
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

Contents .. v

About the Author .. ix

About the Technical Reviewer .. x

Acknowledgments ... xi

Foreword .. xii

Introduction .. xiv

■Chapter 1: Getting Started with Game Kit and Game Center 1

■Chapter 2: Game Center: Setting Up and Getting Started 19

■Chapter 3: Leaderboards ... 35

■Chapter 4: Achievements .. 63

■Chapter 5: Matchmaking and Invitations .. 93

■Chapter 6: The Peer Picker .. 117

■Chapter 7: Network Design Overview .. 131

■Chapter 8: Exchanging Data .. 143

■Chapter 9: Turned-Based Gaming with Game Center 167

■Chapter 10: Voice Chat .. 183

■Chapter 11: In-App Purchase with StoreKit .. 193

Index ... 213

www.allitebooks.com

http://www.allitebooks.org

xiv

Introduction

As the iOS platform begins to become more popular, developers are looking for ways to add
additional polish and functionality to their software. Game Center and Game Kit provide an easy
path for adding advanced functionality to your software with only a fraction of the work in the
past.

Prerequisites
This book assumes that you have the basic skills and understanding required to create an iOS
app. The book also assumes that you have the background necessary to work with Xcode 4.2.
There will be no primer on how to define methods and variables, install and launch Xcode, or
create and work with new classes. There are many excellent books on those topics. When you feel
that you are ready to begin working with some of the more advanced Cocoa technologies such as
Game Center and Game Kit, we assume that you have the basics mastered to a degree that allows
you to move through this book without consulting other texts for help.

In addition to the basic requirements, Game Center also heavily leverages blocks, which are a
fairly new programming concept to Objective-C. If you haven’t yet worked with blocks, we
recommend that you read Apple’s guide to them, which you can find by searching for blocks at
http://developer.apple.com. You should also feel comfortable working with all the features that
were introduced with the Objective-C 2.0 release.

How This Book Is Organized
As you begin working through this book, you will notice that is it broken down into standalone
chapters. Every effort has been made so that each chapter can be read independently of the
others. If you have no experience with Game Center or Game Kit yet, it is highly recommended
that you read the first two chapters before skipping around, as they will provide you with the
basic information on how to get Game Center and Game Kit up and running in your development
environment.

Each chapter follows along with a simple sample iOS game that is introduced in Chapter 1.
Following along with the book from start to finish will walk you through the process of creating a
fully functional Game Center and Game Kit–leveraged iOS game. In addition, each chapter will
build onto a Game Center Manager class that is designed to be reusable across all of your
projects.

If you already have a background in Game Center and Game Kit and are looking for help on a
specific technology, each chapter is designed to walk you through its covered technology, as well
as provide samples on how to apply the technology to your software.

www.allitebooks.com

http://developer.apple.com
http://www.allitebooks.org

■ INTRODUCTION

xv

Required Software, Materials, and Equipment
To develop iOS software—and more specifically, Game Center and Game Kit–based iOS
software—you will first need an Intel-based Mac computer running OSX 10.6 (Snow Leopard) or
newer. While you can develop on 10.5, it will not support the most up-to-date release of Xcode.
You will also need a copy of Xcode, which you can download for free from the Mac App Store or at
http://developer.apple.com. This book has been targeted to work with iOS 5; since it is being
released at the time when users will be migrating from iOS 4 to iOS 5, it is also written to support
iOS 4. Unless otherwise noted within the text, all code is iOS 4–compatible.

In addition to the software and hardware requirements, you will also need an iOS developer
account provided by Apple. This account lets you build and test software on devices, as well as
ship your finished product to the App Store. The software developer account is available for $99
USD a year and you can purchase yours at http://developer.apple.com/iPhone.

www.allitebooks.com

http://developer.apple.com
http://developer.apple.com/iPhone
http://www.allitebooks.org

1

 Chapter

Getting Started with Game
Kit and Game Center
Welcome to Beginning iOS Game Kit and Game Center Development! This book is

designed to walk you through the process of adding Game Kit and Game Center

functionality into your iOS apps and games. It is centered around a sample game that

you will be introduced to later in this chapter. However, if you have an existing app or

game that you want to add Game Kit or Game Center functionality to, you may use that

project instead. This book is written as a reference and resource tool to aid you in the

process of adding social functions into your iOS app. While I recommend you read it

from beginning to end to gain the most knowledge of the covered technologies, it is not

a requirement. Every chapter stands on its own. You can skip ahead to the chapters that

are relevant to your project needs and quickly implement them into your software.

When Apple announced Game Kit on March 17, 2009, it was presented as an answer to

easy networking on iOS devices, which until this point, had been challenging. Game Kit

added support for Bluetooth and LAN as well as voice chat services. Shortly after, Apple

announced the Game Center addition to Game Kit as part of iOS 4.0. With the newly

announced SDK version, Apple brought a wealth of new features—the Game Center

being the most important to the scope of this book.

