
App Development
Recipes for iOS
and watchOS

A Problem-Solution Approach
—
Molly K. Maskrey

www.allitebooks.com

http://www.allitebooks.org

 App Development
Recipes for iOS and

watchOS

 A Problem-Solution Approach

 Molly K. Maskrey

www.allitebooks.com

http://www.allitebooks.org

App Development Recipes for iOS and watchOS

Molly K. Maskrey
Parker, Colorado, USA

ISBN-13 (pbk): 978-1-4842-1819-8 ISBN-13 (electronic): 978-1-4842-1820-4
DOI 10.1007/978-1-4842-1820-4

Library of Congress Control Number: 2016943972

Copyright © 2016 by Molly K. Maskrey

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editors: Michelle Lowman and Steve Anglin
Technical Reviewer: Charles Cruz
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com/9781484218198 . For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in
the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484218198
www.apress.com/source-code/
http://www.allitebooks.org

iii

 This work is dedicated to all my friends whom I truly consider family. First, to John,
who helped me though so many tough times and helped me to become the person

I am today, and with whom I hope to co-author a book in the future.

 To Erin, who sat with me until the wee hours of the morning
when I needed a friend the most.

 To my Jess, whom I call Goldi now because she’s like the Goldilocks of
friends—just right. She comes and listens to me speak on topics of very little interest

to most normal people, she takes me out dancing into the early morning hours even on
“school nights,” and she honored me as my wonderful, beautiful maid of honor.

 To KP, you opened my heart and helped me realize that the simplest of times
can be the most cherished and that laughing hysterically, without regard for who

might be sitting at the next table, is great for the soul.

 Finally, to my partner for so many years, Jennifer. You stuck by me, helped with ideas,
fi xed my grammar, put up with my drama, and still proposed to me and actually

went through with the wedding and let me wear white. Here’s to many more
decades of fun together.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ...xvii

About the Technical Reviewer ..xix

Acknowledgments ..xxi

 ■Chapter 1: Introduction ... 1

 ■Chapter 2: Career Direction ... 25

 ■Chapter 3: Setting Up Xcode .. 71

 ■Chapter 4: Project Descriptions ... 103

 ■Chapter 5: Source-Code Control .. 111

 ■Chapter 6: Development Methodology ... 139

 ■Chapter 7: UI/UX .. 155

 ■Chapter 8: Targets and Schemes ... 175

 ■Chapter 9: Embedded Systems .. 201

 ■Chapter 10: Publishing Our Work .. 225

 ■Chapter 11: Web Services .. 259

 ■Chapter 12: Testing .. 301

 ■Chapter 13: iOS Accessories ... 351

www.allitebooks.com

http://www.allitebooks.org

vi Contents at a Glance

 ■Chapter 14: Swift Conversion Project .. 391

 ■Chapter 15: Coin Toss Project .. 445

 ■Chapter 16: Home Automation Project .. 461

 ■Chapter 17: External Sensor Interface Project .. 505

Index ... 555

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ...xvii

About the Technical Reviewer ..xix

Acknowledgments ..xxi

 ■Chapter 1: Introduction ... 1

Goals .. 2

Career ... 8

Career Path #1: Employee .. 8

Career Path #2: Entrepreneur ... 10

Career Path #3: Contractor ... 11

Our Plan .. 14

Fun ... 20

 ■Chapter 2: Career Direction ... 25

Option #1: Working as an Employee ... 25

Potential Employers .. 31

Skills ... 33

Finding a Job .. 53

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Option #2: Entrepreneur ... 56

Getting Started ... 56

Where to Work .. 60

Skills ... 62

Option #3: Freelancer ... 65

Contract-to-Hire .. 65

General Freelancer ... 66

Skills ... 68

Career Direction Summary ... 69

 ■Chapter 3: Setting Up Xcode .. 71

Joining The Apple Developer Program ... 72

Problem .. 72

Solution... 72

How It Works ... 72

Comments .. 75

Developer Certifi cates .. 75

Problem .. 75

Solution... 75

How It Works ... 75

Comments .. 80

Certifi cate Issues .. 80

Problem .. 80

Solution... 80

How It Works ... 81

App IDs ... 81

Problem .. 81

Solution... 81

How It Works ... 81

Comments .. 83

Devices ... 83

Problem .. 83

www.allitebooks.com

http://www.allitebooks.org

ixContents

Solution... 83

How It Works ... 83

Comments .. 86

Provisioning .. 86

Problem .. 86

Solution... 86

How It Works ... 86

Comments .. 88

Provisioning Profi le Location .. 89

Problem .. 89

Solution... 89

How It Works ... 89

Comments .. 95

Wildcard App ID .. 96

Problem .. 96

Solution... 96

How It Works ... 96

Comments .. 96

Switching Development Computers ... 97

Problem .. 97

Solution... 97

How It Works ... 97

Comments .. 101

Summary .. 102

 ■Chapter 4: Project Descriptions ... 103

Code Conversion .. 104

Coin Toss .. 106

Home Automation ... 106

External Sensor Interface ... 107

www.allitebooks.com

http://www.allitebooks.org

x Contents

 ■Chapter 5: Source-Code Control .. 111

Options and History .. 111

Basic Terminology and Flow ... 112

Subversion/SVN .. 113

Creating a Repository ... 114

SVN Checkout ... 114

SVN Commit .. 114

SVN GUI ... 115

Git ... 115

Creating a Repository ... 116

Git Clone ... 117

Git Commit .. 117

Git GUI ... 117

Xcode and Git ... 118

Creating a Project ... 119

Modifying Code and Committing Changes .. 120

Creating and Uploading to a Remote Repository .. 122

Cloning and Using a Git-Managed Project .. 131

Working with Existing Unmanaged Projects ... 133

Summary .. 137

 ■Chapter 6: Development Methodology ... 139

Problem .. 140

Solution... 140

Waterfall ... 141

Problem .. 145

Solution... 145

Lean Manufacturing.. 145

Problem .. 147

Solution... 147

Agile .. 147

xiContents

Problem .. 152

Solution... 153

Summary .. 154

 ■Chapter 7: UI/UX .. 155

User Interface and User Experience (UI/UX) ... 156

Information Architecture ... 157

Problem .. 164

Solution... 165

Summary .. 173

 ■Chapter 8: Targets and Schemes ... 175

Targets.. 175

Problem .. 176

Schemes... 185

Problem .. 185

Problem .. 187

Problem .. 198

Confi gurations .. 200

Summary .. 200

 ■Chapter 9: Embedded Systems .. 201

What Is an Embedded System? .. 201

Problem .. 203

Solution... 203

The Details .. 203

Problem .. 209

Solution... 209

The Details .. 209

Problem .. 211

Solution... 212

The Details .. 212

xii Contents

Problem .. 214

Solution... 214

The Details .. 214

Problem .. 215

Solution... 215

The Details . . . (sort of) .. 215

Problem .. 218

Solution... 218

The Details .. 219

Summary .. 222

 ■Chapter 10: Publishing Our Work .. 225

Problem .. 225

Solution... 225

Creating the Archive ... 226

Certifi cates, Identifi ers, and Profi les ... 228

iTunes Connect ... 241

Problem .. 248

Solution... 248

Back to Xcode ... 253

Please Don’t Hate Me ... 256

Summary .. 258

 ■Chapter 11: Web Services .. 259

Classic Web-Service Access Mechanisms ... 260

Problem .. 260

Problem .. 263

Problem .. 268

CloudKit .. 277

Problem .. 277

CloudKit Summary .. 299

 ■Summary .. 299

xiiiContents

 ■Chapter 12: Testing .. 301

Unit Testing ... 303

Problem .. 304

Problem .. 306

Problem .. 308

User Interface Testing... 319

Problem .. 319

Beta Testing .. 336

Internal Testers ... 337

External Testers .. 343

Testing Summary ... 348

 ■Chapter 13: iOS Accessories ... 351

What Is an Accessory? ... 351

Uses of Accessories ... 352

Point-of-Sale (PoS) ... 352

Sports and Games .. 355

Home Automation and the Internet of Things ... 361

Usage Summary ... 364

EAAccessory Framework ... 365

Streams .. 368

EAAccessory Framework Summary ... 370

Bluetooth Low Energy .. 370

Core Bluetooth .. 377

iBeacons ... 383

Summary .. 389

 ■Chapter 14: Swift Conversion Project .. 391

Problem .. 391

Solution... 391

Let’s Work Through the Project ... 391

About the App ... 393

xiv Contents

Project Setup .. 419

Problem .. 419

Problem .. 421

Problem .. 421

Problem .. 423

Conversions .. 424

Problem .. 424

Problem .. 424

Problem .. 426

Problem .. 427

Swift Code .. 430

Summary .. 444

 ■Chapter 15: Coin Toss Project .. 445

Problem .. 445

Solution... 445

Let’s Work Through the Project ... 445

Create the Project ... 446

Fix the App’s Icons .. 447

Set Up the Remaining Icons ... 452

Create the Storyboards ... 456

Write the Code .. 456

Problem .. 458

Solution... 458

Summary .. 460

 ■Chapter 16: Home Automation Project .. 461

Problem .. 462

Solution... 462

Let’s Work Through the Project ... 462

About HomeKit .. 468

Our Confi guration ... 469

xvContents

Problem .. 469

Solution... 469

Add a Home .. 473

Problem .. 474

Solution... 474

Problem .. 475

Solution... 475

Hierarchical Differences ... 477

HomeKit Delegation .. 478

Accessory Management ...480

Problem .. 480

Solution... 480

Problem .. 482

Solution... 482

Problem .. 493

Solution... 493

Summary .. 495

 ■Chapter 17: External Sensor Interface Project .. 505

Problem .. 506

Solution... 506

Problem .. 506

Solution... 506

Swift External Accessory Demo ... 506

MFi Accessory Types .. 506

MFi Accessory Demo App ... 508

BTLE Sensor Interface .. 522

Summary .. 553

Index ... 555

xvii

 About the Author

 Molly K. Maskrey first learned about software while a
sophomore in high school on a Wang punch card computer,
where you manually created an octal machine-language
program by popping out chads on a single card. While getting
her undergraduate degree, she programmed COBOL on IBM
System/360 computers at banks in and around Tampa, Florida,
moving on, in her twenties and thirties, to work for various large
aerospace companies including IBM Federal Systems, TRW
(now Northrup-Grumman), Loral Systems, Lockheed-Martin,
and Boeing. As the lure and romance of working in big
companies (was there ever such a thing?) started to wear off,

she realized that a break was in order, so she took several years off, moved to Maui, and
taught windsurfing at the beautiful Kanaha Beach Park.

 Never one to stay still, Molly moved to Denver, Colorado, in 2005, where she jumped on
the iPhone bandwagon by opening one of the first screen repair companies, specializing
in ten-minute screen repair. People came from nearby states to have their babies put
back into pristine condition, and she made enough money to begin working in not only
app development, but iOS accessory design as well. In 2009 she, along with her life and
business partner, Jennifer, received approval from the Apple MFi (Made for iPod/iPhone/
iPad) program for their first accessory, a credit-card reader that connected through the
thirty-pin dock of iPod and iPhone devices, a good six months ahead of Square. In 2010 she
and Jennifer founded Global Tek Labs, an iOS development and accessory design-services
company that is now one of the leading consulting services for new designers looking to
create smart attachments to Apple devices.

 That same year, Molly, under her previous persona, published through Apress the first book
on how to create accessories for the iPhone operating system; it is still to this day the only
major description of the process.

xviii About the Author

 In 2014 Molly and Jennifer formed Quantitative Bioanalytics Laboratories, a wholly-owned
subsidiary of Global Tek, to bring high-resolution mobile sensor technology to physical therapy,
elder balance and fall prevention, sports performance quantification, and instrumented gait
analysis (IGA).

 Ms. Maskrey enjoys working on new and interesting technical projects, hosting wine and
cheese parties for her friends, and her greatest passion—ballroom dancing. Talk technical
projects with her and it will certainly be time well spent, but bring up international cha-cha
or Viennese waltz and not only will she become vigorously animated, but she also may start
moving while talking . . . even if there is not a dance floor. She’s been known to spontaneously
start samba line dances at various big box retail stores on quiet Monday afternoons.

 Molly lives in Parker, Colorado, with Jennifer, her partner of 26 years, and their two
Labradors and basement dance practice floor.

xix

 About the Technical
Reviewer

 Charles Cruz is a mobile application developer for the iOS,
Windows Phone, and Android platforms. He graduated from
Stanford University with B.S. and M.S. degrees in engineering.
He lives in Southern California and runs a photography
business with his wife (www.bellalentestudios.com). When not
doing technical things, he plays lead guitar in an original metal
band (www.taintedsociety.com). Charles can be reached at
 codingandpicking@gmail.com and @CodingNPicking on Twitter.

http://www.bellalentestudios.com/
http://www.taintedsociety.com/

xxi

 Acknowledgments

 First, I want to acknowledge all my friends who gave me the support to persevere and go
through with writing when it would have been so easy to just give up, most especially my six
bridesmaids and dearest friends: Ashley, Lizzy, Erin, KP, Lauren, and Jess. You have made
my life complete and without your love and support this would have never happened.

 I wrote this book for the thousands of young female engineers and software developers who
feel that much of the industry has been exclusive for too long. I want to acknowledge the
pioneers who long before my little attempt pushed consistently to create an equal, merit-
based system free of any gender or other bias.

 I want to acknowledge the Innovation Pavilion and their incubator program for making me
a part of something that brings new ideas and products to the world, making it a better
place. And I especially want to point out Lindsey Finklang, who provided me with many
opportunities to present my work before hundreds of people and get valuable feedback.

 Many thanks go to Colorado Dancesport, my home away from home where I can become
someone else for several hours each week, and to the instructors, and my friends, who
make it happen: Faith, Harmony, Mitch, Robert, and, yes, even Scott.

 I also want to acknowledge Children’s Hospital Colorado and the Center for Gait and
Movement Analysis, who have been so generous with letting me be a part of understanding
the significance of what they do for young adults with Cerebral Palsy and other gait
disorders; the understanding I’ve gained drives me to focus efforts to help the many who
truly need it.

 More thanks go to the clients and friends of Global Tek Labs who so generously allowed me
to include some of their projects in this book for illustrative purposes, and to the hundreds of
people who have attended my talks over the past year and have given me ideas for what to
include, such as John Haley, who told me of his personal woes in understanding Auto Layout
in Xcode—those actual experiences helped drive the subject matter I chose to include.

 Finally, I want to acknowledge all the authors before me who set the stage for my own little
work to fit into a much broader landscape.

1© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_1

 Chapter 1
 Introduction
 I wrote this book for the aspiring app developer who wants to move beyond the level of
hobbyist and become a true professional in the field of software. She’s discovered that
programming, and in particular iOS development, speaks to her (see Figure 1-1). Whether it’s
solving complex problems, having the freedom to choose when and where to work to make
a better life for herself, or just that it’s fun—I want everyone to succeed.

 Figure 1-1. The creativity of development captures our imagination and draws us in to solve problems the likes of
which we never imagined

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1820-4_1) contains
supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1820-4_1

2 CHAPTER 1: Introduction

 Goals
 For me, this is personal. As a business owner, I continually find that there are not enough
app developers available to help us grow and expand the business. In particular, finding a
capable mobile software engineer with whom I can easily communicate is the most significant
problem my company faces. As a bit of background, we design electronics equipment
that connects to Apple devices, so we really look to our software contractors to not only
understand coding, but also to know how to get the final product, the app, out into the world.
We don’t want to hire a developer whose end result is to send us an Xcode project file. She
needs to take charge, to create the final product as if it were a thing of beauty, an art form
extending from her own soul. As such, we assume a more than introductory level of expertise
with Xcode, Swift, and, to some extent, Objective C. Many books, online tutorials, video
courses, instructor-led courses , and so on exist to help you learn the basics. Apple’s own
developer portal offers more than enough instructional information and sample applications
to take your coding skills to the intermediate level and beyond. More importantly, the real-
time, interactive nature of online media lets you stay current and up to date as new features
are released and bugs requiring work-arounds are corrected.

 This book shows you how to work with all those other pieces of developing an app that you
don't typically find in introductory material. Let’s look at an example.

 You’ve downloaded Xcode and watched a YouTube video or three on how to write simple
apps. After a few easy-to-fix missteps, you not only have your “Hello, World!” app running
on the simulator, but you’ve got a three-level table view and are even displaying jpegs of
your cat. Good job. But you want to have it run on your iPhone. What do you do?

 Like just about anything else when creating software projects, all the individual pieces are
pretty simple. You follow a predefined sequence of steps to achieve your goal. Just like
the first time you became comfortable with the if-then-else clause, getting to the point of
delivering an iOS app to the Apple App Store requires several actions that become more and
more familiar each time you go through them. That’s one of the purposes of this book. I want
to go through them with you in order for you to gain that familiarity. But more than that, I
want to show you the obstacles you might encounter along the way, confront them with you,
and work out how to make it to a successful conclusion. In a sense, I’m being a bit selfish. I
want to make you into the kind of developer with whom I would choose to work.

 So, back to the problem of getting your app into the App Store. We will, of course, go
through this in great detail later in the book, but let’s look at a simple preview.

 Note This book, unless otherwise noted, uses the term iPhone to describe the broader set of
Apple devices for which we will be developing, including the iPad and iPod Touch. This serves a
couple of purposes. First, it makes the text much more concise. Again, as an intermediate-level
developer, you already know that we can create iPhone-only, iPad-only, or Universal apps. Second,
our example projects use the iPhone as a target device. In some cases, such as when we’re
targeting Apple Watch using the currently available tools and frameworks, this is actually required,
as Watch can only be paired with an iPhone at this time.

3CHAPTER 1: Introduction

 You first buy an Apple developer license, log in, and then create and download developer
certificates to your computer (Figure 1-2). Next, you create your app identifiers, which are
basically the names of your apps, then you add your device or devices on which you intend to
execute your code. Next, you create provisioning profiles that you download to your device.

 Figure 1-2. While it may seem daunting at first, I’ll walk you through a simple, step-by-step procedure to take your app
from the simulator to your device in no time

 While this may sound like a bunch of gibberish when you’ve had your head buried in
for-loops, alerts, libraries, debuggers, and all that, once the setup steps are done correctly,
you can build your app from Xcode and run it on your device. It’s no more complicated than
learning to effectively use your IDE or the simulator.

 As an intermediate developer reading this book, you’ve most likely done this many times
already. If you haven’t done it, don’t worry; we’re going to go through it in agonizing detail in
Chapter 3 . If you have been through these steps, it probably seemed daunting at first, and
some of the things that were supposed to work didn’t, but either by perseverance or blind
luck you got it to run on your phone. Let’s hope it was the former.

 But what a sense of pride! You created something that you can take with you to show your
friends and family. I’m not being sarcastic; you’ve truly accomplished something. I remember
the first years that Xcode was available for iPhone OS (as it was called back then). Everyone
that had seen an iPhone downloaded it to try it out. What happened? It was so complicated
to use and the process was so convoluted that the vast majority simply gave up.

 Of course, things are much better now. The tools and processes streamline the work flow,
and in many cases Xcode can fix most of the common problems associated with not only
your code, but the process as well. Just as code hinting provides invaluable assistance in

http://dx.doi.org/10.1007/978-1-4842-1820-4_3

4 CHAPTER 1: Introduction

writing correct syntax, and the quick look help delivers just about whatever property and
method formats you might need to access, Xcode now includes built-in assistance, much of
it automated, to deal with these process problems.

 Still, you must understand each of the steps if you’re to ever deliver your work to the App
Store, or work at a medium to large software agency, or even work as a freelance coder. The
tools help you, but they won’t do it for you. Even more importantly, they have this knack of
letting you down when you need them the most.

 How does this book help?

 In this book I try to focus on reducing the frustration that comes with iOS and Xcode. Most
of the time, in the early stages of development things usually work well. But once you move
past those first few apps, expand functionality, increase the number of views, start running
parallel tasks, access web services, or any other function typically required of “real” apps,
things start to fall apart. That’s when the simplest things drive you crazy (Figure 1-3).

 Figure 1-3. My number one goal with this book is to reduce the frustration you experience in your early
development career

 You’ve worked for two hours to get a view’s layout to look good, but when you rotate the
simulator screen it falls apart. Or worse, it looks great on the simulator but on a real device it
becomes unrecognizable. Similarly, you work through your app’s design, coding, functionality,
testing, and it’s perfect, but when you try to upload it to the App Store, dozens of issues prevent

5CHAPTER 1: Introduction

you from leaving your computer to do something else. This and other similar problems create
a sense of failure and, more devastatingly, a desire to just give up and do something else. You
need to understand that you will never be 100 percent ready for this. If you are and have never
experienced any such frustrations, then you’re probably not pushing your limits. And to be
honest, I really don’t want to work with someone who doesn’t push themselves. After all, there’s
not a project that I work on in Xcode where some frustration doesn’t send me into a panic
thinking I’ll never get it to work. I question myself. Did I not think clearly about the design? Did I
not understand the description of the framework? Or is this just beyond my capabilities?

 There will be problems, and those problems will create frustrations that in turn may create
doubt in yourself and in your own abilities to pursue this as a viable career. I often talk to
aspiring developers, especially women and girls, who want to pursue software development
as a career. Without getting into the socio-political issues surrounding males versus females
in technology, quantitative information confirms that such a disparity exists. You can read
pretty much any article and find that women are somewhere around 25 percent of the
tech workforce. From a purely anecdotal, but personal perspective, I see this as well. At
technology meetups, excluding those that are female focused such as Women Who Code ,
I’ll see one or two females at most. When I’m at a software agency interviewing for my own
projects or in support of one of my clients, I rarely talk with female engineers. Admittedly,
I’ve become somewhat biased in this and actively seek out female-owned or female-run
businesses with which to consult.

 And that’s not the way it should be. In my company, we want the best, most cost-effective
software developers for our projects that we can find and afford. We don’t always need the
developer with 200 projects under their belt; we may need basic development skills but with
the ability to meet tight deadlines. In the latter case, the essence of what I talk about in this
book is still critical. The developer still needs to understand how to get the app to market,
but she might not have to be an advanced game theory programmer.

 As women, many of us see things differently. I can’t speak for anyone other than myself,
but early in my engineering career I found myself shying away from taking on projects or
applying to jobs where I did not think I was 100 percent ready and qualified. I thought I had
to meet every single requirement and “nice to have” on the advertisement. Many of my male
friends with less experience and, I’d like to think, with less qualifications than I possess
applied for and often got the position. This drove me crazy. What made it worse was when
they would ask me for advice on how to do something.

 Through these frustrations, the idea that I would never be 100 percent ready surfaced.
More importantly, I understand now that this is okay. Much of the time, no one meets all the
requirements of an advertised job position. In talking to technical people working at various
companies as well as some human resources professionals, what the companies look for is
the ability to learn and adapt in addition to the basic needs of the job. That said, I came up
with this mantra:

 1. You’re never going to be 100 percent ready.

 2. Do it anyway.

 3. Just get started.

6 CHAPTER 1: Introduction

 This works for just about anything where the odds seem like they’re against us.

 When you see your dream position open up at a company where you’d love to be employed,
but you just don’t think you have those last two skills, give it a try. While every case is not
the same, sometimes your passion for the position or the company might be more important
to the interview team than whether you have Scrum certification.

 If you’re fortunate enough to land that interesting job you discovered and want to excel at
it, even if it seems overwhelming at times, just keep going. The information is all out there.
Hundreds, if not thousands, have gone before you. You’ll get there.

 That’s a lot of what this book is about. It shows that you are going to encounter problems
along the way, but that those problems are solvable. Having been through most of these
problems before, how am I going to convince you I know what I’m talking about? I’m going
to make my friends suffer. In fact, I personally put in the roadblocks that they will soon
encounter. But don’t tell them.

 For fun, I recruited several of my good friends (or at least they were at the start of all this)
as “guinea pigs” to do some app development. These are smart people who understand
technology but have never written code—well, not this type of code, anyway (Figure 1-4).

 Figure 1-4. To try and understand the actual problems new developers face every day, I recruited friends to start down
the path of an app developer. I’m hoping they’ll remain friends at the end of all this

 One good friend who was recruited as a social media engineer took on website maintenance
with a decent familiarity with HTML and CSS, but not much more than that. My friends all
use an iPhone , and some have an Apple Watch ; even more importantly, they all have ideas
for apps they’d like to create. Some are what you might call “ power users ,” while others are
just very comfortable with technology.

7CHAPTER 1: Introduction

 I decided to help them with their various projects because the ideas were pretty sound and
were different enough to cover a broad set of skills and challenges that were reflective of
many of the problems that you’ll see as you travel down this path. We banged our heads
against the keyboard so you don’t have to. We explored some of the most common issues
of app development. Think of them as the nuances—the subtle things that just seem to
show up when working on your project. Not all of the nuances are huge problems or bugs,
but if you haven’t seen them before or don’t have a clue as to how to address them, they
have the same head-banging potential as any app crash.

 We’ll get into each of these issues in the individual chapters that follow, but let’s take a look
at an example. Many self-employed developers don’t use source-code tools or develop unit
tests despite the cost and time savings being widely documented. It’s just too easy to create
a new single-view app project and start prototyping. Before you know it, the app is too far
along to consider it just a prototype. It’s working fine and you can figure out how to archive
the code later. Or, there’s so much “meaty” code that it would take too much effort to start
developing unit tests. Where would you begin, anyway?

 Take any post-secondary development course and two things that are bound to come up are
source control and testing. It only makes sense. Lose your project code without a backup
and you’re nearly back to square one. Or send an app out into the field, even if it’s just beta
testing, without proper code coverage using unit tests, and the problems will start rolling in.
What’s worse, you won’t really have a place to start.

 Source-code control , especially using Xcode’s integrated git and Github support, should
raise your confidence level. You can work and test and try new things without fearing that
you’ll lose track of where it last all functioned correctly. It’s easy to roll back your project to
any stage in your development as long as you follow a few simple rules.

 In researching this book, I met with many app developers in the early stages of their iOS
careers. Generally, the breakdown was about half looking to get into any technology and
thought creating apps sounded like a good idea. The other half included people from
different technical disciplines, but mostly web developers who saw more potential in or just
liked the idea of mobile software.

 This book exists as a combination of two styles. First, the bulk of the writing describes the
concrete, the objective scope of the work . . . you need to do this, here’s how you do it. But,
because this book is not just about fixing problems, but also fixing frustration, I chose to
include some of the subjectivity. What does it feel like when you come across a stumbling
block or seemingly insurmountable problem? How do you get past it?

 At the time of writing this paragraph, I don’t know exactly what will happen. As I’ve said
before, I see so many people give up because of the seemingly nonsensical steps a
developer must take to accomplish what should be straightforward. Though there are
reasons for the complexity, that is no help when you’re banging your fist on the keyboard
two hours past your bedtime.

 This book attempts to help the developer push past those stumbling blocks and move
toward a rewarding career that can last a lifetime.

8 CHAPTER 1: Introduction

 Career
 In the previous section, you found references to career opportunities sprinkled throughout
the text. Why is that important in this book? Wouldn’t everything here be equally applicable
no matter where you worked? Before we get to that question, I want to discuss the three
basic career paths that I’ve had the fortune to enjoy.

 When apps started appearing in 2008–2009 there were stories of developers, young and
old, striking it rich with their great ideas. Games took center stage, but utilities, educational
software, and various other categories had their fair share of breakout hits as well. Early on,
you didn’t see lots of mobile software companies stand out. I remember when I wanted to
take a break from working for myself, at home and somewhat alone, it was tough finding
companies here in Denver that actually did iOS development. Most companies were in the
Bay Area, Los Angeles, Seattle, and on the East Coast.

 That, of course, changed pretty quickly. iOS, Android, and Windows development firms exist
in Denver, Boulder, Colorado Springs, and everywhere in between. This is most likely the
situation you’ll find where you live or nearby.

 Career Path #1: Employee
 Without revealing my age, when I attended college any career other than working for a large
company seemed like a second-rate alternative. Big companies offered higher starting
salaries, medical insurance, vacation, benefits, retirement, and even bonuses. Working for a
company like IBM was the dream of everyone in my engineering class. There was the security
of knowing you’d always have a job. I was fortunate to be one of two graduates to actually
go to work for IBM, and my mother was so very proud. When I told her a few years later I was
leaving for another company she actually cried and told me what a mistake I was making.
Back then IBM was a real player in technology. Today, I couldn’t tell you what they do.

 In the late 1990s dot-com startups were everywhere. I lived in Silicon Valley at the time
(Figure 1-5) and had first-hand experience seeing the lavishness, office and housing
shortages, and traffic jams. You could leave a job one day and have something new before
cocktail hour. I remember banner planes flying over our parking lot displaying URLs of
companies that would up your salary no matter what you made.

www.allitebooks.com

http://www.allitebooks.org

9CHAPTER 1: Introduction

 These companies were not like IBM, and nobody expected they would work 30 years
and retire from pets.com. Everybody’s dream seemed to be to work a few years and cash
out when the company was bought out. Most companies failed. At the time I worked for
Lockheed-Martin in a very stable but unremarkable career as an aerospace systems engineer.
My work interested me, it made an impact in the world, and I was financially comfortable.

 Several of my friends joined startups and guess what? None of them made it big. In all cases
the startups disappeared after suffering months or even years in a business coma where
there were no customers and the funding well that had seemed endless dried up.

 Today’s software companies offer a seemingly mixed bag. You get the structure and security
of a steady paycheck, insurance, and other perks but operate in a mostly startup-like
mode. Many companies claim to offer unlimited vacation time. To me, that makes no sense,
because if it were true I could get hired and go on vacation for the rest of the year or longer.
Now, of course there are limitations to this, but then why advertise unlimited vacation if it is
not, in fact, unlimited? It’s more like you’re not set at two or three weeks when you start and
if, say, you finish a major assignment, then get married, your boss will probably let you have
an extra week or maybe two. In all cases management has final say on this.

 The point is to not be swayed by the promises of job postings or recruiters. Sometimes the
people you interview with may give you the facts, but those cases are rare. Just have an
open but skeptical mind when interviewing. Assess the good, the bad, and what seems too
good to be true.

 Figure 1-5. Silicon Valley at the turn of the twenty-first century became the litmus test for ventures capable of survival
in the dynamic world of technology

10 CHAPTER 1: Introduction

 To get a job with an established software company, from small, locally owned shops to the
major players, you want to have the basic set of tools addressed in this book. Everything we
cover, except for issues dealing with starting your own business, should be part of your skill
set or at least your vocabulary. You may not know exactly how to use Quartz or Metal, but at
least by understanding the basic concepts you won’t turn a highly interactive interview into
one where it seems like they want to push you out the door.

 Career Path #2: Entrepreneur
 While having a bad boss when working for a larger company can be disheartening, and
dealing with traffic two or three hours a day may drive you to madness, neither compares to
the stress of doing everything yourself. You still have the constant barrage of bosses (clients)
telling you that what they need is not what is written on their contract. You’ll suffer constant
pleading to reduce your rate, or your hours, or take an equity stake, or some other offer
that’s not likely to pay the rent or get that new water heater you need.

 And on the other side will be the constant paperwork dealing with licenses, tax filings, and
investor meetings—if you’re lucky enough to get investors. Speaking of investors, unless
you have enough free capital to fund your startup, you’ll want to use other people’s money if
you can. That’s why having a great idea can boost your potential.

 But a great idea is only the seed. You must have a business plan (Figure 1-6) to succeed.
And yes, most business plans are not worth the electrons used to create them, but any
investor will need to see yours. This brings up the question: What will your business do?

 Figure 1-6. Without a well-thought-out business plan , you’re setting your company and yourself up for failure

11CHAPTER 1: Introduction

 Generally, your best option is to start a consulting business where you take on development
projects. Let’s say a couple of entrepreneurs come to you with an idea for the latest social
media breakout, perhaps Facebook but with a different color scheme. They have a lot of
money and really want you to build their app for them. What do you do?

 With a consulting company , you’ll be hard pressed to find investors to get you started.
Money people just won’t see the ROI (return on investment) they’re looking for via your
writing a hundred lines of code or so each day. Luckily, there are other funding options,
which we’ll talk about in the next chapter.

 If you have a great idea for an app, get in line. It’s like any diner in Hollywood circa 1960.
Every bartender has a script and every waitress is an actress looking to break out.
Fortunately, social media tools such as Vimeo and YouTube have leveled the playing field
somewhat.

 Everyone seems to have a great app concept. Mention yours to a few people and you’ll
likely hear, “Oh, it’s like such-and-such.” The good news, I believe, is that there are still a lot
of opportunities for mobile software development . In late 2015 Apple introduced the iPhone
6S and 6S Plus along with the iPad Pro. Both device types offer new, unique features that
can be leveraged, such as force touch on the iPhone and the larger screen size and stylus
capability with the Pro. Coming up with a unique concept that can utilize new features in
an exciting and novel manner sets you apart from the crowd. As with the other two types
of career paths, we’ll discuss this shortly, but if you can create something that provides
recurring revenue, such as the in-app purchases of gaming, you might have a chance to
attract some investors.

 Career Path #3: Contractor
 We’ve talked about starting your own business as an alternative to working for someone
else, so think of contracting as the bridge between working as an employee and running
your own business. Working as a contractor, like anything, has its plusses and minuses, but
it all depends what you’re looking to find. I’ve been on all three paths. For many years early
on, I worked at large companies offering lots of job security, but as the economy changed,
those promises evaporated quickly.

 Being somewhat older, I found myself at loose ends. Should I find another company,
participate in the dot-com boom that was happening in the Valley, or do something else? I
was fortunate, because the business explosion escalated property values, giving me some
choices. I took some time off but stayed current with my skills. Then the iPhone came out
and changed everything.

 A lot of us in technology at the time were skeptical of Apple getting into the phone business.
Sure, the iPod and iTunes were doing incredibly well, but phones were changing so much
at that time. The trend was definitely to go smaller, and the iPhone seemed counter to that.
Plus, there was the Newton fiasco.

 It, of course, took off, and all my non-techie friends had an iPhone long before I did. About a
year later Apple opened things up to allow user-created apps, which was about the time
I got my iPhone 3G, and things really went crazy. Each day you heard of another app
success story.

12 CHAPTER 1: Introduction

 I developed my iPhone OS skills and created my first app, a slot machine game (Figure 1-7).
I was fortunate to have worked in embedded systems for many years, enabling me to
quickly understand the concept of running small programs on a phone with limited memory
and processing power.

 Figure 1-7. Your first app idea can be as simple as this slot machine game developed by the author to gain experience
coding for the iPhone in 2009

 With some app ideas in hand, none of which seemed all that great—plus I was still at the
early stages of developing my Xcode skills—I started looking to work for someone else.
There were some opportunities here in Colorado, and I eventually landed a 1099 contract
position with an up and coming software agency trying to establish a Denver office.

 We’ll talk about this more in a later chapter, but even though you’re an independent
contractor, you have to follow the rules set down by the company but without the perks and
benefits. Also, you’re not guaranteed a 40-hour work week, so if you’re looking for a steady
paycheck, this might not be the best choice. It really depends on the company, the projects
they have in the queue, and how well you fit in with the culture.

13CHAPTER 1: Introduction

 Working as a contractor for a company, however, is not your only option. If you’re okay with
sporadic income you can create a profile on a freelancing site. Upwork, formerly Elance,
allows customers to locate project-based talent directly and choose based on their needs
and resources (Figure 1-8). As a developer, you list yourself, your specialty, and any other
information you want to advertise on the site to get projects. Much like airbnb, this concept
brings together the service provider with the customer, mostly eliminating the middleman
and managerial overhead.

 Figure 1-8. Companies such as Upwork offer you the tools and resources to get you started as a freelance developer

 As a freelancer you can set your rates and choose which projects would be a good fit for
your skills and lifestyle. According to the site, each year freelancers earn over one billion
dollars through the online workplace. You can work by the hour or per project, and if you
choose to go hourly, the site has tools to let you track your time. If you choose to work on a
project basis, then you’re paid at completion of milestones you set with your client.

 Okay, this connected workspace seems like a really good thing, but it still has a very
important point to consider—you still have a boss. Your client is now your boss, and they
can be incredibly demanding. When you interview at a company, most of the time you’ll
meet your boss and co-workers during the interview process. You’re able to tell if it’s a
good fit or not. You won’t have that when you’re a freelancer. We’ll discuss this at length in
Chapter 2 .

http://dx.doi.org/10.1007/978-1-4842-1820-4_2

14 CHAPTER 1: Introduction

 Our Plan
 With the understanding that our goal is to develop the skills necessary to further our career
in iOS development, how are we going to get there? Attaining a comprehensive set of skills
in this area does not lend itself to a linear process. That is, we don’t learn source-code
control after learning UX skills after setting up our provisioning. It’s more of a need-to-
learn-it-all-at-once kind of thing. Unfortunately, no one I know can read multiple chapters
simultaneously, so we just have to make do with a sequential process.

 I’ll go through a sequence of instruction based on the experiences that got me to where I am
today. That’s not to say I’m regurgitating how I did it; in many cases, I learned things in the
wrong order. Now’s my chance to correct the situation so you don’t make the mistakes that
hindered me.

 First, we want to figure out how you plan to use your mobile development skills. By first
understanding where you want to go, we can reshape our plan to fit your specific path. Do
you need to understand automated builds if the plan is to develop your killer app during
your spare time? After we talk in detail about career direction in Chapter 2 , we will get into
the more technical aspects of app development and the problems you’re likely to encounter.
Because we want to address problems, we of course will speak to the overall procedures for
each particular subject.

 Because getting your app onto an actual device is the most critical aspect of showing off
your skills, we take that on early in Chapter 3 . As someone who already has a few apps in
her portfolio, we’ll go through the process rather quickly and try to hit the high points of
where things can and often do go wrong. Fortunately, Apple in its latest releases of Xcode
has made much of this semi-automatic. But, like most things Xcode, this type of automation
tends to work only in the most basic of use cases. For example, if you have one developer
account and forgot to create a provisioning profile, the automation tools will generally work
well. But if you have several developer accounts or belong to more than one team, things
become a little more unwieldy. Those are the points I’ll try to address. Having individual
accounts as well as managing a team, I come across these at least every week or two.

 Chapter 4 presents an overview of the code we’ll be developing and referencing throughout
the book. We’ll tackle four major projects plus a number of smaller, partial ones as we move
forward. The four major projects, including source code, are detailed in the last chapters as
reference and are included because I have devoted significant time to them over the years.
As needed, we’ll look at smaller projects, code snippets in some cases, that act as a better
reference depending on what we’re discussing.

 If you’re developing apps for profit, whether as a contractor, employee, or running your own
business, please get started with source-code control, which we discuss in Chapter 5 .
A few years ago when Apple first started integrating Git tools into Xcode I was so happy,
until I tried to use it and everything broke down and I lost some of my files. I still maintained
backups on Github, but I never used Xcode to do it, relying instead on third-party tools such
as Tower. Even while I was working at a company a few years ago, Tower was the de facto
standard for managing backups and source control.

 My writing style, or perhaps it’s the way I think and form concepts, causes me to shift
around a bit, not necessarily keeping to a purely sequential organization (Figure 1-9), so
in Chapter 6 we’ll take a step out of the trenches and spend some time talking about

http://dx.doi.org/10.1007/978-1-4842-1820-4_2
http://dx.doi.org/10.1007/978-1-4842-1820-4_3
http://dx.doi.org/10.1007/978-1-4842-1820-4_4
http://dx.doi.org/10.1007/978-1-4842-1820-4_5
http://dx.doi.org/10.1007/978-1-4842-1820-4_6

15CHAPTER 1: Introduction

methodologies. If you come from large corporate engineering firms you’re most likely familiar
with the waterfall project design. For years this was the norm. First, you design everything
until it’s perfect, then you start coding or developing. I must have worked on two dozen
projects this way; ISO standards, six-sigma, and all kinds of other buzzwords were tossed
around with statistics explaining why this was the best way to do things. Fact of the matter
was that of all two dozen projects, or however many it actually turned out to be, none came
out on time or on budget.

 Figure 1-9. I’ll occasionally change up the flow to engage you and keep things from getting too stale or boring

 Agile development, while not by any means perfect, provides a completely different mindset
to development. To provide a spoiler, you start developing almost immediately and see
what happens. This works really well if you’re a tinkerer like me. When I see a new feature
or framework, I quickly create a simple project and play around. While not exactly the agile
process we’re looking for, the gist of it is the same; you want to quickly see what works, and
more importantly what doesn’t work, so your time is better spent during the development
process.

 For the customer, this results in quicker delivery. For your organization, you spend less
time going down paths that don’t return good results, which lowers your cost of project
development and increases profit, assuming project-oriented pricing. Even if your company
bills its clients hourly, and the reduction in number of hours may appear to lower your
revenue stream because you’re doing less work, in actuality you will almost always wind up
using that “found time” for other aspects of the project. This extra effort increases the quality
of the project, which in turn gets you more business from the existing client as well as better
referrals that let you capture new business.

 Chapter 7 takes us back into being hands-on with Xcode and specifically into how we
develop the user interfaces and overall user experience. Quite frankly, I am not an expert
in UI/UX creation. In most companies you generally find these functions split between two

http://dx.doi.org/10.1007/978-1-4842-1820-4_7

16 CHAPTER 1: Introduction

departments or sections. The design group develops the look and feel of the app—the
colors, the sizes, and the shapes of the buttons or windows. Think of them as the CSS
portion of a website. The engineering group creates the coding; for us, this would be
the Swift code using the Xcode development environment. As an interesting crossover,
the engineering group also usually instantiates the UI/UX from files delivered from the
design group. Basically, you take the design group’s “wireframes” and convert them into
storyboards and .xib files inside of Xcode.

 Continuing our work with Xcode , in Chapter 8 we get serious about building our final
products for release into the real world. Specifically, we’ll discuss schemes and manual
builds. When working in your own business, manual builds are really all you need. But if
you intend be employed by, or to act as a contractor for a larger, more established software
agency, you’ll need a little familiarity with automated code builds. As continuous integration
(CI) becomes more and more prevalent at software companies, you’ll want to have a handle
on the concepts (Figure 1-10). Apple introduced bots a couple years ago in an attempt to
supplant the more established Jenkins/Hudson or Travis CI servers. Like all new technology,
bots have had their share of issues, and many companies still use one of the other servers
as their baseline. But, like what happened with source-code control, the tight integration
with Xcode may offer bots an advantage once things become a bit more streamlined.

 Figure 1-10. Continuous integration streamlines the testing and distribution processes when multiple developers work
on projects together

 We won’t go into great detail on either option, with the exception of making sure you have
enough of a comprehensive understanding to be prepared for your next job interview, either
as a direct-hire employee or a contractor.

http://dx.doi.org/10.1007/978-1-4842-1820-4_8

17CHAPTER 1: Introduction

 In Chapter 9 we once again step out of the depths of writing code and look at the world of
embedded systems. My experience for the past twenty years focused almost entirely on the
embedded space. That’s why I was drawn into the world of mobile development. Embedded
systems offer a huge variety of real-world things you can interact with. It’s no longer just stuff
on a display or pulling data from a PHP (PHP: Hypertext Processor) server. With embedded
systems, we interact with stuff. For me, this is what it’s all about and why I still have passion
for the field.

 We’ll cover how embedded systems began and evolved through the years to become what
we now consider everyday devices such as our phones, music players, fitness monitors,
tablets, and so on. But then we will move into the world of IoT, the Internet of Things
(Figure 1-11). Many see IoT as the next major revolution. We interconnect all the capable
devices in our homes and apartments through our mobile devices. We can monitor our
doors, feed the dog, start tonight’s dinner, track our movement, set the mood, draw the
shades, or any of a countless pool of functions that exist today, and many that haven’t yet
been conceived. As part of a plan creating a modern, connected town, my team uses IoT
beacon technology that establishes directed advertising to the consumers in our business
district to increase traffic and provide targeted advertising to consumers.

 Figure 1-11. We’ll cover one of the most exciting new areas of development, the Internet of Things, where we connect
and communicate with devices of all kinds including Apple iBeacon technology

 Back to the tools in Chapter 10 as we cover getting our app published in the App Store.
We’ll talk about the App Store in general terms, as anyone familiar with iOS devices must
be familiar with the basics if only to update apps and the operating system from time to
time. What we’re going to focus on are the tools used through each step of the process—
specifically, using the iTunes Connect portal to publish our works of art.

http://dx.doi.org/10.1007/978-1-4842-1820-4_9
http://dx.doi.org/10.1007/978-1-4842-1820-4_10

18 CHAPTER 1: Introduction

 Publishing an app really consists of, once we have something we’ve deemed worthy
of putting out into the world, two parts. The first part we mentioned earlier and cover in
Chapter 8 . We create the archive that gets verified and sent to the App Store. But before
that, we need to configure what our app is all about and how it will appear in the store. If you
haven’t noticed it previously, the non-linearity of the process steps should start to become
clearer. We can’t publish an app until we have a build to upload, but we can’t upload a build
until we set up our information in the App Store using the iTunes Connect portal (Figure 1-12).
But what if we want to change things a bit before publishing to the App Store? We may want
to get a workable build that we can archive and distribute ad hoc before even bothering with
iTunes Connect and the App Store. We may not even want to distribute through the App
Store if we can distribute through the enterprise.

 Figure 1-12. To publish, advertise, and sell our wonderful application, we’ll discover how to work with, and not against,
iTunes Connect

 For the most part, once we get to an app build that functions well and is reasonably bug
free—we can’t find every problem at the start—the steps to get it published in the App Store
are pretty straightforward. The problems come in all the details that must be attended to
when setting things up to display to the store’s subscribers.

 One thing you find often in apps other than simple utilities or games is a connection to an
external database. Most often we do this through Representational State Transfer Services
(REST) . Essentially nothing more than reading or writing to a website, our app can share and
gather data from any number of users worldwide. We can search business listings, find our
way through map databases, or store our own personal information to share with whomever
we choose.

http://dx.doi.org/10.1007/978-1-4842-1820-4_8

19CHAPTER 1: Introduction

 As with build automation from Apple trying to supplant the more widely used Jenkins
servers, CloudKit (Figure 1-13) provides much of the functionality of REST but is easier to
use. The drawback comes from CloudKit currently only working with Apple devices. As
such, for the broader mobile ecosystem, it has limited use in its current state. Still, as with
other features Apple has added over the years, this will likely change, and it’s best that we
look at it as an option, especially if you’re focusing on iOS only at this time. We’ll look at
both options and how they might be used in our projects.

 Figure 1-13. Apple’s CloudKit framework , while limited to iOS and OS X devices, offers a very easy-to-use set of tools
for working with information on the Internet

 To make a product with which people will interact, testing cannot be overlooked. Just as you
wouldn’t release a new drug or even food item into the marketplace without testing, neither
should you let your apps out into the world unless all the functionality has been rigorously
exercised. A few app crashes with cranky customers and your app could be dead before
release 1.0 hits the store.

 Once your app is ready to go out into the real world, but is not yet available to the general
population, you’ll distribute your beta release to be tested. Now, with TestFlight integration ,
you no longer have to create a complex combination of your app bundle and provisioning
profile to send to authorized users via email. TestFlight and Xcode have built-in support to
make this nearly painless. You have options of either testing internally with your in-house
company team or, with a little more work, distributing to a broader set of beta testers.

 In Chapter 13 , I cover my specialty area, iOS Accessories. We’ll look at the various input–
output ports by which data can be brought in and sent out of the iPhone. From a simple
headphone jack device such as the Square credit card reader (Figure 1-14) to high-speed
proprietary connections such as wireless Bluetooth or the wired Lightning connector, the
iPhone offers many ways to gather information and provide control capability. I’ve worked
on iOS accessories as part of Apple’s MFi program since 2009, when I also developed a
credit card reader and companion payment application. Working in the MFi program requires
strict adherence to Apple’s non-disclosure policies, so many of the details of the plan are, of

http://dx.doi.org/10.1007/978-1-4842-1820-4_13

20 CHAPTER 1: Introduction

course, confidential. But the whole point of the plan is to assure customers that a particular
device or accessory is compliant with the Apple device to which they intend to connect
their purchase. Our discussion of the MFi program, though we’ll shy away from the program
details and not get into any technical specifics, will look at the types of devices that we can
use with our iPhone. We’ll look at a wide range of products from personal to B2B (business
to business) as well as how we might use the HomeKit framework to integrate devices into
our own IoT ecosystem.

 Figure 1-14. The Square credit card reader, one of the earliest iPhone accessories, used the headphone jack instead of
the 30-pin dock connector, making it cross-platform compatible

 In the final few chapters, the projects that we use throughout the text will be described in
detail as a reference. I chose four sample projects to cover in their entirety, primarily because
they interested me and because they addressed the issues we’re discussing in this book.
I tried to pick things that I thought would be enjoyable and interesting and spur a sense of
creativity and passion but that would also provide useful skills and experience. And, for the
most part, I wanted to try to have a little fun by building some things that might be a little
different.

 Fun
 The most important aspect of my life centers on the ability to have fun, so each and every
project I take on needs to have an inherent enjoyment to it. I know that, in the early stages of
a developer’s career, she needs to build her skills and confidence level in order to command
a specific salary and work environment. But that doesn’t mean I’m going to overwhelm you
with writing table view after table view because it’s an easy direction to take. As long as I’m
running the show, or writing the book anyway, I’m going to do my best to keep you engaged
by creating as much interest and enjoyment as I believe possible.

21CHAPTER 1: Introduction

 So what are these so-called fun projects I’ve been going on about? First, we’ll tackle a
simple conversion from Objective-C to Swift for the slot machine game app that I mentioned
earlier. Called Town Slot, a play on words of course, the app contains three spinning wheels,
a couple of betting choices, and a spin button. Originally written for the iPhone 3G, the code
mostly contains deprecated function calls. In preparation for this book, I converted it to more
modern Objective-C and have successfully operated the app on iOS 9 devices. Starting from
there we’ll make the transformation to a full Swift project.

 While this may not seem like that much fun, because Swift is still relatively new, having
both Objective-C and Swift coding skills might be the differentiator you need to land that
developer position. Eventually, Objective-C will likely become less and less supported, so
many companies with existing apps may need to convert their old code into Swift. This in
and of itself could be a source of income as a freelance developer. Because the conversion
is mostly straightforward, less skilled engineers will likely want to take on such mundane
projects. As you are trying to expand your skills while building your own portfolio, this could
be just the right job for you to take on.

 We want to start playing around with the Apple Watch , as it is currently the “latest and
greatest thing.” As new and creative uses for the Watch start to reveal themselves,
development companies and freelancing sites may rapidly increase their need for skilled
Watch coders. My very first Watch app was a simple coin-flip game just to get the feel of
how everything works. As I was working through it I was surprised how much it took me
back to the early days when I did the slot machine game. I felt a sense of freshness that
really drove me to complete the project. My friends were so fascinated with something so
simple, a number of them have decided to give app development a chance. Through that
simple action, making an almost trivial app that actually does something, I may have given
people I know, friends, a chance at a better career and life.

 As mentioned previously, the Internet of Things is becoming bigger every day. Someone
seems to be coming up with a new connected piece of equipment hourly. So let’s have fun
with it. Apple’s HomeKit framework makes this pretty simple and offers built-in security
features not currently found in the vast landscape of IoT products out there today. We’ll
extend what we cover in the main part of the book with a project that allows us to control
a power outlet in our home. Recently, I was asked to give a talk about HomeKit and the
Internet of Things and so I created the demo on which this project is based. I could have
turned on a simple lamp, but instead chose to start up a flashing, rotating, colored disco ball
(Figure 1-15). The audience loved it, and I got so much attention after the talk, the organizers
had to shoo us all out of the auditorium. The point again being, have fun in and passion for
what you’re doing and you’ll likely never dread going to work.

22 CHAPTER 1: Introduction

 Our final project incorporates elements near and dear to my heart. I take my experience
and interest in embedded systems and combine that with a need to create an impact in the
world and form something that could potentially assist thousands, if not millions, of older
individuals.

 By profession I’m actually an electrical engineer; I took on iOS development to create near
off-the-shelf tools that were affordable for a larger percentage of the population. Frankly, as
I’ll try to continue to stress, I couldn’t find developers with the needed skills at an affordable
rate. In fact, I couldn’t find any developers early on that really understood all the aspects of
iOS development needed to make real, interactive hardware systems that were truly useful.
I’m not saying I’m special, just that the dictates of the broader market were elsewhere at
the time. My concept is to minimize new and complex development to only that which is
absolutely required. For everything else—reuse, reuse, reuse. That’s what we’ll do here.

 Last year I designed and built a small sensor that provides information on movement and
orientation. It’s really just a printed circuit board (PCB) containing what everyone already
has in their smartphone or fitness monitor without everything else. We’re going to capture a
couple pieces of information from that sensor to tell us its orientation. Imagine an XY plane
parallel with the ground. If you change the angle in either the X, or the Y, or both axes, we’re
going to receive that information, really the two angles, and do something with it. Okay,
here’s where you get to know me a little better. I’m going to measure the angle of the foot.
Specifically, I’m going to look at the pitch of the foot and the side to side roll of the foot.

 Why? Well, I’m a dancer, a ballroom dancer to be clear, and I was looking for a way to judge
how correct or incorrect a student’s foot positions were while learning. This sensor could
be mounted on a shoe (Figure 1-16) or within an orthotic insert and in real time measure
two angles of the dancer’s feet. And although we’ll look at one sensor to make things easy,
multiple sensors are no problem at all. Combined with the haptic feedback provided by
using an Apple Watch, the dancer immediately knows whether or not to correct her stance
without deviating from her frame.

 Figure 1-15. Using HomeKit to monitor and control devices provides an easy-to-use, flexible, and rational way to
control everything from doorbells to disco balls

23CHAPTER 1: Introduction

 While this is fun, for me anyway, and I hope for you, it’s not really taking on the impact
feature I mentioned a couple paragraphs ago. What does it do for humankind? Let’s
extrapolate a bit. What if this same sensor were placed on a person at their core or center
of gravity and could determine how much they were in or out of balance. More than just
tracking falls—anyone remember, “Help, I’ve fallen and I can’t get up?”—this technology, so
simple at its origin, can teach us the why of geriatric falls (Figure 1-17). That’s the basics of
it anyway; the actual implementation is a touch more detailed, this is the space where I find
the motivation to get up in the morning and get started. And it’s not just my uncle or your
grandmother; this type of creativity potentially helps everyone. Quickly, let’s look at a few
statistics. According to the National Council on Aging, one-third of Americans aged sixty-five
and older fall each year. Every thirteen seconds an older adult is treated in the emergency
room for a fall, and every twenty minutes an older adult dies from a fall. From a fiscal
standpoint the numbers get worse in a few years. In 2013 the total cost of fall injuries was
$34 billion and is expected to be over $60 billion in 2020. Passion and impact plus financial
opportunity; that’s what we want to look for when choosing our future. It’s not about just
doing what makes you happy or becoming a millionaire. Make the difference that you want
to see happen in an occupation that affords you all you need to be happy.

 Figure 1-16. In one of our projects we’ll explore measuring the angles of a dancer’s feet in order to quantify and help
perfect her artistic performance

24 CHAPTER 1: Introduction

 My goal throughout this book is for you to find your motivation, or more specifically, your
passion. Maybe it’s in sports performance, or rehab because your grandparents are getting
older and you care about them. Maybe your passion lies somewhere else altogether that I
have no concept of. Whatever it is, wherever it lies, seek it out, and when you can, use your
newfound skills to do what you truly love.

 You can do it. Just get started.

 Figure 1-17. More than just work, the things we do, the devices we make, and the software we write can deliver an
impact that changes lives for the better. For me, making a difference is why I do what I do

25© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_2

 Chapter 2
 Career Direction
 As mentioned in the previous chapter, we’ll discuss the three basic career options afforded
to most app engineers—specifically, to iOS software engineers. There will always be
variations that exist, but in general, what follows is a pretty good classification of your
options. These are the three options to which I can personally speak, as I’ve tried them all.
Each has its pros and cons, but only you can determine for yourself the differentiators and
their importance to your future plans. You may want the consistency of a steady paycheck
and are willing to sacrifice choosing what projects you want to take on and give up the
freedom of your days. Or, you might go all in deciding to form your own startup to take
on the world knowing the risks inherent in that path. I want to give you enough insight to
choose wisely or at least to give it some thought before committing.

 Option #1: Working as an Employee
 The most common track people tend to follow as they develop their software skills seems
to be taking a position at an established company. As they finish their training and pass that
last examination, the desire surfaces to stop chasing something, take a break, and just get
to work. The company pays you a salary and often other benefits such as insurance and
vacation. You work a more or less consistent schedule such as 9 to 5, or it could be rotating
or even project-based schedule. You’ll typically work at their office location , which could
be in a hip, cool, and upcoming part of town, or it might be at any of the million or so look-
alike industrial complexes from uptown to out in the ’burbs (Figure 2-1). You’ll drive to work
or take whatever mass transit your town offers. Many companies now offer public transit
passes as perks to reduce wear and tear on your vehicles, but more often, they are likely
motivated by getting credits for reducing traffic and pollution from the local government.
Either way, it’s still a nice perk that you can enjoy, and I personally loved taking light rail to
town. This option works well for the individual coming from a more traditional background or
who is looking for more stability and consistency in her life.

26 CHAPTER 2: Career Direction

 Even though the trend away from open workspaces is slowly gaining momentum, unless
you’re a very senior person, you won’t have that corner office or cubicle that was such a
mainstay of corporate America a few decades ago. Most likely you’ll work at a large table
with anywhere from four to eight people grouped by department (Figure 2-2). Engineers
developing the code sit together with other engineers, as do the designers, quality
assurance team, and any other groups. In many cases iOS developers sit with iOS people
and the same with Android, Microsoft, or web-based talent. It makes sense. You play
with the people with whom you have something in common. You get immediate help and
assistance when trying to solve a problem. The inherent synergy of the team spurs on
creativity and a sense of teamwork.

 Figure 2-1. Quite often, as an employee you’ll find yourself working at a bland technology park

27CHAPTER 2: Career Direction

 Because little competitions seem to spontaneously happen (and this happens more among
men, or should I say boys), the group may work frequent overtime to best each other and
see who can eke out that last few milliseconds in some sort of routine or graphics render.
You’ll likely have a fridge stocked with soda, snacks, easily heated food, and lots of other
amenities to tempt you to continue to stay at the office and produce code. For the younger,
more driven engineers, especially those right out of school, this feels like an extension of
college life. For the self-taught developer , this may be the college experience they never
had. But the seasoned engineer can often feel like a fish out of water. For the female in
technology, it can often seem worse, but it's often due to our fewer numbers. Eventually, our
quality of work shows through and we become an integral part of the team.

 But if this is what you’re looking for, it could very well be your dream job. If you’re an older
engineer, trying to keep up with the developers could give you the opportunity to show off
tricks the kids might not have ever considered. You’ll be considered the go-to guy for deep
technological challenges, typically when algorithms or external hardware becomes involved.
You’ll participate in beer-pong matches on Fridays and maybe even get invited to the local
pub afterward.

 For women, things are a little different, and the situation, like everything, can be good or
bad. First, I’ve never found overt discrimination in any organization I’ve worked for or with
in the past ten or so years. Before that, well, I get so mad thinking about it I don’t want to
even discuss it. That’s a subject that matters deeply to me but is meant for a different forum.
Many companies welcome women in earnest, but watch out for the ones merely trying to
balance out their numbers. If you interview somewhere and there are no women on the
development team, I’d consider trying to find out why.

 Looking at demographics, the National Center for Women in Information Technology reports
that in 2014 only 26 percent of professional computing occupations were held by women.
While there may be endless arguing about the why of this and different ways to fix it, my point
is that when going for a developer position at a company as a woman, be prepared to be

 Figure 2-2. Typically, software teams work cooperatively in open environments that generally lead to more interaction
between members, thus increasing productivity

28 CHAPTER 2: Career Direction

outnumbered by the boys three to one. I don’t hold any prejudice here; I simply don’t wish
anyone, no matter their age, race, gender, preferences, or anything else to go into a situation
unprepared. Again, as a business owner, I look for the very best developers I can find.

 Whatever you do and however you go about it, be mindful of what the outcome might be.
Personally, I pick and choose my battles. If the most important thing to me is getting a job
that pays a certain amount, and I really need that to get by, I might make allowances and
overlook things that seem to be a bit off. It’s up to you and what you’re able to deal with,
whether you’re young and just starting out, older and concerned about keeping up, or a
woman in a predominantly male organization. Hey, you could go in, show them how great
you are, take on a leadership role, and then make the changes you see are needed.

 A good friend of mine works in a position she doesn’t really like very much in a company.
Working directly for the company, she receives a salary and benefits, including vacation and
health insurance. As with any job, there are always good and bad situations. Some you can
deal with, others you just have to suck up and learn to take by finding some way to diffuse
the situation for yourself without causing bigger problems. It’s not a great situation, but it just
tends to be the way things turn out for a lot of people (Figure 2-3).

 Figure 2-3. A lot of millennials took positions of interest to themselves, but soon discovered the salary wasn’t meeting
their day-to-day needs. A software development career offers a well-paying and challenging position with opportunities
in many different areas that could fill that personal need to make an impact and have fun

www.allitebooks.com

http://www.allitebooks.org

29CHAPTER 2: Career Direction

 She’s not in technology nor is she really in the field for which she went to school, studied,
and trained. Like so many people in the millennial generation (born roughly between 1980
and 2000) she was told that money didn’t matter as much as doing what makes you happy.
So, like thousands of others, my friend went to college because it was the thing to do,
choosing to study what interested dominated. She worries every month about bills and what
she might have to cut out should rent increase or her car breaks down. The sad thing is that
it was mostly my generation that sold her that bill of goods. It’s not that happiness doesn’t
matter; it’s just that in any situation you have to look at the whole picture and weigh all the
options and alternatives. Because she is my friend, I’m helping her to develop a high quality
set of iOS and generalized software skills that she can use, hopefully in the near future, to
make a change and control her life as she sees fit. There is no one answer to everything, and
all I can do is try to help, whether it’s my best friend or the anonymous reader who happened
to pick up or download a copy of this book.

 You’ve heard me say that I believe passion and fun in what you do, especially in mobile
development, are key to achieving happiness in your career. It may not last forever, but when
it’s no fun anymore, you should really take time to assess what’s going on. We’ll talk about
that later, but for now, you should be a little confused with what I’m saying. On the one hand
I’m telling you to seek out and look for happiness in your career, and on the other hand I’m
talking about my friend, who was told much the same thing and now finds herself frustrated
with her choices.

 I want to expand on this to maybe enlighten you as to why this situation exists at all. I
mean, there are thousands of software and iOS development jobs going unfulfilled each and
every day. At the same time, there are thousands if not tens of thousands of capable young
women and men to take these positions and advance themselves and society.

 My friend and I are of different generations. She doesn’t hold it against me that my
generation—teachers, counselors, business people of the day, and so on—essentially
screwed her over. What happened was that my “people” told her to not worry about money
but rather to shoot for happiness and things would all work out.

 The reason why, I believe, is that the same thing happened to us, but in an opposite way.
My own mother, as I mentioned earlier, wanted me to take a job with a big company, like I
did with IBM (Figure 2-4), and stay there forever. I was rebellious enough not to follow her
instruction and continued to move about, getting significant salary increases as I went,
but of course losing all that valuable seniority my mother so wanted me to have. I consider
myself extremely lucky to have taken that path. Anything even remotely similar to the
position I held at IBM was wiped out long ago as the iconic organization faded away. My
friends who stayed found themselves with a meager enough retirement to live on, but are
still working at odd jobs just to get out of the house or provide a little extra income. I never
see them anymore, even though I’m back in Denver, where I had many work friends at IBM.
While I’ve stayed pretty active in the technology scene through networking and meetup
events, they’ve simply vanished.

30 CHAPTER 2: Career Direction

 I have relatives my age who don’t know what a tablet is or how to use Pandora or still
can’t do more than make a call on a smartphone. What happened? I think it’s simple and
boils down to one word: adaptation . In nature, whether you’re a creationist or Darwinian,
there exist, without a doubt, forms of adaptation. If you are not a global warming believer,
you most likely think that the population will somehow adapt if there are changes really
happening. And that’s what I’m trying to do in this book; stress the importance of being able
to adapt. We want to not just learn the basics of building an archive to upload to iTunes or
understand how to move data from a server to a mobile device using MySQL and PHP; we
want to be able to adapt when things don’t work like they’re supposed to. We may want
to adapt one methodology to another set of requirements, thereby achieving something
totally different. You may find after reading my ramblings that you need to adapt your career
expectations a bit, one way or another.

 So in each and every chapter I hope that, in addition to seeking fun and passion in whatever
you may pursue for a career choice, you’ll be ready to adapt. Working in the Apple world
should make this second nature. A new device or set of devices get announced two to three
times a year. New frameworks, changes, deprecated tools, and so on are commonplace.
I believe that once you’re in this fast-paced, ever-changing world of mobile, adaptation
becomes inherent. You don’t even think about it anymore. So, let’s get into more about what
it would mean and what you might need to land that perfect position at a software company.

 Figure 2-4. Even former behemoths such as IBM have seen radical changes to their product strategy as technology
such as mobile devices becomes commonplace

31CHAPTER 2: Career Direction

 Potential Employers
 I decided to not include any employer survey information gathered from searching Google,
assuming that the data would have grown stale by the time this book went to print. When
looking at the top iOS developers, based upon surveys from various online tools, one
thing became apparent: the results are, in general, pretty arbitrary. No two surveys I found
contain the same list of companies in the top 20 or 10 or even 5. I rarely found two lists that
contained more than one or two of the same companies. Upon looking a little deeper I saw
that on the top lists that come back from an Internet search, to get on the list the company
pays a fee to the survey company. That’s when things started to click in my brain. These
company rankings, to me anyway, seemed to be nothing more than SEO (search engine
 optimization) techniques applied to ranking, likely to attract potential clients.

 I want to relay something a friend told me just yesterday. If you can, try to pick your boss
when you’re thinking about accepting a job. This will be the person you work for day in and
day out. Even if the money and other perks seem too great to pass up, it won’t matter much
if each day you dread going to the office or signing into the company’s chat service. This
story really hit home for me personally.

 Years ago I worked for a moderate-size software agency focusing on iOS development.
I left within a year because the working conditions, for me, were intolerable. I tend to
keep my personal and professional life separate, especially when working for a company.
Unfortunately, my manager didn’t seem to quite understand this concept and would call me
during scheduled off or vacation times. They even went so far as to call my partner because
I refused to answer my phone while I was out having dinner. This was way too invasive for
me, so I made the decision to leave.

 I was fortunate enough at the time to have other opportunities that I could pursue. In your
case, you might not be as lucky. So the best advice I can offer is to try and get a sense of
the person for whom you’ll be working early in the process. Obviously you’ll want to meet
him or her before accepting any position, and any company that doesn’t offer you this
opportunity should be considered highly suspect.

 We’ll be talking about this and other things to watch out for throughout this chapter. Only
you can decide which aspect of any opportunity you might encounter is important enough
to be “must haves” or “deal breakers.” I just want to offer some things to think about as we
take this journey—usually based on personal experience.

 When looking at assessments you’ll find on the web (Figure 2-5), you should consider them
suspect and partisan. That is, while a company can’t necessarily buy their way to the top
of the rankings, all research is subjective based on the criteria used. This is true of any
research, whether it be for ranking companies or political candidates. As a math major I’ve
never been a fan of polls. So many factors influence the results, and to say this or that poll is
within so much margin of error seems ridiculous. The time of day, or the tone of the pollster’s
voice, or any of a dozen subtle things can affect the outcome. And that’s just from the poll-
taking side of things. If I’m in a bad mood, I might answer differently based on emotions
rather than subjective thoughts.

32 CHAPTER 2: Career Direction

 While analyzing data from rankings you find on the Internet, it’s always best to take the
following things under consideration. These rankings are a starting point from which to
perform your own in-depth analysis and research. From what you discover, formulate your
own analysis and then narrow your scope as needs dictate. Probably the first thing you’ll
want to do is assess companies based on your own geographical region; what companies
are close enough to you?

 Although finding local employers of interest, especially if you live outside the mobile
development hotspots, might seem daunting, there’s a trick you can use. Most public libraries
have research associates who are waiting to help. As “real” books continue to go out of
fashion, libraries look for new ways to provide community services. In reality, many library
employees love to help and will deliver, very quickly, exhaustive reports based on whatever
criteria you provide to them. It’s an amazing resource that no one seems to know about,
and I wholeheartedly recommend giving them a try. Of course, like anything, you can never
rely on someone or some organization with whom you haven’t yet worked, so I suggest
starting with some simple, quantifiable criteria for your directed research. Make sure you can
independently and objectively determine the correctness of the results as fits your needs.

 Another great resource for locating developer positions nearby would be your local
employment resource office. They’re usually administered by the county in which you reside
in conjunction with the state and federal government, which sometimes offer additional
funding for training, particularly in hot job areas. Technology tends to be targeted for extra
funding. Through these state and federal programs you can get additional education and
support for your continued training.

 Figure 2-5. Always review company rankings you find on the Internet with a bit of suspicion. Look for organizations in
the open press or on social evaluation sites such as glassdoor.com to get other viewpoints

33CHAPTER 2: Career Direction

 What’s even better when looking for the right position is that these agencies usually have
information and job listings for actual positions available in your skill area and geographical
location. While you might see two or three times as many positions on a job search site, a lot of
those can be duplicates offered by various employment agencies. Companies contract several
different agencies to find talent for their open positions. Also, sometimes agencies may have
particular individuals in mind for a job submittal and could be fishing for other applicants to make
the pool look bigger. This is not to say that agencies are inherently bad—quite the contrary. Their
business is to fill open slots, and if they didn’t, they wouldn’t be in business. But if you want to see
what the real jobs are out there, I’d seriously consider starting with your local employment agency.

 Now, there seems to be a stigma surrounding these places as being a last resort; they are
sometimes referred to as unemployment offices. For older adults it can conjure up images of
standing in line looking for a job to feed your family in that one-room apartment in the inner city.
Most of the time it’s quite different. I actually live in one of the most affluent counties in Colorado
and I pay a visit to my local office probably once a quarter to see what’s going on. What I’ve
found is that the truly serious employers will always list their open positions with my local
agency first. They know that the people sent to them are serious about finding a job. Since the
listings often come here first, you could be one of the first people in line for an interview. From
the hiring company’s perspective, their participation in the county’s employment endeavors
often qualifies them for tax breaks and other financial incentives. There’s motivation on both the
employer’s part and on the government’s behalf to reach high employment in the area.

 Now that we’ve talked a bit about some options of how to find positions, let’s take a look at
the skills you might need to have to land one of these iOS application developer positions.

 Skills
 In general, you’ll need everything we talk about in this book plus a few other skills according
to the specifics of the situation. If you want to develop apps in a formal company setting,
whether large or small, you’ll need to learn a few tools you might overlook if you were to run
your own business.

 In this book we focus on the set of mobile development skills with an emphasis on iOS and
Xcode. Our technical and process needs include the following:

 Setting up Xcode for device installations

 Source-code control

 Development methodology

 Impressing your user

 Building targets

 Embedded systems

 App publishing

 Web services

 Testing

 iOS accessories

34 CHAPTER 2: Career Direction

 Let’s take each one in turn and talk about why we may or may not need that particular skill in
our goal of working for an employer. In fact, we’ll want to have most of these skills when we
interview and should even put them on our resume if appropriate.

 First, here are a couple of job descriptions I pulled down just this week to get an idea of
what’s needed for a typical position. I look at various job sites weekly, out of curiosity mostly,
but if the right position came along, I might just have a go at it. I’ve found that, year after
year, the requirements seem to be pretty consistent for iOS development positions.

 Sample Job Description #1

 - Native iOS Application Development
 - Core Data
 - Autolayout & Size Classes
 - Git (creation, push, pull, branching, tagging)
 - REST and JSON web service connectivity
 - SQLite Administration and Data Caching
 - Advanced Location Services
 - In-App Purchases
 - Analytics, Test Deployment and Crash Logging for Apps
 - Beta Testing and issue management

 In addition we would also like to see the following from any qualified applicants:

 - Knowledge in other areas such as PHP, NodeJS, JavaScript, jQuery, MySQL, Socket.IO, Drupal,
Cocoapods, Angular.js, and other commonly used web and data technologies is also a plus.

 - Always learning/asking questions with a desire to refactor code to always improve current
projects upon learning new material

 Sample Job Description #2

 Type of Engagement: Direct hire

 What you'll need:
 • 1 or more years of iOS mobile application development
 • 5 or more years of experience developing commercial software
 • Objective-C, SQLite, Xcode, JSON, XML
 • At least one application published in the app store
 • Expertise in using both storyboards and xibs
 • Demonstrable experience in calling restful APIs to sync phone data with a server

 One way to learn about a company you might someday come to work for is by looking
closely at the specified needs and do a little self-analysis of the position. If you have much
web experience, it should become pretty clear that these jobs work with iOS apps that
access some host information and store it locally. Because the first position contains a need
for “ Advanced Location Services ,” I start thinking that their application might be directed
advertising or small-scoped mapping and tracking. Because of the emphasis on analytics,
beta testing, and so forth, it’s much more likely that this would be a consumer or public-facing

35CHAPTER 2: Career Direction

application as opposed to an internal enterprise function. However, it might just as easily be
a location tracking for a small local delivery company. You won’t know for certain until you
talk to the team, and even then the exact details of the project may not be made clear for
confidentiality reasons.

 In general, I find that the most flexible requirement tends to be years of experience. That is,
assuming you have demonstrable skills for everything else, the length of time you’ve worked
in the field may not matter. As I alluded to earlier, men seem to understand this and always
apply anyway. In fact, based on what I know personally from friends or coworkers, men
generally are okay with applying for a job if they meet even less than half the stated criteria.
Although it’s changing somewhat, women tend to be more compliant to the rules and often
won’t even send in a resume in the same case. And I can speak from personal experience.

 For years and years, I never submitted a resume or applied to a company where I didn’t
meet every qualification on a job ad, even if they didn’t make sense. I mistakenly assumed
that the postings were written by the manager or engineering team directly associated with
the project(s) and thus were set in stone. I think it was at my third job that things started to
click. I realized that in that and the previous two positions, I never used half the skills called
for on the job description. Quite the opposite, as a matter of fact; I wound up needing skills
that weren’t on the posting at all. Some of these I had, such as the ability to use PCB layout
tools in one instance, and others I learned on the job or through training. What I came away
with was the mantra I stated in Chapter 1 and will continue with throughout this book—do it
anyway. I attribute the modest successes I’ve had over the years to that day and that mantra.

 Setting Up Xcode for Device Installations
 Before we can go beyond basic apps using the iOS simulator, we must first set up our
system, including Xcode, for creating real programs that can be put in the App Store.

 We’ll cover this in operational detail in a future chapter, but what we’re looking for now is
 why you need this skill.

 This one should be obvious. When working for a company, part of the requirements for a
project to which you’ll be assigned will be to validate the functionality of the code on all
devices specified by the client. If it’s supposed to function on an iPad, you’ll most certainly
test it on an iPad long before it goes to quality assurance. While the simulator does a
good job, nothing functions as a substitute for testing on an actual device. You’ll most
certainly demonstrate code functionality on actual devices to the client as part of the agile
development process. We’ll get more into this in Chapter 3 , but let me say it again: no matter
what path you decide to take with your career plans, you’ll always need this skill.

 Source-Code Control
 Source-code control assures us that all the work we’ve put into writing our app is protected
and can be recovered if a disaster happens or if we make a bunch of mistakes.

 The first job description I showed you explicitly calls out the use of Git, a common source-
code control technology. In addition, this ad calls out the following specific functions: creation,
push, pull, branching, and tagging. When you start a project you create a repository, or
storage area, in which to keep and control your source code (Figure 2-6). Pushing sends your

http://dx.doi.org/10.1007/978-1-4842-1820-4_1
http://dx.doi.org/10.1007/978-1-4842-1820-4_3

36 CHAPTER 2: Career Direction

code to that area while pulling retrieves it to your local computer. Branching allows you to
make a separate copy to work with that does not affect the original source. This allows you to
try things out and experiment while always being able to get back to where you were when it
all worked properly. Tagging basically sets important points in your project’s history as being
important. You might, for example, use a tag to mark a specific release or version.

 Figure 2-6. Source-code or version control not only backs up your project files in case of catastrophe, it also tracks
changes and modifications during the development process, allowing you to recover to a certain point if you take a
wrong turn along the way

 When developing software in your home or small office, it’s pretty convenient to simply
back up projects to local or cloud storage. In the old days we used rewritable DVDs and
generally kept them off premises in case of catastrophe. With integrated OS backups and
cloud storage the process works much more seamlessly. Using tools such as Apple Time
Machine we even have access to earlier versions of our material by scanning back through
the various updates. However, these are all based by time; that is, by when the backup
occurred. So there exists no key identification or metadata about what each of those
backups might be. They’re simply organized by date and time. By using version control tools
such as Git or SVN we have detailed records and incremental information for each time we
made and labeled a specific change. We can access different, earlier versions of our work.
We will discuss this in detail in Chapter 5 .

http://dx.doi.org/10.1007/978-1-4842-1820-4_5

37CHAPTER 2: Career Direction

 Development Methodology
 Development methodology refers to the human processes—the thinking, for example—used
to go from an idea and a set of requirements to something that can be created and deployed.

 Similar to source and version control, when we work all by ourselves, our development
methodology fits into the way we’ve always done things. If we tend to do things in
sequence, that’s generally how we’ll write and test our code. Some people work best by
creating a top-down structure and roadmap before writing a single line, while others start
banging away on the keyboard long before a clear picture of the project has emerged. It’s
very similar to writing in general. Take this book for instance; the smart way to write would
be to formulate an outline or table of contents for the book, then each chapter continuing on
down to each subsection. I, of course, took it upon myself to use a more agile-like process.
Writers call it working organically.

 A very dear friend of mine is also a writer. Actually, he writes as part of his day job, but
doesn’t consider himself a “real” author. I’ve read his work and I couldn’t think of anyone I’d
rather collaborate with, but that’s another story. A week ago he was working on a newsletter
for his company while I was simultaneously struggling to find the right voice for Chapter 1 . I
really hope I succeeded, but anyway, we started talking about our processes. I immediately
assumed that he took that top-down structured approach because his writing seems so well
thought out. I was mildly surprised to find that he writes much the way I do—organically.

 If you come from a formal engineering background, you’re most likely an organized,
structured thinker. Read most engineering texts and you likely never find out about the
author’s friends or what they’ve done. We, on the other hand, will likely want to hang out
together at the end of our journey. But, as an engineer, you designed or built things, whether
soft- or hardware, starting with a set of requirements or at the very least an idea. You
deconstructed the problem down to a design and then moved on to implement something
fantastic. Hey, I only want to be friends with great designers.

 While this top-down process works for simple, well-contained projects, as our labor content
expands and the project size and team size grows, formalizing the process from start to
finish becomes critical. The standard for developmental methodology in software is agile,
typically either Scrum or extreme programming, but sometimes a combination of the two.
We will cover the basic elements of agile in Chapter 6 , but as part of our career dissection, at
this point we’re interested more in what it means to us at the interview and after we’re hired.

 Because each company implements their own version of agile—I’ve yet to find one place
that follows the process as it is officially defined—I’ll only speak from what I’ve experienced
either directly working for a company or as a contractor helping out from time to time. The
process functions identically whether you’re a direct-hire or freelancer, or at least that’s what
is supposed to happen.

 I visualize the agile process like a party with friends after a few drinks (Figure 2-7). Inhibitions
loosen up and team members either become more outspoken or subdued. We would start
with a 30–120 second update of what we were doing at a daily stand-up meeting, though
we typically sat down in a conference room. Most days it was the team . . . the developers
who wrote the code, the designers who created the look and feel of the software, and other
people such as QA and the client advocate, which usually turned out to be someone in
management.

http://dx.doi.org/10.1007/978-1-4842-1820-4_1
http://dx.doi.org/10.1007/978-1-4842-1820-4_6

38 CHAPTER 2: Career Direction

 In Scrum, the more prevalent form of agile, you have a Scrum Master. This person acts
as facilitator to remove hurdles from the team. What usually happens is that a manager or
senior developer takes on this position and often takes charge of the meeting. So, right then
and there, the true methodology of Scrum has left the building.

 If you’re shy or a bit introverted, you’ll be overwhelmed during your first few months
of working on an agile team. Like writing a book or article, the process moves along
organically as ideas and solutions formulate and improve throughout the meeting. Though
it’s not supposed to work this way, personal dynamics always come into play during the
process. Some person or persons typically percolate to the top as the ones to listen to,
often stifling criticism or alternative ideas. As females, we’re immediately outnumbered
three to one based on pure, simple statistics. We see this either as a disadvantage or as an
opportunity depending on our inner self. I want to tell you to take it as a challenge rather
than a roadblock. I want to say “Just go for it” and let your ideas shine and be heard. But
reality must come into play when dealing with our entire professional career, so we carefully
analyze the situation and make our moves accordingly. It’s not perfect and it’s not fair, but
this isn’t a social justice work on changing the perceived wrongs of society; we’re here to get
you—no matter who you are—to the position and level at which you want to be. Remember,
I want you to become someone I would love to hire to work with me.

 Figure 2-7. Think of the agile development process as getting together with your “work friends” in an open discussion
of how a project should proceed. The best advice I can give would be to leave egos at the door to the conference room

39CHAPTER 2: Career Direction

 A few paragraphs back I mentioned the interview when starting to discuss agile. Interviewing
is an art in and of itself. As such, it tends to be very personal. We each handle interviews
differently, and most of us adapt to the situation. If talking to someone from HR (Human
Resources)—by the way, I often use the term Himalayan Resources because they seem to
be so far away from the rest of us—we’re very businesslike and sure, and we know exactly
where we want to be in five or ten years. I’m thinking all along that all I want to do is be out of
here in five or ten minutes. But, it’s the price we have to bear to get our chance at the table.

 The real interview generally includes a manager or team leader as well as someone with
whom you’ll most likely be sharing a workspace. It’s a two-way street. You want to see if
the job fits your needs and the company wants to find out if you’ll be a team player. You’ll
usually get a sense of the company at this point. The questions will tend to focus on how
you stand out, what your unique skills are that make you essential to the team. And that’s
a key word here: essential. If you can make yourself seem as if they’ll not succeed unless
you’re there at the table, the job is yours to refuse.

 This can be the turning point, one way or another. With the three or four of you in a room, at
a table, focused on a single project—your inclusion or exclusion from the team—the skilled
interviewer will often try to trip you up. You’ll be led down a path to discuss your strengths
and weaknesses like any interview, and you will, of course, come up with some bogus trivial
failures that you’ve learned from. What often catches the interviewee by surprise is that the
team will use your enthusiasm about your strengths against you. You’re strong, resilient, and
innovative, which the team may take as a threat to their position. In the old days the term
used was “wild duck.” This was someone who wasn’t a team player but went off on their
own. As always, there’s no right answer or way to proceed. Work from your feelings about
the situation at the moment.

 One of the best pieces of advice I can give right now is to have a number of practice
interviews. Go out and apply for positions you don’t expect to get or want to take. Start
with something that is so far away that the commute would be impossible. You know you’re
not going to take the job, so experiment with how you handle the process. They will likely
mention the distance issue during the interview, but a simple comeback is to do a little
research on the area and mention that you’ve been considering a relocation to the area
because of schools, or neighborhood, or nightlife, or whatever. Practice and become an
excellent interviewee and you’ll be ahead of your competition. And again, the interview will
often very closely simulate the agile process used at the company. Take it in and add the
experience to your set of skills.

 My goal is not to teach you source/version control or how to get Scrum certification; rather,
it is to make sure you are familiar enough with these techniques prior to going to interview
with a software agency. An interviewee unfamiliar with agile or who doesn’t know to what Git
refers has little chance of getting past her initial interview.

 Impressing Your User
 By impressing your user , I mean having a great-looking display for your iPhone interface
screen that draws them into the experience immediately.

40 CHAPTER 2: Career Direction

 When working for aerospace companies I was frequently called upon to present my
engineering designs to every range of skill and experience level imaginable, from the
technical nerd who wanted to go through the schematics circuit by circuit to the high-level
decision makers only interested in cost effectiveness—and more often, just cost. Early on I
presented as much information as I could fit into my allotted time frame, which, all too often,
was nowhere near enough to get the point across. I was one of those tech people so proud
of my cleverness at reducing PCB footprint, increasing battery life by 5 percent, or writing
self-correcting software subroutines. Thing was, no one understood what I was talking
about, or more specifically, no one cared. They just wanted to see the final product.

 What they did love to see was the user interface design and prototyping (Figure 2-8). While
I may have been developing the key elements of what were sometimes the most advanced
systems of the day, the team that put the pretty graphics on the 19” display screens got
three times the face time with the customer than I got. Essentially, what they were doing
was merely presenting the watered down results of my efforts to some soon-to-be decision
maker in the field. The point here is that no matter how cool or how much innovation your
idea encapsulates, the user interface (UI) and user experience (UX) set your product apart
from the rest, so they need to be perfect. And this is so much more important for mobile
apps, and iPhone apps in particular.

 Figure 2-8. Like first impressions with people, what a customer sees when they tap on your app, bringing it to life, will
immediately draw them in or put them off. Try making it the former

41CHAPTER 2: Career Direction

 I believe, as do many people, that what drove the success of the iPhone and subsequently
the iPad was how users loved to interact with the device. Even the earliest table view
controllers, something I now loathe, were super cool in 2009. You could tap a row, the
screen would slide over and another row would appear, one more time and you’d see your
favorite piece of music or book paragraph. Look at the top selling or free products on the
App Store, and they’ll all sport these amazing graphics. Sometimes you’ll dive into realistic
new worlds with games or explore new ideas through easy-to-use educational software.
My favorite ideas to use are basic utilities such as timers or maybe a metronome. While
possessing a minimalist set of functions, the clean and understated elegance of the UI often
makes the tools a must-have.

 Years ago, when I attended high school, I wanted to be an artist—jeez, the things we do for
love, am I right? I actually painted in acrylics on unique, geometrically shaped canvases of
my own design. I won awards—it was a small class—and even had one of my pieces on
display at the Kennedy Center in Washington, D.C. Somewhere between then and now, all
artistic creativity disappeared. I suspect it evolved into the creativeness I incorporate into
engineering solutions—yeah, we’re going to go with that explanation. But, to the point, I
cannot make those top-tier UI designs in either the gaming world or even the simplest utility
function. Later, in Chapter 7 , we will cover how all this UI/UX stuff works and some tools that
we, the development engineers, use to get our products out there.

 The good news is that most companies already recognize this left-versus-right brain
limitation. That’s why you’ll work in conjunction with the design team, the members of which
have the innovativeness and creativity to develop these fantastic designs for the client.
Because you’ll be implementing dozens if not hundreds of these apps over the years, you’ll
start to get a sense of the process and the tools and soon will be able to make pretty decent
designs yourself. You might even find that the design side of the work appeals to you more
than writing Swift .

 However, if you think this might be something you’re interested in, I’d be careful not to
discuss it during the interview process. When a company looks for someone for an open
position, they’re hiring for that position. They don’t want to hear that you’re looking to move
on to something else as soon as you sign your employment paperwork. The hiring manager
has made an investment in you and your fellow interviewees long before you saw the job ad.
To hire someone who’s going to hang with the other team isn’t really a motivation for her to
put your resume and interview notes at the top of the heap.

 Now, in small companies where the employees need to take on multiple roles, this may
well be appropriate. Startups, for example, want and need people to take on broad sets of
responsibilities that may not fall within their job description. In fact, for these companies
there may be no job description at all. But don’t get taken advantage of. A good friend of
mine finds himself in this very situation. He spends the bulk of his days taking on tasks for
which he was not hired and that were not mentioned during the interview. Again, the theme
should be caution and adaptability. You’ll get a sense of what the company is like during
your interview. Most of your fellow employees will be open and honest, telling you the “real
story”—at least as how they see it. One question you should definitely ask is how long they
have been with the company. They may not have reached the point of saturation yet and are
still in the “romance” stage with the company.

http://dx.doi.org/10.1007/978-1-4842-1820-4_7

42 CHAPTER 2: Career Direction

 In summary, the UI/UX aspects of working for a software company as a developer are most
likely not as big of a concern as the other aspects we will discuss throughout the book.
You’ll find that, as a freelancer or especially when starting your own company, the necessity
of these skills become of paramount importance to your success. But most companies
already divide the work between the engineering team and design team.

 Building Targets
 Building to a target means to use Xcode to convert your project into an executable and then
to download and run that executable on an actual device.

