package name here.
PID: If you only want to see messages that refer to a specific process, enter that
process ID here.
Log Level: To filter based on log level, open this dropdown and select anything
other than the default Verbose option.

Working with breakpoints
Having trouble working out where an error is originating from? You can use breakpoints to
pause the execution of your app at a particular line of code. By creating multiple
breakpoints and scrutinizing your app every time it comes to a stop, you can gradually
isolate the portion of code that's responsible for the error.

To set a breakpoint:

Open the file where you want to create your breakpoint.1.
Locate the line where you want to set your breakpoint and click on this line.2.

Optimizing Your UI

[291]

Click the yellow portion that appears in the left-hand sidebar. A red dot will3.
appear, indicating that you've successfully created a breakpoint.

After creating your breakpoints, click the Rerun app icon (the green Play icon along the left-
hand toolbar).

Every time Android Studio reaches a breakpoint, it'll pause the execution of your app and
highlight the triggered breakpoint in your code. You can then open the Debug window (by
selecting the Debug tab in the bottom toolbar) and use the debugger and console to gather
more information about what's going on in your app at this exact point in the execution of
your code. You may also want to take a look at the logcat output. Repeat this process until
you've isolated the code that's causing the problem.

Optimizing Your UI

[292]

Configuring your breakpoints
If you have a very specific kind of breakpoint in mind, you can make some changes to your
breakpoint settings. Start by clicking the View Breakpoints icon (where the cursor is
positioned in the following screenshot):

The Breakpoint window appears and lists all the breakpoints you've created in the current
project. To see what changes you can make to a breakpoint, select that breakpoint from the
left-hand list.

Optimizing Your UI

[293]

This window gives you lots of different options for configuring the selected breakpoint:

Suspend: Select this checkbox to enable a suspend policy for this breakpoint, then
choose from All (when a breakpoint is hit, all threads are suspended) or Thread
(when a breakpoint is hit, only the thread where the breakpoint is hit is
suspended).
Condition: Select this checkbox, then in the accompanying textbox specify a
condition for hitting this breakpoint. The condition must be a Java Boolean
expression with a true/false value. This condition is evaluated each time the
breakpoint is reached, and if the result is true the specified action is performed.
Log message to console: Select this checkbox to display a log message in the
console when this breakpoint is hit.
Log evaluated expression: Select this checkbox to evaluate an expression when
this breakpoint is hit and display the results in Android Studio's console.
Remove once hit: When enabled, this breakpoint will be triggered once and then
removed.
Disabled until the selected breakpoint is hit: This breakpoint is dependent on
another breakpoint, and will only be enabled once the specified breakpoint has
been triggered.
Instance filters: To limit breakpoint hits to instances of a particular object, select
this checkbox and then provide the ID value of the instance you want to use.
Class filters: Select this checkbox to have this breakpoint behave differently in
reaction to different classes. Then, specify the classes that'll trigger the breakpoint
in the accompanying textbox. To define classes where the breakpoint shouldn't be
triggered, add these classes to the textbox but preface them with a minus symbol.
Pass count: Define the number of times a breakpoint should be reached, but
ignored, by selecting this checkbox and then specifying the number of times the
breakpoint should be skipped. After the specified number of passes, the
breakpoint will be triggered as normal.

Examining your code with Lint
It's important to check that there are no problems with the structural quality of your code,
as these can cause errors and have a negative impact on your app's performance.
Conveniently, the Android SDK comes with Lint, a static code-scanning tool that's perfect
for identifying and correcting structural problems with your code.

Optimizing Your UI

[294]

In Android Studio, the configured Lint expressions run every time you build your app and
print the output to Android Studio's Events log, which you can access by selecting
the Events log tab.

However, you can also run Lint on a specific module at any time, by right-clicking on that
module's file or folder and then selecting Analyze | Inspect code, followed by the area you
want to inspect (Whole project, Module, or Custom Scope). Make your selection, and
Android Studio automatically opens a new Inspection tab where you can view the Lint
output.

To help you zero in on critical problems, Lint provides a description and a severity level for
every issue it reports.

Make sure you correct all errors that Lint detects before you release your app.

If you need to make some changes to the default Lint settings, select Android Studio from
the toolbar, followed by Preferences. In the window that appears, double-click Editor and
select Inspections.

Optimizing Your UI

[295]

This opens the Inspection Configuration page, which lists all the supported Lint profiles
and inspections.

Here, you can explore the different inspections and make edits such as changing their
severity level and scope.

You can also run Lint inspections for a specific build variant or for all build variants, by
adding the lintOptions property to your project's module-level build.gradle file. For
example, if you wanted to set your Lint's abortOnError option to false, you'd need to
add the following to your build.gradle file:

apply plugin: 'com.android.application'

android {

...........

.............

..............

 lintOptions {

Optimizing Your UI

[296]

//Lint shouldn't exit the process when it discovers errors//

abortOnError false
 }

You can find a complete list of all your Lint configuration options at Google's GitHub (h t t p
: / / g o o g l e . g i t h u b . i o / a n d r o i d - g r a d l e - d s l / c u r r e n t / c o m . a n d r o i d . b u i l d . g r a d l e
. i n t e r n a l . d s l . L i n t O p t i o n s . h t m l # c o m . a n d r o i d . b u i l d . g r a d l e . i n t e r n a l . d s l . L i

n t O p t i o n s).

Optimizing your code with ProGuard
The ProGuard tool shrinks and optimizes your code by removing unused code and
renaming classes, fields, and methods with semantically obscure names. The end result is a
smaller APK that's more difficult to reverse engineer, something that's particularly
important if your app has access to sensitive information.

ProGuard runs automatically when you build your app in release mode. To build a release
version of your app, you need to enable the minifyEnabled property in your project's
module-level build.gradle file and make sure buildTypes is set to release. For
example:

android { ... buildTypes {

 //The buildTypes element controls whether your app is built in debug or
release mode//

release {

//In this example, we're building a release version of our app so we can
run ProGuard. If your build.gradle file contains the debug attribute, then
make sure you remove it so it doesn't prevent ProGuard from running//

minifyEnabled true

//To enable ProGuard, add the minifyEnabled property and set it to true//

proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'

}
 }
 }

http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.LintOptions.html#com.android.build.gradle.internal.dsl.LintOptions
http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.LintOptions.html#com.android.build.gradle.internal.dsl.LintOptions
http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.LintOptions.html#com.android.build.gradle.internal.dsl.LintOptions
http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.LintOptions.html#com.android.build.gradle.internal.dsl.LintOptions

Optimizing Your UI

[297]

The getDefaultProguardFile attribute obtains the default ProGuard settings specified in
the Android/sdk/tools/proguard/proguard-android.txt file that you downloaded
as part of the Android SDK. Alternatively, you can use the proguard-android-
optimize.txt file, which contains the same rules but has optimization enabled.

If you want to add some project-specific options to the default ProGuard settings, open
your project's Gradle Scripts/proguard-rules.pro file and add your new rules.

For more information about the different ProGuard settings that you can add to this file,
check out the ProGuard manual (h t t p s : / / s t u f f . m i t . e d u / a f s / s i p b / p r o j e c t / a n d r o i
d / s d k / a n d r o i d - s d k - l i n u x / t o o l s / p r o g u a r d / d o c s / i n d e x . h t m l # m a n u a l / r e t r a c e / e

x a m p l e s . h t m l).

Scrutinize each pixel
Another tool you may want to explore is Pixel Perfect.

The Pixel Perfect window displays a magnified version of the screen that's currently visible
on the attached Android device or emulator, and lets you scrutinize the individual pixels
that make up your UI. You can also use it to overlay an image over your UI, which is handy
for checking how your UI compares to your digital wireframes.

Pixel Perfect is integrated into the Android Device Monitor. To launch Pixel Perfect, select
Window from the Android Device Monitor toolbar, followed by Open Perspective, Pixel
Perfect, and OK.

https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/retrace/examples.html
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/retrace/examples.html
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/retrace/examples.html

Optimizing Your UI

[298]

The Pixel Perfect window contains the following areas.

Pixel Perfect pane
This window displays a magnified version of the UI that's currently visible on the
connected Android device or AVD.

By default, Pixel Perfect doesn't update automatically to reflect changes that occur on
screen, so you'll need to keep clicking this pane's Refresh Screenshot icon. Alternatively, if
you want Pixel Perfect to update automatically, then select the Automatically Refresh the
screenshot icon.

One of Pixel Perfect's most useful features is the ability to load jpg, jpeg, png, gif, or bmp
images as an overlay. This is particularly useful if you want to take stock of how the current
screen compares to your original design, as you can load a digital wireframe (or any other
digital design docs you have to hand) as an overlay.

To load an image as an overlay, navigate to the screen you want to work with and make
sure it's being displayed in the Pixel Perfect window. Select the Load an image to overlay
the screenshot icon, and then select the image you want to use as your overlay.

Optimizing Your UI

[299]

Pixel Perfect tree
This is a hierarchical list of all the View objects that are currently visible. Just be aware that
system objects also appear in this list.

Pixel Perfect Loupe pane
This pane contains the magnified screen image, overlaid by a grid where one square
represents one pixel. To see more information about a particular pixel, select it and the
Loupe pane will display the following:

Pixel swatch: A rectangle filled with the same color as the selected pixel
HTML color code: The pixel's corresponding hexadecimal RGB code
RGB color values: The pixel's R, G, and B color values
X and Y coordinates: The pixel's coordinates, as a px value

Processes and threads
How your app handles threads and processes has a significant impact on your app's
performance. By default, when the user launches an app, the Android system creates a
single thread of execution for that application. All components run in this single thread,
which is known as the main thread or the UI thread.

Unless you specify otherwise, most of the operations you perform in your app run in the
foreground on this main thread. Most of the time this single-thread model works fine, but if
your app needs to perform particularly intensive work or long-running operations, then the
main thread can become blocked. This can cause your app to freeze, display system errors,
and potentially even crash.

If you're going to deliver a good user experience, then it's vital you don't block the UI
thread with intensive or long-running operations. If you do need to run demanding
processes, then you should create additional threads.

This involves specifying which process a certain component belongs to in your project's
Manifest file. The Manifest entry for each type of component (activity, service, receiver,
or provider) includes an android:process attribute that specifies the process where this
component should run. If you want the system to create a new process for this component,
preface the android:process value with a colon, for
example android:process=":myprocess".

Optimizing Your UI

[300]

If you need to handle more complex interactions, you may want to consider using a
Handler to process messages delivered from the main thread, or you could use
the AsyncTask class to simplify the execution of worker thread tasks that need to interact
with your UI.

Using AsyncTask
AsyncTask provides you with an easy way of performing synchronous
work on your user interface without blocking the main thread.
Using AsyncTask, you can separate tasks into the work that should be
performed on the main thread and operations that should be performed
on a separate worker thread. In this way, AsyncTask is a way of executing
some work in a background thread and then publishing the results back to
the main thread.
To use AsyncTask, you need to subclass AsyncTask and then implement
the doInBackground() callback method, which executes automatically
on a worker thread and performs background operations. The value
returned by doInBackground() is then sent to onPostExecute(), and
from here you can run the task by calling execute() on the main thread.
Ideally, you should only use AsyncTasks for short operations. If you need
to keep threads running for more than a few seconds, it's recommended
that you use APIs such as Executor, ThreadPoolExecutor, and
FutureTask, which are provided as part of the java.util.concurrent
package.