Developers in the community have a tendency to think of Game Center as a whole new

set of Application Programming Interfaces (APIs). This is a fallacy. Game Center is a new

and integral part of Game Kit. The two complement one another and work hand in hand.

You will see much evidence of this in the following pages. For the purpose of this book,

we are going to address both of these technologies together as Game Kit; however, we

may still refer to Game Center–specific functionality by its proper name.

1

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Game Kit and Game Center 2

NOTE: Despite their names, Game Kit and Game Center are not designed for just games.
Recently Apple has begun cracking down on Game Center technology being used in non-games.
Some developers have received the following type of rejection email from Apple.

“The intended use of Game Center is to complement game apps or game functionality within an
app. However, we noticed that your app does not contain any game play or game features.”

These rejections seem to apply mainly towards the use of leaderboards and achievements in

non-gaming apps. The argument can easily be made that adding a leaderboard or achievement
system to your app adds a gameplay element. If you happen to receive this rejection you still
have the option of appealing it. There haven’t been any instances of rejection for using Game Kit

networking in any app that I have observed.

Game Kit: An Overview
Game Kit can be broken up into three individual sections: networking, Game Center, and

voice chat. Though all of these services work together to create one seamless

environment, it can be helpful to look at each individually. While there might be overlap

between sections, such as networking and Game Center, each section of Game Kit can

be broken down into a primary category. While these sections are not differentiated in

the API, it is useful to keep them separate while learning Game Kit development.

Networking
Networking in Game Kit allows you to send and receive data between peers. Game Kit

networking also provides a connection protocol to connect to local clients that are found

on your Wi-Fi network, or locally using Bluetooth.

Game Kit supports creating an ad-hoc Bluetooth or local wireless network between two

iOS devices. With the introduction of iOS 4.0, Game Kit now supports networking on the

world area network supporting up to 16 players at once. Game Kit networking is covered

in Chapters 6, 7, and 8. Game Center matchmaking is covered in Chapter 5.

Game Center
Game Center itself handles authentication, friends, leaderboards, achievements, and

invitations. In a sense, Game Center is providing us with the server services that are

related to social interaction. It can also be argued that Game Center contains its own

networking system. While this is true, we will be grouping that topic in the preceding

section on networking, which is covered extensively in Chapter 5. Game Center

technologies, such as leaderboards and achievements, are covered in Chapters 3 and 4.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Game Kit and Game Center 3

NOTE: Game Center, in various articles of print and reference documentation, sometimes refers

to the collective set of Game Center APIs as well as to the Game Center.app itself.

Voice Chat
“Game Voice,” as Apple refers to it, allows any app (not just games) to provide voice

communication over a network connection. The APIs handle the entire recording and

playback of audio feeds for the user and provide services to handle connections,

communications, errors, and disconnections. This technology is discussed in Chapter 10.

Sample Game: UFOs
In my experience, most developers are “experience-type” learners. This means that they

learn best by doing, not by watching or listening. When I first started to learn how to

program, I would copy source code out of code magazines line by line into a

Commodore 64. The experience of physically typing in each line of code is what made

the information stick. Listening to a lecture or watching someone else write code

prevented me from retaining a good deal of the information. I can’t imagine I would have

stayed with this career path if lectures and demonstrations were my only ways of

learning. This book is designed in the spirit of experience-type learners.

The first thing we cover, before moving into Game Kit itself, is working with the supplied

sample game. The game, which we call “UFOs,” is designed not to be an award-

winning, addictive game, but rather to be simple enough that it can be thought of as any

generic project. I have made every effort to reduce the amount of code to less than 300

lines. Although the game itself is simple, I feel that it is vital that every reader

understands the code as if they wrote it themselves. This will allow you, as the reader, to

detach yourself from the project itself and focus on the Game Kit–specific information.

We start by playing the game, then looking at the source code.

NOTE: The source code for all the chapters, as well as the sample project, is available at

(www.apress.com).

UFOs: Understanding the Game
The first thing you need to do is open the base project that you downloaded from

apress.com. Figure 1–1 shows the file structure for the project. We’ll quickly run the

game to see what it’s like.

www.allitebooks.com

http://www.apress.com
http://www.allitebooks.org

CHAPTER 1: Getting Started with Game Kit and Game Center 4

Figure 1–1. The file structure for the UFO sample project, as seen by the Finder

To play the game, select Build and Run from Build Menu Bar. The game will launch to a

generic screen with one button labeled “Play.” Go ahead and select the Play button. You

will be taken to the game screen, as seen in Figure 1–2.

The objective of the game is typical; tilt the device up/down or left/right to move your

ship around the screen. Once you are positioned over a cow, tap anywhere on the

screen and hold until the cow has been abducted. You are awarded one point for every

cow you abduct. There is no ending to the game. Every time you abduct a cow, a new

one will be spawned.