 Employers consider it a given that you know how to build an iOS project from Xcode to
a device. You might even be tested on this during a follow-up, or sometimes even during
your initial interview. If you don’t know how to do this, unless the job description specifically
states to the contrary, I’d not even bother sending in a resume. Building and running a
project on an actual device is the “must have.”

 In fact, we’re not even talking about building to a specific device in this section but rather
will focus on the subject of continuous integration (CI) . Companies use CI processes and
servers to merge all developer working files into a single set of code known as the build .
I might work on a sort function while the girl next to me codes a complex I/O routine. CI
integrates our work into the final product, or, more specifically, the current version of the
final product. This helps to quickly identify issues when an engineer’s perfect code causes
problems somewhere else in the suite. When this happens it’s known as breaking the build ,
and you can get a lot of grief about it from your teammates. Most of the time it’s a very
friendly and helpful bit of joking around. After all, the problem may not be in your code at all,
but in the way someone else’s code deals with a method or parameter that you created. But,
because you performed the last push to the repository, you’ll be the one they come to first.

 That’s what this CI process was created to do—find and locate issues in the build as early
as possible. Unfortunately, in many organizations it’s become a sort of hazing or initiation
process for the newer developers. Again, frequently it’s all in fun and there’s nothing
vindictive about it.

 For you, the developer, the use of CI should be mostly transparent. The integration manager
sets what whatever CI server is being used, and when you perform a commit the server
generates a new build. As mentioned briefly in Chapter 1 , the most common CI systems
include Jenkins (formerly Hudson), Travis, and Apple’s CI system using Xcode and Mac OS X
Server. Let’s take the Jenkins system, which I used at my last position. When I did a commit
of my changes to the local Git repository, the automated process began. All my changes
were integrated into the current project, and the source was compiled into the latest build.
Scripts caused automated testing to occur that checked for process errors—this was
before UI testing became automated, at least in our organization. If the testing completed
successfully, everything was archived and new versioning was created so it could be used. If
the testing didn’t complete successfully, I was immediately notified so I could start searching
for the problem. The vast majority of the time the error was indeed a result of something I
did, so the process was really good at driving us toward something without errors.

http://dx.doi.org/10.1007/978-1-4842-1820-4_1

43CHAPTER 2: Career Direction

 Since the process works mostly autonomously, if you see in a job description a need
for skills and/or experience in a CI process such as Jenkins, the likely reason is that the
company might be looking for a developer in the test and integration department, which
normally supervises the CI server and tool suite. Now, this is not a bad thing, although the
starting pay can be a little bit lower than that for a full-time developer. For some reason,
in many organizations QA gets seen as lower in status than developers or designers. As
continuous integration technology enters the commercial development world and becomes
the de facto method of integration and testing, I think the position salary grids should level
out. So the point here is to not discount a position if it’s not exactly your ideal job, if it is in
the field and has other qualities for which you are searching.

 Embedded Systems
 An embedded system is a computer that differentiates itself from more general purpose
devices such as a desktop or laptop by having a dedicated function; for example, a
smartphone or an automated teller machine.

 When I started working as an engineer I focused almost primarily on various types of
embedded systems. For a year or so while working at IBM in North Carolina I developed
software for the 3624 Automated Teller Machine (Figure 2-9). This was the classic definition
of an embedded system. It had but one purpose: to allow bank customers to perform
transactions without a human teller present. You could get your statement, make a deposit,
get cash, and perform account transfers. Now these are second nature to everyone and
exist by the dozens in every drug store, grocery store, gas station, and so forth. The
nightclub that we go to has a couple of them, as does the gym where I work out.

44 CHAPTER 2: Career Direction

 The device stood about six or seven feet tall and weighed hundreds of pounds in its
industrial steel enclosure. There were two money feed mechanisms, usually for five and
twenty dollar bills, but they could be customized by the banks. The display was very limited,
initially a single-line, orange neon row of characters followed by, as I remember, a 3- or
5-line display, again in neon orange. It had a small processor and very limited memory—
we’re talking K’s of RAM here, not gigabytes or even megabytes. Thus the code had to be
extremely efficient. There was no WiFi or Ethernet or other high-speed data connection.
Transmission to and from the mainframe (yes, they were mainframe computers, also IBM)
was a few thousand bits per second and on a local loop shared with other devices.

 This was how I learned to program efficiently and operate mechanical motors, levers, displays,
and magnetic stripe interfaces. It was fun and extremely frustrating at the same time.

 Figure 2-9. Early inventions such as IBM’s 3624 Automated Teller Machine started the revolution of embedded
technology in commercial applications. With the exception of getting out cash, an app on your iPhone can perform just
about everything that this product does

45CHAPTER 2: Career Direction

 Now think of an iPhone. While Apple increases the processing capability of iOS devices each
and every year, they’ll likely never match the power or memory capability of a desktop or
laptop computer. While the iPhone 6 now has 1.0GB of RAM, a Mac Pro can have sixty-four
times that amount. So you’re never likely to get the same huge application you made for the
Mac Pro onto your iPhone, at least not without understanding how to program embedded
systems. In the dawn of iPhone development, a 3G contained only 128MB of memory. And
remember, you don’t get all that space. There’s this thing called the operating system that
takes up much of it.

 In most cases, Xcode, Swift , and even Objective-C make software development easy. The
source is very wordy and self-documenting, which makes for great maintainability but also
eats up space. While you can change a number of “switches” in Xcode to optimize your
project for speed, I/O, size, and so on, hand coding critical loops and other functions still
happens to this day. Features such as Apple Metal continue to improve performance while
mostly maintaining ease of use, but for some very special applications you may have to use
human judgment and design skills to get things to work as you need them. By understanding
embedded systems, you’ll have an insider’s view of how these devices work and the tricks
that can be incorporated, if needed, to achieve maximum performance.

 While this can be useful in many cases, especially when dealing with iOS Accessories,
which we’ll discuss later, for the most part software development companies don’t put much
weight on this criterion. But when starting your own company and looking to interface your
app with other devices, it’s definitely something you’d want to have in your set of skills.

 App Publishing
 To publish an app means to place it for sale (or free) into the Apple App Store or distribute to
only specific users such as employees in an enterprise.

 As I stated previously, I wrote this book assuming a level somewhere between experienced
novice and newish intermediate. Because the skill set I’m discussing is so critical, I will, from
time to time, describe things in a more basic fashion for the sake of clarity and a common
frame of reference. Early in the history of the iPhone it was pretty straightforward to submit
something to the App Store (Figure 2-10). You created a bundle with all the various pieces,
coded algorithms, user interface, database, frameworks, or libraries and submitted it. While,
in essence, it’s the same amount of stuff that goes to Apple now, much of the mystery
surrounding why your app got rejected has been removed.

46 CHAPTER 2: Career Direction

 Years ago I submitted an app for a client. A few weeks later I made an update that was
rejected by Apple. Okay, easily understood, right? I did something wrong; maybe had a crash
or a missing graphic, whatever. Well, it turned out that the app was rejected for something
that hadn’t changed and was part of the original version that had been approved and was at
that time in the store. You’ve probably heard stories of how hard it is to get into the App Store,
but what the problem really revolved around was that developers didn’t know all the rules and
criteria. Also, humans at Apple were doing the testing rather than automated processes.

 Now, long before you get anywhere near having your app go up for sale, myriad tests and
evaluations automatically check your app to make sure it meets the vast majority of criteria
for submission. The great thing about this is that you know near instantly what you need to
fix. It is, in fact, so much easier and clearer to submit an app now than it has ever been.

 And whether you work in a company or are an entrepreneur with your own great game or
utility idea, you need to understand how to do this. When working for a company, much of
the time the integration team will do all of the work distributing the app for the company’s
client, so it’s quite often out of your hands. But in smaller organizations like startups, you’ll
most likely have to add this to your skill set.

 Web Services
 Web services allow mobile devices to send and receive data between the specific piece of
hardware and the Internet.

 To put it succinctly, if you are looking for an iOS development position with a software
company, you should know how to get data from the Internet into your iPhone as well as
how to send data the other way. It’s that simple. Very few apps stand completely on their

 Figure 2-10. While you still submit the same project files to the App Store, the process has been greatly streamlined
over the past few years, making it easier to identify and correct issues earlier

47CHAPTER 2: Career Direction

own and unto themselves. You might be able to get away with this on something like a
simple calculator or timer, but even then you might want to be able to provide customizable
skins for the app like an animal print or a favorite sports team.

 You’ll want to brush up on terms like REST (Representational State Transfer), XML (eXtended
Markup Language), JSON (JavaScript Object Notation), and PHP, which we mentioned
briefly already. Without a doubt, if you can, have something that shows you know how to
utilize these technologies either on your public Github account or that you can demonstrate
during your interview. Showing the hiring team that you have actual hands-on experience
with these will go a long way toward putting you on the top of the candidate list.

 At a minimum, study these to understand how they work and when and why you might
choose such a technology in your application. Review sample code that can be found
throughout the Internet to see how other developers work with data transfers.

 We’ll cover the most common ways of moving data into and out of your device as well as
the more recent introduction by Apple of their CloudKit features, which make data transfers
much easier for homogeneous Apple systems, in Chapter 11 .

 Testing
 By testing we refer to the unit testing targets generated by Xcode, the ability to perform user
interface testing, and using TestFlight integration to send out beta versions to be evaluated
by people we know.

 I’m going to be honest here; testing is one of those things we clearly should address from
the start even before writing the functions in our code, but never do. It’s too easy to just
focus on our app’s UI or the cool new feature we thought of than it is to write unit tests. Even
with testing being so intrinsic to creating an Xcode project, we most often just ignore it and
silently wish it would go away. And I’m just as guilty as the next person with this.

 Apple continues to drive the need for testing into our heads, especially at the yearly
developers’ conferences, by making it easier and adding cool new features such as UI
testing to motivate us. For Apple this makes total sense. The better we test and provide
complete code coverage (the amount in percentage of the source that we test), the more
likely we’ll deliver a solid and near bug-free application. When we fail, such as our app
crashing for users, Apple looks bad. Customers complain about Apple’s lack of quality
assurance in letting such a “buggy” app out into the world.

 Software companies are generally divided into two camps: those who test and those who
talk about testing but never allocate time to it. Let’s talk about that a second. When a
company bids on a job for a client, they generally specify an anticipated number of hours
for the different parts of a project. Each part is assigned a specialty labor code (designer,
developer, architect, tester, etc.) with a specific labor rate; i.e., dollars per hour that get
charged to the client. Throw this into the math blender—I so wish I had one of these—and
out comes the expected cost to the client.

 Unless desperate for business, no software company bids a project for a fixed price.
Instead, they provide the estimated number of hours and a labor rate. Most of the time
unforeseen problems in development, as well as clients changing requirements, force
alterations to the plan and therefore make the original estimate obsolete. These type of

http://dx.doi.org/10.1007/978-1-4842-1820-4_11

48 CHAPTER 2: Career Direction

changes usually happen even as early as the first week of coding. Most often, these changes
increase the cost, even when removing functionality from the project, the reason being that
the suspect function was likely already coded and was deemed to not be worthy of being in
the final version. So all the money set aside for that function was already spent. Additionally,
testing becomes one of the necessary tasks that winds up being shorted, resulting in a less
reliable product. Likely the project would have gone a little over budget had the company
taken the time to determine the severity of the problems, and thus the cost of taking out the
buggy function, while not breaking cooperative functions, has to be addressed as well.

 While it’s good to have unit testing skills and experience, especially for those companies for
which it is an integral part of their process, it’s not something that is always in high demand.
The bad thing is that they may ask you about it and even test you on it, but you might not
ever use it in your work.

 As for beta testing, which we will cover in Chapter 12 , most companies of any reasonable
size will have an integration and test department or section. These are usually the same
people that manage the continuous integration process and servers. You’ll work with them
from time to time in order to deal with issues related to your section of the software. You
may also be called upon to cover for someone in the event of travel, sickness, or vacation.
But, except for small organizations or startups, beta testing usually gets taken care of by
someone else.

 However, as an entrepreneur or freelancer you’ll most likely need to know about beta testing
and the use of TestFlight in order to get feedback on your work. We’ll talk a little more on this
shortly.

 iOS Accessories
 Accessories attach various external input and output devices with your iPhone in order to
interact with the world.

 Using an accessory, data moves from the external world into iOS and vice versa through
either wired or wireless means. Wired connections include the Lightning connector and
headphone jack while wireless can be WiFi, Bluetooth 2.1+EDR, and Bluetooth 4.0 Low
Energy (LE). Some of these are very easy to use, where all you need are your developer
tools and some skills. Others, specifically Bluetooth 2.1+EDR (standard Bluetooth) or the
Lightning connector require having an Apple MFi (Made for iPod/iPhone/iPad) license. I’ve
worked in the MFi program since 2009 developing or helping my clients create fabulous
products we call app-enabled accessories (Figure 2-11). I recently helped LiveRowing, a
client of my company Global Tek Labs, develop their Concept2 rowing machine interface
cable that allows participants to row and collect information about their workout.

http://dx.doi.org/10.1007/978-1-4842-1820-4_12

49CHAPTER 2: Career Direction

 For me, accessories create amazing opportunities to do interesting things, tackle challenging
problems, and create a more connected world for everyone to experience and partake in.
In the LiveRowing app, for instance, not only are you able to plan and track your rowing
experience by adding the information to your fitness database, you’re also able to connect with
friends over the Internet and have rowing competitions in real time (Figure 2-12). No matter
what amount of distance physically separates you and your friends, the experience becomes
the next best thing to being side by side in skulls on the Charles River or wherever you choose.

 Figure 2-11. Working with complex accessories to move information into and out of iOS devices requires specialized
skills and acceptance into Apple’s MFi program

50 CHAPTER 2: Career Direction

 I’ve never seen any job posting require skills for the development of accessories. That said,
many software agencies work on projects where such devices are involved. In my very first
job interview for an iOS development position at a company, my experience came directly
into play and got me the position shortly after the interview. Our team was developing an
automotive monitoring app for the iPad that allowed the tracking of the vehicle’s movement
through a transmission interface to create the best profile in order to save gas. For fleet
systems, reducing fuel consumption by even a few cents on each vehicle’s routes can add
up to a tremendous savings. While my app development skills were modest at the time, my
experience and knowledge of the Apple MFi program set me apart from pretty much every
other candidate.

 So, what do you need to know? For the most part, working in the MFi space is not only
highly specialized, but as stated previously, is restricted to those possessing a special
license from Apple. Unless you own or work for a company that possesses this license,
don’t worry too much about connecting devices through the Lightning port or using standard
Bluetooth.

 One skill that would still set you apart and is reasonably easy to learn is Core Bluetooth,
which is Apple’s iOS framework supporting communications via Bluetooth LE (BTLE). A
subset of Bluetooth 4.0, BTLE provides for short-burst secure transmissions to and from
Apple devices with the proper Bluetooth radio. Most iPhone and iPad devices for the past
several years support BTLE.

 So, what types of things use BTLE ? Two very key sets of accessories include wireless game
controllers and fitness monitors. As games become more immersive and fitness wearables
scoop up larger portions of the market, the skills enabling you to work with these devices
become something highly sought after. And, really, this technology is very simple to learn
and experiment with. If you have any two recent devices such as an iPhone and an iPad as
early as iPad 3, you’re in business.

 Figure 2-12. Using Apple’s External Accessory frameworks allows your app to work with specialized hardware to
create interactive user experiences like this real-time boat race from LiveRowing

51CHAPTER 2: Career Direction

 For a few years at Apple’s Worldwide Developer Conference, Core Bluetooth had its own
session discussing the details of and how you could work with the technology. On the
developer portal, sample code exists to let you use Core Bluetooth and BTLE to create an
interactive two-person tank battle game.

 When I talk with clients or at the various meetings to which I am invited, I’ll usually have with
me a simple, demonstrable device that does something in the real world but connects to my
iPhone or iPad to provide visual cues to its operation. In one of our projects we’ll take on the
challenge of learning how to use this technology and display information from a multi-axis
sensor module that I developed about a year ago.

 Saying that we’re going to write a project that interfaces with a sensor, though
straightforward and very accurate, sounds totally boring. It’s kind of like saying, “Yeah, I’m
a vehicle mechanic,” when what you do is design spacecraft. Sure, you work on a vehicle’s
mechanics, but the perception of what it is that you do can be quite different. I want to
expand on our project and try to get across the passion I found when I originally did this.

 If you read my bio at the start of the book you may remember I’m a ballroom dancer
(Figure 2-13). For me, this activity nearly rules my life as my days are scheduled around
lessons, practice, performances, and competitions. At its core, ballroom, for me anyway,
combines a complicated set of mental processes with demanding physicality while putting
on a visible sense of emotion to impress the judges or my instructors. Most of my friends
also dance; some are better than me, but objectively I’m probably at the center of the pack.
Right now you should be asking how does this fit into software, and especially into iOS
accessories, and how am I going to use this? First, I’ll answer the last bit of that question—
it all comes down to passion. When applying for a job or just talking to somebody at a
meetup, let your passion show through. You’ll be engaging, and the person with whom
you’re speaking will likely want to know more if they see how much something means to
you. As for how this all fits together, I took the sensor electronics and placed them on a
ballroom dance shoe. This allows real-time monitoring of a dancer’s feet so the software
can determine, based on the dance style, whether she’s executing her movements correctly.
Think about that for a moment.

52 CHAPTER 2: Career Direction

 With some fairly simple electronics, some Swift code, and, oh yeah, I threw in an Apple
Watch , I was able to take a purely subjective, artistic form of expression and add in
quantitative performance measurement. While I hope this technology is never used in
competition, as the artistic expression is what a performance is all about, I hope that it can
be used by fellow dancers to improve their practice sessions and develop their routines
to perfection. With the Apple Watch and its taptic engine (vibration), I can know—without
changing my body position to look around—whether or not I’m doing the routine and
especially my foot placement correctly. This is the passion that drives me—to create
systems that impact lives—in this case, my own. I truly hope that you can find your passion
and incorporate that into your everyday working life at some point, as you’ll never hesitate
getting up in the morning.

 Now that we’ve talked about how the skills developed and perfected in this book can be
used in your job and career search, let’s look at how you might go about finding your next,
perfect position.

 Figure 2-13. Just as the author combines her love of ballroom dance into the day-to-day world of iOS software and
accessory development, by finding your own special passion that fits within your new career choice, you make every
day one where you can’t wait to get started on whatever might be about to happen

53CHAPTER 2: Career Direction

 Finding a Job
 So, how do you go about finding job ? It might be old school, but the first place I go when
I’m even remotely interested in working for someone is Craigslist. Why? It’s a quick and easy
way to get an idea of what’s available in your area, but I don’t consider it a starting point for
true searching. There are various sites you can use to post your resume and get listing of
jobs that match your search criteria. But like any site where you post personal information,
you’re bound to get spam. When searching for a job and you all of a sudden get this great
post that says it matches your profile, but it turns out to be a service provider that will help
you in your search, you start being a bit more cautious about what you open. I’ve had friends
who received viruses to their systems by just this type of annoying response.

 In my area, Indeed.com has been the job search engine on which most of my friends place
their resumes and look for positions. Personally, there’s nothing wrong with some of the
positions on Indeed, I’m just a little leery about posting my resume out there.

 LinkedIn is, of course, a reliable and very well-known place to keep and advertise your skills
and experience (Figure 2-14). The trouble I have with LinkedIn comes from all the talent
acquisition representatives out there. We used to call them headhunters, but now everyone
seems to be in the business of finding talent. I suspect most of these individuals are honest
and sincerely trying to get you a decent position while, at the same time, satisfying their
clients’ staffing needs. One of my friends does this and runs the local iOS developer’s
meetup group. He’s been hosting the meetup for over five years, and I was fortunate enough
to be in at the formation. While the demographics have changed a bit over the years, and
he’s changed companies at least once, it’s still a great place to get together and talk about
iOS development every month or so. Just last month I gave my second presentation at the
meeting and got to meet a whole new set of people in the community.

 Figure 2-14. While job search platforms come and go, LinkedIn still stands as the way to connect to people with whom
you share professional interests

54 CHAPTER 2: Career Direction

 That brings me to the absolute, number one way to get a position for which you’re
searching. You need to get out there and network. My partner, Jennifer, soon to be my wife,
goes out many times a week. Some people call her the queen of networking. I’ve actually
started accompanying her more over the past year and have begun loving meeting new
people and exchanging ideas. I’ve been asked to speak at several different groups as a
result. That, in turn, builds my reputation, and you can see that the whole process continues
to snowball. A couple months ago, I gave the keynote speech at an IoT gathering in town.
From that I met several people with great ideas with whom we’ve started collaborating. I was
asked, as a result, to be on a couple of technology advisory boards where we continue to
meet new and interesting people and companies with which to work.

 As for Jennifer, her networking and getting to know the technology people in the community
who are advisors and decision makers helped her to win the $25,000 grand prize at a new-
business competition. It wasn’t that she knew the judges or had any inside information,
but, by getting to know what people were looking for, she was able to use that to shape her
competition package to deliver exactly what was needed to succeed. While other teams just
got up on stage and did it the same way they always do, Jennifer developed her idea with a
specific target in mind and succeeded admirably.

 When networking, make an effort to engage the person with whom you’re speaking. Jennifer,
after a brief introduction, will try to find out how she can help the other person. This almost
always wins them over quickly. Let them know you’re offering to help. Later, they may wish to
do the same for you. You have a skillset, and so do they. Maybe you’re not the best at Xcode or
Swift quite yet, but you can put together a WordPress site in your sleep. There are innumerable
ways to barter that don’t cost you much except time. And the time can be very well spent if
you make just the right connection to get you that perfect position or even an interview.

 If you’re one of those individuals who has trouble initiating a conversation with strangers,
there are a few tricks I can offer, but the best advice is to just do it anyway. I was totally the
wallflower at school dances and later at networking events. Once I had a crowd, I could talk
for hours on end, capturing and engaging my audience. But starting on my own sent chills
up my spine. I eventually overcame this fear, mostly, but one great trick is to have someone
with you—your networking wing-girl. You know her. She can bring people in just with a look
or smile. So take her with you.

 Another trick that I actually do use, and for which Jennifer is a total advocate, is to have a
short “elevator speech.” In a few brief sentences, explain who you are and what you do, plus
anything that makes you stand out. Have it roll off your tongue without even thinking. Write it
down and practice it daily until it’s perfect.

 Jennifer’s Example Elevator Speech

 Hi. I'm Jennifer, founder and CEO of Global Tek Labs. We're a custom electronics consulting
firm specializing in guiding our clients' hardware projects through the rigorous Apple
approval process. We've been doing this for six years and have helped dozens of products get
to market quickly.

55CHAPTER 2: Career Direction

 Business cards. For some weird reason my millennial friends don’t seem to get the purpose
of business cards. First, you want to get the contact information for whomever you meet.
You never know when you might need their help. I like to write down info on the back of their
card about our talk. On my cards, the back side has a predefined area in matte (to enable
easy note taking) for just this type of information. The people I usually talk with think it’s so
cool and wind up incorporating it on their own next set of cards. I got the idea from someone
else a long time ago.

 Also, use the information on the card to follow up after the meeting. Unless you absolutely
know for certain that this is someone whom you’ll never need in the future, always send a
follow-up note. I go with an email, but it could be whatever you think works best. Even with
those people with whom I don’t follow up, I keep their information in case it ever comes in
handy. You’ll likely see them in the future, and it’s very polished to remember who they are
and what they’re all about.

 At some meetups, usually in the beginning, the facilitator will go around the room and give
each of the attendees thirty seconds or so to speak about themselves. This is where you’ll
want to have your elevator speech ready to go, plus a couple more sentences. If you’re
looking for help or a job in your field, say so. Try to be brief and specific. There may be
someone in attendance who has just the right connection. Don’t pass up any chance you get
to make an impression. One word of advice—don’t go over your allotted time no matter how
wonderful you believe yourself to be, and don’t describe your life story. You’ll alienate just
about everyone attending, except the other people who do exactly what you do, who are, in
all honesty, not the people you need to meet.

 I occasionally go to these morning meetups for creative people: illustrators, writers, artists,
some web designers, and so on. Most people—I’d say 80-ish percent—stick to the plan
and hit the thirty-second time limit plus or minus. But the others will ramble on and on about
how their service or skill is so unique and that it’s never been done before. My thoughts? If it
hasn’t been or isn’t being done ever before, then is it really a marketable service?

 The point is, no matter what the outcome of this or that meetup, don’t give up. You’re not
going to find that job at the first meeting you attend. But you will see what’s out there and
start making connections. You’ll meet someone who’s at nearly the same place in their
development learning process as yourself. You’ll talk at meetings, connect on LinkedIn and
Facebook, and develop a rapport. She’ll find a position at a company closer to her place
and, if you’d like, recommend you as her replacement. That’s just one of dozens of potential
win-win scenarios I’ve personally seen take place at these meetups. Much of the time
Jennifer or I are putting people together that we think make a great match.

 Employee Summary
 We have covered a lot of material in this section, most of which can be applied to the other
two career paths as well. Specifically, with very few exceptions, you’ll need each of the ten
specified skills developed in this book no matter if you want to work for someone else, start
your own company, or straddle the fence as a freelance developer.

 Working as an employee helps to get you closer—although nothing in life is certain—to the
kind of job security for which many people are searching. All the superfluous stuff—dealing with
insurance, equipment purchase and maintenance, finding clients, etc.—gets handled by someone

56 CHAPTER 2: Career Direction

else while you focus on your area of expertise. For that security you sacrifice the ability to pick
and choose on which projects you’ll work. Someone will oversee and appraise your performance,
and there may come a time when there are people with whom you simply can’t get along.

 To get this position, go out and network. Meet people and make connections. Perfect
your elevator speech until it rolls off your tongue without a second thought. Offer to give a
presentation at a meetup, and people will come up to you at the end. Don’t rely on job-listing
sites or talent-acquisition agencies to get you a job; do it yourself. If you’re shy, take along
one of your friends to break the ice. A little bit of uneasiness at a couple of meetups is well
worth the price for getting you started in your new career. Be sure to keep your LinkedIn
profile current by continuously growing your connections.

 Option #2: Entrepreneur
 I love being an entrepreneur. I hate being an entrepreneur.

 I could leave it at that, since it’s the perfect explanation of what entrepreneurship is all about,
but my publisher would not be too happy with me—and I hope to become a writer someday. In
all seriousness, nothing is likely to provide you with the excitement and exhilaration of starting
your own business, whether you fund it yourself as a small consulting or software development
company or seek out millions in angel, an individual who donates money to startups, and
venture capital funding. How do you get started?

 Getting Started
 Falling back on my usual answer, there is no single correct way to start a business, as
it depends on multiple factors, from your personality to the laws in your community and
everything else in between. Since I’m not a licensed business planner, attorney, accountant,
or tax professional, I would not presume to give any advice about the details of forming your
company. Further, your situation and the laws in your community certainly vary from mine, so
my suggestion would be to do your research and find guidance as to what fits your specific
needs and budget.

 What I will do is to relate my personal experiences. When I started my first business, I did
it on a whim. I read several articles on Limited Liability Corporations (LLCs) and decided
that was what I needed to do. After coming up with a cool name and acquiring the domain,
I filled out the online form and in maybe thirty minutes I had my own company. But then
I realized I had no idea what to do next. My first company produced short and full-length
movies, and I thought I would soon be on my way to Hollywood. Without going into the
messy details of that disaster, the company eventually folded and the assets were sold off at
an auction. I did learn from that experience, though I would have preferred to use the money
for a different type of education.

57CHAPTER 2: Career Direction

 So where did I fail? First and foremost, I mistakenly jumped into execution without any
planning. About the only thing encompassing any element of planning was making sure the
domain name was available and acquiring it at the start. I didn’t even research as to whether
any companies with the same name existed.

 The first thing I recommend would be to create your business plan . Now, I’m not a “suit”;
that is, I really don’t like working in business lingo or spreadsheets, I prefer to solve
problems. I suspect the bulk of you out there reading this are pretty similar, and you’re
probably already having doubts about going down the entrepreneurial path. Frankly, those
doubts could be justified. It’s not that I’m intentionally trying to scare you off, but, as always,
I want you to succeed. And to that end, I need to give you enough information right at the
start for you to make an informed choice and minimize wrong turns.

 Start by creating a business plan. What is your business about, and what is the situation
surrounding the formation of your business? To put it more simply, what’s the problem you’re
trying to solve?

 You want to write software and do it on your own terms, not working a typical 9-to-5
workday. That’s a rationale for how you plan to execute, but not the problem. My version of
a problem statement might be:

 There are not enough iOS developers to handle all the work in the software market.

 This not only states the problem of there not being enough iOS developers out there, it also
alludes to the fact that there is a viable market for the solution and that people would likely
pay someone—hopefully you—for that service. You’ll want to do a simple SWOT analysis
(Figure 2-15) to determine your strengths, weaknesses, opportunities, and threats. The
strengths and weaknesses are part of, or are internal to, your company, while opportunities
and threats are external.

 Caution Be careful when choosing your company name. I once was contacted by another
company with a similar but not exactly the same name. I had been in business over two years. They
were not even established in the same state, but their legal counsel claimed that I violated their
copyright because my name was similar.

58 CHAPTER 2: Career Direction

 For strengths, what sets you apart and what advantages do you have over your potential
competition? How do you show those strengths to your potential clients? Conversely, what
are the weaknesses on which you need to improve or should avoid altogether? What factors
will cause you to lose clients?

 What are the opportunities for you to get business? How do you find them? What are the
trends out there, and how will they affect you in the near and short term? On the flip side,
what are your competitors doing? How are trends and technological changes going to affect
you and your business? What is your funding situation, and what is your runway?

 Note A common term tossed about in startups is runway . You start with some amount of cash
to operate your business. Your burn rate is the pace at which that money is spent, e.g., dollars per
month. Your runway is the length of time that you can continue to operate your business based on
your burn rate. For example, if you have $120,000 in the bank and spend at a rate of $10,000 per
month, your runway is $120,000 / $10,000 per month = 12 months.

 Figure 2-15. A SWOT analysis can put key aspects of your business in a single, easy-to-access place for reference and
to show to potential investors

59CHAPTER 2: Career Direction

 The details associated with writing a simple business plan go way beyond the scope of this
book. My goal is to get you to think about it right at the start, before going any further and
spending money. What’s the problem? What’s your solution for the problem? How much
business is out there, or, rather, what’s the market for your services? How are you going to
execute the plan? Like anything else you need to know, the information exists, and all you
need to do is search for it.

 How you create your plan also depends on what type of business you intend to form. Let’s
look at two mostly opposite ends of the spectrum: consulting versus product-oriented .
As a consultant you use your software skills to develop code or apps to your customers’
specifications. They give you a problem, some specs, pay you, and you make something for
them that they are willing to accept.

 Another approach would be to take your own great idea, whether it be an app or some
piece of technology that uses your iOS skills, and form the structure based on a product you
intend to sell. In that case, the plan will differ since your market may be a little more difficult
to define. You must figure out who wants your product, whether there are any competing or
even similar products, how much people would pay for your product, what would it cost to
make your product, and could anyone else be developing the same product who might beat
you to the market and thus render all your effort wasted.

 Again, there is no way I’m able to cover all the ins and outs of planning your business. All
I’m asking you to do is to think about it before proceeding down any specific path—and
document everything! Months from now when you’re swamped with work and need to
remember why you chose to set something up in a particular fashion, you’ll have the answer.

 The careful reader will note the irony in what I’m saying here. I’m telling you to plan before getting
started, but in a previous section I talked about agile development , where we simply get started
and see how things work out. In fact, you could use a process similar to agile when thinking about
how you want to form your business. It’s really just another way of brainstorming, which can
be extremely valuable. Just don’t go making decisions like forming a specific type of company
structure where you’re legally binding yourself without looking carefully at all the options.

 Once you’ve thought it through and documented your tentative plan, let it rest for a few
days, then go back and do a thorough review. You may have seen something on the
Internet that changes something in your plan or talked to a friend who gave you a different
perspective on your product. You might also conduct a little research, subtly asking
questions of people you know about what they think of some aspect of your plan, without
giving away too many details. If you discover something useful, add it to your planning
documents as either a positive or a negative.

 Once again, think about as many aspects of your business idea as possible to try and
objectively determine if it is viable.

 Handling Stress
 If you decide to start your own business you will have stress. You’ll worry about getting
clients and how to generate income. You’ll worry about taxes and paying bills. You’ll worry
about where to best spend your time. You’ll essentially worry about everything. What you
absolutely cannot afford to do as a business owner is let the stress overwhelm you and
destroy your dream from the inside.

60 CHAPTER 2: Career Direction

 Much depends on how you work and deal with difficult situations. Do you multitask well or
do you like to sit and write code with a laser-like focus? How do you handle disruptions?
Where do you intend to work, and is it conducive to your style of operating? Do you have
children or pets that will distract from what you need to accomplish? Are you intending to do
this as a second job to get started and would your primary occupation create problems? Are
you even allowed by your employer to do something like this?

 All I can say on this subject is to identify your potential stressors—you won’t get all of
them—and think about how you would deal with them if they were to arise. It all goes back
to planning, or being prepared . Having worked for large aerospace companies throughout
my career, I’ve always been a planner when it comes to projects. In my consulting business,
at the first meeting or conference call with a client, I lay out the plan in as much detail as
possible, overly stressing the contingencies for when things don’t go as expected. Do the
same for yourself and your business. While it won’t eliminate all the upcoming stress, it might
make you a bit more calm knowing that you have plans in place should bad things happen.

 Where to Work
 I have several friends thinking about starting their own software businesses . A few of
them are even helping out with this book by providing me with stories of their challenges
and conquests as they move deeper into app development. None have started their own
business yet, nor are they anywhere ready to do so, but they’ve all indicated intentions to
work from home. While this sounds appealing, it doesn’t work for everyone. I’ll even go so
far as to say it probably doesn’t work for most people.

 First, there are often way too many distractions when working from home . Even if you live
alone or have significant time by yourself in which to function, all the little commonplace
things tug at you. Whether it’s a delivery or the landscapers next door or the trucks going
down the street, sounds are a common problem. Sounds are my major annoyance. You’d
think as I got older my hearing would decrease and sounds would not bother me. I mean, I
attended my share of concerts, yet I hear every little nuance in the audible spectrum. Wind
bothers me. The rain dripping off the roof right now bothers me. Eventually the kids playing
outside in the street—I think it’s a school holiday—will bother me. As a solution I use noise-
cancelling headphones that work well, but for short periods of up to an hour or so.

 Chores such as the laundry can distract you from getting things done. Oh, all I need do is
put the laundry in, take it out, and put it in the dryer, etc. Maybe your business isn’t starting
off as great as you had hoped and you’re worried about the stress you’re placing on your
spouse, so you try to compensate by doing more around the house. What you might be
doing in reality is distracting even more from your business.

 At home you probably have all your favorite foods steps away from your computer. Just that
small bag of chips or soda to get you over that problem you’ve been dealing with would
help a lot. Or maybe it’s lunchtime and you take a break and check out the news on TV. Or
you see a stain on the carpet and it will only take a few minutes to take care of it. So many
distractions are out there trying to prevent you from succeeding.

61CHAPTER 2: Career Direction

 Now, as always, there is no single correct answer. For some people, working from home will
be the correct decision. For many people, working from home may be the only option. You
don’t have to find and lease space; you save on gas and car wear and tear. But for me there
is one big drawback, which is working alone.

 When you work at a company, you have a team with whom you can share ideas and ask to
help solve problems. You stay up to date on the latest techniques for provisioning or use
of CSS styles. When you do take a break, you interact with like-minded people that help to
spur your creativity and promote progress. You’ve become part of a community and may
even call them work friends.

 So how do you get that sense of community and support when starting your own company?
In the past dozen or so years, business incubators have sprung up all around the country to
offer just that capability. You rent, by the day, week, month, or longer, a space as small as
a single desk up to a complete suite of offices depending on your plan and the amount you
wish to spend. I have one incubator nearby that offers daily rates as low as $10 for which
you get WiFi, snack bar, printing, fax, a business address, and even 3D printing capability.
It’s in the business district of the small town where I live on the outskirts of Denver, so it’s
not the latest in urban chic, but it does offer that sense of community I mentioned earlier. It’s
quiet and free from most distractions. There are conference rooms in which to meet clients
so you don’t have to try and sell yourself in a crowded and noisy coffee shop.

 Business incubators sometimes offer other incentives as well. Many have people or
companies that provide business and marketing advice. The more established incubators
also have connections that might possibly get you technical support, advisors, and even
funding if you have a viable concept; this is where a great business plan can help immensely.

 Incubators now exist in every major city, and more pop up every few months. Most of the
technology meetups I attend take place at various incubators around Denver. Some of the
larger ones have multiple locations and are almost at capacity on the day they open. Some
have dozens of conference rooms, on-site restaurants, and all sorts of other amenities. I’ve
been to incubators built from scratch on razed lots in the hippest part of town that could be
mistaken for the trendiest nightclub.

 I want to give an example of a very typical business incubator with which I work on occasion.
The Innovation Pavilion (Figure 2-16) opened five years ago south of Denver. A key discriminator
for this incubator is its geographic location. Here in the Denver area, as I suspect in most major
metropolitan areas, certain corridors of town seem to get a certain type of business. Technology
startups have tended to form in the Boulder–Denver corridor, most likely due to the university
presence; e.g., University of Colorado–Boulder, University of Denver, and Metro State University
of Denver. South of the city has come to be the more residential areas where people live.

 Figure 2-16. Offering the same basic services and amenities as other incubators , Innovation Pavilion tries to reach the
under-represented, more mature founders by locating closer to their homes and offering a live-work-play attitude

62 CHAPTER 2: Career Direction

 The Innovation Pavilion environment fosters the growth of entrepreneurial ideas and helps
high-growth companies reach their potential. The ecosystem consists of flexible real estate
options, mentorship programs, service provider contacts, corporate relations, and structured
funding programs. One of the most valuable aspects of being at IP is sharing a space filled
with entrepreneurs eager to exchange ideas and collaborate through productive collisions.

 IP’s plans include launching ten additional locations over the coming years in cities across
the United States, including my own hometown of Parker, Colorado. A major difference from
other hip, downtown locations is the theme of live-work-play, which brings a more mature
work force into the startup community.

 In making your decision, think about your future. If serious about your business, you’re likely to
be working at it, and on it, for years to come. Are the cost savings of working from home worth
the cost of losing out on the day-to-day interactions with like-minded and motivated people?
Or is the hour-long commute to that hip incubator downtown worth the help you’re going
to get? When looking at choosing a potential work location such as a business incubator, in
addition to the features they offer, carefully examine their directory. If you’re an iOS developer
but 90 percent of the companies there are web development startups, will that be a good
resource? It might or it might not be. Again, it depends on your plan and the direction in which
you want to take your business. As always, think about where you’re headed.

 Skills
 Previously, we discussed the ten basic skills as related to getting a position with a software
development company. For the most part, as an entrepreneur we need all those and more.
We have to not only do the work, but also run and manage the business at the same time.
We have much more perceived control of our life, but at the cost of having to work harder
and, most of the time, longer hours.

 Without going into detail on each of the ten skills, I prepared Table 2-1 , allowing you to
quickly see what might be more important about a skill or why a particular one might have
less significance as a business owner. Doing everything yourself, you’ll have to be very
proficient in setting up your system to achieve your client’s goal. They may even provide you
with specific devices to which you will deploy. This alleviates less savvy clients from having
to bother with the technical details. Many clients you will have to handhold at every step.

63CHAPTER 2: Career Direction

 The biggest concern I would have centers on UI/UX design. Remember, the first thing a user
sees and reacts to is how the app presents itself. An ugly or hard-to-use UI will turn people
off from the very beginning. Unless you have really excellent design tools such as the Adobe
Creative Suite, you may want to limit the projects you take on that include complex graphics
and user interactions. Another option would be to look for designers with whom you can
barter and maybe exchange your skills. Also, be sure to check out freelancing sites such as
Upwork where you can hire freelancers (which we’ll talk about in the next section) to handle
those tasks you want to offload.

 In a moderate to large company, as a developer, you may never deal with the actual publishing
of the app to the App Store, but this is one task your clients will absolutely expect you to
perform. You will be responsible for getting the app into the store and making sure it passes
all Apple testing with minimal, preferably zero, rejections. A customer is not going to be happy
if you have to ask for more money because you failed in having their app published. At best,

 Table 2-1. Relative Importance of Skills for an Entrepreneur Compared with an Employee

 Skill Importance Notes

 Xcode Setup Higher You’ll need to set this up on a per-project basis for each client.

 Source Control Same/More
Flexible

 Keep track of changes and protect your work, but you’re not
confined to a standardized process such as Svn or Git.

 Agile Lower You won’t have a team other than yourself, so focus on how you
do things best; always try to inject new techniques whenever
possible, and always keep your client in the loop.

 UI/UX Higher Unless you’re already a skilled designer, you may want to
confine your projects to those with minimalistic UI designs. Also
consider offloading the design work to someone else in order to
save time and effort.

 Target Build Same

 Embedded Lower In the early stages of your company, you’ll most likely focus on
making the best use of Xcode tools, incorporating the extensive
built-in support to limit the amount of customization needed in
your projects.

 App Publishing Higher You’ll have to do all the work in getting your client’s apps into
the store. Do it as efficiently and cheaply as possible. Clients
don’t want to waste money on your mistakes because you
haven’t prepared.

 Web Services Same

 Testing Higher As with getting apps into the store, you want to make sure they
get thoroughly tested first. Do unit testing and UI testing, and
develop a beta program using TestFlight to get feedback from
users so as to eliminate issues after deployment.

 Accessories Likely Lower Unless you have a hardware engineering background, focus on
software-only projects until you become comfortable with all the
other skills and code development techniques.

64 CHAPTER 2: Career Direction

you’ll likely have to do any rework and resubmissions without getting paid unless you’ve
specified otherwise in your contract with the client. At the same time, putting in too much
contingency for mistakes will lead your client to doubt your ability and may lose you the job.

 Finally, testing will be another major concern of yours. Put an app into the store that crashes
and gets only negative reviews and you’ll not only lose your client, but also they’re likely to
spread the word about the inept developer they hired, calling you out specifically. It’s much
more common for someone to complain about bad service than it is for them to praise or
reward satisfaction. People expect you to do your job well, so prove to them you can. The
returns you’ll get are repeat customers and referrals.

 Entrepreneurial Summary
 Starting your own business can be a monumental undertaking. Whether you work from
home or a business incubator (Figure 2-17) for the resources and collaboration, you’ll likely
have some of the best times of your life. Over the past several decades, the traditional
business model has skewed toward small businesses, which now in 2011 include
5.68 million employer firms in the United States according to the small business and
entrepreneurship council. Firms with fewer than 500 workers accounted for 99.7 percent
of those businesses, and businesses with less than 20 workers made up 89.8 percent. So
starting your own company is not the far-fetched seeming idea it was a decade or so ago.

 Figure 2-17. A business incubator provides you and your company with the kind of person-to-person interactivity
you’re not likely to get working from home

65CHAPTER 2: Career Direction

 Without planning, everything can and likely will go wrong. Think about what you offer and if
there are people who will pay for your services. Because you’re reading this book, you likely
fall into one of two categories: 1) writing software for other people in order to make a living
but have more control over your day-to-day life, or 2) taking your great idea to market.

 For the most part, all the skills we talked about in the employee section still apply, and
several become even more important. Starting your own business means you are taking on
far more responsibility than either of the other two career choices: working as an employee
or as a freelancer. Even beyond the additional technical skill load you now have to have, all
the aspects of the business itself, unless you have partners, become yours to manage and
deal with. If you enjoy sleeping seven or eight hours a night, then this might not be the right
choice, at least until your skills are solid.

 Because the workload and risks are much higher, so are the rewards. Working for a
company, you might get a quarter or less of the hourly rate they charge to their customers.
And if you’re a salaried employee—you make a fixed amount per period regardless of the
hours you put in—you probably get much less of a percentage than that. As a business
owner, barring your company expenses, everything is yours to manage as you see fit. You
direct the business and decide the course it will take. You’re responsible for the momentous
successes as well as the devastating failures.

 Option #3: Freelancer
 A freelancer or independent contractor is a self-employed person who may or may not work
for a company such as a contracting agency, but who is not committed to any specific
position for the long term. Basically, you take the jobs you want and you work for clients,
but someone else handles all the business overhead, which can range from finding clients
to dealing with taxes and business insurance, etc. The downside is that they take a cut of
revenue. Think of it like selling your game on the App Store. You offer it for ninety-nine cents,
of which 70 percent or about seventy cents comes to you.

 Because this position puts you somewhere between being an employee and running your
own company, the skills needed are going to vary slightly depending on how close to
one of those options you find yourself. Whether you obtain a position with an established
company under a contract-to-hire agreement or set up your own shop using a temporary or
contracting agency, as a freelancer you have to make some decisions as to how your future
will unfold over the coming months or years.

 Contract-to-Hire
 Often, when looking for a permanent position as a developer, you’ll see contract-to-hire,
1099 employee, or something very similar. They’re basically starting you off as a freelancer
or independent contractor. The hiring company wants to try you out for a while to see if
you’re a good fit before offering you a permanent position. For you, this can be a good thing
or a bad thing. It does get you in the door to work on software development or in whatever
position that you’ve been offered. Much of the time, you’ll make more money this way.
Because contract-to-hire offers are generally based on an hourly rate, if you wind up working
more than 40 hours a week, you’ll get paid for it. Depending on local labor laws this may
vary, but when I worked this way, I found myself getting a nice paycheck.

66 CHAPTER 2: Career Direction

 Of course you won’t get benefits such as vacation, insurance, and so on, and depending on your
needs and expectations that could be a major criterion in the decision of whether to accept or
reject the position. For the most part, no one on your team will likely treat you any different than
a regular employee. One thing I did find was that I wasn’t included in company staff meetings
related to internal policy. No matter. I never like those meetings anyway, so I saw this as a benefit.

 Contract-to-hire positions can range from a couple months to half a year. Mine lasted 90
days before I was picked up as a permanent employee. As with everything else, this can
shift around quite a bit, and I’ve seen people who were made permanent employees a few
weeks into their contract.

 A contract-to-hire is one version of being a freelancer. You are responsible for all the things
a company would normally provide. You usually have a bit more freedom in your work
schedule depending on the needs of the company. I was able to shift my start and end times
by a couple hours so I could avoid the commute traffic. In some organizations you may see
no difference whatsoever between yourself and a permanent employee. This position is
really a stepping stone to a full-time position.

 General Freelancer
 I love using freelancers because they’ve always given me the results I expect at a very
reasonable cost. I use them for everything from web stuff to electrical design depending on
my needs and schedule. The key to working as a freelancer is getting the right amount of
 work assignments to meet your personal goals. Do you want to work on jobs in your spare
time in order to supplement your income and improve your skills? Would you like to make
this a full-time career choice?

 Regardless of how you wish to execute your freelancing decision, you’ll need to find projects
to take on for which clients will pay you. And, as an aside, payment does not always have to
be in cash. I have a great friend who does a lot of our company website and marketing work
as an independent contractor. Although we do pay him in cash, he’ll barter with other clients
with various products and services. It’s kind of funny; as I developed more experience in
the independent developer space, I found bartering to be more widely prevalent than I had
imagined. For me, bartering was something from a couple centuries ago where you brought
your corn to market and got a bag of flour and a couple pairs of shoes in return. I guess I
watched a little too much Little House on the Prairie .

 Whether you take payment in cash, products, or services, the key, of course, will be finding
those projects, and for that, as with finding a job, the absolute best method is to go out
and network. When I give talks at iOS Meetups, about half the crowd work for established
companies, and the other half are typically freelancers who have established a loosely
coupled network with each other to pass along tips, ideas, skills, and projects. Many of the
freelancers I meet are busy working on one or two apps already and can’t take on another
assignment. If something comes up, they need to have a way to offer the service to that
potential client; otherwise, the next time that client has a job they might come away thinking
the developer is always too busy. If the developer offers a solution to make the new project
happen, even if with someone else, that client will likely come back the next time. This helps
the developer keep their supply line of business full. If they are again busy the next time, you
might be the first person they look to for help.

67CHAPTER 2: Career Direction

 We discussed networking and how to go about it in the section on working as an employee,
so I won’t go into detail again. The key points are to get out there and, if need be, overcome
your fear of socializing. Though it’s a bit cliché, software people really are a bit introverted.
I myself am introverted, though nobody thinks so because when I give talks or speak with
people, I project an air of confidence. My introversion comes at the initiation when I have to
first go up to someone I don’t yet know. Speaking at meetings takes that out of the equation
as, after the talk, most people like to come up and chat about something related to what
was presented. Volunteering to speak at these events can help a lot. As your confidence
builds and you gain visibility at these meetings, you start to know people and eventually
reach out to the next set of newcomers.

 A few other things. Try to have your “ elevator speech ” ready to go at a moment’s notice. Know
who you are and how you want to present yourself to others. This takes it out of their hands
and puts it into your own. If, say, you let someone introduce you as an iOS developer, but
you do web stuff or Android or something else, you’ve given up your control. Let them know
who you are on exactly your terms. Have business cards ready to go. This may seem old
school, but people still take notes on paper when time is short. Mainly though, just be friendly
and receptive to lots of different people. If you’re looking for a mentor or a job and someone
doesn’t at first blush fit that bill, don’t brush them off too quickly. They may be the person who
asks you for help the next time. Always, if it makes sense, offer to help people you meet. My
partner does this all the time. One of the things she forever asks of people is how she might
help them. They won’t forget this, and that’s what you want—to be remembered.

 Also remember to continually build your LinkedIn network of connections. Don’t use it like
Facebook or other social media sites and add all your friends. Keep it, as much as possible,
to just the relevant connections in your desired areas of interest. Too many party pictures of
you and your posse can turn away potential clients or companies interested in bringing on
new talent. Focus on the professional. Try to get recommendations from past clients and
others with whom you’ve worked to boost your credibility.

 I’ve talked before about sites like Upwork that can help get you started as a freelancer.
Many will take a percentage of the revenue paid by the client while others might charge the
freelancer a fee to advertise on the site. While advertising yourself may cost a little up front,
getting your bio at the top of the heap can give you a bit of an edge on the competition. It’s
really nothing more than SEO (search engine optimization) for yourself. If you do decide to
invest in a higher placement, if one is even offered, make certain what you put up appeals to
potential clients. I’ve known companies that spend thousands a month on SEO for a website
that’s clunky and hard to use. All that wound up doing is getting them a faster rejection.
Customers didn’t have to search long to find out that the company was not what they
wanted because the site was too difficult to access.

 In addition to online agencies , if you live in a reasonably sized city or town, there will be
temporary agencies that you might also consider. Because Denver is a destination city for
large conferences, a large number of these exist. When large conferences take place, there’s
an entire team of IT (information technology) people to operate, manage, and support the
function. Many conferences have custom apps just for the duration of the event and need
technical help for a few weeks to perform the customization and on-site technical support.
I’ve worked at a few of these events myself and have had a lot of fun and made tremendous
connections. It’s also a very nice change of pace to get away from the house or office and
see what’s going on in the world.

68 CHAPTER 2: Career Direction

 Finding work as a freelancer can be challenging as the options are so varied. I think of it
like a treasure hunt and look for new and interesting ways to make connections that might
eventually turn into paying contracts . To be honest, at best we convert maybe one in thirty or
forty contacts into something real, and many of those might be where we barter for service.
But the contacts and connections we make almost always lead to something else down the
road. Don’t dismiss something just because there’s no short-term gain or it doesn’t look
immediately promising. You do have to strike a balance of course. Weigh your urgent need
to close some business with the potential for bigger projects later. Being an independent
contractor is, in effect, running your own business, so do what’s right for that business.

 Skills
 I’m not going to spend too much time here on skills. As an independent contractor/
freelancer, you already function as an entrepreneur. Effectively, the only real difference is that
you’ve offloaded some of the business details to a company via their website or through
your temporary agency. Because you still have to do the job of getting the client’s app from
the drawing board to the App Store, most of the same skills must be mastered for you to
succeed in a way that will net you additional business.

 The few exceptions might involve the testing and app publishing. First, someone that uses
a freelance developer service may already know about apps and software development. In
fact, they may be an expert or even an independent contractor themselves in need of some
coding support. You might get tasks for writing a specific number of objects or methods.
As such, the client would integrate your code into their own project and you would never
have to perform beta testing or build projects to send to the App Store. Each and every
case will be unique, so my strong advice is to possess and understand all required skills,
practice as much as you can, and follow trends in the general community on changes to
how things might be done. Table 2-2 depicts the deviations in skills required for a contractor
as compared with an employee.

69CHAPTER 2: Career Direction

 Career Direction Summary
 I spent a lot of time discussing career choices in this chapter because as someone starting
out in their development career you’ll want to know where to focus your efforts. I’ve seen so
many people give up on trying to becoming a software professional, saying, “There’s just too
much to learn. I just don’t have the time.” And it’s true. You need to know a wide variety of
skills and lots of terminology just to get to the first interview. While it’s easy to throw a bunch
of buzzwords onto your resume or LinkedIn profile, a trained developer or recruiter can easily
spot the difference between someone with actual experience and someone masquerading as a
pro. You don’t have to be expert in each and every one of the skills we’ll cover in the following
chapters. It helps, but it’s not required or even expected except for the most senior positions.

 Table 2-2. Relative Importance of Skills for an Independent Contractor/Freelancer Compared with an Employee

 Skill Importance Notes

 Xcode Setup Higher You’ll need to set this up on a per-project basis for each
client.

 Source Control Same/More Flexible Keep track of changes and protect your work, but
you’re not confined to a standardized process such as
Svn or Git.

 Agile Lower You won’t have a team other than yourself, so focus
on how you do things best; always try to inject new
techniques whenever possible, and always keep your
client in the loop.

 UI/UX Higher Unless you’re already a skilled designer, you may want
to confine your projects to those with minimalistic UI
designs. Also consider offloading the design work to
someone else in order to save time and effort.

 Target Build Same

 Embedded Lower In the early stages of your company, you’ll most
likely focus on making the best use of Xcode tools,
incorporating the extensive built-in support to limit the
amount of customization needed in your projects.

 App Publishing Similar Many customers looking for freelancers already
understand the basics of apps and how they get
published. Quite often the client only needs help with
the coding, so you might do a lot less actual publishing.

 Web Services Same

 Testing Depends In many freelance situations, because the client is
looking for an inexpensive solution themselves, they
may prefer to do testing on their own.

 Accessories Likely Lower Unless you have a hardware engineering background,
focus on software-only projects until you become
comfortable with all the other skills and code
development techniques.

70 CHAPTER 2: Career Direction

 Focus on which skills are most necessary for the path you want to take. Being honest for a
moment, you really should try to have at least a passing familiarity with everything we’ll talk
about. You may never set up a bot-based continuous integration system, but at least know
what it’s all about. There’s a trick I’ve used in the past when I know a bit of what something
is, but not much more. If an interviewer mentions it or asks about it, I say something like,
“I know a little about CI, but I don’t understand this concept of bots in the process.” This
allows the interviewer to describe it to me. They feel good because they get to talk about
their work. They spend more time with me so the connection grows and we both become
more engaged in the discussion. Even more importantly, I get something tangible from the
interview for my time. I learn how something works in an actual functioning organization.
If you try this, as soon as you get back to the car or coffee shop, take as many notes about
what you learned as you can remember. You can use this in the next interview, whether at
the same company or someplace else.

 The basic steps I would take if I were starting out would be:

 1. Learn what each career path has to offer—its advantages and
disadvantages.

 2. Decide which skills would be most important to you when choosing
that path.

 3. Start to learn and develop the skills.

 4. Look for meetups that have a direct correlation to that career as well
as those that are closely related.

 5. Join the meetup and start networking.

 6. Offer to do a short presentation on a subject that you think you can
quickly master.

 7. Start researching for that dream job.

 This list is far from all inclusive and certainly should be tailored to your skills, needs, and
personality. It’s not a formula for success as much as a recipe to get you started down your
own, personal journey to be the professional developer that you wish to be.

 After a long chapter on preparation, we’re ready to dive into each of the skills we need to
master to make us great developers.

71© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_3

 Chapter 3
 Setting Up Xcode
 In this chapter we go beyond the initial Xcode setup that most first-time developers
experience to the point where we can build apps for sale and distribution. I’ll walk you
through the step-by-step process of creating and downloading certificates, setting up
devices, app naming, and provisioning required for you to begin creating sellable apps for
the Apple App Store . While most of the time it’s so much simpler just to use the simulator
and avoid all the hassles of working with devices, you’ll find that you don’t want to go too
far down that road. What generally happens with newer developers is that the simulators
provide a “crutch” that makes many of the real-world problems transparent. Things just tend
to work more often, and there’s this attitude of, “When I have it perfect, I’ll convert it to an
App Store product.” This does work, of course, but there are so many issues and details
you have to take care of that the momentum starts to wane. You become more mired in the
details of this app name or that profile or something else, and what’s important, the app
itself, moves to the background. I’d rather see you work through all this so it’s second nature
and you can build device-based apps from the start.

 First, I want to warn you that this chapter is very dry reading. Because we cover the
essentials of how to do specific, necessary steps, I wrote this in a very procedural manner;
e.g., do this, then do this, you should see this, click that, and so on. Boring! But necessary.
I love to cook and frequently get a new slow cooker or pasta maker, but do I read the
manuals? Not likely. I tend to take off and just try something to see how it works. You can,
and many people do, work that way in setting up Xcode. Most of the time, however, you will
head down the wrong path; there are just too many options where you can go wrong. It’s
usually possible to back out with only minor effects. The most common mistake people make
in this phase is using their ideal app name, making too many errors, and having to start over
only to find that because they’ve already entered the name into the development system it’s
in there permanently. They wind up having to come up with a new name. So, while it’s not
that much fun, we just have to wade our way through it all to reach the good stuff.

 Let’s get started.

72 CHAPTER 3: Setting Up Xcode

 Joining The Apple Developer Program
 Problem
 You want to distribute your iOS app, but your Xcode distribution is not set up to let you do so.

 Solution
 You must join the Apple Developer Program for $99USD per year to get access to the
resources needed for app distribution.

 How It Works
 First, go to the most current Apple Developer Programs website using a search engine , since
from time to time Apple may change the actual URL of the site. You should see options for
enrolling as either an individual or an organization.

 This is where you want to do a little bit of thinking before you proceed and is why I spent
so much time in Chapter 2 discussing career options and the various requirements of your
intended path. The most common thing that happens here is that, because it’s so easy, most
people just go with an individual developer account to quickly get started. What this means
is that you’re developing, distributing, and selling your apps under your own name, not your
company name. Much of the time this works out just fine. But if you want to have a company
and use your organization’s name on the App Store , you really want to look into enrolling as
an organization; that is, use your business name.

 It doesn’t cost any more than enrolling as an individual, and you get a few benefits when
working this way. In addition to using your business name on the App Store and selling your
fantastic and unique creations as a business, you can have additional developers work
under your account. So, if you and your friends want to develop apps together, things
become much easier. You all work under the same Apple portal using the same sets of
certificates, app IDs, and so on. Your team doesn’t even have to use the same email domain.

 Note Prior to the summer of 2015, Apple offered separate developer programs for iOS and
Macintosh OS X. This meant you had to purchase, for $99USD each, different accounts if you
wanted to do both iOS and Mac software. Now, one program membership, for one $99USD yearly
fee, gives you complete access to both sets of resources.

 Note Starting with Xcode 7.1, Apple no longer requires you to purchase a developer license,
typically $99USD, to load and test your app with actual device hardware. However, at the time of
this writing you still need to have a purchased license in order to sell apps in the App Store as well
as to distribute them for beta testing using TestFlight. We’ll proceed in this chapter as if you fully
intend to develop for the App Store.

http://dx.doi.org/10.1007/978-1-4842-1820-4_2

73CHAPTER 3: Setting Up Xcode

In a typical company, everyone would have an email address such as molly@companyname.com
or john.Doe@companyname.com. The names would be different but the <something>.com
would all be the same. But if you’re a bunch of people that just want to work together to
create something really cool, you probably want to use your personal email addresses.
By enrolling as a company you can still do this. In fact, this is how I’ve set up the developer
account with which we will be working through the course of this book. My friends and
teammates work under my umbrella account but use their own individual email addresses
for access.

 Individual Enrollment
 Joining as an individual is pretty straightforward. You only need enter your legal name,
address details, and payment information. You typically get taken to the Apple Store and can
complete the purchase using your existing account information. Generally, in moments to at
most an hour you’ll receive a couple of emails. The first will be your purchase confirmation—
your receipt for the purchase. Later, you’ll receive another email with a link that activates
your developer account. In some cases, Apple may have to verify the information you
provided. This might happen if, say, your zip code doesn’t match, anything was entered
incorrectly, or, like me, you have to enter whether you live within or outside town limits.

 Organizational Enrollment
 Joining the developer program as a company means you have to fill in a few more details
and have the information ready and available. The most important thing is that if joining as
a company, you have to have a real company. This can’t just be the name you came up with
and put on your business cards; your company’s name should be registered in the state
where it was formed.

 Note A common source of confusion when setting up a business-based developer account arises
when you try to enroll for the enterprise developer program (Figure 3-1). This is used for companies,
typically larger companies, that need to distribute apps to employees within their organization.
A common use would be to distribute a product catalog app to the entire sales team. This program
costs $299USD.

 Figure 3-1. The Apple Developer Enterprise Program is for companies that distribute apps internally as opposed to
or in addition to in the App Store . You do not need to join this program to develop apps under your own organizational
structure

74 CHAPTER 3: Setting Up Xcode

 Most states make forming a company such as a Limited Liability Company pretty easy,
but check out all the details and requirements as appropriate. The best advice would be
to spend some money to talk with a business attorney and then decide on which type of
organization you should form. There are different tax and reporting requirements for each.
Once the company is formed, it may take a few days to weeks to have it show up in your
state’s registry. In my case it showed up on the same day, but I suspect this varies by region.

 Registering your business’s legal name is only one-half of the equation. You also need to
have a DUNS number. This is a nine-digit number provided by Dun & Bradstreet. Filing the
legal documentation for your business does not automatically provide you with a DUNS
number. You will have to do this yourself and provide the following information:

 Legal name

 Headquarters name and address for your business

 Doing Business As (DBA) or other name by which your business is
commonly recognized

 Physical address, city, state, and zip code

 Mailing address (if separate from headquarters and/or physical address)

 Telephone number

 Contact name and title

 Number of employees at your physical location

 Whether you are a home-based business

 Since DUNS numbers are typically needed when doing business with the U.S. government,
it’s a fairly quick method for obtaining a number. You can search for how to do this; you
should be taken to the site shown in Figure 3-2 , where you can get your number processing
started. According to the site’s information, it typically takes about a day to process.
However, before Apple will issue a developer license they will need to be able to access
that number on the D & B servers. Apple has a close relationship with D & B, and there is
even a special Apple contact for handling this type of request. So, while it may seem a little
overwhelming at first and you may want to give up, it usually turns out well.

75CHAPTER 3: Setting Up Xcode

 Comments
 If you never intend to develop iOS (or Mac OS X) software under your own company, then an
individual developer account will certainly be enough to get you started and working almost
immediately. On the other hand, if you’re sure you want to develop as a company or work
with others on app projects, consider obtaining an organizational developer license from
Apple. It costs no more than an individual membership, but you get so much more flexibility.
You will need to make sure your business is legally formed and obtain a DUNS number, but
that can be completed within a week.

 Developer Certificates
 Problem
 You’ve created an app and you want to start the process of getting it into the App Store for
distribution and beta testing.

 Solution
 You must set up your development computer so that the apps you create are code signed
and can thus be trusted to execute on Apple devices before you distribute them to the
App Store.

 How It Works
 Code signing is the process that assures everyone downloading your app that it has not
been tampered with and will not introduce viruses or other malware onto their devices. In
addition to being code signed, your app must be properly provisioned, which we will talk
about in a later section of this chapter.

 Figure 3-2. Getting a DUNS number is usually quick and easy if you have a legally formed company within your state.
However, the number may take a few days to get into the database so Apple can verify your company in order to issue
an organizational developer program license

76 CHAPTER 3: Setting Up Xcode

 Your development Mac stores code-signing information in your machine’s keychain, which
is the OS X password management system. The certificate process involves identities and
other cryptographically related details. It can be incredibly complex to understand if you’ve
not previously been involved with operating system security. For our purposes, we only really
need to have a basic understanding of how we’ll use these certificates in our endeavors.

 The first thing we need to know, if we’re focusing on iOS projects, is that there are two types
of certificates: a developer certificate and a distribution certificate . The developer certificates
allow our apps to run on devices and access certain app services. Distribution certificates
allow you to distribute your apps to designated testing devices and to the App Store .

 Without getting into too many details, the signing process begins when installing Xcode,
which adds the Apple Worldwide Developer Relations Certifications Authority and Developer
ID Certification Authority intermediate certificates to your keychain. Think of these as the
starting point of the security chain. From this point you create certificates (developer and
distribution) for your team. Each member of your team has their own developer certificate,
and as such it will contain their name (Figure 3-3). If you have an individual developer
account as opposed to an organization account, your distribution certificate will contain
your name. But if developing as an organization, your company’s distribution certificate will
contain the name of your business as entered when you set up your program’s credentials
(Figure 3-4).

 Figure 3-3. With an individual developer account, both your development and distribution certificates will contain your
name, since that is how the account was created

 Figure 3-4. When using an organization developer account , only one distribution certificate is created

 Okay, what I’ve shown you so far in this section is what we’re looking to achieve, but how do
we get there? Once we have a valid developer program license from Apple, we head over to
the Member Center. As with everything else, the address changes periodically, so you want
to search for “Apple developer,” and at the bottom of the page there should be a section for
the Member Center. Below that you click on the link for “Certs, IDs and Profiles.”

 At this point you might be taken directly to the page where you can create your certificates,
IDs, and profiles. You’ll see a taskbar with headers for Certificates, Identifiers, Devices, and
Provisioning Profiles. We’ll go through each of these in turn, but first we need to get our
certificates in order. If there is a pull-down on the taskbar, make sure it is set to “iOS Apps.”
It may be set to “Overview,” “Mac Apps,” or “Safari Extensions,” but we need “iOS Apps.”

77CHAPTER 3: Setting Up Xcode

 Below the Certificates section you’ll see the following choices:

 All

 Pending

 Development

 Production

 Click on All. It may be already selected, in which case you should see any certificates you
already have in the center section of the screen, with a header at the top that should say
“iOS Certificates.” Along the top will be a ‘+’ button, which is what we click to create new
certificates. Click the ‘+’ button.

 As we saw before, there will be a listing of options under the Development and Production
choices. We first want to get a development certificate, and once this is completed we’ll
perform the same steps for a production certificate . You should see the following options:

 Development

 iOS App Development

 Apple Push Notification SSL (Sandbox)

 Production

 App Store and Ad Hoc

 Apple Push Notification SSL Sandbox and (Production)

 Pass Type ID Certificate

 Website Push ID Certificate

 WatchKit Services Certificate

 VoIP Services Certificate

 Apple Pay Certificate

 Intermediate Certificates

 Select the radio button to the left of “iOS App Development,” then click Continue and you’ll
be taken to a page that asks you to create a signing certificate . At this point you need to
open the Mac Keychain app by locating the icon under Applications that looks like a ring of
keys (Figure 3-5). Follow the instructions to create a certificate signing request by selecting
Keychain Access ➤ Certificate Assistant ➤ Request a Certificate from a Certificate Authority,
as shown in Figure 3-6 .

78 CHAPTER 3: Setting Up Xcode

 Figure 3-6. Using Keychain, create a file and save it to your desktop; this will be used to create your development or
production/distribution certificate

 Figure 3-5. Locate and open the Mac Keychain app to create the certificate signing request (CSR)

 Fill out the form so that it looks similar to Figure 3-7 , but use the email address associated
with your iOS account.

www.allitebooks.com

http://www.allitebooks.org

79CHAPTER 3: Setting Up Xcode

 After saving the file to your desktop—note that you didn’t really take any action on this page
other than following the directions to use the Keychain app—click Continue, at which point
you will be prompted to upload the file you just created. Click Choose File…, and once the
upload has completed—it should be very quick—click Generate. All you need do now is go
to the next page and download the certificate. The downloaded certificates will have a .cer
suffix like those in Figure 3-8 . To complete the process, double-click the downloaded file;
Mac OS X will install the certificates in your keychain.

 Figure 3-7. Fill out the form in Keychain and save the file to your desktop

80 CHAPTER 3: Setting Up Xcode

 Repeat the preceding steps to create and install a distribution certificate , and we will be
all set to continue to the next section. The one thing you will need to do differently is when
you’re in the developer portal. As before, click on the ‘+’ button to create a new certificate.
In the main window you will see three sections: Development, Production and Intermediate.
In the Production section, click the radio button for App Store and Ad Hoc. Follow the reset
of the steps exactly as before to install the distribution certificate.

 Comments
 By following this process, you will have accomplished the first step to being able to install
apps for beta testing as well as upload your product to the App Store. To verify that this
process was successful, use the Keychain app. On the left under Keychains, select “Login,”
and under Category select “My Certificates.” You should see information similar to that
shown in Figure 3-4 , but for your account information.

 Certificate Issues
 Problem
 For some reason your certificates do not show up properly or have a red X over the icon.

 Solution
 You most likely are missing the developer intermediate certificate, so you will need to install
it from the iOS developer portal.

 Figure 3-8. The downloaded certificates are self-executing files; double-click the filename to have OS X install them
into your keychain

81CHAPTER 3: Setting Up Xcode

 How It Works
 Go back to the page with headers for Certificates, Identifiers, Devices, and Provisioning
Profiles. As before, if there is a pull-down on the taskbar, make sure it is set to “iOS Apps.”
At the bottom of the page, click on the “World Wide Developer Relations Authority” link to
download and install the intermediate certificate as before.

 This may or may not correct the issues with your certificates. The first step would be to close
everything and reboot your machine if the problem doesn’t get corrected. If you reboot and
still see a red X , use Keychain to delete the two certificates you generated, not the developer
relations certificate just downloaded , and regenerate your developer and distribution
certificates as shown previously.

 App IDs
 Problem
 You’ve created an app or are ready to begin development, but you want to start the process
of getting it into the App Store for distribution and beta testing ahead of time.

 Solution
 Just as we created our development and distribution certificates, we now want to create
an app ID within the iOS developer portal for use in identifying our work throughout the
process.

 How It Works
 We will use one of our project names to work through the app ID process. I’m going to use
the name of our Objective-C to Swift conversion project. Originally, I called the app Town
Slot as a play on the phrase “town slut.” Because you can’t generally reuse app names in
the App Store, I’m going to go with Town Slot 2.

 Back on the Certificates, Identifiers, Devices, and Profiles page, under Identifiers select
“App IDs.” The screen should change to indicate you are registering an app ID. Click on
the ‘+’ button to enter the name of the app; I used Town Slot 2 as my name.

 Scroll down to the “App ID Suffix” field. This is where you will enter the specific bundle ID of
your app, which you will use when creating an app for distribution to beta testers or to the
App Store. The normal thing to enter is your company’s reverse DNS domain name followed
by the app name. I entered “com.globalteklabs.townslot2.”

 If you scroll down a little further you will see a section titled App Services. Some of the items
may be selected and grayed out, but we don’t need to add anything else. Later, we may
add services to our other projects, but for this conversion project app, all we need are the
default settings.

82 CHAPTER 3: Setting Up Xcode

 At the bottom click Continue. If you succeed, you will see a screen similar to Figure 3-9
containing your app’s identification information. Beside the Identifier row you will see the
app’s bundle ID preceded by a ten-digit alphanumeric sequence, which is the bundle
seed ID and essentially represents your company. It’s used in the App Store to identify
the apps your company provides, or that you provide as an individual developer, so that
any necessary associations can be made with other apps or MFi accessory hardware if
applicable. We’ll use this in Xcode later.

 Figure 3-9. Double check your app information before submitting; otherwise, you may have to start again with a
different app name

 After clicking Submit, if everything is entered correctly you’ll see “Registration Complete,”
and by clicking Done you should see this app ID in your list of app IDs, as in Figure 3-10 .

83CHAPTER 3: Setting Up Xcode

 Comments
 In working through this with the team I assembled to help test out these procedures, the
most common issue was using a name that already existed somewhere in the App Store.
The app ID in question may not even appear in the store when searching, but most likely
someone has used the name previously and the remnants of it have not been removed.
More to the point, and from personal experience, I’ve never been able to reuse an app
name that I used previously. There appears to be a long-term storage of app names and IDs
somewhere within the iOS developer system that does not permit overlapping or duplicate
names. It’s similar to not being able to reuse passwords for some lengthy amount of time.

 Devices
 Problem
 You want to test your app on actual iOS hardware.

 Solution
 In this section we will add our devices to the list of usable devices in the iOS developer
system. You are allowed by Apple to add up to one hundred devices throughout the year of
your developer program membership.

 How It Works
 Back on the Certificates, Identifiers, Devices, and Profiles page, under Devices, select “All.”
If you have any devices already added, you’ll see them in the center section under iOS
Devices. If you see grayed-out names, those are devices that have been disabled and are
not usable within the Xcode system.

 Before trying to add any new devices, first we need to get information about the devices
we want to use. Let’s start with one device, and you can just repeat the process for each
additional one you want to add.

 Figure 3-10. Upon successful registration of your app ID, it should appear in your list of app IDs

84 CHAPTER 3: Setting Up Xcode

 You need to get information about your device, and one easy way to do so is to use iTunes.
Start iTunes on your computer, connect your device, and click on the device symbol—
iPhone if it’s an iPhone—at the top to see the display shown in Figure 3-11 or something
similar.

 Note As Xcode gets more helpful, processes such as adding devices do become more automated.
For example, if you plug in an iPhone on which you wish to install the app you’re working on, Xcode
will identify that device as not being in your list and will walk you through adding it. However, I’ve
found this works sporadically. The procedures I’m discussing in this section are the primary way
that this has been done for years and always works as a fallback, so it’s good to know.

 Figure 3-11. Connect the device you wish to work with using iTunes and go to the device information summary

 Make sure you’ve selected the Summary item on the left-hand Settings bar. Left-click on the
serial number itself, not the “Serial Number” title, and the display should change to show the
UDID as in Figure 3-12 .

85CHAPTER 3: Setting Up Xcode

 Right-click on the actual UDID number and select “Copy” to put that number into your
computer’s clipboard in order to paste it where needed.

 Back in the Certificates, Identifiers, Devices, and Profiles section of the developer portal,
click the ‘+’ at the top to get to the Registering a New Device or Multiple Devices screen.
We’ll work with one device at a time for our practice.

 Choose a name for your device, and by that I mean think of something that you wish to
call your device as it will appear here, in the developer portal, as well as in Xcode when
downloading apps to the device. For the most part, I’d suggest just using the name of your
device as shown in iTunes, as you named it during the initial setup. But it doesn’t have to
be the same. It’s up to you. Just make sure, especially if you are planning to add multiple
devices, that your naming scheme is clear to you. I wouldn’t, for example, name something
“Test iPad” or even “Test iPad mini 2,” because you may get another one—if the first one
breaks, for example—and then have to deviate from your naming convention. Think it
through early on to make it much simpler later on.

 Type the name into the “Name” field, paste the UDID into its spot on the Register Device
section of the page, and click the Continue button.

 If the information you entered was valid, you’ll advance to a summary page that tells you
how many devices you have left in each category. If the information appears correct, click
the Register button, and the device should now appear in the summary pane.

 At this point you may want to add any additional devices that you expect to use during
development and testing.

 Note At some point, especially if Xcode is open, you may see a message on your device asking
if you want to trust this computer. If this is your device and your computer, of course you’ll say
yes. A reason you might not want to do so would be if you’re logged into the developer portal on a
computer that you don’t intend to use for Xcode development, such as a friend’s Mac.

 Figure 3-12. Click on the serial number to change it to display the UDID. Right-click on the UDID number itself and
select “Copy” to put the number onto your clipboard

86 CHAPTER 3: Setting Up Xcode

 Comments
 This part of the Xcode setup process is pretty straightforward and generally proceeds
without issue. We showed how to add a device that you have with you, but it doesn’t
necessarily have to work that way. You could add someone else’s device if they send you
their UDID number. I do this often when I create app bundles that I want to distribute to
clients who aren’t local. Xcode’s integration with TestFlight has made this less important,
and this type of ad hoc distribution has all but been done away with.

 Provisioning
 Problem
 You’ve created an app, and you want to start the process of getting it into the App Store for
distribution and beta testing.

 Solution
 The last of the four primary steps in getting ready to work with actual devices is to create
provisioning profiles that a device will use to allow that device to execute app builds
generated by Xcode. Profiles are used to make sure that the app is signed and is therefore
from a trusted, legitimate source.

 How It Works
 When you generate a provisioning profile , it includes the three items we previously created:
signing certificate, app ID, and device IDs. There are two types of provisioning profiles.
 Development profiles are used during the build and test process, while distribution profiles
are needed when delivering your app to the App Store or for beta testing with users. Profiles
can be generated by Xcode or manually by the team agent; that is, the main person in
charge of the developer account. Later, we’ll see how to generate certificates using Xcode,
but first let’s go through the process of generating a certificate manually.

 Back on the Certificates, Identifiers, Devices, and Profiles page, under Provisioning Profiles
select “All.” Under the section for generating provisioning profiles manually, there should
be a link to create manual profiles . Click on the ‘+’ button to add a new item, and you’ll be
taken to the page for generating your profile.

 The first step will be to select the type of profile, either development or distribution. Current
choices for development include iOS or tvOS. In the distribution category you also get the
choice of iOS or tvOS, but for each of those you need to select either App Store or Ad Hoc.
The choices on the page should look like this:

 Development

 iOS App Development

 tvOS App Development

87CHAPTER 3: Setting Up Xcode

 Distribution

 App Store

 Apple TV App Store

 Ad Hoc

 tvOS Ad Hoc

 Let’s walk through creating a development profile for our slot machine game for which we’ve
already created an app ID. Select the radio button next to “iOS App Development,” and at
the bottom of the page, click Continue.

 The next page will ask you to select an app ID via a pull-down that lists the available app
IDs. Select the ID for the app of interest. I’m going to select the one for my slot machine
game and click on Continue at the bottom of the page.

 On the next page you will select the certificate to use for this profile. If the profile will just be
used for development, the best option is to select the checkbox next to the development
certificate and click the Continue button. Remember that a development certificate will
have the names of the different developers on the team, whereas a distribution certificate
will show the company name if you set things up as an organization. If you set up your
developer account as an individual, then both will show just your name.

 The next page will show the list of available devices to which you can attach to this profile.
You can click Select All or select individual devices. Selecting all if you only have a small
number of devices prevents your having to come back and regenerate the provisioning
profile later on. Click Select All and then Continue.

 The last page will show you the information so far and provide the opportunity to name your
profile. As with other parts of this process, make sure your naming scheme is clear and
concise. It also should be easy to identify in a small amount of characters. When we get to
Xcode, you’ll see that space is at a premium and being able to identify your profiles early in
their name makes things easier to manage. For this profile, I use the name “ Dev TownSlot2 ,”
as it clearly identifies the app for which the profile is intended and that it is a development
certificate. Type the name and click the Generate button.

 If everything was correct and valid you should get a page with something that looks like
Figure 3-13 displayed. Click on Download to save the provisioning profile to your computer.

 Note To create any profile, you’ll use one of your previously created certificates, either developer
or distribution, your set of devices, and your app ID. The key is the app ID. You can’t create a
provisioning profile until you first set up your app ID in the developer portal.

88 CHAPTER 3: Setting Up Xcode

 Once the provisioning profile is on your computer it will be of the form <profile name>.
mobileprovision and will look similar to that shown in Figure 3-14 . Note that any blanks in
your profile name have been converted to underscores.

 Caution Sometimes you may get a message saying that an “unspecified error occurred.” This
often happens when going back and forth between the developer portal page and other web pages
in your browser. Simply try generating the profile again, and it should work okay. Otherwise, validate
that all the previous steps have been completed and try again. It also might be that one of the items
was generated with undetected errors, in which case go back and step-by-step delete the item and
regenerate before trying to create a profile.

 Figure 3-13. A successfully generated development provisioning profile is valid for a year from its creation date

 Figure 3-14. The downloaded provisioning profile looks like this before being installed into Xcode for use in the
 development process

 Comments
 So, what do you do with this? The simplest thing is to just drag and drop it on top of the Xcode
icon to install it so that Xcode can use it. In the next section, we’ll go into a bit more detail about
loading provisioning profiles onto your system so they can be used for app development.

89CHAPTER 3: Setting Up Xcode

 Provisioning Profile Location
 Problem
 You need to access the actual provisioning profiles installed into Xcode, but you don’t know
where they are.

 Solution
 Set up your Mac to see where the provisioning profiles are located.

 How It Works
 The provisioning profiles are located in the following directory:

 ~/Library/MobileDevice/Provisioning Profiles

 The ‘ ~ ’ character represents a shortcut to your home directory . This is the starting point that
OS X created for you when you set up your computer. It could be anything, but is typically
your user name. For my account, my home directory is MollyDev , as shown in Figure 3-15 .
The first thing that stands out is that there is no Library subfolder. So what do you do?

 Figure 3-15. The author’s home directory shows no Library directory

 Throughout the years Apple has endeavored to make their devices more user friendly, but
they’ve also tried a number of ways to prevent the novice user from making simple mistakes
that can irrevocably damage their file system. One of these is to hide the user’s Library
folder. For the vast majority of users this works well. But Xcode developers are, or should be,

90 CHAPTER 3: Setting Up Xcode

a bit more savvy, and they occasionally need access to their Library folder. Let’s get OS X
to show us our ~/Library folder.

 In a Finder window , select your home directory in the sidebar. If you don’t see your home
directory in the sidebar, you need to add that as well. To add your home directory to the
sidebar, go to Finder along the topmost menu bar and select “Preferences…,” which should
result in the Finder Preferences window popping up. Click on the “Sidebar” option at the top
and select the checkbox next to the name of your home folder, as shown in Figure 3-16 . You
can always navigate to this point using any Finder window, but having your home folder in
the Finder’s sidebar makes things so much easier and faster.

 Figure 3-16. Use Finder Preferences to show your home directory in the Finder window’s sidebar for easy access
during iOS development

 Now we can easily select our home folder, but we still won’t see the Library folder. So, as I
mentioned previously, select your home folder from the sidebar—in my case this would be
 MollyDev —and click the gear icon along the top of the Finder window. A list of pull-down
options will appear, as in Figure 3-17 . Select “ Show View Options .”

91CHAPTER 3: Setting Up Xcode

 In the View Options window for your home directory, select “ Show Library Folder ,” as shown
in Figure 3-18 .

 Figure 3-17. Select “Show View Options” to see what OS X will display in a Finder window

 Figure 3-18. In your home folder’s View Options window, select the checkbox next to “Show Library Folder”

92 CHAPTER 3: Setting Up Xcode

 Now, when viewing your home directory you should be able to see your Library folder , as in
Figure 3-19 .

 Figure 3-19. Now you should be able to view the Library folder in your home directory

 Navigate to the Provisioning Profiles folder as described earlier, and you should see an
 empty folder as in Figure 3-20 if you haven’t yet created any profiles or installed this one into
Xcode. When you drag the provisioning profile file onto the Xcode icon to install it, you’ll see
a profile appear in this folder (Figure 3-21). Note that the name has been changed to a long,
seemingly random number used by Xcode, so it will be difficult to determine what profiles
are present just by looking at the Provisioning Profiles folder on your Mac. This number is
actually a UUID (universally unique identifier), similar to those we’ll discuss later in this book
in the section on iOS accessories and Bluetooth.

 Figure 3-20. If you’re just getting started and the computer has not yet been used for iOS or other Xcode development,
your Provisioning Profiles folder will be empty

93CHAPTER 3: Setting Up Xcode

 When you’re back at writing code and ready to use the profile, Xcode will automatically
handle the task of downloading and installing it for you. You may be prompted for your login
credentials, but most of the time it just works. Although we haven’t gotten into Xcode yet,
I want to show you another way to download provisioning profiles—with the IDE. This saves
you from manually downloading profiles from the developer portal and puts the burden of
the operation onto Xcode. Sometimes this manual process can be a little flaky. It’s become
much more solid over the past year or so, but just in case you run into issues, I want to
make sure you have an alternate way to download profiles.

 Since you should be familiar somewhat with Xcode, after starting, go to Xcode ➤
Preferences then select “Accounts” if that window is not already open. You’ll see a window
like the one shown in Figure 3-22 .

 Note In all of my examples I use the latest beta version of Xcode in order to work with the most
current features that are most likely to be present at the time of publishing.

 Figure 3-21. Once installed, the provisioning profile will appear as a UDID for use by Xcode

94 CHAPTER 3: Setting Up Xcode

 As shown in Figure 3-22 , I have two Apple developer accounts. The top one on the left is
my individual account, and the other is my organization account. The accounts will initially
be identified by the email used to set up your account. The right bottom pane is where you
can get information on the details of an account and the available provisioning information. I
selected the team name; in this case that’s the organization account, not the individual one,
since that’s how we created the profile earlier. Clicking on the View Details… button reveals
the information shown in Figure 3-23 . Note that we see the same profile that we created in a
previous section.

 Figure 3-22. The Accounts pane of Xcode for the author’s individual and organizational developer accounts

95CHAPTER 3: Setting Up Xcode

 By clicking Download, you can install any or all profiles within your developer account into
Xcode and onto your Mac. Note that you can also generate signing identities for iOS and
Mac projects from this pane. There are different options for Mac depending on whether you
want to distribute your OS X application directly or through the Mac App Store.

 Comments
 You’ve seen in this and the previous section details on creating and installing provisioning
profiles. These files are the key to your getting your apps to work on devices, distributing
them to others for beta testing, and being able to place your work into the App Store .
While this discussion was pretty detailed, it is very straightforward and not easy to mess
up. I’d advise going through it a couple times until you have it down, then writing yourself a
simple step-by-step procedure for the next time. On my Mac I use Stickies and make sure
the topmost line is a relevant title. That way, the next time I have to do this and may have
forgotten a step, I have the information readily available.

 Figure 3-23. Using the Accounts pane of the Xcode organizer, you can create certificates or download provisioning
profiles

96 CHAPTER 3: Setting Up Xcode

 Wildcard App ID
 Problem
 You want to work on several apps at once but aren’t ready to create a bunch of individual
profiles, as they can become difficult to manage in large numbers.

 Solution
 Create a wildcard app ID that can be used in a provisioning profile across multiple projects.

 How It Works
 Apple recommends using a wildcard app ID for most iOS development, because this single
ID can be used to create multiple applications, including the sample code in the Apple
reference library. A wildcard app ID has the form <BUNDLE ID>.* . If your bundle ID were
 A1B2C3D4E5 , then your wildcard app ID would be A1B2C3D4E5.* . Note the difference with
something of the form A1B2C3D4E5.com.mycompany.myApp . This is a specific app ID for when
you actually want to submit to the App Store or for beta testing. But if you’re only interested
in learning and testing on devices, a wildcard app ID works well. So, how do we create one?

 Back on the Certificates, Identifiers, Devices, and Profiles page, under Identifiers select
“App IDs.” As before, click on ‘+,’ type in the name of the app ID, calling it something like
Company Wildcard or whatever is appropriate, then select the proper bundle seed ID in the
drop-down. Further down on the page under App ID Prefix, select the “Wildcard App ID” radio
button and type in the bundle ID. The bundle ID would be something like com.mollycompany.* ,
and then you click the Continue button and carry on as before by reviewing the information
and clicking Generate on the next page. This will place another app ID into your developer
portal information, which you can use to generate a more widely usable provisioning profile.

 Comments
 If you want to practice a lot with installing apps onto devices, especially ones built from
Apple demo code, using a wildcard app ID will make life a lot simpler. Not only will you have
to do less prep work to get started, but also later on you won’t have as many provisioning
profiles that you need to manage and keep track of.

 Note The bundle seed ID and bundle ID are similar but slightly different. Depending on how
it’s used, a bundle ID may or may not include the ten-digit value at the start. It’s used differently
throughout the literature. However, the bundle seed ID always refers to that ten-digit value that
references your organization or team.

97CHAPTER 3: Setting Up Xcode

 Switching Development Computers
 Problem
 You want to work on a different Mac but continue developing the same application as
you were before. If you try to repeat the preceding steps to create certificates on the new
computer, you’ll find that things won’t work anymore. The problem is that you created a
signing request on a different computer, so the development and production certificates
won’t be the same.

 Solution
 You need to transfer your development certificate information from your initial development
computer to the new computer from within Xcode.