Terminating processes
When deciding how your application should handle processes, it's worth bearing in mind
that even though the Android system will try and maintain all processes for as long as
possible, it will kill off processes if memory starts getting low.

When deciding what processes to keep alive and which processes to terminate, the system
decides how important each process is to the user by placing these processes in an
importance hierarchy. Processes with the lowest importance are the first to go, while
processes at the top of the importance hierarchy are rarely killed off.

The Android system will increase the ranking of a process if another, more
important, process depends on it. A process that's supporting another
process can never be ranked lower than the most important process it's
supporting.

Optimizing Your UI

[301]

Ranked from most important to least important, the different levels of Android's
importance hierarchy are detailed in the following sections.

Foreground processes
This is a process that's essential for the actions the user is currently performing. The
Android system assigns a process this ranking if it hosts either:

An Activity that the user is interacting with
A Service that's running in the foreground
A Service that's bound to the activity the user is currently interacting with
A Service that's executing one of its lifecycle callbacks (onCreate, onStart, or
onDestroy)
A BroadcastReceiver that's executing its onReceive() method

If any of these conditions are true, that process is considered a foreground process. The
Android system only kills foreground processes as a very last resort.

Visible processes
This is a process that doesn't have any foreground components but may still affect what the
user is seeing on screen. The Android system assigns this ranking if the process hosts a
Service that's bound to a visible Activity, or an Activity that's not in the foreground but is
still visible to the user, for example an Activity where the onPause() method has been
called.

The Android system will only kill a visible process if there's not enough memory to support
all foreground processes.

Service processes
This is a process that's running a Service, but doesn't fall into either of the two higher
categories.

Although service processes are not directly related to anything the user sees, they usually
perform actions that the user cares about. The system will avoid killing service processes
unless doing so is the only way to keep all foreground and visible processes running.

Optimizing Your UI

[302]

Background processes
Background processes hold an Activity that's not currently visible to the user. Since
background processes don't have a direct impact on the user experience, the system may
kill background processes off at any time if it needs to reclaim memory for foreground,
visible, or service processes.

Empty processes
This is a process that doesn't hold any active components. The system may keep empty
processes alive for caching purposes, but make no mistake, they're the first to go if the
system needs to free up some memory.

Re-using layouts with > and <merge/>
The Android platform provides a range of simple, reusable UI components known as
widgets, but sometimes there may be larger or more complex UI components that you need
to reuse across multiple screens, such as a panel containing a progress bar and a Cancel
button, or a user profile consisting of a username and an avatar.

If your project features elements that you want to use multiple times, you can save yourself
time and effort by implementing these elements as a reusable layout. You can then import
these reusable elements into as many layout files as you want, using Android's >
and <merge/> tags.

To extract common elements into a reusable layout, create a new XML layout resource file
and then define the UI elements you want to reuse. Pay special attention to the file's root
view as this will also be included every time you embed this component in other layouts.

To import your reusable component into a layout resource file, just add the include tag
and reference the layout file you want to import. For example, if you'd created a reusable
layout called contactslist and wanted to import this component into another layout,
you'd use the following:

 <include layout="@layout/contactslist"/>

However, be aware that using the include tag can introduce redundant ViewGroups into
your view hierarchy.

Optimizing Your UI

[303]

Imagine you have a layout called main_layout.xml that uses a vertical LinearLayout as
its root view. You have a re-usable contactslist_layout.xml component that you want
to include in this main_layout file, but the contactslist_layout also uses a
vertical LinearLayout as its root view.

If you include contactslist_layout.xml in your main layout, you're going to end up
with a vertical LinearLayout inside a vertical LinearLayout. This duplicate vertical
layout isn't contributing anything to the UI, but it is making your view hierarchy more
complex and potentially slowing down your app. So how do we get rid of this
duplicate LinearLayout? The answer is by using the merge tag.

The merge element helps to eliminate the redundant ViewGroups that can work their way
into your view hierarchy when you include reusable layouts.

When you use the merge element as the root view of a reusable layout,
the LayoutInflator skips the merge tag and inserts the reusable views into
the main_layout as though they've always been part of that layout. As a result, your view
hierarchy is simpler—which is nothing but good news for your app's performance!

Loading views only when needed
Depending on your app, you may find yourself with a user interface that contains a large
number of complex views that you rarely use, such as pop-ups and progress indicators.

One possible solution to this problem is to add some of these complex Views via
a ViewStub, which is a variation of the include tag. A ViewStub is a lightweight view that
isn't included in your layout directly, so it's very cheap to keep in your view hierarchy.

When you add a View via a ViewStub, the ViewStub only loads the View as and when it's
needed. This allows you to create complex layouts consisting of lots of small views, and
your UI will still render quickly and smoothly as you're not immediately populating your
user interface with lots of complex Views.

To use a ViewStub, you need to specify the layout you want to inflate using
the android:id attribute, for example:

<ViewStub
 android:id="@+id/popup"
 android:inflatedId="@+id/popup_import"
 android:layout="@layout/basic_popup"
 android:layout_height="wrap_content"
 android:layout_width="match_parent" />

Optimizing Your UI

[304]

When it's time to load your ViewStub's layout, you just need to set the ViewStub to
visible. To do this, either change the visibility of the stub by calling
setVisibility(View.VISIBLE):

((ViewStub) findViewById(R.id.popup)).setVisibility(View.VISIBLE);

Or invoke the inflate() method:

View importPopup = ((ViewStub) findViewById(R.id.popup)).inflate();

The inflated layout replaces the ViewStub, and at this point the ViewStub element is no
longer part of your view hierarchy.

ViewStub currently doesn't support the merge tag in the layouts to be
inflated.

Summary
In this chapter, I covered some of the most common performance problems you need to be
aware of when developing Android apps, including overdraw, memory leaks, and complex
view hierarchies.

We took an in-depth look at numerous tools you can use to check whether some of the most
common performance problems are affecting your Android projects. We also looked at how
to gather more information about any problems you do diagnose, so you're in a better
position to fix them.

There's just one chapter left to go! In the final chapter, I'm going to cover all the best
practices and guidelines that didn't fit neatly into any of the previous chapters. And since
security is such a big concern for mobile users and developers at the moment, I'll also show
you how to lock down your UI (and your app in general) so you can be confident that your
app isn't leaving users open to security vulnerabilities.

10
Best Practices and Securing

Your Application
The Android operating system was designed in anticipation of hackers attempting to
perform common attacks, such as social engineering attacks that try to trick the user into
handing over their personal information or installing malware.

Android comes with built-in security features that significantly reduce the chances of
security exploits succeeding, and that limit the impact of any attacks that do succeed.

These built-in security controls provide you, your application, and your users with a certain
level of protection by default. Nevertheless, following security best practices is essential for
further reducing the chances of your app leaving users vulnerable to exploits, data leaks,
and other security-related issues.

In this chapter, we're going to look at how you can make the most of Android's built-in
security features. Towards the end of this chapter, I'll also look at some best practices we
haven't covered in detail in any of the previous chapters, including how to design more
effective notifications and ensuring that your app is accessible to all users.

Keeping user data secure
The most common security concern for your typical Android user is whether the
applications they've chosen to install can access the sensitive data stored on their device.

If your app has access to the user's data, then you have a responsibility to make sure that
data remains secure. One of the quickest and easiest ways of protecting user data is to take a
long hard look at whether your app really needs access to this data at all. If you minimize
the data your app has access to in the first place, then you minimize the risk of your app

Best Practices and Securing Your Application

[306]

inadvertently exposing personal information. You also reduce the chances of attackers
being tempted to try and exploit your application in order to gain access to the sensitive
data it's privy to. You should always be on the lookout for ways to create the same effect
without your app requiring direct access to sensitive data.

Wherever possible, don't store usernames or passwords on the user's device. Instead, your
app should perform initial authentication using the username and password supplied by
the user, and then switch to a short-lived, service-specific authorization token.

To help protect your users from phishing attacks, you should also minimize the number of
times your app asks for user credentials. This way, a phishing attack is more likely to strike
the user as suspicious, as it'll be out of character for your app to ask for sensitive
information.

If your app does need access to passwords and usernames, keep in mind
that you may be legally required to provide a privacy policy explaining
how your app uses and stores this data.

Connecting to a network
Network transactions pose an inherent security risk, particularly since mobile users are
more likely to connect to unsecured wireless networks such as public Wi-Fi hotspots.

Whenever your app connects to a network, it's crucial that you implement the following
best practices, in order to help keep your users safe:

Use HTTPS over HTTP wherever possible. Also, never automatically trust any data
downloaded from insecure protocols such as HTTP.
Implement authenticated, encrypted, socket-level communication using
the SSLSocket class.
When you're handling sensitive IPC, use an Android IPC mechanism that can
authenticate the identity of the application connecting to your IPC, such as
a Binder, Intent, BroadcastReceiver, or Messenger with a Service. This
is more secure than using localhost network ports.
Don't use unauthenticated SMS data to perform sensitive commands. SMS are
neither encrypted nor strongly authenticated by default, and are therefore
susceptible to interception on the network.
When sending data messages from a web server to your app, you should use
the Google Cloud Messaging APIs and IP networking wherever possible.

Best Practices and Securing Your Application

[307]

Android N also introduces the concept of a network security configuration file, which you
can use to create custom network security settings for your app without having to modify
your actual application code. You can use this new network security configuration file to:

Specify which certificate authorities are trusted for your app's secure connections
Restrict an app's secure connections to specific, named certificates
Debug secure connections in your app without added risk to the installed base
Protect apps from accidentally using clear-text traffic, which is a particular
security risk as it transmits potentially sensitive data in a human-readable format

To create a network security configuration file, create a new XML values resource file with
the following path:

res/xml/network_security_config.xml:

Then reference this file in your project's Manifest:

<?xml version="1.0" encoding="utf-8"?>

...

<app ...>

 <meta-data android:name="android.security.net.config"
android:resource="@xml/network_security_config" />

...

</app>

The structure of a simple network configuration file is as follows:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <base-config>

//This is the default configuration used by all connections that are not
covered by a specific domain-config//

<trust-anchors>

<certificates src="@raw/trusted_cas"/>

//This is a reference to an XML file where you'd name any trusted
Certificate Authorities//

</trust-anchors>

Best Practices and Securing Your Application

[308]

 </base-config>

 <domain-config>

<domain>mydomain.com</domain>

...

...

 //This is where you'd create a configuration to use for connections to a
specific destination, in this example that's www.mydomain.com//

</domain-config>
</network-security-config>

Requesting permissions
Android devices do a lot—from snapping photos and recording videos, to providing
directions, posting to social media, and sending SMS messages. This means your typical
Android device has access to huge amounts of sensitive information.

The good news is that Android does a lot to help keep this information secure. The platform
is based on a privilege-separated system where apps run separately from one another and
from the system, in a limited-access sandbox. This restricts the data and features each app
has access to. By default, no Android app has permission to perform any operation that
could adversely affect the operating system, the user, or other applications, which helps
prevent malicious apps from corrupting data or accessing sensitive information. These
permissions also restrict each app's access to device features not provided by the basic
sandbox, protecting the user from apps making unauthorized use of hardware (such as
accessing the device's camera) or external communication channels (such as connecting to
the Internet).

However, there are legitimate reasons why your app might need to access the user's
information or device capabilities, such as an SMS app that requires access to your contacts
list or a video recording app that needs to access the device's camera. If your app does
require access to protected information or features, then you'll need to prompt the user for
access. The user then has the choice to accept or deny this permission request.