Figure 1–2. A look at the gameplay view from the UFOs sample project

Now that you understand how the gameplay fits together, you can take a look at the

source code that makes everything happen.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Game Kit and Game Center 5

UFOs: Examining the Source Code
In your group tree, you will see the three class files we will be working with,

UFOAppDelegate, UFOViewController, and UFOGameViewController. These files all have an

associated header (.h file) and implementation file (.m file). The group tree is shown in

Figure 1–3.

Figure 1–3. A look at the group tree structure for the sample project from within Xcode

First, take a look at the UFOAppDelegate.h and UFOAppDelegate.m files. These files should

look familiar to you from other iOS development work. They are nothing more than a

base UINavgiationController subclass. If you need to familiarize yourself with the code

found here, take a look at Apple’s Sample Code for new projects.

The next group of files is also relatively simple; take a look at UFOViewController.h and

UFOViewController.m. These are the associated classes for the landing or home screen.

All that we have here right now is a play button, but we will be adding leaderboards,

achievement, and multiplayer controls to this view as we progress through this book.

Finally, we will be working with UFOGameViewController.m. This is the main class that will be

powering all gameplay, and where the majority of the Game Kit functionality will be added.

Setting Up the Accelerometer Delegate
We will start at the top of the source file you downloaded and work our way through it;

open the UFOAppDelegate file in Xcode. We have modified the init method of the App

Delegate to register for accelerometer feedback. Take a look at the following code

snippet, which is discussed in detail next.

- init
{
 if (self != [super init])
 return nil;

 [[UIAccelerometer sharedAccelerometer] setUpdateInterval:0.05];
 [[UIAccelerometer sharedAccelerometer] setDelegate:self];

 return self;
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Game Kit and Game Center 6

The first thing we need to do is override the init method and start listening for

UIAccelerometer input. This will later allow us to listen for a delegate callback for

accelerometer input. To do this, we call the sharedAccelerometer singleton and set an

update frequency of 1/20 of a second. Then, we set the delegate to ourselves (an

instance of UFOGameViewController.m).

Next, take a look at the viewDidLoad method. Let’s break this down into sections to

understand exactly what is going on here.

accelerometerDamp = 0.3f;
accelerometer0Angle = 0.6f;
movementSpeed = 15;

Here we set some class variables to hold onto some data that we will need when we

begin to process the accelerometer input. We will be working with these variables again

when we start to deal with ship movement. For now, you don’t need to understand

exactly what they are doing, just that they have been set.

Drawing the Player to the View
Next we need to create our “player.”

CGRect playerFrame = CGRectMake(100, 70, 80, 34);
myPlayerImageView = [[UIImageView alloc] initWithFrame: playerFrame];
myPlayerImageView.animationDuration = 0.75;
myPlayerImageView.animationRepeatCount = 99999;
NSArray *imageArray = [NSArray arrayWithObjects: [UIImage imageNamed: @"Saucer1.png"],
 [UIImage imageNamed: @"Saucer2.png"], nil];
myPlayerImageView.animationImages = imageArray;
[myPlayerImageView startAnimating];
[self.view addSubview: myPlayerImageView];

To do this, we create a new UIImageView and initialize it with a predefined frame. The

next four lines of code are a little-known, but very useful, part of UIImageView. We are

setting an array of images that the UIImageView will cycle through. In this example, we

are setting two images to be rotated through. We also specify how long we want the full

animation to take (3/4 of a second for our purposes), and the number of times we want

the animation to repeat. Once we have set up the animation details, we call

startAnimating on the UIImageView. Then, all that is left for us to do is add the

UIImageView to the main view. Now we have a player on the screen that is animating!

Setting Up Cows, Beams, and Scores
We have some objects to initialize and need to set up our score label.

cowArray = [[NSMutableArray alloc] init];
tractorBeamImageView = [[UIImageView alloc] initWithFrame: CGRectZero];
score = 0;
scoreLabel.text = [NSString stringWithFormat: @"SCORE %05.0f", score];

CHAPTER 1: Getting Started with Game Kit and Game Center 7

The score label itself has already been placed on the view using interface builder.

for(int x = 0; x < 5; x++)
{
 [self spawnCow];
}

[self updateCowPaths];

The last thing we need to do in our viewDidLoad method is create some cows for

placement on the screen. I have created a helper method to spawn these cows. Every

time it is called, it will create a new cow and place it on the screen. We will take a look at

this a little later in this section. We also call another helper method to update the walking

path for the cows. We will look at this method in more detail later.

Handling Rotation Events
The next method that appears in our code is the

shouldAutorotateToInterfaceOrientation method.

(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation
{
 if(UIInterfaceOrientationIsLandscape(interfaceOrientation))
 return YES;

 return NO;
}

While it may appear to be a minor piece of code, it is important to make sure the game

doesn’t allow the user to rotate into portrait mode.

Adding Player Movements
That takes care of all our initialization and setup code. Now we can move into the more

exciting parts of the game. First we look at user input and actions, and then the

gameplay functionality.