 How It Works
 This problem always seems to happen at the most inconvenient time. You mostly develop
on your large-screen iMac, and for some reason you need to take and show your work to
someone else. Perhaps you got stuck and a friend offers to help, or maybe you took my
advice in the last chapter and want to give a talk at your local iOS meetup. So you put
Xcode onto your laptop, set things up as we talked about, and nothing works; all manner of
strange error messages start to appear in the Xcode logs. What happened?

 There’s an even worse scenario. You go through the same steps as discussed. You give your
talk, and it all works perfectly. At home, getting back into the swing of things, it all stops
working. What happened?

 What happened was that you generated two different signing certificates (or more)—one for
each machine. Recall that before creating and downloading certificates you used the Mac
Keychain app to create a certificate request on your machine. That request file has built-in
references to that Apple-provided developer certificate as well as information about your
machine. So these two requests, created on two different machines (even if they use the
same developer account), will be different. As such, both can’t work.

 You need to transfer your credentials from one computer to any other computer you wish to
use. This is done from within Xcode itself. Let’s work through it. This is another one of those
 things you should stow away in your quick reference Stickies.

 With Xcode in the foreground, select Xcode ➤ Preferences and go to the Accounts pane as
we did earlier. At the bottom of the pane (Figure 3-24), click on the gear icon to bring up the
export and import options pull-down menu.

98 CHAPTER 3: Setting Up Xcode

 Selecting “ Export Developer Accounts …” brings up the window seen in Figure 3-25 ,
allowing you to name the file for export, provide the location to where it will be saved, and
supply a password. Name the file something easy to identify. You can see I named mine
 myProfileForExport and saved it to my desktop. I usually advise using at least a secure
password, but this process doesn’t require anything more than a simple set of numbers.
Click Save, and the information will be stored in a single file wherever you’ve requested.

 Figure 3-24. Click on the gear icon at the bottom of the Accounts pane in the Xcode preferences to bring up export and
import options

99CHAPTER 3: Setting Up Xcode

 Because these credentials contain sensitive information, before writing to a file OS X will
verify that you are allowing Xcode to export these credentials to a file from the password
 Keychain on your Mac. In Figures 3-26 and 3-27 you can see this request after I click on
Save. Just click Allow to proceed, and the file should appear at the location you specified
after a completion message appears (see Figures 3-28 and 3-29).

 Figure 3-25. Export a single file containing all developer account information from within Xcode. If you’re just moving
it from one computer to another in your home, you can go with a simple password. But, because this contains such
important account information, you want to make sure it is safe no matter what

100 CHAPTER 3: Setting Up Xcode

 Figure 3-26. Xcode requests permission to export your development credentials from Keychain

 Figure 3-27. Xcode requests permission to export your distribution credentials from Keychain

101CHAPTER 3: Setting Up Xcode

 Copy the file to a USB drive or move it to the new computer by whatever method works
best; place it somewhere that’s easy to find, such as the desktop. If you do use a portable
drive, make sure to erase the file from the drive when finished. On the computer to which
you moved your credentials and plan to continue development on, start Xcode and go to
Xcode ➤ Preferences. Select the Accounts pane at the top as we did earlier during export
(Figure 3-24). Select the “Import” option, and you will be prompted for the filename and to
enter the password. Once the process completes, Xcode will now operate and build apps
using the same credentials as the computer on which you began working.

 Comments
 The process of moving credentials between computers is certainly one you’ll need to be
familiar with when splitting your time between a desktop and laptop. This comes in handy
most when you’re operating your own business or as a freelance contractor. When working
for a company, either as a direct employee, contract-to-hire position, or 1099 contractor,
the IT department will usually set up systems as they see fit. Moving credentials between
computers on your own is not permitted except for under special circumstances, such as
working from home and using your own equipment.

 Figure 3-29. Xcode saves the exported information to a single file so that it can be installed on the new development
Macintosh computer

 Figure 3-28. Upon completion of saving you will be able to see what information was exported

102 CHAPTER 3: Setting Up Xcode

 Summary
 As I stated at the beginning, there’s not a lot of witty writing in this chapter. We’ve covered
the various situations that you will likely encounter when preparing your Xcode environment
to build and run apps on actual Apple devices. Much of the time, Xcode does a lot of the
work for you. In fact, if you set up everything on a fresh computer, for example just out of the
box with the latest OS X release, just about everything I’ve talked about is automated. But,
there’s a problem.

 Most of the time iOS developers operate on the edge, so to speak. By that I mean we’ll use
the latest beta version of Xcode and iOS frameworks so as to include the latest and greatest
new features in our products. We have to, because everyone else, our competition, is doing
the same thing. Meanwhile, we may have to support existing production-version apps in the
App Store. Beta versions of Xcode and frameworks cannot be submitted to the App Store
until just before a GM (Gold Master) release or even later. Typically, I get about a week’s
notice before an official Xcode release that I can now submit apps.

 This means that we have to run two different versions of everything; that is, two versions of
Xcode and two sets of frameworks. Because of that, especially with beta releases, much
of the automated processes can be a little unstable at times. We need to know how to do it
the hard way, as we’ve described in this chapter, to stay current in our skills. It’s not that we
can’t do it the easy way, but we need to make sure it can get done whether it’s the easy way
or the more difficult, detailed route that I’ve described.

103© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_4

 Chapter 4
 Project Descriptions
 For the rest of this book I’ll be referencing four different types of projects when describing
the various problems and solutions that we need to solve. I’ve purposefully kept these
projects as small and self-contained as possible in order to focus on just those elements we
need to address.

 Our goal with these is not to provide an all-encompassing solution for this or that problem,
but rather to provide a working code reference for our needs. To talk about source control,
we don’t require several tens of thousands of lines of Swift. We don’t need a massive
database application to cover building deployment targets or using schemes. What
we want—no, what we need—is a very basic set of projects with code we can readily
understand so we don’t spend time unnecessarily worried about this or that syntax item, but
rather can direct our attention solely to the task at hand.

 Our projects address four key areas:

 Code conversion from Objective-C to Swift

 Using the Apple Watch

 Working with Apple’s HomeKit iOS feature and framework

 Interfacing with external devices

 Remembering that our goal is not to learn to write Swift, but rather to prepare your iOS
experience for the real world, I chose projects that you’re likely to encounter as you take
your skills out into the real world. There’ll always be the boring “Build a Table View” this or
“Convert to Core Data” that you will have to deal with, but here, while we can, let’s have
some fun while learning. Of course, what I think of as fun might significantly differ from your
ideals, so we’ll just see how it goes.

104 CHAPTER 4: Project Descriptions

 Code Conversion
 As the popularity and proliferation of Swift continue to grow (despite some holdouts who
believe it’s not ready for prime time), you’re likely as an entry-level developer to be assigned
projects where the main goal is to convert an old project into Swift. There are many reasons
why this is a good idea. First, as Swift grows and more features are added to support the
latest Apple devices, using Swift might be the only way to do things. That is, a desired
feature may only be supported in Swift and not in Objective-C. For the short term, I suspect
this to be unlikely, but if you make the conversions now you won’t be caught off guard if
such a time does arrive.

 Another reason for converting to the new language is to take advantage of the many safety
features built into Swift. The requirement to initialize variables could save you dozens of
hours you would have spent tracking down an unnecessary bug because you failed to
initialize a property in Objective-C. Like anything else, there are ways around this; optionals
allow you to circumvent this restriction by enabling you to indicate an absence of value for
any type. Typically, when using existing framework method calls the indiscriminate use of
optionals can quickly get you into trouble. First, a returned optional is an optional, not a
value. A value is “wrapped” inside an optional, and thus you must unwrap it.

 You get into trouble when you try to unwrap an optional for which there is no value; that
is, there is an absence of value. Attempting to use an optional for which no value exists
by forcing an unwrap causes your app to crash at runtime. This functions just the same as
trying to use a nil value with Objective-C .

 Figure 4-1 illustrates the basic concept of the app that we will be converting. The code
generates a simple three-wheel slot machine where the user is provided with a starting
amount of credits and can place bets prior to spinning. The app produces three random
positions for where the wheels will land after the spin button is pressed. A method inside the
app determines the amount of the win, or that the player loses the spin. The winnings are
added or the losses are deducted from the player’s bank. If the player uses all her credits,
then the game can be reset.

 Note We won’t be going into the details of the Swift language, so familiarity with the syntax is
assumed.

105CHAPTER 4: Project Descriptions

 Originally written in the very early days of iOS when it was still called iPhone OS, the app
builds its UI programmatically. On top of the three wheels, which are in reality image strips,
lies the graphic image of the slot’s faceplate. When originally written, there existed only
two iPhone types: the original iPhone and the iPhone 3G. The screens were both the same
size, so only one image file was required. Because several devices of different sizes and
resolutions are in play now, part of the conversion process requires new image files. In order
to address this concern, as would be typical in most conversions from Objective-C to Swift,
I’ve included a few, but not all, of the current device sizes.

 On top of the front panel image, the app stacks the three buttons and the three labels for
credits, current bet, and amount won. While I would not use the same design today if I were
creating this app from scratch, the use of Image Views within code should be understood by
anyone looking to become proficient in iOS development projects.

 Figure 4-1. Our first project will convert a simple slot machine game from Objective-C to Swift

106 CHAPTER 4: Project Descriptions

 Coin Toss
 For our second project, we dive into working with Apple Watch. We’ll create a simple coin-
flipping game called Coin Toss (Figure 4-2). As you can see, I haven’t spent a great deal
of time on the graphics. That’s not what this exercise is about. Our goal is simply to create
an app for the watch. That’s it. Everything else we can learn from extending our use of the
libraries or adding features or even attempting to make it more of a game. We could add
more intelligence or use the onboard sensors to skew the probabilities depending on the
angle of the watch face relative to the horizontal plane, essentially creating a “weighted” coin.

 Figure 4-2. Coin Toss game for the Apple Watch

 But again, those enhancements are left up to you. My goal in writing this book in the first
place is to inspire to you. I want to push you off the virtual cliff, so to speak, and let you fly
on your own.

 Home Automation
 I call our third sample project Disco Ball because we will remotely, using an iPhone and
Apple’s HomeKit framework , start our party (Figure 4-3). In reality, we can control power
to any device that uses AC power, but turning on or off the table lamp would just be so
boring. As with all other projects, I keep this very simple. I want to show you how to access,
load, and use HomeKit to create a simple, single-element database and then do nothing
more than turn that device on or off. With that simple goal, we’ll have the basic operating
knowledge to start down the path of a complete home automation system.

107CHAPTER 4: Project Descriptions

 External Sensor Interface
 Our last project will address the use of external devices, typically called accessories, for
information input and output. We’ll start with a simple, two-part logic board of my own
design (Figure 4-4).

 Figure 4-3. Our third sample project controls a disco ball, which could be any AC-powered device, using Apple’s iOS
home automation feature, HomeKit

108 CHAPTER 4: Project Descriptions

 The sensor logic board consists of two sections. First, a small MEMS
(microelectromechanical systems) integrated circuit measures movement and orientation
using accelerometer and magnetometer logic. That information gets passed to a Bluetooth
Low Energy (BTLE) module that sends the data out wirelessly.

 For our project we assume the sensor will be placed on a human subject’s shoe, either
externally or internally, using an orthotic type of enclosure. Thus, the data sent by the sensor
reflects the orientation of the subject’s foot in two dimensions. The foot’s pitch refers to the
amount above and below the horizontal plane of the toe; that is, how much the toe is up or
down relative to the heel. The roll parameter measures the inside or outside roll of the foot,
such as when you might twist your ankle when playing sports.

 Our app will collect this data and visually display these two parameters of the foot onto an
iPad display as shown in Figure 4-5 .

 Figure 4-4. Our final project will retrieve orientation information from a remote Bluetooth Low Energy sensor board

109CHAPTER 4: Project Descriptions

 Sensor data will be read using Apple’s Core Bluetooth framework . The raw data will be
normalized to reflect a positive or negative angle deviation, which will then be passed
to a transform function to rotate the appropriate image in Figure 4-5 . While we won’t go
into detail on angular computations, our visualization of the information will reflect an
approximate angle of the foot along either of the two axes.

 Figure 4-5. Our app project graphically displays the orientation information from the sensor as the pitch and roll
parameters of the foot

111© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_5

 Chapter 5
 Source-Code Control
 Without a doubt, protecting the investment you’ve made developing your iOS application
by preventing loss due to a system crash or other mishap has to be done whether you’re
working for a company or a contractor or running your own business. Not too long ago we
backed up our work to floppy disks or separate hard drives, even USB/Flash drives. When
cloud storage services such as Dropbox became available, things became a bit easier,
but these still did not offer the services required for maintaining more than rudimentary file
backups. What we really needed was some type of version control; that is, a way to not only
store back-up files but also keep track of changes so that it would be possible to revert to
an earlier version if something we tried didn’t work out.

 Options and History
 In this early part of your career, you’ll most likely run into two main source-code control
systems: SVN and Git. However, while you might find some companies that have been
around a while still use SVN, Git, being so tightly integrated with Xcode, has bubbled to the
top and has more or less become the de facto standard, at least for iOS projects.

 SVN is really the shortened name for Apache Subversion and comes from the command svn
used when managing your project. SVN is generally considered the successor to the older
 CVS system that I actually used in the early 1990s. SVN came onto the scene late 2000/
early 2001. One of the reasons you may find Subversion still in use at your organization
is the year when the company was formed. Subversion was for a long time the way you
managed source projects and is generally tailored to having multiple developers work on
web projects at the same time. Because of its open-source nature, web startups generally
went with Subversion to keep costs down while providing security and peace of mind that
their intellectual property (IP) would not be lost, stolen, or sabotaged.

 Atomic operations (e.g., executing a save function that cannot be interrupted) made
Subversion a highly reliable system for source control from its earliest days. Think about this.
If you have two or more engineers working on the same project, accessing the same source
database, what’s to stop them from updating the same file at the same time with two slightly

112 CHAPTER 5: Source-Code Control

different versions of the source? Which operation (save) would have precedence, and which
would be lost? By having an uninterruptable set of commands, every developer’s updates
are stored without overwriting and losing someone else’s changes.

 Subversion also maintains version history for deleted or otherwise moved or removed files.
This provides a way to go back to some version that worked if a critical bug is discovered;
for example, after being deployed to users. It also offers three methods of accessing
source repositories: local or network via the file://<path > construct, web-based using
 http://<path > , and a custom svn protocol, svn://<path> .

 Git came onto the scene late 2005/early 2006 when the inventor of Linux, Linus Torvalds,
and others wanted a source-control system for that OS. Because of the lightweight nature of
the Git code itself, it has very fast performance and is easy to use. Okay, I know what you’re
thinking: easy to use? I remember hearing about branches, commits, merges, snapshots,
and so on and getting so overwhelmed that I avoided Git, Subversion, and any complicated
form of source control for far longer than I should have. Just saving backups to the cloud
seemed so much easier.

 Because you’re more likely to see Git used in later iOS and mobile companies, we’ll spend
most of our time working there, but first, I want to discuss some basic terminology that is
generally applicable to all source-control systems.

 Basic Terminology and Flow
 The basic flow of a project as relating to source-code control, in a generic sense, follows
Figure 5-1 .

 Figure 5-1. Basic source and version control of a software project

 We start at the upper left with the bubble labeled “Development”; this is where our project
begins. It may happen that, when we first create our project in Xcode, or really in any IDE,
we have the option to create the source repository. This generally is referred to the trunk
(SVN) or main branch (Git) and is the original set of files that comprise our project. If starting
from an Xcode project, it usually contains nothing more than the template files.

113CHAPTER 5: Source-Code Control

 Following the main branch to the right as we add code and other functionality to our
projects, we’ll commit our changes and create new versions. This is where things get
confusing. Performing a commit really means that we’ve saved whatever changes we make
in our project to the repository. For example, if we change a plus to a minus, or a greater-
than to a less-than in an if statement because of an error we found, that would be a commit
of those changes to our repository. That’s not a new version—not necessarily, anyway. But
it might be considered a revision. After all, you are revising the code for whatever reason. In
many organizations revision is used interchangeably with version . So immediately you start
to see how this can get confusing. One of the biggest sources of confusion I had when I
went to work for an iOS development company as a contractor was that every engineer on
the team used slightly different terminology for source control and versioning.

 At some point we’ll need to add new features, or maybe we want to experiment and see if we
can speed up an algorithm or two. At the same time, we don’t want to disturb our working
version. This is where we perform a branch. In Figure 5-1 at the Version 1.1 bubble you can
see that we created a branch to the line called Test. What we have there is another main line
of development, but it’s not our trunk or main branch. This is a complete copy of the version
1.1 code and project files that we can manipulate as needed to try different things. We now
have two working branches—the trunk or main branch and the test branch. This allows one
team to continue developing. Should our algorithm changes prove successful we can later
merge the branches together. We merge our test branch back into the main branch, which
becomes Version 1.3. We can, if we want, continue the Test branch to try more new things,
but most likely we’ll put it to rest; if we need to make more changes, we can create a new
branch off the trunk. I’m purposely trying to use trunk and main branch interchangeably, not
to confuse you, but rather to get you used to what you might hear at your job.

 We’ll also want to branch off either our trunk or our other main line to create a production
version once we begin shipping or even beta testing. Again, this keeps everything nice
and clean but maintains consistency and the ability to merge changes that we make to
our project. You’ll also note in Figure 5-1 that we have versions on each of our main lines
or branches that appear not to be consistent with each other. Also consider using prefix
designators such as Test Version 1.1, Dev Version 1.1, etc. to add another level of tracking.
Again, this goes to the use of the term version and it not being a hard and fast term that
refers to a single revision within our system.

 Subversion/SVN
 While most of this chapter will focus on Git, I want to cover a few of the most basic SVN
commands just so you’ll have some idea of what’s going on if and when you encounter its
use in the course of your career. You can put SVN on your Mac if you want to play with it
and get some experience, but I’d suggest just looking through these commands, only going
deeper if your job requires it at some point.

114 CHAPTER 5: Source-Code Control

 Creating a Repository
 In the vast majority of situations, the SVN repository will already be in place and you won’t
ever likely need to do this, but just in case, here’s what you need to know. Repository
creation uses the svnadmin command in the Terminal application, and generally you would
need administrative privileges for its use:

 svnadmin create <path>

 This creates a new repository at <path> , assuming you have permissions, using the default
filesystem data store (FSFS). There are two filesystem types you can choose from, FSFS and
Berkeley-DB, which can be specified using --fs-type :

 svnadmin create –-fs-type fsfs <path>
 svnadmin create –-fs-type bdb <path>

 For most other operations you’ll use the svn command, which is more for the engineering user.

 SVN Checkout
 Probably the first command you’ll use will be to check out a branch in which you’ll do your
engineering work. The format is:

 svn checkout <PATH>

 An example of this for the “test” branch stored at myname/svn/repos would look like this:

 svn checkout file://maskrey/svn/repos/test

 For a project stored in an online database, the format would be similar but would contain the
necessary URL information:

 svn checkout http://svn.mycompany.com/svn/repo/trunk

 Once you have your branch checked out and stored on your local computer, you can work
with it just as if it were created in place. In fact, it really is just a version of what is on the trunk
or whichever branch that you used as the source or baseline. This is your “working copy.”

 SVN Commit
 Once you’ve made the necessary changes to your working copy and want to save them, you
use the commit command:

 svn commit –m "notes about your changes go in here"

 For the most part, these are the three most common commands you would use as a
developer getting started using an SVN repository.

115CHAPTER 5: Source-Code Control

 SVN GUI
 You’ll quickly become familiar with branching and merging, but you’ll likely never do a lot
of command-line operations as I’ve shown here. Most likely, you’ll use a graphical tool like
SmartSVN, available in both free and paid professional versions (http://www.smartsvn.com/ ;
Figure 5-2), to do everything you need to do in a much more user-friendly manner.

 Figure 5-2. A graphical SVN tool such as SmartSVN makes the process of using Subversion much easier for new
developers confronted with this Source-code control:subversion/SVN:source- and version-control technology

 Git
 For the rest of this chapter we’ll focus on Git, as that’s what you’re much more likely to
use as you come into iOS development. Unlike in SVN/Subversion, when you check out
something using Git, you get everything—not one branch, but rather the whole Git project
database—so you have access to everything from the very first commit to the most recent
changes and all the branches and versioning (Figure 5-3).

http://www.smartsvn.com/

116 CHAPTER 5: Source-Code Control

 When you commit or merge back onto the main repository, all changes you made to your
copy of the database are added. If some of the changes conflict with changes made by
others who have modified the source, you’ll be asked to reconcile the differences, usually
with the assistance of the other developer.

 Creating a Repository
 To create a repository using Git, use the init command. To create a repository of the current
directory, in the Terminal application enter:

 git init

 To create a repository of a specific directory:

 git init <directory>

 This operation is only performed once to create the central repository. To create a repository
on your local machine from an existing repository you use the clone command and not init .

 Figure 5-3. Unlike a checkout in SVN/Subversion, a checkout in Git gives you everything

117CHAPTER 5: Source-Code Control

 Git Clone
 To get a working copy from a Git repository, similar to using the checkout command in
Subversion, use the clone command:

 git clone <path>

 Git Commit
 Finally, just as with SVN/Subversion, you use commit to save changes to a Git repository,
adding the –m to include comments on the changes:

 git commit –m "notes about the changes you made"

 Git GUI
 Just as we saw in the last section, you’ll most likely never have to enter command-line
functions directly, except in some instances that we’ll cover shortly, such as when you have
an existing project that has not been converted to a Git repository. When I worked at an iOS
development company several years ago, our Git interface of choice was Tower at a cost
of $69USD per license (https://www.git-tower.com/ ; Figure 5-4). It was a very easy-to-use
GUI that made source control much more accessible.

 Figure 5-4. Tower provides a simple, easy-to-use GUI for accessing local and remote Git repositories, cloning,
committing, merging, and all other necessary source-control functions

https://www.git-tower.com/

118 CHAPTER 5: Source-Code Control

 You can even find an Xcode “cheat sheet” to using Tower with your iOS projects (Figure 5-5).

 Figure 5-5. Tower has even started supplying a “cheat sheet” in order to use its GUI interface with Xcode projects

 Xcode and Git
 For several years Git has been tightly integrated with the Xcode IDE. However, early versions
of Xcode turned out to be difficult to work with, and most companies, mine included, went
with Tower rather than deal with the hassle of trying to get Xcode and Git to work together
more smoothly. Even today, some companies that develop highly complicated projects
with a large number of branches still prefer to use tools like Tower, or even resort to the

119CHAPTER 5: Source-Code Control

command line. For us, Xcode and Git integration should satisfy all of our needs, and if you
do need a more detailed level of control, work with your engineering team; each company’s
implementation and usage will vary significantly.

 Creating a Project
 Problem
 You want to start an Xcode project and include Git version control.

 Solution
 This is probably the simplest thing we’ll tackle. All you have to do when creating your initial
project is to check the box “Create Git repository on” when you’re ready to save the project
(Figure 5-6). You can save it locally onto your Mac or to a remote location such as Github,
which we’ll talk about in the next section.

 Figure 5-6. Simply select the checkbox when creating your project to place it under Git version control

120 CHAPTER 5: Source-Code Control

 Modifying Code and Committing Changes
 Problem
 You need to modify your source code and have Git manage the changes.

 Solution
 When you create a project and use Git, all you have in your main branch is the template
source files that Xcode created with your project. Make a single change like adding a
comment and you’ll see an M to the right of the source file’s name in the Xcode Project
Navigator (Figure 5-7).

 Figure 5-7. Any changes you make to source code in your project will cause an M to appear next to the source file’s
name in the navigator, indicating that the file has been modified but the changes have not yet been committed

 From the menu bar at the top of the Xcode IDE, select “Source Control” and then
“Commit…” (Figure 5-8). Previous versions of Xcode required selection of source files;
however, in the latest version I used, this was not required.

121CHAPTER 5: Source-Code Control

 When the screen in Figure 5-9 appears, type in your notes regarding the changes you made at
the bottom. In most cases you’ll enter a summary of what you did and not anything too specific.
Also note that you can see the changes you made to the source file highlighted in blue.

 Figure 5-8. Select “Commit…” from the Xcode Source Control pull-down to add the changes to the main branch

 Figure 5-9. When ready to commit, review your changes in the window, add your notes regarding the changes you
made, and click the Commit button

122 CHAPTER 5: Source-Code Control

 Looking at the Xcode Project Navigator, the M ’s beside each source file should have
disappeared (Figure 5-10), indicating a successful commit operation back to the main
branch. You may, if desired, commit each source file individually by selecting any of the ones
with the M indicator and then going through the commit process.

 Figure 5-10. After committing your changes, the M indicator should no longer appear

 Creating and Uploading to a Remote Repository
 Problem
 You need to store your Git-managed project in a remote repository.

 Solution
 In this solution we’ll be using github.com , an either free or paid system for managing your
repositories. I’m using the free version of Github remote storage in this example, which
means the project is visible for anyone to see and download. You won’t want to do this with
real projects. Instructions for setting up your account can be found on the github website
and really just involve entering your information and deciding whether you want a free or
paid subscription.

 The first step in Xcode is to go to Preferences ➤ Accounts and check your repository list .
In Figure 5-11 you can see that I have several available, but we need to add one for this
project.

123CHAPTER 5: Source-Code Control

 In your github.com account, add a repository for storing your project. In Figure 5-12 you can
see that I added a repository name of samplegitproject . This can be any name you want
to use. It does not have to be your project name, but should be something you can easily
identify.

 Figure 5-11. From Xcode Preferences ➤ Accounts you can see your list of remote repositories

124 CHAPTER 5: Source-Code Control

 Once you create your repository, github will provide you with the information needed to
access the repository from Xcode (Figure 5-13). We’re currently interested in the https://
path name that we’ll need to tell Xcode about.

 Figure 5-12. Add a repository name and select “Public” to create a free but publicly accessible area for storing your
project. For real work you’ll want a paid account so as to limit access to the files

125CHAPTER 5: Source-Code Control

 Back in the Accounts pane of the Xcode Preferences window, provide this pertinent
information (Figure 5-14). You’ll also need to provide your github user ID and password that
you set up when initializing your github account.

 Figure 5-13. You have many options for accessing your remote repository, but for this Xcode sample project all we
need is the https: address

126 CHAPTER 5: Source-Code Control

 Then you should see the repository become available in the lower left corner of the Accounts
pane (Figure 5-15).

 Figure 5-14. Enter your repository’s path name and your account credentials so that Xcode knows about this remote
repository

127CHAPTER 5: Source-Code Control

 However, if you just try to push to the remote repository (Figures 5-16 and 5-17), you won’t
see it.

 Figure 5-15. After correctly entering the repository address and account info , the remote repository should be available
to Xcode

128 CHAPTER 5: Source-Code Control

 The issue at this point is that although you created a repository on github and let Xcode
know about it through the Accounts section of Preferences, this project does not know
about the repository. You need to configure this project by going to Source Control ➤
(project name) ➤ Configure (project name) Project… (Figure 5-18).

 Figure 5-16. From the Source Control pull-down menu on the Xcode menu bar you can try to push your project to the
remote repository

 Figure 5-17. However, you may see that no remotes are available

129CHAPTER 5: Source-Code Control

 You’ll see a Remotes tab, which is where you need to once again enter the address for
the remote repository (Figure 5-19), but since you’ve already provided the accounting
information, the ID and password for your repository, to Xcode, other than the origin remote
(which is the main branch), you should be ready to go.

 Figure 5-18. You must configure this project to know how to use remote repositories

 Figure 5-19. Using the typical name of origin as our master branch, enter the address of the remote repository so the
project knows about it; we should be just about set to push our code

130 CHAPTER 5: Source-Code Control

 If you now attempt to push the project you should have the remote repository visible and
available (Figure 5-20).

 Figure 5-20. Now the origin/master branch should be available for you to push to

 Figure 5-21. After following the steps just outlined, your source code should be visible on the github remote repository

 To verify that everything pushed (uploaded) to the remote repository, go to github.com and
check the file list (Figure 5-21).

131CHAPTER 5: Source-Code Control

 Cloning and Using a Git-Managed Project
 Problem
 You have to start working on an already existing Git-managed project and need to maintain
source and version control.

 Solution
 In this solution, we’ll use the project we just created. We will start by deleting the working
copy of everything from our local computer and go from there. First, open Xcode and close
the sample Git project we were just working with. Next, go to the directory where you initially
placed (or later subsequently moved) the sample Git project and delete it by moving it to the
trash (Figure 5-22).

 Figure 5-22. Delete the working copy of the sample Git project from your hard drive

 Figure 5-23. From Xcode you can check out a copy of a project with which to begin working

 From the Xcode menu bar, select “Source Control” then “Check Out…,” which should be the
only available option (Figure 5-23).

 You’ll be directed to select the repository from which to load the project (Figure 5-24).

132 CHAPTER 5: Source-Code Control

 Once Xcode finds and opens the remote repository, you’ll be asked where you want to place
the working copy of the project on your computer or network (Figure 5-25).

 Figure 5-24. After selecting “Check Out…” choose the repository for the project with which you want to work

 Figure 5-25. Xcode will ask where you want to save your Git-managed working copy of the project

133CHAPTER 5: Source-Code Control

 Finally, just as before, the complete working project with all the latest commits will be
available in Xcode for you to continue development (Figure 5-26).

 Figure 5-26. Your checked out project should appear just as it did when we worked with it previously

 Working with Existing Unmanaged Projects
 This situation will most likely occur when you’re operating your own business or working
independently as a consultant. You’ll create a project, and either because you forget or maybe
because you just want to quickly try something out your project is not managed by Git.

 Problem
 You have an existing unmanaged (by Git) Xcode project and you want to convert it so it will
be under Git source and version control.

 Solution
 We’ll start with the EADemoS project that is described in Chapter 17 . The details of the
project do not matter, only that we created it without using Git or source control, and it does
not exist in my account on github.com . As you can see in Figure 5-27 , I actually copied the
zip file of the project to our working directory and unzipped it there so we can have a clean
starting point.

http://dx.doi.org/10.1007/978-1-4842-1820-4_17

134 CHAPTER 5: Source-Code Control

 Open the project using Xcode (Figures 5-28 and 5-29).

 Figure 5-28. Open the EADemoS.xcodeproj file to begin the conversion

 Figure 5-27. Start with a clean, non–Git managed project

135CHAPTER 5: Source-Code Control

 Make sure that in the Source Control pane of the Xcode Preferences window, source control
is enabled; if it is not, check the appropriate box (Figure 5-30).

 Figure 5-29. Verify that the project and source files appear as you would normally expect

 Figure 5-30. Make sure that source control is enabled in the Xcode preferences

 You can verify that this project is not yet under Git source control by going to the Source
Control pull-down menu (Figure 5-31). Here you can see that normal options such as
commit, push, and so forth are not available, indicating that this project is not yet Git
managed. What you want to do is to select “Create Working Copy…” from this list of options
(Figure 5-32).

136 CHAPTER 5: Source-Code Control

 At this point your project will be under Git source control. To verify, open a Terminal
window and navigate to the project directory. Run the ls –al command to see the listing in
Figure 5-33 . The .git directory indicates that this project is now under source control and
management. Using the same techniques we explored earlier, you can upload this project
and source files to a remote repository such as github.com .

 Figure 5-32. Create the working copy of the project

 Figure 5-31. After verifying that the project is not being managed under Git, select the “ Create Working Copy…” option

137CHAPTER 5: Source-Code Control

 Summary
 In this chapter we covered the basics of source-code control and some of the most common
tools you’re likely to see and use as you enter your iOS development career. In general, the
two most common systems you will encounter are SVN/Subversion and Git.

 Early in this chapter I provided a comparison of the four basic, most common functions
you might utilize when using either management system. Those operations were to
create a repository; to check out or clone a project; to commit changes you make into
the management system; and to get away from the command line by using a GUI-based
system.

 Because Git has become more widely used with Xcode projects, in the previous section we
looked at, in detail, how to create projects, commit changes, use a remote repository such
as github, clone or check out a project from a remote repository, and work with an existing
unmanaged project to bring it under source control.

 Going into greater detail on this subject while maintaining a broad coverage of topics would,
as most technical subjects would, become a complete book in itself. What I’ve hoped to do
here is to give you enough information to not only get started as you enter your career, but
also to assist you with those all-important interviews as you seek your dream job.

 Figure 5-33. When you see the . git directory you can be assured that this project and all files contained therein are
being managed by Git

139© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_6

 Chapter 6
 Development Methodology
 Development, in the context of our journey, means to create something over a period of
time. On Sundays, for example, I really enjoy cooking. I started cooking in earnest just a few
years ago. My first projects were soups where I would strictly follow a predetermined set
of steps, a recipe. Now, I’m reasonably confident in my ability to understand most things,
so cooking to a recipe was no problem. Eventually, after getting a handle on the necessary
kitchen skills and being able to work through the typical Sunday afternoon interruptions, I
was able to make my chicken soup from memory.

 The thing was, however, that the soup was pretty, well, bland. It’s not that it wasn’t good
or healthy or anything like that—it just had no kick. Also, I live at an altitude of 6300 feet.
Water boils at a lower temperature than it does at sea level, which is where most recipes
tend to be baselined. Like any project, I had to make adjustments to the process. I added
this or that spice, varied the types and amounts of primary ingredients—for example, tomato
sauce, meat, vegetables, and so forth. This is when cooking started to really become fun. I
was experimenting, but not just trying things randomly. I varied the process depending on
the needs of where I was in my development. If I didn’t think something was spicy enough, I
added spice. If I thought the soup was too thick, I’d add broth or a little water. I adjusted on
the fly in accordance with the needs of the process.

 This is exactly how hardware and software development works in the real world. While I
can’t teach you to become an expert developer based on any one process—I’m still working
on that for myself—I can describe the most common processes that you’re likely to see
throughout your development career, at least in the short term. The waterfall and functional
design methods were the de facto standards when I first became a practicing engineer. Now,
they’re only spoken of as fond memories by gray-haired men remembering the good ol’ days.

140 CHAPTER 6: Development Methodology

 In software, except for highly specific firmware projects that reside on or close to the metal,
object-oriented design and development rules the roost.

 If you go to an iOS development firm today without a good understanding of objects,
instantiation, classes, inheritance, and so forth, don’t expect to be invited back for the
second interview. When I was out interviewing at mobile development firms as part of my
research for this book, I found that about half of them would give written tests to evaluate
my skill level. I’ve never been a fan of testing, but because I was curious and it was research,
I hunkered down and endured the humiliation. You see, tests given at a company are based
on what they’re doing, not on what you might learn in school or have practiced at your last
position. While they do provide an objective way to compare and contrast candidates, they
in most cases don’t really assess your ability to dynamically grow and learn.

 But, back to the point, every single test that I took during this time had at least half or more
of its content centered on object-oriented design and development, usually with specifics
related to iOS or Android projects.

 Another interesting part of the tests was used to determine a candidate’s familiarity with
the development process, most typically Agile Scrum. Again, we’re not here to make you
a Scrum Master . Even the Scrum Masters I’ve talked with don’t seem to have an accurate
understanding of what that job is really about, and that includes many who passed the
certification. I want to give you enough information so you understand what you’re getting
into and, even more so, what you’re lacking. You need to figure out where you need to grow
your knowledge, skills, and abilities.

 Problem
 As you begin to look for a job, you come across terms such as agile, Scrum, waterfall, and
others that describe the processes of development, but because these are not directly
related to writing software you don’t quite get what they mean.

 Solution
 In the following sections we’ll discuss the two most common software development
methodologies: waterfall and agile. Even more recently, the process known as lean
manufacturing has become more and more prevalent, especially in systems (hardware and
software) startups, so we’ll talk a little about that as well. You won’t become a Scrum Master
or expert in any of these, but it should give you the basics to start your research and fill in
the gaps in your knowledge and skillset.

 Note Writing software that is “close to the metal” refers to code that you write that runs on the
processor, typically an embedded microcontroller, without any intervening operating system. You do
everything from setting up the registers, handling interrupts, checking and switching clock speeds
based on battery levels, and so on directly on the processor. On an iPhone or iPad, iOS provides that
intervening layer, and we use the sets of Apple frameworks to make our coding life easier.

141CHAPTER 6: Development Methodology

 Waterfall
 Waterfall development isn't new—it's been around since 1970—but most developers
still only have a vague idea of what it means. Waterfall methodologies treat the software
development process as a manufacturing or construction process. Progress is viewed
as a steady flow from project initiation through analysis, design, development, testing,
deployment, and, eventually, maintenance (Figure 6-1). In fact, waterfall was originally
developed for hardware projects, aircraft design, electronics, a ship, the perfect shoe, pretty
much anything and well before writing code was commonplace.

 Analysis of Requirements
 This is the most important phase of the waterfall process, as it involves gathering information
about what the customer needs and lays out, in the clearest possible terms, the problem that
the product is expected to solve. Analysis includes understanding the customer's business
context and constraints, the functions the product must perform, the performance levels it must
adhere to, and the external systems it must be compatible with. Techniques used to obtain this

 Figure 6-1. With the resemblance of water cascading down a slope, the waterfall methodology proceeds as a
 sequential series of steps , each assuming the previous step was performed correctly

142 CHAPTER 6: Development Methodology

understanding include customer interviews, use cases, and a desired list of software features.
The results of the analysis are typically captured in a formal requirements document that serves
as input to the design process.

 The skill set for this activity includes problem analysis, goals and objectives definition,
cost-benefit analysis, and presentation to senior management. This step can be arduous and
boring for the fast-paced, innovative developer. But, if you enjoy interacting with customers
and helping to come up with cost-effective solutions for a wide variety of problems,
requirements analysis could be the job for you.

 Unfortunately, the waterfall process has not translated well from the hardware to the
software world. The main reason waterfall has been a de facto failure in the software world
is because requirements change as the project proceeds. The customer or client thinks of
some new feature to add, cost predictions change, technology evolves, permitting different
options to be explored, and it may even be that a functionality originally required is not
possible to for technical or other reasons, such as government restrictions on privacy.

 Design
 This step means that we document the hardware and/or software architecture, components,
modules, interfaces, and data to satisfy specified requirements delivered to us from the
previous step. We define hardware and software architecture; state the performance and
security parameters; design the data-storage architecture; choose the IDE, language, and
other tools; and create strategies to deal with issues such as exception handling, resource
management, and interface connectivity. Working with our customer, we create wireframes
so that the user interface is properly addressed, including issues relating to navigation and
accessibility. The output of this stage is one or more design specifications, which are used
by the engineering team to actually develop the system.

 Development
 This step consists of actually developing the product as per the design specifications
passed in from the previous step. Typically, this step is performed by a development team
consisting of engineers, programmers, graphics designers, QA, and other specialists using
tools such as compilers, debuggers, interpreters, and media editors. The output of this step
is one or more parts of the final product, built according to a pre-defined standard, tested
and integrated to satisfy the system requirements. For projects involving a large team,
version and source control, as discussed in Chapter 5 , is critical to tracking changes to the
code tree and reverting to previous snapshots in case of problems.

 Change Management
 Once development has begun against a firm set of requirements, it’s not too long before
something has to change. Typically, customer management has consulted with their
marketing team and realized a “needed” feature is missing. It may also be that the
development team, particularly members who were not involved in the requirements and/
or design phases, discover that something is not possible or, more likely, that the cost and
schedule allocated to a task just isn’t large enough. This is when change control, or change
management, comes into play.

http://dx.doi.org/10.1007/978-1-4842-1820-4_5

143CHAPTER 6: Development Methodology

 In the waterfall methodology we’re discussing, change management can be a very arduous
process. Because of the linearity of our method as well as the need for traceability forward
and backward, between requirements and maintenance, documentation has to change at
pretty much every step of the process. To prevent changes from just happening whenever
any team member so desires, a change control board (CCB) is usually part of the process.
This team comprised of members of the customer and development companies reviews
each change for its necessity and impact in terms of cost and schedule, as well as its benefit
to the overall project and the client.

 A change request can be approved, denied, or modified. Denying a request doesn’t mean
that the change isn’t warranted; it could be that the engineer who brought it before the board
has not provided sufficient information in her request. CCBs can meet with any frequency,
but from what I’ve experienced, they generally happen every one or two weeks until the
velocity of requests starts to slow down.

 Like any other task when developing a product, the CCB) also costs money. Each member of the
review team charges their time against the pool of money set aside in the budget for addressing
changes. And, as always happens, there tends to never be enough money in this bucket.

 Changes, specifically unplanned changes, have the biggest cost and schedule impact on
any project not because they are expensive in and of themselves, but rather because they
affect nearly every other part of the process. If the development team initiates a change
request and it’s approved, the specs have to change, as does the design of the system itself.
Testing and implementation plans as well as maintenance schedules may have to be altered.

 Testing
 Near the end of the development phase we test both individual components and the
integrated system to ensure that they are error free and fully meet the criteria within the
requirements document. An independent quality assurance (QA) team defines “test cases”
to evaluate whether the product fully or partially satisfies the requirements outlined in the
first step. Three types of testing typically take place in a software project: unit testing of
individual code modules; system testing of the integrated product; and acceptance testing,
formally conducted by or on behalf of the customer. Defects, if found, are logged, and
feedback is provided to the implementation team to spur correction. This is also the stage at
which product documentation, such as a user manual, is prepared, reviewed, and published.

 Deployment
 Though we describe this as a completely separate stage of the waterfall process,
deployment is in a larger sense part of the testing process as well. While many companies
may have a proven software or app distribution mechanism, many clients are first-timers
looking to figure out what works best for their customers’ needs.

 Most current software development companies institute a series of progressively more
complex deployments. The QA team members become the first responders as they evaluate
the functionality delivered to them from engineering as part of testing. QA not only tests
the standalone modules, UI, database, web services, functionality, and so on, but also the
distribution mechanism for deploying to users.

144 CHAPTER 6: Development Methodology

 We’ll discuss testing further in Chapter 12 , but once a reasonably complete and functionally
cohesive system is available that doesn’t crash too often, a first round of in-house testing
generally happens. Usually, the management and marketing teams carry company devices
on which they will test the first deployment prototypes, essentially alpha testing, and render
their non-technical verdict(s)—does the UI make sense, did the app become stuck, was it
easy to use, are any instructions clear enough to be useful, and so forth.

 Next, beta testing allows a small, usually well-defined, set of people to try out the app and
provide feedback to the development organization. Chapter 12 talks in greater detail about
deployment for testing, specifically using features in the iTunes Connect portal such as
TestFlight. Beta testing provides the last chance to find and fix bugs before the app gets into
the hands of the general public.

 Once all the preceding testing has uncovered any issues and those have been corrected, the
app becomes available to its intended market. Apps that are meant to be used by the general
public get displayed and sold in the App Store. For those apps that are enterprise in nature—
that is, they are only deployed to members of a specific organization or group— they are
usually deployed via tools available through the Apple Enterprise Developer Program.

 Maintenance
 After deployment onto user devices, maintenance refers to making modifications to the
system or an individual component to alter functionality and/or improve performance. These
modifications arise either due to change requests initiated by the customer or defects
uncovered during live use of the system. Typically, every change made to the product
during the maintenance cycle is recorded and a new product release (called a “maintenance
release” and exhibiting an updated revision number) is performed to enable the customer to
gain the benefit of the update.

 Waterfall Summary
 The waterfall model offers some advantages for software developers. First, the staged
development cycle enforces discipline: every phase has a defined start and end point, and
progress can be conclusively identified by both vendor and client using milestones like any
project management system. The emphasis on requirements and design before writing a
single line of code ensures minimal waste of time and effort and reduces the risk of schedule
slips or customer expectations not being met.

 Getting the requirements and design out of the way first also improves quality; it's much
easier to catch and correct possible flaws at the design stage than at the testing stage,
when all the components have been integrated and tracking down specific errors is
more complex. Finally, because the first two phases end in the production of a formal
specification, the waterfall model can aid efficient knowledge transfer when team members
are dispersed in different locations.

 However, despite the seemingly obvious advantages, the waterfall model has gone out
of favor in the past decade if not before. The biggest issue revolves around the fact that
very often customers don't really know what the requirements are; rather, what they
want emerges out of repeated two-way interactions over the course of the project. In

http://dx.doi.org/10.1007/978-1-4842-1820-4_12
http://dx.doi.org/10.1007/978-1-4842-1820-4_12

145CHAPTER 6: Development Methodology

this situation, the waterfall model, with its emphasis on up-front requirements capture
and design, is seen as somewhat unrealistic and unsuitable for the way we work in the
real world. Estimation of time and costs is also extremely difficult. In general, therefore,
the model is recommended for use only in projects that are relatively stable or where this
process may be required as part of the contract. For example, many large-scale government
software development projects still to this day rely on the waterfall process model.

 Problem
 You keep hearing about lean manufacturing. What is it? Do you need to know about this?

 Solution
 Lean manufacturing describes a method of iterative product development and testing that
solely focuses on solving a customer’s problem.

 Lean Manufacturing
 Too many entrepreneurs believe that if they build a cool new widget and promote the heck
out of it, customers will buy it. There are tremendous pressures from team members,
advisors, board members, and investors to just hurry up and get something to market. But
what happens if your beautiful, full-featured widget just sits on the retailer’s shelves? Does it
matter much then that you got it to market on time and under budget? Do you really want to
pour all your precious time and energy into just keeping busy?

 Lean manufacturing switches the focus from the innovator’s dream and outside pressures to
what a customer will actually use. Through a rapid series of MVPs (minimum viable product s)
and well-designed tests (Figure 6-2), any feature that can’t be proven to solve a customer’s
problem is whittled away. And while lean manufacturing is generally targeted toward physical
products, this process maps easily to the iterative agile methods we’ll talk about shortly.

 Note The author, while not hard at work writing this text, runs an engineering department for a
tech startup with a very unique value proposition. However, even though her entire team knows
what that proposition is, there’s still a great sense of urgency to just build something that we can
get on the shelves soon.

146 CHAPTER 6: Development Methodology

 And it is not good enough to rely on hearsay, or what a few customers say they “might buy
someday.” These are real tests of actual MVPs , or at least tests of marketing material that
leads to verifiable actions (email subscriptions, pre-orders, or crowdfunding campaigns).

 This is the true scientific method in use, and for a former scientist like myself, these tests
are really kind of fun to design. A hypothesis is formed: “The customer will buy dark purple
socks.” A test is designed: Light purple and dark purple socks are knitted, and a table is put
up at a nearby farmer’s market. The results are calculated: The dark purple socks sold out
within 30 minutes; the light purple socks were ignored. Now, this was a very rudimentary
test (and it really just shows my bias toward dark purple). We could have picked the wrong
colors, texture, price, location, and even season. But now these can be the next tests to run.

 Our aversion to failure can sometimes skew our view of these tests. Each test leads to a
failure! (OMG! That means I’m a failure!) But really, each failure is a tremendously valuable
lesson. And it’s much better to “fail” at a tiny experiment early on than during or after a big
product push.

 This process can also be essential to a company’s growth and continued success. Say
your widget has sold very well, but the design team wants to add more features. If you
manufacture a full-featured new widget and release it to customers, how can you interpret
its success (or failure)? If it doesn’t sell, is it due to the higher price? Or could it now be too
complicated to easily install and use? In our dark purple sock example, we might respond to
advisor pressure to expand the product line by adding silver and gold flecking. Do they not
sell because the patterns are too busy? Or do some people not like to mix silver and gold?

 The lean manufacturing focus is always on solving a customer problem . But don’t develop
a product for your perfect average customer. Instead, create a customer archetype of your
early adopter. These customers really feel the pain of their problem, and will more quickly
grab onto your perfect new solution. Besides, mainstream customers are much less forgiving
of early product flaws.

 Figure 6-2. Managing the path to perfection with value defined from the customer perspective is the key theme of lean
manufacturing

147CHAPTER 6: Development Methodology

 One other key point in your MVP testing is to address the riskiest assumption first. If you
can’t solve those problems at the start, all the other tests will be meaningless. Again, if you’re
building a widget that nobody wants, adding features or improving the marketing will not help
it to succeed. Success is creating something that solves a problem. Here’s to your success!

 Problem
 So, how does lean manufacturing differ from agile development?

 Solution
 Agile processes focus on the development of the product and driving waste out of the
product itself, while the focus of lean manufacturing is to develop a product that someone
will buy and that will return a profit. That’s not to say lean manufacturing should replace agile
in any sense. Agile works best when a client has decided what needs to be built and your
organization has been hired to make that project a reality. Essentially, agile focuses on the
key aspects of product development after the product has been decided upon. The client,
the ones paying for the development, take on the burden of whether or not the product is
something that customers want.

 Agile
 In general, agile project methods are the set of iterative methodologies in which everything
evolves in a collaborative environment. Teams composed of graphics designers, UI/UX
experts, engineers, QA, and so forth are supposed to be self-organizing and function across
departmental and skill areas, though this is not always the case. What tends to happen, from
the author’s experience, is that the basic management infrastructure stays in place and the
implementation of agile in such an organization can “loosen” it up, creating a more free-
flowing set of ideas and tasks.

 For the most part, two sub-classes of agile have come to the forefront, and you’re likely
to see both in action throughout your interview process. In many cases, the two will
blend together without a clear distinction between them as to their implementation. That
is, a company may say they’re doing a sprint (a Scrum term meaning a short one to two
week iteration to create a tangible product) but might still allow changes in the design or
functionality during the sprint, something not permitted in pure Scrum.

 Scrum
 Scrum is an agile project management methodology. The key trademark of Scrum is to apply
empirical control to the software development process for a project. To implement this type
of control system requires transparency, inspection, and adaptation. Transparency , as one
would expect, means that every part of the development process is open and observable by
all the team members. If I, as an engineer (coder), wish to work with the graphics designers
to make sure their idea for a control can be implemented, then I just do so. I walk over to
the designer and together we work out an amicable solution ahead of time. Transparency

148 CHAPTER 6: Development Methodology

allows this and comes in the form of an openly viewable product backlog, highly-visible
information such as task boards and burndown charts, a daily standup, sprint reviews,
and retrospectives—all of which exists to clearly convey the flow of work through a cross-
functional team (Figure 6-3).

 Inspection means you can see how the work flows through the process as a result of the
project being open and transparent. Each step or iteration or piece of code or design is
critically evaluated by the team in a productive and non-threatening manner. In pretty much
any agile process, all team members should leave their egos at the door. You will, more
often than not, have your product be criticized for some reason, be it that it did not meet a
requirement, is being too complicated, or even is just unnecessary. Don’t take it personally.
In fact, seek out the counsel of your peers early on, before they come to you. You’ll bring
them into your space, and they’ll give you ideas and provide the criticism you need to do
your job not only correctly, but also more efficiently. And that means you’re much more likely
to go home at five than you are to sleep on the couch at the office.

 You then use the knowledge learned from inspection as a basis for making incremental ongoing
improvements to the process; this is adaptation . This is where your friend the graphics designer
might come to you with an idea she’d like you to consider. Perhaps you want to use an out-of-
the-box UI control element from the Apple frameworks but, because of the way the customer
would actually need to use the app, some amount of customization would make the customer
much happier. So her suggestion to you pushes you to adapt your design and development
effort for the overall good of the project. This improvement only came about because the entire
process was open (transparent), she was able to see and evaluate (inspection) your work, and
you were willing to make the change (adaptation) for the overall good of the project.

 Figure 6-3. The Scrum team and empirical process control

149CHAPTER 6: Development Methodology

 Once again, as with other topics in this book, I’m not here to make you a Scrum expert, but
rather to give you a sense of what all this is about so you can talk intelligently at your
upcoming interview.

 Roles
 Like any software development team, the Scrum team consists of individuals of varying skills
and specialty areas. As we saw earlier in Figure 6-3 , it takes a range of skills to complete
a project in the best manner possible. The domain expert provides the experience and
knowledge about a specific area the team is addressing. For example, if the project is to
create an online storefront, then a domain expert may provide insight into how payments
are processed through banks and intermediaries. Further, a team may need or have multiple
domain experts. In our payment example, we may need someone intimately familiar with
security since we’re dealing with sensitive customer information such as credit card numbers.

 While much more common in the earlier days of agile, the functional analyst position’s tasks
are slowly being brought into the realm of the other team members, such as the developers.
Usually, functional analysis is done by the software engineering team during the sprint rather
than doing a functional decomposition prior to beginning any coding. There is often a similar,
associated role known as the business analyst (BA) who focuses on the business aspects
and breakdowns more from a client’s perspective.

 The solutions or systems architect provides the chief technical oversight of the project.
Usually, she has worked directly with the customer prior to the contract award to create a
well-defined system, or at least as much as could be achieved that early in the process.
Technical development leads report to her, and usually UI/UX, engineering (coding), and QA
do as well. From there, the software engineers, designers, QA personnel, deployment experts,
and training developers create, through the Scrum process, the final deliverable product.

 One role you will always hear about is that of the Scrum Master. Many organizations confuse
this positon with the individual that runs the project. In fact, in a true Scrum process, the Scrum
Master is the person who should be the least visible. The Scrum Master’s role is to facilitate the
Scrum process for the rest of the team. The basic idea is that she make things go smoothly for
everyone else, removing impediments and roadblocks before they become an issue.

 How Does It Work?
 In its simplest form, Scrum can be defined as the following seven steps:

 1. The product owner, usually the customer rep or person closest to
the customers, creates a backlog, or a prioritized wish list of small,
well-defined tasks (Figure 6-4).

 Note When Jeff Sutherland created the Scrum process in 1993, he borrowed the term scrum
from an analogy put forth in a 1986 study by Hirotaka Takeuchi and Ikujiro Nonaka, published in the
 Harvard Business Review . In that study, Takeuchi and Nonaka compared high-performing, cross-
functional teams to the scrum formation used by rugby teams.

150 CHAPTER 6: Development Methodology

 2. During sprint planning, the team takes from the top of that wish list a
sprint backlog and decides how to implement those pieces.

 3. The team is given a fixed period of time—a sprint (usually two to four
weeks)—to complete its work, but it meets each day to assess its
progress (daily Scrum).

 4. As described earlier, the Scrum Master keeps the team focused on
its goal while removing roadblocks preventing the job from getting
done.

 5. At the end of a sprint, the completed tasks should ideally be
shippable, ready to hand to a customer, put on a store shelf, or show
to a stakeholder. Most often, the customer’s team would be given the
materials for review and assessment.

 6. The sprint ends with a sprint review and retrospective; that is, looking
at how things went, making evaluations, and noting anything that
might need to be altered for the next sprint.

 7. The process repeats. As the next sprint begins, the team chooses
another chunk of the product backlog, and everything starts over.

 Figure 6-4. Task board showing the product backlog of tasks to be completed

151CHAPTER 6: Development Methodology

 Scrum Agile Summary
 I’ve shown you the very rudimentary basics of the Scrum agile process. Essentially,
everything is identified as early as possible, much like in the waterfall process, but we
don’t begin work based on a fully architected, complete design. Scrum works on small,
manageable, and well-defined tasks. These tasks should be quantifiable; that is, at the
end of a sprint it should be clear whether the completed task is correct or not. And, finally,
in the ideal situation the completed tasks (products) should be delivered, or be able to be
delivered, to the customer for their inspection, test, and review.

 Extreme Programming (XP)
 XP is an agile software development methodology or process. How is different from Scrum?
If you go back and look at the first line in the first paragraph on the Scrum section, you see
Scrum is defined as an agile project management methodology without specifically calling
attention to software development. In the very next sentence in that section, we began an
in-depth discussion of how Scrum can be and is used in software development, but it’s not
limited to that. And, more importantly, Scrum is independent of the development process.
Again, Scrum is a project management methodology.

 XP gives us a process with which to create software in an agile and productive way, which
in turn can be managed as a Scrum project. So, very succinctly, the two are not mutually
exclusive and usually go hand in hand. XP focuses mostly on the engineering practices
required to deliver software with quality. XP provides a set of core practices that are
implemented during development of the product (Figure 6-5).

152 CHAPTER 6: Development Methodology

 I won’t go into each and every one of these practices, but I do want to mention the three
you’re mostly likely to become familiar with. The first is test-driven development (TDD). In
TDD, unit tests are created based on the requirements before any functional code is actually
written. When the functional code is created, it will be automatically evaluated when the build
is performed. Xcode provides excellent support for unit testing and test-driven development,
which we will talk about in Chapter 12 . Refactoring, or code refactoring, is in essence the
reuse of existing, working code with small changes so it can operate successfully in its new
intended position in the project. Advantages of refactoring include readability (because it has
been used and documented previously), reduced complexity, and maintainability.

 Finally, another very important aspect of extreme programming, though not shown in
Figure 6-5 , is user stories, which are similar to use cases but not exactly. They are similar in
that they describe the usage of the project, but are not limited to the user interface. They’re
generally written by the customer as things that they need the system to do for them and are
used to accurately plan and create time estimates for future releases.

 Problem
 Where do functional design or object-oriented analysis/design (OOA/OOD) fit into this?

 Figure 6-5. XP provides a set of core practices for use in agile software development

http://dx.doi.org/10.1007/978-1-4842-1820-4_12

153CHAPTER 6: Development Methodology

 Solution
 Both functional and OOA/OOD are ways that we as software engineers define the system
that we plan to create and write code to implement our design. Neither of these is a
methodology, and both are used as freely in the agile process as they are in a waterfall
implementation.

 We’ve talked mostly about methodology so far, so let’s get a little more into the design of a
project—or, more specifically, how you might set out to design your project or software—by
looking at both functional and object-oriented design.

 Functional
 Functional development, or functional software architecture, refers to an implementation
where a problem is coded as a series of functions that can be called, typically from a master
program. The C language, as originally implemented, supports this. Functions are written
separately and called via the main() function, which is called by the operating system when
the program is loaded and executed on the hardware.

 Anyone who has taken an undergraduate software engineering course in the last twenty years
or so knows that pretty much everything today is written as a series of objects that interact.
We’ll discuss that in the next section. However, writing an object-oriented system does, in
most cases, create a much larger software image; that is, the actual bits that get loaded
onto the hardware. This is because an operating system is most often required to handle the
interaction and operation of the objects with the system. You can’t simply create objects in
code without some way for them to interact and do something. That, most often, is the burden
taken on by the operating system and any additional supporting frameworks or libraries.

 Where functional development finds its home is primarily in embedded systems, which
we will discuss in Chapter 9 . For now, an embedded system is a very small, lightweight,
and generally single-function device (hardware) that has a program that runs on its
microcontroller, or MCU. An MCU is a special-purpose central processing unit (CPU) that
contains additional supporting functionality such as timers, serial connections, analog-to-
digital (A/D) convertor s, and so on. An MCU, because it’s typically placed in a larger number
of devices—think set-top box, microwave, thermostat, etc.—has to be low cost in order for
the manufacturer to make a profit. It will have a very limited memory, and the code must be
kept small—only what is actually required. For that reason, most small embedded systems
do not have an operating system; they also avoid licensing fees this way so as to avoid
raising the cost of the product.

 Through the use of a functional design methodology, only those methods absolutely necessary
are coded and stored on the processor (MCU). Usually, through a series of interrupts from
signals generated by external events, those methods and other sub-functions are called, but
only when necessary. This creates a highly efficient, cost-effective hardware-software system
that in most cases cannot be achieved using object-oriented design methods.

http://dx.doi.org/10.1007/978-1-4842-1820-4_9

154 CHAPTER 6: Development Methodology

 Object-Oriented Design
 Most likely you’ve already heard about and worked with object-oriented system development.
You create a series of classes that represent some object, let’s say a vehicle. That class,
which is not an instance of an object but rather is a representation of the broad set of similar
objects, has properties and methods that you also implement in your coding. For example, a
property of a vehicle might be color or number of wheels. A method might be move.

 We use the class to instantiate or create actual objects that we can work with in our code.
However, a vehicle is a very broad class of object. What is the vehicle like? Does it roll, or go
across the water, or fly through the air? So, we can also subclass, or create new, more specific
classes of objects from the previous class. Relatively speaking, and not always consistently,
one class would be referred to as the parent, the other as the child. The parent is the less
specific class, while the child has more specifics designed into it. As an example, a child or
subclass of vehicle might be plane, car, motorcycle, or boat. It could be a bicycle or unicycle
or hoverboard. Really, it all comes down to what is needed in your specific application.

 Because there are so many texts, tutorials, videos, and so forth on object-oriented design,
and because if you’ve done any coding you’re most likely already familiar with the basics,
I’m not going to go into more detail. By working through the basics of Swift or Objective-C in
Xcode you’ll quickly get a sense of what this is all about .

 Summary
 In this chapter we’ve looked at the different development methodologies you’re likely to
come across as a software engineer entering the marketplace. While the waterfall method
can be found in older organizations, especially those dealing with large government software
contracts, you’ll encounter way more instances of agile methodologies. You’ll want to know
the basics of Scrum and what a sprint entails.

 Most often, the interviewer—if he is not well versed in the subtle differences between
Scrum and extreme programming—will get the two confused. Most often, they will refer to
their method as Scrum without any regard for the fact that Scrum is a project management
methodology and not specifically directed to software. My suggestion is to let it go and don’t
correct them. You know what it’s all about, and your purpose is to get that job you really,
really want, not to come off as a know-it-all.

 Finally, we talked about the differences between functional and object-oriented design and
when you might want or need to use a functional decomposition of your project in order to
have it all fit into a very small-memory MCU in an embedded system.

155© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_7

 Chapter 7
 UI/UX
 The first thing a user sees when she starts your app (Figure 7-1) is the user interface—the screen
of stuff that pops up after they launch the app. We all know the value of a first impression and
that you never get a second chance at one. Because there will almost always be one or more
competitors to your iOS app in the App Store, if you fail to keep the user engaged from the very
beginning, chances are she’ll just download the next app in the search results.

 Figure 7-1. The goal of every commercial or enterprise iOS developer should be to engage your customer from the
moment they launch your app

156 CHAPTER 7: UI/UX

 User Interface and User Experience (UI/UX)
 First, let’s be clear about what we mean by user interface (UI) as opposed to user experience
(UX). The iOS Human Interface Guidelines (HIG) document from Apple should, of course, be
your first stop in understanding the differences, but I’ll give it my own personal spin. The UI
describes all the visuals you see when launching an app on your device. It’s the buttons, the
labels, the graphics, and everything else you see after the app starts. Think of the camera
app (Figure 7-2) and how it gives you a button to take the picture, some options for what
type of image or video to capture, and a few editing features. There’s a lot of power, but
it’s clean and easy to understand. I would say that it’s so easy anyone can use, except I’m
reminded of a specific instance when I was out with my friends and asked a guy to take our
picture. It took him several minutes to figure it out. The point is that no matter how perfect
you think your UI is, not everyone is going to get it quickly. This is where the user experience
aspect comes into play.

 Figure 7-2. Even a well-defined and clearly laid out app like the camera can be confusing to some people. With that in
mind, you’ll force yourself to create the best user experience you can for your customers

157CHAPTER 7: UI/UX

 To create a good user experience, Apple suggests looking past the UI to the app’s core
functionality. What is the app trying to do? What is its purpose? What problem is the app
solving or trying to solve? With the most recent releases of iOS, specifically iOS 8 and iOS 9,
Apple has made more of the physical screen area available for content, and you should
take advantage of that. Don’t add buttons or colors gratuitously to make things look pretty,
however. This will only distract from the user’s experience and could get you bad reviews
despite how much time and effort you put into making this the most beautiful thing in the store.

 One of the key statements Apple makes in the iOS HIG is to defer to the user’s content.
Essentially, content is king in the world of iOS apps. Although you want a beautiful and
easy-to-manage UI, the user’s content is the heart of everything in the app. Another way
of thinking about the user experience is to call it navigation . The user of your app needs to
navigate all the controls and indicators and displays you’ve added to do whatever it is they
need to do. Someone using a credit card payment app needs to quickly get their card info
in, identify and confirm their purchases, add a tip if necessary, and sign the form. A gamer
wants to know what’s going on in their field of play to get the best possible score and make
it to the top of the leaderboard. Each application will have a different set of information that
needs to be addressed, and each user will need to access it in a manner that fits their needs.

 To start out, let’s look at information architecture and how to create a great experience for
the user.

 Information Architecture
 The information architecture (IA) is more than just the menus you find on a website or
the different levels of a table view as you dig down into more details about your content.
The Information Architecture Institute (http://www.iainstitute.org/ ; Figure 7-3), defines
 information architecture as the art and science of organizing and labeling websites, intranets,
online communities, and software to support usability. Essentially then, IA is how you show
your users the content and the actions that they can take. IA is the backbone of your app’s
user experience.

 Figure 7-3. The IA Institute’s goal is to make information clearer, as should yours be when designing your user
experience

http://www.iainstitute.org/

158 CHAPTER 7: UI/UX

 Your UX encompasses your menus, the items you show on any screen of content, the overall
structure of the app’s UI, and even the terminology you show your users via the simplest
labels and text areas. Your goal is to display this information to your user in a way that feels
natural to them and how they normally would think of the content. The navigation through
your app should feel natural and blend into the background. You want your user to focus on
their task and not on the details of navigation.

 Let’s be honest with ourselves for a moment. The chances that your app is the only one out
there that does what it does is next to zero. Don’t be afraid to go out and explore what your
competition is doing. What things work well? What things can be improved upon? Most
likely, as part of the initial research your project owner will have identified key competitors
with the client. As it is part of an open project, since we’re using the agile methodology
described in Chapter 6 , this information should be readily available and easy to access. Take
advantage of the work already done by your team.

 Talk with your users if at all possible, or at least with the project owner, who would generally
be part of your agile team. The first thing you need to understand is how your users
categorize their information. Then, very early in the process, using some of the prototyping
tools we’ll discuss later in this chapter, perform usability testing and get important feedback
from your customer to see if your ideas match with theirs. This usability testing is part
of the incremental prototyping that is an integral part the Scrum process management
methodology.

 One thing to keep in mind is that although you can discuss what this looks like or the best
way to do that ad infinitum with your team members, you and your team are not the users.
So, no matter what you get out of a lunchtime chat, the best results will be obtained by
understanding what your customers are looking for. This can be tough, as the software
engineering team is usually further down on the org chart, buried in work and not often able
to freely interact with clients, but this is where your Scrum Master can help. Her job, after
all, is to facilitate your and the rest of your team’s creating the best solution possible and to
remove impediments to your success. Let her do her job.

 Gathering Information
 Rather than just sending out a bunch of open-ended questions to your customers and
vacuuming up anything and everything they have to say, a common current technique is to
use card sorting, derived from when 3 x 5 inch index cards were used to collect information
about tasks a client wanted included in their project architecture (Figure 7-4).

http://dx.doi.org/10.1007/978-1-4842-1820-4_6

159CHAPTER 7: UI/UX

 The process is very straightforward. You, based on the requirements handed down through
the initial customer interviews, should have a list of tasks that your system needs to perform.
Remember, at this point of the process you’re playing the role of UI/UX designer. You’re not
writing code. This is particularly important if you are running your own one-person shop
as a company or contract developer. Even if you work for an engineering team in a larger
development organization, these techniques and your understanding of them will serve you
well in the early stages of development.

 You write the name of each of those tasks onto a card. At the end you’ll have many cards,
potentially hundreds, one for each individual task. Try to make the tasks as simple as
possible, and don’t pre-organize them. That’s what we want our customer to do in order to
give us the basic structure of our information architecture.

 You give the cards to your participants, generally the customer or their representative, and
allow them to organize them into groups of similar tasks. Once the sort has been completed
by the participant, look for stacks of cards that have a large number of tasks and break them
into smaller groups. Generally, about ten cards per stack should be the upper limit. Once
you have a nice breakdown of tasks, let the user name each group to see what they come
up with. This gives tremendous insight into how they think about the problem based on the
task list that you provided. This is the heart of the interactive feedback that is so integral to
the agile process.

 Be sure to, as much as you can, watch and learn as your participant arranges and groups
her cards. If possible, have another team member take copious notes while you conduct
the interview and sorting process (Figure 7-5). Look for areas where things seem easy and
also identify where groupings give them pause. Learn from this experience not just what the
groupings are but also where there exists difficulty in identifying something. If your customer
is having issues, then it’s more than likely that a less knowledgeable user of the app will have
the same difficulty. Remember, the navigation of your app should be transparent and allow
the user to focus on the tasks they need to accomplish.

 Figure 7-4. Card sorting is a simple method of identifying, categorizing, and organizing your customer’s task
requirements

160 CHAPTER 7: UI/UX

 After working with several participants, identify where groupings are the same, are similar,
and differ significantly. Problem areas will, of course, need resolution. In some cases, it
might be that one or two individuals were simply not familiar with that part of the architecture
and purpose of the tasks. These issues can often be resolved through renaming, a breaking
down of a task or tasks into more fundamental levels, or even grouping smaller tasks into a
more common set of tasks.

 What comes out of all this—that is, the sorted set of cards with task names—is your
information architecture, which defines the organization of your user experience .

 Organizing and Understanding the Information
 After each session with a participant, record the groupings they came up with into a
spreadsheet. A simple way to do this is to use the participant name as the column identifier,
and below that create a section where you put the name of each group name they came up
with into a cell. Below that cell, order the cards by the task name, or card identifier if you
used one.

 The next thing to do is to rationalize the group names that your participants created from
your list of tasks. It might be that several participants used the same group names in their
sort exercise. This should give you a sense of when things worked and when they didn’t. For
example, if just about everybody grouped tasks that dealt with providing information about

 Figure 7-5. When conducting a card-sorting exercise with your customer, have someone to take notes while you
observe and question to get the most out of the time

161CHAPTER 7: UI/UX

the company under the category “About Us,” then it’s quite likely you should consider that
as part of your information architecture. Most often you’ll see a lot of similarity to existing
apps that function similarly. If group names differ, look for synonyms that are used elsewhere
or look on a site like thesaurus.com to give you more generalized ideas for your architecture.

 Another thing to consider is how most participants described the groupings. Did they label
them as actions or as descriptions? You’ll then want to consider groupings as either verb-
based or noun-based, respectively. Remember, the tasks have already been defined through
the early stages of the agile process. What we’re doing here is organizing those into the way
in which the user will interact with them; we’re creating the user experience.

 You probably recognize that what we’ve discussed so far is very success based. By that I
mean that we’re assuming that most users will do a lot of the work for us by organizing and
creating group names that we can use. While that is the ideal situation, it’s not always the
way things work out. This is where you have to have some flexibility, as well as be able to
gauge your participants’ understanding of what is going on. If a participant isn’t likely to ever
use or have understanding of one type of task grouping, don’t weigh their organizational
structure quite as heavily as you might for someone more knowledgeable in a particular
area. Though this may seem a bit counter to the idea of getting everyone to understand how
to use the app in all cases, in reality, it’s just not always possible to make things perfectly
usable for everyone.

 Computer-Based Sorting
 Though some people find the tactile nature of working with actual index cards to be very
beneficial, and I count myself among them, the time involved in converting and entering
the data into spreadsheets can be a hassle as well as a potential source of information
corruption. Fortunately, applications exist for doing this using a computer.

 xSort provides a very simple way to perform card sorting using your Macintosh computer
(Figure 7-6). However, you’ll need to be with your participant to effectively use xSort. Also,
the app does not come from a recognized Apple developer, so you’ll need to open your
security options to allow it to function (Figure 7-7).

162 CHAPTER 7: UI/UX

 Figure 7-7. To use xSort you’ll need to allow your computer to open the app specifically, which could put your Mac at
risk. Personally, I avoid this type of situation

 Figure 7-6. xSort for the Mac provides a free, very simple, and quick way to manage the card-sorting process when
you can be face-to-face with your participants

 Most companies that are serious about using the card-sorting process with their customers
will use an online subscription service such as OptimalSort from Optimal Workshop
(https://www.optimalworkshop.com/). They currently offer pricing monthly, yearly, or by
survey (Figure 7-8).

https://www.optimalworkshop.com/

163CHAPTER 7: UI/UX

 You can go to their website and even work through an example to get a sense of how easy
it is to use. Tasks are listed along the left-most column, and all you do is drag and drop each
task somewhere in the middle. When you start a new grouping you just label that group as
you deem appropriate (Figure 7-9).

 Figure 7-8. OptimalSort offers a variety of pricing options depending on the needs of your analysis

164 CHAPTER 7: UI/UX

 Remember, the goal of card sorting is to define the information architecture that becomes
your user experience. Your goal is to organize the user’s interaction with your app so
they can access the data they need and perform the tasks they choose while keeping the
navigation as transparent as possible. Let the structure of the data, the IA, dictate what the
user experiences. Use domain knowledge experts to show you what that architecture is so
that your UX is built exactly as it is needed.

 Problem
 Once we have the user experience, how do we use that to create the user interface (UI)?

 Figure 7-9. OptimalSort i s easy to use and follows the hands-on card-sort model we’ve been describing, but also
allows remote surveys to be conducted by your team

165CHAPTER 7: UI/UX

 Solution
 If you’ve started your own app development company or been hired as an independent
contractor whether directly or using an online service, you’ll need to handle your customer’s
user interface needs. If you work for an iOS development organization, then most of the time
there will be graphics designers who focus on developing the UI, and you’ll only need to
interact with them.

 In most cases, particularly at major development companies, because of their background
the graphic designer will use the tools with which they are most familiar. As you may already
suspect, this will likely be products from Adobe such as Photoshop and Illustrator . But,
for smaller operations where you need something really fast that is focused on your type
of development, a good bet might be something less generic and costly that is tailored
specifically for your needs. A non-traditional tool such as Balsamiq Mockups may provide
you with an efficient and cost-effective alternative to the hundreds of dollars required to buy
the latest copy of Illustrator and/or Photoshop.

 Because this book is focused on software development tools and processes that you’re
likely to encounter throughout your iOS career, I’m not going to teach you how to
effectively use any one tool, as there are so many variations as to how things are done in
any organization. For example, if you’re out on your own as a developer and stick to small
projects, there’s no reason at all that you can’t effectively create your UI using graph paper
and a pencil (Figure 7-10). Choose based on your needs, resources, time, and skill set.

 Figure 7-10. A simple UI layout the author created using graph paper and a marker

166 CHAPTER 7: UI/UX

 I recently worked on the development of an app for an online dance card. The first iteration
of the UI is shown in Figure 7-10 .

 If you don’t know, a dance card is a form given out at a dance event, usually to the ladies;
gentlemen would approach her and pick a dance that they would do together later in the
evening (Figure 7-11).

 Figure 7-11. A typical paper dance card

 My concept was to automate this using smartphone technology, WiFi, and broadband
interconnectivity as well as local peer-to-peer (i.e., Bluetooth Low Energy) to allow anyone to
request a dance from anyone else at the venue. The music schedule for the evening these
days is not set, and quite often people will request a particular song or style that they’re
comfortable with. Thus, the music list changes dynamically throughout the evening. At my
venues, the music is managed on the DJ’s laptop and has wireless connectivity, so the
songs are available to be identified. Combined with wireless access, a social networking
(e.g., Facebook) mechanism for connecting, and true peer-to-peer so that anyone can ask
anyone else, I created a very easy-to-use method for getting more dances throughout the
evening.

 If you were ever at a junior high school dance, then you probably know the feeling of
rejection when no one asks you to dance or, if you’re a boy, the fear of asking that pretty girl
to go out on the floor with you. MyDanceCard, the name of this app, solves that.

 As an example of how this might be laid out using traditional tools, Figure 7-12 shows my
initial login and signup layout I created using Adobe Illustrator.

167CHAPTER 7: UI/UX

 Going into the details of using Illustrator, even just focusing on iOS UI, is far beyond the
scope of this book, and there are so many other resources that include pre-defined illustrator
(.ai) elements that you can buy or get for free to lay out your design. Remember, you’re not
creating the actual UI that runs on an iPhone; you are creating the wireframes—that is, the
visual representation—of what the iOS developers will create and build in Xcode.

 Balsamiq Mockups for Rapid Prototyping
 Years ago at an iOS meetup I attended, I saw a presentation on Balsamiq Mockups , a fast,
easy-to-use, low-fidelity tool for creating UI wireframes. Back then it was free, but as of
writing, it costs $89USD for a single-use license that allows three users to have access.
This is the perfect tool for creating my wireframes, as I operate independently most of the
time, and even though I am pretty proficient with Illustrator, Mockups offers some really neat
advantages over the Adobe product.

 The reason we create wireframes in the first place is to follow our agile process through
prototyping and save time by not committing to something too early in our development.
With a prebuilt set of components and Mockups-to-Go, an active repository where other
Mockup users can contribute their components (Figure 7-13), Balsamiq makes your UI
design come together quickly and easily.

 Figure 7-12. My app’s initial login and signup UI layout using Adobe Illustrator

168 CHAPTER 7: UI/UX

 Because you’re creating a low-fidelity design, the reviewers will be more likely to provide
honest feedback, and your work will never be mistaken for a final design. Continuing with
the dance card app I’ve been discussing, you can see how I implemented in Balsamiq the
login UI that I previously created with Illustrator (Figure 7-14). Note that in this version I’ve
added actual images of one of the dance venues as well as a Facebook login. Even with
actual images as well as the characteristic Facebook appearance, this UI would never be
mistaken for a final design.

 Figure 7-13. Mockups-to-Go offers a large set of free iOS and Watch components for you to use in your UI design

169CHAPTER 7: UI/UX

 You can add as many screens as you need as well as notes to clearly address the intent of
any or all UI elements (Figures 7-15 and 7-16).

 Figure 7-14. The dance card app’s login UI design using Balsamiq Mockups

170 CHAPTER 7: UI/UX

 Figure 7-15. You can create multiple images showing the result of a user action with annotations

171CHAPTER 7: UI/UX

 Finally, Mockups offers a crude simulation capability to allow you to test the movement from
one screen to another when activating a control surface. In Figure 7-17 you can see the
properties for the selected button element, “Sign in with Facebook.” I’ve defined that link to
be the Balsamiq page danceCardPlaylist , which is the page shown in Figure 7-15 . So when
we run the simulation, pressing that button will take us to the venue list page.

 Figure 7-16. You can show both portrait and landscape UI layouts

172 CHAPTER 7: UI/UX

 You run a simulation in Balsamiq by going to full-screen mode (Figure 7-18), where you get
the hand cursor indicating an active control surface that you can use to walk through your UI
and, to some extent, your user experience.

 Figure 7-17. You can add links to control elements to create simple UI simulations

173CHAPTER 7: UI/UX

 Summary
 In this chapter we’ve briefly covered the aspects of user interface and user experience
design that you’re most likely to come across in your career as an iOS developer.

 Because the UI and UX are the first things a customer or user of your app will see, it’s critical
that you make a good impression. But impression does not equal glitz and fancy colors or
pretty control pictures. The impression you want to make is that your app is intuitive and
easy to use. Your goal is almost for the user to not notice your hard fought efforts but to
simply and easily use the app to get the task done.

 While the look and feel of the app is certainly important, you want to achieve the easiest and
most understandable user experience possible. Again, you don’t want the customer to think
about it; you just want them to use it. Taking that into consideration, we focused heavily on
information architecture, which is essentially your intended user experience. Through an
interactive process with your customer or their representatives using techniques such as
card sorting, you get the best information possible from those most knowledgeable about

 Figure 7-18. Balsamiq Mockups provides a rudimentary but effective way to walk through your UI design to show your
reviewers the user experience

174 CHAPTER 7: UI/UX

the product. By allowing them to sort and categorize the tasks early in the development
process, they can participate in the creation of the user experience, allowing you to create
the best product possible in the shortest amount of time.

 Finally, we talked about how you would create a user interface from the analysis of the user
experience and user stories. Depending on your needs and whether you work independently
or for a large organization, you might choose to use paper for a quick design, usually best
when dealing with an app with only a few screens of information. In a larger development
organization with a true graphics department, tools such as Adobe Illustrator would most
likely be used. And, if you’re a small independent developer and can’t afford or don’t
have the time to learn the Adobe suite, look at a rapid prototyping tool such as Balsamiq
Mockups. You get a quick, easy-to-learn tool with lots of user-contributed components for
just about anything you might need.

 But remember—whatever you come up with, the goal is not to make it pretty but rather to
make it something your customer wants to use.

175© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_8

 Chapter 8
 Targets and Schemes
 In Xcode we create and work with projects that are collections of stuff. A project contains
all the files, resources, and other information such as info.plist or build settings to create
products. The project also contains the relationships between those elements; for example,
source files that may belong to one product but not to others. A target specifies the product
to be built and how we are going to create it; that is, the instructions for building that target.
Each target only builds one product. You can either have multiple targets included when you
first create the project or add them later. For each target we use schemes, which define what
happens when you build a target. Targets possess multiple schemes, some of which are
standard, but you can add and customize them too.

 Targets
 When you first create a project you are limited to a few specific types of targets, but after
the project has been created you have the option to create any number of additional targets.
Generally, targets should be useful and focused on the intent of the project. When adding
targets, they should provide additional meaning to the project but not deviate from the
project’s general intent. By that statement I mean that targets should not be used to test out
different ideas within a project. For example, you create a project where the primary target
uses a simple file structure set up in a specific manner. You decide you want to see if a
different file structure might work better, so you create a target for testing this idea.

 There are a couple of reasons as to why this is a bad idea. First, within the source code you
would need to have some type of build conditionals, e.g., a #IF , to determine which target
you are building for so as to only use the appropriate source. You can, of course, do this in
the Xcode project settings and not put a lot of #IF s into the source. So, while you’ve added
a target specifically to test your hypothesis, you’ve added a whole lot of additional code and
chances for mistakes at the same time.

 An even more valid reason for not doing things this way is that this is what branches are
intended for when using source control . We discussed source control in Chapter 5 with a
focus on protecting your work in case something bad were to happen, like a system crash,
so that you would be able to recover your work.

http://dx.doi.org/10.1007/978-1-4842-1820-4_5

176 CHAPTER 8: Targets and Schemes

 We even talked about how branches can be used by different development teams or
individual engineers to test out just different types of ideas. Basically, when you want to try
something different you create a branch, which in Git is a complete set of all the files and
changes so far. From there, you make all the changes you want and test out your ideas. This
does not affect the main branch, which is just as you left it. If your ideas don’t work out, you
can get rid of the branch or just leave it as a note for future work. If it does turn out to be
better, then you merge your new work into the main branch to include the changes.

 In short, use branches to test new ideas, not targets.

 Problem
 You understand how to make an Xcode project and add various files, but the concept of
targets is still a bit unclear.

 Solution
 Let’s work our way through an Xcode project to see where we might add targets.

 When we create an Xcode project from a template (Figure 8-1) there is no clear way to
include multiple targets.

 Figure 8-1. Xcode templates do not include targeting options

177CHAPTER 8: Targets and Schemes

 Adding Tests
 When you choose the project options (Figure 8-2), you get options for what will turn out
to be new and separate targets in your project. If you look at the bottom of the window,
you see options for including unit tests and UI tests . You can select either one of these
checkboxes, which will include new targets in your project. We’ll show this in a moment.

 Figure 8-2. Though not specifically identified as different targets, if you decide to include testing, your project will
include one or more test targets

 When you go to the next screen to save your project on your computer (Figure 8-3), note
that you have no more options available for creating new targets. Although this is the point
where you could specify the use of Git and thus include source code control in your project,
that option, in and of itself, will not add any new targets to your project. The general idea
is that your project should be focused and not allow for too much variation in its intent or
how it is designed. If you want to deviate, use a Git branch. Or, if you want to try something
significantly different, create a new, separate project.

178 CHAPTER 8: Targets and Schemes

 Once the project is created (Figure 8-4), the targets—in this case our single app target—can
be clearly seen in the Xcode Project Navigator along with all its appropriate build settings.

 Figure 8-3. There are no other places during project creation where you may specify additional targets

179CHAPTER 8: Targets and Schemes

 Now that we have an active project, we can add additional targets by going to the File menu,
choosing “New” (Figure 8-5), and then selecting “Target…”

 Figure 8-4. The target of an Xcode project can be selected just like any other project source, UI, or settings file

180 CHAPTER 8: Targets and Schemes

 Note that now two additional choices are available, Application Extension and Test (Figure 8-6).
Also, to be clear, you can add another application or framework—for example, as an
additional target, though, as we discussed, you wouldn’t likely do that in most cases. We’ll
add unit testing to get an idea of how this works.

 Figure 8-5. Once you have an active project you can add new targets to that project, just as you would add new files

181CHAPTER 8: Targets and Schemes

 Figure 8-7 shows our testing options for either user interface testing or unit testing . We’ll
select “ iOS Unit Testing Bundle .”

 Figure 8-6. Now, in addition to the previous choices, you can add new targets for testing and application extensions

182 CHAPTER 8: Targets and Schemes

 Note that we have to now select which project this target belongs to and which target we are
intending to test with our unit testing bundle (Figure 8-8).

 Figure 8-7. For our example, we’ll select an iOS Unit Testing Bundle to create our new target

183CHAPTER 8: Targets and Schemes

 And finally, in Figure 8-9 we can see in the Project Navigator that Xcode has added the new
target for unit testing to our project. Note also that a tests folder called TargetProjectNo1
Tests has been added to our project.

 Figure 8-8. Make sure the correct project and test target have been selected before creating the target so Xcode
knows where to place everything

184 CHAPTER 8: Targets and Schemes

 We’ll talk about testing later, but you can see that Xcode has added as part of our new target
some boiler plate code to get us started using unit testing. See Listing 8-1.

 Listing 8-1. Target Boiler Plate Code for Unit Testing

 //
 // TargetProjectNo1Tests.swift
 // TargetProjectNo1Tests
 //
 // Created by Molly Maskrey on 3/15/16.
 // Copyright © 2016 Global Tek Labs. All rights reserved.
 //

 import XCTest

 class TargetProjectNo1Tests: XCTestCase {

 override func setUp() {
 super.setUp()
 // Put setup code here. This method is called before the invocation of each test

method in the class.
 }

 Figure 8-9. Xcode has added the new target to our project

185CHAPTER 8: Targets and Schemes

 override func tearDown() {
 // Put teardown code here. This method is called after the invocation of each

test method in the class.
 super.tearDown()
 }

 func testExample() {
 // This is an example of a functional test case.
 // Use XCTAssert and related functions to verify that your tests produce the

correct results.
 }

 func testPerformanceExample() {
 // This is an example of a performance test case.
 self.measureBlock {
 // Put the code you want to measure the time of here.
 }
 }

 }

 Schemes
 Problem
 You don’t quite understand schemes.

 Solution
 Let’s discuss the basics of schemes that you will need to know as a relatively new iOS
software engineer.

 Schemes define what happens when we select what we want to do by pressing the right
arrow (build) button in Xcode (Figure 8-10). Most of the time we just want to run our project,
either on the simulator or on an actual device. However, we may want to do other things like
test or archive so we can upload our app to the App Store . And though we can select which
thing we want to do, it is within the scheme for the target that this is defined.

 Figure 8-10. Our choices for building a project/target

186 CHAPTER 8: Targets and Schemes

 We can select the scheme to use from the drop-down just to the right of the Xcode Run
button (Figure 8-11).

 You can also use the drop-down menu to edit, manage, or create a new scheme (Figure 8-12).

 Figure 8-11. To the right of the Run button you can set the active scheme that Xcode uses when building or running
your project

187CHAPTER 8: Targets and Schemes

 Problem
 What is in a scheme, or what does a scheme do?

 Solution
 As we said previously, a scheme defines what happens when you select one of the scheme
options (by pressing the Run button) in Xcode. Most of the time you just build and run
without thinking about it, but schemes offer a few other choices. In the bar across the top of
the Xcode IDE window, left-click and hold on the active scheme, then select “ Edit Scheme ”
to get to the screen you see in Figure 8-13 . Note that at the top of the figure the build option
says there are two targets. These are the app target created with the project and the Unit
Test Bundle we just created. To build a target means to go through the whole compilation,
linking, etc. process but to not install the app to a device or execute it on the simulator.

 Figure 8-12. You can also manage the different schemes for each of your targets

188 CHAPTER 8: Targets and Schemes

 By expanding this dialog window, as seen in Figure 8-14 , and then opening up each build
step as defined in Xcode, you can see that some choices, test and run specifically, offer
the option to run the executable while the others do not. While it always makes sense to
go through all the available options and to at least have a minimally viable understanding
of what you’re doing, practically speaking, most developers will only use a handful of these
options. The reason for this is that from a company perspective time is money and the more
time you spend “messing around” with stuff, regardless of how valuable it might be down
the road, the more time it takes to get through the next sprint and deliver the product. As
such, you’re most likely to use Build and Run . Organizations with the ingrained “Test First”
mindset will also use the Test option significantly, but although I do that when working
on projects for my clients, I’ve never been employed at an organization with that way of
thinking. We’ll talk much more about testing in Chapter 12 .