Originally, Android apps requested all the permissions they might possibly need up front
before the user could even download the app from Google Play. If the user didn't want to
grant the app one or more of the requested permissions, their only option was to abandon
the installation altogether, and go looking for an alternative app.

Best Practices and Securing Your Application

[309]

Android 6.0 completely overhauled this permissions model, replacing it with new runtime
permissions.

Beginning with Android 6.0, apps request permissions one by one while the app is running,
as and when that app requires access to protected services, data, or device features.

For example, imagine you'd developed a note-taking app that supports traditional text
notes, but also gives users the option to record voice memos. Before Android 6.0, the user
would have to grant this app permission to access the microphone at install time. However,
under the new permissions model, the user can launch your note-taking app and write as
many text memos as they want, potentially without the app ever requesting access to the
microphone. Your app will only request microphone access when the user tries to record a
voice memo for the first time, as this permission is required to complete the current task.

In Android 6.0 and higher, users can change an app's permissions manually at any time, by
opening their device's Settings and selecting Apps. At this point, they'll see a list of all the
apps installed on their device. They can then select any app from the list, and
tap Permissions to see all the permission categories this particular app has access to.

Best Practices and Securing Your Application

[310]

The user can revoke any permission, by dragging that permission's slider to the Off
position.

This new permission model has a number of benefits for both users and developers:

The user no longer has to read through a list of permissions before they can
install an app, which makes for a more streamlined installation process.
If you release an update that requires new permissions, previously the user had
to accept these permissions before they could install the update. In Android 6.0
and higher, apps update automatically and will then make any new permission
requests associated with the update, as and when (and if) those permissions are
required.
Users have more control over the information and features each app has access
to. The new permission model gives users the option to deny individual
permission requests, something that wasn't possible in previous versions of
Android. For example, a user who has downloaded an image-editing app may be
happy to give that app access to their gallery, but more hesitate to grant that
same app access to their device's camera. In previous versions of Android, the
user had to grant that app all the permissions it requested up front, or not install
the app at all. However in Android 6.0 and higher, the user is free to deny the
app access to their camera, if they're not comfortable with that particular
permission request.

Best Practices and Securing Your Application

[311]

Users are more likely to understand why your app is requesting each permission,
as requests now happen in context when the user is trying to access a related
feature for the first time. And when users understand why your app is requesting
access to sensitive information or device features, they're more likely to grant
those requests.

The new permissions model – backwards
compatibility
Under the new permissions model, users can revoke any permission they've previously
granted to any app, at any time, even if that app targets API level 22 or lower. This means
you need to test that your app continues to function normally if the user denies one or more
of its permission requests—regardless of your app's targetSdkVersion value.

Initially, if your app winds up on a device running Android 5.1 (API level 22) or lower, or
your app's targetSdkVersion is 22 or lower, the system defaults to the old permissions
model and makes all permission requests up front, at install time. If the user denies these
permissions requests, then the system won't install the app. Similarly, if you add a new
permission to an updated version of your app, the system will ask the user to grant these
new permissions before they can install the update.

However, users can still revoke previously granted permissions manually by selecting their
device's Settings, followed by Apps, and then selecting your app from the list.

If your app targets an earlier version of the Android platform and you haven't accounted for
the new permissions model, your app may no longer function normally (or at all) if the user
chooses to revoke one or more of your app's permissions manually. The system will warn
the user that revoking permissions for apps targeting earlier versions of Android can cause
the app in question to stop working, but the user still has the option to go ahead and revoke
these permissions, if they really want to.

Even if your app targets pre-6.0 versions of the Android platform only, you shouldn't just
assume that you can ignore the new permissions model. You should still aim to create an
app that provides a good user experience, even if the user chooses to revoke some (or all) of
its previously granted permissions.

Best Practices and Securing Your Application

[312]

Permission groups
Android's permissions are divided into two categories:

Normal permissions:

These permissions give your app access to data or resources outside of
its sandbox, but pose very little direct risk to the user's privacy, the
operation of the device, or to other apps.

If you declare that your app requires a normal permission in its
Manifest, the system will automatically grant your app that
permission.

Dangerous permissions:

These permissions give your app access to data or resources that could
pose a risk to the user's privacy, or that may affect the user's stored data,
other apps, or the device's normal operation. For example, being able to
read the user's contacts list is considered a dangerous permission.

If the user's device is running Android 6.0 (API Level 23) or higher and
your app's targetSdkVersion is 23 or higher, then dangerous
permissions trigger a permission request only when the user tries to
perform an operation that requires this permission. For example, if your
app requires the READ_CONTACTS permission, the system may ask for
that permission the first time the user tries to create an SMS message.

If your app winds up on a device running Android 5.1 or lower, or its
targetSdkVersion is 22 or lower, the Android system will ask the user
to grant all dangerous permissions at install time.

In addition to the normal and dangerous ratings, Android groups related permissions into
permission groups. When your app requests access to a permission, the user will be
presented with a dialogue requesting access to that entire permissions group.

If your app requests a dangerous permission and the user has already granted your app
access to another dangerous permission from that same group, the system will grant that
permission automatically without requiring any additional input from the user.

This approach helps mobile users make more informed decisions about what parts of their
device and what information each app should have access to without overwhelming them
with technical information or too many permission requests.

Best Practices and Securing Your Application

[313]

Permissions are divided into nine groups:

Calendar
Camera
Contacts
Location
Microphone
Phone
Body sensors
SMS
Storage

Declaring permissions
As you develop your app, make a note every time your app requires access to resources or
information that it doesn't create itself, or whenever it attempts to perform actions that
could impact the user's privacy, the behavior of other apps, or the device in general. Most of
the time these actions will require your app to make a permissions request.

To declare a permission, open your project's Manifest and add a <uses-permission>
element as a child of the top-level <manifest> element:

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.me.app.myapp" >

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
android:label="@string/permlab_fineLocation"

//Provide a label for each permission your app requests, using
android:label. This label is displayed to the user when they're viewing a
list of permissions. Try to keep this label short - a few words will
usually be sufficient//

android:description="@string/permdesc_fineLocation"

//Describe what granting this permission request will allow your app to do,
using the android:description attribute. Ideally, your descriptions will be
two sentences long - the first should describe the permission that's being
requested, and the second should warn the user about the dangers of
granting this particular permission//

Best Practices and Securing Your Application

[314]

android:protectionLevel="dangerous" />

//Indicates the potential risk associated with this permission. The
possible values are normal, dangerous, signature, and SignatureOrSystem//
 ...
</manifest>

Here's how the string resources for this permission's label and description might look:

 <string name="permlab_fineLocation">Precise location (GPS and network-
based)</string>

 <string name="permdesc_fineLocation">
This app will be able to retrieve your precise location using the GPS or
network location sources. Apps may consume additional battery power while
using location services</string>

Verifying permissions
Your app won't always need to ask for permission to access protected information or
features—if your app currently has access to the microphone, then it won't need to request
this permission, for example. However, since users running Android 6.0 and higher can
revoke previously granted permissions at any time, your app will need to check whether it
currently has access to protected information or features, every time it needs to act on the
related permission. Even if the user granted this permission previously, in Android 6.0 and
higher there's no guarantee the user hasn't manually revoked that permission at some point.

To determine whether your app currently has permission to access information or features,
you need to call the ContextCompat.checkSelfPermission()method. For example, this
code snippet shows you how to check whether your app has permission to access the
Internet:

int permissionCheck = ContextCompat.checkSelfPermission(this,
Manifest.permission.INTERNET);

ContextCompat.checkSelfPermission() is available as part of
revision 23 of the support-v4 library for backwards compatibility (h t
t p : / / d e v e l o p e r . a n d r o i d . c o m / t o o l s / s u p p o r t - l i b r a r y / f e a t u r e s
. h t m l ? u t m _ c a m p a i g n = r u n t i m e - p e r m i s s i o n s - 8 2 7 & u t m _ s o u r c e = d a c

& u t m _ m e d i u m = b l o g # v 4).

http://developer.android.com/tools/support-library/features.html?utm_campaign=runtime-permissions-827&utm_source=dac&utm_medium=blog#v4
http://developer.android.com/tools/support-library/features.html?utm_campaign=runtime-permissions-827&utm_source=dac&utm_medium=blog#v4
http://developer.android.com/tools/support-library/features.html?utm_campaign=runtime-permissions-827&utm_source=dac&utm_medium=blog#v4
http://developer.android.com/tools/support-library/features.html?utm_campaign=runtime-permissions-827&utm_source=dac&utm_medium=blog#v4

Best Practices and Securing Your Application

[315]

If your app currently has access to the requested permission,
ContextCompat.checkSelfPermission will
return PackageManager.PERMISSION_GRANTED and your app can proceed with the
operation. If the user hasn't granted your app this permission, or they granted the
permission but then revoked it at some point, this method
returns PackageManager.PERMISSION_DENIED and you'll need to request that permission
by calling one of the requestPermission methods:

if (ContextCompat.checkSelfPermission(myActivity,
Manifest.permission.INTERNET)

//Does this app have permission to access the Internet?//

!= PackageManager.PERMISSION_GRANTED) {
if (ActivityCompat.shouldShowRequestPermissionRationale(myActivity,

Manifest.permission.INTERNET)) {

//If shouldShowRequestPermissionRationale returns true, the app doesn't
currently have this permission, and you'll need to request access//

..........
..........

 } else {

ActivityCompat.requestPermissions(myActivity,

//Request the permission. Note, when your app calls
requestPermissions(),the system displays a standard dialogue that you
cannot customize. If you want to provide some additional information, such
as an explanation about why your app needs this permission, you must do so
before calling requestPermissions()//

new String[]{Manifest.permission.INTERNET},
MY_PERMISSIONS_REQUEST_INTERNET);

 }
}

Handling the permissions request response
When your app makes a permission request, the system presents a dialogue to the user.
When the user responds, the system invokes your app's
onRequestPermissionsResult() method and passes it the user's response. To find out
whether the user has granted or denied the permission request, your app needs to override
that method:

@Override

Best Practices and Securing Your Application

[316]

public void onRequestPermissionsResult(int requestCode,
String permissions[], int[] grantResults) {

//The Activity's onRequestPermissionsResult method is called and passes the
user's response//
 switch (requestCode) {

case MY_PERMISSIONS_REQUEST_INTERNET: {
if (grantResults[0] ==

PackageManager.PERMISSION_GRANTED) {
........
.........
// If the user has granted the permission, this is where you'd perform your
app's Internet-related tasks//

} else {
.......
.......
// The user has denied the permission request. This is where you'd disable
the functionality that depends on Internet access. Since denying a
permission may prevent parts of your app from working correctly, you may
also want to provide some feedback explaining what impact denying this
permission will have on your app's functionality//

}
return;

}

 }
}

Permissions and <uses-feature>
It's possible that your app may rely on certain hardware or software features being present
on the user's device, for example your typical camera app will almost certainly require a
device with camera hardware.

To prevent users from installing your app on devices that don't have the hardware or
software necessary to support it, you need to add the <uses-feature> declaration to your
project's Manifest:

<uses-feature android:name="android.hardware.camera" />

You then specify whether your app requires this feature to function at all (true) or whether
it prefers to have this feature but can function without it if necessary (false):

<uses-feature android:name="android.hardware.camera"
android:required="true"/>

Best Practices and Securing Your Application

[317]

Although the Android system won't check your app's Manifest for <uses-feature>
elements, Google Play does use your app's <uses-feature> elements to decide whether
your app is compatible with the user's device. Google Play won't allow any user to install
an app that it deems incompatible with their device's hardware or software.