- (void)accelerometer:(UIAccelerometer *)accelerometer didAccelerate:(UIAcceleration
 *)acceleration
{

 accel[0] = acceleration.x * accelerometerDamp + accel[0] * (1.0 –
 accelerometerDamp);
 accel[1] = acceleration.y * accelerometerDamp + accel[1] * (1.0 –
 accelerometerDamp);
 accel[2] = acceleration.z * accelerometerDamp + accel[2] * (1.0 –
 accelerometerDamp);

 if(!tractorBeamOn)
 [self movePlayer:accel[0] :accel[1]];
}

CHAPTER 1: Getting Started with Game Kit and Game Center 8

The first method to look at is the accelerometer delegate method. We are taking the

values of the accelerometer and applying a dampener to them to give a more realistic

feel. We then perform a test to make sure that the tractor beam is off (we don’t want to

be able to move if it is on), and then pass the values to our movePlayer method, which is

shown next.

-(void) movePlayer:(float)vertical :(float)horizontal;
{
 vertical += accelerometer0Angle;

 if(vertical > .50)
 vertical = .50;
 else if (vertical < -.50)
 vertical = -.50;

 if(horizontal > .50)
 horizontal = .50;
 else if (horizontal < -.50)
 horizontal = -.50;

 CGRect playerFrame = myPlayerImageView.frame;

 if ((vertical < 0 && playerFrame.origin.y < 120) || (vertical > 0 &&
 playerFrame.origin.y > 20))
 playerFrame.origin.y -= vertical*movementSpeed;

 if ((horizontal < 0 && playerFrame.origin.x < 440) || (horizontal > 0 &&
 playerFrame.origin.x > 0))
 playerFrame.origin.x -= horizontal*movementSpeed;

 myPlayerImageView.frame = playerFrame;
}

The preceding method is much more simple then first glance would imply. The first

chunk of code sets our maximum speed. The next section of code ensures that the user

cannot move their UFO off the screen. Once we have checked both of these safety nets,

we update the player’s frame and move the UFO.

Watching for Touch Events
The next aspect of the game that we need to worry about is touch events. We will be

using a touch to initiate and control the tractor beam. The first step is overriding the

touchesBegan event.

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 currentAbductee = nil;

 tractorBeamOn = YES;

tractorBeamImageView.frame = CGRectMake(myPlayerImageView.frame.origin.x+25,
 myPlayerImageView.frame.origin.y+10, 28, 318);
 tractorBeamImageView.animationDuration = 0.5;

CHAPTER 1: Getting Started with Game Kit and Game Center 9

 tractorBeamImageView.animationRepeatCount = 99999;
NSArray *imageArray = [NSArray arrayWithObjects: [UIImage imageNamed:
 @"Tractor1.png"], [UIImage imageNamed: @"Tractor2.png"], nil];

 tractorBeamImageView.animationImages = imageArray;
 [tractorBeamImageView startAnimating];

 [self.view insertSubview:tractorBeamImageView atIndex:4];

 UIImageView *cowImageView = [self hitTest];

 if(cowImageView)
 {
 currentAbductee = cowImageView;
 [self abductCow: cowImageView];
 }

}

We first clear out the pointer to the current abducted cow. This value should be nil

already, but it is best to be diligent. We then set a BOOL for whether the tractor beam is

on to true/yes. At this point, we need to draw the tractor beam. To do this, we set the

frame for our tractorBeamImageView to where the player’s UFO is currently located. We

will be using the same animation shortcut that was demoed earlier in this section to

animate the tractor beam. We then add the tractor beam imageView to the main view; we

use an insertSubview method here to make sure the tractor beam is below the cows but

above the background. Then we call our hitTest method, which we will look at a little

later in this chapter. If we get a result back from the hitTest, we call our abductCow

method.

Before we can move on to the hitTest and abductCow methods, we must first finish

handling our touch events. The only other touch event that we are concerned with at this

point is the touchesEnded delegate call. When the user removes their finger from the

screen, we want to remove the tractor beam from the view and let the user resume their

movement.

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 tractorBeamOn = NO;

 [tractorBeamImageView removeFromSuperview];

 if(currentAbductee)
 {
 [UIView beginAnimations: @"dropCow" context:nil];
 [UIView setAnimationDuration: 1.0];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseIn];
 [UIView setAnimationBeginsFromCurrentState: YES];

 CGRect frame = currentAbductee.frame;

 frame.origin.y = 260;
 frame.origin.x = myPlayerImageView.frame.origin.x +15;

 currentAbductee.frame = frame;

CHAPTER 1: Getting Started with Game Kit and Game Center 10

 [UIView commitAnimations];
 }

 currentAbductee = nil;
}

Set your state variable for the tractorBeamOn to NO. Then we can remove the tractor

beam image from the view. The next section of code drops the cow back to the ground

(if there was one midway in the air). To do this, we just begin a simple animation where

we return the cow to ground level. The last thing we need to do is reset the

currentAbductee pointer to nil.

Spawning and Moving Cows
We also have a convenience method to spawn a new cow. This is the method we call

from viewDidLoad to give the player a base number of cows to try and abduct; we also

call this whenever we are finished abducting a cow.