 Figure 8-13. In addition to Run, we can set what happens when the user selects Build, Test, Profile, Analyze, or Archive
in our currently active scheme

http://dx.doi.org/10.1007/978-1-4842-1820-4_12

189CHAPTER 8: Targets and Schemes

 Profile Scheme
 If we use the Profile scheme option we’ll be presented with the window in Figure 8-15 ,
which prompts us to select a template for using Instruments. Though beyond the scope of
this book simply due to time and space, Instruments provides a way to get data about the
execution of a program on a device or in the simulator. One very common use of Instruments
is to profile (hence the scheme name) the execution of your app and look for areas where the
processing bogs down or to find memory leaks.

 Figure 8-14. Only the Run scheme and Test scheme options offer the ability to execute the project on a simulator or
actual device

190 CHAPTER 8: Targets and Schemes

 Using the Slot Machine app we’ll learn more about in Chapter 14 , you can see the results
from profiling the application as it executes on the iPhone 6 simulator (Figure 8-16). Along
the top are histograms allowing you to see virtual memory sizes and task loading. One of
the first things to look for is a continuously growing VM histogram that never levels off. This
would mean there is likely a memory leak somewhere in the code that needs to be dealt with
immediately. The next three lines represent processing performance, as does the task list
below, where you can readily identify which tasks are consuming the bulk of the processing.
On the right side of the Instruments screen you can select and add other performance
metrics to monitor during program execution.

 Figure 8-15. When profiling a scheme, Instruments presents myriad choices, but selecting Activity Monitor is usually
the first step to getting an idea of what is happening when our app executes

http://dx.doi.org/10.1007/978-1-4842-1820-4_14

191CHAPTER 8: Targets and Schemes

 Analysis Scheme
 Choosing to run the Analysis scheme (see Figure 8-17) runs your project source through the
static analyzer and allows you to find potential memory leaks, dead code paths, variables
never read, and so on. Personally, with the introduction of Swift, which corrected many of the
vulnerabilities in the older Objective-C language, I rarely use the Analysis scheme. Xcode’s
built-in, on-the-fly error checking finds most, if not all, of the errors I used to locate with the
static analyzer. For example, when we used to have to allocate and initialize variables but could
easily forget to manage them down the road, memory leaks were a very common occurrence.

 Figure 8-17. Choosing Analyze executes the source static analyzer to find issues in your project

 Figure 8-16. Profile analysis of a target

192 CHAPTER 8: Targets and Schemes

 When the static analyzer, originally referred to as the Clang Static Analyzer, was popularized
in Xcode 3.2, it was just what we developers were looking for. It provided a visual flow path
from where an error was likely to occur all the way back to the offending initial lines of code
(Figure 8-18).

 Figure 8-18. The original static analyzer , popularized in Xcode 3.2, offered the ability to trace a potential error to its origin

 Figure 8-19. Xcode currently does such a good job of on-the-fly analysis, much of the static analyzer’s usefulness, at
least for the author, has gone away

 As an example of what we see today, I added an error into our app’s viewDidLoad method. The
offending line creates and initializes a variable, testVar , that is never used (Figure 8-19). However,
it is immediately apparent that Xcode knows this is an issue and so it warns you of the problem.

 When you run the Analysis scheme you get a detailed report, as shown in Figure 8-20 , that
gives you the same information already provided by Xcode interactively. With Swift, the
flow-path analysis is no longer provided and instead you get this type of report, similar to
what you see during a normal project build.

193CHAPTER 8: Targets and Schemes

 Archive Scheme
 When you’re ready to place your app into the App Store or to just distribute it to your own
set of users for testing, you’ll use the Archive scheme option. As we previously did for other
scheme options, from the Product menu select “ Archive ” (Figure 8-21). For this example,
we’re using the project described in Chapter 15 where we create a simple coin-toss
application for the Apple Watch .

 Figure 8-20. Results of a Swift project Analysis scheme

http://dx.doi.org/10.1007/978-1-4842-1820-4_15

194 CHAPTER 8: Targets and Schemes

 If everything works correctly and the archiving process completes successfully, you’ll be
taken to the Archive organizer as shown in Figure 8-22 . We’ll talk more about building for the
App Store and how we publish our work in Chapter 10 . Here, we’re focusing on getting to
the point where we can start to publish something.

 Figure 8-21. To distribute your app to the App Store or your own testers, use the Archive option

 Figure 8-22. If your build completes successfully, you’ll be taken to the Archive organizer, where you can decide
whether to upload to the App Store or to export your app to your testers

http://dx.doi.org/10.1007/978-1-4842-1820-4_10

195CHAPTER 8: Targets and Schemes

 You’ve now successfully created an archive, which is a bundle that includes your product
along with symbol information that you submit to the App Store using iTunes Connect .

 Even though you’ve created this archive bundle successfully, and without any errors or
warnings in your target, the archive still may not be correctly created for submission. The first
thing you want to do is to validate the bundle (Figure 8-23) by selecting the Validate… button.

 Note iTunes Connect is the portal, or web interface, where you interact with the controls for
setting up, setting pricing, posting graphics, and eventually placing your app for sale. We will
discuss it in Chapter 10 .

 Figure 8-23. Validate your archive, being sure to use the correct developer account if you happen to have more than one

 When things work and the archive validates correctly, this takes just a moment or two on the
way to submission. And, most of the time, once things get worked out in your process that’s
usually what happens. However, the first few times through you may encounter a problem
or three. Because we’re usually in a rush to get something built and tested, we don’t always
set up everything correctly in our build settings. A common error would be that shown in
Figure 8-24 indicating we failed to generate a distribution identity .

http://dx.doi.org/10.1007/978-1-4842-1820-4_10

196 CHAPTER 8: Targets and Schemes

 I can hear you saying, “But we set up our distribution certificates, and profiles, and all that
other stuff in Chapter 3 .” And this is true, we did, but what probably happened is that,
being in such a rush to see something happen and get our app built, we failed to set the
distribution in Xcode’s build settings. Honestly, there are so many things, so many moving
parts that need to be correctly handled to get the process working smoothly, it can be
overwhelming. Even I have thrown up my hands and headed into the other room for a glass
of wine in order to combat the frustration. But you’ll get through it, just as I did.

 So what happened? If we look through the build settings in Figure 8-25 , we can see that
our release configuration (we’ll discuss configurations later in this chapter) is set to use the
 Developer identity .

 Figure 8-24. One of the most common early errors is the failure to have a distribution signing identity in your archive

 Figure 8-25. A very common error when validating archives is to have not selected the correct signing identity for your
release configuration

http://dx.doi.org/10.1007/978-1-4842-1820-4_3

197CHAPTER 8: Targets and Schemes

 Since we did create our distribution information in Chapter 3 , this is an easy fix. You should
be able to use the pull-down menu to set it to your distribution identity, as seen in Figure 8-26 .
You’ll want to clean the project by going to the Project pull-down and selecting “Clean,” then
re-do the Archive operation. You’ll see a new archive in the organizer. You can delete the old
one that had the error(s).

 You’ll probably come across a few more stumbling blocks on your way to creating an archive
that can be submitted to the App Store, but the goal is to get to something like what is
shown in Figure 8-27 . While it does have warnings, the validation did pass successfully and
the archive can now be submitted.

 Note The error shown in Figure 8-27 is a currently well-known problem when using Swift 2 and
Xcode 7. It may be that, by the time of publication, this has been corrected by Apple.

 Figure 8-27. Our goal is to get to the point where our archive passes validation

 Figure 8-26. To correct a signing error for your release archive, make sure you’ve selected your distribution identity

http://dx.doi.org/10.1007/978-1-4842-1820-4_3

198 CHAPTER 8: Targets and Schemes

 Most likely, if you followed the previous few steps and have a very simple app, the steps
should work for you. But with more complex projects, such as those that are written for
Apple Watch, those steps will not completely fix the problem. The reason is that for Apple
Watch you have three targets: the iPhone app, the Watch App, and the Watch extension
(Figure 8-28), so make sure any corrections you make in one target are correctly addressed
in all targets that are part of the archive.

 Figure 8-28. No single fix works for all Xcode projects. With those such as Apple Watch , make sure to perform
corrections in all targets that are part of the archive.

 Figure 8-29. A common problem is to see the “Archive” option grayed out

 Problem
 Your archive choice is grayed out (Figure 8-29).

199CHAPTER 8: Targets and Schemes

 Solution
 Go to the Xcode selection for the active scheme and check to see for which device or
simulator your project is being built. The most common reason is that you’ve left a simulated
device selected (Figure 8-30).

 Figure 8-31. Make sure to select “Generic iOS Device” when building your project to an archive

 Figure 8-30. If you don’t see “Archive” as an available choice, make sure you don’t have a simulated device selected

 Change it to “ Generic iOS Device ” as in this example (Figure 8-31), and you should now
have “Archive” as a valid option to select.

 Unfortunately, there’s no way I can cover each and every possible problem that you’re likely
to encounter just with archives—we still have so much more to cover in this book. As you go
through a lot of the solutions I offer, the key point you should take away is that the problem
is solvable. Most often, if not every single time, you can find what you’re looking for “out
there” by just conducting a very specific search using whatever warnings or errors or other
information Xcode tells you. Try not to get frustrated; I’ve gotten through them, and you will
too. One other thing: There may not always be a fix. I know I said you can find solutions, but
the reality is that there can and will be bugs in newer releases of Xcode from time to time, as
we saw earlier with the archive warning.

200 CHAPTER 8: Targets and Schemes

 Configurations
 One source of confusion for new developers when dealing with schemes is how they differ
from configurations. After all, if you look at the previous section, a scheme certainly sounds
like something you might call a configuration . In fact, I’ve had more than one person at
various companies use the term configurations when they meant schemes . So, what’s the
difference?

 It’s pretty simple, actually. Whereas a scheme is how Xcode builds your target, a
configuration only refers to whether this target is meant for debug or release. You can almost
think of configurations as being more closely associated with iTunes Connect, which we’ll
discuss in Chapter 10 when we talk about publishing your app. Schemes, however, are
more of an Xcode thing. That is, we set up (let’s not use the word configure, though I have to
admit it is tempting) our schemes as needed, just as we’ve been discussing. We don’t see
anything to do with schemes outside of the Xcode IDE.

 Summary
 I wish I could make the whole process as simple as selecting a few checkboxes and
pull-down boxes so that this chapter isn’t even needed. Unfortunately, this is one of
those spots in an engineer’s career that can get you really banging your head against
your display. I know this is supposed to be a technical book, by professionals, for
professionals and all that, but at some point this takes on a philosophical, if not purely
emotional. I mean, I’ve never really seen someone give up because of the technical stuff;
it’s usually frustration with not understanding what to do next that does a person in.

 Some advice: First, I can nearly guarantee that you’re not the first person to come across
this problem. I often work at the edge of newly released Xcode versions or language or
frameworks or whatever, and I never have been unable to find help by performing a thorough
search.

 In this chapter we covered how to work with targets and schemes and archives. Targets are
what your project builds to. You create an app or a test bundle or a Watch extension. You’re
in control and can add or delete targets as you see fit.

 Schemes are the instructions for how Xcode builds your targets. There are several types,
such as a simple build, build-and-run, analysis, profile, and archive. You should understand
all of these, though analysis and profiling may be something to put off for now if you’re
feeling overwhelmed.

 We talked about a few common issues when working with archives, mostly associated with
your project’s build settings. A trick I use is to keep the Notes app open on my desktop and
keep track of the problems I encounter along the way, along with links to address my most
common issues.

 In the next chapter, I’m going to take a break and talk a little about embedded systems to
give you some inspiration about the really cool things that can be done with iOS projects.

http://dx.doi.org/10.1007/978-1-4842-1820-4_10

201© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_9

 Chapter 9
 Embedded Systems
 Embedded systems exist at the core of the products we create as iOS software engineers.
But ask most app developers about embedded systems and you will likely get either a
confused look or something like “Go talk to Jessica. She’s the hardware person.” While
iOS devices have almost exponentially increased in capability each year in terms of speed,
 screen resolution , memory, and other features, at its core an iPhone is an embedded system.
Sure, with its ability to run multiple apps, my iPhone 6S can do a lot of things similar to my
iMac, but not nearly as well. As I write this paragraph using my word processing app with
four chapters open, I also have my web browser active, a photo editing program, my Photos
app, Xcode, and a schematic capture program all available instantly. The power and memory
might be present in my phone, but to me it’s still a limited-use tool. As such, I’ll likely always
think of it as an embedded system.

 Unfortunately, I can’t turn you into an embedded systems developer within the amount
of space I have left. Another book idea, perhaps? I can only try to pique your interest and
hopefully excite that passion to do great and interesting things with your development
career. Embedded systems offer a way for you to do more with your mobile development ;
you can connect and interact with the real world, not just some semi-artificial intelligent
logic battling aliens on your iPad. You can go beyond the simulated to the actual world. You
interact with the devices through which you connect with real people.

 To take you to that point, I’ll offer some basics about embedded systems and some options
for you to get started, and will try to connect the dots as to how and why embedded
systems mean so much to us as iOS developers.

 What Is an Embedded System?
 Embedded systems, as opposed to general purpose computers, typically have a narrow
scope of functionality. While a laptop or iMac desktop can perform a wide variety of tasks,
such as gaming, accounting, art design, medical records management, and just about
anything else, an embedded system might do just one thing, such as control your home’s
temperature or operate your microwave oven.

202 CHAPTER 9: Embedded Systems

 One of the first characterizations given when referring to an embedded system is that it’s
small, or generally of a smaller size, like an Apple Watch, a smart thermostat, or even that
old VCR I keep in the closet for some reason I still can’t fathom. While this might be true
in many cases, take a look at Figure 9-1 . On the left is a fairly small printed circuit board
(PCB) —smaller than a typical pen. To the right is a huge suite of electronics that stands
much larger than the attending engineer. In this case, the left side shows a general purpose
computer system while the right depicts a heating, ventilation, and air conditioning (HVAC)
embedded system.

 Figure 9-1. Size does not determine what kind of system would be classified as embedded

 Embedded system devices come in all shapes and sizes. Figure 9-2 shows a sensor I’m
currently using in other projects that contains several sensors, including temperature
measurement ; an accelerometer ; as well as a Bluetooth radio . This module could be
attached to an electronically controlled window system—a skylight, for example. If the
temperature in the room below gets too warm, as detected by the temperature sensor and
reported to another controller, a motor could activate, creating the proper size opening to
cool the room down appropriately. The accelerometer in the embedded device would then
provide data as to whether the skylight was opening or closing or at the proper angle.

203CHAPTER 9: Embedded Systems

 Problem
 I want to do more in my software development career than write code, but I have no idea
what learning is required in order to use hardware electronics devices such as embedded
systems.

 Solution
 Like anything, embedded systems and electronics engineering in general has its own set of
skills and vernacular. If you want to design computer chips that go into the next generation
of Apple devices, well, that’s way out of scope for this book. But, if you want to work with
electronics hardware and connect it with your iPhone or iPad, well, that’s doable on a few
different levels.

 The Details
 Designing Hardware
 Designing the hardware with all its transistors and milliamps and multilayer boards may seem
like the hardest part, but it’s really gotten pretty simple over the past few decades. You don’t
write your app in assembly language , much less enter ones and zeros with switches to create
your program, instead using a higher-level language such as C/C++, Objective-C , or, for us,
 Swift . Additionally, integrated development environments (IDEs) offer many tools for graphics
design, source-code management, testing, and creating packages to distribute to users.

 Figure 9-2. A small Bluetooth-enabled embedded sensor system

204 CHAPTER 9: Embedded Systems

 Hardware design continues its advance in much the same way. In fact, you could create the
system you need to build using a programming language such as C. Many integrated circuit
companies offer high-density, reprogrammable electronic devices that can be customized
for specific uses. Both graphical and object-oriented languages are available for that
customization. However, this design methodology is generally reserved for those specialized
devices, and we won’t be using it here. In essence, the way we’ll consider developing our
hardware will be even easier.

 The parts that make up electronic devices today can contain a wide range of functionality. In
the not too distant past, a DIP (dual inline package) such as that shown in Figure 9-3 might
contain a few basic Boolean functions, such as a few NAND or NOR gates (Figure 9-4). Let’s
be honest though—no one uses that type of package for logic devices. However, it may be
used for more specialized functions, typically those related to power management on the
circuit. As with our phones and restaurant portions, everything keeps getting smaller. And so
it is with electronics and integrated devices .

 Note Because the reader is expected to have a general level of programming knowledge, we will
assume a basic understanding of Boolean logic for our discussions.

 Figure 9-3. Integrated circuit devices such as this were commonplace as recently as the mid-1990s and can be found
on many aging electronic systems still in use today

205CHAPTER 9: Embedded Systems

 That’s the basic history lesson showing where we started decades ago, upon which are
built the technological marvels we take for granted today. Despite the increased complexity
today, as well as reduced size and cost, everything still works using a basic reliance on
 physics and Boolean logic: the electrons still move through traces of copper and at the core,
any CPU uses ‘1’ and ‘0’ to perform tasks .

 The good news is that vendors of the parts that we typically use want us to succeed. They
provide very detailed specifications that can run several hundreds of pages for a single part.
Their websites contain application notes on how to use the parts in typical circuits, FAQs
covering every aspect of the part, forums to provide user interaction with each other and
company representatives, and webinars available any time day or night to view.

 While the glut of information can be a problem in and of itself, forcing the designer to look
through potentially thousands of pages for information about a single component, most
parts in a family tend to work well together. Sticking with a single manufacturer and its
recommended product lines provides the novice a good way to get started.

 The thing that can best help the beginning designer is to purchase evaluation or prototyping
kits , such as that shown in Figure 9-5 . I absolutely love this board for development. It
comes with pluggable modules for changing to different processors and includes switches,
buttons, connectors, a small LED display, a prototyping area, and connectors for extending
it even further. Essentially, I’ve been able to build just about every electronics accessory
I’ve developed over the past five years using this development system. I prototype my idea,
work out the bugs, improve things, and write software to work with my design. Only after
I’m confident that it’s correct, I create my own custom-printed circuit board with just the
components needed for my application.

 Figure 9-4. Despite the relatively large size of the DIP device, it contains very minimal logic functionality

206 CHAPTER 9: Embedded Systems

 During prototyping, it’s basically plug-and-play, with all the effort being exerted in connecting
various off-the-shelf ancillary support modules and programming the firmware on the
board’s processor. My first iPhone OS accessory was developed using this prototyping
concept . Through Apple’s MFi program , which we’ll talk a little about in Chapter 13 , I was
even able to connect an iPhone to this system so as to communicate data back and forth.
In fact, Figure 9-6 shows the actual first prototype I created using a similar, but smaller,
development system that connected and functioned with an iPhone 3G running iPhone OS .

 Figure 9-5. A highly robust and flexible embedded prototyping system I use for day-to-day projects

 Note You can find these Microchip development kits at this link: http://www.microchip.com/
Developmenttools/ProductDetails.aspx?PartNO=DM240001

http://dx.doi.org/10.1007/978-1-4842-1820-4_13
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM240001
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM240001

207CHAPTER 9: Embedded Systems

 None of these kits will turn you into an electrical engineer, but they will give you enough
knowledge to get you moving in the right direction. The kits range in price from less than a
hundred to several hundred dollars.

 Using Existing Hardware
 Depending on the situation, which includes such factors as time, project complexity , your
confidence and skill level, as well as budget, you might also be able to use off-the-shelf
parts for your embedded project. A small, single-board computer such as a Raspberry Pi
(Figure 9-7) may work well for your needs. These products are a series of credit card–sized
single-board computers developed in the United Kingdom by the Raspberry Pi Foundation
with the intention of promoting the teaching of basic computer science in schools and
developing countries. With support for a wide variety of operating systems and software
development tools such as Python, C, C++, Ruby, Pearl, Java, and various IDEs, a
Raspberry Pi can be used as a complete personal computer. In fact, it’s the fastest-selling
personal computer in the United Kingdom.

 Figure 9-6. The first prototype I created for interfacing with an iPhone 3G in 2009

208 CHAPTER 9: Embedded Systems

 A typical Pi board contains—in addition to the processor—a graphics engine and I/O ports
such as HDMI, Ethernet, USB, and power. Many also contain additional connections to add
on functionality via daughterboards, such as WiFi, Bluetooth, or pretty much anything else.
At this very moment, I have a Raspberry Pi, similar to the one in Figure 9-7 , sitting to my
right with an attached keyboard, mouse, and 21” display that I use frequently. My system
runs RASPBIAN , which is based on the Debian version of Linux. It even contains a version of
Mathematica for general use.

 So, how would you use this for an embedded systems project? Again, everything depends
on multiple factors, such as cost, schedule, complexity, the project requirements, and so
on. Let’s take a reasonably simple industrial control application . You need to control an
environmental regulator such as an air conditioner for a small building. Perhaps this is at a
construction site for a temporary office building for site management. Of course, this is a
manufactured example, as you’d probably just go to your big box retailer and buy a room air
conditioner, but for some reason this is the way we’re going to go.

 At its simplest, a project such as this could be done using all off-the-shelf components. You
set up the Pi, out of the box, as a desktop system. Add a display, keyboard, mouse, and
connection to the Internet. Bring up a web browser, go to Amazon, order a USB temperature
sensor and USB controllable power strip. When they arrive, plug them in, write a small bit of
code, and install it onto the Pi’s system build so that it executes on startup and as a continuous
loop. Add some code to the mix to notify you via email if something appears wrong, or as the

 Figure 9-7. For those embedded systems where cost is a key concern, off-the-shelf modules such as this Raspberry Pi
may be all you need

209CHAPTER 9: Embedded Systems

system restarts, or any other notifications you want. Remove the peripheral and place it all into
a cabinet somewhere. And with maybe $200 worth of stuff and a couple days of work at best,
you’ve created your own embedded control system.

 Now, of course, you wouldn’t do this in an actual high-reliability situation with no industrial
engineering expertise, but, if you were so inclined, you might do this at home. You might,
say, turn on a disco ball when the temperature reaches a certain level. And yes, I still have
that obsession with disco balls and it’s not going away anytime soon. In fact, later in our
projects section, I’m going to walk you through controlling such a device on your own.

 The point I am striving to make is that you can address these types of embedded
developmental projects on several levels, from do-it-yourself to hiring someone with more
expertise and just specifying the requirements, including cost and schedule. If you choose
to do it yourself, which I whole-heartedly support, you have a wide range of options as
well. You can learn and develop nearly every aspect of the project, elevating your skills
and marketability exponentially, or simply buy components off the shelf and lash them
together. As with creating a major software application, multiple ways exist to get the job
accomplished.

 Problem
 How do I program these types of embedded systems?

 Solution
 Just as with iOS, Android, or even Microsoft mobile devices, each vendor as well as third
parties provide integrated development environments, software libraries, documentation,
starter projects, and technical support to help you every step of the way.

 The Details
 Diving into hardware, especially if you’ve focused on software development for most of your
career and educational life, can seem daunting and something to avoid. As a woman, it can
seem even more like an exclusive boys’ club, especially from the outside. After all, guys
build stuff and girls use them. Well, that’s stupid and really ticks me off. Did you know that
Mary Anderson is credited with inventing the windshield wiper years before Ford started
 automobile production ? Over a hundred years ago. Long before the equal rights movement.

 My point is not political or social, but rather to help you to realize that no matter who you
are, you can do this. Yes, it seems hard, and in many cases, for many projects, it can be. But
it’s doable. And you can do it. So, how? How do you develop hardware?

 Note There’s an awesome site everyone, especially aspiring female engineers, should check out.
It’s engineergirl.org and offers lots of information, interviews, connections, and career ideas.

210 CHAPTER 9: Embedded Systems

 Essentially, by using the project development kits you get a head start on all the mundane,
difficult, and costly development details associated with creating a new and interesting suite
of electronics. All the basics are provided, and you just need to tweak it or add a few bits
and pieces to make it your own. We’ve seen this in the previous section.

 Most of the work you’ll do to develop hardware using this method will be by programming.
Think about that for a moment. You use your software skills probably two-thirds or more of
the time when developing hardware. Early on in your project, it’s probably more like 95 to
100 percent of the time. Again, you’re starting with something that already works, has been
tested and proven, and has tons of technical support, from companies that want you to
succeed. Because if you develop a successful product using their parts and tools, it’s great
PR for them as well. It’s a win–win.

 Figure 9-8 depicts the development environment for the prototyping systems I showed in
the previous section. While not the same as Xcode, Eclipse, or Android Studio, it should be
readily obvious, for the most part, what’s what in the layout. To the upper left is a project
and file hierarchy. Below that are some specialty windows for specific add-on tools that can
be used to configure header and system setup files. To the right is the editing window, and
below shows the status of the various operations. Sure, some buttons will be different, the
colors won’t be the same as you’re used to, etc., but as a software engineer you can grasp it
and start working in under an hour. Most if not all kit companies offer tutorials to go with the
sample project and development kits. Remember—they want you to succeed.

 Figure 9-8. A typical development environment for embedded systems programming operates much like Xcode or any
other software tool suite

 So, that’s the tool suites, hardware, and software, but how does the actual coding proceed?
From an architectural level, it’s very similar to programming in iOS, with one exception. For
the most part when developing smaller embedded systems, you will not have an operating
system to which you make service calls. That is, there’s no write-to-disk or load-url OS calls

211CHAPTER 9: Embedded Systems

you can use. But all those services are available as long as the hardware and library support
is present with the tools. Now, that seems like I’m saying two different things—the services
aren’t there but they are there. Confusing, right?

 Think about Mac OS X for a moment and suppose you’re writing an online game that
accesses the web for a leaderboard. Your Mac app has to access the Internet, reading
and writing, to post and retrieve scores. To do that, you include a reference to a library
somewhere in your project code that can execute those operations. But the library doesn’t
necessarily contain the actual read and write code. That code already exists as part of the
operating system, OS X, showing you your desktop, running Safari, and so on. Your game
includes references to the hooks in the operating system to access those functions, but
they exist in the OS and there is a call to them—a call to the operating system services. It
wouldn’t make sense to have every program that used the Internet include all the common
functionality involved. Add in things like user interface, disk access, and graphics and there
wouldn’t be enough memory to run more than one or two programs. There would be too
much duplication of unnecessary stuff.

 With an embedded system, there will usually be just one program running at a time.
Remember, an embedded device focuses on doing a single or very small number of tasks
and doing them well; that is to say, doing them efficiently. One of the most critical aspects
of such a system is its response or latency to stimuli. In a commercial airliner, you wouldn’t
really want the avionics system to support a lot of unnecessary and mostly unused features. It
wouldn’t make sense, nor would it be safe. In a more generalized embedded system it’s more
an issue of cost. These devices are usually commercial, and the manufacturer is trying to
make a profit. So the costs need to be as low as possible. A big cost is parts. More memory
and more processing speed means more parts and higher costs and thus less profit. So, on
something like a microwave oven or smart thermostat, there will be no operating system and
no suite of library calls that can be used by apps running on the device.

 On these types of products there is one program. For the microwave oven, it’s a microwave
control program. For a smart thermostat, it’s a temperature management program, and so
on. Instead of dependence on an underlying OS, the necessary routines are built into the
app itself. If the device and the app that runs the device need Internet access, that Internet
access library is included when the program is built.

 And, getting back to our process of developing embedded systems using an IDE, those
necessary libraries, not just the function reference but the actual code itself, gets “baked”
into our end product, the code that runs our embedded hardware. Most development
system manufacturers, including the ones I use and showed you earlier, include that
functionality for use in your and my projects. You don’t have to write them from scratch.
Again, you get to focus on your new and exciting project using the products of hundreds of
others before you. Your ideas build on their work to create newer and better things.

 Problem
 You like the idea of getting started in developing systems, but the previous section made
it seem a little too involved as well as potentially expensive. Is there another easier and
cheaper route?

212 CHAPTER 9: Embedded Systems

 Solution
 A very common solution used by many software engineers to gain electronics hardware
knowledge and skills is Arduino.

 The Details
 Everything we discussed in the previous section regarding development kits and systems
still applies, but we need to try and make it simpler and even lower in cost. Arduino serves
this need and is most non-electrical engineers’ start into the dark and mysterious world of
hardware. Arduino removes the shroud of mystery and makes it pretty easy.

 Arduino is really more than just one thing. It’s an open-source community that creates and
maintains hardware and software that can be easily used. There is no one Arduino; rather,
there are several that use different processors and that are of differing sizes and shapes.
Figure 9-9 shows two versions, of which I use both for prototyping projects.

 Figure 9-9. Arduino prototyping boards come in various sizes and shapes and with different types of peripherals. One
of the most widely used at the time of writing was the UNO, shown on the right

 All Arduino boards provide a simple, easy-to-use interface to your computer and work on
all operating systems. Because Arduino is open source, you can generally find whatever
you need by doing a quick search as well as by checking out the Arduino user groups.
Programming is done by writing sketches, which are just C language–style programs, in the
cross-platform Arduino IDE as shown in Figure 9-10 .

213CHAPTER 9: Embedded Systems

 Although there are many different versions and designs of these boards, you might not find
exactly the feature you need. Additional hardware functionality can be added to a base
Arduino board through the use of shields, or small attachable daughterboards, that connect
to header pins on the main PCB. Many shields offer additional connectors so that you can
stack multiple shields to increase the amount of functionality in your project.

 Arduino boards can be purchased at many different online shops, such as Amazon or
Sparkfun, and computer shops like Micro Center often carry several versions as well. The
software and IDE are free to download and use. The main board is generally powered by
a USB connection between it and the computer, which also serves as a general-purpose
logging interface as well as a means to download sketches to the board itself. The board
doesn’t actually use USB; instead, a USB-to-serial adapter chip is part of the Arduino
design. As a user, you never usually have to worry about this, as it is mostly irrelevant to how
you operate the board. Costs for a typical board range from $15 to under $100 depending
on the version, processor, and amount of features included.

 A common Arduino contains buttons, switches, LEDs, and general-purpose input-output
(GPIO) lines that allow you to capture digital input and write digital output. Because the
power that operates the Arduino is limited by the amount provided from your computer
over the USB cable, you do need to consider how much output drive you are trying to use.

 Figure 9-10. You program an Arduino by writing a sketch, or C-like program, that gets downloaded to the board

214 CHAPTER 9: Embedded Systems

Basically, your computer provides five volts at so much current. Anything you try to control
using those GPIO lines must operate under that level minus the amount used by the board
itself to power its own circuitry. Just be sure to read the specifications of anything you’re
trying to build, and if there is confusion, seek assistance so you don’t damage your board or
other equipment.

 Problem
 The Arduino approach heads in the right direction in terms of ease and cost, but is there
anything simpler?

 Solution
 A company called littleBits offers a wide selection of easy-to-use pluggable components
that can create a huge number of sample projects without any wiring, and with a minimal
possibility of making mistakes.

 The Details
 You can think of littleBits as the LEGO ® version of electronics instruction . Like most
products these days, you can go to Amazon and order any of a wide variety of littleBits
starter kits, like the one I display in Figure 9-11 .

 Figure 9-11. With dozens of pluggable components to choose from, littleBits offers an easy way to get started
understanding the basics of modularized system design

215CHAPTER 9: Embedded Systems

 Using a littleBits development kit , you can create anything from a simple push-button
activated LED to a full-on network-enabled IoT (Internet of Things) monitoring device. The
modules are color coded and contain magnets so that they snap together only in the way
they are meant to be connected. The sides where they attach together are manually keyed
so you can’t plug them in backward or upside down.

 The company offers a cloud-based system as well, allowing access and monitoring of
your creation through the browser on your smartphone. There’s even an area for sample
projects you can try yourself to get started, ranging from automated pet food dispensers
to Halloween candy dispensers. I’d definitely recommend starting here if you have no
electronics background or are looking to get up and going really quickly. I think this is one of
the easiest learning tools available today.

 Problem
 Why is an understanding of embedded systems important at all if I’m only concerned about
programming iOS devices?

 Solution
 iOS devices, tablets, smartphones, watches, and so on are all, at their core, embedded
systems. An iPhone 6S may have more processing speed and memory than ever before,
but it’s still not a Mac running OS X. While this may eventually change, more than likely
something else will become the new “thing” and have limited memory and processing
speed. That product is now Apple Watch. In ten years the watch may be just as fast as the
iPad mini 2 of today, but likely there will be something else to take its place. As developers
and engineers within this space, knowing more than our counterparts, we put ourselves
as the ones to go to for these types of projects. Our knowledge and skills of not just
development but also the underlying technology can put us ahead of the other person vying
for that dream job downtown.

 The Details . . . (sort of)
 To get into embedded software architecture and its relationship to mobile operation systems
and iOS specifically in any depth would take a complete book in itself, so I’m going to be
necessarily brief and try to relate it to a basic iOS construct, the run loop.

 Embedded Software Architecture
 As I discussed earlier, embedded systems are programmed much like any other software
project. You work within an IDE; write code in, usually, a high-level language; link in support
through libraries and frameworks; and, somehow, download the code to the specific piece of
hardware.

 What does an embedded systems program contain—that is, what would it look like? At its
most fundamental, an embedded program contains (1) setup code, (2) support libraries, (3)
interrupt handlers, and (4) a processing loop. I’ll discuss interrupts and handlers in a moment,

216 CHAPTER 9: Embedded Systems

as they are a major part of all this, but let me show you a typical heart of an embedded
system program, the main processing loop.

 While ridiculously simple, this is actual code, graphically depicted in Figure 9-12 , from a
simple embedded project:

 while(true) {

 statusData = checkStatus(); // Check if any interrupts happened
 processInterrupts(statusData); // Run any code to handle whatever happened
 performPeriodicMaintenance(); // timers, LEDs, polling, etc.

 }

 Note I’m going to assume the reader has a basic understanding of C-style high-level languages.

Process

Check Status

do other
stuff

Never-ending
Loop

 Figure 9-12. The essence of an embedded system program is nothing more than a continually running loop

 All the code does is execute in a continual loop, never ending and only starting once. This is
the main() of a C-language embedded program. So, how does it do anything? The first thing
we need to understand is interrupts.

 An interrupt, in this context, is an internal or external stimulus. It could be a button being
pressed, a smoke detector being activated, a timer expiring, or a credit card being swiped
across a magnetic reader. It could be an incoming message from the Internet or a battery-
backup system ready to shut down because the wall power has been out for too long. So,
in essence, it’s no different than that annoying person who comes over and asks me if I saw
Kelly’s new boyfriend flirting with someone while I’m having a discussion about the election
with three friends at a party. You get the idea. It can be good or bad or indifferent, but it is a
change in the norm. If nothing happened, then that forever-loop would just run and run and run.

217CHAPTER 9: Embedded Systems

 When an interrupt does happen, let’s take the button press for example, we need to change
things up a bit. The code needs to handle that press and determine if there is an appropriate
action and, if necessary, execute some additional code to deal with it.

 You may have heard about interrupt service routines (ISRs) . These are very, very small
routines, functions, or methods that execute upon detection of an interrupt. In a personal
computer or Apple device, when something like this happens the OS directs that one of
these routines will fire, or execute. But as you should recall, in an embedded system we
don’t generally have an operating system to count on, though an ISR will still execute. How
does the system know?

 The processing elements of an embedded system, like the microprocessor in an iPhone,
contain a lot of additional functionality. Rather than calling them processors, they are more
widely known as microcontrollers because they do more than process logic. They contain
timers, analog-to-digital (A/D) converters, digital-to-analog (D/A) convertors, general-
purpose I/O (GPIO) lines, and so on. A switch might be connected to a digital I/O line of the
microcontroller, as shown in Figure 9-13 . The microcontroller manages the processing of
the system and has been greatly simplified in this illustration. When the button is open (not
pressed) the power is presented to the GPIO #1 input so the code sees a high voltage level.
When the button is pressed, the voltage goes to zero because it is shorted to ground, so
the code sees a different level. When that change happens, going from positive voltage to
zero, the microcontroller detects this and through a series of address registers performed
during the setup phase calls that function. The function services the interrupt, thus the name
“interrupt service routine.” Of course, there is much more circuitry involved, such as resistors
to dissipate the current when the switch is pressed as well as other pieces to handle
“bounce” between the contacts of the switch, but this gives you the basic idea.

POWER

BUTTON

MICROCONTROLLER

GPIO #1

 Figure 9-13. A simple push-button switch connected to a GPIO line of a microcontroller in an embedded system

218 CHAPTER 9: Embedded Systems

 The switch is pressed, the input changes, the microcontroller causes your ISR to execute,
and when the ISR finishes the loop continues as before. Here is where many newly initiated
engineers make their biggest mistake. The inclination is to handle the button press in the ISR.
For example, if the button press is meant to turn a motor ten degrees clockwise, then that
code is what happens in the ISR.) This is completely wrong. The ISR should only be used to
change a state variable within the structure of your program to indicate the change—that the
button was pressed. The actual function to perform the rotation should be handled elsewhere.

 There are many reasons for this, but the most important centers on the idea of latency.
Many people confuse latency and processing speed, thinking that if you just clock the
microcontroller faster, at a higher speed, you’re okay. Latency is the time interval between a
stimulus (pushing the button) and a response (whatever action needs to happen). By making
the ISR very simple, like merely changing a status bit, it helps to maintain the lowest latency,
which should be the goal in every embedded system. This way, all the other interrupts that
might happen at the same time can also be handled quickly, with the lowest possible latency.

 In the processing function, the status can be assessed and a proper order determined for
handling the actions that need to be taken. If, for example, a button is pressed twice or more, like
when you impatiently call repeatedly for the elevator, only a single response happens. Only that
action necessitated by the logical determination of the combined interrupt effects, as determined
by evaluating the status, is performed. This is the essence of an embedded system and the
process control loops found within the embedded system and its processing architecture.

 iOS Architecture
 If you’ve done much iOS reading or looked into game programing in Xcode, then run loops
should be the first thing that comes to mind after going through the previous section. A
run loop, which exists within an iOS thread, is used to execute these same types of event
handlers in response to incoming events, such as external or internal interrupts. The iOS and
Xcode documentation can provide you with much more detailed information about threads,
run loops, and event handlers so I won’t repeat that information here.

 The point I’m making with all this is to see that, for all intents and purposes, iOS programming
for some time has really been just a different manifestation of embedded systems programming.
While we were much more like embedded systems engineers back in 2009 or so when our
iPhone projects needed to take care of how we handled functionality, even today when dealing
with low-latency projects—games should come to mind here—having this knowledge at our
disposal can ensure that we develop the best application possible.

 Problem
 What’s the difference between an electronic circuit and a printed circuit board?

 Solution
 Developing custom electronic hardware for embedded systems consists of creating the
logic using a schematic capture tool and then transferring that schematic to a physical
implementation on a circuit board. Essentially, the schematic circuit, or logic, is printed onto
the board. Thus, you create a printed circuit board from a schematic.

219CHAPTER 9: Embedded Systems

 The Details
 Here, we’re going to briefly cover the basics of electrical engineering circuit design. It’s not
something you must know to work with embedded systems per se, but, you may need to
work with the designer at some point so it’s best to have some common ground.

 Circuit Design
 I’m sure you’ll agree that one section of one chapter is not enough space to teach you
 electronic circuit design . There are many good introductory texts on the subject, as well as
tutorials available free on the Internet.

 The main thing here is to not get bogged down in the details. Introductory courses will
almost always start with Ohm’s law and how it works. The gist of it is a way to define the
primary three DC (direct current) parameters in circuits: voltage, current, and resistance. I
discussed these earlier, and, for the most part, that little bit is all you need to know.

 Think of designing a circuit, like so many other things in life, as using a set of smaller
elementary items to make something more complex; the building block approach. In
the “old days” we designed using very basic parts such as resistors, capacitors, and
transistors, such as in the simple lamp circuit shown in Figure 9-14 . We still design using
these elements, but through the growth of technology, we’ve also been given a set of very
complex blocks with which to build even more complex things. Consider that, way back
when, someone took a bunch of parts and made a car. Now, we as society require cars,
buildings, roads, and people to build communities or cities.

 Figure 9-14. Basic elements of a schematic

 It should be clear that our embedded system circuits will be much more complicated than
the lamp circuit in Figure 9-14 . After all, they do so much more than turn a light on or off.
On the other hand, if we view them as complex blocks arranged correctly, which is what

220 CHAPTER 9: Embedded Systems

our product vendors provide us within their development kits, then our job becomes much
less daunting. Like when we use the littleBits, our engineering design is more about properly
connecting modules together than it is drawing out a complicated schematic from scratch.

 The other piece of the circuit design will be creating an electronic representation of your
system in some sort of tool. The de facto standard EDA (electronic design automation) tool
for some time has been the Cadence/OrCAD suite. Not a single product, but rather a set of
individual tools loosely coupled together, the Cadence suite is one of the most widely used
products for circuit and PCB design. Another product that increasingly finds its way into
engineering houses is the Altium Designer, which like Cadence is set of integrated tools for
schematic layout, board layout, and testing.

 If you want to try to do it yourself, start with one of the low-cost, quick-turn (quick
turnaround time) houses such as ExpressPCB. I found ExpressPCB after researching various
electronics and robotics hobbyist sites. Companies like ExpressPCB usually offer a free tool
that you can download and use to create your schematic design. The process of going from
an idea or hand-drawn circuit is known as schematic capture . You’re “capturing” your design
from paper (or thought) into an electronic format.

 After looking at what was offered and what capabilities I needed, I wound up selecting
Altium Designer. The tool suite did everything I, as a mid-level designer, needed to do at
a reasonable cost. You must do the research yourself, based on your needs and ability
and especially budget. The deciding factor in my own case was the extensive set of help
available in the form of both PDF and video tutorials.

 But let’s face it—most tools are more or less equivalent, and at the level of accessory design
that we’re doing, all will do the job admirably. You have to find something that you can work
with comfortably. You’ll also need to be able to afford it. Before selecting a tool, weigh the
costs involved. Some products come with a stand-alone license that you buy and use on
your PC. Others might have an electronic license that requires a connection to the Internet.
Electronic licenses are at a lower cost, usually by a thousand dollars or more, because
the company can control how many copies you are using without resulting to the use of a
hardware key (dongle) that they may have to provide.

 PCB Design
 Once you have a schematic design that you’re comfortable with, you’ll make it real by
converting the logical schematic representation to a physical one in the form of a logic
board. Notice that in each step of our process, we move our idea one step closer to reality.

 If, in the last step, you chose to hire someone to capture your design into schematic form,
then don’t even think about doing this part yourself. PCB design is much more than getting
your design to function as a combination of building blocks.

 While the details of PCB design can be daunting, the basic concept is that you have a flat
piece of something that is painted with copper; it’s printed with all the connections of our
circuit onto it, and then you remove everything else that you don’t need.

 More specifically, a sheet of insulator material is coated with copper on the outside of both
surfaces. If you remove the unused copper on both sides so that only your circuit remains,
then you have a two-layer circuit board. For complex designs, many more layers may be

221CHAPTER 9: Embedded Systems

required. The sheets (called laminates) are stacked together with another material separating
them. You can therefore have two-, four-, six-, etc., layer PC boards.

 Because the unused material is removed before the laminate boards are layered together, as
the number of layers grows the precision needed increases. Because the circuits that run on
the inner layers have to connect to a part or another layer (otherwise an inner circuit would
do nothing because it could never connect to a part) inter-layer connections are needed.
Called vias , these layer-to-layer connections must line up, otherwise the board won’t work.

 The good news is that most EDA tools provide mechanisms not only to convert the logical
schematic into a mechanical representation, but also help with routing. In essence, you
configure the shape and number of layers you want to use, then convert your design to a
PCB representation. The tool can either place the parts for you based on some set of rules
or you can do it manually; it can also either route the connections for you or let you do it. As
always, the higher-end tools provide more functionality at a higher price.

 What you wind up with at the end of this process is a board, after the parts are soldered
onto it, that looks like that in Figure 9-15 , only it is generally much larger for an embedded
system project if you rely solely on the autorouter to all the placement for you. In general,
an experienced designer can find many ways to make the layout smaller. Designing the
logic via a schematic and laying it out onto a representation of a physical board are the
two primary steps in this process, but not the only ones. You still need to have the actual
boards manufactured from your design, get the parts added, test the resulting product, then
install your software. But in this section I wanted to at least get you familiar with the basic
processes that most likely would be your burden to bear if you want to design and develop
your own hardware system.

 Figure 9-15. A typical printed circuit board with embedded system functionality produced using the steps described
above

222 CHAPTER 9: Embedded Systems

 Summary
 Embedded systems form the basis of the iOS devices we program even to this day. By
understanding how these systems function, we see that they bear a striking resemblance
to the complex and fancy devices we buy online or at our local Apple Store. Though
mobile devices get faster and more powerful every few months, it seems, so do those
state-of-the-art applications. Give a game developer a more powerful platform and she’ll
push the immersion experience even further and right to the edge of device capability. As
such, because she understands the real-time, low-latency logic underpinnings, her games
become state of the art and rise to the top of the charts. Her understanding of the true core
architectural nature of the device allows the app to operate right at the limit.

 What’s more, the architectural direction goes both ways. We’ve talked about how, as simple
embedded devices started, processors developed into microcontrollers to extend the space
horizontally, and more smart things started showing up. Our thermostats with springs and
mercury switches became small timers to change the temperature over the course of a
day. Later those evolved to sensor-based systems throughout our homes to create the best
economical balance for our environment. Now smart, completely connected, systems are
available at our local Home Depot or Lowes and are just as easy to install and control with
our iPhone.

 But there’s something interesting happening as well. Some smartphones are actually
becoming less and less intelligent and are taking on roles previously occupied by embedded
systems. Figure 9-16 is a single-board computer system built on a Texas Instruments OMAP
(Open Multimedia Applications Platform) processor , the same device that powers many
Android tablets and phones. This system was built to function as a smart, Android-based
point of sale (PoS) system . It operates a customized Android operating system build that I
created using a Linux platform. I removed all those things not needed for this specific project
and added built-in security mechanisms to guarantee that only a single trusted data source
was used. Because Android is open source, I was able to customize not only the hardware
but also the actual operating system. In fact, I actually built the PoS functionality directly into
the OS so it could ship as a single, integrated product. If you think about it for a moment,
what I did was take a smartphone/tablet device and convert it from a more general-purpose
product to a single-use, focused system.

223CHAPTER 9: Embedded Systems

 In fact, this is very common in a lot of devices, such as cable set-top boxes. Built around an
OMAP or similar processing core, they run a customized, focused version of the Android OS
to provide plenty of system support for downloading and watching cable TV and movies.

 Considering that Apple has now opened up Apple TV via tvOS to developers, though it is
not open source, Apple seems to see the value in allowing us to access and create new and
exciting applications with their version of a set-top box.

 In a later chapter we’ll expand a little more on this type of engineering as we look into iOS
accessories.

 Figure 9-16. This project began with a basic Android system target that was converted to a single-use, point of sale
embedded application, i.e. a cash register

225© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_10

 Chapter 10
 Publishing Our Work
 In this chapter we’ll work through putting your app into the Apple App Store. We’ll use a lot
of what we learned in Chapter 8 to create our archives, which will become our product in the
App Store. Depending on what you choose as a career path in iOS engineering, it might be a
while before this becomes something you do professionally. In most medium or larger software
agencies, a separate department often handles distribution to the commercial App Store, to
the Business-to-Business (B2B) side , or to the Enterprise, bypassing the App Store altogether.

 That said, it cannot hurt to be cognizant of the steps involved in getting your app to market.
You may, for example, wish to publish your own game or utility at some time in the future.
Also, since working for a large company isn’t for everyone, you might decide to go into
business for yourself, in which case this is something you’ll definitely need to know.

 Problem
 How do you go from an Xcode project that works to getting your app into the Apple App
Store?

 Solution
 In this chapter we will take one of our sample projects and create an app for the App Store. To
keep things simple, we’ll use the app from Chapter 14 (Figure 10-1), our simple slot machine
game. The details of this project are covered in Chapter 14 , so we won’t be working through any
of the code here. For now, let’s assume we got everything to build correctly and go from there.

http://dx.doi.org/10.1007/978-1-4842-1820-4_8
http://dx.doi.org/10.1007/978-1-4842-1820-4_14
http://dx.doi.org/10.1007/978-1-4842-1820-4_14

226 CHAPTER 10: Publishing Our Work

 Creating the Archive
 The first thing we need to do is to create the archive, which contains the app bundle and
debug information that we will validate and upload to the App Store. First, in the Xcode
project, make sure to select “ Generic iOS Device ” as the build device (Figure 10-2). This allows
you to create the archive and not to run it on the simulator or download it to an actual device.

 Figure 10-1. We’ll use our simple slot machine game to describe publishing an app to the App Store

227CHAPTER 10: Publishing Our Work

 Next, we create the archive of the project as we did in Chapter 8 (Figure 10-3).

 Figure 10-2. Select “ Generic iOS Device ” as the Build Only Device in order to create our archive

 Figure 10-3. Create the archive from the Project pull-down menu

http://dx.doi.org/10.1007/978-1-4842-1820-4_8

228 CHAPTER 10: Publishing Our Work

 But, skipping ahead to the point where we validate our project and following the steps as we
did in Chapter 8 , we fail with the error shown in Figure 10-4 .

 We rushed through a lot of steps to try to validate our product for the App Store, and this
is not uncommon. You will often think that because the last app you submitted worked and
posted correctly a week ago, this one should go just as smoothly. It rarely does, at least
in the early stages of your career. As before, pause, take a breath, and work the problem
through from the beginning.

 Certificates, Identifiers, and Profiles
 The first place we want to start is back at the Apple developer portal for the account we are
using to distribute this game. First, check to see if you have both certificates— developer
and distribution (Figure 10-5).

 Figure 10-4. Validating our archive fails

 Figure 10-5. Verify that you have a valid distribution certificate

http://dx.doi.org/10.1007/978-1-4842-1820-4_8

229CHAPTER 10: Publishing Our Work

 Since the certificates seem to be okay, let’s move on and check the identifiers, specifically
whether we have an app identifier for our game. Figure 10-6 shows that we do not, so let’s
create one.

 Figure 10-6. Examining our list of app IDs reveals we have no ID for our slot machine game

 Click the ‘+’ add button on the top right of the window and fill out the information as shown
in Figure 10-7 .

230 CHAPTER 10: Publishing Our Work

 Leave the rest of the settings as they are (Figure 10-8) and click Continue.

 Figure 10-7. Complete the app ID description and, for this example, choose a specific bundle ID for the app

231CHAPTER 10: Publishing Our Work

 Confirm the information is correct and register the app ID (Figure 10-9).

 Figure 10-8. Leave the rest of the app ID information as is and click Continue

232 CHAPTER 10: Publishing Our Work

 Then, verify that your app ID shows up in your list (Figure 10-10).

 Figure 10-9. Confirm and register the app ID information

 Figure 10-10. Verify that your app ID is now available

233CHAPTER 10: Publishing Our Work

 Let’s delete the old archive, retry building, and see what happens. From the menu bar, select
Window ➤ Organizer, then the townslot2 app on the left as shown in Figure 10-11 .

 Figure 10-11. Delete the old archive to keep things neat and try it all again

 Figure 10-12. Verify we’ve set the correct app ID in the build info

 Figure 10-13. Fixing the app ID alone does not fix the archive problem

 Also note that we made sure that our build info includes the correct app ID (Figure 10-12).

 Trying to validate our new and improved archive, we get the same error (Figure 10-13).

234 CHAPTER 10: Publishing Our Work

 Now, let’s move on to the last item in our portal, the provisioning profile for distribution .
Note that in Figure 10-14 we don’t have one set for our app. And really, this should have
been obvious when we created our app ID. Since a provisioning profile requires an app ID,
it should have been apparent that we needed to create a distribution provisioning profile as
well. Let’s do it now.

 At the top of the window, as we did with the app ID, click the ‘+’ add button and fill out the
type of profile, selecting “App Store” under the Distribution heading, then click Continue
(Figure 10-15). We’ll talk a little about ad hoc distribution options in Chapter 12 , where we
will cover testing.

 Figure 10-14. We have no distribution provisioning profile associated with our app

http://dx.doi.org/10.1007/978-1-4842-1820-4_12

235CHAPTER 10: Publishing Our Work

 Select the app ID that we just created from the drop-down menu, then click Continue
(Figure 10-16).

 Figure 10-15. Select “App Store” for our distribution option

236 CHAPTER 10: Publishing Our Work

 Next, make sure to select your account distribution certificate (Figure 10-17). For a simple,
single-user account, you’ll probably just have one.

 Figure 10-16. Select the app ID we just created

237CHAPTER 10: Publishing Our Work

 Give your profile a name that you recognize for use when building your project (Figure 10-18).

 Figure 10-17. Select your iOS distribution certificate

238 CHAPTER 10: Publishing Our Work

 Finally, generate the profile and download it to your computer (Figure 10-19). Once it has
been downloaded, just drag it from the Downloads folder and drop it on the Xcode icon so
that Xcode can then recognize it.

 Figure 10-18. Give your profile a good bundle name that you’ll recognize

239CHAPTER 10: Publishing Our Work

 You may want to verify that your profile exists within your Apple developer portal account as
a final check (Figure 10-20).

 Figure 10-19. After generating your provisioning profile , download it and drag it on top of your Xcode launch icon so
the IDE will recognize it

 Figure 10-20. Your profile is available for use

240 CHAPTER 10: Publishing Our Work

 As we did before, delete the old archive and make sure that your build settings in Xcode
reflect the recent changes (Figure 10-21).

 Figure 10-21. Make sure Xcode knows about the changes we made before building a new archive

 Figure 10-22. Sometimes problems continue long after we expect them to be resolved

 Create the archive once more (Figure 10-22) and see that we have the same error as before.
This is when it gets really frustrating. Rest assured, I’ve been there. We’ve all been there. What
I’m trying to instill by this systematic process of trying to eliminate issues is that what we think
should work doesn’t always work. Remember, you’re not the first one to go through this, so the
problem is solvable. I mean, if it wasn’t solvable, there wouldn’t be any apps in the App Store.

241CHAPTER 10: Publishing Our Work

 Let’s think about this. We’ve gone through all the steps with our developer portal and
created the correct certificates, IDs, and profiles. We’ve modified and set up Xcode to use
everything we just did, but we still get the same error. So what is wrong? First, remember
Figure 10-15 ? We selected “App Store.” That means that we created a distribution profile
indicating that our archive is built for the Apple App Store.

 Next, look again at Figure 10-22 . It says “No suitable application records were found.” Since
the validation process couldn’t find something, that must mean it was looking for something.
And just where was it looking?

 iTunes Connect
 iTunes Connect provides the portal for you the developer to sell and distribute your iOS
and Mac applications . It allows you to organize your portfolio of store content, legal and tax
documents, and contact information in addition to collecting information, feedback, and
earnings information provided by Apple, helping you to manage your app’s sales progress.
The process starts by signing up at the iTunes Connect member portal (Figure 10-23 ;
 https://itunesconnect.apple.com/WebObjects/iTunesConnect.woa/wa/apply).

 iTunes Connect Records
 Within Xcode, you develop your app, create all the records you need in conjunction with the
developer portal, and upload your app using the archive organizer, as we’ve seen previously.
But you need to have a record of the app that you intend to upload “on file” in iTunes
Connect. Let’s make that happen.

 By a “record” we mean an entry into the system that describes the app that you wish to
distribute through the App Store. If I go to my existing iTunes Connect login and select
“Apps,” I only see one entry (Figure 10-24). You can see a coin toss game, which we’ll talk
about in a later chapter. But there is nothing about our slot machine game. Let’s change that.

 Figure 10-23. The app development and distribution process using iTunes Connect

https://itunesconnect.apple.com/WebObjects/iTunesConnect.woa/wa/apply

242 CHAPTER 10: Publishing Our Work

 Click on the ‘+’ button in the upper left and select “New App” (Figure 10-25).

 Fill in the information shown in Figure 10-26 , making sure you have the correct and matching
bundle ID.

 Figure 10-25. Add new app to your iTunes Connect records

 Figure 10-24. No current record of our slot machine game exists in iTunes Connect

243CHAPTER 10: Publishing Our Work

 Set your pricing information (Figure 10-27). I’ve set mine to be free. I also set no discounts.

 Figure 10-27. Set up your pricing, including any discounts you choose to allow

 Figure 10-26. Fill out the new app info, taking care to enter the bundle ID accurately

244 CHAPTER 10: Publishing Our Work

 Set up any additional information, such as app category, as you deem appropriate
(Figure 10-28).

 When you go back to the Apps dashboard, you should now see this app being displayed
(Figure 10-29).

 Figure 10-29. Your app now shows up in iTunes Connect

 Figure 10-28. For the slot machine game, I selected a Casino sub-category

245CHAPTER 10: Publishing Our Work

 To verify this was the issue, back in the Xcode Archives organizer , delete the old archive, and
rebuild it. Then, go to the Archives organizer and validate (Figure 10-30). As you can see, the
archive passed first validation. The warning, as we described in Chapter 8 , is an issue when
using Swift 2 and Xcode 7 and should be cleared up in a future Xcode release.

 Figure 10-30. Now you should get a successful archive validation

 iTunes Connect Graphics
 Looking at Figure 10-31 , it’s quite obvious something’s not right. There’s no image shown for
our slot machine game. Quite likely other metadata is missing as well. Let’s fix that.

 Figure 10-31. Although our app now appears in iTunes Connect, we still have to add other assets before we can
submit it to the App Store

http://dx.doi.org/10.1007/978-1-4842-1820-4_8

246 CHAPTER 10: Publishing Our Work

 Click on the townslot2 icon and you’ll be taken to more detailed information about our app
(Figure 10-32). Then click on “1.0 Prepare App for Submission.” The 1.0 indicates this is our
first version. The yellow ball to the left indicates this section is not yet complete.

 Figure 10-32. We need to add more information into iTunes Connect before submitting our project to the App Store

 If you look at the first section, you can see that we’re missing screenshots of our app
(Figure 10-33). These are what you normally see when scanning through the App Store.
Note that there are options for iPhones that are 4.7, 5.5, 4, and 3.5 inches as well as
iPad and iPad Pro. Reviewing the guidelines at https://developer.apple.com/library/
ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/
Properties.html#//apple_ref/doc/writerid/itc_screenshot_properties , you will see
that the 3.5 and 4 inch are required; that the 4.7 and 5.5 are optional; and that the iPad is
required if this app is built for iPad. This happens when you try to save and continue. The
areas required will appear a pinkish color, indicating the need for more information. And
similarly, if your app is designed for iPad Pro, that is required as well.

https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/Properties.html#//apple_ref/doc/writerid/itc_screenshot_properties
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/Properties.html#//apple_ref/doc/writerid/itc_screenshot_properties
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/Properties.html#//apple_ref/doc/writerid/itc_screenshot_properties

247CHAPTER 10: Publishing Our Work

 The 4-inch requirement can be met by running our game in the simulator on an iPhone 5. Once
the app is executing on the iPhone 5 simulator, make sure the simulator is in the foreground
and, using the pull-down (Figure 10-34), select “Save Screen Shot,” which should place the
screenshot, as a .png, on your desktop.

 If you try to use this image for the 3.5-inch requirement, you’ll get the error shown in
Figure 10-35 . For each requirement, you have to submit an image of the correct dimensions.
For the 3.5-inch image, we’ll need a screenshot captured on an iPhone 4S. However, as
you’ll learn in Chapter 14 when we work on this project, we decided not to build for a 4S
device. So we’ve reached a dilemma.

 Figure 10-33. Here’s where you need to place your screenshots in the iTunes Connect portal

 Figure 10-34. Save your screenshot for the 4-inch requirement in iTunes Connect

http://dx.doi.org/10.1007/978-1-4842-1820-4_14

248 CHAPTER 10: Publishing Our Work

 Problem
 Your app doesn’t run on a 3.5-inch device, but Apple requires you to submit a screenshot of
this size.

 Solution
 Because the screenshots are images, there’s actually no requirement that they be captured
from a device or a simulator. They’re only required to be of certain dimensions and image
quality. Specific requirements can be seen at https://developer.apple.com/library/
ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/
Properties.html#//apple_ref/doc/writerid/itc_screenshot_properties .

 To get around this in the short term, I opened up the iphone5.png file I had saved from earlier
and resized it in a graphical editing program such as Adobe Photoshop. I used the option to
change image size from 640 x 1096 pixels to 640 x 920 pixels. This made the image a little
squat, as you can see in Figure 10-36 , but it works for our needs to get our iTunes Connect
required information completed.

 Figure 10-35. We need to make sure the required screenshots are provided in the iTunes Connect portal

https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/Properties.html#//apple_ref/doc/writerid/itc_screenshot_properties
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/Properties.html#//apple_ref/doc/writerid/itc_screenshot_properties
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/Properties.html#//apple_ref/doc/writerid/itc_screenshot_properties

249CHAPTER 10: Publishing Our Work

 Quickly verifying the build settings (Figure 10-37), we see that this project is indeed designed
for iPhone and not iPad.

 Figure 10-37. Verify the target is set to iPhone only

 Figure 10-36. Complete the required entry for the 3.5-inch screenshot

250 CHAPTER 10: Publishing Our Work

 There are a few more things we need to take care of. First, we need to add a description of the
app itself (Figure 10-38) as well as keywords (Game, Casino, Slots) and a support URL address.

 We also have to add the app icon (Figure 10-39). For iTunes Connect, we have to use a 1024
x 1024 pixel image. Generally, you want to create all your images at this size or greater when
developing for the iPad. For now we’ll just use Photoshop to scale our 180 x 180 icon up to
the necessary size.

 Figure 10-38. Add additional information about the app

 Figure 10-39. Add the icon and adjust the version number if necessary

251CHAPTER 10: Publishing Our Work

 Immediately below the icon and version number, select “Edit” by the rating title and fill out
the information for your app as appropriate (Figure 10-40).

 If you missed it previously, which I found happens when I save the page, make sure to select
the subcategory of your app (Figure 10-41).

 Figure 10-40. Complete the information about your app’s rating so this can be displayed in the App Store

252 CHAPTER 10: Publishing Our Work

 With this configuration, your app will release as soon as it gets approved by Apple . I
generally prefer to have more control and set up the timing for advertisements, blog entry,
social media, and so on. So, what I do is to set the release to be manual so that I have that
level of control (Figure 10-42).

 You would think that at this point all we need to do is submit the app. However, if you give it
a try you’ll be faced with the error shown in Figure 10-43 .

 Figure 10-43. Though everything seems to be correct, you still cannot submit

 Figure 10-42. Though not required, I set my apps to manual release so that I have complete control and can properly
time my marketing efforts

 Figure 10-41. Add the category information for your app so it will appear in the section of the App Store where you
need it to reside

253CHAPTER 10: Publishing Our Work

 In scanning down the page it quickly becomes apparent that the actual app bundle has not
yet been uploaded to iTunes Connect (Figure 10-44).

 Back to Xcode
 In the Xcode Organizer, similar to how we previously validated our build, we want to upload
it to the App Store (Figure 10-45).

 Figure 10-45. From within the Xcode Organizer you have to upload the build to iTunes Connect

 Figure 10-44. The build that iTunes Connect needs has not yet been uploaded

 When it completes, you’ll get the same informative message we saw earlier (Figure 10-46).
As before, this is an informative message only and you should be able to continue on.

254 CHAPTER 10: Publishing Our Work

 Here’s the next frustrating thing you’re going to come across. If you go back to iTunes Connect
and try to submit the app, you’ll see the same message in Figure 10-47 as we saw earlier. This
can drive normal people a little crazy, but take another breath and allow me to explain.

 Figure 10-46. The archive uploaded successfully, albeit with an informational message

 Figure 10-47. Even though we uploaded the build from Xcode, you still can’t do anything

 The reason you don’t see anything is that there is a bit of processing that goes on
behind the scenes. There is more validation being performed on your now uploaded
build in the background. Shortly—the time can vary up to half an hour—you’ll receive an
email that tells you things are okay (Figure 10-48). Mine took about ten minutes from the
time of submission. If something’s wrong, and this usually doesn’t happen so long as
you pre-validate as we did earlier, the message will let you know.

255CHAPTER 10: Publishing Our Work

 Go to the section where we had the error before, click on the build, and you can now submit
your app, finally (Figure 10-49).

 Figure 10-49. Select the build we just uploaded, click Done, and submit the app

 Figure 10-48. Apple lets you know the build you uploaded has completed processing. We can now try to submit our
app to the App Store.

256 CHAPTER 10: Publishing Our Work

 Please Don’t Hate Me
 And now you should see the error shown in Figure 10-50 . I bet you’re becoming really
frustrated at this point. In fact, I wanted to go through this series of issues specifically to
show you what you’re likely to encounter. Some problems will be bugs, like the informational
message after our upload, some will be procedural problems where we have to go back and
forth between Xcode and iTunes Connect, and some will be of our own making. This last
category fits our latest problem.

 As I stated earlier, only the 3.5-inch and 4-inch screen shots are required. But that’s only if
the app is built for those devices. Because, as you’ll discover in Chapter 14 , we built this app
with iPhone 6 and iPhone 6 Plus (as well as the 6S versions), the background processing
realized this and added the requirement for those screenshots. Before we uploaded our
build, iTunes Connect had no knowledge about our app other than what we entered. Once it
processed the build file, it knew that we were using screen sizes of 4.7 and 5.5 inches.

 The simple solution? Go back to the simulator, run the app on the iPhone 6 and 6 Plus ,
capture the screenshots, and stick them in this section of iTunes Connect. You can also
choose to do what we did earlier and modify it using a graphics program like Photoshop. In
any case, once completed, you should see that this section is now complete (Figure 10-51).

 Figure 10-50. Now we’re told we’re missing more screenshots

http://dx.doi.org/10.1007/978-1-4842-1820-4_14

257CHAPTER 10: Publishing Our Work

 If you now press Submit, iTunes Connect will spend some time processing and present you with
a few questions that you need to answer concerning export compliance, content rights, and
advertising information (Figure 10-52). Check these as appropriate, and if necessary provide any
additional details, but now, finally, you can submit your app to the App Store. Hooray. We made it.

 Figure 10-51. After adding the necessary screenshots as determined by Apple when performing bundle analysis, all
errors should be corrected

 Figure 10-52. The last thing needed is to complete the questions concerning the distribution of your app

258 CHAPTER 10: Publishing Our Work

 Now, of course, this doesn’t mean your app is approved automatically. It will most likely be
tested. If, for example, it crashes, it will be rejected and you’ll want to address those issues.

 Summary
 This has been a very lengthy chapter in which I’ve bombarded you with all kinds of errors
that you’re most likely to come up against in your early submissions. When something goes
wrong, a strange error gets displayed, or anything else, just search on the Internet using as
much of the error messages as possible. Be sure to remove anything specific to your app in
the search, as that specificity will eliminate the results you need to find. For example, if you
get an error about building and the error message shows your bundle ID, remove it from the
search. Chances are your bundle ID is nowhere to be found on the Internet. And if it is, there
are more serious problems you need to deal with.

 As I previously mentioned, following these steps does not mean your app will be approved.
There are many more tests that will be conducted, such as performance, crash tests, and
compliance with Apple’s Human Interface Guidelines , from which most of your rejections
will stem. As we did here, proceed slowly, taking a break when it gets frustrating, always
conscious of the fact that over a million others have made it before you.

259© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_11

 Chapter 11
 Web Services
 While most of our initial app creations are fairly simple and well contained, within a short
period of time we’ll need to access external information if we’re doing anything serious as
an iOS developer. We talk in several places about accessing data from sensor systems or
controlling home automation devices using Apple’s HomeKit ecosystem. However, if we
want to download music or video, upload game scores to our own database, or share files
or even small pieces of information, we’re going to have to use some type of web services to
move data between the cloud and our device.

 As a technical professional, you must be aware that the “cloud” is really nothing more than a
bunch of computers somewhere also connected to the Internet. But, rather than consisting
of MacBooks or Mac desktops, a cloud system is more likely a suite of rack-based
computers in a server room somewhere (Figure 11-1).

260 CHAPTER 11: Web Services

 In this chapter, we’re going to cover two common methods we use in our iOS projects to
move data between the cloud and our devices. In the first half of this chapter, the classic
web-service access mechanisms will be addressed, while in the latter half we’ll review the
new CloudKit technology from Apple, specifically for Apple device ecosystems.

 Classic Web-Service Access Mechanisms
 In this section I’ll cover the basics of accessing data residing on servers. You can call it the
cloud if you want, but unless you’re using a distributed cloud service such as Amazon Web
Services (AWS), it’s most likely a server that you access via a specific URL. Typically called
RESTful services, we move data back and forth using a series of commands such as GET
and POST. WE might POST some credit card info up to see if the transaction is authorized,
securely of course. We would probably then GET the results of the transaction to see if there
were sufficient funds available.

 Problem
 You need to access a price list for a point-of-sale iOS application, but the client wants to use
the same price list for both a web-based solution as well as a different, non-Apple, platform.
The price information is mostly static, changing only a few times a year.

 Solution
 Because we cannot limit the types of devices accessing our cloud data to only Apple
equipment, we’ll use the more classic RESTful services and a simple XML structure for our

 Figure 11-1. The cloud is really nothing more than a bunch of computers in a room somewhere, all connected to the
Internet, much like your Xcode workstation

261CHAPTER 11: Web Services

price list. While using a database such as MySQL would provide a more forward-looking
solution, in some cases a simple, editable file works just as well, shortens the schedule, and
keeps the cost to the customer within their reach. This also works well if you don’t have the
necessary database skills or the time to learn them due to cost and schedule constraints.

 RESTful Services
 REST stands for REpresentational State Transfer and refers to how communication is
performed on the Web, more so than on the Internet in general. You select links or states
on web pages that represent other pages of information and get transferred to them.
On the Apple website, for example, if you select the state that represents the location of
new Macintosh products, then you will be transferred to that new location and presented
with a new set of states. A system, such as a website, that implements itself within these
constraints is said to be RESTful and thus contains RESTful services .

 REST implements a client–server separation of tasks and functionality, some placed at the
server or cloud side while others, the ones we’ll soon discuss, fall to us to put on our mobile
devices. This separation allows for intermediary functionality as well, such as firewalls,
gateways, and proxy servers.

 Basic Terminology
 While most of this will be familiar to those of us who have been around technology for a while
(Figure 11-2), we may as well set out some common definitions so that we’re all on the same
page. If you’ve developed or worked on websites, many of these should already be familiar.

 Figure 11-2. Even to those of us in and around technology day-to-day, terminology can mean different things to
different people, at different times, and in different contexts

262 CHAPTER 11: Web Services

 BROWSER: A browser is the program that resides on and executes on your computer or
mobile device that displays information from the Internet. Most often, this will be web sites,
but could be file sites or even your local computer files. Safari, Explorer, Chrome and Firefox
are all examples of browsers.

 URL: A Uniform Resource Locator (URL) is a web address and specifies a location on the
Internet to which you might want to connect with your browser. You might also see the term
URI, Uniform Resource Identifier, of which URL is a part. URN, Uniform Resource Name, is
the other part of a URI. A URI may refer not only to an address out on the Internet, but just
as easily a file on your device. By using URIs in your iOS app you can access websites or
Internet data just as easily as your local storage.

 HTTP: HyperText Transfer Protocol is the communications architecture of the Web. It
supports a client–server architecture using a request–response protocol. Think of the
website you want to access as the server, the source of information, and the browser on
your computer or mobile device as the client. When you enter a URL, your browser is
directed to that address on the Web, and the HTTP code executes within your browser
to display the website properly. A simple website can be created from nothing but HTTP
commands.

 HTTPS: This is the secure form of the HyperText Transfer Protocol and is a layered security
approach such as TLS (Transport Layer Security) or SSL (Secure Sockets Layer). HTTPS
provides secure authorization that the website to which you are trying to connect is actually
what it claims to be and uses encrypted data transmission. This type of protocol is critical
when sending personal information such as credit card numbers.

 CSS: Cascading Style Sheets define a language that works with HTTP for styling the data
presented by a website. Because these define the presentation of the site and not the
content, they are not relevant for our discussion.

 FTP: File Transfer Protocol, or its secure version , SFTP, provides a mechanism similar to
HTTP and HTTPS, but is used for transferring files between a client (browser) and a server
somewhere.

 XML: eXtensible Markup Language is a set of rules and keywords known as tags used for
marking up the way data is formatted. XML is typically used to present a consistent format
of data to algorithms so they can be parsed easily.

 RSS: Really Simple Syndication or Rich Site Summary is a simple way of dispensing news
that is periodically updated.

 DOM: The Document Object Model is a convention for how data can be organized in a
tree structure using primarily HTTP, CSS, and XML. This extends the markup (formatting)
of XML into a conventionally used structure known as the DOM-tree that we, as software
developers, parse through to get at the information we are seeking.

 SOAP: Simple Object Access Protocol provides a specification as to how data is sent across
the Internet. It uses the HTTP protocol, and doesn’t replace it. Generally, SOAP provides a
standardized way to send requests that return, typically, data formatted as XML.

 AJAX: Asynchronous JavaScript and XML consists of methods for accessing data and is not
a technology itself, but rather uses different technologies.

263CHAPTER 11: Web Services

 GET: The HTTP GET method is, just as it sounds, a request to retrieve data from some
resource such as a URI.

 POST: The HTTP POST method is sometimes seen as the opposite of GET . It sends the data
to be processed by a specified resource. Note that POST is not writing data to the resource
specifically, but sending data to be processed. As such, a POST command can be used in
lieu of GET . In fact, POST is a little more secure because its parameters are not stored in your
browser history or web server logs.

 PUT: The HTTP PUT method is most often used for creating resources rather than updating
an existing resource, for which POST would be commonly used.

 DELETE: This one is simple—the DELETE method removes a resource. Use it sparingly.

 CRUD: CRUD is an acronym referring to the four basic functions — Create , Read , Update , and
 Delete —that we will be using to move data between the web and our iOS projects. Another
deviation of CRUD, which is SCRUD, adds Search to the set of terms.

 Problem
 You need to download some data from the Internet to your iOS application but want a
simple way to get started in order to understand the process.

 Solution
 We’ll work through the process and the basics of what you need to know. First, we need to
have some data and put it onto the Internet somewhere. As an example, let’s use the file
shown in Listing 11-1 , which represents some inventory items for a very small store. You can
create this file using a basic text editor such as TextEdit on the Mac or a program such as
TextMate that can provide some elementary formatting for file types such as XML.

 Listing 11-1. Our Initial Data: An Inventory File in XML Format

 <?xml version="1.0" encoding="UTF-8"?>
 <rss version="2.0">

 <channel>
 <title>Mobile Device Price List</title>
 <description>This is a list of the case options offered at our store.</description>
 <item>
 <title>Blackberry Red Case</title>
 <price>19.00</price>
 <taxable>YES</taxable>
 </item>

 <item>
 <title>Blackberry Black Case</title>
 <price>19.00</price>
 <taxable>YES</taxable>
 </item>

264 CHAPTER 11: Web Services

 <item>
 <title>Blackberry Green Case</title>
 <price>19.00</price>
 <taxable>YES</taxable>
 </item>

 <item>
 <title>iPhone 6 Silver Case</title>
 <price>20.00</price>
 <taxable>YES</taxable>
 </item>

 <item>
 <title>iPhone 6S Silver Case</title>
 <price>20.00</price>
 <taxable>YES</taxable>
 </item>

 <item>
 <title>iPhone 6 Plus Silver Case</title>
 <price>30.00</price>
 <taxable>YES</taxable>
 </item>

 <item>
 <title>iPhone 6S Plus Silver Case</title>
 <price>30.00</price>
 <taxable>YES</taxable>
 </item>

 </channel>
 </rss>

 To get the data to the Internet, you’ll need to have some knowledge of your provider
and how it functions. I use a mostly free service called ecowebhosting (https://www.
ecowebhosting.co.uk/). After logging in I go to my control panel and select File Manager
(Figure 11-3).

https://www.ecowebhosting.co.uk/
https://www.ecowebhosting.co.uk/

265CHAPTER 11: Web Services

 My hosting service locks file transfers using FTP by default, so before I can upload new
information, I need to unlock the file transfer (Figure 11-4).

 Figure 11-3. Using ecowebhosting, I start at my control panel to access File Manager

 Figure 11-4. If your web service locks file transfers by default, be sure to unlock them before trying to upload your
information

266 CHAPTER 11: Web Services

 Clicking the folder icon with the ‘+’ symbol, add a new folder called “book” under the
 public_html folder (Figure 11-5). The public_html folder contains everything that is
publically accessible over the Internet.

 Figure 11-5. Add a folder called “book” under the public_html folder, which makes your information accessible over
the Internet

 Figure 11-6. Upload pricelist.xml file to the web server

 After adding the book folder to your hierarchy, click the up arrow to upload the
pricelist.xml file to the web server (Figure 11-6).

267CHAPTER 11: Web Services

 Once it completes, you should be able to see the structure with your new book directory and
the pricelist.xml file contained within (Figure 11-7).

 Figure 11-7. Our pricelist.xml file is now contained within our web server file hierarchy in the book directory

 Figure 11-8. Our pricelist should appear as a formatted RSS feed in most browsers

 Pointing your browser to the location—in my case, www.mollymaskrey.com/book/
pricelist.xml —you will likely see the formatted display as an RSS feed (Figure 11-8).
Note that because it is an RSS feed, your browser—I’m using Firefox—should allow you to
subscribe to the pricelist.

http://www.mollymaskrey.com/book/pricelist.xml
http://www.mollymaskrey.com/book/pricelist.xml

268 CHAPTER 11: Web Services

 Problem
 We need to parse our very simple inventory pricelist file from the web.

 Parsing
 To get important elements out of our file, say, for example, the name of the item, we need
to parse the file—that is, go through each element of the file and pull out the value for our
 <title> tag.

 Solution
 In Xcode, create a new single view application project: File ➤ New ➤ Project (Figure 11-10).

 Figure 11-9. Your browser should have an option to allow you to view the file source

 In Firefox, on the formatted web page, I can right click and select “ Show Page Source ” to view
the actual contents of the XML file (Figure 11-9). Your browser should offer a similar option.

269CHAPTER 11: Web Services

 Give it a name and make sure you’re using Swift; don’t use Core Data or any testing at this
time (Figure 11-11).

 Figure 11-10. Start by creating a single view application project

 Figure 11-11. I called my project PriceList

270 CHAPTER 11: Web Services

 Figure 11-13. From the Object library, drag a label onto the View Controller, making it fairly large to fill most of the screen

 Figure 11-14. Set the number of lines to 0 so any number can be shown on the label

 Figure 11-12. We won’t be doing any source control on this simple project

 Also, we won’t be worrying about source control for this; simply create the project
(Figure 11-12).

 In Xcode, add a label to the Main.storyboard file (Figure 11-13).

 In the Attributes Inspector, set the number of lines to 0 so there will be no limit to the amount
of data that gets shown (Figure 11-14).

271CHAPTER 11: Web Services

 Set the background under the View section of the Attributes Inspector to a color that
stands out a little, maybe a light gray color, with the end result looking something like that in
Figure 11-15 .

 Figure 11-15. Set the label to stand out from the background so we’ll know where the information should be

 Modify the template ViewController.swift code to that shown in Listing 11-2 . First, we’ve
set our View Controller to subscribe to the NSXMLParserDelegate protocol by adding that
keyword to the class definition line, which we’ll need when we start parsing our file. Next,
from the Main.storyboard file, we create an @IBOutlet for the UILabel that we just added
called outputLabel . In the class file, I added variables for our parser, an NSXMLParser object,
and two strings, one to reference the type of element (elementType) and one for our element
data (element) that we will display inside the label on our view.

 Finally, we added functionality to the viewDidLoad() method to instantiate our parser object
using the NSXMLParser initializer function with the contentsOfURL convenience function that
points to the XML inventory file we previously uploaded to the Web. The last two added lines
set the delegate of the parser to this file and start the parsing operation using the parse()
method of the NSXMLParser class.

272 CHAPTER 11: Web Services

 Listing 11-2. Our Initial Modification to the Template View Controller Code

 //
 // ViewController.swift
 // PriceList
 //
 // Created by Molly Maskrey on 4/5/16.
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 import UIKit

 class ViewController: UIViewController , NSXMLParserDelegate{

 @IBOutlet weak var outputLabel: UILabel!

 var parser = NSXMLParser()
 var elementType = NSString()
 var element = NSString()

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 // Create our parser
 parser = NSXMLParser(contentsOfURL:(NSURL(string:"http://www.mollymaskrey.com/book/
pricelist.xml"))!)!
 parser.delegate = self
 parser.parse()

 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 }

 Running this on the simulator—yes, I know we haven’t set up to display anything yet—we’ll
see the error shown in Figure 11-16 . We have not yet set up our app to allow the use of a
cleartext (http:// and not https://) web address. This prevents apps from maliciously making
calls to non-secure sites without exclusively giving the app permission to do so.

 Figure 11-16. We cannot access insecure web addresses without modifying our project settings in the Info.plist file

273CHAPTER 11: Web Services

 To fix this, add a row in the Info.plist file by right clicking the mouse and selecting “Add
Row.” Change the added row to “App Transport Security Settings” from the pull-down,
then click the ‘+’ and select “Allow Arbitrary Loads,” changing its value from “NO” to “YES”
(Figure 11-17).

 Figure 11-17. Add “App Transport Security Settings” to the Info. plist

 For kicks, build and run it again using the simulator, and you should no longer see the
error. But how do you know anything is happening? Add the two functions in Listing 11-3
to the file. At the start of parsing you should see the “Started Parsing Document” message
displayed in the Xcode log. At the end, you should see “Finished Parsing Document.”

 Listing 11-3. Two Functions Bracket the Start and Stop of Parsing the Web File

 func parserDidStartDocument(parser: NSXMLParser) {
 print("Started Parsing Document")
 }

 func parserDidEndDocument(parser: NSXMLParser) {
 print("Finished Parsing Document")
 }

 Finally, add the additional code to the ViewController.swift file as shown in Listing 11-4 ,
and we should now start to see our parsing functionality begin to take shape. The
 didStartElement delegate function finds the beginning of each element. For us, we are most
interested in the item elements that we are intending to sell. Later, we’ll see an issue with
that. The foundCharacters delegate function locates sub-tags within the element we located
with the didStartElement function.

274 CHAPTER 11: Web Services

 Listing 11-4. Two Parser Delegate Methods to Identify Elements within the XML Structure and Pull Out to Display the
Titles of Our Inventory Items

 func parser(parser: NSXMLParser, didStartElement elementName: String,
 namespaceURI: String?, qualifiedName qName: String?,
 attributes attributeDict: [String : String])
 {
 elementType = elementName
 }

 func parser(parser: NSXMLParser, foundCharacters string: String) {

 if (elementType.isEqualToString("title")) {
 element = "\(element) \(string)"
 outputLabel.text = element as String
 }
 }

 In the didStartElement function, the only thing we do is set the global variable elementType
to contain the type of element that we found. In the foundCharacters function, we use
that element type variable as a key to get the title of the element, which is the name of our
inventory item, and display it in our view by running the app in the simulator (Figure 11-18).

 Figure 11-18. Parsed pricelist.xml file from our web server

275CHAPTER 11: Web Services

 In this example we created a simple XML-formatted table that contained inventory
information. We uploaded it to our web server and then created a simple iOS project that
downloaded and parsed that file. For pricelist types of files that don’t change very often or
that do not have other frequently changing metadata such as inventory count, this works
pretty well. In my very first professional app, a point-of-sale Objective-C project that worked
with a 30-pin dock connector credit card reader, I set up accounts like this for dozens of
smaller clients. From bail bond companies to chiropractors, this model works really well
when there’s not an inventory stocking issue.

 For situations where we do have information such as quantity, we need to be able to delete
however many products are sold from the inventory, usually held in a database such as
MySQL on the server. What’s more, if we make an incorrect sale or a customer returns an
item, we may want to restore that item to the stock count. This is especially important where
multiple devices may be accessing the same inventory database. That is, you can’t sell the
same item twice, or that’s the goal, anyway.

 If we were accessing a database through a server-side PHP script, the code shown in
Listing 11-5 would be typical of the interaction that we might develop. The first line sets up
the basic URL that points to a script on the server, not a web page, that allows access to the
database, whatever form that may take. The second line adds a query to the address using
a parameter defined within the PHP code called stockNumber . The \(stockNo!) part converts
a stored stock number into the literal part of the string. If the stock number were 123456, for
example, the entire URL that we pass to the request would be:

 http://www.mollymaskrey.com/book/pricelist.php?stockNumber=123456

 Listing 11-5. Simplified HTTP GET Access to a Data via a PHP Server-Side Application

 let url = "http://www.mollymaskrey.com/book/pricelist.php"
 let urlIncludingID = url + "?stockNumber=\(stockNo!)" // stockNo is a prev loaded item id number

 let request = NSMutableURLRequest(URL:urlIncludingID)
 request.HTTPMethod = "GET"

 let transaction = NSURLSession.sharedSession().dataTaskWithRequest(request) {
 data, response, error in

 if error != nil {
 print("error = \(error)")
 return
 }

 let responseString = NSString(data: data!, encoding NSUTF8StringEncoding)
 print("responseString = \(responseString)")
 }

 The next two lines instantiate a mutable request and set the method to GET . This could just
as easily be POST , PUT , or DELETE but would have to match the capabilities of the PHP code
on the server. That is, the PHP code written for what is traditionally called the backend
would have to accept the specific HTTP request type.

http://www.mollymaskrey.com/book/pricelist.php?stockNumber=123456

276 CHAPTER 11: Web Services

 Finally, we create a transaction that sends the request to the server and expects back some
data, a response string and an error code. If the error code is nil, non-existent, meaning no
error, then we process the response string by just printing it to the log.

 On the server side, we might see code similar to that in Listing 11-6 being used to handle
this type of request. Of course, there would be much more to deal with such as a database,
the page layout, and formatting, but somewhere on the page or URL address you would see
something similar written in a language like PHP.

 Listing 11-6. Simplified PHP to Handle Our GET Request

 <?php
 if($_GET["stockNumber"]) {
 echo "You asked for the ". $_GET['stockNumber']. " item from inventory.";

 exit();
 }
 ?>

 RESTful Services Summary
 Moving data between a server and your iOS app on a mobile device can seem daunting
when you’re first starting out. I don’t want to kid you—it generally always stays fairly
complicated. If you work for a moderate- to large-size software agency, this should not be
too much of an issue as the teams would be broken up functionally between mobile and
host-side engineering. You don’t have to know everything, but you do need to understand
how to get to the data from your side of the fence.

 Web design, web engineering, back-end processing, and database engineering can be and
are often complete worlds unto themselves, and in major shops you’re likely to find different
people specializing in a single skillset. At the development agencies that I worked for, we
set up a system of weekly bag lunches where one of the team specialists would talk about
topics within their specialty (Figure 11-19). At least once a month we’d have someone from
the host side of things describe what they did, how it worked, and what was needed to
access data and information. These were always attended by my mobile teammates and
made things so much clearer, saving hours if not days on projects.

277CHAPTER 11: Web Services

 CloudKit
 Problem
 You have an Apple-only system project and need to store/retrieve information from a server
on the Internet. The system will never be migrated to a non-Apple system, and you don’t
have substantial server or backend skills in your organization.

 Solution
 CloudKit is the transport framework underlying all of Apple’s iCloud technologies, including
iCloud Drive, iCloud Core Data, and the iCloud Photo Library (Figure 11-20). CloudKit gives
your app the same methods to use in your application where one of the other technologies
might not be a good fit. CloudKit works with Apple devices, iOS and OS X, and iCloud servers.

 Figure 11-19. Technical “bag” lunches provide a convenient and fun way to get information from different technical
areas within an organization.

278 CHAPTER 11: Web Services

 As with our previous RESTful example, let’s start with getting some information into the
 iCloud server .

 The database we want to set up is managed through the iCloud dashboard
(https://icloud.developer.apple.com/dashboard/). However, if you try to log in using your
developer account credentials AND you have never used the iCloud dashboard previously,
you’ll see the message shown in Figure 11-21 .

 Figure 11-20. CloudKit is the underlying transport framework allowing access to Apple’s iCloud servers

https://icloud.developer.apple.com/dashboard/

279CHAPTER 11: Web Services

 Notice how the message says “You may need to assign an App ID to a CloudKit Container
in Xcode…” This tells us we might need an app ID. Let’s get that done first. As we talked
about in Chapter 3 , first go to your developer portal sign-in, then to Certificates, Identifiers,
Devices, and Profiles and select “App ID.” Click on ‘+’ and start by adding an app
description as well as a discrete bundle ID (Figure 11-22).

 Figure 11-21. You have to do some previous setup, both in your app and on the developer portal, before you can
access the iCloud dashboard for the first time

http://dx.doi.org/10.1007/978-1-4842-1820-4_3

280 CHAPTER 11: Web Services

 In the App Services section, make sure to select “iCloud” and to add CloudKit support
(Figure 11-23).