If you add <uses-feature> elements to your Manifest but don't
include the android:required attribute, Google Play assumes that your
app requires this feature (android:required="true").

Ideally, you should declare all your project's hardware and software requirements, but
there are a few safeguards in place just in case you forget to mention one or more <uses-
feature> elements.

Google Play checks your app's regular permissions for any implicit hardware-related
features. If it finds any, it adds the corresponding hardware or software feature to your
app's metadata, and then takes these into account when deciding whether each potential
user can or cannot install your app.

This does help to prevent users from downloading incompatible apps, but it can also be a
bit of a nuisance. Imagine your app requests android.permission.CAMERA but you didn't
include <uses-feature android:name="android.hardware.camera"> in
your Manifest. In this scenario, Google Play will assume that your app requires camera
hardware to function, and consequently won't allow anyone to install your app on a device
that doesn't have a camera. If your app doesn't actually require a camera, this
misunderstanding could prevent people with perfectly compatible devices from installing
your app.

To prevent this misunderstanding, you need to open your project's Manifest and specify
that a camera is preferred, but not essential:

<uses-feature android:name="android.hardware.camera"
android:required="false" />

For a full list of all the permissions that imply feature requirements, check out the official
Android docs (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / g u i d e / t o p i c s / m a n i f e s t / u s e s - f e a
t u r e - e l e m e n t . h t m l # p e r m i s s i o n s).

Declaring a <uses-feature> doesn't automatically grant your app
permission to access the related features or information. You'll still need to
request every permission your app requires, as normal.

http://developer.android.com/guide/topics/manifest/uses-feature-element.html#permissions
http://developer.android.com/guide/topics/manifest/uses-feature-element.html#permissions

Best Practices and Securing Your Application

[318]

Best practices for app permissions
Despite everything this new runtime permissions model has to offer, it does present
developers with a few new challenges. Firstly, since your app can request permissions at
any time, issuing your permission requests at exactly the right time is now an important
part of the user experience.

Secondly, since the user can now deny individual permissions, you'll need to ensure that
your app continues to provide a good experience regardless of whether the user chooses to
deny one or more of your application's permission requests.

This doesn't mean that your app has to function even if the user
consistently denies its requests. It's possible that denying a certain
permission may render your app completely unable to perform its core
functionality. However, even if this is the case, you can still provide a
good user experience by letting the user know why your app has suddenly
stopped working. For example, whenever the user tries to launch your
app, you might display a dialogue box listing all the missing permissions
that your app requires in order to function, and then giving the user an
easy way of granting these permissions.

In this section, we're going to look at all the best practices surrounding permissions, so you
can make more informed decisions about which permissions your app requests, in addition
to when and where it issues those requests.

Making as few permission requests as possible
This is the golden rule of permission requests.

Permissions are designed to protect the user and the device, so your app should only
request permissions that it requires to function. Research (h t t p : / / r e p o s i t o r y . c m u . e d u /
h c i i / 2 6 8) suggests that the amount and type of permissions an app requests directly
affects user behavior. When confronted with two apps that have similar functionality, users
are more likely to opt for the one that requires fewer permissions.

If you're going to reach the widest possible audience, you need to limit the number of
permissions your app requires. This is particularly important under the new permissions
model, as requests are made as the user is interacting with your app. Imagine you've got
lost on your way to an important meeting—you open up the map application you
downloaded the night before, only to be confronted with permission requests every time
you try to interact with the app. Not what you want when you're in a rush! It's incredibly
easy to overwhelm a busy, multi-tasking mobile user with too much information.

http://repository.cmu.edu/hcii/268
http://repository.cmu.edu/hcii/268

Best Practices and Securing Your Application

[319]

If in doubt, remember that it's easier to add permissions to your app later via updates, than
it is to remove them—so it's better to play it safe with a less-is-more approach.

Automatic permission adjustments
New releases of the Android platform may bring new restrictions, which
can result in your app needing to request permissions that it didn't
previously require. To make sure your app continues to work for users
who are running the latest and greatest version of Android, the system
may step in and automatically add these new permission requests to your
project's Manifest.
When deciding whether to automatically add permissions to your app,
Android takes a look at your app's targetSdkVersion. If the value is
lower than the version where the new permissions were added, the system
may add these permissions automatically. This can result in your app
requesting permissions that it doesn't necessarily need—definitely not a
good thing!
To avoid this, make it a priority to test your project against new releases of
the Android platform, and then update your targetSdkVersion as soon
as you're confident that your app is compatible with this latest release.

Requesting critical permissions up front
If your app's core functionality hinges on having access to certain permissions, you should
request these critical permissions up front. This is because users are more likely to take the
time to read and therefore grant permission dialogues the first time they launch your app,
rather than grant permission requests that interrupt them when they're midway through
performing an important task in your app.

For non-critical permissions, you should wait until the user tries to access a related feature
and then request that permission in context.

Providing extra information where necessary
Ideally, your permission requests should be self-explanatory, especially on devices running
Android 6.0 or higher, where apps request permissions in context. For example, if a user
taps your app's Take a photo for your profile picture button, chances are they aren't going
to be confused when your app requests access to their camera.

Best Practices and Securing Your Application

[320]

However, if you suspect that it may not be immediately obvious why your app is
requesting a certain permission, then you'll want to provide the user with some more
information. Your users are always going to feel more comfortable when they understand
why an app is requesting access to information or features. If you don't provide this
information, then your users may suspect that you're leaving them in the dark on purpose.

Just be wary of explaining everything. You shouldn't need to provide an explanation for
every permission your app requests. If you overwhelm the user with too much information,
they're going to get frustrated by the constant interruptions, and may end up either skim-
reading your explanations (bad) or skipping them completely (worse).

If you find yourself providing an explanation every time your app makes a permission
request, this may be an indication of a deeper problem with how your app is handling
sensitive data or using device features. Maybe your app is requesting too many
permissions? Or maybe it's requesting miscellaneous permissions that are unrelated to its
core functionality?

Remember that permission request dialogues aren't the only way of communicating with
your users. You may want to consider other ways of giving the user the information they
need to better understand the context of your app's permission requests. For example, you
could:

Add this information to your app's Google Play description.
Create a privacy policy outlining the information your app needs access to and
how it uses this information.
Create support documentation that your users can turn to if they need more
information, such as an online user manual or a Help section inside your app.
Update your UI so permission requests are more self-explanatory. Your users
may be confused if they tap a stock avatar and your app suddenly requests access
to their camera, however if the stock photo has a Tap here to take a profile
picture label, then your users are far less likely to be confused.
Create dedicated support channels for your users such as forums, social media
pages, or an e-mail address where they can reach out to you with any questions.

Paying attention to permissions required by libraries
When you include a library in your project, your project inherits any permissions that
library requests. Before you use any library, always check what permissions that library
requires, and what it uses those permissions for.

Best Practices and Securing Your Application

[321]

Adding multiple libraries to your project without checking their permissions first can
quickly land you in hot water with your users, as from the user's perspective it's your app
that's making these requests, and not an external library. These libraries may even request
permissions that seem completely unrelated to your app, potentially making your users
even more suspicious.

If you need to include a library in your project but are concerned that it requires too many
permissions, then you can always look for an alternative library that provides similar
functionality but doesn't make quite so many permission requests.

Being transparent about accessing the camera and
microphone
Sometimes your app may need to access particularly sensitive features, such as the device's
camera or microphone. Most of the time your app won't require constant access to these
features, but once the user has granted your app access, how do they know that it isn't
constantly pulling information from their microphone and camera?

No one likes to feel they're being watched, so you should be up front about when your app
is accessing the device's camera or microphone. For example, you could display a pop-up
with a timer indicating that your app is going to turn the device's camera on in 3, 2, 1, or
you could display a flashing microphone icon in the corner of the screen whenever your
app is listening to the user.

Considering alternatives
Even if your app does require access to protected information or features, you may be able
to engineer your app so it doesn't have to make these requests itself.

An app only needs to request permissions for actions that it performs directly – not when
it's asking other apps to perform a task on its behalf, or supply it with information. For
example, instead of requesting access to the device's camera, you could
use MediaStore.ACTION_IMAGE_CAPTURE to launch a camera app that the user has
already installed on their device. You can also use system intents to request information
from other apps, such as requesting contact information from the user's Contacts app,
rather than issuing the READ_CONTACTS permission.

The major downside to this approach is that it presents the user with a dialogue every time
your app needs to access the protected information or feature, so consider whether the
frequency or timing of these requests is likely to irritate your users.

Best Practices and Securing Your Application

[322]

Notifications
Notifications underwent a massive overhaul in Android Lollipop, getting both a Material
Design makeover and new methods that help Android sort notifications more intelligently.

In Android 5.0 and higher, you can annotate your notifications with the setPriority()
method. Low-priority notifications may be hidden from the user, while higher-priority
notifications are more likely to interrupt whatever the user is currently doing.

The different priority levels are:

Notification.PRIORITY_MAX: Used for critical and urgent notifications that
alert the user to a condition that's time-sensitive, or that they may need to resolve
before they can continue with the current task.
Notification.PRIORITY_HIGH: Typically used for important communications
such as chat messages. High-priority notifications appear in a floating heads-
up window that contains action buttons. Action buttons allow the user to act on,
or dismiss, the heads-up notification without having to navigate away from the
current screen.
Notification.PRIORITY_LOW: Used for less urgent notifications.
Notification.PRIORITY_MIN: Used for contextual or background information.
Minimum-priority notifications aren't usually shown to the user except under
special circumstances, such as detailed notification logs.
Notification.PRIORITY_DEFAULT: You can use this priority flag for all
notifications that don't fall into any of the more specific priority categories.

Many Android devices feature a notification LED that you can use to inform users about
events that are happening inside your app, even when the screen is off. Assigning your
app's notifications a priority level of MAX, HIGH, or DEFAULT should cause the LED to glow.

In Android 5.0 and higher, notifications also appear on the device's lockscreen, which
means you need to consider whether your notifications contain information that users
might not want to appear on their lockscreen for the whole world to see.

You can use setVisibility() to tell Android how much information it should display on
the lockscreen, and assign it one of the following values:

VISIBILITY_SECRET: No part of the notification appears on the lockscreen. This
is recommended if your app's notifications contain personal or potentially
embarrassing information.

Best Practices and Securing Your Application

[323]

VISIBILITY_PRIVATE: The notification displays some basic information on the
lockscreen, but most of the information is hidden.
VISIBILITY_PUBLIC: The notification appears on the lockscreen in its entirety.

Notification best practices
Design your notifications well, and they'll provide real value to your users—plus, they'll
serve as a handy way of enticing users back to your app, by presenting them with
interesting and timely updates about events that are happening inside your application.

To make the most out of Android's notification system, you should keep the following best
practices in mind.

Providing the right content
At the very least, your notifications should contain:

A title (setContentTitle) and secondary text (setContentText)
A timestamp; note this indicates when the event occurred and not when the
notification was posted
The notification type (optional)

To make sure the user can recognize your app's pending notifications in the system bar, you
should include a distinct app icon (setSmallIcon).

Your notification icon should be simple and avoid any excessive detail, but at the same time
it must be eye-catching and distinct from the other notification icons users may encounter.
You should use the Material Light action bar icon style and avoid opaque
backgrounds—basically, your notification icon should be a white-on-transparent
background image.

If you're struggling for inspiration, try booting up your Android device and taking a look at
the kind of notification icons other applications are using.