-(void)spawnCow;
{
UIImageView *cowImageView = [[UIImageView alloc] initWithFrame:CGRectMake
(arc4random()%480, 260, 64, 42)];
 cowImageView.image = [UIImage imageNamed: @"Cow1.png"];
 [self.view addSubview: cowImageView];
 [cowArray addObject: cowImageView];

 [cowImageView release];
}

TIP: Arc4Random() will return a random number the same way that rand() or random() will,

but will automatically seed itself if it is the first time it is being called.

We create a new imageView that will represent the cow. We then use an arc4Random()

function to produce a random x position. We set the image that the cow will be using

and add it to the main view. The last thing we need to do here is add the imageView to

our cowArray. We will be using this for a hit test as well as updating the movement

paths.

While UFOs is not designed to be an extremely challenging game, we do want to add at

least some aspects of difficulty to the gameplay. The following method will cause our

cows to randomly wander around the screen.

-(void)updateCowPaths
{
 for(int x = 0; x < [cowArray count]; x++)
 {
 UIImageView *tempCow = [cowArray objectAtIndex: x];

 if(tempCow != currentAbductee)
 {

CHAPTER 1: Getting Started with Game Kit and Game Center 11

 continue;
 }

 [UIView beginAnimations:@"cowWalk" context:nil];
 [UIView setAnimationDuration: 3.0];
 [UIView setAnimationCurve:UIViewAnimationCurveLinear];

 float currentX = tempCow.frame.origin.x;
 float newX = currentX + arc4random()%100-50;

 if(newX > 480)
 newX = 480;
 if(newX < 0)
 newX = 0;

 if(tempCow != currentAbductee)
 tempCow.frame = CGRectMake(newX, 260, 64, 42);

 [UIView commitAnimations];

 tempCow.animationDuration = 0.75;
 tempCow.animationRepeatCount = 99999;

 //flip cow
 if(newX < currentX)
{
 NSArray *flippedCowImageArray = [NSArray arrayWithObjects:
 [UIImage imageNamed: @"Cow1Reversed.png"], [UIImage imageNamed: @"Cow2Reversed.png"],
 [UIImage imageNamed: @"Cow3Reversed.png"], nil];
 tempCow.animationImages = flippedCowImageArray;
}

else
{
 NSArray *cowImageArray = [NSArray arrayWithObjects: [UIImage imageNamed:
 @"Cow1.png"], [UIImage imageNamed: @"Cow2.png"], [UIImage imageNamed: @"Cow3.png"],
 nil];
 tempCow.animationImages = cowImageArray;
}

 [tempCow startAnimating];
 }
 }

 //change the paths for the cows every 3 seconds
 [self performSelector:@selector(updateCowPaths) withObject:nil afterDelay:3.0];
}

We will need to cycle through our array of cow objects. We do this on the first line of the

preceding method. We then randomize a new x position for the cow. A quick check

ensures we are not instructing the cow to walk off the screen. Then we commit the

animation. We also need to handle the direction change for the cow.

CHAPTER 1: Getting Started with Game Kit and Game Center 12

NOTE: The code that we use to handle that event is not the most efficient manner of flipping an

image, but it is the easiest to learn if you are new to this type of game.

As we had previously done with the tractor beam and the UFO images, we will add

some animation frames so the cow walks more realistically. The last thing we do is call

performSelector with a delay of three seconds. This will update the cow’s path every

three seconds, adding a more realistic appearance of random movement.

Performing a Hit Test with a UIImage
Before we worry about how to set up the cow abduction, there are preliminary steps for

abducting the cow itself. For starters, we must implement our hitTest method that was

being called from the touchesBegan event that was discussed earlier in this section.

-(UIImageView *)hitTest
{
 if(!tractorBeamOn)
 return nil;

 for(int x = 0; x < [cowArray count]; x++)
 {
 UIImageView *tempCow = [cowArray objectAtIndex: x];
 CALayer *cowLayer= [[tempCow layer] presentationLayer];
 CGRect cowFrame = [cowLayer frame];

 if (CGRectIntersectsRect(cowFrame, tractorBeamImageView.frame))
 {
 tempCow.frame = cowLayer.frame;
 [tempCow.layer removeAllAnimations];
 return tempCow;
 }
 }

 return nil;
}

The first line is another sanity check to ensure that we are not calling the hitTest

method when the tractorBeam is not on. Once we make sure we are supposed to be

checking for the hit, we iterate through our array of cow objects. Since the cows are in

the middle of an animation, we cannot rely on the data from the frame, as it will show

where the cow will end up and not where the cow currently is.

To determine where the cow currently is, we ask for the presentationLayer. Core

Graphics provides a useful method for testing whether two GCRects intersect, and that is

what we will be using here. If we hit a cow, we return the object. If we get to the end of

our loop without passing a hit test, we return nil.