 Figure 11-22. Start by creating your new app ID for our cloudtest project

281CHAPTER 11: Web Services

 Complete the creation of your app ID and verify that it looks as you expect it should, with the
proper bundle and CloudKit support (Figure 11-24).

 Figure 11-23. Add CloudKit support to your app ID

282 CHAPTER 11: Web Services

 Also, in the error message we got when we tried to access the iCloud dashboard we saw the
thing about containers. So, what is a container? A container is really just the name for your
app’s iCloud storage area (Figure 11-25). A container includes databases, both a public and
a private one, and is represented in the CloudKit framework by the CKContainer class.

 Figure 11-24. The iCloud parameter should show as “Configurable,” meaning we’re going to be using CloudKit directly
to access the iCloud servers

283CHAPTER 11: Web Services

 In the Certificates, Identifiers, Devices, and Profiles section, under Identifiers, select “ iCloud
Containers,” click ‘+’, and then click on the “Continue” link in the main window (Figure 11-26).

 Figure 11-25. Each app has its own container for holding data in the iCloud server

 Figure 11-26. Under the Identifiers section, select “iCloud Containers” and in the main section click on the “Continue” link

284 CHAPTER 11: Web Services

 Register your iCloud container by entering a descriptive name and an identifier that is similar
to your app’s bundle ID but starts with “iCloud” (Figure 11-27).

 Figure 11-27. Register your iCloud container in the developer portal

285CHAPTER 11: Web Services

 Figure 11-28. Complete your iCloud container registration, verifying the correct identifier you plan to use for your app

 Confirm and complete your iCloud container registration (Figure 11-28).

286 CHAPTER 11: Web Services

 If you try to access the iCloud dashboard, you may still get the error that we saw earlier.
What we have to do now is to create an app project, setting its capabilities to use iCloud
and CloudKit, and then try to access the dashboard.

 Back in Xcode, let’s do the usual File ➤ New ➤ Project and create a single view application
(Figure 11-30).

 It should now show up in your containers list (Figure 11-29).

 Figure 11-29. Your container should now show up in your iCloud containers list

 Figure 11-30. Let’s start with a single view application iOS project

287CHAPTER 11: Web Services

 Don’t add any tests, and make sure you’re writing your app in Swift (Figure 11-31). I called
mine cloudtest, being sure to match the names and case sensitivity. Note that we’re using
all lowercase for the name to match what we did earlier in the developer portal.

 And since this is a simple demonstration, we won’t need to do any source-code control
(Figure 11-32).

 Figure 11-31. We won’t be concerned with testing our new app

 Figure 11-32. We also do not need Git source-code management for now

288 CHAPTER 11: Web Services

 In the Capabilities tab of the cloudtest target, turn on iCloud (Figure 11-33). You may be
asked to choose your development team ID if you have more than one.

 Figure 11-33. Turn on the iCloud capability of your project target

 To me, it seemed rational to use key-value storage and turn on the CloudKit service
(Figure 11-34).

 Figure 11-34. I decided to use key-value storage and made sure to turn on the CloudKit service

 Normally, using the simulator, we wouldn’t need a provisioning profile, but I found out that
when I didn’t have one, I was not able to reach the iCloud dashboard. This could have been
a number of things, maybe the version of Xcode or something else. At any rate, I created a
provisioning profile before continuing (Figure 11-35). You may not need this, but I wanted to
offer it as an option should you run into any issues.

289CHAPTER 11: Web Services

 At this point, back in the Capabilities section of Xcode, you should now be able to click the
CloudKit Dashboard button (Figure 11-36).

 Figure 11-35. If testing on an actual device, you’ll want to have a provisioning profile so you have the correct
entitlements on your iPhone or iPad

 Figure 11-36. Click on the CloudKit Dashboard button to get to the dashboard from Xcode

 You should be taken to the iCloud dashboard and the CloudKit section of the dashboard for
your app (Figure 11-37). At first, after working in Xcode and the developer portal, the options
seem kind of daunting, especially those on the left-hand side. As with any tool, you’ll likely
find yourself using just a few common options.

290 CHAPTER 11: Web Services

 Saving Data to iCloud Using CloudKit
 We have constructed our database and now want to do something with it. I think this is one
of those chicken and egg moments. Do we create some “dummy” data and then read it, or
do we start by saving data from our app to the cloud? Decisions, decisions.

 I opted, this time, for the latter approach, so we’ll create a very simple record item and store
it to our iCloud database. But first, back at the dashboard, let’s click on the ‘+’ at the top
and add our inventory record type (Figure 11-38). We’ll use the same basic idea as a pricelist
database, though here I called it Inventory . Since CloudKit is essentially a database in itself,
we can use it to manage our inventory and not just a static price list.

 Figure 11-37. We should now be able to access the iCloud dashboard and our app’s CloudKit section

 Figure 11-38. Start by creating our first record type, Inventory

291CHAPTER 11: Web Services

 I designed my record with four fields: the itemName , the itemNumber (a stock number), the
 itemPrice , and the itemQuantity (how many are in stock; Figure 11-39). For the quantity and
price I just went with integers to speed things along. Be sure to click on Save.

 Figure 11-39. Add the fields you need to your record format

 First, we have to import the CloudKit framework. Note that we aren’t subscribing to any
delegate protocols. I created static references to our CKContainer and the public database in
that container. I also instantiated a record type variable of our Inventory class (Listing 11-7).

 Listing 11-7. Our Initial View Controller Code to Save Some Data to Our iCloud Database

 //
 // ViewController.swift
 // CloudTest
 //
 // Created by Molly Maskrey on 4/6/16.
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 import UIKit
 import CloudKit

 class ViewController: UIViewController {

 let container = CKContainer.defaultContainer()
 var record = CKRecord(recordType: "Inventory")
 let publicDB = CKContainer.defaultContainer().publicCloudDatabase

292 CHAPTER 11: Web Services

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 addRecord()
 }

 //
 // Add records to our iCloud database using the CloudKit framework
 func addRecord() {
 record.setValue("1001", forKey: "ItemNumber")
 record.setValue("iPhone 6 Case - Black", forKey: "ItemName")
 record.setValue(20, forKey: "ItemPrice")
 record.setValue(100, forKey: "ItemQuantity")

 publicDB.saveRecord(record) { (savedRecord, error) -> Void in
 if error == nil {
 print("record saved to iCloud database using CloudKit")
 } else {
 print(error)
 return
 }
 }
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 }

 Note A database is the next level down in the CloudKit hierarchy, below container. In each
container, by default, there exists a public and a private database. Just as it sounds, public data is
available to everyone, but the private database is only accessible to the user. And this does mean
user. As the developer of the app, you do not have access to any user’s private database. The
privacy is maintained via the iCloud user credentials each user sets up on their device.

 I created the convenience function addRecord() using the CloudKit framework to localize
the code necessary to add a record to the database here in the app (Listing 11-8). First, set
the values of each of the four fields, then call the asynchronous saveRecord function of the
 CKRecord class. In the viewDidLoad() method, call the convenience function.

293CHAPTER 11: Web Services

 Listing 11-8. The addRecord() Convenience Function Adds a Single Record of Data to Our Database

 //
 // Add records to our iCloud database using the CloudKit framework
 func addRecord() {
 record.setValue("1001", forKey: "ItemNumber")
 record.setValue("iPhone 6 Case - Black", forKey: "ItemName")
 record.setValue(20, forKey: "ItemPrice")
 record.setValue(100, forKey: "ItemQuantity")

 publicDB.saveRecord(record) { (savedRecord, error) -> Void in
 if error == nil {
 print("record saved to iCloud database using CloudKit")
 } else {
 print(error)
 return
 }
 }
 }

 If you run this, guess what? It probably doesn’t work, and you get the error message shown
in Figure 11-40 . This is telling you that you have not yet set up your iCloud account on your
simulator, which really means you haven’t entered your user ID and password to access
iCloud.

 Figure 11-40. You may see this error if you haven’t set up your iCloud account on the simulator

294 CHAPTER 11: Web Services

 After accepting the Terms and Conditions from Apple, your iCloud account should be
accessible on the simulator (Figure 11-42).

 Figure 11-41. Enter your iCloud account credentials on the simulator you are using

 In the simulator, go to Settings and iCloud to enter your iCloud user ID and password.
Since we’ve set up everything on our iCloud dashboard, this should work without a problem
(Figure 11-41).

295CHAPTER 11: Web Services

 Figure 11-42. Your iCloud account should now be active on the simulator

 Try running the code again, and you should now see the successful completion message
printed on the console from the addRecord() function (Figure 11-43).

 Figure 11-43. We should now have everything working correctly

 I can totally hear you saying, “But how do I know it worked?” Well, we could write the other
side of the app, something to read and display data, but would that really convince you?
I mean, there could be some local buffering that we write to and then read back from, but
the data record never makes its way to the server. So instead, let’s go back to the iCloud
dashboard and look at your actual record.

296 CHAPTER 11: Web Services

 Back on the dashboard, under Public Data, select “Default Zone”; you should see the record
we just added (Figure 11-44). I’ll leave it up to you to access and use the private database,
but it’s really no different than what we just did. Remember, the whole idea of using CloudKit
is to make things easy and fast to implement.

 Figure 11-44. You can see any records added from your app using the iCloud dashboard

 Figure 11-45. The iCloud dashboard allows us to enter actual record data as well

 What’s more, we can add records from this part of the dashboard by clicking the ‘+’ button
at the top, then entering the record information and clicking on Save (Figure 11-45).

297CHAPTER 11: Web Services

 Reading Data from iCloud Using CloudKit
 For this example, we’ll use the private database and enter our initial record into it from the
iCloud dashboard. Under the Private Data section, select “Default Zone” and enter a record,
then click Save (Figure 11-46). Make a note of the record name ef0fe9e7-bb50-441e-a8f5-
8efc257271e4 at the top, as we’ll use this in our code. Each record name is generated
automatically by the portal, and you must locate your code to enter it into your source file.

 Note Zones in CloudKit allow you to segregate private databases into areas of convenience
using the CKRecordZone class. Zones are only for private databases and not allowed in the public
database.

 Figure 11-46. Add a record to the private database Default Zone

 Modify the code in the ViewController.swift file to that shown in Listing 11-9 , adding the
 readPrivateRecord() function call using the explicit record name from the iCloud dashboard.
Comment out the call to addRecord() , but add the call to readPrivateRecord() and execute
the app.

 Listing 11-9. Modified ViewController.swift File to Support Reading from Our Private Database

 //
 // ViewController.swift
 // CloudTest
 //
 // Created by Molly Maskrey on 4/6/16.
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 import UIKit
 import CloudKit

298 CHAPTER 11: Web Services

 class ViewController: UIViewController {

 let container = CKContainer.defaultContainer()
 var record = CKRecord(recordType: "Inventory")
 let publicDB = CKContainer.defaultContainer().publicCloudDatabase

 let privateDB = CKContainer.defaultContainer().privateCloudDatabase // to read,
we'll us a private DB

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 // addRecord()
 readPrivateRecord()

 }

 //
 // Read record from private database that we entered by using the iCloud dashboard
 //
 func readPrivateRecord() {

 privateDB.fetchRecordWithID(CKRecordID(recordName: "ef0fe9e7-bb50-441e-a8f5-
8efc257271e4"), completionHandler: {record, error in
 if error == nil {
 print(record)
 } else {
 print(error)
 }

 })
 }

 //
 // Add records to our iCloud database using the CloudKit framework
 func addRecord() {
 record.setValue("1001", forKey: "ItemNumber")
 record.setValue("iPhone 6 Case - Black", forKey: "ItemName")
 record.setValue(20, forKey: "ItemPrice")
 record.setValue(100, forKey: "ItemQuantity")

 publicDB.saveRecord(record) { (savedRecord, error) -> Void in
 if error == nil {
 print("record saved to iCloud database using CloudKit")
 } else {
 print(error)
 return
 }
 }
 }

299CHAPTER 11: Web Services

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 }

 When the app completes, you should see the record data in the console log (Figure 11-47).

 Figure 11-47. We can see that the app correctly read and displayed the data record we entered using the iCloud
dashboard

 CloudKit Summary
 In this section we talked about CloudKit and its advantages for setting up a quick and easy
web-service system when all we plan to use are Apple devices and the iCloud server. We
set up our host side using all Apple tools and created an app to read from and write to both
the private and public databases. In our read example, we would not know the exact record
name, as that is automatically generated in iCloud, so that example was really just for show.
The way we most likely would do this would be to either read all the records in the database
if there were not too many of them, or to use NSPredicate and do predicate searches for
particular item keywords. The choice really comes down to what you are trying to do and
what your needs are for your project.

 Summary
 In this chapter we covered two types of methods for accessing web services. Most likely,
until the CloudKit functionality broadens and, at a minimum, allows access to other types of
mobile devices, the usefulness of CloudKit will be very limited.

 On the other hand, the complexities of setting up your own web server and programming
in HTML, CSS, PHP, MySQL, and potentially other languages will limit your ability to create
highly flexible solutions for your project unless you have a diverse, well-skilled team or have
the ability to subcontract those services to other contract suppliers.

301© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_12

 Chapter 12
 Testing
 No matter your position, background, education, experience, whatever, we all test our code
at some point as we develop our projects (Figure 12-1). You could, at a rudimentary level,
consider the build process and even the automatic error detection in Xcode as a form of
testing. Long ago, shortly after the invention of the wheel, coding was nothing more than
flipping switches on a computer console, hitting a button to enter the instruction, and
eventually running the program. Pressing the Run button was the only testing possible.
The paradigm shifts in recent years have put testing front and center as we proceed through
code development sprints.

 Figure 12-1. We test our apps from before we write a line of Swift until long after we’ve begun our next assignment

302 CHAPTER 12: Testing

 In this chapter I’ll focus on three types of testing. The first two types, Unit and User Interface
testing, are integrated into Xcode and are added in when you initially create your project
if you’ve selected them in the appropriate dialog. These are tests managed by you, the
iOS software engineer. You create Unit Tests first, knowing what is and is not acceptable
behavior in your code. By setting up these behaviors as tests before you code, it’s easy to
test against your requirements as you code. That’s really the point. Don’t think of these Unit
Tests as something we add on to a project to check off a box somewhere; imagine them as a
slightly different way to write the software project requirements. Even the most loosely based
development houses manage their requirements in some manner. Using Unit Tests not only
provides a convenient centralized spot to do so, but because of their tight integration with
Xcode, you get requirements verification basically for free.

 User Interface Testing took a leap forward in the summer of 2015 when it was announced at
the Apple World Wide Developer Conference that UI Testing was being expanded and tightly
integrated into Xcode 7, including recording, so you could now set up a UI sequence as well
as have updated reporting. Like Unit Tests, which you may have seen previously, XCTest
is the testing framework upon which UI Testing is based. It was introduced in Xcode 5 as
the replacement for OCUnit, which was one of the very first testing frameworks designed
for Objective-C. In order to actually control UI elements, UI Testing also relies on the
Accessibility framework. One thing of note: UI Testing requires iOS 9 or higher to use.

 Lastly, we’ll address beta testing; that is, giving our app to people to see if it breaks out in the
real world, as well as testing every other aspect of how it looks and functions. I love giving my
app to my friends to try out (Figure 12-2). While most developers think strangers might offer a
more unbiased opinion, I’ve often found the opposite to be true. Because strangers have no
vested interest in your project, they can be a little overly critical. In fact, many will harbor their
own bias and criticize your work unnecessarily. I love getting first-pass feedback from friends.
Xcode and iTunes Connect are now integrated with TestFlight to allow for much more easily
managed testing of your projects.

303CHAPTER 12: Testing

 Figure 12-2. Having a group of friends to take a first look at your project can get you some honest feedback you might
not otherwise receive, while maintaining a less adversarial experience

 Because testing itself—how it is implemented in conjunction with Xcode—and an individual
organization’s test philosophies differ widely and are moving targets, I’m going to focus on
just the basics of getting started and understanding what’s going on. As you develop your
skills, as you become more integrated with your development team, and even as the tools
themselves become easier to use, you’ll find your own way of doing things that works best
no matter where you end up practicing your skills.

 Unit Testing
 Throughout the short history of software development—well, let’s call it recent history—testing
has evolved from just seeing if it works without causing something to break or explode to
planning and writing tests long before coding begins. At about the middle of this historical
timeline we began using a lot of C preprocessing and pragma statements, such as
#if, #endif, #elseif , and so on, to include code within our code so as to test various
functions and boundary conditions and anything else we could think of.

 The problem, of course, was that in addition to this strategy of creating a software
management nightmare with bits and pieces spread throughout every file in a project, we
were also doing testing after the fact. We created tests for the code we developed or were
developing. Inherently, what this meant was that we created our tests for our work and not
for the project as it was intended to be. We weren’t testing the requirements directly; we
were testing “how” we implemented those requirements.

304 CHAPTER 12: Testing

 Problem
 You’ve heard of Unit Testing but aren’t quite sure what it is or how it is different from other
types of testing.

 Solution
 Essentially, we take the smallest parts of an application, called units, and test them
individually. A unit is considered to be the smallest piece of code that we can test. That’s it.
Most often a unit can be mapped to a function or method in your app. When a function or
method is too large, maybe taking up several screens worth of real estate, and the testing of
that as a unit appears overly complex, you should probably break it up into smaller pieces
anyway. Break up the larger task or function into manageable units of work. Really, this is
pretty much Development 101—keep things simple and easy to manage from the start.

 Some key elements of a good Unit Test would be having the ability to be automated, to
not be order dependent, to run in memory and not require database or web access, to be
repeatable, and to be fast. There are certainly many others, but these are some of the key
aspects and the ones that Xcode can help us with the most.

 In both Xcode and iOS development—this is even true for Mac development, which we
won’t cover here—Unit Tests run as separate targets. This means that we have to add Unit
Testing specifically to our project as its own target. This addresses a number of our goals
for good Unit Tests. As standalone targets, our testing will most likely be repeatable. They’re
not dependent on something happening elsewhere to run properly. Since they are targets,
they run in memory, and as long as we don’t integrate database or remote access into them,
leaving that to our primary app, we can keep our tests in memory and generally fast.

 There are two ways we add testing to our project: from the start or after the fact. First, let’s
create a project with Unit Testing built in from the very beginning.

 Create a new Xcode project as a single view application (Figure 12-3).

305CHAPTER 12: Testing

 In the very next step, add Unit Testing by selecting the “Include Unit Tests” checkbox
(Figure 12-4).

 Figure 12-3. Start by creating a simple single view iOS application

 Figure 12-4. To include the Unit Test target, select the “Include Unit Tests” checkbox and complete the project creation

306 CHAPTER 12: Testing

 Finally, as you can see in Figure 12-5 , we not only wind up with our usual templated single
view app, but we also have a second folder called UnitTestingProjectTests with its own
template code and info.plist , as well as the UnitTestingProjectTests target.

 Figure 12-5. In addition to our normal single view iOS application Swift template, we get our Unit Test target and
template test code as well

 Usually, because the tests are in a separate target, you’d only be able to access
public methods and variables from the test, but in Xcode 7 the @testable import
UnitTestingProject statement, added automatically when we created our project, adds our
whole app (the UnitTestingProject) as a module that allows access to all the internal parts.

 Problem
 You need to add Unit Testing to an already existing project that does not yet include any testing.

 Solution
 Just like adding other targets, we can add a Unit Test target to an existing project. Starting
with our slot machine game we’ve previously talked about, let’s add Unit Testing. From
the Xcode menu bar, select File ➤ New ➤ Target, select “Test” under the iOS section, and
choose “iOS Unit Testing Bundle” (Figure 12-6).

307CHAPTER 12: Testing

 Verify the target options are correct for what you’re trying to do (Figure 12-7) and create the
target. In the dialog note the “Project:” and “Target to be Tested:” drop-down menus. If your
project already has multiple targets, as it might when working with a WatchKit app, make
sure you set the correct target for the Unit Test you’re trying to add.

 Figure 12-6. To include Unit Testing in an existing app, add the iOS Unit Testing Bundle as a target to your project

 Figure 12-7. Verify the new target’s project settings

308 CHAPTER 12: Testing

 And similar to when we create a new project with Unit Testing, adding a Unit Test bundle
adds template test source code and an info.plist in addition to the new target (Figure 12-8).

 Figure 12-8. When adding a test target to an existing project, we also get template code to go with it

 Problem
 You’ve created a test target, either within a new project or by adding it to an existing project,
but you need to know how to use it.

 Solution
 Looking back at Figure 12-8 , we can see that our test is made up of a class called
 TownSlot2Tests , which is a subclass of XCTestCase . As with other projects, we can have
multiple classes that test specific parts of our project. My method has always been to create
a test class contained in its own Swift file for each app Swift file in my project. Because I
generally have a single app class per Swift file, things tend to work out very symmetrically.
As with anywhere that you have flexibility, you could have multiple classes within a single
Unit Test Swift file, but whatever you do, you should try for consistency in your organization
to make things easy to understand for all those involved. For our purposes, we’re going to
work with one Swift file for our one test class.

 Each test class is made up of multiple methods, with each method performing testing on
a unit of work, however you’ve defined that term for your project. The test method names
all start with the word “test” so that the code that runs the tests within Xcode knows how

309CHAPTER 12: Testing

to find them. This does not mean that every method in a test class has to start with “test,”
as you could have supporting methods that are used by different test methods, such as
a conversion routine or formatter or any other generic software tool. Those will not be run
automatically, nor should they.

 Each test method is bracketed by the setUp() and tearDown() methods, so in the code
shown in Listing 12-1 , to run whatever testing we put into the testExample() method, first
the setUp() method will execute, followed by the testExample(), and finally tearDown() .

 Listing 12-1. Unit Test Class and Methods

 class UnitTestingProjectTests: XCTestCase {

 override func setUp() {
 super.setUp()
 // Put setup code here. This method is called before the invocation of each test

method in the class.
 }

 override func tearDown() {
 // Put teardown code here. This method is called after the invocation of each test

method in the class.
 super.tearDown()
 }

 func testExample() {
 // This is an example of a functional test case.
 // Use XCTAssert and related functions to verify your tests produce the correct

results.
 }

 func testPerformanceExample() {
 // This is an example of a performance test case.
 self.measureBlock {
 // Put the code you want to measure the time of here.
 }
 }

 }

 Note also that in addition to our testExample() method, which we’ll use as a template
for functional testing, we also have testPerformanceExample() to serve for measuring
throughput as part of our unit tests. The testExample() method is used as a template for
creating other tests; that is, we don’t generally have an actual testExample() method,
though nothing prevents us from doing so. Because they run before and after each test
method, setUp() and tearDown() are where you might set up initialization at the start or any
other cleanup work that needs to be accomplished after each test runs.

 Because our project uses a single view template, and our main—and really, our only—class
is the ViewController , we’d likely wind up testing our units of work in that file. Since we’re
dealing with very small sample programs, these single view/single file demo apps are pretty

310 CHAPTER 12: Testing

common. However, with serious application projects we normally have many more classes
that are specialized to our needs. We might have several types of classes that relate to
our data. For example, if we had an app that dealt with cars, we might have a whole class
specific to cars. It wouldn’t likely have anything to do with how we visualize the data, just
with how we manage cars in our app. This stems from the MVC, or model-view-controller,
paradigm central to iOS apps (Figure 12-9).

 Figure 12-9. iOS apps follow the standard MVC paradigm where the data and its methods are separate from how the
user sees the data— typically through the ViewController (view + controller)

 We’re going to look at how to use Unit Testing within the ViewController class in a moment,
as well as the problems you’re likely to encounter, but first let’s see how we should probably
organize things. First, we’ll add a Cocoa Touch class to our project from the Xcode pull-down:
File ➤ New ➤ File, then in iOS Source select “Cocoa Touch Class” and create a subclass of
 NSObject . Add a very simple method as shown in Listing 12-2 ; because the purpose of this is
to represent our data, I’ve called mine MyDataClass .

 Listing 12-2. MyDataClass for Separating Data from Our ViewController

 // MyDataClass.swift
 // UnitTestProject
 //
 // Created by Molly Maskrey on 3/27/16.
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 import UIKit

 public class MyDataClass: NSObject {

 public func divideTwoNumbers (a:Int, b:Int) -> Int {
 return (a/b)
 }
 }

311CHAPTER 12: Testing

 I’ve defined my class and the single method as public so our Unit Test bundle can see it,
because this is a separate, supporting class. The method only does one thing: it divides
two numbers, or integers, and returns the result. In our UnitTestProjectTest.swift file, I’ve
removed the example methods and added the code seen in Listing 12-3 .

 Listing 12-3. Our Unit Test for the DivideTwoNumbers Method in Our Newly Created MyDataClass

 //
 // UnitTestProjectTests.swift
 // UnitTestProjectTests
 //
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 import XCTest
 @testable import UnitTestProject

 class UnitTestProjectTests: XCTestCase {

 var dataClass : MyDataClass!

 override func setUp() {
 super.setUp()
 // Put setup code here. This method is called before the invocation of each test

method in the class.
 dataClass = MyDataClass()
 }

 override func tearDown() {
 // Put teardown code here. This method is called after the invocation of each test

method in the class.
 super.tearDown()
 }

 func testDivide() {
 // This is an example of a functional test case.
 // Use XCTAssert and related functions to verify your tests produce the correct results.

 let c = dataClass.divideTwoNumbers(1,b: 1)

 XCTAssert(c == 1)
 }

 }

 The three things to note are the line var dataClass : MyDataClass! , which adds a variable
in our test so we can reference the data class. Second, in our setUp() method, the line
 dataClass = MyDataClass() is where we instantiate the variable for our data class. Finally
the testDivide() method is where we actually test that single unit of work—the dividing of
two numbers.

312 CHAPTER 12: Testing

 The test is very simple. We set c to be the value of dividing 1 by 1, so we would assert that
we should get 1 back. The XCTAssert(c == 1) tests the condition c == 1, and if true this
test passes. If we run it by selecting and holding down the Run button, then selecting “Test”
(Figure 12-10), we see the test passes by looking at the results in Xcode’s Test Navigator.
You get to that by selecting the Test Navigator icon—the fifth icon right of the Project
Navigator icon. Note the green check marks.

 Figure 12-10. We can see that our first Unit Test passed in the Xcode Test Navigator

 Let’s make a change to the method divideTwoNumbers(a,b) in the UnitTestProjecttests.
swift file so that it returns a zero, then let’s look at the results (Listing 12-4).

 Listing 12-4. Modify Our Method So It Always Returns a Zero

 // MyDataClass.swift
 // UnitTestProject
 //
 // Created by Molly Maskrey on 3/27/16.
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

313CHAPTER 12: Testing

 import UIKit

 public class MyDataClass: NSObject {

 public func divideTwoNumbers (a:Int, b:Int) -> Int {

 // return (a/b)
 return(0)

 }
 }

 Running the Unit Test, we see that our test, the assertion that the value should be 1 , fails
(Figure 12-11).

 Figure 12-11. If the assertion fails, we see where it failed in the Test Navigator

 So, that’s how it works with our separate MyDataClass Swift file. What often happens, and I’ll
admit that this caught me as well, is trying something like this in the UnitTestProjecttests.
swift file (Listing 12-5).

314 CHAPTER 12: Testing

 Listing 12-5. Adding a Function to Your Simple ViewController in a Single View iOS Project Like This and Trying to Test It

 //
 // ViewController.swift
 // UnitTestProject
 //
 // Created by Molly Maskrey on 3/27/16.
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 import UIKit

 public class MyViewController: UIViewController {

 override public func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 }

 override public func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }

 func divideTwoNumbers(a: Int, b: Int) -> Int {
 return (a/b)
 }

 }

 When we add code in the Unit Test to evaluate this, we get the results shown in Figure 12-12 .
Our testDivide() function cannot see the divideTwoNumbers() method in our main project
file. This is very frustrating when you come across it, and the available information out on the
Web actually tends to be a little light in addressing this.

315CHAPTER 12: Testing

 Because our MyViewController class is based on the UIViewController parent class, we can
extend the parent class in this case to include our method in the UnitTestProjecttests.
swift file, as shown in Listing 12-6 .

 Listing 12-6. Extending the UIViewController Parent Class to Include Our New Function

 extension UIViewController {
 public func divideTwoNumbers (a:Int, b:Int) -> Int {
 return (a/b)
 }
 }

 In Listing 12-7 you can see that I modified my MyViewController class to override the
extension method and make sure it is public. Although the @testable statement in the
UnitTestProjecttests.swift file is supposed to work, at the time of this writing many
people are finding that it is still a bit inconsistent in that sometimes Xcode will report missing
methods when the methods are clearly present.

 Listing 12-7. Modifying the Function in Our MyViewController Class

 // ViewController.swift
 // UnitTestProject
 //
 // Created by Molly Maskrey on 3/27/16.
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 Figure 12-12. Even doing things the way Apple says they should work, we get the unresolved identifier error

316 CHAPTER 12: Testing

 import UIKit

 extension UIViewController {
 public func divideTwoNumbers (a:Int, b:Int) -> Int {
 return (a/b)
 }
 }

 public class MyViewController: UIViewController {

 override public func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 }

 override public func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }

 override public func divideTwoNumbers(a: Int, b: Int) -> Int {
 return (a/b)
 }

 }

 Also, make sure to set the Defines Module parameter, which maintains your framework’s
umbrella header, in the Packaging section to YES . Do this in the build settings for the app
target, not the test target (Figure 12-13).

317CHAPTER 12: Testing

 Finally, in the UnitTestProjectTests.swift file add the three lines as shown in Listing 12-8 .

 Listing 12-8. Final Working Version of Our Test for the ViewController Function

 // UnitTestProjectTests.swift
 // UnitTestProjectTests
 //
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 import XCTest
 @testable import UnitTestProject

 class UnitTestProjectTests: XCTestCase {

 var vc : MyViewController! // #1 ADDED LINE

 override func setUp() {
 super.setUp()
 // Put setup code here. This method is called before the invocation of each test

method in the class.

 vc = MyViewController() // #2 ADDED LINE
 }

 Figure 12-13. Set the Defines Module parameter to Yes

318 CHAPTER 12: Testing

 override func tearDown() {
 // Put teardown code here. This method is called after the invocation of each test

method in the class.
 super.tearDown()
 }

 func testDivide() {
 // This is an example of a functional test case.
 // Use XCTAssert and related functions to verify your tests produce the correct

results.

 let c = vc.divideTwoNumbers(1,b: 1) // #3 ADDED LINE

 XCTAssert(c == 1)
 }

 }

 You should now be able to run the test successfully, as shown in Figure 12-14 .

 Figure 12-14. Our successful testing of a method within the UIViewController’s subclass

319CHAPTER 12: Testing

 Unit Testing Summary
 We covered the basic concepts for Unit Testing and the use of XCTAssert(expr) , which is the
most common statement. However, there are more statements available that you’re likely to
find useful for more specialized testing.

 XCTAssertTrue(expr) is equivalent to XCTAssert but may be a little more
obvious in your code. It generates a failure when the assertion is false.

 XCTAssertFalse(expr) generates a failure when the assertion is true.

 XCTAssertEqualObjects(a, b, format...) generates a failure when {a == b}
is false.

 XCTAssertEqualWithAccuracy(a, b, accuracy) generates a failure when
 a1 is not equal to a2 within + or - accuracy. This test is for scalars such as
floats and doubles, where small differences could make these items not
exactly equal, but works for all numbers.

 XCTFail generates a failure unconditionally.

 Even more exist for your use and can be found at developer.apple.com , but I’ve found these
work for me most of the time.

 User Interface Testing
 Problem
 Your app has several user interface elements—buttons, labels, text fields, and so on—that
need testing, and you cannot see how Unit Testing helps with that.

 Solution
 User Interface (UI) Testing provides you with the ability to locate and interact with UI
elements and validate properties and state. You can also use recording, which will help to
automate your test process, as well as integration into Xcode 7 test reports so you can see
pass and fail indications.

 UI Test contains two core technologies: XCTest, Xcode’s testing framework that we covered
in the last section on unit testing, and Accessibility, which offers rich semantic data about
the UI that XCTest can use to interact with the interface.

 UI Test Project from Scratch
 To use UI Testing you need iOS 9 or higher for your app project. Let’s work through a simple
project to get a feel for UI Test.

 Start by creating a new single view application project: File ➤ New ➤ Project (Figure 12-15).

320 CHAPTER 12: Testing

 Figure 12-15. Create a single view application project

321CHAPTER 12: Testing

 Name it whatever you’d like, but make sure to check “Include UI Tests” (Figure 12-16).

 Figure 12-16. Name your project and include UI Tests

 The first thing I did was create the storyboards (Figure 12-17). Select the view controller,
then at the top menu bar choose the following: Editor ➤ Embed in ➤ Navigation Controller.
This sets up the navigation controller structure so that the Back button will be automatically
available when we add additional view controllers.

322 CHAPTER 12: Testing

 Then, add two additional view controllers by dragging and dropping them from the object
menu (Figure 12-18). I chose to label my main view controller “Main View Controller” and the
additional two view controllers “Secondary View 1” and Secondary View 2.”

 Figure 12-17. Create the main storyboard shown here

 Figure 12-18. From the object menu, add two additional view controllers to the main storyboard

323CHAPTER 12: Testing

 Add two buttons to the main view controller from the object menu, then control-drag from
each button to one of the view controllers, selecting “Show” for the Action Segue type
(Figure 12-19).

 Figure 12-19. Select “Show” for the Action Segue type

 On each of the two new view controllers, add a label and a button (Figure 12-20). I called
mine showText and displayText , respectively.

324 CHAPTER 12: Testing

 Back at the Xcode Organizer, add two new Cocoa Touch classes as subclasses of
 UIViewController , naming them to relate to the two new view controllers (Figure 12-21).
I chose the names SecondaryView1ViewController and SecondaryView2ViewController .

 Figure 12-20. Add a button and a label to each view controller

325CHAPTER 12: Testing

 Add an IBOutlet for the label and an IBAction for the button for each associated view
controller and add the showText.text = "ALPHA" or showText.text = "BETA" to the action
for the first and second controller, respectively. Finally, set the title in the viewDidLoad()
method (Figure 12-22). These will be in the SecondaryView1ViewController.swift and
 SecondaryView2ViewController.swift files. Because we’ll be checking the title static text in
our test sequence, we’ll want to make sure it matches what we test for.

 Figure 12-21. Add two new Cocoa Touch class files, one for each view controller

 Figure 12-22. Adding code to one of the view controllers

326 CHAPTER 12: Testing

 Finally, be sure to set the custom class in the Identity Inspector associated with each view
controller to the class files we just created and modified (Figure 12-23).

 Figure 12-23. Set the custom class of each view controller in the storyboard to the proper Swift file

 Connect the outlets and actions from the UI elements on the storyboard to the
 SecondaryView view controllers by control-dragging as you normally do. When the button is
pressed while on one of these view controllers, the text will be displayed in the UILabel . You
should now be able to build and run the project, selecting either of the two view controllers
from the main screen, then change the label text in either of the individual next-level
controllers (Figure 12-24).

327CHAPTER 12: Testing

 Figure 12-24. Build and execute your project on the simulator to verify operation

 At this point we have a very basic functioning app with a UI that does something. Looking at
our UserInterfaceTestProjectUITests.swift file, we see some code has been provided for
us already (Listing 12-9).

 Listing 12-9. Template UI Test Code

 //
 // UserInterfaceTestProjectUITests.swift
 // UserInterfaceTestProjectUITests
 //
 // Created by Molly Maskrey on 4/2/16.
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 import XCTest

 class UserInterfaceTestProjectUITests: XCTestCase {

 override func setUp() {
 super.setUp()

328 CHAPTER 12: Testing

 // Put setup code here. This method is called before the invocation of each test
method in the class.

 // In UI tests it is usually best to stop immediately when a failure occurs.
 continueAfterFailure = false
 // UI tests must launch the application that they test. Doing this in setup will

make sure it happens for each test method.
 XCUIApplication().launch()

 // In UI tests it's important to set the initial state—such as interface
orientation—required for your tests before they run. The setUp method is a good
place to do this.

 }

 override func tearDown() {
 // Put teardown code here. This method is called after the invocation of each test

method in the class.
 super.tearDown()
 }

 func testExample() {
 // Use recording to get started writing UI tests.
 // Use XCTAssert and related functions to verify your tests produce the correct results.
 }

 }

 Above the setUp function, add the line let app = XCUIApplication() so that we can easily
access the application object later in the code. Change the name of the testExample
function to testMain and add the lines shown in Listing 12-10 .

 Listing 12-10. Modified First Test Case

 //
 // UserInterfaceTestProjectUITests.swift
 // UserInterfaceTestProjectUITests
 //
 // Created by Molly Maskrey on 4/2/16.
 // Copyright © 2016 Molly Maskrey. All rights reserved.
 //

 import XCTest

 class UserInterfaceTestProjectUITests: XCTestCase {

 let app = XCUIApplication()

 override func setUp() {
 super.setUp()

 // Put setup code here. This method is called before the invocation of each test
method in the class.

329CHAPTER 12: Testing

 // In UI tests it is usually best to stop immediately when a failure occurs.
 continueAfterFailure = false
 // UI tests must launch the application that they test. Doing this in setup will

make sure it happens for each test method.
 XCUIApplication().launch()

 // In UI tests it’s important to set the initial state—such as interface
orientation—required for your tests before they run. The setUp method is a good
place to do this.

 }

 override func tearDown() {
 // Put teardown code here. This method is called after the invocation of each test

method in the class.
 super.tearDown()
 }

 func testMain() {
 // // Use recording to get started writing UI tests.
 // // Use XCTAssert and related functions to verify your tests produce the correct

results.
 //
 let mainTitleLabel = app.navigationBars.staticTexts["Main View"]
 XCTAssert(mainTitleLabel.exists)
 }
 }

 However, in the current version of Xcode (7.2.1), when trying to test this build you will most
likely get something like the crash in Figure 12-25 .

330 CHAPTER 12: Testing

 Figure 12-25. Trying to test, you’re likely to see this exception crash

 To correct this, go to Xcode ➤ Preferences and choose the Locations pane. Change the
build location to Custom and Absolute, as shown in Figure 12-26 , being sure to click the
Advanced button to get these options. Your path settings should fill correctly when making
the changes.

331CHAPTER 12: Testing

 Running the test now, you should see it complete successfully (Figure 12-27). What we
did here, after creating our convenience constant for the app, was to add the line let
mainTitleLabel = app.navigationBars.staticTexts["Main View"] in the testMain function
so as to set a constant to a Nav Bar with the text we expect. Then we do a simple XCTAssert
to see if it exists, which, of course, it does. What we’ve done is test our app’s main view
controller to see if an element exists. We might use this to verify that we are seeing the
correct view controller. Since this assert returned TRUE , we can continue to do more testing.

 Figure 12-26. Setting the custom build path to Absolute should take care of this exception

332 CHAPTER 12: Testing

 Now, let’s test things out. Change the testMain function in the
 UserInterfaceTestProjectUITests.swift file to that shown in Listing 12-11 . We will first verify
that we’re on the main controller, then drop down into the first secondary view controller,
make sure the label is correct, press the button, make sure the label changes, and return to
the main view controller, where we’ll repeat this for the second secondary view controller.

 Listing 12-11. Test All the Functions of Our App

 func testMain() {
 // // Use recording to get started writing UI tests.
 // // Use XCTAssert and related functions to verify your tests produce the correct results.
 //
 XCTAssert(app.navigationBars.staticTexts["Main View"].exists)

 // Test SecondaryView1 View Controller
 app.buttons["Secondary View 1"].tap()
 XCTAssert(app.navigationBars.staticTexts["Secondary View 1"].exists)
 XCTAssert(app.staticTexts["Secondary View 1"].exists)
 app.buttons["Display Text"].tap()
 XCTAssert(app.staticTexts["ALPHA"].exists)
 app.navigationBars.buttons["Back"].tap()

 Figure 12-27. Our test should now complete successfully, validating that when our app loads we do see the view
controller that we expect

333CHAPTER 12: Testing

 // Test SecondaryView2 View Controller
 app.buttons["Secondary View 2"].tap()
 XCTAssert(app.navigationBars.staticTexts["Secondary View 2"].exists)
 XCTAssert(app.staticTexts["Secondary View 2"].exists)
 app.buttons["Display Text"].tap()
 XCTAssert(app.staticTexts["BETA"].exists)
 app.navigationBars.buttons["Back"].tap()
 }

 When we execute this, we should see the successful completion as in Figure 12-28 .

 Figure 12-28. We can test all the way down into our app

 So far, everything has worked. To verify we can detect a failure, change the last XCTAssert to
look for ALPHA instead of BETA . You should get a test failure, as we see in Figure 12-29 .

 Figure 12-29. You should verify that your tests will also correctly detect errors

334 CHAPTER 12: Testing

 Recording
 We’ve covered enough of the basics of UI Testing for you to have the tools you need to
get started. One last aspect I want to touch on is recording. Basically, recording lets us go
through the steps interactively on our simulator, recording the actions so that we don’t have
to manually enter them from scratch as we did in the last section.

 To quickly see how it works, create a new test function called testRecording() in the
 UserInterfaceTestProjectUITests.swift file (Figure 12-30). Note that we’ve left off where
we were last time with our error on the second view controller.

 Figure 12-30. Add the testRecording method, which is where we will store our UI recording

 Place the cursor in the function and then press the round red record button at the bottom
when viewing the UserInterfaceTestProjectUITests.swift file. This should start the app.
You should then follow the sequence of events we outlined in our previous test, which
records them into the function (Listing 12-12). To stop recording, press the red ball icon.

 Listing 12-12. UI Actions Are Recorded into the Function

 func testRecording() {

 let app = XCUIApplication()
 app.buttons["Secondary View 1"].tap()

 let displayTextButton = app.buttons["Display Text"]
 displayTextButton.tap()
 app.navigationBars["Secondary View 1"].buttons["Main View"].tap()
 app.buttons["Secondary View 2"].tap()
 displayTextButton.tap()
 app.navigationBars["Secondary View 2"].buttons["Main View"].tap()

 }

335CHAPTER 12: Testing

 There are some differences, notably the different way to get back to the main view from
the secondary view, but the key thing you should notice is that there are no assertions. Fix
that by copying the assertions from the testMain() function into similar locations in the
 testRecording() function, replacing the second forced failure ALPHA to BETA , as shown in
Listing 12-13 .

 Listing 12-13. Our New Recorded UI Trace with Assertions

 func testRecording() {

 let app = XCUIApplication()

 XCTAssert(app.navigationBars.staticTexts["Main View"].exists)
 app.buttons["Secondary View 1"].tap()
 XCTAssert(app.navigationBars.staticTexts["Secondary View 1"].exists)
 XCTAssert(app.staticTexts["Secondary View 1"].exists)

 let displayTextButton = app.buttons["Display Text"]
 displayTextButton.tap()
 XCTAssert(app.staticTexts["ALPHA"].exists)

 app.navigationBars["Secondary View 1"].buttons["Main View"].tap()
 app.buttons["Secondary View 2"].tap()
 XCTAssert(app.navigationBars.staticTexts["Secondary View 2"].exists)
 XCTAssert(app.staticTexts["Secondary View 2"].exists)

 displayTextButton.tap()
 XCTAssert(app.staticTexts["BETA"].exists)
 app.navigationBars["Secondary View 2"].buttons["Main View"].tap()

 }

 Comment out the testMain() function and run the test. The same UI actions should occur
as we saw previously, and our test should complete successfully (Figure 12-31).

336 CHAPTER 12: Testing

 User Interface Testing Summary
 Very similar to the way we worked with Unit Tests, UI Testing allows us to navigate the
view path in our app to look for various elements to verify their existence as well as to
activate controls such as buttons. We used static values for locating our UI elements, such
as looking for the text in a button or label. As our skill and experience grows, we’ll find
ourselves leaving these simple static checks behind in favor of using XCUIElementQuery to
locate various XCUIElements such as table views, cells, buttons, or any other element.

 Using recording, we can interactively log our transition through the app’s UI path, just as the
intended user might, pressing buttons, moving sliders, entering text, and do on. The actions
are recorded into a method of our choosing, thus allowing us to go back, add assertions,
and verify system functionality.

 Beta Testing
 In Chapter 10 we followed all the steps needed to submit our project archive to the App
Store. One of the last things we saw was the email confirmation from Apple (Figure 12-32).
We won’t go over those steps again here; rather, we’ll start from the point we left off at in
Chapter 10 , but instead of an actual submission to the App Store, we’ll figure out how to test
using TestFlight.

 Figure 12-31. Our recorded test should complete successfully just as we saw earlier

http://dx.doi.org/10.1007/978-1-4842-1820-4_10
http://dx.doi.org/10.1007/978-1-4842-1820-4_10

337CHAPTER 12: Testing

 Internal Testers
 An Internal Tester is someone who is part of your team and has either Admin, Technical, or
Legal access to your app through iTunes Connect. To add an Internal Tester, log in to the
iTunes Connect portal, go to My Apps, choose the TestFlight pane, and then select “Test
Information” on the left (Figure 12-33). At a minimum, complete the “Feedback Email” and
“Marketing URL” fields.

 Figure 12-32. For our exercise in Beta Testing with TestFlight, we will begin where we left off in Chapter 10

 Figure 12-33. Begin setting up TestFlight by entering basic information about feedback and marketing

http://dx.doi.org/10.1007/978-1-4842-1820-4_10

338 CHAPTER 12: Testing

 Go down to the Internal Testing section and add a name and email address for a qualified
user (Figure 12-34).

 Figure 12-34. Add your qualified user to the Internal Tester list

 Where do these acceptable Internal Testers come from? First, you need to add them into
the iTunes Connect system itself. Back on the main iTunes Connect screen, select the Users
and Roles icon. Then you should be able to add new users to your list of available testers
(Figure 12-35). I always select “Technical” as the role for my testers. Because I manage my
own email domains, I generally add an identifiable email address that I’ve created so the
account can be added. If you try to add invalid accounts, the iTunes Connect process will
usually detect this and will not allow the addition.

 Figure 12-35. Before you can add testers to your app, you need to make sure the IDs and email addresses you intend
to use represent an actual role in your iTunes Connect account

339CHAPTER 12: Testing

 Go back to the “Internal Testing” section and select which iOS version you wish to test
(Figure 12-37), then click Next to enter compliance data.

 Under TestFlight Builds, select “iOS”; you can see that our app (townslot2) from Chapter 10
is ready for internal testing (Figure 12-36).

 Figure 12-36. Verify that your app is ready for TestFlight internal testing

 Figure 12-37. Select which app you plan on testing internally

http://dx.doi.org/10.1007/978-1-4842-1820-4_10

340 CHAPTER 12: Testing

 As you can see in Figure 12-38 , I’ve said we have no export compliance issues.

 Now you should see the version we just added as being the one selected for testing
(Figure 12-39).

 Figure 12-38. Select the correct options regarding exporting apps that may contain cryptography

 Figure 12-39. Once you have entered the compliance information, your app should be selectable as the one to be tested

341CHAPTER 12: Testing

 The last thing is to click the Start Testing button, which will send invitations to your Internal
Tester list (Figure 12-40).

 Figure 12-40. Select Start Testing to have your Internal Testers begin playing with your app

 Your tester will get an invitation email inviting them to install and use the app (Figure 12-41).

 Figure 12-41. Your testers receive an email inviting them to start testing your app

342 CHAPTER 12: Testing

 After clicking on Start Testing, the user will be invited to install the app and be provided with
detailed information about the build (Figure 12-42).

 Figure 12-42. Your tester can install the app via TestFlight

343CHAPTER 12: Testing

 External Testers
 The external beta test process follows pretty much the same steps as we took with internal
testers, with a few differences. One important distinction between internal and external
testing is that external testers do not have to be part of your team; that is, they don’t have
to be entered as members of your organization in iTunes Connect. However, this means
that your app—the unproven, beta version of it—is going out into the “real world.” Apple
has some say in this and will not allow this distribution without first examining the app
themselves for serious issues. Much like when an app is reviewed before placing it on the
App Store, they need to make sure it’s not filled with bugs and, more importantly, that it is
free of viruses and malware. The level of examination is at less detail than with an official
release, but don’t expect it to be significantly so.

 They can open and run the app immediately after the download has completed (Figure 12-43).

 Figure 12-43. As soon as the app download has completed, your users may begin testing the app

344 CHAPTER 12: Testing

 Just like before, add your external testers, either from an existing list or by adding new
testers (Figure 12-44).

 Figure 12-44. You’ll need to first add external testers to your beta program; they do not have to be part of your team

 You may add existing testers from other groups. In Figure 12-45 you can see I’ve added one
of my CoinToss game app’s testers.

 Figure 12-45. You can add existing external testers of other apps you may have already beta tested

345CHAPTER 12: Testing

 You can also add new testers, making sure that their email address is valid and reachable
(Figure 12-46).

 Figure 12-47. Add your build for test distribution to external users

 Figure 12-46. Most likely, unless the beta version of your app is for an existing client or a new version, you’ll want to
add new testers specifically for this project

 And, just as with internal testing, you’ll add a build to distribute (Figure 12-47).

346 CHAPTER 12: Testing

 In the case of external beta testing, you’ll be entering a bit more information so that your
testers can get a sense of what you’re looking for; Apple’s will look at this information also
during the pre-test before your app can actually be distributed to users (Figure 12-48).

 Figure 12-48. Add the information that your testers might want to focus on when using your app

347CHAPTER 12: Testing

 Finish up with any notes you might want to include, such as test accounts needed by
Apple or the users (Figure 12-50). Press the Submit button, and the build, along with the
information we just entered, will be passed to Apple for review. I’ve personally found that
this step takes about a day or two as the process may be a bit streamlined, though no one
knows for sure, and Apple isn’t telling. I’ve had apps be approved for beta testing within a
couple hours, and some have taken as long as three days. My suspicion is that it depends
on the workload Apple is dealing with at the time of submission.

 Add your contact information (Figure 12-49).

 Figure 12-49. Add the correct contact information so your testers can reach you

348 CHAPTER 12: Testing

 Testing Summary
 As with pretty much every other chapter and section in this book, there’s far more material that
can be covered on the subject of testing than is covered here. If you look around you’ll find
books and online courses on test-driven development, many specific to iOS and Mac OS X.

 What I hope to have accomplished in this chapter is to have given you the basics to get
started and to get past the fear that testing and designing for test is something all powerful
and mysterious. Basically, it’s really nothing more than taking a lot of your specifications and
implementing them as tests; unit tests more so, but UI testing as well. By creating your tests
first, set against your system requirements, as you write your Swift code you can immediately
see if you are meeting those requirements. What’s more, you’re doing it empirically, not just
thinking about it, but specifically measuring your results against preset criteria.

 We talked about Unit Testing and User Interface Testing, which are now, with the release
of Xcode 7, integral parts of the IDE and far easier to use than in times past. UI Recording
offers you the ability to create much of your test functions by simply going through the UI as
a user might do. All your app interactive transitions are recorded, and all you need do is to
add the proper assertions to verify successful completion.

 Finally, we talked about the two types of beta testing in which you can have actual users
play with your project and give you valuable feedback. Internal Testers, part of your
development team and entered into your iTunes Connect portal, can test your app without
significant review from Apple. Your bundle is checked upon upload by an automated process
for correctness, but functional issues and even crashes are not covered. There is no human
in the loop checking it for internal testing—not at this time, anyway.

 Figure 12-50. Complete the app setup and submit to Apple for review before distribution

349CHAPTER 12: Testing

 External beta testing follows pretty much the same path as internal testing with some
additional information being required, as well as having Apple review the app before it can be
distributed to your testers. This ensures, to the extent that it can, that many of the common
issues that Apple sees every day, such as crashes, are addressed before being released.

351© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_13

 Chapter 13
 iOS Accessories

 What Is an Accessory?
 What do we mean by accessory ? I define an accessory as any external hardware device that
connects to the iPhone via the Lightning connector at the bottom of the phone or via
Bluetooth 2.1+EDR wireless signal, i.e., standard Bluetooth. Connecting electronic
equipment to an iOS device by either of these means requires the developer to be part of
Apple’s MFi program. You can, of course, connect other accessories to your iPhone through
Wi-Fi, Bluetooth 4.0 Low Energy (BTLE), and, with a little work, the headphone jack.

 I know what you’re thinking. The iPhone is a portable, self-contained device that got us
away from all the cables associated with keyboards, mice, game controllers, tablets, and the
like. Why would we want to bring all that junk back onto our desk?

 The answer is simple: Functionality. Connecting an accessory to the iPhone adds new
features that can greatly expand its use into as yet unidentified realms. The addition of
functionality increases the usefulness of the iPhone and makes it even more valuable than
ever. Many people who previously thought the iPhone was just a fancy calling device (why
would they ever need one?) can now see real potential in the problems that this combination
(iOS device + accessory) may help to solve.

 Note The Apple MFi (Made for iPod/iPhone/iPad) program allows developers access to
components, tools, documentation, technical support, and logos to create sophisticated accessories
that connect to iOS devices.

352 CHAPTER 13: iOS Accessories

 Uses of Accessories
 Years ago in my book, Building iPhone OS Accessories (2010), I described several
potential uses of accessories that could be coupled with an iOS device. I included mobile
point-of-sale terminals, electronic wallets, in-store purchasing, glucose and blood pressure
monitoring, in-home diagnostics and monitoring, and game controllers. Those and hundreds
of other more interesting devices are bought and sold every day as all aspects of our lives
become interconnected through the use of mobile devices and connected accessory
equipment. Let’s take a brief survey of some of the areas where these unique creations make
our lives easier and better before diving into just exactly what we mean by an accessory.

 Point-of-Sale (PoS)
 Merchants can attend craft fairs and sell their products using a credit card accessory
to accept cashless payments. This market has skyrocketed with systems from Square,
VeriFone, PayPal, IDTech, and so many others. At the end of 2009 I actually had my first
MFi accessory, the AirePoint point-of-sale terminal, approved by Apple. It was a small credit
card reader that attached through the 30-pin dock connector (Figure 13-1). By offering a
more “blocky”—some called it ugly—device, no modifications to either the hardware or the
app were needed when the iPad first came out to immediately have an iPad point-of-sale
system. Merchants began duct taping the AirePoint to iPad devices mounted on stands,
thus creating early versions of self-service kiosks.

 Figure 13-1. The author designed, manufactured, and sold one of the first commercially available credit card swipe
accessories for the iPhone in late 2009

353CHAPTER 13: iOS Accessories

 By designing a very simple system of electronics and firmware (Figures 13-2 and 13-3), I kept
costs significantly lower than first anticipated and increased profits during early sale years.

 Figure 13-2. With a few pieces of plastic, a low-cost reader head, a dock-connector, and a circuit board, merchants
could now accept credit card payments anywhere they had a WiFi or cellular signal

354 CHAPTER 13: iOS Accessories

 With the introduction of the iPad and its larger screen size, self-service point-of-sale
terminals rapidly started taking brick-and-mortar establishments by storm. In 2011 Jennifer
and I helped start a company that designs and manufactures production and custom tablet
kiosk systems. Customers at restaurants, retail shops, museums, and even churches can
order or purchase products, view information interactively, and even make donations at their
own pace.

 With the EMV mandate that occurred October 2015, simple magnetic stripe cards are
quickly being replaced by smart cards with built-in electronics, including a computing
engine, to address security concerns and fraudulent charges. EMV systems for Apple
devices have already started hitting the market, with products such as VeriFone’s e333
payment solution, which includes chip-and-pin, NFC (Near Feld Communications), swipe,
and a 2D optical scanner. More devices are likely just around the corner.

 Note The EMV (EuroPay/MasterCard/Visa) mandate shifts the liability for fraudulent credit card
transactions to the weakest link in the processing chain. EMV describes it this way: The party,
either the issuer or merchant, that does not support EMV assumes liability for counterfeit card
transactions.

 Figure 13-3. Using only a small 8-bit microcontroller and minimal support circuitry, the essence of a complete point-
of-sale system was born

355CHAPTER 13: iOS Accessories

 Note Near Field Communications (NFC) technology provides a short-range (typically 10cm or less)
communications set of protocols that allow devices to communicate when placed close together.
This provides security measures to help prevent other forms of wireless sniffers from reading
personal data such as credit card information.

 Apple Pay, introduced in September 2014, takes payments a step further and eliminates
the need to use separate accessories. With the recent integration of Apple Watch, making
payments for purchases using this wireless feature will surely offer some serious competition
for point-of-sale accessories. By using NFC technology, the customer no longer needs to
insert a physical card or even carry her actual card with her. Information about the account is
securely stored in her iOS device, allowing fast and secure transactions.

 While payments became a huge market for iOS accessories, other exciting markets also
sprang up that offered new and interesting ways to connect to people.

 Sports and Games
 From an app-enabled robot-like sphero (Figure 13-4) to smart soccer balls such as the
adidas miCoach SMART BALL to the LiveRowing Connect, accessories are taking over
the sports and game market, allowing for creativity, performance monitoring, and friendly
competition with your online friends. It seemed to begin with small robot vehicles, cars,
trucks, and even drones that came to market in the early days of the MFi program. To be
able to control something that moved independently and without wires really extended the
reach of your iPhone beyond texting or browsing the Web. Engineers, including myself,
scooped up these early products with all their imperfections and expanded our concept of
what could be accomplished. We imagined, made improvements, and created altogether
new ideas that still surprise me when they first show up. It’s either, “I need that!” or “Why
didn’t I think of that?” New ideas, even if not my own, spur my imagination and drive my
passion to keep doing this type of work.

356 CHAPTER 13: iOS Accessories

 Figure 13-4. Games like sphero turn your living room into a video game with augmented reality apps, or upgrade
family game night with multiplayer games. Sphero is also pet-proof, swims, and is ready to roll wherever you go

 Figure 13-5. Concept2 rowing machines found in many gyms and health clubs across the world offer a USB port on the
bottom of the Performance Monitor head unit allowing use of the LiveRowing Connect cable accessory with your iPhone

 As mentioned earlier, LiveRowing (Figure 13-5) offers a rowing-machine-to-iPhone cable
permitting the monitoring and tracking of your workouts. The cable connects the USB port
of a Concept2 Performance Monitor (PM) (Figure 13-6) with an Apple Lightning connector,
allowing for complete data collection of your exercise session. The USB connection on the
PM can often be difficult to find; it sits underneath the PM head unit and is a standard
Type B port.

357CHAPTER 13: iOS Accessories

 In April of 2014 we contracted with LiveRowing to help bring this unique product to the
marketplace. The design essentially expands on the original Concept2 iPhone Connection
kit, which used a 30-pin dock connector that allowed the attachment of the original iPhone
through to the iPhone 4 series. The ErgData app permitted basic collection and monitoring
of your workout. LiveRowing extended this to a fully interactive system (Figure 13-7) that
allows you to race your connected friends on various waterways and courses.

 Figure 13-6. A predecessor to LiveRowing Connect, the Concept2 iPhone Connection Kit, tracked and monitored
workouts using your 30-pin Apple device

358 CHAPTER 13: iOS Accessories

 Figure 13-7. Using the LiveRowing app, friends compete with each other in real-time on virtual waterways and race
courses, allowing social interaction across thousands of miles

 The next sports accessory I want to talk about pushes the envelope a little further. Systems
such as LiveRowing and other performance monitors typically move data between a piece
of equipment and your iOS device to allow for monitoring, tracking, goal setting, and even
competition. Over the past year I have developed a sensor system that wirelessly tracks the
orientation and movement of itself. That is, if the sensor is moved in a direction, that spend
and direction is measured and sent out wirelessly. Similarly, if the sensor’s orientation in
the X, Y and Z axes is changed, that data also gets sent out over the air. The astute reader
will, of course, tell me this is what the iPhone already does. But what if I specifically and
independently wanted to measure the movement and orientation of my feet?

 As I’ve no doubt beat into the ground, my passion of dance drives many aspects of my life,
especially my occupation and choice of research. Dance is by nature a nearly pure artistic
form of expression. You move to an outside stimulus, the music, but are driven by your own
internal interpretation of that music combined with the syllabus of the style of dance. The
student follows a syllabus on the journey to becoming more skilled and determining if they
should compete or simply practice more until they get it right.

 The question becomes, “How do I get it right?” As a dancer, I don’t want to concern myself
with the rules as much as I want to express myself artistically. But my engineering brain
continually and objectively analyzes each and every movement; are my feet in the proper

 Note A syllabus in dance refers to the written framework denoting the proper movements for
each level of achievement a student attempts as they try to improve. It also defines proficiency
levels during competitions. If, for example, you compete at a certain level, but do not stay within
the syllabus for that level, you might have points deducted or even be disqualified. Essentially, a
syllabus offers the rules of dance.

359CHAPTER 13: iOS Accessories

position, did I make that last step correctly, how’s my frame looking, is my rear sticking out?
Other than having a skilled and observant instructor constantly watching my every (mis)step,
there’s really no way for me to know. I decided that I had to change things, because this
inability to quantify basic body movement seemed ludicrous.

 The first step was to determine how the measurement would be performed. This was pretty
easy, as the parts have been readily available for some time. I used a small micro-electrical
mechanical system (MEMS) integrated circuit (Figure 13-8) with several built-in functions and
a standard serial peripheral interconnect (SPI) bus interface port.

 Figure 13-8. Readily available devices can measure movement and orientation in each of three axes and provide that
information over standardized communications ports

 Step two connected the I/O port of the MEMS part to an off-the-shelf Bluetooth module,
using a small, four-layer printed circuit board (PCB) (Figure 13-9). Although the complete
circuit could have been put together on a breadboard for testing, using a PCB with soldered
components permitted the prototypes to be used in actual testing attached to each of the
dancer’s feet. The sensors can be placed into an orthotic underneath the dancer’s foot, or
be externally mounted to the top or bottom of the shoe (Figure 13-10). As the measurement
data and analysis results combine to change our perceptions and reshape our actions, we
move toward the concept of a connected self. The connected self enhances our senses and
perceptions of our movements and reactions to stimuli. Rather than diminishing, we improve
and reach for our goals using empirical information and objective methodology as opposed
to just wishing and hoping we improve as we practice.

360 CHAPTER 13: iOS Accessories

 Figure 13-9. Two small PCBs, one for each foot, allow continuous wireless monitoring of the dancer’s movements
during training, or even during a performance, and takes us toward the connected self

 Figure 13-10. Using nothing more than a 3D-printed plastic PCB carrier and a strip of Velcro, the author was able to
test the sensor system on an actual dance floor

361CHAPTER 13: iOS Accessories

 After fitting the prototype sensor module to the bottom of my shoe, I was able to move
about the dance floor as the sensor recorded my foot position at a rate of 20 samples per
second. Initially limiting testing to one foot at a time, I was able to not only monitor the pitch
and roll of my foot, but also determine whether that position was correct or incorrect for
the dance style I attempted. Using an Apple Watch, the information was presented visually,
audibly, and haptically. The latter was achieved by generating a vibration of the watch
through the use of the Apple Watch’s taptic engine when an incorrect movement
was detected.

 I’ll go into much more detail in Chapter 17 , where I present a complete walkthrough of
the project. My hope is to show, through examples, how you too can find a problem that
you might have been mulling over for some time and use the innovation inside yourself
along with the techniques and skills presented throughout this book to discover innovative
solutions that push your abilities toward their limits.

 Home Automation and the Internet of Things
 A couple of months ago I was asked to give a talk on IoT technology as the keynote
speaker to a good-sized crowd of people, the vast majority of whom I had never met.
IoT is one of those areas that has become such a buzzword and pretty much everything out
there is becoming IoT’d. Whether or not this is a good thing is pretty much irrelevant; it’s
happening whether anyone likes it or not. The question becomes, will we use it, and if so,
how will we use it?

 My main experience with IoT comes from those annoying tire pressure sensors hidden
somewhere on my car. Since I live in Colorado at about 6,200 feet, the weather changes
are significant, and transitions of 50 degrees or more can happen in a single day. For some
reason this sets off my car’s pressure gauges. Checking manually, there’s no difference in
pressure. They were 24 lbs. yesterday and they’re 24 lbs. today, so why is that stupid alarm
going off?

 Like any new use of technology, IoT will have its good and bad points. Every few days a
news article surfaces about how someone’s baby monitor was hacked or how a car was
taken over remotely. These are of definite concern and are being addressed by the whole IoT
community. Although IoT encompasses a vast landscape of devices, from industrial systems
management to tracking your pet’s whereabouts through a smart tag on their collar, we’re
going to focus on the area of home automation in this section (Figure 13-11).

http://dx.doi.org/10.1007/978-1-4842-1820-4_17

362 CHAPTER 13: iOS Accessories

 Apple announced HomeKit in 2014 at the Worldwide Developer’s Conference as an iOS
feature that provides rationality and consistency in the home automation space. The key
features of HomeKit include a common database for the devices or accessories that are part
of the HomeKit environment, encrypted data and protocol links, a hierarchical structure for
defining your home, higher-level constructs such as zones, and Siri control of your devices,
which lets you speak commands to manage your home.

 The top-down structure begins with the home as the master container. You can have
multiple homes, of course, but everything is contained in a home. Each home has rooms,
and accessories are found inside rooms. So far this is all fairly logical and follows the natural
organization of the physical nature of most everyone’s setup.

 Just below accessory is the service layer. By this we mean that every accessory contains
one or more services. Some services are mandatory, such as the information about the
service, whereas others are optional and depend on the accessory. For example, a lamp
might have a light bulb service, while a garage door opener would also have a light bulb
service, but a motor service and maybe a sensor service as well. Services are controlled and
monitored through the bottom layer of the hierarchy—characteristics. A light bulb service
could have a status characteristic that showed it as on or off, or it might have a brightness
characteristic that ranges from 0.0 (off) to 1.0 (fully on). It could have a hue characteristic
that lets you change the color of the light. Characteristics can be read or write. You might
only read a sensor characteristic on a garage door, but you would read and write to the
motor characteristic.

 In Chapter 16 we’ll work our way through a simple home automation project using the
HomeKit framework to see how it is used from a software perspective. Obviously, to see the
true effects of our work, we’d want to have actual devices to control. For our project I found

 Figure 13-11. Just about any electronic device in your home can be monitored and controlled though IoT and home
automation technology

http://dx.doi.org/10.1007/978-1-4842-1820-4_16

363CHAPTER 13: iOS Accessories

a relatively inexpensive HomeKit-enabled power plug from iHome (Figure 13-12). Because
it manages a standard AC outlet, you can plug in pretty much anything that doesn’t draw
too much current. As I kind of like to show off, my appliance of choice happens to be a
small disco ball. I mean, don’t we all have a disco ball somewhere in our homes? But a lamp
works just as well.

 Figure 13-12. The SmartPlug from iHome offers a low-cost, easy way to get started with HomeKit and IoT home
automation software projects

 In the early days after WWDC 2014 and the HomeKit announcement, there were very
few—a.k.a. zero—HK accessories in the marketplace. In fact, it wasn’t until late in the
summer of 2015 that I personally started seeing more and more HK accessories arriving
on sites like Amazon. Apple helped developers by also releasing the HomeKit Accessory
Simulator OS X application (Figure 13-13), which allows you to create a basic accessory
database on your Mac to emulate different types of accessories. Using a BTLE-enabled
Mac, you can even control these simulated accessories from your iOS device and use Siri
for voice commands.

364 CHAPTER 13: iOS Accessories

 Usage Summary
 In the past few sections we have covered some of the basic areas of iOS accessories that
have sprung up since their introduction over five years ago. From fun and games to serious
medical applications to home automation, accessories span the full range of what can be
done fairly easily using iOS. But how do we work with accessories within iOS and Xcode?
How we access and use an accessory depends on what kind of accessory we are working
with. We won’t discuss WiFi accessories here, as those would use normal Unix-like transport
protocols. Accessories using the headphone jack are a little more specialized, though not
that hard, and in that case we typically work with the audio frameworks to convert audio
signals so they have the ability to carry data. These techniques are used for PoS and other
accessories like the Square credit card reader.

 If an accessory uses Bluetooth 4.0 Low Energy, then we work with the iOS Core Bluetooth
framework; we’ll get more experience with this in our project chapters. The remaining
category of accessories is for those created under Apple’s MFi program. For those, you
will need to use Apple’s EAAccessory framework. Because we’re going to be focusing our
interconnection discussions around BTLE in order to keep things simple and not requiring an
MFi license, we’ll only briefly address using the EAAccessory framework.

 Figure 13-13. The HomeKit Accessory Simulator OS X application provides a way to create simulated accessories that
you can control and monitor from your iOS HK app

365CHAPTER 13: iOS Accessories

 EAAccessory Framework
 iPhone OS 3.0, released in June 2009, included the External Accessory framework, which
allowed an iPhone application to communicate with a user-defined piece of hardware for
the first time. As of today we’re running iOS 9.1, and, with a few small differences, the
framework hasn’t changed all that much.

 When I first started programming in Mac OS X, for a long time the term framework confused
me. Even though it was made clear that a framework was basically a library, I couldn’t seem to
get around the difference in terminology. Why did they call it framework and not just library?

 The main thing to remember is that a framework is more than a library. A framework is
actually a directory—a hierarchical directory that contains shared resources such as a library.
In addition to a library, a framework may contain xib/nib files, images, strings, header files,
and even documentation. Think of it as the all-encompassing package one level above a
library.

 A framework, by means of its included libraries, provides a set of routines that can be used
by the application to perform specific tasks. For example, UIKit provides the mechanisms
needed for your application to communicate with the user via the iPhone’s touchscreen. The
Audio Toolbox framework provides the tools needed to allow the application to use sound.
Figure 13-14 illustrates the general structure of a framework. Note that a framework includes
much more than the shared library that we tend to think of as being the framework itself.

366 CHAPTER 13: iOS Accessories

 Apple’s External Accessory framework provides the iPhone software developer with
necessary support for communicating with external hardware. Support is provided for
both the wired (30-pin or Lightning) dock connector and the wireless Bluetooth 2.1+EDR
(standard Bluetooth). The framework actually implements an agnostic interface; that is,
the code looks the same whether you’re using a 30-pin connector, a Lightning connector,
or standard Bluetooth. While changing an accessory from one protocol to another would
require MFi requirements changes, and in effect it would become a different accessory, the
software would likely function the same without modification.

 Figure 13-14. A framework contains much more than the precompiled libraries used for a specific functionality such
as audio or accessories

 Note For legacy reasons, in this chapter we use xib and nib interchangeably, although they differ
slightly. Nibs were the original UI files we created using Interface Builder (IB), which was, in the
early days, separate from the IDE part of Xcode. Xib files, Xml nIB, are essentially human-readable
versions of nibs. This allows for hand tweaking of nibs by direct editing of the XML.

367CHAPTER 13: iOS Accessories

 An iOS application communicates with an MFi accessory and the EAAccessory framework
using streams—specifically, NSInputStream and NSOutputStream . Prior to communications,
both the hardware and the app agree on how they will communicate and specify one or
more protocols. The term protocol as used here significantly differs from our normal Xcode
usage of the term. In this context a protocol is really nothing more than a name for the data
path between the external hardware and the iOS device.

 When you create a hardware accessory, you define what data gets sent back and forth
across the communications channel. You might have long strings of ASCII data, such
as names scanned by a barcode reader, or you could be dealing with binary data from a
remote sensor. You could send individual messages for each signal, or you might package
them all in one message and deconstruct them on the other side. It’s up to you to decide.
Much of the time you would use a single protocol, and thus a single protocol name, for
communication. In some more complex accessories you could have several protocols,
such as a setup protocol, an operational protocol, or a diagnostic protocol. Again, these are
names and definitions you choose. Personally, other than pseudo-bookkeeping, I’ve found
no reason to create more than a single protocol for an accessory.

 A protocol name is specified in reverse-DNS notation. A typical name format I often use is
 com.<company>.protocol1 or com.<company>.p1 for simplicity. The protocol name is specified
in both the Xcode project and the accessory firmware. Upon connecting an accessory to a
device, the accessory goes through a series of initiation steps to identify itself to the device
and iOS. Part of that sequence is telling iOS the name of the accessory protocol. In Xcode,
specifically in the Info.plist , you specify the protocol name.

 Note Apple distinguishes between devices and accessories. An accessory is a piece of hardware
created by an MFi developer. A device is an Apple device, such as an iPod, iPhone, iPad, or Apple Watch.

 After an accessory has been connected and verified, the app will create an EASession
object to manage the continued communications between the two pieces of hardware.
This is where you specify the protocol you wish to use to communicate with the accessory.
After the session instance is created, you set up the input and output streams for
communications. You have complete responsibility for configuring and managing the
selected protocol. Neither the session object nor the EASession class has any knowledge of
specific accessory protocols and makes no attempt to format the data in any way before or
after transferring it.

 Here’s an example of how to create a session object using Objective-C:

 EASession *session = [[EASession alloc] initWithAccessory:accessory
 forProtocol:protocolString];

368 CHAPTER 13: iOS Accessories

 Streams
 Streams are basically what their name implies: a sequence of data that goes from one
point to another. Like its watery namesake, our streams travel in one direction: downstream.
Therefore, in order to support bi-directional traffic, we require both an input and an
output stream.

 From within our frame of reference inside the iPhone application, we create an input stream
to handle data coming from the accessory and an output stream to handle the data we send
to the accessory. We use the Cocoa classes NSInputStream and NSOutputStream , both of
which are derived from NSStream .

 Stream objects also have properties associated with them. Most properties have to do with
network security and configuration, and as such will not be discussed here. Most important,
a stream object has a delegate associated with it. The delegate object, which in our case will
be the accessory controller object, must support the stream:handleEvent: method. Apple
has provided a prototype implementation for dealing with events from streams, which we will
discuss shortly.

 What happens is this: whenever something happens in regards to a stream, the
 stream:handleEvent: method is called. Depending on what eventCode was received, we take
one of several actions. First, we need to create the streams, and that is done in three steps
for each (input and output) stream.

 Listing 13-1 provides an Objective-C example of setting up our input/output streams to
communicate with an MFi accessory.

 Listing 13-1. Setting Up NSStreams

 if (session)
 {
 [[session inputStream] setDelegate:self];
 [[session inputStream] scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [[session inputStream] open];

 [[session outputStream] setDelegate:self];
 [[session outputStream] scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [[session outputStream] open];
 }
 else
 {
 NSLog(@"creating session failed");
 }

 Note In order to maintain the best compatibility with Apple’s Xcode documentation, I’ve continued
to use Objective-C when discussing the EAAccessory framework and accessory communications
in general.

369CHAPTER 13: iOS Accessories

 As you can see in the preceding code example, we have three things we need to do:

 1. Set the stream delegate (usually to self).

 2. Schedule the stream to execute within a run loop.

 3. Open the stream.

 Once the streams have been opened, the stream:handleEvent: method will handle events
from both the input and output streams. Why does this statement handle both input and
output streams? It does so because we set the delegate to be self for both the input and
output streams in the previous code snippet.

 When any event of interest happens in either stream, this method gets called. Note the
 NSStreamEventOpenCompleted , NSStreamEventErrorOccurred , and NSStreamEventEndOccurred
cases; these would occur for both the input and output streams and should be handled
accordingly.

 The event codes of most interest to us, NSStreamEventHasBytesAvailable and
 NSStreamEventHasSpaceAvailable , refer to the input and output streams, respectively. As is
mostly obvious, the first code means that the accessory has sent data to the iPhone and it is
ready to be read. The second code means that there is space available in the stream to send
data to the accessory.

 To deal with these two instances, either the _writeData or _readData method gets called.
These obviously handle the outgoing or incoming data transmissions.

 Listing 13-2 provides an Objective-C example of using NSStreams for accessories.

 Listing 13-2. Handling Events for an NSStream

 - (void)stream:(NSStream *)aStream handleEvent:(NSStreamEvent)eventCode
 {
 switch (eventCode) {
 case NSStreamEventNone:
 NSLog(@"stream %@ event none", aStream);
 break;
 case NSStreamEventOpenCompleted:
 // Do something for Open Completed event
 break;
 case NSStreamEventHasBytesAvailable:
 NSLog(@"stream %@ event bytes available", aStream);
 [self _readData];
 break;
 case NSStreamEventHasSpaceAvailable:
 NSLog(@"stream %@ event space available", aStream);
 [self _writeData];
 break;
 case NSStreamEventErrorOccurred:
 // Do something for Error event
 break;

370 CHAPTER 13: iOS Accessories

 case NSStreamEventEndEncountered:
 // Do something for End event
 break;
 default:
 break;
 }
 }

 EAAccessory Framework Summary
 In this section I gave you a basic overview of using the EAAccessory framework to
communicate with an MFi accessory. Although a few terms might be new and some are very
infrequently used, trust me that working with an accessory is no different than working with
any other iOS framework. In fact, compared to the complexities of audio or location services,
using the EAAccessory framework is much simpler. You’re only doing a couple of things,
such as creating a session and moving data. You’ll also respond to other events, such as
connecting or disconnecting a piece of hardware, but those use simple delegate methods
you’re likely already familiar with.

 To actually work with iOS MFi accessories, refer to the external accessory references in the
Xcode documentation. Next, we’ll spend some time talking about a more widely used way to
connect an accessory to your iPhone—BTLE and the CoreBluetooth framework.

 Bluetooth Low Energy
 To work with Apple’s Core Bluetooth framework, we first need to understand the differences
between standard Bluetooth and Bluetooth LE (BTLE) . When we talk about standard
Bluetooth, we most often refer to Bluetooth 2.1+EDR (enhanced data rate). This mechanism
provides us with a data transfer rate somewhere around 2 million bits per second.
depending, of course, on any number of different conditions.

 Because of its implementation across many different usage scenarios, Bluetooth offers a
number of different standard profiles so as to use specific services in particular scenarios.
A profile is a specification of aspects related to the wireless communications between
devices. Rather than get deeper and deeper into terminology, think of it like this: If you use a
wireless headset to talk while driving, the Headset profile (HSP) would be used. Keyboards,
mice, and other such devices would use the Human Interface Device (HID) profile. Many
other standard profiles exist and are used depending on the specific application.

 For communicating between devices where general data transfer occurs, the Serial Port
Profile (SPP) and Radio Frequency Communications (RFCOMM) protocols would be in
use. Specifically, SPP defines how the ports between two Bluetooth-enabled devices
get connected. RFCOMM defines the serial communications protocols, which essentially
emulate RS-232 ports. Basically, you can think of using standard Bluetooth as being the
wireless replacement for a wired connection between two pieces of equipment. For our
purposes, the two things that really matter are: 1) standard Bluetooth should be used when
connecting an accessory to an Apple device where a high data rate is required and 2) the
hardware accessory must be an MFi-qualified product. For lower data rates—somewhere

371CHAPTER 13: iOS Accessories

below 700,000 bits per second—we would use BTLE. Again, by using BTLE we don’t have
to work with MFi accessories, nor do we need to use the EAAccessory framework.

 Figure 13-15 depicts the hierarchical structure of Bluetooth LE. At the top is the actual
BTLE device. The device contains one or more services, and each service may contain
one or more characteristics. Note the similarity to the HomeKit hierarchy described earlier in
this chapter.

 Figure 13-15. The hierarchy of a BTLE device matches closely with the architecture of a HomeKit accessory

 In the “Sports and Games” section of this chapter I described a six-axis orientation sensor
(Figure 13-16) that I developed a while back as part of an effort to quantify ballroom dance
moves. Within the BTLE hierarchy, the PCB that contains the sensor functionality would be
considered to be at the top of the tree; that is, it is the actual BTLE device. Although the
accessory contains more than the actual Bluetooth radio, we generally refer to this as the
BTLE device.

372 CHAPTER 13: iOS Accessories

 Just as in standard Bluetooth, BTLE contains several profile types that are common across
BTLE devices. We generally only use the Generic Attribute (GATT) profile, which I like to
think of as defining the memory areas for the storage of information that we will transmit
across the wireless link. For the six-axis sensor, this information is described in an XML file
(Figures 13-17 and 13-18).

 Figure 13-16. The six-axis sensor prototypes that we will work with in a later chapter act as a BTLE device containing
services and characteristics

 Note Apple and the Bluetooth SIG (special interest group) use device differently. While Apple uses
the term device to exclusively refer to an iPod, iPhone, iPad, or Apple Watch, common vernacular is
to refer to something that functions as a Bluetooth accessory as a device. It’s a bit confusing, but
if you just pay attention to the context of the reference, you should be okay. To try and make things
more clear, I’ll try to use the combined terms BTLE device or Apple device as appropriate.

373CHAPTER 13: iOS Accessories

 Figure 13-17. GATT profile (first part) for the six-axis sensor containing the standard Generic Access and Device
Information services

374 CHAPTER 13: iOS Accessories

 Below the device level in the BTLE hierarchy, as well as contained in the six-axis sensor
PCB, are services, which then in turn contain characteristics. So, what do a service and a
characteristic really look like?

 Within a BTLE, we first define services, which can be seen in both Figures 13-17 and
 13-18 . In the first figure, two services are defined—the Generic Access Service and the
Device Information Service—with UUIDs (universally unique identifier) of 1800 and 180a
(hexadecimal), respectively. Note that these UUIDs are each four characters long. In the
second figure, you should be able to see that only one service, the Sensor Attitude Data
Service, has been defined, and with a much longer UUID. This is because the latter service
is unique and specific to this piece of hardware. That is, you’re not likely to find too many
BTLE accessories out there with this service. Because I designed this PCB and circuitry

 Figure 13-18. GATT profile (second part) for the six-axis sensor contains the Sensor Attitude Data Service and specific
characteristics defined by the design of the circuitry and PCB

375CHAPTER 13: iOS Accessories

essentially from scratch, I got to define what I want to call the service. The UUID is the
unique key that I will use in the software in order to find and connect with this service when
using the CoreBluetooth frameworks. The Sensor Attitude Data Service is what contains the
specific sensor information, such as that regarding movement and orientation.

 Again, I want to point out the difference in the lengths of the UUIDs. The first two services
are common across BTLE devices. All BTLE devices should have Generic Access and
Device Information services. The Generic Access Service is where you would specify the
name of the BTLE device using the characteristic UUID 2a00. Because all BTLE devices
should have a name, the shorter and more common four-digit UUID is used. Similarly, the
Device Information Service provides placeholders for information such as the manufacturer
name (Global Tek Labs, UUID: 2a29) and the model number (BLE112, UUID:2a24).

 Finally, let’s talk about characteristics, which are the data items that will be passed across
the BTLE wireless link. To be a bit more specific, the characteristics are actually the data
areas within the memory of the BTLE portion of the sensor circuitry where those values are
stored. It’s just like defining and naming a variable in a computer program. Looking at the
first part of the GATT profile XML listing, we have already talked about the BTLE device
name, manufacturer, and model number and how, because they are common, they use a
four-digit UUID.

 But if we look at the second part of the GATT profile, within my own defined Sensor Attitude
Data Service, you’ll see a number of unnamed characteristics with the much longer, 128-bit
UUID structure and an ID used to name the characteristic. In our Swift code, we only use the
128-bit UUID to determine the characteristic we intend to access. In fact, we can, using the
 Let statement, define our UUIDs as any constant name we so choose.

 Note 128-bit UUIDs are used to minimize the chances of overlapping definitions of either services or
characteristics in BTLE devices. Because of the long word length, the chances of two identical UUIDs
being discovered with BTLE are minimal. Many online generators can be found to create UUIDs for use
in BTLE devices. As an iOS developer, you should never have to be concerned with UUID generation.

 Just to make sure we’re on the same page, in the second part of the GATT profile you
should be able to locate eight unique characteristics under the Sensor Attitude Data Service:

 1. gatt_whoami

 2. sensor_status

 3. gatt_x_motion

 4. gatt_y_motion

 5. gatt_z_motion

 6. gatt_pitch_data

 7. gatt_roll_data

 8. gatt_yaw_data

376 CHAPTER 13: iOS Accessories

 We’ll discuss the relevant characteristics in greater depth as we work through the External
Sensor Interface Project in Chapter 17 . At this point, I just want to make sure you have a
basic understanding of the information we will be accessing via the BTLE interface.

 For each characteristic, regardless the service, you’ll see that there is a properties line. In the
first half of the GATT profile you should see a few lines that are similar to the following:

 <properties read="true" const="true" />

 This defines that characteristic. You can also think of it as being sort of like a property—as
being read only and constant. This is because things like the name, manufacturer, model
number, and so on won’t change though the course of using the accessory. The read
property means this characteristic gets read when initiated by the app on the other side of the
Bluetooth link. If you look at the second part of the profile, you’ll find lines that look like this:

 <properties notify="true" />

 This property line is used by the characteristic that holds changing values from the sensor
electronics. Remember, the PCB (electronics circuitry) consists of two parts: the sensor
and the Bluetooth module. In this section we’re talking specifically about the Bluetooth
communications. The sensor is really just a source of bits that get stuffed into the
characteristics. These properties, in turn, define how the communications section of the
Bluetooth circuitry, what we typically refer to as the Bluetooth radio, uses that data. By
specifying notify="true" , the radio knows to transmit this information over the Bluetooth
wireless link whenever the value changes.

 Although you don’t see the firmware that is also part of this circuitry, it is in that code where
we read the sensor values and place them into the characteristic at a rate of 10 to 20 times a
second. Remember, we have six axes of data, which multiplies out to 60 to 120 data values
captured and stored per second. If the sensor is still, the value may not change, and thus we
don’t want to reduce battery life by transmitting a value we already have. This is the essence
of the notify parameter. The radio only sends a value when it changes, thus keeping the
power usage as low as possible and extending battery life to the fullest.

 One thing I haven’t mentioned yet that is key to this whole discussion of BTLE is the roles
assumed by the different sides of the communications link. The reason for this delay isn’t
necessarily my ineptitude as a writer, but that, as with so many other terms, Apple uses a
different naming convention, and I wanted to wait until we were ready before adding much
confusion to the mix.

 As with most distributed systems, BTLE operates with two sides: the client and the server. The
server creates or, more specifically, sources the data. It may gather the data from elsewhere,
but the Bluetooth radio that sends the data is called the server. Conversely, the side that
consumes or uses the data is what we refer to as the client. And while in some cases both
sides may assume either role, in our remote sensor example the sensor is the server and the
app running on our Apple device is the client. Got it? Now, let’s make it confusing.

http://dx.doi.org/10.1007/978-1-4842-1820-4_17

377CHAPTER 13: iOS Accessories

 Core Bluetooth
 In Core Bluetooth, Apple defines two different terms for the roles used in BTLE
 configurations . The producer of the data stream is referred to as the peripheral while the
consumer of the data goes by the term central . When viewed from a software aspect, as
is the role of the Core Bluetooth frameworks anyway, this sort of makes sense. Because
we’re writing an app, that’s where all our effort tends to be focused. Our coding tends to be
centralized in the iOS device we’re using, and that’s where we concentrate our work. In this
situation, to us, the producer of the data is just a peripheral.

 So, just to reiterate:

 Common Bluetooth Vernacular Apple Terminology

 SERVER PERIPHERAL

 CLIENT CENTRAL

 Processing Flow
 Because Apple uses their own specific terms for the two roles in a BTLE link, the use of
the Core Bluetooth (CB) framework references those roles throughout the documentation.
To start to become familiar with Apple terminology, I’m going to now talk a little bit about
how the flow of processing would work in your iOS app. In describing the flow and code
setup using Swift, I’ll only use references from our project in Chapter 17 to help with
consistency. The basic operational flow, when reading data from a server-only BTLE device,
consists of the following steps:

 1. Instantiate a central manager object.

 2. Discover peripherals within range.

 3. Connect to the desired peripheral(s).

 4. Determine what services the peripheral has to offer.

 5. For those services of interest, determine which characteristics are available.

 6. Retrieve the characteristic data of interest.

 Instantiate Central Manager Object
 The first thing that needs to be done when using the Core Bluetooth framework is to import
the framework and create a CBCentralManager , as shown below. The queue parameter sets to
where we dispatch the central role events. If the value is nil , the central manager dispatches
central role events using the main queue. As you see, I’ve simply retrieved the main queue
using the dispatch_get_main_queue() method for documentation clarity, for which I could
just have easily set to nil.

 import CoreBluetooth
 var manager:CBCentralManager!

 manager = CBCentralManager(delegate: self, queue: dispatch_get_main_queue())

http://dx.doi.org/10.1007/978-1-4842-1820-4_17

378 CHAPTER 13: iOS Accessories

 Note also that the delegate is set to self , which means that we need to subscribe to the
appropriate delegate protocol. Since this happens in my ViewController.swift file for the
sample project, the ViewController declaration will look like the following:

 class ViewController: UIViewController, CBCentralManagerDelegate, CBPeripheralDelegate {}

 You can see that we subscribe to both the CBCentralManagerDelegate and
 CBPeripheralDelegate protocols. We’ll use the CBCentralManagerDelegate protocol methods
immediately and the CBPeripheralDelegate methods once we connect to a peripheral of
interest. As you will recall from our earlier discussion, in a BTLE connection we have both, in
Apple terminology, a central and a peripheral. Each has its own set of protocols that we will
need to follow.