Using notifications sparingly
Every time you issue a notification, you're interrupting whatever the user is doing at that
moment, so it's important you use notifications sparingly.

Best Practices and Securing Your Application

[324]

You should never use notifications to alert the user about background operations that don't
require their input or that aren't time-sensitive. You also shouldn't use notifications to alert
the user about events that are already happening on screen. Instead, inform the user about
these events in context via your app's UI. For example, if the user has unlocked a new level
in your gaming app, and that app is currently on screen, you should alert them via an on
screen message rather than firing off a notification.

Even though notifications can be useful for reminding the user about your application, you
should never use unnecessary notifications to tempt the user into launching your app. In the
long run, unimportant or unwanted notifications are only going to make users view your
app as an attention-seeker, which may even lead to them uninstalling your app and leaving
you a negative review on Google Play.

Giving users a choice
Ideally, you should give your users the option to change your app's notifications settings,
such as switching between sound alerts and vibration alerts, or even allowing users to
disable notifications entirely.

Categorising notifications
When ranking and filtering notifications, the Android system may take an app's category
into consideration, so you should assign a suitable category to each of your app's
notifications. To do this, use the setCategory() option and choose from the following
supported categories:

CATEGORY_ALARM: Alarm or timer
CATEGORY_CALL: An incoming voice or video call
CATEGORY_EMAIL: Asynchronous bulk message
CATEGORY_ERROR: An error in a background operation
CATEGORY_EVENT: Calendar event
CATEGORY_MESSAGE: Incoming direct message, such as an SMS
CATEGORY_PROGRESS: The progress of an operation running in the background
CATEGORY_PROMO: A promotion or advert
CATEGORY_RECOMMENDATION: A specific, timely recommendation
CATEGORY_SERVICE: An indication of a service that's running in the background
CATEGORY_SOCIAL: A social network or sharing update
CATEGORY_STATUS: Ongoing information about device or contextual status

Best Practices and Securing Your Application

[325]

CATEGORY_SYSTEM: This category is reserved for system or device status updates
CATEGORY_TRANSPORT: Media transport control for playback

Making use of actions
You can also add action buttons to your notifications. Action buttons allow users to perform
common tasks from the notification UI, without them having to open the originating app.

You add a button to your notification using the following syntax:

NotificationCompat.Builder nBuilder = new
NotificationCompat.Builder(context)
 .setContentTitle("This is a notification title")

//Sets the notification's title//

 .setContentText("This is the notification's body text.")

//Sets the second line of the notification's text//

 .addAction(R.drawable.accept, "Download", pIntent)

//Adds a 'Download' action to this notification, complete with icon//

 .addAction(R.drawable.cancel, "Cancel", pIntent);

//Adds a 'Cancel' button, complete with icon - this time the
R.drawable.cancel icon//

Each action should have its own icon and its own name.

Although optional, it's generally a good idea to add at least one action to each of your app's
notifications. Just don't get carried away—limit yourself to a maximum of three actions per
notification.

Best Practices and Securing Your Application

[326]

Using expanded layouts
For users running Android 4.1 and higher, you can supply two different visual styles for
each of your app's notifications:

Normal view: This is the default, compact layout.
Big view style: A separate layout that appears when the user expands your
notification by pinching or dragging it open.

You have a choice of three different big view styles.

Big text style
This layout provides additional text that's displayed in the detail area of the expanded
notification, in place of the notification's regular setContentText:

.setStyle(new NotificationCompat.BigTextStyle()
 .bigText("This text replaces the context text in the big
view"))

Big picture style
This layout includes a large image attachment:

.setStyle(new Notification.BigPictureStyle()
 .bigPicture(aBigImage))

Inbox style
This layout includes a list of up to five items:

.setStyle(new Notification.InboxStyle()
 .addLine(string1)
 .addLine(string2)
 .addLine(string3)
 .setSummaryText("+2 more"))

Direct reply notifications
Google are adding a few new features to notifications in the upcoming release of Android
N, including an inline reply action button that allows users to reply directly from the
notification UI.

Best Practices and Securing Your Application

[327]

Direct reply notifications are particularly big news for messaging apps, as they give users
the ability to reply without even having to launch the messaging app. You may have
already encountered direct reply notifications in Google Hangouts.

To create a notification action that supports direct reply, you need to create an instance of
RemoteInput.Builder and then add it to your notification action.

The following code adds a RemoteInput to a Notification.Action, and creates a Quick
Reply key. When the user triggers the action, the notification prompts the user to input
their response:

private static final String KEY_QUICK_REPLY = "key_quick_reply";
String replyLabel = getResources().getString(R.string.reply_label);
RemoteInput remoteInput = new RemoteInput.Builder(KEY_QUICK_REPLY)
 .setLabel(replyLabel)
 .build();

To retrieve the user's input from the notification interface, you need to call
getResultsFromIntent(Intent) and pass the notification action's intent as the input
parameter:

 Bundle remoteInput =
 RemoteInput.getResultsFromIntent(intent);

//This method returns a Bundle that contains the text response//

 if (remoteInput != null) {
 return remoteInput.getCharSequence(KEY_QUICK_REPLY);

//Query the bundle using the result key, which is provided to the
RemoteInput.Builder constructor//

Bundled notifications
Don't you just hate it when you connect to the Internet first thing in the morning and your
Gmail app instantly bombards you with a 4 new messages notification, but doesn't give
you any more information about those individual e-mails? Not particularly helpful!

When you receive a notification that consists of multiple items, the only thing you can really
do is open the app and take a look at the individual events that make up this grouped
notification.

Best Practices and Securing Your Application

[328]

However, the upcoming release of Android N promises to fix this problem by introducing
bundled notifications. This new notification style allows you to group multiple
notifications from the same app into a single, bundled notification. A bundled notification
consists of a parent notification that displays summary information for that group, plus
individual notification items.

If the user wants to see more information about these individual items, they can unfurl the
bundled notification card into separate, smaller notifications by swiping down with two
fingers. When the user expands a bundled notification, the system reveals more information
about each child notification. The user can then act on each of these mini-notifications
individually, for example they might choose to dismiss the first three notifications about
spam e-mails, but open the fourth e-mail. This is similar to the Notification Stacks feature
you may have encountered in Android Wear.

Bundled notifications are particularly useful when your app has the
potential to generate multiple notifications where each child notification is
actionable.

To group notifications, call setGroup() for each notification you want to add to the same
notification stack, and then assign these notifications the same key:

final static String GROUP_KEY_MESSAGES = "group_key_messages";
Notification notif = new NotificationCompat.Builder(mContext)

.setContentTitle("New SMS from " + sender1)

.setContentText(subject1)

.setSmallIcon(R.drawable.new_message)

.setGroup(GROUP_KEY_MESSAGES)

.build();

When you create another notification that belongs to this stack, you just need to assign it the
same group key:

Notification notif2 = new NotificationCompat.Builder(mContext)
 .setContentTitle("New SMS from " + sender1)
 .setContentText(subject2)

.setGroup(GROUP_KEY_MESSAGES)
 .build();

Best Practices and Securing Your Application

[329]

Application widgets
Widgets provide users with a small, convenient sample of your application's most
important data, typically from the comfort of their home screen.

To create a basic app widget, you need to complete the process described in the following
sections.

Declaring an AppWidgetProvider class in your
project's Manifest
The AppWidgetProvider class defines the methods that allow you to programmatically
interact with your app widget based on broadcast events.

Here's an example of a basic AppWidgetProvider implementation:

<receiver android:name="MyAppWidgetProvider" >

//Specifies the AppWidgetProvider that's used by this widget//

 <intent-filter>

<action android:name="android.appwidget.action.APPWIDGET_UPDATE" />

//The <action> element specifies that this AppWidgetProvider accepts the
ACTION_APPWIDGET_UPDATE. This is the only broadcast event you need to
declare explicitly, as the AppWidgetManager class forwards all other app
widget broadcasts to the AppWidgetProvider automatically//

 </intent-filter>

 <meta-data android:name="android.appwidget.provider"

//Specifies the AppWidgetProviderInfo resource, which in this example is
android.appwidget.provider//

android:resource="@xml/my_appwidget_info" />

//The <meta-data> element also requires an android:resource attribute,
which specifies the location of the AppWidgetProviderInfo resource//

</receiver>

Best Practices and Securing Your Application

[330]

Creating an AppWidgetProviderInfo file
The next step is defining the basic qualities of your widget, such as its minimum width and
height, and how often it's updated. Create a res/xml directory, if your project doesn't
already contain one, and then create a new XML layout file. In this example, we're
using my_appwidget_info.xml:

<appwidget-provider
xmlns:android="http://schemas.android.com/apk/res/android"

 android:minWidth="50dp"

 android:minHeight="50dp"

//Specifies the minimum height and width the widget consumes by default//

 android:updatePeriodMillis="80000000"

//This is how often the app widget framework requests an update from the
AppWidgetProvider. By default, if the device is asleep when the widget
requests an update, the device will wake up in order to perform this
operation. For the sake of the user's battery, don't set this value too
low//

 android:initialLayout="@layout/my_appwidget"

//The layout resource where you'll define the widget's layout//

 android:resizeMode="horizontal"

//Specifies how the widget can be resized. The possible values are
horizontal, vertical, and none. You can also combine these values, for
example android:resizeMode="horizontal|vertical"//

 android:widgetCategory="home_screen">

//Declares whether your widget can be displayed on the home screen
(home_screen), the lockscreen (keyguard) or both. Only devices running
lower than Android 5.0 support lockscreen widgets//

</appwidget-provider>

Best Practices and Securing Your Application

[331]

Creating the widget's layout
You define your widget's layout in XML in the same way you create a regular layout
resource file. The only major difference is that app widget layouts are based on
RemoteViews, which don't support every layout and view.

As a result, app widgets support the following layout classes only:

FrameLayout

GridLayout

LinearLayout

RelativeLayout

They also only support the following widget classes:

AdapterViewFlipper

AnalogClock

Button

Chronometer

GridView

ImageButton

ImageView

ListView

ProgressBar

StackView

TextView

ViewFlipper

RemoteViews also support ViewStubs.

App widget best practices
Well-designed app widgets that display useful information serve as a constant reminder
about how great your app is, tempting the user to launch your application—or at the very
least, making them less likely to uninstall your app.

Best Practices and Securing Your Application

[332]

To make sure your widget presents your application in the best possible light, make sure
you adhere to the following best practices.

Including margins for earlier versions of Android
Your widgets shouldn't extend to the edges of the screen or bump up against other widgets,
as this can make the user's home screen look messy and cluttered. The solution is to add a
margin around each edge of your widgets, something that Android 4.0 and higher does
automatically whenever the user places a widget on their home screen. To take advantage
of this behavior, you just need to set your app's targetSdkVersion to 14 or greater.

Since Android 4.0 and greater applies margins to your app automatically, you shouldn't
add any extra margins to your widget when it's installed on devices running Android 4.0
and over. However you will still need to add margins when your app is installed on devices
running earlier versions of Android.

The solution is to create two dimens.xml files that specify different margins for different
versions of Android:

res/values-v14/dimens.xml: This file defines the 0dp margins for devices
running Android 4.0 and greater:

 <dimen name="widget_margins">0dp</dimen>

res/values/dimens.xml: This file defines the margins for devices running
versions of Android lower than 4.0:

 <dimen name="widget_margins">10dp</dimen>

You can then reference these dimens.xml values in your widget's layout resource file, and
the Android system will select the appropriate widget_margins value at runtime:

android:padding="@dimen/widget_margins"

Providing flexible graphics and layouts
The Android home screen is divided into a grid. The user can place app widgets inside free
cells, and then stretch them horizontally and/or vertically to occupy a different number of
cells.