CHAPTER 1: Getting Started with Game Kit and Game Center 13

TIP: presentationLayer can be called on any CALayer to provide a best guess on the

current values of a layer that is currently in the process of being animated.

Abducting a Cow
In our touchesBegan method, we tested to see if hitTest returned a cow. If it did, we call

abductCow with the object that was returned.

-(void)abductCow:(UIImageView *)cowImageView;
{
 [UIView beginAnimations: @"abduct" context:nil];
 [UIView setAnimationDuration: 4.0];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseIn];
 [UIView setAnimationDelegate: self];
 [UIView setAnimationDidStopSelector: @selector(finishAbducting)];
 [UIView setAnimationBeginsFromCurrentState: YES];

 CGRect frame = cowImageView.frame;
 frame.origin.y = myPlayerImageView.frame.origin.y;
 cowImageView.frame = frame;

 [UIView commitAnimations];
}

We begin an animation event on our cow object (which is an imageView). We also set a

didStopSelector, which will be called once the animation has finished. We set the new y

axis coordinate for the cow to our UFO’s current y coordinate and begin the animation.

Once the animation has stopped, we get a callback to finishAbducting. This allows us

to increase the score, clean up the abducting code, and spawn a new cow.

-(void)finishAbducting;
{
 if(!currentAbductee || !tractorBeamOn)
 {
 return;
 }

 [cowArray removeObjectIdenticalTo: currentAbductee];
 [tractorBeamImageView removeFromSuperview];

 tractorBeamOn = NO;

 score++;
 scoreLabel.text = [NSString stringWithFormat: @"SCORE %05.0f", score];

 [currentAbductee.layer removeAllAnimations];
 [currentAbductee removeFromSuperview];

 currentAbductee = nil;

 //make a new cow
 [self spawnCow];
}

CHAPTER 1: Getting Started with Game Kit and Game Center 14

At the beginning of the method, we check to see that the tractor beam is still on and that

we have an abductee. Just as we did when the user released their touch from the

screen, we also want to remove the tractor beam image from the view and correctly set

the state variables. We award the user with a single point for abducting each cow and

we update the scoreLabel accordingly. We clean up the old cow image and set it back

to nil. Now we spawn a new cow to replace the abducted one.

Configuring iTunes Connect for Game Center
Before your iOS app or game can access any of the Game Center functionality, it will

need to be configured in iTunes Connect. iTunes Connect predates the App Store and

iPhone; it was introduced as the portal for musicians and media producers to upload

their content to the iTunes Music Store. It has since been adapted to allow developers to

upload their iOS software for sale on the App Store. iTunes Connect has evolved

tremendously since being offered to iPhone developers in July of 2008. Apple has begun

using it as a main source for app configuration. Such functionality as In App Purchase

(IAP), iAds, and Game Center require iTunes Connect configuration.

NOTE: You can still use any stand-alone Game Kit functionality without setting up Game Center
for your app. See Chapters 6, 7, 8, and 10 for more information on Game Kit’s stand-alone

functionality.

Getting Started with iTunes Connect
If you have never uploaded an app to the App Store, you might be unfamiliar with the

iTunes Connect Portal. However, if you have worked with iTunes Connect previously,

you might want to skip to the next section, as this will be refresher for you.

iTunes Connect is a web portal, accessed from any web browser at

http://itunesconnect.apple.com. You will use your existing AppleID, which you

registered as a developer under, to gain access to the portal. This is the same web

application that you will use when you want to upload new apps for sale on the App

Store, as well as make any changes to them, such as price or description. A view of the

landing page for iTunes Connect can be seen in Figure 1–4.

http://itunesconnect.apple.com

CHAPTER 1: Getting Started with Game Kit and Game Center 15

Figure 1–4. A view of iTunes Connect taken December 2010

When you log in to iTunes Connect, you will be presented with a wealth of options. The

most important of these is setting up your contracts, tax, and banking information. While

these requirements do not have anything to do with Game Center per se, it is good to

get them out of the way.

It may take weeks for Apple to process this information, so submit it as soon as

possible. Until this information is processed and approved, you will be unable to release

software on the App Store. Once you have completed all the requested information

under this section, you can focus on the app development itself.

NOTE: If you plan on releasing only free iOS apps, you do not need to complete the paid apps
contracts. However, if you plan on releasing any paid software in the future, these should be

completed as soon as possible.

Before you can access any Game Center–specific information, you will need to create a

new (or use an existing) iOS app. This is a straightforward process that you will be

walked through in iTunes Connect. You begin under the Manage Your Applications

section; there you will find an “Add New App” button. The rest should be fairly self-

explanatory.

If you are not yet ready to upload an app, you can create placeholder data here to gain

access to the Game Center portal. Once your app has been created in iTunes Connect,

you can begin to configure the Game Center–specific information.

CAUTION: If you create an app and fail to upload a release build within 90 days, Apple will delete the

app information and restrict you from creating a new app with the same name in the future. This was

introduced in late 2010 as an effort to prevent people from “Domain Squatting” app names.