 After we create the central manager object, we wait to see if the object posts any changes of
its state. Specifically, we are looking to see if we get an indication that the central manager is
powered on. Otherwise, we may need to let the user know to turn on Bluetooth in Settings.
To do this, we use the CBCentralManager delegate method, centralManagerDidUpdateState ,
as shown here:

 func centralManagerDidUpdateState(central: CBCentralManager) {
 // see if our BT is powered on first
 if central.state == CBCentralManagerState.PoweredOn { ...}
 ...}

 If we determine that we are in a powered-on state, meaning Bluetooth is up and functional,
we want to see what’s out there. We scan for any peripherals within the range of the
Bluetooth radio using the scanForPeripheralsWithServices method call.

 Note Bluetooth Low Energy was designed to maintain a range (distance between the Central and
Peripheral) similar to standard Bluetooth, or roughly 100 meters.

 Discover Peripherals
 After we start the scanning process, we wait for the BTLE processor and iOS to discover
and report back any BTLE devices found within range. These are identified using the Central
Manager delegate method didDiscoverPeripheral as shown here:

 func centralManager(central: CBCentralManager, didDiscoverPeripheral peripheral:
CBPeripheral, advertisementData: [String : AnyObject], RSSI: NSNumber) { ... }

 This method returns an array of CBPeripheral objects over which we can iterate to find the
specific peripheral (BTLE server) in which we are interested and to which we desire to be
connected. In our example project this will be the sensor logic board.

379CHAPTER 13: iOS Accessories

 Connect Peripheral
 After iterating over the CBPeripheral array returned to us by the didDiscoverPeripheral
method, we connect to that peripheral using the connectPeripheral method call of our
Central Manager object as shown:

 manager.connectPeripheral(peripheral, options: nil)
 manager.stopScan()

 We also may want to stop the scanning for peripherals in order to conserve the battery
on our Apple device using the stopScan method. However, if we are looking for multiple
peripherals, such as would happen if we were looking to connect to two sensors—one
for each foot, for example—we’d only stop scanning once we knew that all peripherals of
interest had been successfully connected.

 When a successful connection is made, we are notified by the Central Manager delegate
method didConnectPeripheral as shown here:

 func centralManager(central: CBCentralManager, didConnectPeripheral peripheral:
CBPeripheral) { ...}

 It is in this method where we will start to discover services using the CBPeripheral delegate
methods. We also have other Central Manager methods we will be using, such as when we
disconnect or fail to connect to a peripheral, that we’ll cover more completely in Chapter 17 .
Just as a reminder, each peripheral (BTLE server) contains one or more services that will contain
characteristics (the data) that we want to use in our iOS application.

 To start the service discovery process, we use the discoverServices of the peripheral object
of interest, first setting the delegate for our peripheral object:

 peripheral.delegate = self
 peripheral.discoverServices(nil)

 Caution Remember, if you are connecting to multiple peripherals in the application you want to
make sure you do this for each one; for example, a sensor for both the left and right feet.

 Caution The didDiscoverPeripheral delegate method returns all BTLE objects in range.
This could be a keyboard, a fitness monitor, a game controller, and so on. If you’re at home and
have an electromagnetically benign environment, then things tend to work well. Once you get out
into the real, noisy, world, you’ll see a lot more devices. You need to be careful as to how you look
for a specific peripheral. In Swift, the CBPeripheral object, depending on current versus future
changes in the language, could be a Swift optional. As such, you need to be careful and not force
unwrap the object in case it turns out to be nil. This would crash your app.

http://dx.doi.org/10.1007/978-1-4842-1820-4_17

380 CHAPTER 13: iOS Accessories

 Because we now have one or more connected peripherals, we’ll start using peripheral
methods and CBPeripheral delegate callback methods. Sometimes, when first working
with the CoreBluetooth framework, it can be a little confusing as to which protocol and
methods to use. Just remember that until we have a connected peripheral we don’t have
any CBPeripheral objects with which to work, so we use the CBCentralManager object and
delegate methods.

 Determine Services
 After we set the peripheral delegate and call the discoverServices method , and upon
receiving a set of services, the CBPeripheral delegate callback method didDiscoverServices
gets activated and returns a CBService object, which represents a peripheral’s service—the
collection of data and associated behaviors for accomplishing a function or feature of the
peripheral—as shown here:

 func peripheral(peripheral: CBPeripheral, didDiscoverServices error: NSError?) { ..}

 Within this method we will iterate over all the characteristics in the collection to find those
of interest in our application. In our sample sensor project (Chapter 17) three services exist
within the GATT profile: General Access, Device Information, and Sensor Attitude Data.
We’re most concerned with the characteristics in the Sensor Attitude Data Service, as that
will be where information about the sensor’s movement and orientation exists. Our app
needs that data in order to provide a visual representation of the sensor’s position and
movement. The next step in the sequence would be to, for each service of interest, discover
its associated characteristics using the discoverCharacteristics method:

 sensor.discoverCharacteristics(nil , forService: aService)

 Discover Characteristics
 Once characteristics are found, the didDiscoverCharacteristicsForService CBPeripheral
delegate method (Listing 13-3) callback returns a list of characteristics for each service of
the connected peripheral of interest. As we iterate over the collection of characteristics for
a particular service in which we are interested, we set the notify value of the characteristic
to true using the setNotifyValue method. This will allow our app to process the data only
when the value of a characteristic changes, thus saving power and extending the battery life.

 Listing 13-3. Discovering Characteristics

 func peripheral(peripheral: CBPeripheral, didDiscoverCharacteristicsForService service:
 CBService, error: NSError?) {
 for aCharacteristic in service.characteristics! {
 if aCharacteristic.UUID.description.uppercaseString ==
 ROLL_CHARACTERISTIC.uppercaseString
 {
 sensor.setNotifyValue(true, forCharacteristic: aCharacteristic)
 }
 if aCharacteristic.UUID.description.uppercaseString ==
 PITCH_CHARACTERISTIC.uppercaseString

http://dx.doi.org/10.1007/978-1-4842-1820-4_17

381CHAPTER 13: iOS Accessories

 {
 sensor.setNotifyValue(true, forCharacteristic: aCharacteristic)
 }
 }
 }

 You’ll see in the previous code snippet that we’re only interested in two characteristics
for our service—the roll and pitch. As you’ll see later when we discuss the project, we put
the sensor on the foot to monitor two angles along the same plane as the floor. The pitch
refers to how much the toe is angled up or down relative to the floor. In other words, it’s the
angle of the foot to the floor. Roll refers to how much the inside or outside edge of the foot
is angled to the floor, or how much you roll your foot in or out. If you’ve played any active
sports such as tennis, volleyball, and so on, you’re probably familiar with the tremendous
pain when you roll your foot, resulting in a twisted ankle.

 What we’ve done up to this point is set everything up. We still have not retrieved any actual
sensor information other than the names of everything. That happens next.

 Retrieve Data
 After we’ve discovered the characteristics of interest to us and set the notify
value as appropriate (in our case this is true), all we need do is to fill in the
 didUpdateValueForCharacteristic delegate method (Listing 13-4), including whatever
functionality we need to properly use characteristics, such as pitch and roll of the foot.

 Listing 13-4. To Get Data from the Sensor, Use the didUpdateValueForCharacteristic Function

 func peripheral(peripheral: CBPeripheral, didUpdateValueForCharacteristic
 characteristic: CBCharacteristic, error: NSError?) {
 //
 // X AXIS === FOOT ROLL
 //
 if characteristic.UUID.description.uppercaseString ==
 ROLL_CHARACTERISTIC.uppercaseString { ...}

 //
 // Y AXIS === FOOT PITCH
 //
 if characteristic.UUID.description.uppercaseString ==
 PITCH_CHARACTERISTIC.uppercaseString {...}
 }

 Note We discover characteristics of a service and not of a peripheral. The peripheral does come
back to us in the delegate callback method, though in the sample project we don’t make any use of it.

382 CHAPTER 13: iOS Accessories

 Core Bluetooth Summary
 We’ve covered a lot of ground in our discussion of BTLE and the CoreBluetooth framework,
which we’ll be using later on to work with our sensor accessory. BTLE (Bluetooth 4.0 Low
Energy) is a subset of the Bluetooth 4.0 specification and provides a way to conserve battery
power in accessories. Initially intended for use where an accessory gets power from a coin
cell battery such as the common CR2032 (Figure 13-19), BTLE provides a simpler, easier-to-
implement solution for circuitry that does not need continuous data transmission. Most often
BTLE provides a solution for BTLE servers that need to send small amounts of information
from time to time. BTLE works extremely well for fitness products such as heart rate monitors.
In fact, several standard BTLE profiles are available for these common types of accessories.

 Core Bluetooth and the CoreBluetooth framework are Apple’s implementation of the software
tools necessary to create an iOS app that works with BTLE accessories. From Apple’s
perspective and the CB framework, you have a central that consumes the data provided by
the peripheral. This tracks a bit differently from the more common use of client and server to
represent the consumer of data and producer of data, respectively. With Core Bluetooth you
set up a CBCentralManager and then use either the CBCentralManager or the CBPeripheral
delegate methods to do all the work by filling in the methods with the proper logic as required.

 Figure 13-19. Designed to work with standard coin cell batteries, BTLE provides a low-power solution for circuitry that
needs to only transmit small amounts of information infrequently

383CHAPTER 13: iOS Accessories

 iBeacons
 One last topic I would like to address is beacons or, more specifically, iBeacons (Figure 13-20),
as Apple chooses to call them. An iBeacon can be thought of as the simplest BTLE device
imaginable. In fact, an iBeacon is nothing but a BTLE transmitter that sends out three pieces of
information: the UUID, which we already talked about, a major number, and a minor number.
There’s nothing magic about major and minor; they are nothing more than a 16-bit unsigned
integer and can range between 1 and 65,535; zero is not used.

 From what you’ve read so far, I’m sure you’ve discovered that I really enjoy working with
hardware that connects with Apple devices. iBeacons are no exception. I love all the ideas
and applications yet to be discovered that can be addressed with technology so simple.
Interestingly, although I’ve known of iBeacons since around the release of iOS 7, they just
didn’t show up on my radar for a long while. Then, a few months prior to writing this chapter, I
was giving the keynote speech to an IoT group about HomeKit technology. After my talk I was
approached by several people wanting to know about iBeacons. I met representatives from a
company called PlaceGlobal and immediately became fascinated with this technology.

 Note Beacons and iBeacons are often used interchangeably, as beacon technology is also used
with Android devices. To make things simpler, I’m just going to use the term iBeacon, since we’re
focused on Apple iOS applications in this text.

 Figure 13-20. Apple’s iBeacon technology based on BTLE provides a very easy method for providing targeted
information to potential customers

384 CHAPTER 13: iOS Accessories

 From a personal perspective, I’m on a task force that is looking at how we might make our small
town of Parker, Colorado (Figure 13-21) become a “connected” community for the betterment
of all residents. We’ve designed a series of incremental pilot programs where we try something
out, evaluate the results, then adjust our strategy for the next, slightly larger experiment.

 Using iBeacon technology, we’re looking at establishing relationships with a few small
businesses in the main part of town. Near to each storefront will be placed an iBeacon
piece of hardware (Figure 13-22) that broadcasts the three small pieces of data—UUID,
major number, and minor number. Using the PlaceApp (Figures 13-22 and 13-23),
information about the nearest business will be displayed on the user’s mobile device. The
PlaceBMS (Beacon Management System) provides customization of what the user sees and
experiences as they go into and out of iBeacon hardware range.

 Figure 13-21. The author’s committee is evaluating the use of iBeacon technology to make her hometown into a better
place to live while preserving its old town charm

385CHAPTER 13: iOS Accessories

 Figure 13-22. iBeacon devices such as these are being used to create connected communities, including the author’s
own hometown

386 CHAPTER 13: iOS Accessories

 Because the PlaceApp is customized to the specific user during setup with properties such
as gender, age, and other preferences, information, like directed advertising, can be tailored
to the desired needs of the user. Another very cool feature is the ability to dynamically
send emergency information to PlaceApp users. If, for example, you were walking through
a museum using iBeacons to navigate your way and an emergency happened, directed
evacuation paths could appear on your device, taking you to the nearest exit.

 We expect, over the coming months, to work with this technology to find many new and
exciting scenarios to make the lives of users easier and more efficient. iBeacons won’t
replace the casual walk through a small town’s business district, and you can always turn
off your phone, but it will provide added value to the experience by highlighting those
experiences you might otherwise miss. If you’re a big fan of frozen yogurt and the local shop
just got that new flavor you’ve been craving, you can instantly know about it.

 Before ending this section on iBeacon technology, I want to clarify a common misperception.
Many people who are casually familiar with beacons and iBeacons think that the beacon
sends information to the user via BTLE and that’s it. As stated previously, only three pieces
of information are transmitted by the iBeacon hardware: the UUID and the major and minor
numbers. That’s it—nothing else is sent over BTLE.

 Figure 13-23. The PlaceApp from PlaceGlobal begins searching for any iBeacons within the area

387CHAPTER 13: iOS Accessories

 There is one other piece of data that the receiver, the user’s mobile device, has access to,
and that is the signal strength of the beacon. You may recall from our discussion of Core
Bluetooth that one of the parameters that came back on some of our delegate methods was
RSSI, or, Received Signal Strength Indicator. This is a number that depicts how strong a
signal is that we are receiving from a BTLE device. Since an iBeacon is a BTLE device, the
RSSI can be used to determine the closest beacon, and we then know to which iBeacon-
enabled business we are closest.

 But this still does not tell us any information about the business. So, how do we get
information about the business itself? We use the UUID and major and minor numbers to
download information from the Internet that is then translated to what we want to know or,
actually, what the business wants us to know.

 Using a beacon management system such as PlaceBMS, we set up each UUID of each
iBeacon with a set of records that tell the app what to do when that beacon is prominent.
So, the app detects an iBeacon and sends the data to the server. The server’s back-end
matches the UUID, major, and minor to what has been set up, such as a specific business
website. The URL for that site is then sent back to the mobile device and displayed within
the window on the app.

 Apps could also be customized based on both local and Internet-facilitated data,
such as a walking map or even a giant arrow on the display pointing you to the storefront
(Figure 13-24). For that matter, directions could be audibly provided for those people with visual
impairments, or there could even be haptic feedback to distinguish between heading in the right
or wrong direction. The possibilities are limited more by one’s imagination than by technology.

388 CHAPTER 13: iOS Accessories

 Figure 13-24. Once iBeacon hardware has been discovered, information about the business, such as the company website,
appears within the app window. The user can then interact with the site just as she would using any mobile browser.

389CHAPTER 13: iOS Accessories

 Summary
 In this last non-project chapter of our journey down the road of becoming better iOS
developers, I’ve taken a step away from showing you how to do something in order to show
you what can be done . Working with Swift and Xcode and creating this or that project will be
fraught with problems, frustrations, and eventual fixes every month, week, and maybe every
day for periods of time. You’ll almost certainly hit, from time to time, what appears to be your
breaking point and want to give up. I’ve been there. I’ve been there many times, in fact.

 I’d like to be able to give you the answer, but I really don’t think one exists, at least not
a single answer for all situations. What I’ve hoped to do in this last chapter, and really
throughout our journey, is to inspire you to the greatness we both know is inside us all. By
working through the various steps and anticipated pitfalls, I hope I’ve shown to you that
problems are solvable. Other people have done it for half a decade, so you can too. By
showing you the fun and interesting things that are possible and being done each and every
day, I hope to inspire you to continue and persevere in your own journey. Whatever you
decide, I hope you have fun and can bring passion to your career to make each and every
day better than the last.

391© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_14

 Chapter 14
 Swift Conversion Project
 In this chapter we’re going to start with an existing, very old iOS project I wrote around 2009.
It’s a very simple slot machine app that came out for the second-generation iPhone, the
iPhone 3G. In fact, at that time there was no iOS. Apple called the operating system iPhone
OS, even though it worked on the iPod Touch device as well. There was no iPad released yet.

 Problem
 You’re asked to add features to an existing Objective-C project that would be better served
using the Swift language because of its modern features, or to simply update the project.

 Solution
 You need to go through each of the Objective-C files and make the conversion yourself in
order to ensure that things work properly.

 Let’s Work Through the Project
 By the time this book is released I expect there will be at least a few Objective-C-to-Swift
conversion programs. Today there is one called Swiftify that can be easily found on the
Internet. It actually seemed to work for some simple code segments, and at the time of this
writing it had a subscription-based pricing. That is, you need to pay to convert code of more
than 10 KB in size. So, just for fun, I’ll show you what it can do.

 Listing 14-1 shows a code snippet in Objective-C that implements the ubiquitous
 cellForRowAtIndexPath , which anyone who’s ever coded more than the simplest Hello,
World app has written.

392 CHAPTER 14: Swift Conversion Project

 Listing 14-1. Objective-C Showing How to Fill a Table View

 - (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
 {
 static NSString *simpleTableIdentifier = @"ItemID";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:simpleTable
Identifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:simpleTableIdentifier];
 }

 cell.textLabel.text = [tableData objectAtIndex:indexPath.row];
 return cell;
 }

 Listing 14-2 shows the result of the code in Listing 14-1 using the free version of the program.

 Listing 14-2. Using the Code from Earlier

 func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) ->
UITableViewCell {
 static var simpleTableIdentifier: String = "ItemID"
 var cell: UITableViewCell =
 tableView.dequeueReusableCellWithIdentifier(simpleTableIdentifier)
 if cell == nil {
 cell = UITableViewCell(style: UITableViewCellStyleDefault,
 reuseIdentifier: simpleTableIdentifier)
 }
 cell.textLabel.text = tableData.objectAtIndex(indexPath.row)
 return cell
 }

 I might be inclined to use this for segments of code here and there to see how well it works.
For now, though, I’m going to work through our project by essentially taking it line by line or
in sections where appropriate. Why, you ask? I’ve come up with at least three reasons. First,
if I rely on a conversion program and just do quick inspections of the result, by the time I get
to the point where all the conversions are completed, if the app doesn’t work, I’ll just have to
go through it anyway to find the problem or problems. The truth is that I’m not doing much
more than what this type of conversion program accomplishes, except that I’m looking at
each line as I do the conversion. Because I wrote the original program, I should know every
detail about the program, and they should be in the comments to make sure any details are
not overlooked. Second, this app was written in a very early version of Objective-C, and the
conversion tools may not be designed to work with a code base that old. Finally, the app
is heavily graphics oriented. It’s not a consuming game with animation or stuff like that, it’s
just that during this period of iPhone OS, the rudimentary graphics manipulations, such as
stacking images to mask other graphics out, had to be done for even this simple game app.
It was really hard back then! And yes, it was my very first “real” app, and there wasn’t much
around in the way of technical support.

393CHAPTER 14: Swift Conversion Project

 About the App
 First, I want to give a brief description about the parts of the app itself.

 Naming Conventions
 There are three different names that we want to be aware of. First, the original app was called
TownSlot and was written to work on the iPhone 3G. For purposes of this project, I converted
that project to the latest version of Objective-C and Xcode and called it SlotMachine for
simplicity and to avoid confusion. The Swift-converted version of the app is called TownSlot2,
again to differentiate it from the original. To speed things along, we’ll use the same graphics
files as were included in the original version; that is, we won’t be changing the graphics to
reflect the new name; it will still show on the UI as just The Town Slot.

 TownSlot = original iPhone OS app written for iPhone 3G in Objective- C

 SlotMachine = Updated version in Objective-C that will be our starting
point for the conversion

 TownSlot2 = Converted Swift version, i.e., the result of this project.

 Appearance
 SlotMachine, our starting point, presents a single view to the user of a three-wheel Las
Vegas–style slot machine, as shown in Figure 14-1 . At the very top are three lights that blink
after the player taps the Spin button until the “wheels” stop spinning. Each wheel is actually
a long, narrow strip of images that repeats to help give the illusion of a wheel turning. The
long strip contains four smaller, 9-element segments connected at the top and bottom to
create a 36-element column. Figure 14-2 shows the long strip broken down into the four
repeating segments. Note that the two center, 9-element strips are blurred to help give the
illusion of the wheel spinning.

394 CHAPTER 14: Swift Conversion Project

 Figure 14-1. Our app project presents a simple, three-wheel slot machine to the user

 Figure 14-2. Each “wheel” consists of a 4 x 9 (36) item strip of images. The center 18 items have been blurred to help
the illusion of fast spinning

395CHAPTER 14: Swift Conversion Project

 Below the wheels are three text fields that indicate, from left to right, the amount of credits
owned by the user, the amount of the current bet, and the winnings paid on the last spin.
If a player loses a turn, the amount of the bet is deducted from the credits. Similarly, if she
wins, the bet amount is added to the total credits. The winning or losing criteria is set inside
the logic and is written in Objective-C. It varies depending on what the final spin looks like.
You don’t have to have three-of-a-kind necessarily to win back your bet.

 Finally, at the bottom are three buttons. The Bet Max button provides the user an easy way
to bet the max on a spin. The code is set to allow a maximum bet of 10 credits. The Bet+1
button adds one to the bet amount. If the current bet is 10 credits, tapping the Bet+1 button
will roll over the bet to 1 credit. The Spin button starts the animation, essentially acting like
the pull-arm of a traditional one-armed-bandit.

 There are several sound animations. When the player presses any of the three buttons, a
click is played. When the wheels are spinning, a Vegas-like little snippet of music plays. If the
player loses, a sad sounding horn plays, but if she wins, a much happier bit of music is heard.

 Architecture
 The app consists of an AppDelegate and ViewController , each with both a header (.h) and
implementation (.m) file. Because of the timeframe of when the app was initially created,
storyboards are not used. Instead, the view is built programmatically in the viewDidLoad
method of the ViewController.m file. The images are stacked on top of one another, with
the topmost graphics being the “closest” visually to the player. At the bottom, furthest away,
would be the wheels shown in Figure 14-2 . Next would be the slot machine front-facing
panel with any accoutrements (Figure 14-3).

396 CHAPTER 14: Swift Conversion Project

 Labels, buttons, and flashing lights are then placed on top of the front face to allow for
player interaction.

 The application delegate exists as generated during the initial creation of the project and is
shown in Listing 14-3 .

 Listing 14-3. The App Delegate Initializes the View Controller to Make It Visible to the User

 //
 // AppDelegate.m
 // SlotMachine
 //
 // Created by Molly Maskrey on 9/23/15.
 // Copyright © 2015 Global Tek Labs. All rights reserved.
 //

 #import "AppDelegate.h"
 #import "ViewController.h"

 @implementation AppDelegate

 @synthesize window;
 @synthesize viewController;

 Figure 14-3. The slot machine’s front panel graphics are placed atop the wheels. The holes in the panel allow the
current position of the wheel to be seen by the player

397CHAPTER 14: Swift Conversion Project

 - (void)applicationDidFinishLaunching:(UIApplication *)application {

 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
 }

 @end

 The complete functionality of the app resides in the ViewController files and consists of two
primary methods, viewDidLoad() and spin() . The viewDidLoad() method sets up everything
for the app to function: the view hierarchy as we described earlier, the user defaults
persistent storage, sounds, labels, size determination based on which device is being used,
and a few others. The spin() function does all of the work when the user presses the Spin
button, calling any number of subordinate methods.

 To begin the conversions from Objective-C to Swift, the path I chose was to implement a
top-down translation. This allowed the basics of the app to begin functioning very early in
the conversion to Swift. As each method was translated to Swift, more and more operational
functionality was added until eventually things worked exactly the same in both versions.

 In Figure 14-4 you can see the first step of the conversion process, which shows a collapsed
visualization of the ViewController.Swift file. We’ll discuss the initial project creation
momentarily, but since this section is concerned with the project architecture, this hierarchy
of methods represents a good overview. The viewDidLoad method does all the setup; we’ll
show much more detail on this shortly. The didReceiveMemoryWarning method is a standard
method included with any project creation to allow us to handle any cleanup when iOS may
be running short of resources and thinking about shutting our app down. Because this is just
a game, we’re not too concerned with what happens in this example. Here, we focus more
on converting between languages.

398 CHAPTER 14: Swift Conversion Project

 The prefersStatusHidden method tells iOS if we want the iPhone’s status bar to be seen
at the time the app is loaded. Since this is a full-screen game, we do not, so we return
 true . The operating system essentially calls this method in each app and, depending on the
response, either hides or shows the status bar.

 The addToBet and addMaxToBet methods either increment the amount the user bets on the
spin by one credit or set it to the default maximum of ten credits. The spin method is called
when the player taps the Spin button, simulating a pull of the arm on the one-arm-bandit. As
with the viewDidLoad method, we’ll also cover this in great detail shortly.

 The next three routines— firstWheelReverse , secondWheelReverse , thirdWheelReverse —create
a change of direction on the animation of each of the wheel image strips. Because we don’t
really have wheels, and because the strips are of a finite length, the spinning is simulated
by moving the strip using animation one way and then the other. This creates a longer

 Figure 14-4. All the methods making up the content of the ViewController implementation file

399CHAPTER 14: Swift Conversion Project

wheel-spinning effect without needing an unnecessarily long image strip. The initial animation is
started in the spin method with these three being called once the animation ends; that is, when
the last image on each strip is reached. Along with blurring, this provides a fairly satisfactory
appearance of a spinning wheel. In a similar category, the spinningHasStopped method
performs everything to determine whether the player as won or lost after the last wheel has
stopped moving. The lights stop flashing, the music terminates, either a happy win sound or a
sad lose sound plays, and the score is updated.

 Either at the beginning of a new game or when a player has lost everything, the resetGame
method clears out all the variables and starts everything at the beginning with the initial set
of credits. Whenever a player wins or loses, the updateLabels method adds or subtracts
the proper values from the score and shows the value on the face of the slot machine. The
values are derived from the calculateWinnings method, which evaluates the quantity of
credits to be added depending on the values of the wheels. This is where you might change
things up; for example, maybe you want the “bar” icon to be the default scoring value rather
than the cherries as I’ve set it. It’s all up to you. If the calculateWinnings method determines
the player is completely out of credits, then the youLost method gets called and the player
can restart everything.

 Six methods control the flashing of the red and green lights atop the image of the slot
machine: setupGreenLightSequence , startGreenLightSequence , stopGreenLightSequence ,
 setupRedLightSequence , startRedLightSequence , and stopRedLightSequence . Setup
methods position the various colors depending on what size of device screen the player
uses. Stop and start methods do exactly what you would expect.

 The makeButtonClick method plays the audio file that simulates the clicking noise when the
button is pressed. An ideal replacement might be to swap that audio file for one that sounds
like an arm being pulled on an actual machine.

 Finally, saveGameState and restoreUserSettings put and get critical information to persistent
storage with NSUserDefaults .

 These methods exist in both the Objective-C and Swift versions, though Figure 14-4 reflects
the Swift file because of the ability in Xcode to easily collapse all the method implementations.

 Objective-C Code
 Because all of the functionality for this app resides in the ViewController files, we’ll only be
looking at these in our analysis. Listing 14-4 shows the ViewController.h header file, while
Listing 14-5 depicts the implementation.

 Listing 14-4. Objective-C ViewController Header (.h) File

 //
 // ViewController.h
 // SlotMachine
 //
 // Created by Molly Maskrey on 9/23/15.
 // Copyright © 2015 Global Tek Labs. All rights reserved.
 //

400 CHAPTER 14: Swift Conversion Project

 #import <UIKit/UIKit.h>
 #include <AudioToolbox/AudioToolbox.h>

 #import "AppDelegate.h"

 #define numberOfIcons 9

 #define kInitialCredits 100

 @class SetupViewController;

 @interface ViewController : UIViewController {

 UIImageView *greenLightSequenceImageView;
 UIImageView *redLightSequenceImageView;

 SetupViewController *setupViewController;
 BOOL allowSpin;
 BOOL isSpinning;
 BOOL gameOver;
 UIView *contentView;
 CGRect slotStripViewWheel1PosStart;
 CGRect slotStripViewWheel1PosEnd;
 CGRect slotStripViewWheel2PosStart;
 CGRect slotStripViewWheel2PosEnd;
 CGRect slotStripViewWheel3PosStart;
 CGRect slotStripViewWheel3PosEnd;
 CGRect slotStripViewWheel1PosComplete;
 CGRect slotStripViewWheel2PosComplete;
 CGRect slotStripViewWheel3PosComplete;

 // These are the three buttons, two used for betting and one to start the spin
 UIButton *spinButton;
 UIButton *betButton;
 UIButton *betMaxButton;

 // These are the three numbers shown in red at about the center of the display
 UILabel *creditsLabel;
 UILabel *betLabel;
 UILabel *winLabel;

 // These three image views hold the slot icons on a long strip that we
 // move underneath the main Slot machine frame to give a sense of spinning.
 UIImageView *slotStripViewWheel1;
 UIImageView *slotStripViewWheel2;
 UIImageView *slotStripViewWheel3;

 // These are used to hold the random values for each virtual wheel
 // and the adjusted value of all three.
 NSUInteger spin1;
 NSUInteger spin2;
 NSUInteger spin3;
 NSUInteger spinValue;

401CHAPTER 14: Swift Conversion Project

 // properties that hold the credit, bet, and winnings values
 Int winThisSpin;
 int thisBet;
 int totalCredits;

 // URL reference and sound object IDs for spinning, button click, winning, and losing
 CFURLRef spinFileURLRef;
 SystemSoundID spinSoundObject;
 CFURLRef clickFileURLRef;
 SystemSoundID clickSoundObject;
 CFURLRef winFileURLRef;
 SystemSoundID winSoundObject;
 CFURLRef loseFileURLRef;
 SystemSoundID loseSoundObject;

 Float stoppingPoints[9];
 }

 @property (nonatomic,retain) UIImageView *greenLightSequenceImageView;
 @property (nonatomic,retain) UIImageView *redLightSequenceImageView;

 @property (nonatomic,retain) SetupViewController *setupViewController;

 @property (nonatomic, retain) UILabel *creditsLabel;
 @property (nonatomic, retain) UILabel *betLabel;
 @property (nonatomic, retain) UILabel *winLabel;

 @property (nonatomic,retain) UIButton *spinButton;
 @property (nonatomic,retain) UIButton *betButton;
 @property (nonatomic,retain) UIButton *betMaxButton;

 @property (nonatomic) BOOL allowSpin;
 @property (nonatomic) BOOL gameOver;
 @property (nonatomic) BOOL isSpinning;

 @property (readwrite) CFURLRef spinFileURLRef;
 @property (readonly) SystemSoundID spinSoundObject;
 @property (readwrite) CFURLRef clickFileURLRef;
 @property (readonly) SystemSoundID clickSoundObject;
 @property (readwrite) CFURLRef winFileURLRef;
 @property (readonly) SystemSoundID winSoundObject;
 @property (readwrite) CFURLRef loseFileURLRef;
 @property (readonly) SystemSoundID loseSoundObject;

 @property (nonatomic) int winThisSpin;
 @property (nonatomic) int thisBet;
 @property (nonatomic) int totalCredits;

 @property (nonatomic, retain) UIView *contentView;
 @property (nonatomic) CGRect slotStripViewWheel1PosStart;
 @property (nonatomic) CGRect slotStripViewWheel1PosEnd;
 @property (nonatomic) CGRect slotStripViewWheel2PosStart;

402 CHAPTER 14: Swift Conversion Project

 @property (nonatomic) CGRect slotStripViewWheel2PosEnd;
 @property (nonatomic) CGRect slotStripViewWheel3PosStart;
 @property (nonatomic) CGRect slotStripViewWheel3PosEnd;
 @property (nonatomic) CGRect slotStripViewWheel1PosComplete;
 @property (nonatomic) CGRect slotStripViewWheel2PosComplete;
 @property (nonatomic) CGRect slotStripViewWheel3PosComplete;

 @property (nonatomic, retain) UIImageView *slotStripViewWheel1;
 @property (nonatomic, retain) UIImageView *slotStripViewWheel2;
 @property (nonatomic, retain) UIImageView *slotStripViewWheel3;

 @property (nonatomic, retain) UIImageView *topMostView;

 typedef enum {
 kiPhone4S,
 kiPhone5,
 kiPhone6,
 kiPhone6Plus
 } iPhoneType;

 @property (nonatomic) iPhoneType iphoneType;

 -(void)spin;
 -(void)makeButtonClick;
 -(void)saveGameState;
 -(void)restoreUserSettings;
 -(int)calculateWinnings;
 -(void)updateLabels;
 -(void)youLost;
 -(void)resetGame;

 // Animations of the lights on top of the machine
 -(void)setupGreenLightSequence;
 -(void)startGreenLightAnimation;
 -(void)stopGreenLightAnimation;
 -(void)setupRedLightSequence;
 -(void)startRedLightAnimation;
 -(void)stopRedLightAnimation;

 @end

 Listing 14-5. Objective-C ViewController Implementation (.m) file

 //
 // ViewController.m
 // SlotMachine
 //
 // Created by Molly Maskrey on 9/23/15.
 // Copyright © 2015 Global Tek Labs. All rights reserved.
 //

403CHAPTER 14: Swift Conversion Project

 #import <AudioToolbox/AudioToolbox.h>

 #import "ViewController.h"

 @implementation ViewController

 @synthesize setupViewController;
 @synthesize greenLightSequenceImageView;
 @synthesize redLightSequenceImageView;

 @synthesize gameOver;
 @synthesize allowSpin;
 @synthesize isSpinning;
 @synthesize spinButton;

 @synthesize betButton;
 @synthesize betMaxButton;

 @synthesize winThisSpin;
 @synthesize thisBet;
 @synthesize totalCredits;

 @synthesize creditsLabel;
 @synthesize betLabel;
 @synthesize winLabel;

 @synthesize contentView;
 @synthesize slotStripViewWheel1PosStart;
 @synthesize slotStripViewWheel1PosEnd;
 @synthesize slotStripViewWheel2PosStart;
 @synthesize slotStripViewWheel2PosEnd;
 @synthesize slotStripViewWheel3PosStart;
 @synthesize slotStripViewWheel3PosEnd;
 @synthesize slotStripViewWheel1PosComplete;
 @synthesize slotStripViewWheel2PosComplete;
 @synthesize slotStripViewWheel3PosComplete;

 @synthesize slotStripViewWheel1;
 @synthesize slotStripViewWheel2;
 @synthesize slotStripViewWheel3;
 @synthesize topMostView;

 @synthesize spinFileURLRef;
 @synthesize spinSoundObject;
 @synthesize clickFileURLRef;
 @synthesize clickSoundObject;
 @synthesize winFileURLRef;
 @synthesize winSoundObject;
 @synthesize loseFileURLRef;
 @synthesize loseSoundObject;

 @synthesize iphoneType;

404 CHAPTER 14: Swift Conversion Project

 //NSNotificationCenter messages
 NSString * const userResetGame = @"resetGame";

 // delta value used to move over the wheels
 float shiftOverValue = 0.0;

 // By setting this the return value of this method to YES, the
 // UIViewController will hide the small status bar at the top
 // allowing more usable space for the slot graphics.
 -(BOOL)prefersStatusBarHidden{
 return YES;
 }

 // Used to set the amount of credits that we bet on the next spin
 -(void)addToBet
 {
 if (thisBet < totalCredits) {
 if (self.thisBet < 10)
 {
 self.thisBet++; // bump bet
 } else
 self.thisBet = 1;
 [self updateLabels];
 self.allowSpin = YES;
 }else { // can't bet more than what you have left
 NSLog(@"Can't bet more than you have left");
 self.thisBet = 0;
 [self updateLabels];
 self.allowSpin = NO;
 }

 }

 // Default to the max bet, which is 10 credits
 -(void)addMaxToBet
 {
 if (totalCredits == 0) return; // can't bet
 if (totalCredits < 10) {
 self.thisBet = totalCredits;
 }
 else {
 self.thisBet = 10;
 }

 [self updateLabels];

 }

 //
 // The primary method called when the device loads the view.
 // Here, we set up pretty much everything to begin playing the game.
 // NSLog statements are used to show information to the console periodiclly

405CHAPTER 14: Swift Conversion Project

 // as things happen (as the program runs) to let us know what's going on.
 //
 - (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib
 NSLog(@"viewDidLoad");

 isSpinning = NO; // initially not spinning;

 stoppingPoints[0] = 95.0;
 stoppingPoints[1] = 35.0;
 stoppingPoints[2] = -25.0;
 stoppingPoints[3] = -85.0;
 stoppingPoints[4] = -145.0;
 stoppingPoints[5] = -210.0;
 stoppingPoints[6] = -270.0;
 stoppingPoints[7] = -330.0;
 stoppingPoints[8] = -395.0;

 //SETUP NOTIFICATION CENTER
 NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
 [nc addObserver:self selector:@selector(resetGame) name:userResetGame object:nil];
 NSLog(@"Registered with notification center");

 // *** Create the MAIN WINDOW
 CGSize appSize = [UIScreen mainScreen].bounds.size;
 CGRect appRect = CGRectMake(0.0, 0.0, appSize.width, appSize.height);

 NSLog(@"screen size: Width: %f, Height: %f",appSize.width,appSize.height);

 //
 // Determine iPhone type (4,5,6,6P) from screen size so we can
 // us that to correctly position
 if ((appSize.width == 320.0) && (appSize.height == 480.0)) {
 iphoneType = kiPhone4S;
 NSLog(@"iPhone4S");
 } else if ((appSize.width == 320.0) && (appSize.height == 568.0)) {
 iphoneType = kiPhone5;
 NSLog(@"iPhone5");
 } else if ((appSize.width == 375.0) && (appSize.height == 667.0)) {
 iphoneType = kiPhone6;
 NSLog(@"iPhone6");
 } else if ((appSize.width == 414.0) && (appSize.height == 736.0)) {
 iphoneType = kiPhone6Plus;
 NSLog(@"iPhone6 Plus");
 }

 contentView = [[UIView alloc] initWithFrame:appRect];
 contentView.backgroundColor = [UIColor blackColor];
 [self.view addSubview:contentView];

406 CHAPTER 14: Swift Conversion Project

 // Pick Slot Face Image based on screen size
 switch (iphoneType) {
 case kiPhone4S:
 topMostView = [[UIImageView alloc] initWithFrame:CGRectMake(0.0f,0.0f,320.0f,480.0f)];
 [topMostView setImage:[UIImage imageNamed:@"SlotFaceiPhoneBasic.png"]];
 break;
 case kiPhone5:
 topMostView = [[UIImageView alloc] initWithFrame:CGRectMake(0.0f,0.0f,320.0f,568.0f)];
 [topMostView setImage:[UIImage imageNamed:@"SlotFaceiPhone5.png"]];
 break;
 case kiPhone6:
 topMostView = [[UIImageView alloc] initWithFrame:CGRectMake(0.0f,0.0f,375.0f,66

7.0f)];
 [topMostView setImage:[UIImage imageNamed:@"SlotFaceiPhone6.png"]];
 break;
 case kiPhone6Plus:
 topMostView = [[UIImageView alloc] initWithFrame:CGRectMake(0.0f,0.0f,414.0f,736.0f)];
 [topMostView setImage:[UIImage imageNamed:@"SlotFaceiPhone6Plus.png"]];
 break;

 default:
 break;
 }

 // See if the user has played before and pull up last wheel positions

 NSMutableArray *userData;
 userData = [[NSUserDefaults standardUserDefaults] objectForKey:@"gameState"];

 // Slide the wheels over to the right (value) depending on screen size
 switch (iphoneType) {
 case kiPhone4S:
 case kiPhone5:
 break;
 case kiPhone6:
 shiftOverValue = 30.0;
 break;
 case kiPhone6Plus:
 shiftOverValue = 50.0;
 break;

 default:
 break;
 }

 if ([userData count] == 6) // if data is present, then the game state was saved previously
 {

 slotStripViewWheel1PosStart = CGRectMake(33.0f + shiftOverValue,
stoppingPoints[[[userData objectAtIndex:0] intValue]], 90.0f, 2900.0f);
 slotStripViewWheel2PosStart = CGRectMake(116.0f + shiftOverValue,
stoppingPoints[[[userData objectAtIndex:1] intValue]], 90.0f, 2900.0f);

407CHAPTER 14: Swift Conversion Project

 slotStripViewWheel3PosStart = CGRectMake(199.0f + shiftOverValue,
stoppingPoints[[[userData objectAtIndex:2] intValue]], 90.0f, 2900.0f);

 self.winThisSpin = [[userData objectAtIndex:3] intValue];
 self.thisBet = [[userData objectAtIndex:4] intValue];
 self.totalCredits = [[userData objectAtIndex:5] intValue];

 } else { // if not any data, then restart game state

 NSLog(@"initializing game - no data was stored");

 slotStripViewWheel1PosStart = CGRectMake(33.0f + shiftOverValue, 95.0f, 90.0f, 2900.0f);
 slotStripViewWheel2PosStart = CGRectMake(116.0f + shiftOverValue, 95.0f, 90.0f, 2900.0f);
 slotStripViewWheel3PosStart = CGRectMake(199.0f + shiftOverValue, 95.0f, 90.0f, 2900.0f);

 [self resetGame];
 }
 // set up the slot wheel positions that are not saved...i.e., the end position where we

reverse the wheel
 // to make it look like a long spin

 slotStripViewWheel1PosEnd = CGRectMake(33.0f + shiftOverValue, -2600.0f, 90.0f, 2900.0f);
 slotStripViewWheel2PosEnd = CGRectMake(116.0f + shiftOverValue, -2600.0f, 90.0f, 2900.0f);
 slotStripViewWheel3PosEnd = CGRectMake(199.0f + shiftOverValue, -2600.0f, 90.0f, 2900.0f);

 slotStripViewWheel1 = [[UIImageView alloc] initWithFrame:slotStripViewWheel1PosStart];
 [slotStripViewWheel1 setImage:[UIImage imageNamed:@"SlotStripLong.png"]];

 slotStripViewWheel2 = [[UIImageView alloc] initWithFrame:slotStripViewWheel2PosStart];
 [slotStripViewWheel2 setImage:[UIImage imageNamed:@"SlotStripLong.png"]];

 slotStripViewWheel3 = [[UIImageView alloc] initWithFrame:slotStripViewWheel3PosStart];
 [slotStripViewWheel3 setImage:[UIImage imageNamed:@"SlotStripLong.png"]];

 // SET UP SCORING LABELS
 // CREDITS

 creditsLabel = [[UILabel alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 75.0f, 20.0f)];
 self.creditsLabel.textAlignment = NSTextAlignmentRight;
 self.creditsLabel.backgroundColor = [UIColor blackColor];
 self.creditsLabel.textColor = [UIColor redColor];
 self.creditsLabel.font = [UIFont boldSystemFontOfSize:20];
 NSString *totString = [[NSString alloc] initWithFormat:@"%d",totalCredits];

 // THIS BET
 betLabel = [[UILabel alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 25.0f, 20.0f)];
 self.betLabel.textAlignment = NSTextAlignmentRight;
 self.betLabel.backgroundColor = [UIColor blackColor];
 self.betLabel.textColor = [UIColor redColor];
 self.betLabel.font = [UIFont boldSystemFontOfSize:20];
 NSString *betString = [[NSString alloc] initWithFormat:@"%d",thisBet];

408 CHAPTER 14: Swift Conversion Project

 // THIS SPIN'S WIN VALUE
 winLabel = [[UILabel alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 35.0f, 20.0f)];
 self.winLabel.textAlignment = NSTextAlignmentRight;
 self.winLabel.backgroundColor = [UIColor blackColor];
 self.winLabel.textColor = [UIColor redColor];
 self.winLabel.font = [UIFont boldSystemFontOfSize:20];
 NSString *winString = [[NSString alloc] initWithFormat:@"%d",winThisSpin];

 // SET UP BUTTONS
 // SPIN BUTTON
 spinButton = [[UIButton alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 65.0f, 65.0f)];
 [spinButton setBackgroundImage:[UIImage imageNamed:@"spinButton.
png"] forState:UIControlStateNormal];
 [spinButton setBackgroundImage:[UIImage imageNamed:@"spinButtonPressed.
png"] forState:UIControlStateHighlighted];
 [spinButton addTarget:self action:@selector(spin) forControlEvents:UIControlEventTouch
UpInside];
 [spinButton addTarget:self action:@selector(makeButtonClick) forControlEvents:UIContro
lEventTouchDown];

 //BET BUTTON
 betButton = [[UIButton alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 65.0f, 65.0f)];
 [betButton setBackgroundImage:[UIImage imageNamed:@"betButton.png"] forState:
UIControlStateNormal];
 [betButton addTarget:self action:@selector(addToBet) forControlEvents:UIControlEvent
TouchUpInside];
 [betButton addTarget:self action:@selector(makeButtonClick) forControlEvents:UIControl
EventTouchDown];

 //BET MAX BUTTON
 betMaxButton = [[UIButton alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 65.0f, 65.0f)];
 [betMaxButton setBackgroundImage:[UIImage imageNamed:@"betMaxButton.png"]
 forState:UIControlStateNormal];
 [betMaxButton addTarget:self action:@selector(addMaxToBet) forControlEvents:
UIControlEventTouchUpInside];
 [betMaxButton addTarget:self action:@selector(makeButtonClick) forControlEvents:
UIControlEventTouchDown];

 // Pick based on screen size
 switch (iphoneType) {
 case kiPhone4S:
 case kiPhone5:
 [creditsLabel setCenter:CGPointMake(93.0f,213.0f)];
 [betLabel setCenter:CGPointMake(160.0f,213.0f)];
 [winLabel setCenter:CGPointMake(220.0f,213.0f)];
 [spinButton setCenter:CGPointMake(260.0f,300.0f)];
 [betButton setCenter:CGPointMake(150.0f,300.0f)];
 [betMaxButton setCenter:CGPointMake(65.0f,300.0f)];
 break;

409CHAPTER 14: Swift Conversion Project

 case kiPhone6:
 [creditsLabel setCenter:CGPointMake(120.0f,216.0f)];
 [betLabel setCenter:CGPointMake(190.0f,216.0f)];
 [winLabel setCenter:CGPointMake(255.0f,216.0f)];
 [spinButton setCenter:CGPointMake(290.0f,302.0f)];
 [betButton setCenter:CGPointMake(190.0f,302.0f)];
 [betMaxButton setCenter:CGPointMake(100.0f,302.0f)];
 break;
 case kiPhone6Plus:
 [creditsLabel setCenter:CGPointMake(140.0f,212.0f)];
 [betLabel setCenter:CGPointMake(212.0f,212.0f)];
 [winLabel setCenter:CGPointMake(280.0f,212.0f)];
 [spinButton setCenter:CGPointMake(320.0f,300.0f)];
 [betButton setCenter:CGPointMake(220.0f,300.0f)];
 [betMaxButton setCenter:CGPointMake(120.0f,300.0f)];
 break;

 default:
 break;
 }
 self.creditsLabel.text = totString;
 self.betLabel.text = betString;
 self.winLabel.text = winString;

 [contentView addSubview:slotStripViewWheel1];
 [contentView addSubview:slotStripViewWheel2];
 [contentView addSubview:slotStripViewWheel3];
 [contentView addSubview:topMostView];

 [contentView addSubview:spinButton];
 [contentView addSubview:betButton];
 [contentView addSubview:betMaxButton];
 [contentView addSubview:creditsLabel];
 [contentView addSubview:betLabel];
 [contentView addSubview:winLabel];

 // restore user setting
 // [self restoreUserSettings]; // things like spin, score, etc

 // SET UP SOUNDS
 CFBundleRef mainBundle;
 mainBundle = CFBundleGetMainBundle ();

 // Get the URL to the sound file to play
 spinFileURLRef = CFBundleCopyResourceURL (
 mainBundle,
 CFSTR ("spinSound1"),
 CFSTR ("wav"),
 NULL
);

410 CHAPTER 14: Swift Conversion Project

 clickFileURLRef = CFBundleCopyResourceURL (
 mainBundle,
 CFSTR ("click1"),
 CFSTR ("wav"),
 NULL
);
 winFileURLRef = CFBundleCopyResourceURL (
 mainBundle,
 CFSTR ("win"),
 CFSTR ("wav"),
 NULL
);
 loseFileURLRef = CFBundleCopyResourceURL (
 mainBundle,
 CFSTR ("youLose"),
 CFSTR ("wav"),
 NULL
);
 // Create a system sound object representing the sound file
 AudioServicesCreateSystemSoundID (
 spinFileURLRef,
 &spinSoundObject
);
 AudioServicesCreateSystemSoundID (
 clickFileURLRef,
 &clickSoundObject
);
 AudioServicesCreateSystemSoundID (
 winFileURLRef,
 &winSoundObject
);
 AudioServicesCreateSystemSoundID (
 loseFileURLRef,
 &loseSoundObject
);

 //SETUP LIGHTS
 [self setupGreenLightSequence];
 [self setupRedLightSequence];

 }

 - (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
 }

411CHAPTER 14: Swift Conversion Project

 // GAME PLAY METHODS

 // Spin, of course, does the most of the work when the player clicks on the 'spin' button.
 // in the viewDidLoad method above, you can see that when we create the spin button, we set
 // the "selector" to 'spin,' which is this function. This is the example of event-driven
programming;
 // when the spin button event occurs, iOS (the operating system) calls this function to be
executed.
 -(void)spin
 {

 // start flashing the red and green lights at the top of
 // the slot machine image on the device.
 [self startGreenLightAnimation];
 [self startRedLightAnimation];

 // If we're spinning, disable the buttons so the player can't cause
 // problems much like a real slot machine

 isSpinning = YES;
 spinButton.enabled = NO;
 betButton.enabled = NO;
 betMaxButton.enabled = NO;

 // THE THREE SPINS - generate a random place to stop on our simulated 'wheel'

 spin1 = arc4random() % numberOfIcons; // large number
modulo the # of icons
 spin2 = arc4random() % numberOfIcons; // large number
modulo the # of icons
 spin3 = arc4random() % numberOfIcons; // large number
modulo the # of icons

 // Create a single number that tells us what the spin is
 // using a decimal scheme...one wheel is the hundreds position, one the tens, and
 // the right-most is the ones position.

 spinValue = (spin1 * 100) + (spin2 * 10) + spin3;

 NSLog(@"The three wheel spins are: %lu, %lu, %lu",(unsigned long)spin1,(unsigned long)
spin2,(unsigned long)spin3);
 NSLog(@"Spin Value = %lu", (unsigned long)spinValue);

 slotStripViewWheel1PosComplete = CGRectMake(33.0f + shiftOverValue,
stoppingPoints[spin1], 90.0f, 2900.0f);
 slotStripViewWheel2PosComplete = CGRectMake(116.0f + shiftOverValue,
stoppingPoints[spin2], 90.0f, 2900.0f);
 slotStripViewWheel3PosComplete = CGRectMake(199.0f + shiftOverValue,
stoppingPoints[spin3], 90.0f, 2900.0f);

412 CHAPTER 14: Swift Conversion Project

 // These three chunks of code set up the animation of each of the three 'wheels'
 // essentially, all were doing is moving the strips of fruit images up and down
 // to give the appearance of the three wheels spinning.
 //
 [UIView beginAnimations:@"wheel1" context:nil];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationDidStopSelector:@selector(firstWheelReverse:)];
 [UIView setAnimationCurve: UIViewAnimationCurveEaseIn];
 [UIView setAnimationDuration:2.0];
 [slotStripViewWheel1 setFrame:slotStripViewWheel1PosEnd];
 [UIView commitAnimations];

 [UIView beginAnimations:@"wheel2" context:nil];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationDidStopSelector:@selector(secondWheelReverse:)];
 [UIView setAnimationCurve: UIViewAnimationCurveEaseIn];
 [UIView setAnimationDuration:2.0];
 [slotStripViewWheel2 setFrame:slotStripViewWheel2PosEnd];
 [UIView commitAnimations];

 [UIView beginAnimations:@"wheel3" context:nil];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationDidStopSelector:@selector(thirdWheelReverse:)];
 [UIView setAnimationCurve: UIViewAnimationCurveEaseIn];
 [UIView setAnimationDuration:2.0];
 [slotStripViewWheel3 setFrame:slotStripViewWheel3PosEnd];
 [UIView commitAnimations];

 // SOUNDS
 AudioServicesPlaySystemSound (self.spinSoundObject);

 } // end SPIN method

 //
 // Because we are using finite-length strips of images to simulate a continuous
 // 'wheel' to get that sense of spinning, when we reach the end of a strip, we
 // just reverse it and move it the other way, hoping the details of what we're doing
 // aren't visible on the screen to the player.

 - (void)firstWheelReverse:(NSString *)animationID {
 [UIView beginAnimations:@"reverseWheel1" context:nil];
 [UIView setAnimationCurve: UIViewAnimationCurveEaseOut];
 [UIView setAnimationDuration:1.0];
 [slotStripViewWheel1 setFrame:slotStripViewWheel1PosComplete];
 [UIView commitAnimations];
 }
 - (void)secondWheelReverse:(NSString *)animationID {
 [UIView beginAnimations:@"reverseWheel2" context:nil];
 [UIView setAnimationCurve: UIViewAnimationCurveEaseOut];
 [UIView setAnimationDuration:1.4];
 [slotStripViewWheel2 setFrame:slotStripViewWheel2PosComplete];
 [UIView commitAnimations];
 }

413CHAPTER 14: Swift Conversion Project

 - (void)thirdWheelReverse:(NSString *)animationID { // Assume third wheel is the
last to stop
 NSLog(@"Spinning Has Stopped");
 [UIView beginAnimations:@"reverseWheel3" context:nil];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationDidStopSelector:@selector(spinningHasStopped:)];

 [UIView setAnimationCurve: UIViewAnimationCurveEaseOut];
 [UIView setAnimationDuration:1.8];
 [slotStripViewWheel3 setFrame:slotStripViewWheel3PosComplete];
 [UIView commitAnimations];
 }

 //
 // When the animation has completed, this method executes.
 // We enable the buttons again so the player can continue,
 // play sounds, stop flashing the lights, etc.
 //
 -(void)spinningHasStopped:(NSString *) animationID
 {

 int winMultiplier;
 NSLog(@"spinningHasStopped CALLED");
 isSpinning = NO;
 spinButton.enabled = YES;
 betButton.enabled = YES;
 betMaxButton.enabled = YES;

 //STOP LIGHTS
 [self stopGreenLightAnimation];
 [self stopRedLightAnimation];

 // CHECK FOR WIN

 winMultiplier = [self calculateWinnings];
 // Lose
 if (winMultiplier == 0) {
 self.totalCredits -= self.thisBet;
 AudioServicesPlaySystemSound (self.loseSoundObject);
 } else { // Win
 self.totalCredits += (self.thisBet * winMultiplier);
 AudioServicesPlaySystemSound (self.winSoundObject);
 }

 [self updateLabels];
 // save state
 [self saveGameState];
 }

414 CHAPTER 14: Swift Conversion Project

 -(void)resetGame
 {
 NSLog(@"RESET GAME");
 [self makeButtonClick];
 self.winThisSpin = 0;
 self.thisBet = 1;
 self.totalCredits = kInitialCredits;
 self.allowSpin = YES;
 self.gameOver = NO;
 [self updateLabels];
 // save state - in case user exits immediately after a reset either from alert or info
panel
 [self saveGameState];

 }

 //
 // This method posts the values for bet, total credits, and win amount to the
 // display on the slot machine front panel image.
 //
 -(void)updateLabels;
 {
 //TOTAL
 NSString *totString = [[NSString alloc] initWithFormat:@"%d", totalCredits];
 [creditsLabel setText:totString];
 //BET
 NSString *betString = [[NSString alloc] initWithFormat:@"%d", thisBet];
 [betLabel setText:betString];
 //WIN AMMOUNT
 NSString *winString = [[NSString alloc] initWithFormat:@"%d", winThisSpin];
 [winLabel setText:winString];
 }

 //
 // Here is where you can change how you want to pay out to the
 // player depending on the spin
 //
 -(int)calculateWinnings
 {
 int winMultiplier;

 // Any single cherry
 if ((spin1 == 2) && (spin2 != 2) && (spin3 != 2)) return 1;
 if ((spin1 != 2) && (spin2 == 2) && (spin3 != 2)) return 1;
 if ((spin1 != 2) && (spin2 != 2) && (spin3 == 2)) return 1;

 // Any DOUBLE cherry
 if ((spin1 == 2) && (spin2 == 2) && (spin3 != 2)) return 3;
 if ((spin1 != 2) && (spin2 == 2) && (spin3 == 2)) return 3;
 if ((spin1 == 2) && (spin2 != 2) && (spin3 == 2)) return 3;

415CHAPTER 14: Swift Conversion Project

 // Three CHERRIES
 if ((spin1 == 2) && (spin2 == 2) && (spin3 == 2)) return 150;

 switch (spinValue) {
 case 000:
 winMultiplier = 100; // 3 Bars
 break;
 case 888:
 winMultiplier = 100; // 3 sevens
 break;
 case 111:
 case 222:
 case 333:
 case 444:
 case 555:
 case 666:
 case 777:
 winMultiplier = 3; // 3 anything else --> 3X bet
 break;

 default:
 winMultiplier = 0; // anything else --> lose
 break;
 }
 return winMultiplier;
 }

 // Pop up an alert to let user reset the game
 -(void) youLost
 {
 UIAlertController *alert = [UIAlertController alertControllerWithTitle:@"You Lose"
message:@"Lost it all huh? Way to go champ!" preferredStyle:UIAlertControllerStyleAlert];
 [self presentViewController:alert animated:YES completion:nil];
 }

 // LIGHT ANIMATIONS
 -(void)setupGreenLightSequence
 {
 UIImage* img1;
 UIImage* img2;
 UIImage* img3;
 UIImage* img4;
 UIImage* img5;

 greenLightSequenceImageView = [[UIImageView alloc] init];
 if (iphoneType == kiPhone6Plus) {
 img1 = [UIImage imageNamed:@"100greenTop6P.png"];
 img2 = [UIImage imageNamed:@"110greenTop6P.png"];
 img3 = [UIImage imageNamed:@"111greenTop6P.png"];
 img4 = [UIImage imageNamed:@"011greenTop6P.png"];

416 CHAPTER 14: Swift Conversion Project

 } else { //smaller screen size
 img1 = [UIImage imageNamed:@"100greenTop.png"];
 img2 = [UIImage imageNamed:@"110greenTop.png"];
 img3 = [UIImage imageNamed:@"111greenTop.png"];
 img4 = [UIImage imageNamed:@"011greenTop.png"];

 }
 NSArray *images = [NSArray arrayWithObjects:img1, img2,img3,img4,img5, nil];

 [greenLightSequenceImageView setAnimationImages:images];
 [greenLightSequenceImageView setAnimationRepeatCount:0];
 [greenLightSequenceImageView setAnimationDuration:0.5];

 switch (iphoneType) {
 case kiPhone4S:
 greenLightSequenceImageView.frame = CGRectMake(71,1, 200, 20);
 break;
 case kiPhone5:
 greenLightSequenceImageView.frame = CGRectMake(71,1, 200, 20);
 break;
 case kiPhone6:
 greenLightSequenceImageView.frame = CGRectMake(100,1, 200, 20);
 break;
 case kiPhone6Plus:
 greenLightSequenceImageView.frame = CGRectMake(114,1, 200, 20);
 break;

 default:
 break;
 }

 }

 -(void)startGreenLightAnimation
 {
 [greenLightSequenceImageView startAnimating];
 [self.view addSubview:greenLightSequenceImageView];
 }
 -(void)stopGreenLightAnimation
 {
 [greenLightSequenceImageView stopAnimating];
 [greenLightSequenceImageView removeFromSuperview];
 }
 -(void)setupRedLightSequence
 {
 UIImage* img1;
 UIImage* img2;
 UIImage* img3;
 UIImage* img4;
 UIImage* img5;

417CHAPTER 14: Swift Conversion Project

 redLightSequenceImageView = [[UIImageView alloc] init];
 if (iphoneType == kiPhone6Plus) {
 img1 = [UIImage imageNamed:@"001redBottom6P.png"];
 img2 = [UIImage imageNamed:@"011redBottom6P.png"];
 img3 = [UIImage imageNamed:@"111redBottom6P.png"];
 img4 = [UIImage imageNamed:@"110redBottom6P.png"];
 img5 = [UIImage imageNamed:@"100redBottom6P.png"];
 } else { //smaller screen size
 img1 = [UIImage imageNamed:@"001redBottom.png"];
 img2 = [UIImage imageNamed:@"011redBottom.png"];
 img3 = [UIImage imageNamed:@"111redBottom.png"];
 img4 = [UIImage imageNamed:@"110redBottom.png"];
 img5 = [UIImage imageNamed:@"100redBottom.png"];

 }
 NSArray *images = [NSArray arrayWithObjects:img1, img2,img3,img4,img5, nil];

 [redLightSequenceImageView setAnimationImages:images];
 [redLightSequenceImageView setAnimationRepeatCount:0];
 [redLightSequenceImageView setAnimationDuration:0.5];
 switch (iphoneType) {
 case kiPhone4S:
 redLightSequenceImageView.frame = CGRectMake(71,5, 200, 15);
 break;
 case kiPhone5:
 redLightSequenceImageView.frame = CGRectMake(71,5, 200, 15);
 break;
 case kiPhone6:
 redLightSequenceImageView.frame = CGRectMake(100,5, 200, 15);
 break;
 case kiPhone6Plus:
 redLightSequenceImageView.frame = CGRectMake(114,5, 200, 15);
 break;

 default:
 break;
 }
 }

 -(void)startRedLightAnimation
 {
 NSLog(@"Start Animating RED");
 [redLightSequenceImageView startAnimating];
 [self.view addSubview:redLightSequenceImageView];
 }
 -(void)stopRedLightAnimation
 {
 [redLightSequenceImageView stopAnimating];
 [redLightSequenceImageView removeFromSuperview];
 }

418 CHAPTER 14: Swift Conversion Project

 // SOUND ANIMATIONS
 -(void)makeButtonClick
 {
 AudioServicesPlaySystemSound (self.clickSoundObject);
 }

 // PERSISTANCE - this saves the player's game state.
 // Because we greatly simplified this game for newer versions of
 // iOS, we don't actually do that much here. We're more concerned
 // in this exercise about the process of converting, so while we
 // do care about game state items such as score and last spin, we
 // are not concerned about switch settings for whether to play sounds
 // or not.
 //
 -(void)saveGameState
 {
 NSLog(@"Calling Save Game State");
 NSMutableArray *userData = [[NSMutableArray alloc] init];
 [userData addObject:[NSNumber numberWithInt:(int)spin1]];
 [userData addObject:[NSNumber numberWithInt:(int)spin2]];
 [userData addObject:[NSNumber numberWithInt:(int)spin3]];
 [userData addObject:[NSNumber numberWithInt:self.winThisSpin]];
 [userData addObject:[NSNumber numberWithInt:self.thisBet]];
 [userData addObject:[NSNumber numberWithInt:self.totalCredits]];

 [[NSUserDefaults standardUserDefaults] setObject: userData forKey:@"gameState"];
 [[NSUserDefaults standardUserDefaults] synchronize];
 }

 -(void)restoreUserSettings
 {

 NSLog(@"Called restore user settings");
 // CHECK USER SETTINGS

 }

 @end

 We won’t be going through the conversion line by line, as that would take up far too much
space, and, frankly, it would be pretty boring. Instead, I want to walk through a few examples
of where we convert Objective-C to Swift. Simple assignments, conditionals, operations
and so forth work nearly the same across the languages. Other specific features of Swift
as it differs from Objective-C are well known, such as not needing semicolons, or that all
potential conditions in a switch need to be explicitly handled.

 I’ll focus instead on the issues you’re likely to come up against that you probably didn’t think
about. Also, we’ll cover some of the differences in how you use certain frameworks when
porting our slot machine app.

419CHAPTER 14: Swift Conversion Project

 Project Setup
 Problem
 You’re given the Objective-C project, but you can’t just convert it as it is. You want to use it
as a reference and make sure things work as expected.

 Solution
 We want to set up a completely new project and work with them side by side until everything
functions exactly as we would expect. First, create a new iOS single view application
project, as shown in Figure 14-5 .

 Figure 14-5. Create a single view project to begin the conversion

 I chose to call this project townslot2 (Figure 14-6) in order to differentiate it from the original
app name, but at the same time keep it similar. If we decide to publish it in the App Store
we’ll have a usable name, since Apple’s database would recognize the original townslot
app and reject our reuse of the name. Note that I’m not including any Unit or UI Testing in
order to focus on just the conversion process. While we could use Core Data for persistent
storage, that would be a bit of overkill for our needs of simply storing six values; it would
also deviate from the original app’s design. Finally, as seen in Figure 14-7 , don’t select
“Create a Git repository,” as we will address source control in a different section of this book.

420 CHAPTER 14: Swift Conversion Project

 That gets us to where we need to be, with a new, blank Swift project in which we can place
our newly converted Swift code.

 Figure 14-7. We won’t be worried about source code control in this example

 Figure 14-6. Create a Swift project without core data or tests in order to keep things simple

421CHAPTER 14: Swift Conversion Project

 Problem
 After creating the project, our build settings show that we have no project team assigned.

 Solution
 In the project navigator on the left side of Xcode , select the top-level folder, i.e., the name
of the project, which in our case is townslot2. To the left select “General” and look for the
Identity section. If you see beside Team anything other than “None” (Figure 14-8), verify that
it is either your individual team, which should show as your name, or a team that you created
for your company info. If it shows the word “None,” use the drop-down menu to select the
desired team. If you don’t see any options, you may want to review Chapter 3 on how to set
up Xcode for this operation.

 Figure 14-8. Unless you’ve previously set up your certificates, app IDs, devices, provisioning, and teams, you may see
no team selected under Identity in project settings

 Problem
 You need to set up your code-signing identities.

 Solution
 From where we just were, select “Build Settings” and look for the Code Signing section .
You’ll probably see something that looks like Figure 14-9 and shows the generic term “iOS
Developer,” which usually represents the team and works for localized testing. However,
once you’re ready to distribute to beta testers you’ll need to set this to a specific identity, as
shown in Figure 14-10 .

http://dx.doi.org/10.1007/978-1-4842-1820-4_3

422 CHAPTER 14: Swift Conversion Project

 Figure 14-9. In the Code Signing section of Build Settings, make sure you select a valid identity for debug builds. It’s
also a good idea to verify that Release is also set properly

 Figure 14-10. Set up specific identities when building for beta testing or App Store release

423CHAPTER 14: Swift Conversion Project

 Solution
 Sometimes simply pressing the Fix Issue button will handle the problem . This usually works
if you have a single Apple developer account, as Xcode can easily figure out what needs to
happen. There are two situations in which Xcode sometimes won’t be able to correct things.
The first situation is if you haven’t yet set up any profiles in the developer portal, although
at the time you’re reading this, that feature may have already been added to Xcode. If that
is the situation you’re facing and Xcode doesn’t do it for you, refer to Chapter 3 and set up
your provisioning profiles with the steps I’ve outlined there.

 The second situation wherein Xcode may not automatically handle things for you is when
you have a company account or multiple accounts, either individual, company, or mixed.
In this situation, what I usually do is to force the issue, or rather, force the fix to the issue.
Simply put, with multiple developer IDs, signing credentials, and so on, Xcode can get a
little confused. So, if I’ve created a provisioning profile for my app, I download it from the
portal to my computer and then drag the downloaded file icon right on top of the Xcode app
icon. This is the way we used to do things a couple years ago, and as of the time of writing,
it still works consistently. You’ll likely only need this if you have a more confusing developer
account setup, but it’s a good trick to know when you have to use it.

 Problem
 Xcode shows you have no provisioning profiles set up, as seen in Figure 14-11 .

 Figure 14-11. After setting up identities for what you need to accomplish, you may find that Xcode now gives you a
missing provisioning profile error

http://dx.doi.org/10.1007/978-1-4842-1820-4_3

424 CHAPTER 14: Swift Conversion Project

 Conversions
 Problem
 You start converting your program to Swift from Objective-C and you immediately see the
error shown in Figure 14-12 . The error “Class ViewController has no initializers” means that
there are variables that have either not been initialized or should be treated as optionals.

 Figure 14-12. No Initializer error

 Solution
 In Objective-C we declared our properties in one place, the header (.h) file; synthesized
the accessors at the top of the implementation (.m) file; and usually allocated and initialized
them later in the implementation. In Swift we just call them variables using the var keyword,
but, unless we declare it as an optional, it has to be initialized when declared. This is part
of the safety features built in to the language that, while annoying at first, will save us time
down the road, preventing a crash when our backs are against the wall. So, as shown in
Figure 14-13 , we initialize the variables when they are declared, and the problem goes away.

 Figure 14-13. By initializing the variables when created, our class error goes away

 We obviously can’t go through everything line by line, so I want to cover a few functions
so you get the basic idea before we move on. We’ll start by looking at some of the simpler
supporting functions.

 Problem
 When converting the function to save the state of the game into persistent storage, you
get a lot of errors, as shown in Figure 14-14 . The error “NSMutableArray is not implicitly
convertible to [AnyObject]” tells us that there is no automatic conversion between the types
from Objective-C to Swift.

425CHAPTER 14: Swift Conversion Project

 Figure 14-14. Use of AnyObject causing conversion errors

 Solution
 Although it worked in earlier versions, Swift now does not convert between
 NSArray / NSMutableArray and Swift’s native array type. While we could cast this to make
it work in much the same manner, a better approach would be to explicitly set the values
we want to save into the standard user defaults, because there are only six items that we
need to track. Simply create a constant defaults object. Since we’re not actually changing
the object, but only calling the methods on that object, we can use the safer, Swift let
statement as shown in Figure 14-15 . Note that we also change to the Swift print to let us
know we’re in this function as well. Then, all we need do is use the setInteger method to
save each of our six items with an explicit key for each.

 Figure 14-15. Rather than directly converting from Objective-C to Swift, in many cases it’s easier to change the way
the code functions. Here, we’ve added explicit keys to store each item individually, making the code easier to read

 Then, it becomes a simple matter of making similar explicit calls to get and restore the
defaults when needed, as shown in Figure 14-16 . However, you do have to be careful here.
Since it’s possible to call the restoreUserSettings function before any items have been
saved, if you just try to use a value, it could be nil, which would cause the app to crash.
So, what I’ve done is to create a check to see if the first value we want to return, spin1 , is nil
or not. If it is NOT nil, then we know we’ve saved our values and can reasonably expect to
be able to retrieve and use the remaining five items successfully. If the value is nil, then we
haven’t yet saved any defaults and want to start by initializing the game. It would actually
be even safer—and you should do this in a true production application—to check each and
every value before attempting to access it. As always, there are many ways to execute the
same functionality, and each case would be slightly different in how it should be addressed.

426 CHAPTER 14: Swift Conversion Project

 Figure 14-16. Make sure to check that a value is present before attempting to use it

 Problem
 After converting your Objective-C to Swift, the app crashes on an iPhone 4S or iPhone 5,
but works fine otherwise. The crash occurs as soon as you hit Spin in the area shown in
Figure 14-17 . Because arc4random returns a 32-bit unsigned integer, on a 32-bit device like
the iPhone 4S and iPhone 5, if the returned value is large enough, it could overflow and
cause the app to crash. The “EXEC_BAD_INSTRUCTION” error is an indication that the calls
used on Objective-C likely don’t match what we need to implement here in the Swift code.

 Figure 14-17. Although this run crashed at spin2, it may occur at any of these three statements

 Solution
 By using arc4random_uniform and passing an upper bound to the possible return value
(Figure 14-18), you prevent the operation from overflowing. This works fine on all four
devices of interest in this app: iPhone 4S, iPhone 5, iPhone 6, and iPhone 6 Plus.

 Figure 14-18. Use arc4random_uniform and pass in an upper limit to prevent overflows on 32-bit devices such as
iPhone 4S and iPhone 5

427CHAPTER 14: Swift Conversion Project

 Problem
 You work through the rest of the conversions, but once you load the app onto a real device,
no app icon is displayed, as in Figure 14-19 .

 Figure 14-19. Once you install the app onto a device, only the default app icon is displayed

428 CHAPTER 14: Swift Conversion Project

 If we look back at the Objective-C project’s AppIcon xcassets set, you see that all the
images we need to use are properly associated with the app (Figure 14-21).

 Solution
 To make the icon display, we need to associate the image files we intend to use with the app
in the AppIcon set. If you look in the project at the AppIcon, you see no images, as shown in
Figure 14-20 .

 Figure 14-20. Because we created a new project, we haven’t yet moved over any icon images, so the AppIcon xcassets
will be empty

 Figure 14-21. The Objective-C version of the project shows the proper AppIcon images

429CHAPTER 14: Swift Conversion Project

 If you right-click on any of the images seen in Figure 14-21 , you can select “Show In Finder”
to see where the actual image files are located (Figure 14-22). Then simply copy them to the
same relative place, the AppIcon.appiconset sub-folder of the Assets.appiconset folder in
the Swift version and you’re almost there. You will need to go back into the Xcode project
and move the icons in the AppIcon set to the proper position, but they should be in the
proper order already. If not, verify the size as shown in the Xcode window. Rebuild the app
and load it onto your device. You may discover that you need to do a clean project first, but
this has not been necessary in the most recent version of Xcode. You should then see the
icon properly displayed on the home screen, as in Figure 14-23 .

 Figure 14-22. The appropriate image files most likely will be found in a sub-directory of the original project. Simply
copy them to the same relative place in the new project hierarchy, then move them to the proper place in Xcode

430 CHAPTER 14: Swift Conversion Project

 Swift Code
 As I mentioned earlier, we could cover every detail of every conversion issue in this project.
But, even with this simple app, that would likely take much more time and space than either
of us have to devote at this stage of our journey. Listing 14-6 shows our final conversion of
the Objective-C project.

 Listing 14-6. ViewController.swift File

 //
 // ViewController.swift
 // townslot2
 //
 // Created by Molly Maskrey on 11/10/15.
 // Copyright © 2015 Global Tek Labs. All rights reserved.
 //

 Figure 14-23. Finally, clean (if necessary) and rebuild the project, loading it to your device, and the icon should be
properly displayed

431CHAPTER 14: Swift Conversion Project

 import UIKit
 import AudioToolbox

 let userResetGame: String = "resetGame"
 let kInitialCredits : Int = 100

 class ViewController: UIViewController {

 //
 // PROPERTIES from OBJ-c to Swift
 //

 var thisBet : Int = 0
 var totalCredits : Int = 0
 var allowSpin: Bool = true
 var isSpinning: Bool = false
 var gameOver: Bool = false
 var stoppingPoints : [Double] = [95.0,35.0,-25.0,-85.0,-145.0,-210.0,-270.0,-330.0,-395.0]

 enum iPhoneType {
 case knotSelectedYet
 case kiPhone4S
 case kiPhone5
 case kiPhone6
 case kiPhone6Plus
 }
 var iphoneType : iPhoneType = .knotSelectedYet

 var topMostView : UIView?

 var shiftOverValue = 0.0

 var slotStripViewWheel1PosStart: CGRect?
 var slotStripViewWheel1PosEnd: CGRect?
 var slotStripViewWheel2PosStart: CGRect?
 var slotStripViewWheel2PosEnd: CGRect?
 var slotStripViewWheel3PosStart: CGRect?
 var slotStripViewWheel3PosEnd: CGRect?
 var slotStripViewWheel1PosComplete: CGRect?
 var slotStripViewWheel2PosComplete: CGRect?
 var slotStripViewWheel3PosComplete: CGRect?

 var winThisSpin : Int = 0

 var slotStripViewWheel1 : UIImageView?
 var slotStripViewWheel2 : UIImageView?
 var slotStripViewWheel3 : UIImageView?

 var greenLightSequenceImageView : UIImageView = UIImageView()
 var redLightSequenceImageView : UIImageView = UIImageView()

432 CHAPTER 14: Swift Conversion Project

 var creditsLabel : UILabel?
 var betLabel : UILabel?
 var winLabel : UILabel?

 let spinButton = UIButton(frame: CGRectMake(0.0, 0.0, 65.0, 65.0))
 let betButton = UIButton(frame: CGRectMake(0.0, 0.0, 65.0, 65.0))
 let betMaxButton = UIButton(frame: CGRectMake(0.0, 0.0, 65.0, 65.0))

 var spinFileURLRef: CFURLRef?
 var spinSoundObject: SystemSoundID = 0
 var clickFileURLRef: CFURLRef?
 var clickSoundObject: SystemSoundID = 0
 var winFileURLRef: CFURLRef?
 var winSoundObject: SystemSoundID = 0
 var loseFileURLRef: CFURLRef?
 var loseSoundObject: SystemSoundID = 0

 var spin1: Int = 0
 var spin2: Int = 0
 var spin3: Int = 0
 var spinValue : Int = 0
 let numberOfIcons : Int = 9

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 print("viewDidLoad")

 isSpinning = false // initially not spinning - NOTE this is not needed
 // because it was set as an initializer...

 let nc: NSNotificationCenter = NSNotificationCenter.defaultCenter()
 nc.addObserver(self, selector: "resetGame", name: userResetGame, object: nil)
 print("Registered with notification center")

 let appSize: CGSize = UIScreen.mainScreen().bounds.size
 let appRect: CGRect = CGRectMake(0.0, 0.0, appSize.width, appSize.height)
 print("screen size: Width: \(appRect.width), Height: \(appRect.height)")

 let contentView = UIView(frame: appRect)
 contentView.backgroundColor = UIColor.blackColor()
 self.view.addSubview(contentView)

 //
 // Determine iPhone type (4,5,6,6P) from screen size so we can
 // us that to correctly position
 if (appSize.width == 320.0) && (appSize.height == 480.0) {
 iphoneType = .kiPhone4S
 print("iPhone4S")
 }

433CHAPTER 14: Swift Conversion Project

 else {
 if (appSize.width == 320.0) && (appSize.height == 568.0) {
 iphoneType = .kiPhone5
 print("iPhone5")
 }
 else {
 if (appSize.width == 375.0) && (appSize.height == 667.0) {
 iphoneType = .kiPhone6
 print("iPhone6")
 }
 else {
 if (appSize.width == 414.0) && (appSize.height == 736.0) {
 iphoneType = .kiPhone6Plus
 print("iPhone6 Plus")
 }
 }
 }
 }

 switch iphoneType {
 case .kiPhone4S:
 topMostView = UIImageView(frame: CGRectMake(0.0, 0.0, 320.0, 480.0))
 topMostView?.backgroundColor = UIColor(patternImage: UIImage(named:
"SlotFaceiPhoneBasic.png")!)
 print("iPhone 4S")
 case .kiPhone5:
 topMostView = UIImageView(frame: CGRectMake(0.0, 0.0, 320.0, 568.0))
 topMostView?.backgroundColor = UIColor(patternImage: UIImage(named:
"SlotFaceiPhone5.png")!)
 print("iPhone 5")
 case .kiPhone6:
 topMostView = UIImageView(frame: CGRectMake(0.0, 0.0, 375.0, 667.0))
 topMostView?.backgroundColor = UIColor(patternImage: UIImage(named:
"SlotFaceiPhone6.png")!)
 print("iPhone 6")
 case .kiPhone6Plus:
 topMostView = UIImageView(frame: CGRectMake(0.0, 0.0, 414.0, 736.0))
 topMostView?.backgroundColor = UIColor(patternImage: UIImage(named:
"SlotFaceiPhone6Plus.png")!)
 print("iPhone 6 Plus")
 default:
 print("entered iphoneType set topMostView DEFAULT case")
 }

 // Slide the wheels over to the right (value) depending on screen size
 switch iphoneType {

 case .kiPhone4S:
 shiftOverValue = 0.0
 case .kiPhone5:
 shiftOverValue = 0.0

434 CHAPTER 14: Swift Conversion Project

 case .kiPhone6:
 shiftOverValue = 30.0
 case .kiPhone6Plus:
 shiftOverValue = 50.0
 default:
 break
 }

 // SET UP SCORING LABELS
 creditsLabel = UILabel(frame: CGRectMake(0.0, 0.0, 75.0, 20.0))
 self.creditsLabel!.textAlignment = .Right
 self.creditsLabel!.backgroundColor = UIColor.blackColor()
 self.creditsLabel!.textColor = UIColor.redColor()
 self.creditsLabel!.font = UIFont.boldSystemFontOfSize(20)
 let totString: String = String(format: "%d", totalCredits)
 self.creditsLabel!.text = totString;

 betLabel = UILabel(frame: CGRectMake(0.0, 0.0, 25.0, 20.0))
 self.betLabel!.textAlignment = .Right
 self.betLabel!.backgroundColor = UIColor.blackColor()
 self.betLabel!.textColor = UIColor.redColor()
 self.betLabel!.font = UIFont.boldSystemFontOfSize(20)
 let betString: String = String(format: "%2d", totalCredits)
 self.betLabel!.text = betString;

 winLabel = UILabel(frame: CGRectMake(0.0, 0.0, 35.0, 20.0))
 self.winLabel!.textAlignment = .Right
 self.winLabel!.backgroundColor = UIColor.blackColor()
 self.winLabel!.textColor = UIColor.redColor()
 self.winLabel!.font = UIFont.boldSystemFontOfSize(20)
 let winString: String = String(format: "%d", totalCredits)
 self.winLabel!.text = winString;

 restoreUserSettings()

 slotStripViewWheel1PosEnd = CGRectMake(33.0 + CGFloat(shiftOverValue), -2600.0,
90.0, 2900.0);

 slotStripViewWheel2PosEnd = CGRectMake(116.0 + CGFloat(shiftOverValue), -2600.0,
90.0, 2900.0);

 slotStripViewWheel3PosEnd = CGRectMake(199.0 + CGFloat(shiftOverValue), -2600.0,
90.0, 2900.0);

 slotStripViewWheel1 = UIImageView(frame: slotStripViewWheel1PosStart!)
 slotStripViewWheel1?.image = UIImage(named: "SlotStripLong.png")
 slotStripViewWheel2 = UIImageView(frame: slotStripViewWheel2PosStart!)
 slotStripViewWheel2?.image = UIImage(named: "SlotStripLong.png")
 slotStripViewWheel3 = UIImageView(frame: slotStripViewWheel3PosStart!)
 slotStripViewWheel3?.image = UIImage(named: "SlotStripLong.png")

 spinButton.setImage(UIImage(named: "spinButton.png"), forState: .Normal)
 spinButton.setImage(UIImage(named: "spinButtonPressed.png"), forState: .Highlighted)
 spinButton.addTarget(self, action: "spin", forControlEvents: .TouchUpInside)
 spinButton.addTarget(self, action: "makeButtonClick", forControlEvents: .TouchUpInside)

435CHAPTER 14: Swift Conversion Project

 betButton.setImage(UIImage(named: "betButton.png"), forState: .Normal)
 betButton.addTarget(self, action: "addToBet", forControlEvents: .TouchUpInside)
 betButton.addTarget(self, action: "makeButtonClick", forControlEvents: .TouchUpInside)

 betMaxButton.setImage(UIImage(named: "betMaxButton.png"), forState: .Normal)
 betMaxButton.addTarget(self, action: "addMaxToBet", forControlEvents: .TouchUpInside)
 betMaxButton.addTarget(self, action: "makeButtonClick", forControlEvents: .TouchUpInside)

 switch iphoneType {
 case .kiPhone4S, .kiPhone5:
 creditsLabel!.center = CGPointMake(93.0, 213.0)
 betLabel!.center = CGPointMake(160.0, 213.0)
 winLabel!.center = CGPointMake(220.0, 213.0)
 spinButton.center = CGPointMake(260.0, 300.0)
 betButton.center = CGPointMake(150.0, 300.0)
 betMaxButton.center = CGPointMake(65.0, 300.0)

 case .kiPhone6:
 creditsLabel!.center = CGPointMake(120.0, 216.0)
 betLabel!.center = CGPointMake(190.0, 216.0)
 winLabel!.center = CGPointMake(255.0, 216.0)
 spinButton.center = CGPointMake(290.0, 302.0)
 betButton.center = CGPointMake(190.0, 302.0)
 betMaxButton.center = CGPointMake(100.0, 302.0)

 case .kiPhone6Plus:
 creditsLabel!.center = CGPointMake(140.0, 212.0)
 betLabel!.center = CGPointMake(212.0, 212.0)
 winLabel!.center = CGPointMake(280.0, 212.0)
 spinButton.center = CGPointMake(320.0, 300.0)
 betButton.center = CGPointMake(220.0, 300.0)
 betMaxButton.center = CGPointMake(120.0, 300.0)

 default:
 break
 }

 contentView.addSubview(slotStripViewWheel1!)
 contentView.addSubview(slotStripViewWheel2!)
 contentView.addSubview(slotStripViewWheel3!)
 contentView.addSubview(topMostView!)
 // Note Order of buttons and labels ON TOP of TOPMOST VIEW
 contentView.addSubview(creditsLabel!)
 contentView.addSubview(betLabel!)
 contentView.addSubview(winLabel!)
 contentView.addSubview(spinButton)
 contentView.addSubview(betButton)
 contentView.addSubview(betMaxButton)

436 CHAPTER 14: Swift Conversion Project

 // SET UP SOUNDS
 var mainBundle: CFBundleRef
 mainBundle = CFBundleGetMainBundle()

 // Get the URL to the sound file to play
 spinFileURLRef = CFBundleCopyResourceURL(mainBundle, "spinSound1" as CFString ,
"wav" as CFString , nil)
 AudioServicesCreateSystemSoundID(spinFileURLRef!, &spinSoundObject)

 clickFileURLRef = CFBundleCopyResourceURL(mainBundle, "click1" as CFString , "wav"
as CFString , nil)
 AudioServicesCreateSystemSoundID(clickFileURLRef!, &clickSoundObject)

 winFileURLRef = CFBundleCopyResourceURL(mainBundle, "win" as CFString , "wav" as
CFString , nil)
 AudioServicesCreateSystemSoundID(winFileURLRef!, &winSoundObject)

 loseFileURLRef = CFBundleCopyResourceURL(mainBundle, "youLose" as CFString , "wav"
as CFString , nil)
 AudioServicesCreateSystemSoundID(loseFileURLRef!, &loseSoundObject)

 setupGreenLightSequence()
 setupRedLightSequence()

 updateLabels()

 } // END VIEW_DID_LOAD *******

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 //
 // PORTED OBJ-C METHODS to FUNCS
 //
 override func prefersStatusBarHidden() -> Bool {
 return true
 }
 func addToBet() -> () { // Null return OPTIONAL
 if thisBet < totalCredits {
 if self.thisBet < 10 {
 self.thisBet++
 }
 else {
 self.thisBet = 1
 }
 self.updateLabels()
 self.allowSpin = true
 }

437CHAPTER 14: Swift Conversion Project

 else {
 print("Can't bet more than you have left")
 self.thisBet = 0
 self.updateLabels()
 self.allowSpin = false
 }
 }
 func addMaxToBet() {
 if totalCredits == 0 {
 return
 }
 if totalCredits < 10 {
 self.thisBet = totalCredits
 }
 else {
 self.thisBet = 10
 }
 self.updateLabels()
 }

 //
 // SPIN FUNCTION - This is where most of the activity takes place
 //

 func spin() {

 print("SPIN called")
 // start flashing the red and green lights at the top of
 // the slot machine image on the device.
 startGreenLightAnimation()
 startRedLightAnimation()

 // If we're spinning, disable the buttons so the player can't cause
 // problems, much like a real slot machine
 isSpinning = true
 spinButton.enabled = false
 betButton.enabled = false
 betMaxButton.enabled = false

 // THE THREE SPINS - generate a random place to stop on our simulated 'wheel'
 // spin1 = Int(arc4random()) % numberOfIcons // large number modulo the # of icons
 // spin2 = Int(arc4random()) % numberOfIcons // large number modulo the # of icons
 // spin3 = Int(arc4random()) % numberOfIcons // large number modulo the # of icons

 spin1 = Int(arc4random_uniform(10000)) % numberOfIcons
 spin2 = Int(arc4random_uniform(10000)) % numberOfIcons
 spin3 = Int(arc4random_uniform(10000)) % numberOfIcons

 // Create a single number that tells us what the spin is
 // using a decimal scheme. One wheel is the hundreds position, one the tens, and
 // the right-most is the ones position.