To ensure your widget's layout is flexible enough to be able to adapt to different grid sizes,
you should define your widget's background using stretchable nine-patch images, and then
use flexible layouts such as LinearLayout, RelativeLayout or FrameLayout.

Best Practices and Securing Your Application

[333]

Not updating too often
If the device is asleep when the app widget framework requests an update from the
AppWidgetProvider, the device will wake up in order to perform this operation.
Requesting too many updates is a surefire way to drain the user's battery and may result in
them uninstalling your app, or at the very least banishing your app widget from their home
screen.

It's important to consider how often your widget really needs to receive new information,
for example you'll typically need to update a weather or news widget less often than a
widget that alerts users about incoming e-mails.

If you're building a widget that does require frequent updates, then it's generally a good
idea to perform these updates based on an alarm that won't wake the device. If this alarm
goes off while the device is asleep, this update won't be performed until the next time the
device wakes up, so it has less impact on the device's battery.

To create this kind of alarm, use the AlarmManager to set an alarm with an Intent that
your AppWidgetProvider receives, and then set the alarm type to
either ELAPSED_REALTIME or RTC, for example:

alarmManager.setRepeating(AlarmManager.RTC...

Finally, set the widget's updatePeriodMillis to zero so it won't override your alarm and
wake the device.

Accessibility best practices
Your app is only truly accessible when everyone can navigate it, understand it, and use it
successfully, including people who may have visual, physical, or age-related limitations.

Android has several in built accessibility features that help you optimize your app for users
with visual or physical disabilities, so the good news is that, in most cases, creating an
accessible app won't require any extensive changes to your code.

In this section, I'll show you how to use these built-in platform features to make sure
everyone can enjoy using your app.

If your app is part of a team effort, then it's important that everyone on
your team keeps accessibility in mind. If you're working with a designer
or a team of testers, then it's a good idea to make sure they're also familiar
with the following accessibility guidelines.

Best Practices and Securing Your Application

[334]

Adding descriptive text to your UI controls
If you've designed your UI well, you shouldn't have to add an explicit label to every on
screen element, for example a button with a telephone icon inside a Contacts app has a
pretty obvious purpose. However, users with vision impairments may not be able to pick
up on these visual clues, so you'll need to provide them with some additional information.

You should provide content descriptions for every UI component that doesn't feature
visible text. Also consider whether these descriptions alone provide sufficient context for
the user to fully understand the related visual elements—without any visual context, a
Delete or Call the selected contact content description may not be particularly helpful.

The text in the description attribute doesn't appear on screen, but if the user enables speech-
based accessibility services such as TalkBack, this description is read aloud when the user
navigates to that item.

You can add a description using the android:contentDescription XML layout
attribute:

<ImageButton
 android:id="@+id/newSMS"
 android:src="@drawable/newSMS"
 android:contentDescription="@string/newSMS"/>

Imagine that the value of @string/newSMS is Create a new SMS message. When the
user hovers over this icon with an accessibility service enabled, this description will be read
aloud and the user will then understand what this UI element does.

For EditTexts, your top priority should be helping the user to
understand what content they're expected to enter into this empty field, so
you should provide an android:hint attribute instead of a content
description. Once the user has entered some text into the EditText, the
accessibility service will read this text aloud, instead of the android:hint
value.

There'll be situations where you want to base an item's content description on dynamic
elements, such as the state of a slider or the currently selected text in a list. If this is the case,
then you'll need to edit the content description at runtime using the
setContentDescription() method.

Best Practices and Securing Your Application

[335]

Providing descriptions is particularly important for ImageButton, ImageView,
and Checkbox components, but you should add content descriptions wherever you suspect
that users with different abilities might benefit from some additional information. Just don't
get carried away and add unnecessary descriptions, as this just increases the noise the user
encounters as they're trying to decipher your UI, making it more difficult for them to pull
useful information from their accessibility service.

Wherever possible, use Android's standard controls as they have ContentDescriptions
built in by default, and therefore work automatically with accessibility services such as
TalkBack.

Designing for focus navigation
Focus navigation is where your users employ directional controls to navigate the individual
elements that make up your app's UI, similar to the four-way remote control navigation on
a television. Users with limited vision or limited manual dexterity often use this mode of
navigation instead of touchscreen navigation.

Directional controllers can be software-based or hardware-based, such as a trackball, D-pad,
or external keyboard. Users may also choose to enable the gestures navigation mode
available in devices running Android 4.1 and higher.

To make sure your users can successfully navigate your app using a directional controller,
you need to verify that all your UI input controls can be reached and activated without
using the touchscreen. You should also verify that clicking a directional controller's center,
or OK button, has the same effect as touching a control that already has focus.

In order to support focus navigation, you should ensure that all your app's navigational
elements are focusable. You can achieve this by adding the android:focusable="true"
attribute to your UI elements, or perform this modification at runtime using
the View.setFocusable() method on each UI control.

The UI controls provided by the Android framework are focusable by default, and the
system visually indicates focus by changing the control's appearance.

When a user navigates in any direction using directional controls, focus is passed from one
UI element to another, as determined by the focus order. The system determines the focus
order automatically based on an algorithm that finds the nearest neighbor in a given
direction.

Best Practices and Securing Your Application

[336]

However, sometimes the results may not be quite what you had in mind, or they may not
provide the best experience for the user. If this is the case, Android provides four optional
XML attributes that you can use to override this automatic focus order and dictate exactly
which view will receive focus when the user navigates in that direction:

android:nextFocusUp: Defines the next view to receive focus when the user
navigates up
android:nextFocusDown: Defines the next view to receive focus when the user
navigates down
android:nextFocusLeft: Defines the next view to receive focus when the user
navigates left
android:nextFocusRight: Defines the next view to receive focus when the
user navigates right

The following example XML shows two focusable UI elements where the
android:nextFocusDown and android:nextFocusUp attributes have been set explicitly.
The Button is located to the right of the TextView, however thanks to the magic
of nextFocus properties, the user can reach the Button element by pressing the down
arrow when the focus is on TextView:

 <TextView android:id="@+id/text"
 android:text="Hello, world"
 android:focusable="true"
 android:nextFocusDown="@+id/Button"
 ... />
 <Button android:id="@+id/button"
 android:focusable="true"
 android:nextFocusUp="@id/text"
 ... />

The easiest way to test your navigation is to run your app in the emulator and navigate
around your UI using the emulator's arrow keys and OK button only. Check that the
navigation works as expected in all directions, including when you're navigating in reverse.

You can also modify the focus order of UI components at runtime, using
methods such as
setNextFocusDownId() and setNextFocusRightId().

Best Practices and Securing Your Application

[337]

Custom view controls
If you build custom interface controls, make sure you implement accessibility interfaces for
these custom views and provide content descriptions.

If you want your custom controls to be compatible with all versions of
Android back to 1.6, you'll need to use the Support Library to implement
the latest accessibility features.

When creating custom views, you need to make sure these views are successfully creating
AccessibilityEvents whenever the user selects an item or changes focus, as accessibility
events are an important part of providing accessibility features such as text-to-speech.

To generate AccessibilityEvents, call sendAccessibilityEvent(int) with a
parameter representing the type of event that's occurred. You'll find a complete list of the
event types Android currently supports in the AccessibilityEventreference
documentation (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c e / a n d r o i d / v i e w / a c c e s s
i b i l i t y / A c c e s s i b i l i t y E v e n t . h t m l).

Providing alternatives to audio prompts
To assist users who are hearing impaired, you should avoid including any audio-only
feedback in your app. You should always accompany your app's audio feedback with a
secondary feedback mechanism, such as closed captions, a transcript, on screen
notifications, or another visual alternative.

Testing various font sizes
Android users can change the size of the font that appears across their device manually,
from their device's Settings | Accessibility screen. To make sure these size changes also
affect the text within your app, define your app's text and associated containers in scaled
pixels (sp).

Also, keep in mind that when users have large fonts enabled, your app's text may become
larger than the space you originally allocated for it, so you'll need to check that your text
and UI looks good and functions normally even when the user has large text enabled. In
particular, make sure that your UI elements don't overlap and that all touchable elements
remain reachable across various text sizes.

http://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
http://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html

Best Practices and Securing Your Application

[338]

Using recommended touch target sizes
Make sure all your app's touch targets are at least 48 x 48dp, and ensure that the space
between on screen elements is always at least 8dp. This helps to ensure your UI is easier to
navigate for people with manual dexterity challenges, but also for children with developing
motor skills.

Providing alternatives to affordances that time
out
Some apps feature icons or controls that disappear after a certain amount of time, for
example it's common for video playback controls to fade out once the user is a few seconds
into the video.

This poses a problem for people who are using accessibility features such as TalkBack, as
TalkBack waits until the user has focused on a control before it reads that control's
description. If your UI has controls that fade out quickly, these controls may actually vanish
before the user has a chance to focus on them—which means they never get read out, and
therefore the user won't be aware of their existence.

For this reason, you shouldn't rely on timed-out controls for high-priority tasks or
important functions. If your UI does feature timed-out controls, you may want to disable
this functionality when accessibility services are enabled, so these timed-out controls no
longer disappear.

To ensure users with visual impairments can read your text more easily, it's recommended
that you use a contrast ratio of 4.5:1 between your app's background and text. As a general
rule, the smaller your text, the more contrast you'll need to use.

Also bear in mind that some of your users may be colorblind, so you shouldn't use color
signals as the only means of conveying important information. In addition to color, you can
use elements such as patterns, shapes, size, textures, or text.

Testing your application's accessibility
features
Testing is a crucial part of creating an accessible app, as it can uncover problems with user
interaction that you might not otherwise have spotted.

Best Practices and Securing Your Application

[339]

Testing your app's accessibility features typically involves:

Using your app with audible feedback enabled:

Audible accessibility services provide audio prompts that dictate the on
screen content to your users as they move around your UI. The most
effective way of testing the experience you're providing to users with
visual impairments is to enable an audible accessibility service on your
Android device and then interact with your app using sound alone.

For Android users, feedback is typically provided via the TalkBack
accessibility service. TalkBack comes preinstalled on many Android
devices (open your device's Settings and select Accessibility, followed
by TalkBack) but you can also download TalkBack for free from Google
Play.

Once you've enabled an audible accessibility service, spend some time
navigating around your app using the spoken feedback only. Look for
any opportunities to improve the experience for users who might be
interacting with your app without sighted assistance.

You should also check that your app provides enough information for
the user to understand and act on each on screen element using a service
such as TalkBack, without overloading them with too much information.
This can be a tricky balancing act—too much or too little information
will make it equally difficult for the user to decipher your UI.

Navigating your app using directional controls only, instead of the touchscreen

As part of accessibility testing, you should verify that your app is easy to navigate using
directional controls only, meaning without using the touchscreen, and ensure that users can
move focus between your app's UI elements in a way that makes sense.

If available, you can use a physical device with a D-pad or trackball, but if your device
doesn't have these hardware features you can use a software-based directional controller
instead, or use the Android emulator and its simulated keyboard controls. You may even
want to use TalkBack gestures (h t t p s : / / s u p p o r t . g o o g l e . c o m / a c c e s s i b i l i t y / a n d r o
i d / a n s w e r / 6 1 5 1 8 2 7), which allow users to navigate apps (and their device in general)
using very specific gestures.

https://support.google.com/accessibility/android/answer/6151827
https://support.google.com/accessibility/android/answer/6151827

Best Practices and Securing Your Application

[340]

Summary
In this final chapter, we covered some best practices that I hadn't explored in detail in
previous chapters, including app security and accessibility best practices. You also learned
how to create more useful notifications, and began to explore the new notification options
coming up in Android N.