CHAPTER 1: Getting Started with Game Kit and Game Center 16

Configuring Game Center in iTunes Connect
Once you have selected your app from within iTunes Connect, you will see a view similar

to the screen capture in Figure 1–5, shown later in this section. If you direct your

attention to the area in the upper right-hand side of the app screen, you will notice a

Manage Game Center button.

If you are familiar with configuring iAds or In App Purchase in previous iOS apps, this

area will seem very familiar to you. The process for configuring iAds and IAP are similar

to working with Game Center.

When entering the Game Center portal for your app for the first time, you will be asked if

you want to enable Game Center, as shown in Figure 1–5. Once enabled, you will be

given an option to add a new leaderboard or achievement. We focus on these options

more in later chapters (Chapter 3 covers leaderboards, and Chapter 4 covers

achievements). For now, all we need to do is ensure that Game Center is enabled for our

app.

Figure 1–5. The first view of the Game Center portal for a new App

TIP: If you are having difficulty getting your app to acknowledge Game Center, the most likely
culprit is one of two common issues. Make sure your app is using the same bundle ID that is
shown in the App Info page (see Figure 1–6). The second issue may be that you have not let

enough time pass. There can be up to a 30-minute delay between making changes in iTunes

Connect to Game Center and having the iOS app notice those changes.

CHAPTER 1: Getting Started with Game Kit and Game Center 17

Figure 1–6. An app-specific view, as seen in iTunes Connect. You can see the Manage Game Center button in the
upper right of the image.

Summary
You should now have a basic understanding of what Game Kit and Game Center have

to offer, as well as an in-depth understanding of the sample project you will be working

with throughout the course of this book. Additionally, you should now be comfortable

setting up a new app in iTunes Connect for use with Game Center.

In the upcoming chapters, you will learn how to incorporate all the functionality of Game

Center and Game Kit into an iOS app. The iOS-based device families are just starting to

emerge from infancy, and Game Center is the first next-generation API that has been

made available for developers. These new technologies are a glimpse at what the future

holds for iOS developers. In the next chapter, you will learn how to get Game Center

incorporated into a project.

19

 Chapter

Game Center: Setting Up
and Getting Started
In the last chapter, we learned how to configure Game Center in iTunes Connect and

began working with the sample project, UFOs. In this chapter, we will discuss

integrating Game Center into our app, and get our hands dirty with some code.

You will learn how to detect Game Center compatibility, explore the limitations of the

sandbox, authenticate a local player, work with sessions, and retrieve a friends list. You

will also create the Game Center Manager class that we will be working with throughout

the rest of the book.

Testing for Game Center
Before any Game Center–specific code can be called, we need to perform a test to

verify that the user has a version of iOS that supports Game Center. The first thing we

need to do to perform this check is to create our new GameCenterManager class. We

will use this class throughout the remainder of this book to keep our Game Center

functionality in one easy-to-access class. This class will house all of our Game Center–

specific code and callbacks, and can be easily shared across all of your apps.

First, create a new file in Xcode. You will want to select the Objective-C Subclass from

the available templates. Make sure that you also select NSObject under the “Subclass

of” pull-down menu. Name the new class GameCenterManager, as shown in Figure 2–1.

2

CHAPTER 2: Game Center: Setting Up and Getting Started 20

Figure 2–1. Creating the GameCenterManager Class

Add the following method to your GameCenterManager class.

+ (BOOL) isGameCenterAvailable
{
 Class gcClass = (NSClassFromString(@"GKLocalPlayer"));

 NSString *reqSysVer = @"4.1";
 NSString *currSysVer = [[UIDevice currentDevice] systemVersion];

BOOL osVersionSupported = ([currSysVer compare:reqSysVer options:NSNumericSearch] !=
 NSOrderedAscending);

 return (gcClass && osVersionSupported);
}

This method creates a new class object using the NSClassFromString function. If

GKLocalPlayer exists in the API, gcClass will be non-nil. We also test against a minimum

OS version. Since many of the Game Center classes were included in the API prior to

availability, we need to perform two checks. The next three lines of code compare the

current iOS version to a version string we set at 4.1. The method returns the results,

which will be true if the device is set up to support Game Center.

CHAPTER 2: Game Center: Setting Up and Getting Started 21

NOTE: You always want to make every effort available to allow users to interact with your app,
regardless of whether they have a Game Center–enabled device. If a user does not have a Game
Center–enabled device, you still want to make sure they are able to interact with the non-social

features of your app.

TIP: If you do want to limit your app to users who have Game Center–enabled devices, add a
new key to your info.plist file called UIRequiredDeviceCapabilities. Then, set the value for that key
to “gamekit.” This will limit your app in the App Store to be purchased only by people who have

Game Center–enabled devices.

You can now modify the UFOViewController.m file to perform the Game Center

availability check. Create a new viewDidLoad method, as shown in this code snippet:

-(void)viewDidLoad
{
 [super viewDidLoad];

 if([GameCenterManager isGameCenterAvailable])
 NSLog(@"Game Center is available");

 else
 NSLog(@"Game Center not available");
}

CAUTION: If you notice that the isGameCenterAvailable method is always returning NO even
when Game Center should be available, the most likely culprit is forgetting to include the Game

Kit framework in your target.