438 CHAPTER 14: Swift Conversion Project

 spinValue = (spin1 * 100) + (spin2 * 10) + spin3;

 print("The three wheel spins are: \(spin1) , \(spin2), \(spin3) ")
 print("SpinValue = \(spinValue)")

 slotStripViewWheel1PosComplete = CGRectMake(33.0 + CGFloat(shiftOverValue), CGFloat(
stoppingPoints[Int(spin1)]), 90.0, 2900.0)

 slotStripViewWheel2PosComplete = CGRectMake(116.0 + CGFloat(shiftOverValue), CGFloat
(stoppingPoints[Int(spin2)]), 90.0, 2900.0)

 slotStripViewWheel3PosComplete = CGRectMake(199.0 + CGFloat(shiftOverValue), CGFloat
(stoppingPoints[Int(spin3)]), 90.0, 2900.0)

 // These three chunks of code set up the animation of each of the three 'wheels.'
 // Essentially, all we’re doing is moving the strips of fruit images up and down
 // to give the appearance of the three wheels spinning.
 //

 UIView.beginAnimations("wheel1", context: nil)
 UIView.setAnimationDelegate(self)
 UIView.setAnimationDidStopSelector("firstWheelReverse:")
 UIView.setAnimationCurve(.EaseIn)
 UIView.setAnimationDuration(2.0)
 slotStripViewWheel1!.frame = slotStripViewWheel1PosEnd!
 UIView.commitAnimations()

 UIView.beginAnimations("wheel2", context: nil)
 UIView.setAnimationDelegate(self)
 UIView.setAnimationDidStopSelector("secondWheelReverse:")
 UIView.setAnimationCurve(.EaseIn)
 UIView.setAnimationDuration(2.0)
 slotStripViewWheel2!.frame = slotStripViewWheel2PosEnd!
 UIView.commitAnimations()

 UIView.beginAnimations("wheel3", context: nil)
 UIView.setAnimationDelegate(self)
 UIView.setAnimationDidStopSelector("thirdWheelReverse:")
 UIView.setAnimationCurve(.EaseIn)
 UIView.setAnimationDuration(2.0)
 slotStripViewWheel3!.frame = slotStripViewWheel3PosEnd!
 UIView.commitAnimations()

 // SOUNDS
 AudioServicesPlaySystemSound(spinSoundObject)
 }

 func firstWheelReverse(animationID: String) {
 UIView.beginAnimations("reverseWheel1", context: nil)
 UIView.setAnimationCurve(.EaseOut)
 UIView.setAnimationDuration(1.0)
 slotStripViewWheel1!.frame = slotStripViewWheel1PosComplete!
 UIView.commitAnimations()
 }

439CHAPTER 14: Swift Conversion Project

 func secondWheelReverse(animationID: String) {
 UIView.beginAnimations("reverseWheel2", context: nil)
 UIView.setAnimationCurve(.EaseOut)
 UIView.setAnimationDuration(1.4)
 slotStripViewWheel2!.frame = slotStripViewWheel2PosComplete!
 UIView.commitAnimations()
 }

 func thirdWheelReverse(animationID: String) {
 UIView.beginAnimations("reverseWheel3", context: nil)
 UIView.setAnimationDelegate(self)
 UIView.setAnimationDidStopSelector("spinningHasStopped:")
 UIView.setAnimationCurve(.EaseOut)
 UIView.setAnimationDuration(1.8)
 slotStripViewWheel3!.frame = slotStripViewWheel3PosComplete!
 UIView.commitAnimations()
 }

 func spinningHasStopped(animationID: String) {
 print("Spinning Has Stopped")
 var allCreditsGone: Bool = false
 var winMultiplier: Int = 0
 isSpinning = false
 spinButton.enabled = true
 betButton.enabled = true
 betMaxButton.enabled = true

 //STOP LIGHTS
 stopGreenLightAnimation()
 stopRedLightAnimation()

 winMultiplier = calculateWinnings()
 // Lose
 if winMultiplier == 0 {
 self.totalCredits -= self.thisBet
 if self.totalCredits <= 0 {
 allCreditsGone = true
 }
 AudioServicesPlaySystemSound(self.loseSoundObject)
 }
 else {
 // Win
 self.totalCredits += (self.thisBet * winMultiplier)
 AudioServicesPlaySystemSound(self.winSoundObject)
 }

 updateLabels()
 if allCreditsGone {
 youLost()
 }

440 CHAPTER 14: Swift Conversion Project

 saveGameState()

 }

 func resetGame() {
 print("ResetGame")
 makeButtonClick()
 winThisSpin = 0
 thisBet = 1
 totalCredits = kInitialCredits
 allowSpin = true
 gameOver = false
 updateLabels()
 saveGameState()
 }
 func updateLabels() {
 // TOTAL
 let totString: String = String(format: "%d", totalCredits)
 creditsLabel!.text = totString
 //BET
 let betString: String = String(format: "%d", thisBet)
 betLabel!.text = betString
 //WIN AMMOUNT
 let winString: String = String(format: "%d", winThisSpin)
 winLabel!.text = winString

 }
 func calculateWinnings() -> Int {
 var winMultiplier: Int = 1

 // Any single cherry
 if (spin1 == 2) && (spin2 != 2) && (spin3 != 2) {
 return 1
 }
 if (spin1 != 2) && (spin2 == 2) && (spin3 != 2) {
 return 1
 }
 if (spin1 != 2) && (spin2 != 2) && (spin3 == 2) {
 return 1
 }

 // Any DOUBLE cherry
 if (spin1 == 2) && (spin2 == 2) && (spin3 != 2) {
 return 3
 }
 if (spin1 != 2) && (spin2 == 2) && (spin3 == 2) {
 return 3
 }
 if (spin1 == 2) && (spin2 != 2) && (spin3 == 2) {
 return 3
 }

441CHAPTER 14: Swift Conversion Project

 // Three CHERRIES
 if (spin1 == 2) && (spin2 == 2) && (spin3 == 2) {
 return 150
 }

 switch spinValue {
 case 000:
 winMultiplier = 100
 // 3 Bars

 case 888:
 winMultiplier = 100
 // 3 sevens

 case 111, 222, 333, 444, 555, 666, 777:
 winMultiplier = 3 // 3 anything else --> 3X bet

 default:
 winMultiplier = 0 // anything else --> lose
 }
 return winMultiplier
 }

 func youLost() {
 let alertController = UIAlertController(title: "Lost it All", message: "APress OK to

play again.", preferredStyle: .Alert)
 let OKAction = UIAlertAction(title: "OK", style: .Default) { (action:UIAlertAction!) in
 self.resetGame()
 }
 alertController.addAction(OKAction)

 self.presentViewController(alertController, animated: true, completion:nil)
 }

 func setupGreenLightSequence() {
 var img1: UIImage
 var img2: UIImage
 var img3: UIImage
 var img4: UIImage

 if iphoneType == .kiPhone6Plus {
 img1 = UIImage(named: "100greenTop6P.png")!
 img2 = UIImage(named: "110greenTop6P.png")!
 img3 = UIImage(named: "111greenTop6P.png")!
 img4 = UIImage(named: "011greenTop6P.png")!
 }
 else {
 //smaller screen size
 img1 = UIImage(named: "100greenTop.png")!
 img2 = UIImage(named: "110greenTop.png")!
 img3 = UIImage(named: "111greenTop.png")!
 img4 = UIImage(named: "011greenTop.png")!
 }

442 CHAPTER 14: Swift Conversion Project

 var images: [UIImage] = []
 images.append(img1)
 images.append(img2)
 images.append(img3)
 images.append(img4)

 greenLightSequenceImageView.animationImages = images
 greenLightSequenceImageView.animationRepeatCount = 0
 greenLightSequenceImageView.animationDuration = 0.5

 switch iphoneType {
 case .kiPhone4S:
 greenLightSequenceImageView.frame = CGRectMake(71, 1, 200, 20)
 case .kiPhone5:
 greenLightSequenceImageView.frame = CGRectMake(71, 1, 200, 20)
 case .kiPhone6:
 greenLightSequenceImageView.frame = CGRectMake(100, 1, 200, 20)
 case .kiPhone6Plus:
 greenLightSequenceImageView.frame = CGRectMake(114, 1, 200, 20)
 default: break
 }

 }

 func startGreenLightAnimation() {
 greenLightSequenceImageView.startAnimating()
 view.addSubview(greenLightSequenceImageView)
 }

 func stopGreenLightAnimation() {
 greenLightSequenceImageView.stopAnimating()
 greenLightSequenceImageView.removeFromSuperview()
 }

 func setupRedLightSequence() {
 var img1: UIImage
 var img2: UIImage
 var img3: UIImage
 var img4: UIImage
 var img5: UIImage

 if iphoneType == .kiPhone6Plus {
 img1 = UIImage(named: "001redBottom6P.png")!
 img2 = UIImage(named: "011redBottom6P.png")!
 img3 = UIImage(named: "111redBottom6P.png")!
 img4 = UIImage(named: "110redBottom6P.png")!
 img5 = UIImage(named: "100redBottom6P.png")!
 }
 else {
 //smaller screen size
 img1 = UIImage(named: "001redBottom.png")!
 img2 = UIImage(named: "011redBottom.png")!

443CHAPTER 14: Swift Conversion Project

 img3 = UIImage(named: "111redBottom.png")!
 img4 = UIImage(named: "110redBottom.png")!
 img5 = UIImage(named: "100redBottom.png")!
 }
 var images: [UIImage] = []
 images.append(img1)
 images.append(img2)
 images.append(img3)
 images.append(img4)
 images.append(img5)

 redLightSequenceImageView.animationImages = images
 redLightSequenceImageView.animationRepeatCount = 0
 redLightSequenceImageView.animationDuration = 0.5

 switch iphoneType {
 case .kiPhone4S:
 redLightSequenceImageView.frame = CGRectMake(71, 1, 200, 20)
 case .kiPhone5:
 redLightSequenceImageView.frame = CGRectMake(71, 1, 200, 20)
 case .kiPhone6:
 redLightSequenceImageView.frame = CGRectMake(100, 1, 200, 20)
 case .kiPhone6Plus:
 redLightSequenceImageView.frame = CGRectMake(114, 1, 200, 20)
 default: break
 }

 }
 func startRedLightAnimation() {
 redLightSequenceImageView.startAnimating()
 view.addSubview(redLightSequenceImageView)
 }

 func stopRedLightAnimation() {
 redLightSequenceImageView.stopAnimating()
 redLightSequenceImageView.removeFromSuperview()
 }

 func makeButtonClick() {
 AudioServicesPlaySystemSound(clickSoundObject)
 }
 func saveGameState() {
 print("Calling Save Game State")

 let defaults = NSUserDefaults.standardUserDefaults()
 defaults.setInteger(spin1, forKey: "spin1")
 defaults.setInteger(spin2, forKey: "spin2")
 defaults.setInteger(spin3, forKey: "spin3")
 defaults.setInteger(winThisSpin, forKey: "winthisspin")
 defaults.setInteger(thisBet, forKey: "thisbet")
 defaults.setInteger(totalCredits, forKey: "totalcredits")
 defaults.synchronize()
 }

444 CHAPTER 14: Swift Conversion Project

 func restoreUserSettings() {
 let defaults = NSUserDefaults.standardUserDefaults()
 // Determine if values have been previously saved and, if so,
 // load them in. Otherwise, initialize the game.
 if (defaults.objectForKey("spin1") != nil) {
 spin1 = defaults.objectForKey("spin1") as! Int
 slotStripViewWheel1PosStart = CGRectMake(33.0 + CGFloat(shiftOverValue),

CGFloat(spin1), 90.0, 2900.0)
 slotStripViewWheel2PosStart = CGRectMake(116.0 + CGFloat(shiftOverValue),

CGFloat(defaults.objectForKey("spin2") as! Int), 90.0, 2900.0)
 sslotStripViewWheel3PosStart = CGRectMake(199.0 + CGFloat(shiftOverValue),

CGFloat(defaults.objectForKey("spin3") as! Int), 90.0, 2900.0)
 winThisSpin = defaults.objectForKey("winthisspin") as! Int
 thisBet = defaults.objectForKey("thisbet") as! Int
 totalCredits = defaults.objectForKey("totalcredits") as! Int
 } else {
 print("initializing game - no data was stored")
 slotStripViewWheel1PosStart = CGRectMake(33.0 + CGFloat(shiftOverValue), 95.0,

90.0, 2900.0)
 slotStripViewWheel2PosStart = CGRectMake(116.0 + CGFloat(shiftOverValue), 95.0,

90.0, 2900.0)
 slotStripViewWheel3PosStart = CGRectMake(199.0 + CGFloat(shiftOverValue), 95.0,

90.0, 2900.0)
 self.resetGame()
 }
 }

 //
 // END VIEW CONTROLLER CLASS
 //

 }

 Summary
 In this chapter we have addressed the basics of what it would be like to convert from
an existing Objective-C program to Swift. As a new employee at an iOS development
organization, it’s quite likely that you could be given these kind of assignments to prove your
worth to the organization.

 By the time of publication, there will likely exist several methods of conversion between
existing Objective-C code and Swift to make your life easier. Most likely your company will
have standards in place to address these, along with guidelines you’ll be required to follow.

 As the Swift compiler and Xcode progress and new features are added to the language,
some of the syntax requirements may cause warnings or errors, especially with tricky
conversions from much older projects. The best answer is to research the literature,
message boards, and Apple documentation to stay on top of things.

445© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_15

 Chapter 15
 Coin Toss Project
 In this chapter we’ll move into developing a more up-to-the-minute kind of application.
We’ll work with Swift and the Apple Watch to create a very simple game of flipping a coin.
I’ve actually used this on occasion, out in the world, to choose a path when I’m confronted
with a couple of different, seemingly equal choices. I often wonder why I make so many
wrong decisions.

 Problem
 We want to get started in Swift, but make it a fun experience.

 Solution
 We’ll build a simple, easy-to-implement app for the Apple Watch.

 Let’s Work Through the Project
 This time, we will take a different approach in our development, and I’ll endeavor to do the
same in the upcoming projects as well. We would normally create the project (which we will
always start with) then dive into the logic of the algorithms, finishing up with embellishments
such as the app icons. Because Xcode gives us complete functioning templates in an
architectural sense—functionally they do nothing—we can generally build and run our apps
right from the start, without adding much code at all.

 What we’ll do here is to create the project in Xcode, build the project to ensure that it
works to the extent of loading onto our devices, work through getting our app icons in
place and displayed properly, then add the other necessary code and objects to provide the
coin-flipping functionality.

446 CHAPTER 15: Coin Toss Project

 Create the Project
 Start by creating the project, as shown in Figure 15-1 . At this point, you should be familiar
with creating any type of project in Xcode. Here, the easiest solution is to go to File ➤ New
➤ Project… in Xcode, then select under “WatchOS” the “iOS App with WatchKit” option .
By default, for me anyway, Xcode chose a universal build—that is, for both iPhone and iPad.
Since we’re working toward an Apple Watch app, and at the time of this writing this would
only work through an iPhone, you should probably change the “Devices” drop-down to
“iPhone.”

 Figure 15-1. Create the project in Xcode, but instead of “Universal,” you may want to change this to “iPhone only”
since that will be our focus

 Note that there are three targets: the Coin Toss app that executes on the phone, the Watch
app itself, and the Watch App extension. As we are at the early stages of development on
Apple Watch, projects using Watch are set up so that an iPhone app is required in addition
to two Watch targets. The iPhone-only (currently) app allows connection with and the proper
setup of the Watch. The two Watch targets provide the UI (the Watch App itself) and the
logic (the Watch App extension). The splitting of the two parts of Watch is derived from the
original WatchOS 1 release. The Watch app represents the UI that the user sees on the face,
whereas the extension contains most of the logic. Previously, in WatchOS (aka version 1)
the extension ran on the iPhone and communicated with the Watch app—the UI—that ran
on the Watch device. With the release of WatchOS 2 , the extension now runs on the Watch
device, permitting native Watch apps to be built.

447CHAPTER 15: Coin Toss Project

 You can, of course, choose to either work with the simulator at this point or build directly
onto your devices. I’m taking the latter approach, building directly to my device to give you
an idea of how things work with this more complicated approach. Once you’ve set up and
verified that all your credentials in the project settings are correct, go ahead and build the
project. You won’t get anything very useful except a blank screen on the simulator or actual
iPhone device. What we want to do now is to press the Home button, either on the phone or
virtually in the simulator, to get to the splash screen. Look for the app icon, and you should
see something that looks like Figure 15-2 .

 Figure 15-2. Initially building the app to your device will show the default icon

 Fix the App’s Icons
 I’ll certainly detail how we’re going to make the app work, but for a little bit of fun let’s fix the
icon right away. In fact, because we’re building for the Watch and the iPhone, let’s get them
both in shape before proceeding. First, locate the image files in the additional source code
for the AppIcon, as shown in Figure 15-3 , and the Watch, Figure 15-4 . The quickest way to
locate the actual image files, or any project file for that matter, is to, from within Xcode, right-
click on the file name you’re interested in—for the image files that would be the Assets.
xcassets icon in the Project Navigator—then select “Show in Finder.” From there, open the
enclosing folder to see the actual image files.

448 CHAPTER 15: Coin Toss Project

 Figure 15-3. Either use the provided files or create your own images for icons used on the iPhone

 Figure 15-4. While you’re at it, get the Watch icons ready as well

 Locate the AppIcon in the xcassets section of the iPhone target files in the Xcode organizer,
as shown in Figure 15-5 . Drag the appropriate size file from its location in the Finder onto
the blank place for it in Xcode. You should be able to verify that the correct size is properly
associated with the appropriate icon slot. You should know immediately if an incorrectly
sized file has been placed. A yellow triangle with an ‘!’ mark will show at the top. In the
organizer on the left, click on the Issue Navigator to get more information on the incorrect file
placement.

449CHAPTER 15: Coin Toss Project

 Build and install the app onto your device, and the proper app icon should now show up on
the iPhone splash screen , as in Figure 15-6 .

 Figure 15-5. Place the image file onto its correct spot in the xcassets, AppIcon section in Xcode. Errors should be
shown instantly in the Issue Navigator

 Figure 15-6. Now the iPhone app icon is properly displayed

450 CHAPTER 15: Coin Toss Project

 Start the Watch app on the iPhone and scroll down to find the Coin Toss application we just
built. Slide the “Show App on Apple Watch” option to the ON position. On the Apple Watch,
observe as the app begins to load. It will have a default icon similar to, but much smaller
than, the one we saw earlier on the iPhone.

 Just as we did for the iPhone app icon, drag the files from the Finder to the proper location
in Xcode. In this case, we’ll want to look at the xcassets in Xcode as before, this time
choosing the xcassets under the Watch app section, as shown in Figure 15-7 .

 Note You need to have paired your Apple Watch to the iPhone being used in this part of the exercise.

 Figure 15-7. Similar to the iPhone, we want to properly install the images for the Watch

 From the project pull-down, select “Clean” and then rebuild your app for your device or
simulator. If using an actual device, go to the Watch app and slide the “ Show App on Apple
Watch” option to the ON position. You should now see the app begin to load on your Watch
as before, but with the proper icon, as shown in Figures 15-8 and 15-9 .

451CHAPTER 15: Coin Toss Project

 Figure 15-8. The app will begin to load using the proper icon on your Watch

 Figure 15-9. When loading completes, the app icon will properly appear and function on the Watch face

452 CHAPTER 15: Coin Toss Project

 Figure 15-10. Click the ‘+’ button at the bottom of the Assets. xcassets center window and choose “ New Image Set ”

 Set Up the Remaining Icons
 Now that we have the iPhone and Watch icons set correctly, let’s finish off the rest of the
graphics. First, we need an image of the heads and tails sides of a coin, and, because we
want to simulate the flipping of the coin in the air, we’ll also add a side shot.

 In the xcassets section where we added the Watch app, create a new, blank imageset as
shown in Figures 15-10 and 15-11 . The new imageset will be named something generic,
such as image. Click on the name and change it to heads , as shown in Figure 15-12 .

 Figure 15-11. You’ll see a new empty imageset displayed

453CHAPTER 15: Coin Toss Project

 Repeat the previous steps for the tails and side of the coin images. Locate the three files
using Finder, as shown in Figure 15-13 . Drag the appropriate images to the correct spots
in the xcassets section, as shown in Figures 15-14 , 15-15 , and 15-16 . Note that, because
we’re working with the Watch, I’m only loading the 1X images into the assets folder. Using
the technique we described earlier, you’ll find these images in the source code.

 Figure 15-12. Change the name of the imageset to “heads”

 Figure 15-13. Locate either the provided set or your own images of the heads, tails, and side of the coin

454 CHAPTER 15: Coin Toss Project

 Figure 15-14. Load the side of the coin into the xcassets

 Figure 15-15. Load the heads side of the coin into the xcassets

 Figure 15-16. Load the tails side of the coin into the xcassets

455CHAPTER 15: Coin Toss Project

 The last thing we need to do is create a sequence of images that we can use to simulate
a coin flip. Create a series of images named flip1 through flip10. In the code, we’ll use the
image set name “flip” and 10-image sequence that will automatically append the increment
number to the sequence and pull the images from the xcassets, i.e., flip1, flip2, flip3, through
flip10. This way, we have all our graphics files managed by Xcode through the xcassets
mechanism and simplify our functional code a great deal. While it looks like we have a lot
more images, as shown in Figure 15-17 , in actuality, outside of the iPhone and Watch icons,
we still only have the three additional files for heads, tails, and the side of the coin.

 Figure 15-17. Add the sequence of ten image assets and set to the correct graphic as described previously

 One important note: the image selected for each of the image assets must be in a specific
order to work in our code. For example, if we landed on heads, our next flip sequence would
be side, tails, side, heads, side, etc. But if we landed on tails, we’d want our sequence to be
side, heads, side, tails, etc. Where we start is in the Swift code, which we’ll get to shortly,
but for now, order the sequence of image assets as follows:

 1. flip1 = side

 2. flip2 = heads

 3. flip3 = side

 4. flip4 = tails

 5. flip5 = side

 6. flip6 = heads

 7. flip7 = side

 8. flip8 = tails

 9. flip9 = side

 10. flip10 = heads

456 CHAPTER 15: Coin Toss Project

 Create the Storyboards
 Select the Project Navigator in the organizer on the left of the Xcode screen and go to the
CoinToss WatchKit App, not the extension, and select interface.storyboard .

 Add three objects from the library, in this order: button, separator, image. Then set the image
in the attributes inspector to be flip2 (Figure 15-8). Add IBOutlets to the WatchKit extension
 InterfaceController.swift file by bringing up the assistant editor and control-dragging
from the button and image in the usual manner:

 @IBOutlet var button : WKInterfaceButton!
 @IBOutlet var coinImage : WKInterfaceImage!

 Figure 15-18. Add three objects to the Watch interface storyboard Interface Controller: a button, a separator, and an
image that we will default to flip2

 Also, add an IBAction for the button, called buttonPressed :

 @IBAction func buttonPressed () {
 }

 You now have completed the UI setup and added the skeleton code for the action and
outlets for our app. Next, we’ll complete the app by adding just a little bit of code.

 Write the Code
 Listing 15-1 shows the code for the ViewController.swift file . It should be apparent that
this is the Swift generated by Xcode when we created the project. Confused? You needn’t
be. This simply means that we do not write any additional code to execute on the iPhone.
We could if, say, we wanted to do a coin flip on the phone itself, but then it’d be just as
simple to pull a coin from our purse.

457CHAPTER 15: Coin Toss Project

 Listing 15-1. No Code Needs to Be Added to the ViewController.swift File

 //
 // ViewController.swift
 // CoinToss
 //
 // Created by Molly Maskrey on 12/14/15.
 // Copyright © 2015 Global Tek Labs. All rights reserved.
 //

 import UIKit

 class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 }

 In the awakeFromContext method, in the WatchKit extension file, we want to first make sure
that the image is not animating in case something happened, such as a hang from a previous
execution of the app. This puts us in a known state when the app awakes on our Watch.

 The only other thing we need do is to add the logic to simulate the flip inside the
 buttonPressed() method we added when creating the storyboard. All the additional needed
code is shown in Listing 15-2 . First, we set the coinImage outlet to the image named flip .
There is no actual image so named, but we’re using this as our sequence for the animation.
Next, we generate a random number between 0 and 1—that is, one of two options, like a
heads or a tails. Finally, depending on the random number generated, we start animating
and either stop on a heads or tails depending on the random number. The animation is pretty
crude and has a staccato appearance. This is intentional for this exercise so you can get a
better sense of what is happening as the app executes.

 Listing 15-2. Add the Following Code to the InterfaceController.swift File

 @IBAction func buttonPressed() {
 self.coinImage.setImageNamed("flip")
 let randomNumber = arc4random_uniform(2) // random # between 0 and 1
 if randomNumber == 0 {
 self.coinImage.startAnimatingWithImagesInRange(NSRange(location: 1, length: 10),
 duration: 1, repeatCount: 2)
 } else {
 self.coinImage.startAnimatingWithImagesInRange(NSRange(location: 1, length: 7),
 duration: 1, repeatCount: 2)
 }
 }

458 CHAPTER 15: Coin Toss Project

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 self.coinImage.stopAnimating()
 }

 That completes the Coin Toss application. Build the app onto your iPhone and Apple Watch,
and you should now have a virtual coin on your wrist whenever you need it.

 Problem
 The app won’t install onto your Apple Watch. This is usually a problem centered on
build settings.

 Solution
 This problem generally appears as a Watch app that installs most of the way then
disappears. Typically, the Watch icon will load to about three-fourths of the way, then
disappear as shown in Figure 15-19 . Most often this is the result of a couple of things.
At the time of this writing, many developers reported a similar issue that was solved by
adding a specific, user-defined setting for the Watch App and extension, or at the project
level so it is distributed to all targets. In the project’s build settings, click the ‘+’ and select
“Add User-Defined Setting,” as shown in Figure 15-20 .

 Figure 15-19. A common install issue in early Watch development is that the app partially installs, but then disappears

459CHAPTER 15: Coin Toss Project

 Add the value STRIP_BITCODE_FROM_COPIED_FILES and set the value to NO . Clean and rebuild
the project, and this should fix the problem.

 Finally, if this does not fix the problem, make sure the deployment target for your Watch
in the build settings, for both the Watch App and the extension, is set correctly. Often,
when creating a new Xcode Watch project, the settings will default to the latest values. For
example, in my case, WatchOS 2.1 was the default deployment target, but the development
Apple Watch I used for this exercise was at WatchOS 2.0.

 It’s always a good idea to quickly look through all the build settings for each of the three
targets—iPhone, Watch App, and extension—when you’re working on a new project and
have strange problems.

 Figure 15-20. Add a user-defined setting to the project’s build settings

460 CHAPTER 15: Coin Toss Project

 Summary
 As with all projects in this book, I wanted to give you a very brief overview of the steps
needed to create the simplest of Watch applications. Xcode provides us a way to create
our template Watch app by creating the three blank targets needed: the iOS app, the actual
Watch App (or user interface), and the Watch App extension wherein the actual logic resides.
The extension also provides the mechanism for moving data between the iPhone and the
Watch. Why do that? If you look at the available frameworks Apple provides for Watch,
you’ll see several are missing. From my point of view, the most notable is Core Bluetooth.
This means I can’t access BTLE devices from a Watch. I need to use the iPhone as a
pass-through device.

 We also talked about dealing with graphics and icon files in order to create a minimally
functioning app. In addition, the awakeWithContext method in the Watch App extension will
likely be the “go-to” place for your initialization, much like the viewDidLoad services in our
iOS apps.

461© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_16

 Chapter 16
 Home Automation Project
 With the Internet of Things (IoT) space surging and new products being added daily, it seemed
fitting to explore how to use Apple’s version of home automation. HomeKit can be thought
of as many things: a label on products to assure consumers of compatibility, a set of
software frameworks to create HomeKit apps, and even a hardware set of specifications
if you’re developing hardware under the MFi program. For this section, we’ll start by using
the HomeKit framework to create a simple, on-off toggle of an AC outlet to control a disco
ball (Figure 16-1). Why a disco ball? Well, why not? Seriously, though, you can use any
AC-powered device; a desk or table lamp, for example, works just as well.

 Figure 16-1. To make things more fun, we’ll control a disco ball in order to get our home automation party started

462 CHAPTER 16: Home Automation Project

 Problem
 We want to get started with home automation using Apple’s HomeKit iOS features , but current
tutorials are far more complicated than we’d like to tackle as our first attempt. Apple offers a
HomeKitCatalog sample app that contains pretty much everything you’d need to know to work
with HomeKit. However, we just want to control a switch and, for now, nothing else.

 Solution
 We’ll build the simplest app imaginable in order to control our disco ball. Our app’s UI
contains one control: a button that turns the power on or off from the HomeKit accessory
device . For our accessory device, I chose the iHome Control SmartPlug , which is, as you
can see in Figure 16-2 , certified to work with Apple HomeKit.

 Figure 16-2. To manage power to our disco ball, we’re using the iHome Control SmartPlug Certified HomeKit accessory

 Let’s Work Through the Project
 As you may recall from the earliest chapters of this book, my goal was not so much to teach
you programming as to help you overcome the typical issues that arise while creating and
building iOS apps. In the last project, our coin-flipping app, we addressed making sure that
the icons for both the iPhone and Watch devices were correct. Normally, we might want to
do that in this project or in any other project. Or, we might save that kind of issue until the
very end of the development cycle. It really depends on your style and your organization’s
guidance. It certainly seems like something superfluous to be concerned about before
the code is written, but if we’re planning on demoing this to a client, we want our first

463CHAPTER 16: Home Automation Project

impressions to be at the top of the game. Delivering or even just showing something that
looks incomplete at first glance can give the wrong impression. While we may have 50
percent or more of the logic and functionality ready to show, a crappy looking icon or screen
can set the wrong mood at the start.

 Having said all that, for the sake of brevity, since we addressed icon issues in the last
project, we’re going to skip them in this chapter and try to address other common issues
certain that may arise in your career.

 Create the Project
 Create a new project using the single view template and call it whatever you wish. I’ve
chosen to call mine DiscoBall, as that is the target device that we’ll control. Initialize the
project without using core data or setting any test targets in order to keep it simple for now,
as shown in Figure 16-3 . I also chose to build it for the iPhone, but that’s up to you. When
finishing up project creation, do not choose to create a Git repository (Figure 16-4).

 Figure 16-3. Create our disco ball project without core data or testing capability

464 CHAPTER 16: Home Automation Project

 Once the project has been created and you have saved its folder to the proper location on
your Mac, verify that your team is set correctly in the project and target settings under the
General section. As you can see in Figure 16-5 , I’ve set mine to my name, which reflects my
individual iOS/Mac developer account credentials.

 Figure 16-4. Don’t use source control for this project. We will address that in a different chapter

 Figure 16-5. Set the project to the team account you are using to create this app

 Note While using core data would not make any sense for this small app, setting up testing as
well as creating a Git repository would, in most cases, be the way to do things. I’ve left them off
intentionally to show how they would be handled separately in other chapters.

465CHAPTER 16: Home Automation Project

 Verify the Build Process
 Similar to how we wanted to make sure the iPhone and Watch icons were properly displayed
in the Coin Toss project, before we go any further into developing the logic, let’s make sure
we can build this project to our device.

 First, let’s make a simple change to our LaunchScreen.storyboard so we can see if
everything works. We could add something to our Main.storyboard as well, but we’ll get
to that shortly. For now, I just put a label at the center of the launch screen so we’ll see
something happen when and if the app builds and loads correctly (Figure 16-6).

 Figure 16-6. Add a simple label in the center of the launch screen to see if the app at least tries to start properly

 You should now expect, because we’ve set up everything and made one very simple change
to one storyboard, that the app should build okay, load, and start running on your connected
device. Trying this, however, likely yields results similar to those shown in Figure 16-7 .

466 CHAPTER 16: Home Automation Project

 Fortunately, this is one of those problems that Xcode has become fairly good at dealing with.
Click on Fix Issue, and if you have multiple accounts you’ll be presented with the dialog in
Figure 16-8 . If so, choose the same team we picked earlier, and things should begin to work.
If you have only one team, it may skip this screen and just fix the provisioning issue.

 Figure 16-7. You haven’t yet created a provisioning profile for building this app to a device, though we might expect it
to use our team profile

 Figure 16-8. If presented with a choice, select the same team we did earlier in the General project settings

 Test your work by building, downloading, and executing the project onto your device. You
should quickly see the launch screen we modified followed by a completely blank screen .

467CHAPTER 16: Home Automation Project

 Create the User Interface
 Because all we’re looking to do in this project is control a simple AC-powered device, our
disco ball, rather than spend time developing hierarchical table view screens, I’m going to go
with a few simple controls and indicators as shown in Figure 16-9 . Starting from the top:

 Add a label to indicate the status of the device, either on or off

 Add a button to turn the device on or off.

 Add a label that we’ll use to show the user when we found an accessory
and what the accessory is called.

 Add a label to show if the accessory is connected to our app.

 Add another button to attach the accessory when the app finds it.

 Figure 16-9. For this project, because we’re more concerned about using HomeKit, our UI will consist of very simple
buttons and simple labels as indicators

 Add the actions and outlets for the UI objects to the ViewController.swift file as shown
in Figure 16-10 . The deviceIndicator label shows whether the disco ball is turned on or
not. The switchStatus UIButton outlet allows us to change the label on the ON/OFF button
as appropriate. The activateDevice action turns the disco ball on or off—this is the main
power switch. The accessoryFound label shows the name of the accessory that the app
has located, and accessoryStatus tells us if that accessory is connected to the app or not.
Finally, the attachAccessory action will try to connect an accessory that has been found to
the app so it can be operated upon.

468 CHAPTER 16: Home Automation Project

 About HomeKit
 So, what exactly is HomeKit? Like many terms, HomeKit can be used differently depending
on the context of our discussion. For the consumer, HomeKit represents a certification from
Apple, or rather, a stamp of approval that the accessory will work with apps developed
for HomeKit. To the hardware designer, it represents a set of standards and underlying
protocols that allow communications and control with various hardware elements. That is,
not just any AC power control or light bulb or garage door opener can work with HomeKit.
The underlying hardware and, most importantly, the communications mechanism must be
designed and developed according to highly regulated specifications that a company can
access only if they are part of Apple’s MFi program .

 To us software developers, HomeKit provides the framework we need to communicate with,
access, and control these accessory devices. The methods within the framework provide
access to a HomeKit database stored within iOS on an Apple device. So, because iOS
controls the database, your home’s information is hardware encrypted and secure to the
extent that you keep your iPhone secure. Leave it in a bar with no password protection and
you may find your lights and thermostat seem to change for no reason.

 HomeKit keeps information in a basic hierarchy. At the top is the home, the container for all
your devices. Actually, you can have as many homes as you need, e.g., a vacation home, a
rental property, etc. Underneath are rooms that contain the third layer, the accessories. Just
as a home can contain multiple rooms, a room can contain multiple accessories.

 Continuing, each accessory can contain one or more services. This is where things may seem
to get a little more complicated, but if you’ve looked at the Bluetooth network standard, it will
seem very familiar. A service is pretty much as it sounds—something that the accessory does.
A desk lamp accessory would have a lamp service to provide illumination. A garage door would
have a motor or door service, but could also have a lamp service and maybe an alarm service.

 Each service contains one or more characteristics. These are the various data elements,
essentially the leaves of our hierarchy tree. For the garage door, the door service would
have an open characteristic indicating whether the door is closed or not. This would

 Figure 16-10. Set up two outlets and an action for our UI

469CHAPTER 16: Home Automation Project

be a characteristic that we read; that is, through our HomeKit framework methods, we
read whether the door is open or closed. But, this characteristic might also allow write
access. We would write to the characteristic whether we want to open or close the door.
Characteristics can be read only, write only (less common), or read/write.

 To delve deep into HomeKit would require nearly an entire book to itself. What we’ve
covered in this section are the very basic elements, but it is enough to begin designing our
app around our AC power control for the disco ball.

 Our Configuration
 I plan to keep things extremely simple in order to get the most out of the HomeKit
explanations, so we’ll have a very simple hierarchy. At the top is MyHome . We will use only
one home and won’t worry about changes, deletions, additions, and so on. Below that, our
home will have one room. Imagine a cabin in the mountains. For our work we’ll simply call it
 MainRoom . In that room we’ll have our DiscoBall accessory and LightBulb service , as that is
a standard option when using the HomeKit Accessory Simulator. Our characteristics for the
 LightBulb service will be on and outlet in use . We write to the on characteristic in order
to control the outlet to which the disco ball is connected. Outlet in Use serves as a status
indicating whether the outlet is actually powered on or not.

 MyHome ➤ MainRoom ➤ DiscoBall ➤ LightBulb ➤ (on and outlet_in_use)

 Problem
 We have our iHome Control AC Power switch , as shown earlier in Figure 16-2 , but how do
we work with it? Moreover, upon opening the box we find the contents include nothing more
than the product itself and a simple card telling us to download the associated app. But
what we want to do is work with this product.

 Solution
 Let’s work through building our HomeKit app and see what happens. For early testing, use
the Xcode simulator, as this gives you better control over resets, which we’ll need shortly.

 First, we have to instantiate an HMHomeManager object to manage our home. Because our app
should be extremely simple, we’ll do everything inside the ViewController class viewDidLoad
method in the ViewController.swift file.

 You need to do four things:

 Import the HomeKit framework.

 Make sure the class conforms to the HMHomeManagerDelegate protocol.

 Instantiate an HMHomeManager object.

 Set the manager’s delegate.

 All this can be seen clearly in Listing 16-1 .

470 CHAPTER 16: Home Automation Project

 Listing 16-1. Adding an HMHomeManager to Our ViewController

 //
 // ViewController.swift
 // DiscoBall
 //
 // Created by Molly Maskrey on 12/17/15.
 // Copyright © 2015 Global Tek Labs. All rights reserved.
 //

 import UIKit
 import HomeKit

 class ViewController: UIViewController, HMHomeManager Delegate {

 @IBOutlet weak var deviceIndicator: UILabel!
 @IBOutlet weak var switchStatus: UIButton!

 @IBAction func activateDevice(sender: AnyObject) {

 }

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 //
 // Create a home manager
 //
 let manager = HMHomeManager()
 manager.delegate = self

 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 }

 Let’s build this to the simulator and see what happens. You should see the alert shown in
Figure 16-11 asking you, the user, to allow your app to access accessory data. For this you
would click OK, as we want to move on from here. However, a common situation happens
when you select Don’t Allow because you want to make a few more changes or maybe just
by accident. What you will find, in many cases, is that restarting the app does not show this
dialog. That is, you’ve selected the option to preclude this app from accessing your home or
accessory data and iOS will remember this. Deleting the app, cleaning the project, and even
rebooting your iPhone won’t usually fix this. So, what do you do?

471CHAPTER 16: Home Automation Project

 Go to the Settings app and scroll down to find the DiscoBall app and select it. You will, of
course, need to have the app built and on your device in case you just deleted it. You should
see something similar to Figure 16-12 with the switch set to off. Simply set the switch to on
(Figure 16-13), and now your app will have access to your home accessory data. Let’s move
on to the next step.

 Figure 16-11. On initial launch iOS will confirm with you as to whether you want to allow the app to access your
home database

472 CHAPTER 16: Home Automation Project

 Figure 16-12. Home data access is off for your app

473CHAPTER 16: Home Automation Project

 Add a Home
 Now that we have our manager instantiated, let’s try adding our home. To do so we use
the addHomeWithName method as shown in Listing 16-2 . However, running this will return the
message:

 Error happened.. message: Missing entitlement for API

 Listing 16-2. Simple Call to addHomeWithName in Our viewDidLoad Method

 //
 // Add our Home
 //
 manager.addHomeWithName("MyHome", completionHandler: {(home, error) in

 print("Trying to add MyHome")
 if error != nil{
 print("Error happened.. message: \(error!.localizedDescription)")
 }
 })

 Figure 16-13. Home data access is on for your app

474 CHAPTER 16: Home Automation Project

 Problem
 Trying the simplest way to add a home to our HomeKit database returned a Missing
Entitlement error.

 Solution
 Because HomeKit allows access to sensitive personal information, you need to specifically
add the HomeKit entitlement to the capabilities of the app target.

 In the Xcode Project Navigator, choose the target and go to the Capabilities section
(Figure 16-14).

 Figure 16-14. Add the HomeKit entitlements to your app in the Capabilities section

 Scroll down to HomeKit and flip the switch to ON.

 Rebuilding and testing the app now should eliminate the entitlements error. One of the things
you might want to be aware of when early testing your app is that after adding a home to the
database, trying to add it a second time will return an error.

475CHAPTER 16: Home Automation Project

 Problem
 After making some corrections to your app, you can no longer add your home to the
database. You see the localized error description: “Home with similar name exists.”

 Solution
 In the short-term while testing, the easiest thing would be to use the “Reset Content and
Settings. . .” option of the simulator, as shown in Figure 16-15 .

 Figure 16-15. “Reset Content and Settings…” provides an easy way to reset everything on your simulator so as to test
adding a new home. However, this will require you to reallow the app to access home data as shown earlier

 The better solution, of course, is to handle the error condition in the app. And while it is an
error in the sense that the call did not add our home because it was already there, it’s not
going to crash our app or mess up what we’re trying to do. Remember, all we want to do is
to add our home.

 That said, let’s take things a couple steps further in our code. We’ll not only add our home,
but also add a room to the home MainRoom and make our home the primary. And, of course,
we’ll add checks as to what is returned by our attempts to add a home and a room.
Listing 16-3 shows the code handling these three simple functions. Note that error code
32 reflects the condition returned by the addHomeWithName method and indicates the home
provided is already in the database. Similarly, error code 13 means that the room specified
is already in the home. I’ve added numerous print() statements so that you can see what
happens in the console as the code executes.

476 CHAPTER 16: Home Automation Project

 Listing 16-3. Our Complete Code to Add a Room and Our Home, and Make It the Primary

 //
 // Add our Home
 //
 func addMyHome() {
 manager.addHomeWithName(kmyHome, completionHandler: {(home, error) -> Void in
 print("Trying to add MyHome")
 if error == nil || error?.code == 32 { // error code 32 means the home is already in

the database

 if error == nil {
 print("MyHome added to database")
 self.primaryHome = home
 } else {
 print("MyHome already in database")
 }

 print("…either way, we can add a room to the home now")
 //
 // We've stored the house we added as our primary so we'll
 // now add a room to it
 //
 if self.primaryHome != nil {
 self.primaryHome!.addRoomWithName(self.kmainRoom, completionHandler: {

(room, error) -> Void in
 if error == nil || error?.code == 13 { // error code 13 means room

already in home
 if error == nil {
 print("Room added to Home")
 } else {
 print("Room ALREADY there")
 }
 //
 // This might seem tricky, but we have to tell HomeKit to make

this
 // our primary home as well. Previously, we just essentially

called it that
 // but we have to do it in code so the database is "correct"
 //
 self.manager.updatePrimaryHome(self.primaryHome!,

completionHandler: {(error) -> Void in
 if error == nil {
 print("\(self.primaryHome!.name) now defined as the

primary home")
 } else {
 print("ERROR: setting primary home: \(error)")
 }
 })

477CHAPTER 16: Home Automation Project

 } else {
 print("ERROR: attempting to add room. \(error!.

localizedDescription)")
 }

 })
 } else {
 print("ERROR: For some reason our global primary home was not

set")
 }
 } else {
 print("ERROR: attempting to add home: \(error)")
 }

 })
 }
 //
 // End of setting up our simple one room home
 // Note that we didn't do anything with accessories. We will deal with those separately.
 //

 Hierarchical Differences
 Earlier I showed our top-down hierarchy, starting with homes. In our case, the primary home
is at the top and lower levels contain with each of the characteristics for a service within our
accessory. This structure is pretty straightforward, and we fairly easily grasp the concept.
Implementation tells a different story. At first pass, when confronted with a problem like this,
we construct this intricate series of if-then-else statements, which works fine for a couple
levels, but with a five-tier problem it’s just too unwieldy.

 The trick is to logically break it down. Think of it this way: there might be five levels in the
hierarchy, but you could classify them into two categories. The “holders of the object” are
the top layers: the room and the home. The “objects being held”, i.e., the accessories,
comprise the bottom layers: the accessory, the services, and the characteristics. Work on
each of these subsections and things will seem a lot clearer.

 I wish there were a logical way to deconstruct a HomeKit application that made it clear and
simple. Unfortunately, I haven’t found any, and I don’t profess to be brilliant enough to do so.
What I’ve tried to do is minimize all the superfluous “stuff,” the noise, if you will, and focus
on the key elements. In the previous sections you saw the basics of the top sub-hierarchy,
the containers. We’ll dive into the accessory code shortly, but first I want to quickly cover our
key delegation issues.

478 CHAPTER 16: Home Automation Project

 HomeKit Delegation
 Listing 16-4 shows the definition line of our ViewController class indicating that it should
conform to three different delegate protocols: HomeManager , AccessoryBrowser , and Accessory .

 Listing 16-4. Our View Controller Conforms to Three Delegate Protocols

 class ViewController: UIViewController, HMHomeManagerDelegate, HMAccessoryBrowserDelegate,
HMAccessoryDelegate{

 HMHomeManagerDelegate
 The HMHomeManagerDelegate protocol allows you to track changes to your collection of
homes with four methods:

 1. homeManager(_:didAddHome:)

 2. homeManager(_:didRemoveHome:)

 3. homeManagerDidUpdateHomes(_:)

 4. homeManagerDidUpdatePrimaryHome(_:)

 In our code, I’ve implemented three of these and excluded didRemoveHome since we’re not
going that far with our example. If you get the first three, the fourth one should be obvious.
Listing 16-5 shows two of the methods where all we do is to print to the log when the
method is called. This is always a good idea in your early stages of development so you can
keep track of what’s going on in case anything funky seems to be happening. Listing 16-6
shows how we handle things when a change to our homes database occurs through our
implementation of the homeManagerDidUpdateHomes method. This is a very important method
because, after starting your app, until this method is called the homes database shouldn’t be
considered as valid.

 Listing 16-5. Adding Simple print() Calls to Track What’s Happening with Our Delegate Methods

 func homeManagerDidUpdatePrimaryHome(manager: HMHomeManager) {
 print("homeManagerDidUpdatePrimaryHome called")
 }

 func homeManager(manager: HMHomeManager,
 didAddHome home: HMHome) {
 print("Home Manager added a home")
 }

 Listing 16-6. Handling Notification of Changes to Our Home Database

 func homeManagerDidUpdateHomes(manager: HMHomeManager) {

 print("Home Manager updated the homes database")
 for home in manager.homes as [HMHome] {
 if home.name == kmyHome {
 self.primaryHome = home
 print("Setting primaryHome to MyHome")
 }
 }
 }

479CHAPTER 16: Home Automation Project

 HMAccessoryBrowserDelegate
 Similar to how the HMHomeManagerDelegate protocol allows you to track changes in your
collection of homes, the HMAccessoryBrowserDelegate protocol permits tracking of when
accessories become available or go missing. This could be when you power on an
accessory, initialize a new accessory, remove an accessory, and so on. The protocol offers
two methods that should be pretty obvious as to their intent:

 1. accessoryBrowser(_:didFindNewAccessory:)

 2. accessoryBrowser(_:didRemoveNewAccessory:)

 Listing 16-7 shows how we implement the :didFindNewAccessory method in our code. We
talk more about this in the section on managing our accessories.

 Listing 16-7. Method Called When the Accessory Manager Locates a New Accessory

 func accessoryBrowser(browser: HMAccessoryBrowser,
 didFindNewAccessory accessory: HMAccessory) {

 print("Found a new accessory: \(accessory)")
 if accessory.name == kdiscoball {
 self.discoballAccessory = accessory
 self.accessoryFound.text = "Found \(accessory.name)"
 }
 }

 HMAccessoryDelegate
 While this sounds similar to the last protocol, the HMAccessoryDelegate protocol provides methods
associated with monitoring any changes to specific accessories. Once we have an accessory
object that we wish to monitor, we set its delegate and use the following methods for monitoring:

 1. accessoryDidUpdateName(_:)

 2. accessoryDidUpdateReachability(_:)

 3. accessoryDidUpdateServices(_:)

 4. accessory(_:didUpdateNameForService:)

 5. accessory(_:service:didUpdateValueForCharacteristic:)

 6. accessory(_:didUpdateAssociatedServiceTypeForService:)

 The key method we’re concerned with is the :didUpdateValueForCharacteristic method.
So, for a particular characteristic of a particular service in a specific accessory, we get this
method call. The provided parameters include enough information to tell us where this
change was applied. Listing 16-8 shows how we implemented this method. One important
note about this is that if we change the state of the power to the disco ball remotely, as we’ll
see in the complete code later, this method may not get called, since the hardware may not
supply the status information about the local control interaction actuated remotely. Some
devices will do this properly, but the fact is, HomeKit accessories are in the early stages of

480 CHAPTER 16: Home Automation Project

deployment, so don’t expect perfection in every case. In fact, for me, I never saw it called
unless I changed the power on the accessory directly, either through the accessory simulator
or on an actual device.

 Listing 16-8. Detecting Changes to the Power Supplied to Our Disco Ball

 func accessory(accessory: HMAccessory, service: HMService, didUpdateValueForCharacteristic
characteristic: HMCharacteristic) {
 print("\(accessory.name): \(characteristic.metadata!.manufacturerDescription!) has

changed to \(characteristic.value!)")
 if accessory.name == "DiscoBall" && characteristic.metadata!.manufacturerDescription ==

"Power State" {
 //
 // NOTE: in Apple's documentation, this value is shown in the list as a string, but
 // in the details as a Bool. It works as a Bool as you see here...
 //
 if characteristic.value as! Bool == true {
 self.isDiscoBallPowerOn = true
 self.deviceIndicator.text = "Disco Ball ON"
 self.switchStatus.setTitle("Stop Party", forState: UIControlState.Normal)
 self.switchStatus.titleLabel?.textAlignment = NSTextAlignment.Center
 } else {
 self.isDiscoBallPowerOn = false
 self.deviceIndicator.text = "Disco Ball OFF"
 self.switchStatus.setTitle("Start Party", forState: UIControlState.Normal)
 self.switchStatus.titleLabel?.textAlignment = NSTextAlignment.Center
 }
 }
 }

 Accessory Management
 Working with any remote hardware device, we’ll need to be able to find the right piece of
equipment, get access to it, see what services it offers and figure out what information we
can read from and write to the device. We’ll want to be able to securely connect, disconnect,
and determine if some interruption occurred while we plan to use the device. This is all part
of managing the accessories that we’ll be using.

 Problem
 How do we find accessories in the first place?

 Solution
 We use the HMAccessoryBrowser to start and stop our search and the
 HMAccessoryBrowserDelegate protocol methods to handle changes in the accessory landscape.

481CHAPTER 16: Home Automation Project

 As we’re interested in just our disco ball power controller, the first thing we need to do is
to find it. So, step one, after making sure we conform to the HMAccessoryBrowserDelegate
protocol, is to create an HMAccessoryBrowser :

 let browser = HMAccessoryBrowser()

 This creates the object that will search for all accessories within our network, but only after
we tell it to do so. For that, we tell our browser to start searching for accessories:

 browser.startSearchingForNewAccessories()

 Because searching with our device’s radio can be a power-hungry operation, we need to
limit the amount of time we do this by stopping the search when we’re done, i.e., after we’ve
found the accessory we’re looking for. Listing 16-9 shows the helper method I created to
stop the accessory search and to conserve power in our mobile device.

 Listing 16-9. Stop Searching for Accessories Helper Method

 func stopSearching() {
 print("stopSearching")
 browser.stopSearchingForNewAccessories()
 }

 But how do we know when to call this method? There are two reasonable answers. The first
one is that we call it whenever we’ve found what we’re looking for. In our case, as soon as we
locate the disco ball power controller we can stop searching. But what if we don’t find it, or, a
more likely scenario, what if we’re looking for all available accessories? We don’t want to stop
after the first one. We also don’t want to have to tell our app what or how many to look for.
It needs to be dynamic. This is where you have to make a decision and choose a timeout:

 NSTimer.scheduledTimerWithTimeInterval(20.0, target: self, selector: "stopSearching",
userInfo: nil, repeats: false)

 This instruction will start a timer for 20 seconds, and at the end of that will execute the
 stopSearching() method contained within this code file (target: self). How do you know
how long is long enough? You don’t. Trial and error, my friends. I’ve found that 20 seconds
works, but many other sections of code that I’ve looked over use a shorter time, about 10
seconds. Again, it’s up to you.

 What about if you have a large number of accessories? Setting a few up could run
past whatever time you set. The trick I use is to restart the timer after you locate and
handle each accessory. One way to do this would be to stop then restart the timer in the
 didFindNewAccessory delegate method. That way, after the actual last accessory is set up,
you give it one more 20 second (or whatever time you choose) try to make sure you’ve
exhausted the search.

 What about if things change, like an accessory is dropped or removed? Similarly, you may
want to create a periodic startSearching() helper method as well that gets called periodically,
maybe every few minutes or so. In that case, within that periodic search method, you might
only search for 5 seconds to keep radio usage contained in order to prolong battery life .

482 CHAPTER 16: Home Automation Project

 Problem
 We need an accessory to work with. What do we do?

 Solution
 There are, of course, two options: use a real accessory or use the HomeKit Accessory
Simulator. We’ll do both.

 HomeKit Accessory Simulator
 First, you must download the latest version of the simulator . I’ve found when using older
versions of the simulator that the created accessories will not connect with the app, even
if they’re both running on your Mac. To get the latest version, go to the capabilities section
of your project, as shown in Figure 16-16 , scroll down to where we enabled the HomeKit
entitlement earlier, and click on the Download HomeKit Simulator… button. Place it in a
convenient spot in your filesystem—I put mine in Applications, but then made a shortcut for
the desktop.

 Figure 16-16. To avoid problems, make sure to download the latest version of the HomeKit Accessory Simulator from
the project capabilities section of Xcode

 Start the HomeKit Accessory Simulator, click the ‘+’ at the bottom left, and select “ New
Accessory …” (Figure 16-17). Then configure the accessory, adding the name as DiscoBall
(Figure 16-18). For manufacturer and model you can put in anything you want. The serial
number will likely be autofilled by the simulator. When complete, it should look something

483CHAPTER 16: Home Automation Project

like Figure 16-19 . You should see at the top a setup code you’ll need to use when attaching
the accessory during execution of your app. iOS will automatically pop up a dialog for you to
enter this code at the appropriate time during execution.

 Figure 16-17. Add a new accessory to the HomeKit Accessory Simulator

 Figure 16-18. Configure the name of the accessory as DiscoBall so we’ll know what to look for in the code

484 CHAPTER 16: Home Automation Project

 Next, we need to add our LightBulb service to the accessory, so click on the Add Service.
. . button (Figure 16-20), then go to the drop-down and select “Outlet” since our service
will be to allow power to our disco ball or not. Selecting “Outlet” will give us the default
characteristics we need in our code. This last step will complete our simulator accessory
setup, and you should see something that looks like Figure 16-21 . Make sure that the IP
slide switch in the upper right-hand side is on, otherwise the accessory won’t be able to be
seen on the network.

 Figure 16-19. After configuring your simulated accessory

485CHAPTER 16: Home Automation Project

 Figure 16-20. Configure an outlet service named LightBulb for our disco ball accessory

486 CHAPTER 16: Home Automation Project

 Figure 16-21. Our simulated DiscoBall accessory

 Note An important point to note here is that the simulator allows us to completely configure
our accessory from scratch. When using an actual hardware accessory such as the iHome
accessory described in the next section, we’ll need to locate and identify all the information that
the manufacturer set up in the hardware and firmware of the device. We’ll see how to access that
information shortly.

 iHome Control SmartPlug
 Working with real HomeKit accessories , especially those produced early in the program,
can sometimes be a challenge. Many of the accessory features built into the firmware of
the device will not work as expected or may be intermittent in their operation. Such was
the case with the iHome Control SmartPlug, one of the early HomeKit devices available at
the time of this writing. While there were firmware updates available, for my work at least,

487CHAPTER 16: Home Automation Project

none of them corrected the issue with that first device. Later, using a second-generation
iHome device, I had no such issues. But, with a little effort, I was able to get it to function
with minimal changes to the code from what we wrote to work with the HomeKit Accessory
Simulator. In fact, I only changed two lines of code and added one, with only one change
being absolutely required to get the accessory to function.

 Verify Accessory Functions Properly
 First, using the supplied instructions and the iHome app, which can be found on the Apple
App Store, I verified that the device worked properly. In Figure 16-22 you can see the plug
and app in the OFF position. In Figure 16-23 the indicator on the app is darker, indicating
that the button was pressed to turn on the device. You can also see that the H indicator on
the actual device—in the lower-left bottom—is illuminated, showing that power is flowing.

 Figure 16-22. Switch power off using iHome-supplied app

488 CHAPTER 16: Home Automation Project

 Figure 16-23. Switch power on, with indications shown on the actual device and the button on the iHome native app

 Reset Accessory for HomeKit
 One of the early issues I discovered was that an actual hardware accessory designed for
HomeKit may not be seen by other apps if it has been paired up with a different app. What
this meant was that, when I tested the device using the iHome native app, then tried to run
our disco ball app without doing anything except for resetting the iPhone simulator, the
hardware accessory was never seen. So I had to reset the device.

 Resetting the device will be different for each accessory you use. Plug the iHome SmartPlug
into an AC outlet, then press and hold the button in the upper right (near the green LED) for at
least 12 seconds. The LED will flash, and then you use the iHome app to continue setting it up.

 This may seem counterintuitive, since I just said that if the device is connected with the
iHome app we might not be able to see it. But, because we reset the actual hardware, it has
no wireless connection. So what we do is use the iHome app to set it up, without actually
completing the setup. In other words, we exit the iHome app before everything is complete.
We just want to get far enough along in the process so the hardware accessory sees our
WiFi network. So, after resetting the device and starting the iHome app, you’ll select “ Add
a New Device ,” as shown in Figure 16-24 . At this point you may want to go through the
12-second reset again just to be sure. Tapping Next in the upper right corner of the app
starts the search for any compatible accessories (Figure 16-25).

489CHAPTER 16: Home Automation Project

 Figure 16-24. After verifying that the accessory works properly with the native app, use the manufacturer’s
instructions to reset the device to work with our disco ball HomeKit project

490 CHAPTER 16: Home Automation Project

 Once the HomeKit app finds available devices, it will allow you to select them and set them
up, as shown in Figure 16-26 . Here’s where things really begin to deviate enough to affect
our Swift project code. Note that the accessory is named iHome SmartPlug-XXXXXX, where
XXXXXX will be unique to the specific unit, i.e., its serial number. What we’ve done to this
point is use the iHome app on our iPhone to locate the hardware accessory. Right now, it’s
not connected to any WiFi network, so it can’t know how it’s being configured, much less
know about any network password protection. So, we tap Continue and move on with our
setup (Figure 16-27).

 Figure 16-25. The app uses the iPhone hardware to search for compatible accessories within range

491CHAPTER 16: Home Automation Project

 Figure 16-26. Select the appropriate accessory and tap Continue to proceed

492 CHAPTER 16: Home Automation Project

 As you can see, I’ve set up a temporary company network called GlobalTekNet to which
my Mac is connected and thus, my iPhone simulator is too. Here, of course, we’re working
with WiFi networks, but HomeKit also works from your iOS device directly to accessories via
Bluetooth Low Energy. This, in fact, was how we began the setup of the accessory.

 Note in the middle of the screen in Figure 16-27 you can see the default name of the
device. Here is where you would expect to be able to change the name—for example, to
DiscoBall—and have it work with our existing code. But, for some reason, this did not work with
this version of the iHome app or the latest accessory firmware. We will have to change the code
so that the constant that previously pointed to DiscoBall now points to this default name. In a
real-life scenario we’d actually just read the name of the accessory returned by the accessory
browser and use that from the start, but for now I wanted to keep things as simple as I could,
knowing full well that it might seem a little complicated. What I’ve shown is kind of the “tip of the
iceberg” when dealing with HomeKit accessories and to thoroughly work with just a few devices,
exploring their differences and handling exceptions, would take a complete book of its own.

 Normally, this process goes pretty smoothly, and you should be presented with the screen
seen in Figure 16-28 . You are asked to enter the accessory code, which is usually printed on
the actual device (accessory). The code can be entered manually, as we do in our project, or
by holding the camera in front of the printed code so the software will automatically translate
it to enter the information. HOWEVER, DO NOT ENTER OR SCAN A CODE AT THIS TIME.
This is where you actually want to terminate the app. If you were planning to use the iHome

 Figure 16-27. Connect the accessory to your local WiFi network

493CHAPTER 16: Home Automation Project

app, you would go ahead and enter the code, add the accessory to a home, assign it to a
room, and proceed with operation.

 At this point, the accessory, the iHome SmartPlug, is set up for us to use with our project
and the iPhone simulator.

 Problem
 How do we access the accessory’s services and characteristics? Similarly, how do we know
what services and characteristics the accessory offers?

 Solution
 The manufacturer may include, either in the packaging material or in online instructions,
the information needed to access the device’s services and characteristics. It’s pretty
simple if using the HomeKit Accessory Simulator, since we completely defined services and
characteristics, including what they were called.

 Earlier, in Listing 16-8 , I showed how you can see when a characteristic has changed and
then take the necessary action. This, as we discussed, applies mainly to changes that are
made manually at the accessory device and not changes we perform in our code. Because

 Figure 16-28. Screen showing that you need to enter the code , which is usually printed on the actual hardware accessory

494 CHAPTER 16: Home Automation Project

we were discussing the various delegation aspects of HomeKit, we had not yet gotten to
how we found the names of the services and characteristics. We kind of left a “hole” in our
knowledge that I will address now.

 The way I address this in our project is to create functions that list the services and
characteristics of our accessory. In those functions I use a simple print() statement to
show me the names of those items. In Listing 16-9 you can see in the addMyAccessory()
function the call to the first of these methods. The call, self.listServices(self.
discoballAccessory!) , begins the process of getting the information we need. Listing 16-10
shows the implementation of that function.

 Listing 16-9. Function to List the Services Provided by a Discovered Accessory

 func addMyAccessory() {
 if self.discoballAccessory != nil {
 print("addMyAccessory: discoball: \(self.discoballAccessory)")
 self.primaryHome?.addAccessory(self.discoballAccessory!, completionHandler: {(error) in
 if error != nil {
 print("Could not add \(self.discoballAccessory!.name) to \(self.primaryHome!.name)")
 print("error: \(error)")
 } else {
 print("Successfully added \(self.discoballAccessory!.name) to \(self.

primaryHome!.name)")
 //
 // Set the delegate for the accessory so we can see updates to it
 //
 self.discoballAccessory!.delegate = self

 self.accessoryStatus.text = "\(self.discoballAccessory!.name) CONNECTED"
 //
 // CALL THE FUNCTION TO LIST THE SERVICES FOR THIS ACCESSORY
 //
 print("Services offerred...")
 self.listServices(self.discoballAccessory!)
 //
 // No need to continue searching
 //
 self.stopSearching()
 }

 })
 } else {
 self.accessoryStatus.text = "No accessory identified to attach"
 }
 }

 Listing 16-10. This Function Lists the Available Services for an Accessory

 func listServices(accessory : HMAccessory) {
 for service in accessory.services {
 //
 // Go through any available services, find the Outlet service, which
 // is just a HomeKit standard name that we've called our party service,
 // and list all the characteristics for our "Party" service.
 //

495CHAPTER 16: Home Automation Project

 if service.serviceType == HMServiceTypeOutlet {
 self.services.append(service as HMService)
 print("found \(service.name) of type HMServiceTypeOutlet service for \(accessory.name)")
 self.partyService = service
 listCharacteristics(service)
 }
 }
 }

 Without showing the large listCharacteristics function, Listing 16-11 shows the key part
of the code where we iterate over each characteristic in a service and display its name.

 Listing 16-11. Critical Portion of the listCharacteristics Function

 func listCharacteristics(service: HMService) {
 for characteristic_item in service.characteristics {
 characteristics.append(characteristic_item as HMCharacteristic)
 print("value \(characteristic_item.value!) : \(characteristic_item.metadata!.

manufacturerDescription!)")
 //
 // Notification of changes in characteristics are NOT automatically enabled, you

have to do this yourself
 //
 if characteristic_item.properties.contains(HMCharacteristicPropertySupportsEvent

Notification) {
 characteristic_item .enableNotification(true, completionHandler: {(error) in
 if error != nil {
 print("Error while enabling notification for \(characteristic_item.

metadata?.manufacturerDescription)")
 }
 else {
 print("\(characteristic_item.metadata?.manufacturerDescription) Notification

enabled")
 }
 })
 }

 Summary
 In this somewhat lengthy chapter, we have discussed key elements of using Apple HomeKit
with both simulated and actual hardware accessories. We’ve touched on just enough
aspects of HomeKit to get you up and running; for example, controlling your own disco ball
or anything else. Our focus was on a power control switch, specifically the iHome Smart
Plug, but the methods and functions we’ve discussed work with any other type of accessory
you might come across in the near future.

 Note The function shown in Listing 16-11 is incomplete for brevity.

496 CHAPTER 16: Home Automation Project

 Figure 16-29 show the user interface screen our project presents, allowing us to turn our
disco party ball on or off, starting or stopping the party.

 Figure 16-29. The user interface for turning on or off our accessory. Tapping the “Start Party” button turns on our disco
ball while “Stop Party” turns it off.

 Listing 16-12 shows the complete code for the ViewController.swift file where we discover
and attach our accessory, list our services and methods, and control our actual HomeKit
accessory.

 Listing 16-12. Complete ViewController.swift Class File

 //
 // ViewController.swift
 // DiscoBall
 //
 // Created by Molly Maskrey on 12/17/15.
 // Copyright © 2015 Global Tek Labs. All rights reserved.
 //

 import UIKit
 import HomeKit

497CHAPTER 16: Home Automation Project

 class ViewController: UIViewController, HMHomeManagerDelegate, HMAccessoryBrowserDelegate,
HMAccessoryDelegate{

 // convenience constants
 let kmyHome = "MyHome"
 let kmainRoom = "MainRoom"
 // If using the simulator...
 // let kdiscoball = "DiscoBall"

 // If using the actual iHome SmartPlug
 // Note that the serial # will likely be different
 // on a device that you may use
 let kdiscoball = "iHome SmartPlug-1ABCFF"
 let kdiscoballDisplayName = "DiscoBall"

 // "Global" variables
 let manager = HMHomeManager()
 let browser = HMAccessoryBrowser()
 var accessories = [HMAccessory]()
 var services = [HMService]()
 var characteristics = [HMCharacteristic]()
 var discoBallPowerSwitch: HMCharacteristic?
 var isDiscoBallPowerOn : Bool = false

 // Some local "testing" variables
 var primaryHome : HMHome?
 var discoballAccessory : HMAccessory?
 var partyService : HMService?

 // OUTLET: Indicates if ball is on or off
 // if using the HKAccessory Similator this will
 // be the "Outlet in Use" characteristic
 @IBOutlet weak var deviceIndicator: UILabel!

 // OUTLET: Used to change the name on the top
 // UI button...the one that controls our disco ball
 // e.g., when the ball is on, we want the switch to
 // read "OFF" and vice versa
 @IBOutlet weak var switchStatus: UIButton!

 // ACTION: This method is called when the top button
 // is activated, used to turn the disco ball (accessory
 // outlet) ON or OFF
 @IBAction func activateDevice(sender: AnyObject) {
 self.activateDiscoBall()
 }

 // OUTLET: A simple, mostly diagnostic label we use
 // to display information about the located accessory.
 // It lets the user know the app has found our disco ball
 @IBOutlet weak var accessoryFound: UILabel!

498 CHAPTER 16: Home Automation Project

 // OUTLET: A simple, mostly diagnostic label used
 // to indicate whether or not the accessory is connected
 // to the app.
 @IBOutlet weak var accessoryStatus: UILabel!

 // ACTION: This method is called when the bottom button "ATTACH"
 // is pressed to make an attempt to connect the located accessory
 // to the app
 @IBAction func attachAccessory(sender: AnyObject) {
 self.addMyAccessory()
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 manager.delegate = self
 print("Home Manager created and delegate set to self")

 browser.delegate = self
 print("Accessory Browser created and delegate set to self")

 // Go see if there are any accessories in the area
 browser.startSearchingForNewAccessories()

 // Only do it for a short period as it will drain the battery
 NSTimer.scheduledTimerWithTimeInterval(20.0, target: self, selector:

"stopSearching", userInfo: nil, repeats: false)

 for home in self.manager.homes as [HMHome] {

 if home.name == kmyHome {
 print("Found MyHome")
 }
 }

 self.switchStatus.enabled = false
 self.switchStatus.titleLabel!.text = "Disabled"

 // call the addMyHome convenience method
 self.addMyHome()

 }

 // Our Helper Methods
 func stopSearching() {
 print("stopSearching")
 browser.stopSearchingForNewAccessories()
 }

499CHAPTER 16: Home Automation Project

 //
 // Add our Home
 //
 func addMyHome() {
 manager.addHomeWithName(kmyHome, completionHandler: {(home, error) -> Void in
 print("Trying to add MyHome")
 if error == nil || error?.code == 32 { // error code 32 means the home is

already in the database

 if error == nil {
 print("MyHome added to database")
 self.primaryHome = home
 } else {
 print("MyHome already in database")
 }

 print("…either way, we can add a room to the home now")
 //
 // We've stored the house we added as our primary so we'll
 // now add a room to it
 //
 if self.primaryHome != nil {
 self.primaryHome!.addRoomWithName(self.kmainRoom, completionHandler:

{ (room, error) -> Void in
 if error == nil || error?.code == 13 { // error code 13 means

room already in home
 if error == nil {
 print("Room added to Home")
 } else {
 print("Room ALREADY there")
 }
 //
 // This might seem tricky, but we have to tell HomeKit to

make this
 // our primary home as well. Previously, we just essentially

called it that
 // but we have to do it in code so the database is

"correct."
 //
 self.manager.updatePrimaryHome(self.primaryHome!,

completionHandler: {(error) -> Void in
 if error == nil {
 print("\(self.primaryHome!.name) now defined as the

primary home")
 } else {
 print("ERROR: setting primary home: \(error)")
 }
 })

500 CHAPTER 16: Home Automation Project

 } else {
 print("ERROR: attempting to add room. \(error!.

localizedDescription)")
 }

 })
 } else {
 print("ERROR: For some reason our global primary home was not set")
 }
 } else {
 print("ERROR: attempting to add home: \(error)")
 }

 })
 }
 //
 // End of setting up our simple one room home
 // Note that we didn't do anything with accessories. We will deal with those separately.
 //

 //
 // Stock method - no changes
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 func homeManagerDidUpdateHomes(manager: HMHomeManager) {

 print("Home Manager updated the homes database")
 for home in manager.homes as [HMHome] {
 if home.name == kmyHome {
 self.primaryHome = home
 print("Setting primaryHome to MyHome")
 }
 }
 }

 func homeManagerDidUpdatePrimaryHome(manager: HMHomeManager) {
 print("homeManagerDidUpdatePrimaryHome called")
 }

 func homeManager(manager: HMHomeManager,
 didAddHome home: HMHome) {
 print("Home Manager added a home")
 }

 func accessoryBrowser(browser: HMAccessoryBrowser,
 didFindNewAccessory accessory: HMAccessory) {

501CHAPTER 16: Home Automation Project

 print("Found a new accessory: \(accessory)")
 if accessory.name == kdiscoball {
 self.discoballAccessory = accessory
 self.accessoryFound.text = "Found \(self.kdiscoballDisplayName)"
 }
 }

 func listServices(accessory : HMAccessory) {
 for service in accessory.services {
 //
 // Go through any available services, find the Outlet service, which
 // is just a HomeKit standard name that we've called our party service,
 // and list all the characteristics for our "Party" service.
 //
 if service.serviceType == HMServiceTypeOutlet {
 self.services.append(service as HMService)
 print("found \(service.name) of type HMServiceTypeOutlet service for \(accessory.name)")
 self.partyService = service
 listCharacteristics(service)
 }
 }
 }

 func listCharacteristics(service: HMService) {
 for characteristic_item in service.characteristics {
 characteristics.append(characteristic_item as HMCharacteristic)
 print("value \(characteristic_item.value!) : \(characteristic_item.metadata!.

manufacturerDescription!)")
 //
 // Notification of changes in characteristics are NOT automatically enabled; you

have to do this yourself
 //
 if characteristic_item.properties.contains(HMCharacteristicPropertySupportsEventNot

ification) {
 characteristic_item .enableNotification(true, completionHandler: {(error) in
 if error != nil {
 print("Error while enabling notification for \(characteristic_item.

metadata?.manufacturerDescription)")
 }
 else {
 print("\(characteristic_item.metadata?.manufacturerDescription) Notification

enabled")
 }
 })
 }
 //
 // let's also set our main power switch to a global for access by our UI button
 //
 if characteristic_item.metadata!.manufacturerDescription == "Power State" {
 print("Setting up our global discoBallPowerSwitch")
 self.discoBallPowerSwitch = characteristic_item

502 CHAPTER 16: Home Automation Project

 //
 // Read the switch to determine if it is on or not and set the
 // power switch and button indicators appropriately, then
 // enable the power button
 //

 // First make sure the characteristic is readable
 if self.discoBallPowerSwitch!.properties.contains(HMCharacteristicPropertyReadable) {
 // Then prepare the value for reading
 self.discoBallPowerSwitch?.readValueWithCompletionHandler({(error) in
 if (error) != nil {
 print("Error occured reading the value of the Power Switch")
 } else {
 // Read the value
 self.isDiscoBallPowerOn = self.discoBallPowerSwitch!.value as! Bool
 print("Power On readback = \(self.discoBallPowerSwitch!.value

as! Bool)")
 print(self.isDiscoBallPowerOn)
 }
 })

 } else {
 // Just as an example of the alternative
 print("NO HMCharacteristicPropertyReadable PROPERTY")
 }
 // enable the button
 self.switchStatus.enabled = true

 // Set the state of the label and power button depending on what we read back
 if self.isDiscoBallPowerOn == true {
 print("Turning indicator to ON")
 self.deviceIndicator.text = "Disco Ball ON"
 self.switchStatus.setTitle("Stop Party", forState: UIControlState.Normal)
 self.switchStatus.titleLabel?.textAlignment = NSTextAlignment.Center
 } else {
 print("Turning indicator to OFF")
 self.deviceIndicator.text = "Disco Ball OFF"
 self.switchStatus.setTitle("Start Party", forState: UIControlState.Normal)
 self.switchStatus.titleLabel?.textAlignment = NSTextAlignment.Center
 }
 }
 }
 }

 func accessoryBrowser(browser: HMAccessoryBrowser,
 didRemoveNewAccessory accessory: HMAccessory) {
 print("didRemoveNewAccessory: \(accessory.name)")
 }

503CHAPTER 16: Home Automation Project

 // ACCESSORY DELEGATE METHODS
 func accessory(accessory: HMAccessory, service: HMService,
didUpdateValueForCharacteristic characteristic: HMCharacteristic) {
 print("\(accessory.name): \(characteristic.metadata!.manufacturerDescription!) has
changed to \(characteristic.value!)")
 if accessory.name == kdiscoball && characteristic.metadata!.manufacturerDescription
== "Power State" {
 //
 // NOTE: in Apple's documentation, this value is shown in the list as a string, but
 // in the details as a Bool. It works as a Bool as you see here.
 //
 if characteristic.value as! Bool == true {
 self.isDiscoBallPowerOn = true
 self.deviceIndicator.text = "Disco Ball ON"
 self.switchStatus.setTitle("Stop Party", forState: UIControlState.Normal)
 self.switchStatus.titleLabel?.textAlignment = NSTextAlignment.Center
 } else {
 self.isDiscoBallPowerOn = false
 self.deviceIndicator.text = "Disco Ball OFF"
 self.switchStatus.setTitle("Start Party", forState: UIControlState.Normal)
 self.switchStatus.titleLabel?.textAlignment = NSTextAlignment.Center
 }
 }
 }

 // CONVENIENCE METHODS SUPPORTING BUTTON ACTIONS

 func addMyAccessory() {
 if self.discoballAccessory != nil {
 print("addMyAccessory: discoball: \(self.discoballAccessory)")
 self.primaryHome?.addAccessory(self.discoballAccessory!, completionHandler: {(error) in
 if error != nil {
 print("Could not add \(self.discoballAccessory!.name) to \(self.primaryHome!.name)")
 print("error: \(error)")
 } else {
 print("Successfully added \(self.discoballAccessory!.name) to \(self.

primaryHome!.name)")
 //
 // Set the delegate for the accessory so we can see updates to it
 //
 self.discoballAccessory!.delegate = self

 self.accessoryStatus.text = "\(self.discoballAccessory!.name) CONNECTED"
 //
 // CALL THE FUNCTION TO LIST THE SERVICES FOR THIS ACCESSORY
 //
 print("Services offerred...")
 self.listServices(self.discoballAccessory!)
 //

504 CHAPTER 16: Home Automation Project

 // No need to continue searching
 //
 self.stopSearching()
 }

 })
 } else {
 self.accessoryStatus.text = "No accessory identified to attach"
 }
 }

 // Bottom Button
 func activateDiscoBall() {
 // print("User pressed \(self.switchStatus.titleLabel!.text) button")
 if self.discoBallPowerSwitch != nil {
 if isDiscoBallPowerOn == false {
 self.discoBallPowerSwitch?.writeValue(true, completionHandler: { (error) in
 if error != nil {
 print("Error setting power to Disco Ball: \(error)")
 } else {
 // print("Power to Disco Ball Set Successfully")
 self.isDiscoBallPowerOn = true
 self.deviceIndicator.text = "Disco Ball ON"
 self.switchStatus.setTitle("Stop Party", forState: UIControlState.Normal)
 self.switchStatus.titleLabel!.textAlignment = NSTextAlignment.Center
 }
 })
 } else {
 self.discoBallPowerSwitch?.writeValue(false, completionHandler: { (error) in
 if error != nil {
 print("Error turning power OFF to Disco Ball: \(error)")
 } else {
 // print("Power to Disco Ball now OFF")
 self.isDiscoBallPowerOn = false
 self.deviceIndicator.text = "Disco Ball OFF"
 self.switchStatus.setTitle("Start Party", forState: UIControlState.Normal)
 self.switchStatus.titleLabel!.textAlignment = NSTextAlignment.Center
 }
 })
 }
 }
 }

 }

505© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4_17

 Chapter 17
 External Sensor
Interface Project
 In this chapter we examine two of the ways to connect external hardware to iOS devices.
We saw in the previous project how we could use Apple’s HomeKit framework to do pretty
much the same thing. However, while many of the same types of hardware devices can
be controlled by various means, HomeKit projects are restricted to HomeKit-certified
accessories. Some electronics, such as sensors, drones, medical devices, and so on, use a
more generalized mechanism for moving data to and from an iPhone, for example.

 Outside of HomeKit, there are two different categories of accessories that we’ve talked
about in previous chapters. An accessory can either be an MFi-certified device or not be
one. An MFi-certified accessory means that it was developed and manufactured by
an Apple MFi-certified company. It has undergone rigorous development and testing in order
to provide assurances to the consumer that it will work with Apple devices that run iOS.
MFi accessories communicate either via the dock connector (Lighting, or previously the
30-pin) or using standard Bluetooth (2.1+EDR). Non-MFi accessories would use WiFi,
 Bluetooth Low Energy (BTLE) , or, such as the case with the Square credit card reader, the
headphone jack.

 For this discussion, we’ll exclude WiFi accessories , as they operate using standard data
transfer protocols—really no different than any desktop application. So, why choose one
option over another? That is, when would you want to use an MFi accessory as compared
with a non-MFi device?

506 CHAPTER 17: External Sensor Interface Project

 Problem
 How do you choose which type of accessory, MFi certified or not, you need for your project?

 Solution
 MFi accessories in general provide a higher-speed and more reliable connection. A BTLE
accessory is limited by the small packet size and thus is restricted to a much lower data rate.
A headphone jack–connected accessory uses a special encoding scheme to convert the
audio input (mic) and output (headphone) signals to a low-rate data stream. Also, because
the audio codecs and frameworks were never intended for this purpose, communications
can be less reliable.

 Most of the time, you won’t have a choice at all. You simply use what your client or employer
provides. If you do wind up having input, consider selecting an MFi-validated accessory if you
need a secure, high-speed, and/or continuous connection. For intermittent connections such
as you might have with a fitness monitor, many IoT devices, or even the sensor we talk about
in this chapter, Bluetooth Low Energy provides the lower cost, easier to manage options.

 Problem
 You want to work with an MFi-certified accessory and saw the EADemo code at Apple,
but it’s old and written in Objective-C. You need a Swift baseline.

 Solution
 After the announcement of Swift as the language of choice, many iOS developers working
with MFi accessories found themselves in the same situation. And although our project
focus in this chapter will be a BTLE-enabled sensor, it’s worth the time to see how working
with MFi accessories is handled.

 Swift External Accessory Demo
 In this section we’ll walk through an example of connecting to an external device, in Apple
terms, an accessory. But first, we’ll talk about the different types of accessories to which you
can connect.

 MFi Accessory Types
 As mentioned previously, MFi accessories connect and communicate data with an iPhone in
two ways. First, an MFi accessory can use the dock connector at the bottom of the device.
Figure 17-1 shows a typical wired MFi accessory that uses the Lightning connector to mate
with the iPhone. This accessory connects a rowing machine to your Apple device, thus
enabling competitive and simultaneous workouts across time and space.

507CHAPTER 17: External Sensor Interface Project

 The second type of communication that an MFi accessory might use is wireless
Bluetooth 2.1+EDR, typically referred to as standard Bluetooth. The proximity card detector,
shown in Figure 17-2 , is such a device. At the top of the figure, you see the loop antenna
that is used to detect a card. Typically found on secure doors in offices and other locations,
this wireless version can be used for many different setups where portability is an issue.
One example might be to use this accessory to track inventory of scripts at an on-location
movie set.

 Figure 17-1. This sports accessory that connects a rowing machine to your iPhone uses the Lightning connector to
make a physical high-speed connection

508 CHAPTER 17: External Sensor Interface Project

 MFi Accessory Demo App
 How It Works
 Our demo code uses Apple’s MFi frameworks to manage the accessory device.
The app consists of a simple table view and detail screen inside a navigation controller
(Figure 17-3). The table view will display the connected accessory, whether it is a wired
device (Figure 17-4), or a Bluetooth device (Figures 17-5 and 17-6). Here, we’ve used the
two accessories just shown for demo purposes.

 Figure 17-2. A wireless proximity card detector such as this MFi accessory uses standard Bluetooth for
communications with the iOS device

509CHAPTER 17: External Sensor Interface Project

 Figure 17-3. Our Swift accessory demo code consists of a navigation controller with a table view and detail view

 Figure 17-4. The main table view showing a Lightning connector –attached accessory by name

510 CHAPTER 17: External Sensor Interface Project

 Figure 17-5. The same app can be used for Bluetooth-connected devices without any modification

511CHAPTER 17: External Sensor Interface Project

 Figure 17-6. On the detail screen, when a prox card is tapped against the antenna of the accessory, you can see the
data displayed

 The Code
 Before we deviate too far from our intended project, let’s see what the Swift code looks like
to perform basic MFi accessory management. The first thing we need to do is to include the
EAAccessory framework by importing External Accessory and having our
 TableViewController subscribe to the proper protocol (Listing 17-1).

 Note Because we’ve inherited from the UITableViewController class we do not have to
explicitly include tableView delegate and/or datasource protocols.

512 CHAPTER 17: External Sensor Interface Project

 Listing 17-1. Include the External Accessory Framework and Subscribe to the Protocol for the Delegate Methods

 // ViewController.swift
 // EADemoS
 //

 import UIKit
 import ExternalAccessory

 class ViewController: UITableViewController, EAAccessoryDelegate {

 Here in the table view we need to know when an accessory is connected and when it is
disconnected so we can populate the table correctly. To manage things, we will use two
variables and a constant:

 let accessoryManager: EAAccessoryManager = EAAccessoryManager.sharedAccessoryManager()
 var accessoryList:[EAAccessory]? // our list of accessories, most likely just one
 var connectedAccessory: EAAccessory?

 Because we can have multiple accessories connected to an iOS device, though we do not
normally do so, we use a list of EAAccessory types. We also use a single connectedAccessory
variable to manage the current accessory of interest, and the accessoryManager is the
controlling singleton that handles accessories in the background for us.

 The next thing to be aware of is that the accessory delegate methods use notifications
to activate the proper method. Since we’re concerned with the connecting and
disconnecting accessory conditions, we need to observe those notifications and react
accordingly. We set this up in the ViewDidLoad method as shown in Listing 17-2 . First,
we register with our accessoryManager to receive notifications, then we add observers for
the EAAccessoryDidConnectNotification and EAAccessoryDidDisconnectNotification
notifications, pointing them to the connectedAccessory and disconnectedAccessory
methods, respectively (Listings 17-3 and 17-4).

 Listing 17-2. Set Up to Receive Notifications from the Accessory Manager to Handle Connect and Disconnect Events

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 print("EADEMO_S: registering for notifications")
 accessoryManager.registerForLocalNotifications()

 print("EADEMO_S: Adding notification observation")
 NSNotificationCenter.defaultCenter().addObserver(self, selector:
"connectedAccessory:", name: EAAccessoryDidConnectNotification, object: nil)
 NSNotificationCenter.defaultCenter().addObserver(self, selector:
"disconnectedAccessory:", name: EAAccessoryDidDisconnectNotification, object: nil)
 }

513CHAPTER 17: External Sensor Interface Project

 Listing 17-3. Method Called When an Accessory Is Connected Either to the Physical Dock Connector or via
Standard Bluetooth

 func connectedAccessory(notification:NSNotification) {
 print("Accessory was found")
 let dict : [NSObject : AnyObject] = notification.userInfo!
 self.connectedAccessory = dict[EAAccessoryKey] as? EAAccessory
 sampleAccessoryArray[0] = connectedAccessory!.name
 let ip: [NSIndexPath] = [NSIndexPath(forRow:0, inSection: 0)]
 self.tableView.reloadRowsAtIndexPaths(ip, withRowAnimation: UITableViewRowAnimation.None)

 }

 Listing 17-4. Method Called When an Accessory Is Disconnected

 func disconnectedAccessory(notification:NSNotification) {
 print("Accessory gone, possibly removed")
 sampleAccessoryArray[0] = ""
 let ip: [NSIndexPath] = [NSIndexPath(forRow:0, inSection: 0)]
 self.tableView.reloadRowsAtIndexPaths(ip, withRowAnimation: UITableViewRowAnimation.None)
 }

 Without going into too much detail, since MFi accessories are not part of this chapter’s
project, these methods basically handle the tableView population and accessory variables.
Listing 17-5 shows the complete ViewController class Swift file.

 Listing 17-5. Main Table View Controller Swift Code

 //
 // ViewController.swift
 // EADemoS
 //
 // Created by Molly Maskrey on 1/18/16.
 // Copyright © 2016 Global Tek Labs. All rights reserved.
 //

 import UIKit
 import ExternalAccessory

 class ViewController: UITableViewController, EAAccessoryDelegate {

 @IBOutlet weak var infoLabel: UILabel!

 // SAMPLE DATA FOR TABLE VIEW
 //var sampleAccessoryArray:[String] = ["see no accessory", "hear no accessory", "speak no
accesory"]
 var sampleAccessoryArray: [String] = [""]

 // External Accessory Stuff

514 CHAPTER 17: External Sensor Interface Project

 var accessoryList:[EAAccessory]? // our list of accessories, most likely there
will only be one
 let accessoryManager: EAAccessoryManager = EAAccessoryManager.sharedAccessoryManager()
 var connectedAccessory: EAAccessory?

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.

 print("EADEMO_S: registering for notifications")
 accessoryManager.registerForLocalNotifications()

 print("EADEMO_S: Adding notification observation")
 NSNotificationCenter.defaultCenter().addObserver(self, selector:
"connectedAccessory:", name: EAAccessoryDidConnectNotification, object: nil)
 NSNotificationCenter.defaultCenter().addObserver(self, selector:
"disconnectedAccessory:", name: EAAccessoryDidDisconnectNotification, object: nil)
 }

 //
 // Not really used
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 deinit {
 NSNotificationCenter.defaultCenter().removeObserver(self)
 accessoryManager.unregisterForLocalNotifications()
 }

 //
 // This method gets notified via the accessory manager and notifcations when an accessory is connected
 // via the dock connector or using Standard Bluetooth—NOT BT low energy
 //
 func connectedAccessory(notification:NSNotification) {
 print("Accessory was found")
 let dict : [NSObject : AnyObject] = notification.userInfo!
 self.connectedAccessory = dict[EAAccessoryKey] as? EAAccessory
 sampleAccessoryArray[0] = connectedAccessory!.name
 let ip: [NSIndexPath] = [NSIndexPath(forRow:0, inSection: 0)]
 self.tableView.reloadRowsAtIndexPaths(ip, withRowAnimation: UITableViewRowAnimation.None)

 }

 //
 // This method gets notified via the accessory manager and notifcations when an accessory is
DISCONNECTED
 // via the dock connector or using Standard Bluetooth—NOT BT low energy
 // All we do is erase the item in the table view cell...note that there is still a cell
there, but it's blank
 // so it might be that if you tap the blank cell things will not work properly.