If you want to learn more about developing effective Android apps, you'll find lots of
additional information in the Android docs (h t t p : / / d e v e l o p e r . a n d r o i d . c o m / t r a i n i n
g / i n d e x . h t m l), at the Android blog (h t t p : / / a n d r o i d - d e v e l o p e r s . b l o g s p o t . c o . u k
/), or by checking out some of Google's code samples (h t t p : / / d e v e l o p e r . a n d r o i d . c o m /
s a m p l e s / i n d e x . h t m l).

http://developer.android.com/training/index.html
http://developer.android.com/training/index.html
http://android-developers.blogspot.co.uk/
http://android-developers.blogspot.co.uk/
http://developer.android.com/samples/index.html
http://developer.android.com/samples/index.html

Index

9
9-patch image
 about 79
 creating 81
 reference link 82
 working with 79, 80
9-patch workspace
 left pane 81
 right pane 81

A
accessibility
 best practices 333
 features, testing 338
AccessibilityEvent
 reference link 337
action bar, Google+
 action buttons 17
 action workflow 18
 navigational controls 16
activity
 about 28
 lifecycle 93
alias resources
 creating 233, 234
Android Device Monitor 268
Android N
 multi-window support 102
Android Studio
 prototype, creating 194, 195, 197
 reference link 193
Android UI
 about 7
 characteristics 12
 developing, features 11
 interface 28

 layouts 28
Android versions, at runtime
 checking 229
Android Virtual Devices (AVDs) 195, 238
Android
 codes, reference link 230
 compileSdkVersion attribute 229
 generalized screen densities 61
 labeling options 66
 minimum and target API levels, specifying 228
 minSdkVersion 16 version 228
 supporting different versions 227, 228
 targetSdkVersion version 229
animations 129
app widgets
 best practices 331, 333
app's resources
 translating 249
app, brainstorming
 about 139, 140
 application compatibility, checking 141
 budget, checking 141, 142
 concept, writing 140
 primary task, identifying 140
app, designing
 about 157
 high-level flow 157
 navigation 161
 screen list, creating 159
 screen map, creating 159
app, planning
 about 142
 finishing touches, adding 156
 high-level flow 159
 marketing strategies 156
 supporting devices 156
 target audience, identifying 142, 143

[342]

 use cases 143
 user personas 143
app
 best practices 255, 256
 code, timing 267
 common localization issues 258
 creating, for handling different screens 231
 debugging 288
 default resources, testing for 259
 market considerations 254
 post launch tasks 264
 testing, across different locals 256, 258
 threads and processes 299
application types
 entertainment 150
 fun tools 150
 games 150
 useful tools 150
application widgets
 about 329
AppWidgetProvider class
 declaring, in project's Manifest 329
AppWidgetProviderInfo file
 creating 330
attributes, for creating text styles
 capitalization 213
 text size 213
 text styles 213

B
back stack
 importance 93
backwards compatibility
 reference link 314
baseline 43
beacon platform
 reference link 138
benefits, effective UI
 consistency 14
 easy use 14
 instant familiarity 13
 mistake correction 14
 user frustration prevention 14
best practices, notifications
 actions, using 325

 expaned layouts, using 326
 options, providing 324
 right content, providing 323
 sparing use 323
bottom sheets, Material Design
 modal bottom sheets 122
 persistent bottom sheets 121
breakpoint
 configuring 292
 configuring, options 293
 setting 290
bundled notification 327
buttons
 about 66
 creating, with image labels 67
 creating, with text labels 67
 states 68

C
CardView 123
children 162
click events
 handling 83
 onClick, handling via Java 83
 onClick, handling via XML 84
color palette
 reference link 47
color state list
 about 77, 79
 creating 78
 resources 70
complex views
 loading 303
configuration qualifiers
 about 231, 232
 alias resources, creating 233
 Android, used for selecting perfect resource 232
 importance 249
 reference links 231
custom view controls
 creating 337

D
dashboards
 reference link 95

[343]

DateUtils
 reference link 254
default resource
 importance 247
density buckets 236
density independence 235
density-specific directories
 creating 62
design finalization
 app's personality 214, 215
 background music 212
 sound effects 212
 text 212
 visuals 212
design
 finalizing 211
details screen
 wireframing 179, 180
details screens
 wireframing 177
Developer Console
 reference link 250
Device Art Generator
 reference link 244
dialogue, Google+ 23
digital prototyping 193
digital wireframes
 about 186, 188
 content, adding 189
dimens.xml file
 dimensions, defining 74, 75, 76
dimension value
 absolute unit 36
 density-independent pixels (dp) 36
direct reply notifications
 about 326
drawables 60

E
Eclipse Memory Analyzer
 reference link 285
EditText input
 example app 85
 registering 85, 89
EditText

 about 55
 android:imeOptions 59
 inputType, setting 58
 keyboard behavior, controlling 57
 user hint, providing 60
effective UI
 benefits 13
 characteristics 12
 EditText 55
 ImageView 60
 layout 29
 view 28
 view objects, customizing 51
error causing, reasons
 content missing 224
 empty states 224
 incompatible state 224
 lack of connectivity 223
 missing permissions 224
errors
 handling 222
 user input errors 222

F
first prototype
 creating 198, 199, 201, 202, 204
floating action button (FAB), Google+ 19
floating action buttons (FAB)
 about 119
 guidelines 120, 121
focus navigation
 designing 335
font sizes
 testing 337
fragment transactions 100
fragments
 about 160
 adding 101
 adding, to activity at runtime 98
 adding, to activity declaratively 97
 and backward compatibility 94, 95
 class, creating 95, 97
 creating 93
 lifecycle 92, 93
 need for 90, 91, 92

[344]

 paused state 93
 removing 101
 replacing 101
 resumed state 93
 stopped state 93
 transactions 100
 working with 89, 90

G
Genymotion
 reference link 243
Gimp program
 reference link 276
Google Cloud Messaging APIs 306
Google Photos 9
Google Play store listing
 localizing 262
Google's Dashboard
 reference link 228
Google+
 about 15
 action bar 16
 dialogues 23
 input controls 26
 menus 20
 search functionality 24
 settings 21
 styles 26
 themes 26
 toast 24
groups
 layout 29

H
heap tab
 using 284
Hierarchy View
 about 278
 Layout View 280
 simplifying 277
 tree overview 279
 Tree View 278
Honeycomb 90

I
image labels
 used, for creating buttons 67
image types
 bitmaps 64
 nine-patch file 64
ImageButtons 66
ImageView
 about 60
 adding 65
 density-specific images, creating 64
 different screen densities 62
 multiple screens, supporting 61
importance hierarchy 300
ingredients 73
inheritance 27
input controls, Google+ 26
international audience
 alternate text, providing 245
 attracting 244
 target languages and regions, identifying 245
ISO 639-1 244

L
layout
 about 29
 dimension value, setting 36
 exploring 35
 LinearLayout 37
 RelativeLayout 37
 size, defining 35
 size, setting programmatically 36
 supported keyword 35
LinearLayout
 about 37
 direction, setting 37
Lint
 configuration options, reference link 296
 used, for code examination 293
list
 about 126
 optional supplemental actions 126
 primary actions 126
 text 126

[345]

ListViews
 about 206
 reference link 206

M
Material Deisgn
 product icon, designing 130
Material Design, case study
 Google Calendar 111
 Google Design 112
 Google Maps 112, 113
 Hangouts 110
Material Design
 about 10, 109, 110, 113
 action buttons, floating 119, 120, 121
 animations 127, 129
 backwards compatibility 116, 117
 bottom sheets 121
 CardView 123, 124, 125
 color scheme, selecting 116
 finishing touches 129
 guidelines, writing 133, 134
 illusion, reinforcing 128
 implementing 10
 lists and RecyclerView 126, 127
 Material theme, applying to app 113, 115, 116
 product icon, designing 131
 sense of depth, creating 117, 118
 structure, creating 119
 system icons 131
 text opacity 132
 transitions 127
 typefaces 132
 typography and writing 132
 user, providing with visual feedback 129
Material theme
 applying, to app 113, 115
mdpi 237
memory churn
 issue 286
memory leaks
 spotting 282
memory monitor
 using 282
menus, Google+

 about 20
 context menus 20
mobile country codes (MCC) 249
mobile hardware
 audio input/output 137
 gestures 136
 GPS 137
 interacting, wiith other devices 138
 touch 136
 using 136
 vibration 137
mobile persona 145
multi pane layout
 creating 90
multi-window mode
 app, making available 103, 104
 in Android-N 102
 of app, testing 104, 105
 picture-in-picture (PIP) 105
 working 103
multiple screens
 testing across 242

N
navigation drawers
 reference 198
navigation patterns
 about 163
 buttons 163
 cards 164
 carousels 164
 embedded navigation 163
 grids 164
 horizontal paging (swipe views) 166
 lists 164
 tabs 165
 targets 163
navigation
 about 162
 apps, important tasks 162
 best practices 166
 consistency, checking 163
 descendent navigation 162
 lateral navigation 162
 tasks, grouping together 163

[346]

network security configuration file 307
network
 connecting to 306
new permissions model
 backward compatibility 311
notifications
 about 322
 best practices 323
 categorizing 324
 priority levels 322

O
online converter
 reference link 237
original equipment manufacturer (OEM) 226
overdraw
 about 271
 identifying 271, 273, 274

P
paper prototyping
 about 190
 importance 190
 rapid prototyping 191
 usability testing 190, 191
parent 162
parent styles 219
permission groups
 dangerous permission 312
 normal permission 312
permissions
 and uses-feature declaration 316
 best practices 318
 by libraries, examining 320
 critical permissions up front, requesting 319
 declaring 313
 extra information, providing 319
 for accessing camera 321
 groups 313
 reference link 317
 request response, handling 315
 requesting 308, 310
 rules 318
 verifying 314, 315
PhoneNumberUtils

 reference link 255
picture-in-picture (PIP) mode 106
 about 105
Pixel Perfect
 Loupe pane 299
 pane 298
 tree 299
 using 297
pixels
 converting, to dpi 237
processes
 about 299
 empty processes 302
 foreground processes 301
 service processes 301
 terminating 300
 visible process 301
product goals
 about 153
 identifying 152
product icon anatomy 131
product statement
 about 140
 examples 140
profiling options
 sample-based profiling 269
 trace-based profiling 269
programmatic layouts
 using 34
ProGuard
 reference link 297
 used, for optimizing code 296
promoted actions 13
properties
 viewing directly 216

R
R.colors
 reference link 47
R.style section
 reference link 221
recent apps screen 103
recommended touch target sizes
 using 338
RelativeLayout

[347]

 about 39
 aligning, with other elements 42
 relative to other elements 41
 relative to parent container 39
 used, for optimizing UI 39
resource types 71
roadmap
 about 154
 creating 154, 155
Roboto 132
runtime permissions 309

S
screen density 235, 236
screen designing process
 digital wireframe 170
 first draft wireframe 170
 prototyping 170
screen map
 creating 159
 screens, grouping into multi-pane layouts 160,