515CHAPTER 17: External Sensor Interface Project

 // ***NOTE*** There is an issue when you've gone into the detail view, come back to here,
and then
 // disconnect the accessory. It doesn't seem to work properly. But that's probably not important
 // to spend a lot of effort on as this is just for demo and baseline testing.

 func disconnectedAccessory(notification:NSNotification) {
 print("Accessory gone, possibly removed")
 sampleAccessoryArray[0] = ""
 let ip: [NSIndexPath] = [NSIndexPath(forRow:0, inSection: 0)]
 self.tableView.reloadRowsAtIndexPaths(ip, withRowAnimation: UITableViewRowAnimation.None)
 }

 //
 // This is how we pass the accessory to the detail view controller via the segue
 // as shown in the storyboards. Note that the name of the segue must be the same here
 // and as shown in the storyboard.
 //
 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if segue.identifier == "accessorySegue" {
 let accessoryScene = segue.destinationViewController as! DetailViewController
 accessoryScene.connectedAccessory = self.connectedAccessory
 }
 }

 //
 // Table View Data Source Methods
 // Basic Xcode table view routines
 //
 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 //
 return 1
 }
 override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 //
 return self.sampleAccessoryArray.count
 }

 override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {

 // NOTE: because this will be a small table view, I'm not worrying about
 // reusing cells. It's just not needed here.
 //
 let cell = tableView.dequeueReusableCellWithIdentifier("accessorycell", forIndexPath:
indexPath) as UITableViewCell

 cell.textLabel?.text = self. sampleAccessory Array[indexPath.row]
 return cell
 }

 }

516 CHAPTER 17: External Sensor Interface Project

 Once we’re ready to use an accessory shown in the table view, tapping that accessory
takes us to the detail view where we will make the actual “connection” to the accessory. By
connection, I mean that we establish what is known as an EASession between our app and
the accessory in order to move data back and forth. As such, the detail view code will need
to have External Accessory framework support as well as NSStreams support. An NSStream
is used to move data in a standard, familiar manner. For accessories, we use two streams:
one for input and one for output. This means we have to subscribe to both protocols:

 class DetailViewController: UIViewController, EAAccessoryDelegate, NSStreamDelegate {

 Another concept you want to be familiar with is that of External Accessory protocol. The
name is kind of a misnomer. It’s not really a protocol, but more a unique name or identifier for
the accessory. While that does gloss over a number of details, for what we need with simple
accessory communications, that definition works fine. Here’s our protocol definition:

 // CHANGE THIS TO YOUR PROTOCOL STRING
 // *NOTE* make sure to change the Supported External Accessory item in the "info.plist"
 let myProtocolString = "com.RovingNetworks.btdemo"

 The protocol is defined by the accessory manufacturer and is built into their product’s firmware.
It usually takes on a reverse-DNS notational prefix. Since we’re using a Bluetooth module from
a company called Roving Networks, our protocol string is com.RovingNetworks.btdemo .

 The protocol string also must be defined in your Info.plist file, as shown in Figure 17-7 .
This provides metadata about the app to iOS so that when an accessory is connected, if the
app is not already installed on the device, iOS will try to take you to the App Store to locate
the proper app for use with the connected accessory. It goes without saying that both the
plist and code protocol strings must match exactly.

 Note Roving Networks was acquired by Microchip, and newer modules may have a different
protocol string.

517CHAPTER 17: External Sensor Interface Project

 In the detail controller’s viewDidLoad method we set up our labels, register for notifications
like before (this time only interested in the disconnect notification), and try to open a session
with the accessory (Listing 17-6).

 Listing 17-6. Our Detail View’s Initial Method Attempts to Open a Session with the Accessory Using the openSession
Convenience Function

 override func viewDidLoad() {
 //
 super.viewDidLoad()
 self.accessoryTitleLabel.text = connectedAccessory!.name
 self.statusLabel.text = "accessory connected"
 self.connectedAccessory?.delegate = self

 accessoryManager.registerForLocalNotifications()
 NSNotificationCenter.defaultCenter().addObserver(self, selector:
"disconnectedAccessory:", name: EAAccessoryDidDisconnectNotification, object: nil)
 self.openSession()
 }

 In our openSession function (Listing 17-7), we use the protocol string to establish contact
with the accessory and set up our input and output NSStreams.

 Figure 17-7. The protocol string must be defined in the project’s Info.plist file

518 CHAPTER 17: External Sensor Interface Project

 Listing 17-7. The openSession Method in the ViewController.swift File Establishes the Connection and Two-way Data
Path with Our Accessory

 func openSession() {
 self.statusLabel.text = "opening session"
 session = EASession.init(accessory: self.connectedAccessory!, forProtocol: myProtocolString)
 if session != nil {
 self.statusLabel.text = "opened session to accessory"

 session?.inputStream?.delegate = self
 session?.inputStream?.scheduleInRunLoop(NSRunLoop.currentRunLoop(), forMode:

NSDefaultRunLoopMode)
 session?.inputStream?.open()

 session?.outputStream?.delegate = self
 session?.outputStream?.scheduleInRunLoop(NSRunLoop.currentRunLoop(), forMode:

NSDefaultRunLoopMode)
 session?.outputStream?.open()

 } else {
 self.statusLabel.text = "could not open session"
 }
 }

 That’s the basics you’ll need to know in order to begin working with MFi accessories. The
complete DetailViewContoller.swift file is shown in Listing 17-8 . Next, we’ll start on
our sensor interface project that uses Bluetooth 4.0 Low Energy and the Core Bluetooth
framework.

 Listing 17-8. DetailViewController.swift File

 //
 // DetailViewController.swift
 // EADemoS
 //
 // Created by Molly Maskrey on 1/22/16.
 // Copyright © 2016 Global Tek Labs. All rights reserved.
 //

 import UIKit
 import ExternalAccessory

 // CHANGE THIS TO YOUR PROTOCOL STRING
 // *NOTE* make sure to change the Supported External Accessory item in the "info.plist"
 let myProtocolString = "com.RovingNetworks.btdemo"

 //
 // Because this class deals with the accessory, it needs to conform to the EAAccessory
Delegate protocol.
 // And, since this is where we handle the actual data I/O across the channel, it must also conform
 // to the NSStream Delegate protocol.
 //
 class DetailViewController: UIViewController, EAAccessoryDelegate, NSStreamDelegate {

519CHAPTER 17: External Sensor Interface Project

 @IBOutlet weak var accessoryTitleLabel: UILabel!

 @IBOutlet weak var statusLabel: UILabel!
 @IBOutlet weak var outputDataLabel: UILabel!

 //
 // References to the accessory and the session
 var connectedAccessory: EAAccessory?
 var session: EASession?

 // get access to the shared accessory manager
 let accessoryManager: EAAccessoryManager = EAAccessoryManager.sharedAccessoryManager()

 override func viewDidLoad() {
 //
 super.viewDidLoad()
 self.accessoryTitleLabel.text = connectedAccessory!.name
 self.statusLabel.text = "accessory connected"
 self.connectedAccessory?.delegate = self

 accessoryManager.registerForLocalNotifications()
 NSNotificationCenter.defaultCenter().addObserver(self, selector:
"disconnectedAccessory:", name: EAAccessoryDidDisconnectNotification, object: nil)
 self.openSession()
 }

 override func viewDidDisappear(animated: Bool) {
 //
 print("DetailView Did Disappear")
 self.closeSession()
 NSNotificationCenter.defaultCenter().removeObserver(self)
 accessoryManager.unregisterForLocalNotifications()
 }

 // DATA MOVEMENT

 //
 // This is the event handler for any of the NSStream activity.
 // In this demo, we're only concerned with reading data from the device.
 // I've included the writeData call and method, but they're
 // just placeholders, as the example BT device I'm using doesn't get
 // written to.
 func stream(aStream: NSStream, handleEvent eventCode: NSStreamEvent) {
 switch (eventCode) {
 case NSStreamEvent.None:
 print("NSStream Event None")
 case NSStreamEvent.OpenCompleted:
 print("NSStream Open Completed")
 case NSStreamEvent.HasBytesAvailable:
 print("NSStream Has Bytes Available")
 self.readData()

520 CHAPTER 17: External Sensor Interface Project

 case NSStreamEvent.HasSpaceAvailable:
 self.writeData()
 case NSStreamEvent.ErrorOccurred:
 print("NSStream Error Occured")
 case NSStreamEvent.EndEncountered:
 print("NSStream End Encountered")
 default:
 break;
 }

 }

 //
 // KEY DATA I/O Method *** This is where the data from the accessory is brought into this
app
 // via the NSStreams, mostly managed by iOS and converted for display in a UILabel.
 //

 func readData() {
 let maxReadLength = 20
 var inputDataArray = [UInt8](count: maxReadLength, repeatedValue: 0)

 var outputDataString : String = ""
 // print("array: \(inputDataArray)")
 while ((session?.inputStream?.hasBytesAvailable) == true) {
 let len = session?.inputStream?.read(&inputDataArray, maxLength: maxReadLength)
 if len > 0 {

 // print("\(len!) Read\n")
 // print("inputArray: \(inputDataArray)")

 // Conversion for display of some data
 // this is just for the demo app and only displays
 // some of the info from the BT board/card scanner
 // YOU'LL NEED TO CUSTOMIZE THIS AS APPROPRIATE FOR THE APPLICATION
 for value in inputDataArray {
 outputDataString += String(value, radix: 16)
 }

 // print("outputArray: \(outputDataString)")
 dispatch_async(dispatch_get_main_queue()) {
 self.statusLabel.text = "New Data Available:"
 self.outputDataLabel.text = outputDataString as String
 }

 }
 }
 }

521CHAPTER 17: External Sensor Interface Project

 func writeData() {
 // This example does not write any data

 }

 func disconnectedAccessory(notification:NSNotification) {
 print("Accessory gone, possibly removed")
 self.statusLabel.text = "accessory disconnected"
 self.accessoryTitleLabel.text = "none"
 self.closeSession()
 NSNotificationCenter.defaultCenter().removeObserver(self)
 //
 // Go back to table view controller
 //
 self.navigationController?.popToRootViewControllerAnimated(true)
 }

 //
 func openSession() {
 self.statusLabel.text = "opening session"
 session = EASession.init(accessory: self.connectedAccessory!, forProtocol: myProtocolString)
 if session != nil {
 self.statusLabel.text = "opened session to accessory"

 session?.inputStream?.delegate = self
 session?.inputStream?.scheduleInRunLoop(NSRunLoop.currentRunLoop(), forMode:

NSDefaultRunLoopMode)
 session?.inputStream?.open()

 session?.outputStream?.delegate = self
 session?.outputStream?.scheduleInRunLoop(NSRunLoop.currentRunLoop(), forMode:

NSDefaultRunLoopMode)
 session?.outputStream?.open()

 } else {
 self.statusLabel.text = "could not open session"
 }
 }

 func closeSession() {
 session?.inputStream?.close()
 session?.inputStream?.removeFromRunLoop(NSRunLoop.currentRunLoop(), forMode:

NSDefaultRunLoopMode)
 session?.inputStream?.delegate = nil

 session?.outputStream?.close()
 session?.outputStream?.removeFromRunLoop(NSRunLoop.currentRunLoop(), forMode:

NSDefaultRunLoopMode)
 session?.outputStream?.delegate = nil

 }

 }

522 CHAPTER 17: External Sensor Interface Project

 BTLE Sensor Interface
 Problem
 You need to work with iOS and a custom Bluetooth Low Energy (BTLE) accessory and don’t
know how to get started.

 Solution
 In this project we’ll work with a hardware accessory, a six-axis sensor that we connect to
using BTLE and Apple’s Core Bluetooth framework.

 Ballroom Dancing
 In this last project, we’re going to focus on my favorite interest— ballroom dancing . While
considered more of a social activity than a highly competitive sport, ballroom actually requires
highly developed muscle control, a sense of spatial awareness, musicality, and the ability to
perform while in pain and managing every other aspect required to compete and win.

 Let’s focus on the feet. At its most rudimentary foundations, ballroom requires the dancers
to move in specific ways or patterns while staying together (Figure 17-8). Patterns are a very
simple sequence of steps, mostly mirrored between the leader and follower. Several of these
patterns, when performed in an encompassing sequence, make up the routine.

 Figure 17-8. At its most fundamental, ballroom dance consists of making a series of steps, or patterns, that are woven
together to create a routine

523CHAPTER 17: External Sensor Interface Project

 We could create a complex sensor system to track each foot and its motion over the
course of a pattern as well as the overall routine. Using that system, we could record a
perfect performance and then store it in a database so that when we, as amateurs, want to
duplicate the performance of our favorite dance pro, we have a detailed reference to use as
our guideline. This, in fact, is the goal of sports performance quantification, an area of study
in which I am highly engaged.

 For now, though, to keep it simple, we’ll focus on one single aspect of dance and use only
one sensor to track one foot. In ballroom, there are two ways to move your foot across the
floor in a pattern. You either move your foot keeping the toe touching the ground, or you
move your foot so that your heel stays (or mostly stays) in contact with the floor. The first is
called a toe lead because you’re leading your foot with your toe. For converse reasons, we
call the latter a heel lead. In this project we’ll track, in real-time, the pitch angle of the foot—it
doesn’t matter whether it’s the left foot or the right. To do so, we’ll use an integrated circuit
called a microelectromechanical system (MEMS) device. This part, or a version of it, is used
in all mobile devices. It detects when you change the angle of the device so it can rotate the
screen automatically. While there are many such devices from different manufacturers that
measure a variety of angles, rotation, movement, and direction from a North–South pole
perspective (Figure 17-9), for our project we’ll only deal with the accelerometer portion of
the device.

 Figure 17-9. For this project we’ll get information from the accelerometer portion of the MEMS device to quickly
determine the foot’s deviation from parallel to the plane of the floor so we can see if the wearer is performing a heel
lead or a toe lead

524 CHAPTER 17: External Sensor Interface Project

 One last aspect of this I want to cover before we get into the technical details is exactly
when we would want to differentiate between a toe lead and a heel lead. In ballroom, there
are essentially four styles of dance: American Smooth, Standard, American Rhythm, or Latin
(also known as International). In the first two styles, Smooth and Standard, moving the foot
is done primarily using heel leads, much like a normal walking gait, while in the latter two
styles, the goal is to keep the toe pressed to the floor and lead with the toe.

 User Interface
 As with some of our other projects, we’re going to use Apple Watch as our interface. Two
good reasons exist for doing it this way. First, we only need to convey a very small bit of
information to the user; our dancer is trying to know if she’s doing the proper move of her
foot. If she’s dancing Latin and needs to lead with her toe, but her toe is off the ground, we
need to let her know.

 Second, because she’s on the floor dancing with a partner and can’t carry around a tablet
or phone as the user interface (Figure 17-10), Watch, with its taptic engine and the ability to
provide haptic feedback, i.e., vibration, can let her know when her steps are not in keeping
with the intent of the performance.

 Figure 17-10. The typical user interface on an iPad or iPhone displaying characteristics about foot position do not
accommodate the needs of a dancer during her performance. She needs a more subtle, less obtrusive means to know
when she’s doing a movement incorrectly.

525CHAPTER 17: External Sensor Interface Project

 Let’s say our dancer is practicing her Rumba routine, one of the primary Latin dances. As
such, she needs to focus on her foot movements and keep her toes to the floor. Imagine
a piece of tissue paper between the toes of your shoes and the floor. You need to move
your foot so the tissue is always between your foot and the floor. Using the interface on the
Apple Watch, the screen as shown in Figures 17-11 and 17-12 in conjunction with the taptic
engine, our dancer can know when she’s performing her toe lead correctly through the lack of
any vibration or when she’s mistakenly leading with her heel though the vibration on her wrist.

 Figure 17-11. By selecting the dance style of interest, the code will determine, based on the angle of the sensor, if the
foot movement is being performed correctly

 Figure 17-12. If the angle of the sensor on the shoe is not correct for the dance style selected, in addition to
an audio-visual indication, the Watch vibrates to let the dancer know of her error

526 CHAPTER 17: External Sensor Interface Project

 We saw the sensor we’ll be using (Figure 17-13) in a previous chapter and how to quickly
attach it to a dance shoe (Figure 17-14) for testing out our project. Of course, in a production
environment, the method of attaching the device to the shoe would be slightly different in an
effort to create a more physically secure connection. Note that in Figure 17-14 the sensor
does not rest on the same plane as the floor due to the angle of the sole of our dancer’s
shoe. This creates a bias in our measurement data. Because we’re converting raw sensor
output into an angle relative to the plane of the floor on our iPhone, we’ll take out that bias in
the code.

 Figure 17-13. The prototype sensor board we’ll use to detect the pitch of our dancer’s foot as compared with the plane
of the floor

 Figure 17-14. A simple, but efficient way to attach the sensor to a dancer’s heel

527CHAPTER 17: External Sensor Interface Project

 The Code
 We discussed BTLE in Chapter 13 and won’t spend time covering it again in this
project description. So, if you need to review the BT 4.0 or BTLE hierarchy, please refer to
that chapter.

 In Listing 17-9 you can see some of the key elements needed for the iPhone side of our
project. We need to include the Core Bluetooth framework, of course, so we can connect to
our sensor wirelessly. The Watch Connectivity framework provides the resources for passing
data between the iPhone and the Apple Watch. This feature was made available at the
launch of WatchOS 2 . Prior to that, it was not possible to create native Watch applications.
In WatchOS 1 , the actual logic that resides in the WatchKit extension executed on the
iPhone and communicated with the UI elements on the watch. While the Watch logic still
resides in the WatchKit extension, that code now executes on the Watch itself.

 Listing 17-9. Key Elements of Our iPhone View Controller

 //
 // ViewController.swift
 // Sensor Interface
 //
 // Created by Molly Maskrey on 8/14/15.
 // Copyright (c) 2015 Global Tek Labs. All rights reserved.
 //

 import UIKit
 import CoreBluetooth
 import WatchConnectivity

 // Services
 let GAP_SERVICE = "1800"
 let DEV_INFO_SERVICE = "180a"
 let DEVBD_SERVICE = "53239E8E-4EC5-4869-8773-52018C93CA3D"
 let SENSOR_DATA_SERVICE = "6D480F49-91D3-4A18-BE29-0D27F4109C23"

 //
 // Characteristics - we only care about two for this demo
 //
 let ROLL_CHARACTERISTIC = "35c93ef0-5517-440a-ad32-222a596eafc1"
 let PITCH_CHARACTERISTIC = "192773e5-b433-4dfe-93ae-17b713172145"

 // Helper Extension to Float type
 extension Float {
 var degreesToRadians : CGFloat {
 return CGFloat(self) * CGFloat(M_PI) / 180.0
 }
 }

 However, not all frameworks are available for the Watch hardware. Of specific interest to us
is the Core Bluetooth framework needed to communicate with the sensor. The sensor can,
because of current development system limitations, only communicate with the iPhone
(as well as an iPad or iPod Touch). Thus, we require use of the Watch Connectivity

http://dx.doi.org/10.1007/978-1-4842-1820-4_13

528 CHAPTER 17: External Sensor Interface Project

framework to move data from the sensor through the iPhone to the Apple Watch. You
can also see the 128-bit Universally Unique Identifiers (UUIDs) for the board services and
characteristics. Though we do include them, for the actual functionality of this project we
only need to be concerned with the sensor data service and the pitch characteristic. You can
also see I included a simple extension to the Float type that converts degrees to radians.

 For this project I created three Watch Connectivity convenience functions, shown in
Listing 17-10 . The function openSession checks to see if Watch Connectivity is supported
and, if so, opens the session. The function sendConnectionStatus passes a Boolean to
the Watch via the previously open session to indicate whether or not there is a connection
between the iPhone and the Watch. Finally, sendLeadType also passes a Boolean to the
Watch to indicate whether the sensor is at a positive or negative angle, indicating either a
toe or heel lead.

 Listing 17-10. Watch Connectivity Convenience Functions

 // WKSession convenience functions

 func openSession () -> () {
 if(WCSession.isSupported()) {
 session = WCSession.defaultSession()
 session?.delegate = self
 session?.activateSession()
 print("WC Session is SUPPORTED")
 } else {
 print("WC Session is NOT SUPPORTED")
 }
 }

 func sendConnectionStatus (status:Bool) -> (){
 if let session = session where session.reachable {
 print("WCSession with Watch is REACHABLE")
 session.sendMessage(["CONNECT":status], replyHandler: nil, errorHandler: {

(error) -> Void in
 print("Error in sendConnectionStatus: \(error)")
 })
 } else {
 print("WCSession with Watch is NOT REACHABLE")
 }
 }

 func sendLeadType (leadType:Bool) -> (){
 if let session = session where session.reachable {
 print("WCSession with Watch is REACHABLE")
 session.sendMessage(["LEAD_TYPE":leadType], replyHandler: nil, errorHandler: {

(error) -> Void in
 print("Error in sendLeadType: \(error)")
 })
 } else {
 print("WCSession with Watch is NOT REACHABLE")
 }
 }

529CHAPTER 17: External Sensor Interface Project

 Recalling that the Core Bluetooth framework uses the terms central and peripheral
to represent the iPhone and sensor board respectively, Listing 17-11 shows the key
functionality used to traverse the BTLE hierarchy to get to the characteristic we use that
represents the pitch angle of the dancer’s foot. I’ve only shown the major functions used to
get to the characteristic of interest and not the ancillary functionally, such as disconnecting a
BLTE device or when it fails to connect, such as might happen if requiring a pairing key.

 Listing 17-11. Core Bluetooth Functions in the ViewController.swift File to Locate the Foot’s Pitch Characteristic from
the Sensor Board

 // create a Core Bluetooth central manager (client) object with ourselves as the delegate
 manager = CBCentralManager(delegate: self, queue: dispatch_get_main_queue())

 // CORE BLUETOOTH CENTRAL MANAGER DELEGATE METHODS

 // THIS METHOD IS REQUIRED to find any Bluetooth devices
 // First make sure BT is available and turned on
 // Then, start scanning for BT peripherals
 func centralManagerDidUpdateState(central: CBCentralManager) {
 // see if our BT is powered on first
 if central.state == CBCentralManagerState.PoweredOn {
 print("Bluetooth is on, scanning for peripherals")
 manager.scanForPeripheralsWithServices(nil, options: nil)
 }
 }
 //
 // DISCOVERED A PERIPHERAL
 // A Bluetooth device is within range, try connecting to it
 //
 func centralManager(central: CBCentralManager, didDiscoverPeripheral peripheral:
CBPeripheral, advertisementData: [String : AnyObject], RSSI: NSNumber) {

 if let _ = peripheral.name {
 if peripheral.name == "iThotics Sensor" {
 // set our sensor in case we need it later
 sensor = peripheral
 print("Found \(peripheral.name), stop scanning and connect it")
 manager.connectPeripheral(peripheral, options: nil)
 manager.stopScan()
 }
 }
 }
 //
 // CONNECTED PERIPHERAL
 // We connected to the Bluetooth device, let's see what services it has
 //
 func centralManager(central: CBCentralManager, didConnectPeripheral peripheral:
CBPeripheral) {
 //
 print("Connected to the MovementTek Sensor")
 statusLabel.text = "CONNECTED"
 statusLabel.textColor = UIColor.greenColor()

530 CHAPTER 17: External Sensor Interface Project

 // Let the Watch know we're connected
 sendConnectionStatus(true)
 peripheral.delegate = self
 peripheral.discoverServices(nil)
 }

 // PERIPHERAL DELAGATE METHODS
 // SERVICES
 //
 func peripheral(peripheral: CBPeripheral, didDiscoverServices error: NSError?) {
 //
 print("Did discover \(peripheral.services!.count) services for \(sensor.name)")
 for aService in peripheral.services! {

 print("Service = \(aService.UUID.description)")
 if aService.UUID.description.uppercaseString == DEVBD_SERVICE.uppercaseString {
 print("Go discover Characteristics for \(aService.UUID.description)")
 sensor.discoverCharacteristics(nil , forService: aService)
 }
 print("Looking for \(SENSOR_DATA_SERVICE.uppercaseString)")
 if aService.UUID.description.uppercaseString == SENSOR_DATA_SERVICE.
uppercaseString {
 print("Go discover Characteristics for Sensor Data")
 sensor.discoverCharacteristics(nil , forService: aService)
 }
 }
 }

 //
 // CHARACTERISTICS
 //
 func peripheral(peripheral: CBPeripheral, didDiscoverCharacteristicsForService service:
CBService, error: NSError?) {
 //
 for aCharacteristic in service.characteristics! {
 if aCharacteristic.UUID.description.uppercaseString == ROLL_CHARACTERISTIC.

uppercaseString {
 print("Found Foot Roll Characteristic")
 sensor.setNotifyValue(true, forCharacteristic: aCharacteristic)
 }
 if aCharacteristic.UUID.description.uppercaseString == PITCH_CHARACTERISTIC.
uppercaseString {
 print("Found Foot Pitch Characteristic")
 sensor.setNotifyValue(true, forCharacteristic: aCharacteristic)
 }
 }
 }

 The first thing we do is create the Core Bluetooth central manager object in the
 ViewController.swift file using the CBCentralManager function , which allows us to interface
all necessary functionality of our device. Because we set its delegate to self , we’ll have all
the appropriate delegate methods in this file.

531CHAPTER 17: External Sensor Interface Project

 Then we check using the centralManagerDidUpdateState to see if a state change occurred
in the central manager to indicate that the Bluetooth is available and activated on our device.
A typical error condition would happen if the user had not turned on the Bluetooth radio on
their device. If we see that the central manager returns a PoweredOn state, then we know the
radio is active and we can start scanning to locate all peripherals in range using the
 manager.scanForPeripheralsWithServices function call.

 The central manager delegate method didDiscoverPeripheral will be called for each
peripheral found within range of the Bluetooth radio’s reception. This will of course depend
on the transmitting power of the device and other factors, such as distance and interference
between the iPhone and the transmitters. Because we’re only interested in one particular
sensor, we use the code in Listing 17-12 in the ViewController.swift file to connect only to
our device of interest.

 Listing 17-12. Discovering a Peripheral

 if let _ = peripheral.name {
 if peripheral.name == "iThotics Sensor" {
 // set our sensor in case we need it later
 sensor = peripheral
 print("Found \(peripheral.name), stop scanning and connect it")
 manager.connectPeripheral(peripheral, options: nil)
 manager.stopScan()
 }
 }

 The peripheral name, iThotics Sensor, is the name found in the sensor’s firmware,
specifically the device’s Generic Attributes Profile (GATT profile) , and was set by the
manufacturer. In our case, this was the original name I chose to call this particular version of
the sensor.

 If our connection attempt is successful, we’ll get the delegate call didConnectPeripheral
that returns a peripheral object for us to use in the code. As you may recall from earlier, there
are two sides when working with Core Bluetooth, the central and the peripheral. Just as we
did with the central, or specifically the central manager object, we have to set our delegate
for the returned peripheral object, which we set to self so we can access the peripheral
delegate methods. And, of course, we want to search for services offered by this peripheral:

 peripheral.delegate = self
 peripheral.discoverServices(nil)

 Note We’re using the “if let” Swift construct to make sure we only try to use the peripheral name
if the name exists; that is, it’s not nil. Because we have to examine every BTLE device in range, it’s
often the case that some lower quality devices may not have populated the peripheral name, and
trying to use a nil value will result in the app crashing.

532 CHAPTER 17: External Sensor Interface Project

 As with the central manager, I’m leaving out the ancillary functions for this discussion so
we can focus on getting to the information we need for our project. The delegate method
 didDiscoverServices returns the list of services provided by the BTLE device; in this
case, our iThotics Sensor board. In the following code snippet, you can see that I’m only
interested in two services, the device board service, which tells me some metadata about
the board itself, and the sensor data service, which has our pitch and roll information for our
foot (Listing 17-13).

 Listing 17-13. Discovering Services in the ViewController.swift File

 print("Service = \(aService.UUID.description)")
 if aService.UUID.description.uppercaseString == DEVBD_SERVICE.uppercaseString {
 print("Go discover Characteristics for \(aService.UUID.description)")
 sensor.discoverCharacteristics(nil , forService: aService)
 }
 print("Looking for \(SENSOR_DATA_SERVICE.uppercaseString)")
 if aService.UUID.description.uppercaseString == SENSOR_DATA_SERVICE.uppercaseString {
 print("Go discover Characteristics for Sensor Data")
 sensor.discoverCharacteristics(nil , forService: aService)
 }

 Once we’ve found the service of particular interest to us—in this case it’s the sensor
data service—we use the discoverCharacteristics method call on the sensor
object to get all the available characteristics of that service. In the delegate method
 didDiscoverCharacteristicsForService we iterate over all the characteristics of that service
looking for the one of particular interest to us (Listing 17-14).

 Listing 17-14. Discovering Characteristics in the ViewController.swift File

 for aCharacteristic in service.characteristics! {
 if aCharacteristic.UUID.description.uppercaseString == ROLL_CHARACTERISTIC.

uppercaseString {
 print("Found Foot Roll Characteristic")
 sensor.setNotifyValue(true, forCharacteristic: aCharacteristic)
 }
 if aCharacteristic.UUID.description.uppercaseString == PITCH_CHARACTERISTIC.

uppercaseString {
 print("Found Foot Pitch Characteristic")
 sensor.setNotifyValue(true, forCharacteristic: aCharacteristic)
 }
 }

 You can see that we’ve identified both the pitch and roll characteristics of the foot.
For reference, the roll of the foot would indicate how much the dancer’s ankle is rolled in
or out. Think of when you twist your ankle playing a sport such as basketball or tennis.
For a production system, this would very important, as another key element of footwork in
ballroom dance is actually trying to maintain foot pressure near your big toe. An outside
roll would therefore indicate an incorrect weight distribution of the foot, and therefore
incorrect form.

533CHAPTER 17: External Sensor Interface Project

 Now that we have all the information we need to measure the pitch angle of the foot,
how do we use it? Again, delegate methods come to our rescue, specifically the
 didUpdateValueForCharacteristic method, which gets called when a characteristic that
we are monitoring changes. In the preceding code snippet, notice the line where we call the
 setNotifyValue method on the sensor to true for the specific characteristic. This call is what
allows us to use the didUpdateValueForCharacteristic method, as shown in Listing 17-15 .

 Listing 17-15. Handling Updates from Our Sensor’s Characteristics in the ViewController.swift File

 // WHEN THE CHARACTERISTICS UPDATE (new data)
 // This is where we get the new data from the sensor and do something with it
 //
 func peripheral(peripheral: CBPeripheral, didUpdateValueForCharacteristic characteristic:
CBCharacteristic, error: NSError?) {
 //
 // X AXIS === FOOT ROLL
 //
 if characteristic.UUID.description.uppercaseString == ROLL_CHARACTERISTIC.uppercaseString {

 let dataBytes = characteristic.value
 let dataLength = dataBytes!.length
 var dataArray = [UInt8](count: dataLength, repeatedValue: 0)
 dataBytes!.getBytes(&dataArray, length: dataLength * sizeof(UInt8))
 var sensorValue : Int16 = Int16(dataArray[0]) << 8 + Int16(dataArray[1])
 sensorValue /= 4
 xMotionAverage = ((xMotionAverage * xAveragingFactor) + Float(sensorValue)) / 40
 xMotionAverage += rollBias

 rollValue = xMotionAverage
 rollView.transform = CGAffineTransformMakeRotation(xMotionAverage.degreesToRadians)
 }

 //
 // Y AXIS === FOOT PITCH
 //
 if characteristic.UUID.description.uppercaseString == PITCH_CHARACTERISTIC.

uppercaseString {

 let dataBytes = characteristic.value
 let dataLength = dataBytes!.length
 var dataArray = [UInt8](count: dataLength, repeatedValue: 0)
 dataBytes!.getBytes(&dataArray, length: dataLength * sizeof(UInt8))
 var sensorValue : Int16 = Int16(dataArray[0]) << 8 + Int16(dataArray[1])
 sensorValue /= 4
 yMotionAverage = ((yMotionAverage * yAveragingFactor) + Float(sensorValue)) / 20
 yMotionAverage += pitchBias

 pitchValue = yMotionAverage
 pitchView.transform = CGAffine TransformMakeRotation(-yMotionAverage.degreesToRadians)

534 CHAPTER 17: External Sensor Interface Project

 //
 // FOR FOOT PITCH, PASS THE DATA TO WATCH via WATCH CONNECTIVITY
 //
 if pitchValue >= 0 {
 sendLeadType(true) // TOE LEAD
 } else {
 sendLeadType(false) // HEEL LEAD
 }
 }
 }

 For now, do not be too concerned about the numeric calculations in the two if statements.
They are primarily used to provide a visual indication of rotation to the graphics displayed on
the iPhone. Because we’re focusing on a non-intrusive mechanism to let the dancer know
when her steps are incorrect, the important part is shown in Listing 17-16 .

 Listing 17-16. Sending Messages to the Watch App Extension from the ViewController.swift File

 if pitchValue >= 0 {
 sendLeadType(true) // TOE LEAD
 } else {
 sendLeadType(false) // HEEL LEAD
 }

 This bit of code checks the pitch value, and if it is greater than or equal to zero, it sends a
Boolean to the Watch using the sendLeadType convenience method to let the Watch indicate
that the dancer is leading with her toe. Otherwise, a false indicates that she is leading with
her heel. Note that there is no quantification of whether the toe versus heel lead is correct
for the dance, only that the dancer’s foot is either tilted up or tilted down. The reason is that
the iPhone does not know what dance the dancer is performing, and certainly not the proper
foot movement.

 iPhone User Interface
 As we mentioned earlier, since Apple’s current (at the time of this writing) version of WatchKit
does not support Core Bluetooth, we must use an iPhone as an intermediary. To help with
isolating issues and debugging the code, I created a simple iPhone UI, shown in Figure 17-15 .

535CHAPTER 17: External Sensor Interface Project

 At the top of the interface is a simple status label so as to see what’s happening as we
try to connect to a sensor. The two large image displays depict the rotation of the foot
in either pitch or roll (side to side). We do this by calling an affine transform inside the
 didUpdateValueForCharacteristic method call to change the angle of the foot image. Near
the middle on either side are two buttons. The Calibrate button is use to take out the bias
of the sensor, in pitch, when it is attached to a shoe. For a lady’s Latin heel, the attachment
might be at an angle of approximately forty-five degrees. Placing the shoe on a level surface
and pressing Calibrate adjusts the angle used to rotate the pitch foot image so that it is
normalized to that angle, essentially removing the bias. Pressing Zero Bias removes any
calibration adjustment that has been place into the app.

 Listing 17-17 depicts the complete ViewController.swift code that deals with connecting
and monitoring the sensor, displaying graphical information to the user, and interfacing with
the Apple Watch.

 Listing 17-17. ViewController.swift Code That Executes on the iPhone

 //
 // ViewController.swift
 // Sensor Interface
 //
 // Created by Molly Maskrey on 8/14/15.
 // Copyright (c) 2015 Global Tek Labs. All rights reserved.
 //

 Figure 17-15. A very simple iPhone UI, using very ugly graphics, allows us to quickly see issues in our project

536 CHAPTER 17: External Sensor Interface Project

 import UIKit
 import CoreBluetooth
 import WatchConnectivity

 // Services
 let GAP_SERVICE = "1800"
 let DEV_INFO_SERVICE = "180a"
 let DEVBD_SERVICE = "53239E8E-4EC5-4869-8773-52018C93CA3D"
 let SENSOR_DATA_SERVICE = "6D480F49-91D3-4A18-BE29-0D27F4109C23"

 //
 // Characteristics - we only care about two for this demo
 //
 let ROLL_CHARACTERISTIC = "35c93ef0-5517-440a-ad32-222a596eafc1"
 let PITCH_CHARACTERISTIC = "192773e5-b433-4dfe-93ae-17b713172145"

 // Helper Extension to Float type
 extension Float {
 var degreesToRadians : CGFloat {
 return CGFloat(self) * CGFloat(M_PI) / 180.0
 }
 }

 //
 // The CBCentralManagerDelegate protocol allows us to find Bluetooth Peripherals to connect with
 //
 // The CBPeripheralDelegate protocol allows us to locate services and characteristics of
BTLE Peripherals
 //
 // And...add delegate for Watch Connectivity framework
 //
 class ViewController: UIViewController, CBCentralManagerDelegate,CBPeripheralDelegate,
WCSessionDelegate {

 @IBOutlet weak var statusLabel: UILabel!

 // Session Object for using Watch Connectivity
 var session :WCSession?

 var pitchValue : Float = 0
 var pitchBias : Float = 0
 var rollValue : Float = 0
 var rollBias : Float = 0

 // WKSession convenience functions
 func openSession () -> () {
 if(WCSession.isSupported()) {
 session = WCSession.defaultSession()
 session?.delegate = self
 session?.activateSession()
 print("WC Session is SUPPORTED")

537CHAPTER 17: External Sensor Interface Project

 } else {
 print("WC Session is NOT SUPPORTED")
 }
 }

 func sendConnectionStatus (status:Bool) -> (){
 if let session = session where session.reachable {
 print("WCSession with Watch is REACHABLE")
 session.sendMessage(["CONNECT":status], replyHandler: nil, errorHandler: {

(error) -> Void in
 print("Error in sendConnectionStatus: \(error)")
 })
 } else {
 print("WCSession with Watch is NOT REACHABLE")
 }
 }

 func sendLeadType (leadType:Bool) -> (){
 if let session = session where session.reachable {
 print("WCSession with Watch is REACHABLE")
 session.sendMessage(["LEAD_TYPE":leadType], replyHandler: nil, errorHandler: {

(error) -> Void in
 print("Error in sendLeadType: \(error)")
 })
 } else {
 print("WCSession with Watch is NOT REACHABLE")
 }
 }

 @IBAction func calibrateSensor(sender: AnyObject) {
 pitchBias = -pitchValue
 rollBias = rollValue
 print("roll bias = \(rollBias); pitch bias = \(pitchBias)")

 }

 @IBAction func zeroBias(sender: AnyObject) {
 pitchBias = 0
 rollBias = 0

 print("Ext: Setting sensorStatus = false")

 }

 @IBOutlet weak var pitchView: UIImageView!
 @IBOutlet weak var rollView: UIImageView!

 var manager:CBCentralManager!
 var sensor:CBPeripheral! // our MovementTek sensor
 var peripheralArray : [CBPeripheral] = []

538 CHAPTER 17: External Sensor Interface Project

 var xMotionAverage : Float = 0
 var yMotionAverage : Float = 0
 var xAveragingFactor : Float = 0.9
 var yAveragingFactor : Float = 0.9

 var managerState : Bool = false

 //***
 //*************** THE BORING STUFF *********************
 //***

 override func viewDidLoad() {
 super.viewDidLoad()
 // create a Core Bluetooth central manager (client) object with ourselves as the
delegate
 //*******************INTERESTING*****************************
 manager = CBCentralManager(delegate: self, queue: dispatch_get_main_queue())

 // Open session with Watch
 openSession()

 // Assume we're not connected at start
 sendConnectionStatus(false)

 //***
 // Set up Labels
 statusLabel.text = "NOT CONNECTED"
 statusLabel.textColor = UIColor.redColor()
 }

 override func viewDidAppear(animated: Bool) {
 // debug
 print("VIEW DID APPEAR")

 // Pass data to Watch through WATCH CONNECTIVITY
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 //***
 //*************** THE INTERESTING STUFF ******************
 //***

 // CORE BLUETOOTH CENTRAL MANAGER DELEGATE METHODS

 // THIS METHOD IS REQUIRED to find any Bluetooth devices
 // First make sure BT is available and turned on
 // Then, start scanning for BT peripherals
 func centralManagerDidUpdateState(central: CBCentralManager) {

539CHAPTER 17: External Sensor Interface Project

 // see if our BT is powered on first
 if central.state == CBCentralManagerState.PoweredOn {
 print("Bluetooth is on, scanning for peripherals")
 manager.scanForPeripheralsWithServices(nil, options: nil)
 }
 }

 //
 // DISCOVERED A PERIPHERAL
 // A Bluetooth device is within range, try connecting to it
 //
 func centralManager(central: CBCentralManager, didDiscoverPeripheral peripheral:
CBPeripheral, advertisementData: [String : AnyObject], RSSI: NSNumber) {

 if let _ = peripheral.name {
 if peripheral.name == "iThotics Sensor" {
 // set our sensor in case we need it later
 sensor = peripheral
 print("Found \(peripheral.name), stop scanning and connect it")
 manager.connectPeripheral(peripheral, options: nil)
 manager.stopScan()
 }
 }
 }

 //
 // CONNECTED PERIPHERAL
 // We connected to the Bluetooth device, let's see what services it has
 //
 func centralManager(central: CBCentralManager, didConnectPeripheral peripheral:
CBPeripheral) {
 //
 print("Connected to the MovementTek Sensor")
 statusLabel.text = "CONNECTED"
 statusLabel.textColor = UIColor.greenColor()
 // Let the Watch know we're connected
 sendConnectionStatus(true)
 peripheral.delegate = self
 peripheral.discoverServices(nil)
 }

 //
 // DIS-CONNECTED PERIPHERAL
 // The peripheral disconnected, let's try reconnecting
 //
 func centralManager(central: CBCentralManager, didDisconnectPeripheral peripheral:
CBPeripheral, error: NSError?) {
 //
 print("Disconnected from the MovementTek Sensor - let's try reconnecting")
 statusLabel.text = "NOT CONNECTED"
 statusLabel.textColor = UIColor.redColor()

540 CHAPTER 17: External Sensor Interface Project

 // Let the Watch know we're disconnected
 sendConnectionStatus(false)

 // try to reconnect
 manager.connectPeripheral(peripheral, options: nil)

 // reset graphics
 rollView.transform = CGAffineTransformMakeRotation(0)
 pitchView.transform = CGAffineTransformMakeRotation(0)
 }

 //
 // FAILED TO CONNECT TO PERIPHERAL
 // When, for some reason, we can't connect to the peripheral, this method is executed
 //
 func centralManager(central: CBCentralManager, didFailToConnectPeripheral peripheral:
CBPeripheral, error: NSError?) {
 print("Error: Couldn't connect to a peripheral - let's try again")
 // try to reconnect
 manager.connectPeripheral(peripheral, options: nil)
 }

 //
 // PERIPHERAL DELAGATE METHODS
 //
 //**
 //
 // SERVICES
 //

 func peripheral(peripheral: CBPeripheral, didDiscoverServices error: NSError?) {
 //
 print("Did discover \(peripheral.services!.count) services for \(sensor.name)")
 for aService in peripheral.services! {

 print("Service = \(aService.UUID.description)")
 if aService.UUID.description.uppercaseString == DEVBD_SERVICE.uppercaseString {
 print("Go discover Characteristics for \(aService.UUID.description)")
 sensor.discoverCharacteristics(nil , forService: aService)
 }
 print("Looking for \(SENSOR_DATA_SERVICE.uppercaseString)")
 if aService.UUID.description.uppercaseString == SENSOR_DATA_SERVICE.

uppercaseString {
 print("Go discover Characteristics for Sensor Data")
 sensor.discoverCharacteristics(nil , forService: aService)
 }
 }
 }

541CHAPTER 17: External Sensor Interface Project

 //
 // CHARACTERISTICS
 //
 func peripheral(peripheral: CBPeripheral, didDiscoverCharacteristicsForService service:
CBService, error: NSError?) {
 //
 for aCharacteristic in service.characteristics! {
 if aCharacteristic.UUID.description.uppercaseString == ROLL_CHARACTERISTIC.

uppercaseString {
 print("Found Foot Roll Characteristic")
 sensor.setNotifyValue(true, forCharacteristic: aCharacteristic)
 }
 if aCharacteristic.UUID.description.uppercaseString == PITCH_CHARACTERISTIC.

uppercaseString {
 print("Found Foot Pitch Characteristic")
 sensor.setNotifyValue(true, forCharacteristic: aCharacteristic)
 }
 }
 }

 //
 // WHEN THE CHARACTERISTICS UPDATE (new data)
 // This is where we get the new data from the sensor and do something with it
 //
 func peripheral(peripheral: CBPeripheral, didUpdateValueForCharacteristic
characteristic: CBCharacteristic, error: NSError?) {
 //
 // X AXIS === FOOT ROLL
 //
 if characteristic.UUID.description.uppercaseString == ROLL_CHARACTERISTIC.
uppercaseString {

 let dataBytes = characteristic.value
 let dataLength = dataBytes!.length
 var dataArray = [UInt8](count: dataLength, repeatedValue: 0)
 dataBytes!.getBytes(&dataArray, length: dataLength * sizeof(UInt8))
 var sensorValue : Int16 = Int16(dataArray[0]) << 8 + Int16(dataArray[1])
 sensorValue /= 4
 xMotionAverage = ((xMotionAverage * xAveragingFactor) + Float(sensorValue)) / 40
 xMotionAverage += rollBias

 rollValue = xMotionAverage
 rollView.transform = CGAffineTransformMakeRotation(xMotionAverage.degreesToRadians)
 }

 //
 // Y AXIS === FOOT PITCH
 //
 if characteristic.UUID.description.uppercaseString == PITCH_CHARACTERISTIC.
uppercaseString {

542 CHAPTER 17: External Sensor Interface Project

 let dataBytes = characteristic.value
 let dataLength = dataBytes!.length
 var dataArray = [UInt8](count: dataLength, repeatedValue: 0)
 dataBytes!.getBytes(&dataArray, length: dataLength * sizeof(UInt8))
 var sensorValue : Int16 = Int16(dataArray[0]) << 8 + Int16(dataArray[1])
 sensorValue /= 4
 yMotionAverage = ((yMotionAverage * yAveragingFactor) + Float(sensorValue)) / 20
 yMotionAverage += pitchBias

 pitchValue = yMotionAverage
 pitchView.transform = CGAffineTransformMakeRotation(-yMotionAverage.degreesToRadians)

 //
 // FOR FOOT PITCH, PASS THE DATA TO WATCH via WATCH CONNECTIVITY
 //
 if pitchValue >= 0 {
 sendLeadType(true) // TOE LEAD
 } else {
 sendLeadType(false) // HEEL LEAD
 }
 }
 }

 } // END of the viewController CLASS

 Apple Watch Interface
 We want to give our dancer the simplest, most unobtrusive indication of when she’s doing
something incorrectly as we can. To that end, though we will have a visual Watch UI, the
key feedback mechanism will be haptic; that is, a vibration on her wrist will indicate that she
is doing the wrong type of foot lead. We’ll also focus on only two dance styles: waltz and
rumba . In waltz, she needs to move her feet much like normal walking—that is, she needs
to do heel leads (Figure 17-16) and not move through her toes (Figure 17-17). Conversely, in
rumba we want to keep our toes connected to the floor—toe leads (Figures 17-18 and 17-19).

543CHAPTER 17: External Sensor Interface Project

 Figure 17-16. In the waltz , our dancer must move her feet much like normal walking, using heel leads as she travels
the floor

 Figure 17-17. If our dancer moves through her toes during the waltz , in addition to a visual indication on the Watch
face, she will also receive haptic feedback, a vibration, to make her aware of the mistake

544 CHAPTER 17: External Sensor Interface Project

 Figure 17-18. In rumba our dancer must keep her toes connected with the floor. This is a much more difficult
movement than heel leads in waltz, as it puts her ankle at an unnatural angle.

 Figure 17-19. And, as in waltz, when our dancer performs rumba incorrectly, both visual and haptic feedback is
provided to her in order to make the correction

545CHAPTER 17: External Sensor Interface Project

 We create this interface in the SensorInterface WatchKit App section of the project, not the
extension section. From the mainController scene create two additional scenes, one for
rumba and one for waltz (Figure 17-20). When the user selects one of the dance styles, that
interface screen is displayed.

 Figure 17-20. Setting up the interface storyboard on the WatchKit app (not the extension)

 Note that, like our more general iOS devices where we have view controllers, we
need code to back them up, and we need that code to match our Watch interface
controllers: interfaceController.swift , rumbaInterfaceController.swift , and
 waltzInterfaceController.swift , (Figure 17-21). These will be placed in the WatchKit
extension.

 Figure 17-21. For each of the three Watch interface controllers we saw earlier, we need code to do the actual work.
The functional code is placed into the WatchKit extension

546 CHAPTER 17: External Sensor Interface Project

 Much like the viewDidLoad function in our typical iOS application, for the Watch the related
function is called willActivate (Listing 17-18). In this function all we really want to do is set
up a timer to check the sensor status. This name might be a bit of a misnomer, because
what we’re really doing is checking to see if the iPhone and Watch have connectivity
(Listing 17-19). But, from the Watch’s perspective, the iPhone is the sensor.

 Listing 17-18. The willActivate Function Is Called When the View (or Interface) Controller Becomes Visible to the User in
the InterfaceController.swift File

 override func willActivate() {
 // This method is called when watch view controller is about to be visible to user
 super.willActivate()

 // Let's set up a timer
 let interval:NSTimeInterval = 0.1
 if intervalTimer.valid{intervalTimer.invalidate()}
 intervalTimer = NSTimer.scheduledTimerWithTimeInterval(interval, target: self, selector:

"checkSensorStatus", userInfo: nil, repeats: true)
 }

 Listing 17-19. The checkSensorStatus Convenience Function Makes Sure That Communications Between the iPhone
and the Watch Exist in the InterfaceControler.swift File

 // This is our custom function that gets called whenever the timer fires
 // We check the sensorStatus and set the label as appropriate
 //
 func checkSensorStatus () -> () {
 // Get Data from phone using Watch Connectivity

 // First, always try and open session if not already opened
 if let session = session where session.reachable {
 print("watch:WCSession with Watch is REACHABLE")
 } else {
 openSession()
 }
 }

 The complete InterfaceController.swift file is shown in Listing 17-20 . Because this is the
primary view that the dancer sees on her Watch, all we need do here is to first make sure the
connection is present through the iPhone to the sensor, and then offer her a choice of dance
style to which her foot movements will be quantified.

 Note The reason for the Watch code and storyboard being separate has to do with the original
version of WatchOS, where Watch code actually executed on the iPhone and not on the Watch itself.
This changed with the release of WatchOS 2 in late 2015.

547CHAPTER 17: External Sensor Interface Project

 Listing 17-20. The Watch InterfaceController.swift File

 //
 // InterfaceController.swift
 // Sensor Interface WatchKit Extension
 //
 // Created by Molly Maskrey on 8/30/15.
 // Copyright (c) 2015 Global Tek Labs. All rights reserved.
 //

 import WatchKit
 import Foundation
 import WatchConnectivity

 class InterfaceController: WKInterfaceController, WCSessionDelegate {

 @IBOutlet weak var linkStatusLabel: WKInterfaceLabel!
 // Session Identifier
 var session : WCSession?

 // WK Connectivity
 func openSession () -> () {
 if(WCSession.isSupported()) {
 session = WCSession.defaultSession()
 session?.delegate = self
 session?.activateSession()
 print("watch: WC Session is SUPPORTED")
 } else {
 print("watch: WC Session is NOT SUPPORTED")
 }
 }

 // Interval Timer
 var intervalTimer = NSTimer()

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 }

 override func willActivate() {
 // This method is called when watch view controller is about to be visible to user
 super.willActivate()

 // Let's set up a timer
 let interval:NSTimeInterval = 0.1
 if intervalTimer.valid{intervalTimer.invalidate()}
 intervalTimer = NSTimer.scheduledTimerWithTimeInterval(interval, target: self,
selector: "checkSensorStatus", userInfo: nil, repeats: true)
 }

548 CHAPTER 17: External Sensor Interface Project

 // WatchKit Connectivity Delegate Methods

 func session(session: WCSession, didReceiveMessage message: [String : AnyObject]) {
 if let status = message["CONNECT"] as? Bool {
 if (status == true) {
 linkStatusLabel.setText("connected")
 linkStatusLabel.setTextColor(UIColor .greenColor())
 } else {
 linkStatusLabel.setText("not connected")
 linkStatusLabel.setTextColor(UIColor .redColor())
 }
 }
 }

 //
 // This is our custom function that gets called whenever the timer fires
 // We check the sensorStatus and set the label as appropriate
 //
 func checkSensorStatus () -> () {
 // Get Data from phone using Watch Connectivity

 // First always try and open session if not already opened
 if let session = session where session.reachable {
 print("watch:WCSession with Watch is REACHABLE")
 } else {
 openSession()
 }}

 override func didDeactivate() {
 // This method is called when watch view controller is no longer visible
 super.didDeactivate()
 intervalTimer.invalidate()
 }

 }

 Once our dancer selects her performance option, she’ll be confronted with either a waltz or
a rumba controller interface. Let’s assume she selects waltz. Although the typical place you
might load your initialization code would be in the awakeWithContext method, because our
dancer may go back and forth between options, we’re going to put our key initial code into
the willActivate function, shown in Listing 17-21 . Much like we did in the main interface
controller for checking sensor connectivity status, here we set up a timer to check for the
type of heel lead the sensor is detecting. Remember, the iPhone code is agnostic in that
it doesn’t know what dance is being performed and only that a shoe (foot) is either angled
up (heel lead) or down (toe lead). It is in the individual dance interface controller that the
decision is made as to correctness of the movement.

549CHAPTER 17: External Sensor Interface Project

 Listing 17-21. Selecting a dance controller, loads the proper screen display for the user

 override func willActivate() {
 // This method is called when watch view controller is about to be visible to user
 super.willActivate()
 // Let's set up a timer
 let interval:NSTimeInterval = 0.1
 if intervalTimer.valid{intervalTimer.invalidate()}
 intervalTimer = NSTimer.scheduledTimerWithTimeInterval(interval, target: self, selector:

"checkForHeelLead", userInfo: nil, repeats: true)
 }

 Finally, when we get a type of lead coming into our WatchKit extension, we’ll set the color to
red or green while indicating the type of lead and, if the lead type is incorrect for the dance,
we’ll fire the haptic interface to vibrate a failure mode (Listing 17-22).

 Listing 17-22. Determining What to Do When the Lead Type Comes in to the Watch

 func session(session: WCSession, didReceiveMessage message: [String : AnyObject]) {
 if let status = message["LEAD_TYPE"] as? Bool {
 if (status == true) {
 leadStatusLabel.setText("TOE LEAD")
 leadStatusLabel.setTextColor(UIColor .redColor())
 // If we are doing the move incorrectly
 WKInterfaceDevice.currentDevice().playHaptic(.Failure)
 } else {
 leadStatusLabel.setText("HEEL LEAD")
 leadStatusLabel.setTextColor(UIColor .greenColor())
 }
 }
 }

 The rumba is very similar to waltz except that the lead types are reversed and the haptic
feedback would be played when a heel lead was performed since a toe lead is required. The
complete listing for the waltz interface controller is shown in Listing 17-23 and the rumba
interface controller in Listing 17-24 .

 Listing 17-23. Waltz Interface Controller Swift Code

 //
 // waltzInterfaceController.swift
 // Sensor Interface
 //
 // Created by Molly Maskrey on 8/30/15.
 // Copyright (c) 2015 Global Tek Labs. All rights reserved.
 //

 import WatchKit
 import Foundation
 import WatchConnectivity

550 CHAPTER 17: External Sensor Interface Project

 class waltzInterfaceController: WKInterfaceController, WCSessionDelegate {

 @IBOutlet weak var leadStatusLabel: WKInterfaceLabel!
 // Session Identifier
 var session : WCSession?

 // WK Connectivity
 func openSession () -> () {
 if(WCSession.isSupported()) {
 session = WCSession.defaultSession()
 session?.delegate = self
 session?.activateSession()
 print("watch: WC Session is SUPPORTED")
 } else {
 print("watch: WC Session is NOT SUPPORTED")
 }
 }

 // Interval Timer
 var intervalTimer = NSTimer()

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 print("Waltz - awakeWithContext")

 }

 // WatchKit Connectivity Delegate Methods

 func session(session: WCSession, didReceiveMessage message: [String : AnyObject]) {
 if let status = message["LEAD_TYPE"] as? Bool {
 if (status == true) {
 leadStatusLabel.setText("TOE LEAD")
 leadStatusLabel.setTextColor(UIColor .redColor())
 // If we are doing the move incorrectly
 WKInterfaceDevice.currentDevice().playHaptic(.Failure)
 } else {
 leadStatusLabel.setText("HEEL LEAD")
 leadStatusLabel.setTextColor(UIColor .greenColor())
 }
 }
 }

 //
 // This is our custom function that gets called whenever the timer fires
 // All we're going to do is check and see if the session is open or not, and if not,
open one
 //
 func checkForHeelLead () -> () {
 // Get Data from phone using Watch Connectivity

551CHAPTER 17: External Sensor Interface Project

 // First always try and open session if not already opened
 if let session = session where session.reachable {
 print("watch:WCSession with Watch is REACHABLE")
 } else {
 openSession()
 }
 }

 override func willActivate() {
 // This method is called when watch view controller is about to be visible to user
 super.willActivate()
 // Let's set up a timer
 let interval:NSTimeInterval = 0.1
 if intervalTimer.valid{intervalTimer.invalidate()}
 intervalTimer = NSTimer.scheduledTimerWithTimeInterval(interval, target: self,
selector: "checkForHeelLead", userInfo: nil, repeats: true)
 }

 override func didDeactivate() {
 // This method is called when watch view controller is no longer visible
 super.didDeactivate()
 intervalTimer.invalidate()
 }

 }

 Listing 17-24. Rumba Interface Controller Swift Code

 //
 // rumbaInterfaceController.swift
 // Sensor Interface
 //
 // Created by Molly Maskrey on 8/30/15.
 // Copyright (c) 2015 Global Tek Labs. All rights reserved.
 //

 import WatchKit
 import Foundation
 import WatchConnectivity

 class rumbaInterfaceController: WKInterfaceController, WCSessionDelegate {

 @IBOutlet weak var leadStatusLabel: WKInterfaceLabel!
 // Session Identifier
 var session : WCSession?

 // WK Connectivity
 func openSession () -> () {
 if(WCSession.isSupported()) {
 session = WCSession.defaultSession()
 session?.delegate = self

552 CHAPTER 17: External Sensor Interface Project

 session?.activateSession()
 print("watch: WC Session is SUPPORTED")
 } else {
 print("watch: WC Session is NOT SUPPORTED")
 }
 }

 // Interval Timer
 var intervalTimer = NSTimer()

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 print("Rumba - awakeWithContext")
 }

 override func willActivate() {
 // This method is called when watch view controller is about to be visible to user
 super.willActivate()
 // Let's set up a timer
 let interval:NSTimeInterval = 0.1
 if intervalTimer.valid{intervalTimer.invalidate()}
 intervalTimer = NSTimer.scheduledTimerWithTimeInterval(interval, target: self,

selector: "checkForToeLead", userInfo: nil, repeats: true)
 }

 // WatchKit Connectivity Delegate Methods

 func session(session: WCSession, didReceiveMessage message: [String : AnyObject]) {
 if let status = message["LEAD_TYPE"] as? Bool {
 if (status == true) {
 leadStatusLabel.setText("TOE LEAD")
 leadStatusLabel.setTextColor(UIColor .greenColor())
 } else {
 leadStatusLabel.setText("HEEL LEAD")
 leadStatusLabel.setTextColor(UIColor .redColor())
 // If we are doing the move incorrectly
 WKInterfaceDevice.currentDevice().playHaptic(.Failure)
 }
 }
 }

 //
 // This is our custom function that gets called whenever the timer fires
 // All we're going to do is check and see if the session is open or not, and if not,
open one
 //
 func checkForToeLead () -> () {
 // Get data from phone using Watch Connectivity

553CHAPTER 17: External Sensor Interface Project

 // First, always try and open session if not already opened
 if let session = session where session.reachable {
 print("watch:WCSession with Watch is REACHABLE")
 } else {
 openSession()
 }
 }

 override func didDeactivate() {
 // This method is called when watch view controller is no longer visible
 super.didDeactivate()
 intervalTimer.invalidate()

 }

 }

 Summary
 This was just a very brief introduction to interfacing electronic technology—that is,
accessories—to iOS devices and Apple Watch. As with any discussion of something outside
the Apple/iOS ecosystem, I could literally write a book on each hardware project, as there
are so many elements and technologies involved.

 From our discussion in this chapter, I hope you’ll see that there is a choice when deciding
how to connect a device such as a sensor to your iOS application. In most cases, the choice
will have already been made and will be outside your control. It really comes down to the
data rate needed between the accessory and your Apple device. Higher speed data streams
require an MFi-approved connection, either wired through the dock connector or using
standard Bluetooth (BT 2.1+EDR).

 Your job will be to make either of these function correctly in the applications with which
you are working. For an MFi accessory, you’ll use the External Accessory frameworks and
NSStreams, as we saw in the first example in this chapter. These work great in that it does
not matter whether your connection is wired or wireless. From the app’s perspective, it’s all
the same.

 What you will have to address and define is the exact formatting of the data stream using
the NSStreams paths. This will usually come as a specification within the device or via an
Interface Control Document (ICD) that you, or your engineering team, work out with the
hardware/firmware developers.

 For a Bluetooth 4.0 Low Energy accessory, you’ll use the Core Bluetooth framework. While
BTLE exists for simpler, lower frequency devices, setting up things in your app can be a
bit tricky. Remember, you now need to understand the Bluetooth hierarchy, which means
knowing the difference between a client and a server, or, in Apple-speak, the central and a
peripheral.

 A peripheral is an object in your code that represents the real device from which you are
gathering data, or to which you are sending data such as commands. This nearly exactly
maps to the architecture we talked about in Chapter 16 with our HomeKit accessory project.

http://dx.doi.org/10.1007/978-1-4842-1820-4_16

554 CHAPTER 17: External Sensor Interface Project

However, you can’t instantiate a peripheral object until it has been found and you connect to
it. For that to happen, you first have to work with the CBCentralManager object.

 The central , or, more specifically, the CBCentralManager object (we called it the manager), will
go out and scan the airwaves looking for BTLE devices. Using delegate methods, you can
peruse each peripheral found until you find the one, or several, for which you are searching.
Since the delegate method returns a peripheral object, you use that object in your code to
address it and get the services and characteristics it provides. Of course, you’ll first need to
set the delegate of that returned peripheral object in order to use the delegate methods.

555

 ■ A
 Accelerometer , 202
 Analog-to-digital (A/D) convertor , 153
 Analysis scheme , 191–192
 Android-based point of

sale (PoS) system , 222–223
 Apple , 252, 255, 257
 Apple App Store

 account distribution certifi cate , 236
 app identifi er , 229
 app ID information , 232
 archive validation , 228
 distribution option , 235
 ID description , 230
 ID information , 231
 iOS distribution certifi cate , 237
 old archive , 233
 provisioning profi le , 234, 239

 Apple developer portal , 228
 Apple’s CloudKit framework , 19
 Apple’s Core Bluetooth framework , 109
 Apple’s Human Interface Guidelines , 258
 Apple’s MFi program , 206, 468
 Apple Watch , 6, 21, 52, 193, 198
 Apple watch interface

 checkSensorStatus
convenience function , 546

 functional code , 545
 InterfaceController.swift File , 546
 rumba , 543–544
 Rumba Interface Controller

Swift Code , 551
 storyboard , 545
 viewDidLoad function , 546
 waltz , 542–543

 Waltz Interface Controller Swift Code , 549
 Watch InterfaceController.swift File , 547

 Arduino , 212–213
 Assets.xcassets icon , 447

 ■ B
 Balsamiq Mockups

 iOS and watch components , 168
 login UI design , 169
 multiple images , 170
 portrait and landscape UI layouts , 171
 rudimentary , 173
 simple UI simulations , 172
 wireframes , 167

 Bluetooth-enabled embedded
sensor system , 203

 Bluetooth low energy (BTLE) , 50–51,
108, 370, 505–506

 Bluetooth radio , 202
 Business-to-Business (B2B) side , 225

 ■ C
 Card sorting , 159
 Career options

 adaptation , 30
 employee , 8
 entrepreneur

 agile development , 59
 business plan , 10, 57
 consulting company , 11
 consulting vs. product-oriented , 59
 contractor , 11
 ecosystem , 62
 incubators , 61
 IP’s plans , 62

 Index

© Molly K. Maskrey 2016
M.K. Maskrey, App Development Recipes for iOS and watchOS, DOI 10.1007/978-1-4842-1820-4

556 Index

 LLCs , 56
 mobile software development , 11
 skills , 62
 software businesses , 60
 stress handling , 59
 SWOT analysis , 57–58
 working from home , 60

 fi nding job , 53
 freelancer

 advertising , 67
 contract-to-hire , 65
 elevator speech , 67
 online agencies , 67
 paying contracts , 68
 payment , 66
 skills , 68
 work assignments , 66

 IBM , 29
 mobile development, 29
 National Center for Women in

Information Technology , 27
 offi ce location , 25
 potential employers , 31
 self-taught developer , 27
 skills

 Advanced Location Services , 34
 app publishing , 45
 building targets , 42
 development methodology , 37
 embedded system , 43
 iOS accessories , 48
 sample job description , 34
 source-code control , 35
 technical and process , 33
 testing , 47
 user impression , 39
 web services , 46
 Xcode setup, device installations , 35

 software development career , 28
 software teams , 27

 Certifi cate signing request (CSR) , 78
 Change control board (CCB) , 143
 Change management , 142–143
 CloudKit

 add fi elds , 291
 addRecord() function , 293, 296–297
 assign App ID , 279–280

 CloudKit Dashboard button , 289–290
 CloudKit service , 288
 Git source-code management , 287
 iCloud account , 293, 295
 iCloud capability , 288
 iCloud Containers , 283
 iCloud dashboard , 279
 iCloud server , 278
 Initial View Controller Code , 291
 iOS project , 286
 mine cloudtest , 287
 Modifi ed ViewController.swift File , 297
 profi le generation , 289–290
 single view application , 286
 user ID and password , 294

 Code signing , 75
 Coin toss project , 106

 add image assets , 455
 creation , 446
 fi les/create image , 448
 install issue , 458
 iPhone splash screen , 449
 load coin side , 454
 load heads side , 454
 load tails side , 454
 new empty imageset , 452
 place image fi le , 449
 project’s build settings , 459
 set heads, tails, and side , 453
 Show App , 450
 storyboards , 456
 ViewController.swift fi le , 456
 Watch icons , 448
 xcassets center window , 450, 452

 Computer-based sorting , 161
 Continuous integration (CI) , 16, 42
 Core Bluetooth

 defi nition , 377
 fl ow processing , 377

 connectPeripheral() , 379
 didDiscoverCharacteristics

ForService , 380
 didDiscoverPeripheral , 378
 discoverServices method , 380
 Get Data , 381
 Instantiate Central

Manager Object , 377
 CVS system , 111

Career options (cont.)

557Index

 ■ D
 Developer certifi cates

 Apple Worldwide Developer
Relations Certifi cations
Authority , 76

 App Store , 76
 code signing , 75
 comments , 80
 creation , 3
 designated testing devices , 76
 Developer ID Certifi cation

Authority , 76
 Mac Keychain app , 78–79
 organization developer account , 76
 OS X install , 80
 production certifi cate , 77
 provisioning profi les , 87
 signing certifi cate , 77

 Developer identity , 196
 Development methodology

 agile processes
 OOA/OOD , 153
 scrum , 147
 XP , 151

 iOS development , 140
 lean manufacturing

 MVPs , 146
 path , 146
 solving customer problem , 146

 Scrum Master , 140
 waterfall

 deployment , 143–144
 design , 142
 development , 142
 maintenance , 144
 requirements , 141
 sequential series

of steps , 141
 testing , 143

 Disco Ball
 external sensor interface , 107
 HomeKit , 106–107
 iPhone and Apple’s

HomeKit framework , 106
 Distribution certifi cate , 76, 80
 Dual inline package (DIP) , 204

 ■ E
 Electronic circuit design , 219
 Embedded software architecture , 215–218
 Embedded systems

 automobile production , 209
 characteristics , 202
 cloud-based system , 215
 development environment , 210
 hardware electronics devices , 203
 littleBits development kit , 215
 memory and processing speed , 211
 mobile development , 201
 prototyping systems , 210
 screen resolution , 201
 software development , 209
 temperature measurement , 202
 types , 209

 Existing and unmanaged projects
 “Create Working Copy…” option , 136
 EADemoS project , 133
 EADemoS.xcodeproj fi le , 134
 git directory , 137
 non–Git managed project , 134
 project and source fi les verifi cation , 135
 source control , 135

 External sensor interface project
 BTLE sensor interface

 Apple watchinterface
(see Apple watch interface)

 ballroom dancing , 522
 CBCentralManager function , 530
 centralManagerDidUpdateState , 531
 connectivity convenience

functions , 528
 core bluetooth functions , 529–530
 didConnectPeripheral , 531
 didDiscoverPeripheral , 531
 iPhone user interface , 534
 iPhone View Controller , 527
 sending messages , 534
 user interface , 524
 ViewController.swift File , 532–533

 Swift external accessory
 accessory delegate methods , 512
 bluetooth-connected devices , 510
 delegate methods , 512

558 Index

 DetailViewController.
swift fi le , 518–521

 lightning connector , 509
 MFi accessory , 506–507
 navigation controller , 509
 NSStreams , 516
 openSession convenience

function , 517
 openSession method , 518
 physical dock Connector , 513
 project’s Info.plist fi le , 517
 receive notifi cations , 512
 View Controller

Swift code , 513–515
 Extreme programming (XP) , 151

 ■ F
 Frustration reduction , 4
 Fun projects , 21

 ■ G
 Generic attributes

profi le (GATT profi le) , 531
 Generic iOS Device , 199, 226–227
 Graphical editing program , 248–250

 ■ H
 Hardware designing

 assembly language , 203
 C/C++ , 203
 custom-printed circuit board , 205
 electronics and integrated devices , 204
 industrial control application , 208
 integrated circuit devices , 204
 Objective-C , 203
 off-the-shelf ancillary

support modules , 206
 physics and Boolean logic , 205
 project complexity , 207
 prototyping concept , 206
 prototyping kits , 205
 Swift , 203

 Heating, ventilation, and
air conditioning (HVAC)
embedded system , 202

 Home automation project
 accessory management

 accessories helper method , 481
 control smartplug (see iHome Control

SmartPlug)
 simulator (see HomeKit accessory

simulator)
 Apple’s HomeKit iOS features , 462
 confi guration

 add home , 473
 DiscoBall app , 471
 HMHomeManager , 470
 home data access , 472
 iHome Control AC

Power switch , 469
 initial launch , 471

 create user interface , 467
 disco ball , 461
 HomeKit , 22, 468
 HomeKit accessory device , 462, 468
 HomeKit delegation

 HMAccessoryBrowserDelegate , 478
 HMAccessoryDelegate , 479
 HMHomeManagerDelegate , 478

 iHome Control SmartPlug , 462
 new project creation , 463
 verify build process , 465
 ViewController.swift class fi le , 496

 HomeKit accessory simulator
 DiscoBall accessory , 486
 download latest version , 482
 LightBulb service , 484
 new accessory , 482–483

 ■ I, J, K
 iHome Control AC Power switch , 469
 iHome Control SmartPlug , 462

 Add a New Device , 488
 compatible accessories , 490
 connect accessory , 492
 discovered accessory , 494
 enter code , 493
 function lists , 494
 listCharacteristics function , 495
 select accessory , 491
 user interface screen , 496
 verify accessory functions , 487

External sensor interface project (cont.)

559Index

 Imagination , 1
 Instructor-led courses , 2
 Integrated development

environments (IDEs) , 203
 Internet of Things (IoT) , 17, 21, 461
 Interrupt service routines (ISRs) , 217–218
 iOS accessories

 Apple Lightning connector , 357
 Bluetooth LE

 characteristics , 375
 Core Bluetooth (see Core Bluetooth)
 data transfer , 370
 Generic Access Service , 373
 hierarchy , 371
 Sensor Attitude Data Service , 374
 six-axis sensor , 372

 credit card swipe , 352
 database creation , 364
 EAAccessory framework

 audio/accessories , 366
 EASession object , 367
 MFi accessory , 367
 streams , 368

 ErgData app , 358
 HomeKit framework , 363
 iBeacons

 app window , 388
 BTLE transmitter , 383
 mobile device , 385
 old town charm , 384
 PlaceApp users , 386

 IoT and home automation , 362
 LiveRowing Connect cable , 356
 MEMS , 359
 PCB , 360
 point-of-sale , 352, 354
 uses , 352
 video game , 356
 WiFi/cellular signal , 353

 iOS architecture , 218
 iOS human interface guidelines (HIG) , 156
 iPhone , 6
 iPhone 3G , 207
 iPhone 3G running iPhone OS , 206
 iTunes Connect , 195

 app’s rating , 251
 iOS and Mac applications , 241

 iPhone 6 and 6 Plus , 256
 member portal , 241
 records , 241–242, 244–245
 Xcode Archives organizer , 245
 Xcode Organizer , 253

 iTunes Connect Graphics , 245–248
 iTunes Connect portal , 18

 ■ L
 LEGO<Superscript>®</Superscript>

version of electronics
instruction , 214

 LightBulb service , 469, 485

 ■ M, N
 Mac OS X , 211
 Micro-electrical mechanical

system (MEMS) , 108, 359, 523
 Minimum viable products (MVPs) , 145

 ■ O
 Objective-C , 45, 81, 104
 Object-oriented

analysis/design (OOA/OOD) , 152
 Open Multimedia Applications Platform

(OMAP) processor , 222
 OptimalSort , 163–164

 ■ P, Q
 Paper dance card , 166
 Post-secondary development course , 7
 Power users , 6
 Printed circuit

board (PCB) , 22, 220–222, 359
 Provisioning profi le

 comments , 88
 development profi les , 86, 88
 Dev TownSlot2 , 87
 distribution , 87
 ID , 87
 location

 Accounts pane , 94
 App Store , 95
 empty folder , 92
 Finder window , 90

560 Index

 Library folder , 91–92
 Library directory , 89
 Show View Options , 90
 UUID , 93

 manual profi les creation , 86
 Provisioning profi le development , 88

 ■ R
 Radio Frequency Communications

(RFCOMM) , 370
 Raspberry Pi , 207
 RASPBIAN , 208
 Remote repository

 add repository name , 124
 address and account info , 127
 confi guration , 129
 github.com , 122
 github remote repository , 130
 https\: address , 125
 name of origin , 129
 no remotes available , 128
 origin/master branch , 130
 path name , 126
 pull-down menu , 128
 repository list , 122

 Representational State Transfer
Services (REST) , 18

 ■ S
 Schemes

 App Store , 185
 Archive option , 193–195, 198
 Build and Run , 188
 confi gurations , 200
 distribution identity , 195–196
 distribution information , 197
 Edit Scheme , 187
 Profi le option , 189–190
 Run button , 186
 Run and Test scheme , 189
 signing error , 197
 Unit Test bundle , 187
 validation , 197

 Scrum , 147
 Search engine optimization (SEO) , 31
 Sequential organization , 14

 Serial Port Profi le (SPP) , 370
 Slot Machine app , 190
 Source-code control , 7, 14, 35

 Git
 checkout , 116
 clone , 117
 commit , 117
 create repository , 116
 GUI , 117–118

 options and history , 111
 subversion/SVN

 checkout , 114
 commit , 114
 GUI , 115
 repository creation , 114

 terminology and fl ow , 112
 Xcode and Git

 create project , 119
 existing and unmanaged projects (see

 Existing and unmanaged projects)
 Git-managed project , 131
 modifying code and

committing changes , 120
 remote repository

(see Remote repository)
 Square credit card reader , 19
 Static analyzer , 192
 Swift , 41, 45, 52, 81, 104
 Swift conversion

 animationID , 412
 AppDelegate , 396
 AppIcon images , 428
 AppIcon xcassets , 428
 app installation , 427
 arc4random_uniform , 426
 calculateWinnings() , 440
 conversion error , 425
 DOUBLE cherry , 440
 front panel graphics , 396
 light animations , 415
 9-element strips , 394
 NSNotifi cationCenter , 405
 prefersStatusBarHidden() , 436
 resetGame method , 399
 restoreUserSettings function , 426
 scoring labels , 434
 setupGreenLightSequence() , 441
 setupRedLightSequence() , 442

Provisioning profi le (cont.)

561Index

 Slot Face Image , 406
 SlotMachine , 393
 sound animations , 418
 sound setup , 409
 spin() , 437
 Spin method , 411
 spinningHasStopped , 413
 spinSoundObject , 438
 stopGreenLightAnimation() , 439
 stopRedLightAnimation() , 439
 Swift from Objective-C , 424–425
 tableView , 392
 three-wheel slot machine , 394
 TownSlot , 393
 townslot2

 create single view project , 419
 create Swift project , 420

 townSlot2 , 393
 updateLabels() , 440
 userData , 406
 ViewController.h header fi le , 399
 ViewController Implementation , 402
 ViewController.swift fi le , 398, 430
 viewDidLoad , 404, 436
 Xcode

 Code Signing section , 421, 423
 set up , 421

 ■ T
 Target Boiler Plate Code

for Unit Testing , 184
 Targets

 Application Extension and Test , 180
 iOS Unit Testing Bundle , 181–182
 profi le analysis , 191
 project navigator , 183
 source control , 175
 testing and application extensions , 181
 types , 175
 unit tests and UI tests , 177
 user interface/unit testing , 181
 Xcode Project Navigator , 178–179

 TestFlight integration , 19
 Testing

 beta
 add contact information , 347
 add IDs and address , 338

 add information , 346
 adding new tester , 344–345
 add iOS build , 345
 app review , 348
 App Store , 336
 app via TestFlight , 342
 email invitation , 341
 exporting apps , 340
 external testers , 343
 Internal Tester , 337–338
 iOS version , 339
 Start Testing button , 341
 TestFlight Builds , 339

 UI
 Action Segue type , 323
 add let app = XCUIApplication() , 328
 add view controllers , 322
 Cocoa Touch class , 325
 create storyboard , 322
 create new project , 319, 321
 custom build path , 331
 exception crash , 330
 func testMain() , 332–333
 func testRecording() , 334–335
 set custom class , 326
 showText and displayText , 324
 showText.text , 325
 testRecording() , 334
 UserInterfaceTestProject

UITests.swift fi le , 327
 validation , 332

 unit
 add existing project , 306
 create new project , 304
 Defi nes Module parameter , 317
 divideTwoNumbers(a,b) , 312
 iOS apps , 310
 MyDataClass , 310
 MyViewController Class , 315
 test class and Methods , 309
 UIViewController

parent class , 315
 UnitTestProject

Tests.swift fi le , 311, 317
 ViewController.swift , 314
 Xcode Test Navigator , 312
 XCTAssert(expr) , 319

 Town Slot , 81

562 Index

 ■ U
 Universally unique identifi ers (UUIDs) , 528
 User interface and user

experience (UI/UX) , 40
 information architecture

 Balsamiq Mockups (see Balsamiq
Mockups)

 computer-based sorting , 161
 defi nition , 157
 gathering information , 158
 initial login and signup , 167
 organizing and understanding , 160
 paper dance card , 166
 Photoshop and Illustrator , 165
 UI layout , 165

 User Interface and User
Experience (UI/UX) iOS HIG , 157

 User Interface and User Experience
(UI/UX) physical screen , 157

 User Interface (UI) testing , 40, 319

 ■ V
 viewDidLoad Method , 473

 ■ W
 Watch App , 198
 Watch extension , 198
 WatchKit option , 446
 WatchOS 1 , 446, 527
 WatchOS 2 , 446, 527
 WatchOS 2.0. , 459
 WatchOS 2.1 , 459
 Web services

 AJAX , 262
 App Transport Security Settings , 273
 browser , 262
 CRUD , 263
 CSS , 262
 DELETE method , 263
 didStartElement function , 274
 DOM , 262
 File Manager , 265
 FTP , 262
 GET method , 263
 GET Request , 276

 HTTP , 262
 inventory items , 263
 locks fi le transfer , 265
 new folder , 266
 Parsed pricelist.xml fi le , 274
 POST method , 263
 pricelist.php , 275
 pricelist.xml fi le , 266–267
 PUT method , 263
 RESTful services , 261
 RSS , 262, 267
 Show Page Source , 268
 single view application project , 269
 SOAP , 262
 source control , 270
 Started Parsing Document , 273
 URL , 262
 ViewController.swift code , 271–272
 Xcode workstation , 260
 XML , 262

 WiFi accessories , 505
 Women Who Code , 5

 ■ X, Y, Z
 Xcode , 16

 app ID , 81
 Apple App Store , 71
 Apple Developer Program

 App Store , 72–73
 comments , 75
 email address , 73
 individual enrollment , 73
 organizational enrollment , 73
 search engine , 72

 career options , 35
 certifi cate issues , 80
 developer certifi cates

 Apple Worldwide Developer Relations
Certifi cations Authority , 76

 App Store , 76
 code signing , 75
 comments , 80
 designated testing devices , 76
 Developer ID Certifi cation

Authority , 76
 Mac Keychain app , 78–79

563Index

 organization developer account , 76
 OS X install , 80
 production certifi cate , 77
 signing certifi cate , 77

 devices , 83
 distribution certifi cate , 76, 80
 provisioning profi les (see Provisioning

profi le)
 switching development computers

 development Macintosh
computer , 101

 Export Developer Accounts , 98
 gear icon , 97
 Mac Keychain app , 97, 99
 moving credentials , 101
 save , 101

 wildcard App ID , 96
 xSort , 161–162

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Goals
	Career
	Career Path #1: Employee
	Career Path #2: Entrepreneur
	Career Path #3: Contractor

	Our Plan
	Fun

	Chapter 2: Career Direction
	Option #1: Working as an Employee
	Potential Employers
	Skills
	Sample Job Description #1
	Sample Job Description #2
	Setting Up Xcode for Device Installations
	Source-Code Control
	Development Methodology
	Impressing Your User
	Building Targets
	Embedded Systems
	App Publishing
	Web Services
	Testing
	iOS Accessories

	Finding a Job
	Jennifer’s Example Elevator Speech
	Employee Summary

	Option #2: Entrepreneur
	Getting Started
	Handling Stress

	Where to Work
	Skills
	Entrepreneurial Summary

	Option #3: Freelancer
	Contract-to-Hire
	General Freelancer
	Skills

	Career Direction Summary

	Chapter 3: Setting Up Xcode
	Joining The Apple Developer Program
	Problem
	Solution
	How It Works
	Individual Enrollment
	Organizational Enrollment

	Comments

	Developer Certificates
	Problem
	Solution
	How It Works
	Comments

	Certificate Issues
	Problem
	Solution
	How It Works

	App IDs
	Problem
	Solution
	How It Works
	Comments

	Devices
	Problem
	Solution
	How It Works
	Comments

	Provisioning
	Problem
	Solution
	How It Works
	Comments

	Provisioning Profile Location
	Problem
	Solution
	How It Works
	Comments

	Wildcard App ID
	Problem
	Solution
	How It Works
	Comments

	Switching Development Computers
	Problem
	Solution
	How It Works
	Comments

	Summary

	Chapter 4: Project Descriptions
	Code Conversion
	Coin Toss
	Home Automation
	External Sensor Interface

	Chapter 5: Source-Code Control
	Options and History
	Basic Terminology and Flow
	Subversion/SVN
	Creating a Repository
	SVN Checkout
	SVN Commit
	SVN GUI

	Git
	Creating a Repository
	Git Clone
	Git Commit
	Git GUI

	Xcode and Git
	Creating a Project
	Problem
	Solution

	Modifying Code and Committing Changes
	Problem
	Solution

	Creating and Uploading to a Remote Repository
	Problem
	Solution

	Cloning and Using a Git-Managed Project
	Problem
	Solution

	Working with Existing Unmanaged Projects
	Problem
	Solution

	Summary

	Chapter 6: Development Methodology
	Problem
	Solution
	Waterfall
	Analysis of Requirements
	Design
	Development
	Change Management

	Testing
	Deployment
	Maintenance
	Waterfall Summary

	Problem
	Solution
	Lean Manufacturing

	Problem
	Solution
	Agile
	Scrum
	Roles
	How Does It Work?
	Scrum Agile Summary

	Extreme Programming (XP)

	Problem
	Solution
	Functional
	Object-Oriented Design

	Summary

	Chapter 7: UI/UX
	User Interface and User Experience (UI/UX)
	Information Architecture
	Gathering Information
	Organizing and Understanding the Information
	Computer-Based Sorting

	Problem
	Solution
	Balsamiq Mockups for Rapid Prototyping

	Summary

	Chapter 8: Targets and Schemes
	Targets
	Problem
	Solution
	Adding Tests

	Schemes
	Problem
	Solution

	Problem
	Solution
	Profile Scheme
	Analysis Scheme
	Archive Scheme

	Problem
	Solution

	Configurations

	Summary

	Chapter 9: Embedded Systems
	What Is an Embedded System?
	Problem
	Solution
	The Details
	Designing Hardware
	Using Existing Hardware

	Problem
	Solution
	The Details

	Problem
	Solution
	The Details

	Problem
	Solution
	The Details

	Problem
	Solution
	The Details . . . (sort of)
	Embedded Software Architecture
	iOS Architecture

	Problem
	Solution
	The Details
	Circuit Design
	PCB Design

	Summary

	Chapter 10: Publishing Our Work
	Problem
	Solution
	Creating the Archive
	Certificates, Identifiers, and Profiles
	iTunes Connect
	iTunes Connect Records
	iTunes Connect Graphics

	Problem
	Solution
	Back to Xcode
	Please Don’t Hate Me

	Summary

	Chapter 11: Web Services
	Classic Web-Service Access Mechanisms
	Problem
	Solution
	RESTful Services
	Basic Terminology

	Problem
	Solution

	Problem
	Parsing
	Solution
	RESTful Services Summary

	CloudKit
	Problem
	Solution
	Saving Data to iCloud Using CloudKit
	Reading Data from iCloud Using CloudKit

	CloudKit Summary

	Summary

	Chapter 12: Testing
	Unit Testing
	Problem
	Solution

	Problem
	Solution

	Problem
	Solution
	Unit Testing Summary

	User Interface Testing
	Problem
	Solution
	UI Test Project from Scratch
	Recording
	User Interface Testing Summary

	Beta Testing
	Internal Testers
	External Testers

	Testing Summary

	Chapter 13: iOS Accessories
	What Is an Accessory?
	Uses of Accessories
	Point-of-Sale (PoS)
	Sports and Games
	Home Automation and the Internet of Things
	Usage Summary

	EAAccessory Framework
	Streams
	EAAccessory Framework Summary

	Bluetooth Low Energy
	Core Bluetooth
	Processing Flow
	Instantiate Central Manager Object
	Discover Peripherals
	Connect Peripheral
	Determine Services
	Discover Characteristics
	Retrieve Data

	Core Bluetooth Summary

	iBeacons
	Summary

	Chapter 14: Swift Conversion Project
	Problem
	Solution
	Let’s Work Through the Project
	About the App
	Naming Conventions
	Appearance
	Architecture
	Objective-C Code

	Project Setup
	Problem
	Solution

	Problem
	Solution

	Problem
	Solution

	Problem
	Solution

	Conversions
	Problem
	Solution

	Problem
	Solution

	Problem
	Solution

	Problem
	Solution

	Swift Code
	Summary

	Chapter 15: Coin Toss Project
	Problem
	Solution
	Let’s Work Through the Project
	Create the Project
	Fix the App’s Icons
	Set Up the Remaining Icons
	Create the Storyboards
	Write the Code

	Problem
	Solution

	Summary

	Chapter 16: Home Automation Project
	Problem
	Solution
	Let’s Work Through the Project
	Create the Project
	Verify the Build Process
	Create the User Interface

	About HomeKit
	Our Configuration

	Problem
	Solution

	Add a Home
	Problem
	Solution

	Problem
	Solution

	Hierarchical Differences
	HomeKit Delegation
	HMHomeManagerDelegate
	HMAccessoryBrowserDelegate
	HMAccessoryDelegate

	Accessory Management
	Problem
	Solution

	Problem
	Solution
	HomeKit Accessory Simulator
	iHome Control SmartPlug
	Verify Accessory Functions Properly
	Reset Accessory for HomeKit

	Problem
	Solution

	Summary

	Chapter 17: External Sensor Interface Project
	Problem
	Solution

	Problem
	Solution

	Swift External Accessory Demo
	MFi Accessory Types
	MFi Accessory Demo App
	How It Works
	The Code

	BTLE Sensor Interface
	Problem
	Solution
	Ballroom Dancing
	User Interface
	The Code
	iPhone User Interface
	Apple Watch Interface

	Summary

	Index