161
screen orientation
 designing for 240
 reacting to 241
screen sizes
 resizing 237
 smallestWidth 238
screens, Android
 densities 230
 sizes 230
Search Engine Optimisation (SEO 248
Search for recipes screen 158
search functionality, Google+
 about 24
 search dialogue 25
 search widget 25
search functionality
 creating 181
search screen
 as fragment 184, 185
 wireframing 181, 182, 184
search system icon 181
second prototype
 creating 204, 205, 207, 210

settings, Google+
 about 21
 creating, challenges 21
sheets of material 10
SimpleAdapter 206
single pane layout
 creating 90
Snackbar 120
social layer
 about 167, 168, 169
 including, criteria 167
spinner 74
state list resources
 creating 68, 69
states, buttons
 default 68
 focused 68
 pressed 68
string array
 creating 73, 74
string resources
 creating 72
 styling 72
String.format
 reference link 255
styles, Google+ 26
styles
 defining 216, 219
 inheritance 219, 220
supported keywords
 match_parent 35
 wrap_content 35

T
TalkBack gestures
 reference link 339
target audience
 application, monetizing 150, 151
 considerations 151
 examining 148, 149
 feature list 148
 feature list, deciding 147
 identifying 142
 mobile persona 145, 146
 persona, creating 143, 144, 145

 use cases, creating 146
task list 103
text labels
 used, for creating buttons 67
TextView
 creating 51
 text size, setting 53
 text, brightening up 52
 text, emphasizing 53
 typeface, setting 54
theme
 applying 221
 working with 220
themes, Google+ 26
toast, Google+ 24
translation
 quality, enhancing 250, 251
TypeView
 lines, counting 55

U
UI controls
 descriptive text, adding 334
user data
 securing 305
user experience (UX)
 differentiating, with UI 139
user goals
 about 153, 154
 identifying 152
user input errors
 handling 222, 223
user input
 click events, handling 83
 EditText input, registering 84
 registering 83
user interface (UI)
 about 8, 10
 building 30
 declaring programmatically 33
 declaring, with XML 30

V

values
 density-independent pixels (dp) 45
view objects
 adding 51
 customizing 51
 TextView 51
ViewGroup
 about 29
 LinearLyout (layout manager) 29
views
 about 29
 absolute unit 45
 Android gravity 45
 background, setting 46
 creating 43
 ID attribute, assigning 44
 layout gravity 45
 match_parent value 45
 size, setting 45
 weight value, assigning 49, 51
 wrap_content value 45
ViewServer class
 reference link 274

W
widget's layout
 creating 331
wireframe
 creating 174, 175, 176
 details screen 177
 exploring 176
wireframes
 content adding to 188
wireframing
 about 171
 benefits 171, 172, 173, 174

X
XML layouts
 using 34
XML
 used, for declaring UI 30

	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Introducing the Android UI
	What is a user interface anyway?
	Is developing UIs for Android really that different from other platforms?
	What are the characteristics of an effective UI?
	Why is UI essential for the success of your app?
	Instant familiarity
	Easy and enjoyable to use
	Consistency
	Preventing user frustration
	Helping users fix their mistakes
	Providing a better overall Android experience

	The UI case study – Google+
	The action bar
	Navigational controls
	Action buttons
	The action overflow

	Floating action button
	Menus
	Settings
	Dialogues
	Toasts
	Search
	Input controls
	Styles and themes

	Summary

	What Goes into an Effective UI?
	What is a view?
	What is a layout?
	Building your UI – XML or Java?
	Declaring your UI with XML
	Declaring your UI programmatically
	Using both programmatic and XML layouts

	Deep dive – exploring layouts
	Defining the size of your layouts
	A supported keyword
	A dimension value
	Setting the layout size programmatically

	Exploring different layouts
	Everything you need to know about LinearLayout
	Everything you need to know about RelativeLayout
	Relative to the parent container
	Relative to other elements
	Aligning with other elements

	Creating views
	Assigning the ID attribute
	Setting a view's size
	Android gravity and layout gravity
	Setting the background – working with color
	Assigning a weight value

	Adding and customizing view objects
	TextView
	Brightening up your text
	Setting the size of your text
	Emphasizing your text
	Setting the typeface
	How many lines?

	EditText
	Controlling keyboard behavior – setting the inputType
	android:imeOptions
	Giving the user a hint

	ImageView
	Supporting multiple screens
	Supporting different screen densities
	Creating density-specific images

	Adding ImageView

	Buttons and ImageButtons
	Creating buttons with text labels
	Creating buttons with image labels
	Creating buttons with text and image labels

	State list resources
	Summary

	Expanding your UI – Fragments, Resources, and Gathering User Input
	More resource types
	Creating and styling string resources
	Creating string arrays
	Defining dimensions in dimens.xml
	Color state lists

	Working with 9-patch images
	How do I create 9-patch images?

	Registering the user input
	Handling click events
	Handling onClick Via Java
	Handling onClick Via XML

	Registering the EditText input
	The example app

	Working with fragments
	Why do we need fragments?
	The fragment life cycle
	Creating a fragment
	Fragments and backwards compatibility
	Creating your fragment class
	Adding a fragment to your activity declaratively

	Adding a fragment to an activity at runtime
	Fragment transactions and the back stack
	Adding a fragment
	Removing a fragment
	Replacing a fragment

	The multi-window support in Android N
	How does the multi-window mode work?
	Getting your app ready for multi-window mode
	Testing your app's multi-window support

	Picture-by-picture mode

	Summary

	Getting Started with Material Design
	The Material Design ethos
	Case study – Hangouts
	Case study – Google Calendar
	Case study – Google Maps

	Getting started with Material Design
	Applying the Material theme to your app
	Choosing your color scheme
	Backwards compatibility

	Creating a sense of depth
	Creating a Material Design structure

	Floating action buttons
	Bottom sheets
	CardView
	Lists and RecyclerView
	Animations and transitions
	Reinforcing the Material Design illusion

	Providing the user with a visual feedback
	Animations – a word of warning

	The finishing touches
	Designing your product icon
	System icons

	Typography and writing
	Typefaces
	Text opacity
	Writing guidelines

	Summary

	Turning Your Bright Idea into a Detailed Sketch
	Brainstorming – taking advantage of mobile hardware
	Touch and gestures
	GPS
	Vibration
	Audio input/output
	Interacting with other devices

	The difference between UX and UI
	Brainstorming your app
	Writing a concept
	Creating an ultimate features list
	Identifying your app's primary task
	Is this application right for mobile?
	Do you have the budget?

	Planning your app
	Identifying your target audience
	Creating a persona
	The mobile persona

	Creating use cases
	Deciding on a feature list
	Taking a critical look at your target audience
	Does your target audience need a mobile app?
	Is your target audience on Android?
	Okay, so your target audience is on Android, but does it own a suitable Android device?
	Do they use this “type” of application?
	Would your target audience be willing to pay for this application?
	Are there enough people in your target audience for your project to be profitable?

	Identifying user and product goals
	Product goals
	User goals

	Creating a roadmap
	Some final things to think about
	What devices should you support?
	How should you market your app?

	Designing your application
	The high-level flow
	Creating a screen list
	Creating a screen map
	Grouping screens into multi-pane layouts

	Navigation
	What are your app's most important tasks?
	Are there any tasks you can group together?
	Is my navigation consistent?

	Common navigation patterns
	The embedded navigation
	Buttons and simple targets
	Lists
	Grids, cards, and carousels
	Tabs
	Horizontal paging (swipe views)

	The social layer

	Summary

	Turning Your Sketches into Wireframes
	What is wireframing?
	What are the benefits of wireframing?
	Creating a Wireframe
	Creating your first wireframe

	Exploring more wireframes
	Wireframing a details screen
	Wireframing search screens
	The search screen as a fragment

	Digital wireframes
	Adding content to your wireframes

	What is paper prototyping?
	Usability testing
	Rapid prototyping

	Summary

	Building a Prototype
	Creating a prototype in Android Studio
	Creating your first prototype
	Creating your second prototype
	Finalizing your design
	Visuals
	Background music and sound effects
	Your text
	Your app's personality

	Creating themes and styles
	Defining styles
	Inheritance

	Working with themes

	Get ready for errors!
	User input errors

	Summary

	Reaching a Wider Audience – Supporting Multiple Devices
	Supporting different versions of Android
	Specifying minimum and target API levels
	minSdkVersion
	targetSdkVersion
	compileSdkVersion

	Check version at runtime

	Supporting different screens
	Configuration qualifiers
	How Android selects the perfect resource
	Creating alias resources

	Screen density
	Converting dpi into pixels and vice versa

	Providing different layouts for different screen sizes
	smallestWidth – sw<N>dp
	Available screen width – w<N>dp
	Available screen height – h<number>dp

	Designing for different screen orientations
	Reacting to orientation changes

	Testing across multiple screens
	Showing off your screen support

	Attracting an international audience
	Identifying the target languages and regions
	Providing alternate text

	What other resources might you need localizing?
	Why default resources are important
	Which configuration qualifiers are the most important?

	Getting your app translated
	Getting the most out of your translations
	Putting your strings in context
	Using terms consistently
	Getting your strings in order
	Not creating unnecessary strings
	Always marking non-translatable text

	Other things to consider
	Right to left support
	Formatting values

	Localizing your app – best practices
	Design a single set of flexible layouts
	Create alternate languages only when needed

	Testing your app across different locales
	Testing for different locales
	Look for common localization issues

	Testing for default resources
	Plan a beta release in key countries
	Get ready for lift off!

	Localize your Google Play store listing
	After launching your project
	Following a successful launch – supporting international users
	Monitor your app's international performance

	Summary

	Optimizing Your UI
	Timing your code
	Identifying overdraw
	Simplifying your Hierarchy View
	Tree View
	Tree overview
	Layout View

	Spotting memory leaks
	Memory monitor
	Heap tab
	Object allocation – understanding memory churn

	Debugging your project
	Working with breakpoints
	Configuring your breakpoints

	Examining your code with Lint
	Optimizing your code with ProGuard
	Scrutinize each pixel
	Pixel Perfect pane
	Pixel Perfect tree
	Pixel Perfect Loupe pane

	Processes and threads
	Terminating processes
	Foreground processes
	Visible processes
	Service processes
	Background processes
	Empty processes

	Re-using layouts with > and <merge/>
	Loading views only when needed

	Summary

	Best Practices and Securing Your Application
	Keeping user data secure
	Connecting to a network

	Requesting permissions
	The new permissions model – backwards compatibility
	Permission groups
	Declaring permissions
	Verifying permissions
	Handling the permissions request response

	Permissions and <uses-feature>
	Best practices for app permissions
	Making as few permission requests as possible
	Requesting critical permissions up front
	Providing extra information where necessary
	Paying attention to permissions required by libraries
	Being transparent about accessing the camera and microphone
	Considering alternatives

	Notifications
	Notification best practices
	Providing the right content
	Using notifications sparingly
	Giving users a choice
	Categorising notifications
	Making use of actions
	Using expanded layouts
	Big text style
	Big picture style
	Inbox style

	Direct reply notifications
	Bundled notifications

	Application widgets
	Declaring an AppWidgetProvider class in your project's Manifest
	Creating an AppWidgetProviderInfo file
	Creating the widget's layout
	App widget best practices
	Including margins for earlier versions of Android
	Providing flexible graphics and layouts
	Not updating too often

	Accessibility best practices
	Adding descriptive text to your UI controls
	Designing for focus navigation
	Custom view controls
	Providing alternatives to audio prompts

	Testing various font sizes
	Using recommended touch target sizes
	Providing alternatives to affordances that time out

	Testing your application's accessibility features
	Summary

	Index