At this point, all the code will do is print whether Game Center is available to the

console. We will be expanding on this code in the next section.

Authenticating with Game Center
Once your app has determined whether the device is Game Center–capable, you can

authenticate the user. The user who is authenticated with Game Center will always be

referred to as the local player and will be represented by the class GKLocalPlayer.

Before any other Game Center functionality can be used, you must first authenticate a

local player.

Apple recommends that you authenticate with Game Center as early as possible in your

app. The primary reason to authenticate before the user needs to access any Game

Center behavior is to ensure that the user is not waiting for the network callbacks to

CHAPTER 2: Game Center: Setting Up and Getting Started 22

authenticate a user at a time when he or she wants to perform a Game Center action.

Early authentication also makes sure that the user is not prompted for a login in the

middle of gameplay. There are additional benefits that we will explore in upcoming

chapters, such as resubmitting high scores that failed to submit earlier.

Modifying the GameCenterManager Class
Handling authentication requires additional code to the GameCenterManager class.

Define a new protocol and add the following block of code above the @interface line in

GameCenterManager.h. This will create a new optional delegate callback method

named processGameCenterAuthentication.

@protocol GameCenterManagerDelegate <NSObject>
@optional
- (void)processGameCenterAuthentication:(NSError*)error;
@end

It is necessary to add a new method to the implementation of GameCenterManager.

Create a new method that looks like the following code.

- (void) authenticateLocalUser
{
 if([GKLocalPlayer localPlayer].authenticated)
 {
 return;
 }

[[GKLocalPlayer localPlayer] authenticateWithCompletionHandler:^(NSError *error)
 {
[self callDelegateOnMainThread: @selector(processGameCenterAuthentication:) withArg:
 NULL error: error];
 }];
}

TIP: Don’t forget to import the <GameKit/GameKit.h> header and the associated Game Kit

framework; otherwise, GKLocalPlayer will be undefined.

The preceding method will serve as a helper for authenticating with Game Center. The

first line of code checks with the localPlayer singleton to see whether the user is already

authenticated. If they are, the method is complete. If the user is not already

authenticated, the authenticateWithCompletionHandler is called.

When authenticateWithCompletionHandler has finished executing, we call [self

callDelegateOnMainThread: @selector(processGameCenterAuthentication:) withArg:

NULL error: error]. In order to continue, we must implement this method.

CHAPTER 2: Game Center: Setting Up and Getting Started 23

NOTE: Blocks can be slightly confusing if you have never worked with them before. Game Center
relies heavily on blocks, and you will be seeing a lot of them throughout this book.

The best way to approach blocks, in my experience, has been to view them as inline functions

that are executed upon completion of the method that calls them. In the preceding example, after
authenticateWithCompletionHandler finishes executing, it calls [self callDelegateOnMainThread:
@selector(processGameCenterAuth:) withArg: NULL error: error];.

It helps to have a solid background on blocks before proceeding. If you feel unsure about the use
of blocks, I recommend you read the Apple Developer Connection article on blocks, located at
http://developer.apple.com/library/mac/#documentation/Cocoa/

Conceptual/Blocks/Articles/bxUsing.html.

You will also need to add the following methods to GameKitManager.m. After you have

added them, we will discuss what their exact functions are.

- (void) callDelegateOnMainThread: (SEL) selector withArg: (id) arg error:
 (NSError*) err
{
 dispatch_async(dispatch_get_main_queue(), ^(void)
 {
 [self callDelegate: selector withArg: arg error: err];
 });
}

All of our delegate callbacks need to be performed on the main thread; Game Center

does not guarantee the callback blocks will be executed on the main thread, and may be

run from a background thread if not forced onto the main thread. Since UIKit View

Controllers can be safely accessed only on the main thread, calling a delegate on a

background thread can cause crashes and other unexpected behavior. To avoid

creating any threading-related bugs (which can be very hard to trace), we will pass

everything back to the delegate on the main thread.

NOTE: There are many different ways to force code to execute on the main thread or to
otherwise ensure thread safety. For our purposes, we will use the preceding method. It will be

easiest to comprehend for the reader who might not be very experienced with threading on the

iOS platform.

The following method is called from within our callDelegateOnMathThread method after

we ensure that we are operating on the main app thread. This method checks to make

sure we are on the main thread, then calls our protocol method with the passed

information.

http://developer.apple.com/library/mac/#documentation/Cocoa/

CHAPTER 2: Game Center: Setting Up and Getting Started 24

- (void) callDelegate: (SEL) selector withArg: (id) arg error: (NSError*) err
{
 assert([NSThread isMainThread]);
 if([delegate respondsToSelector: selector])
 {
 if(arg != NULL)
 [delegate performSelector: selector withObject:
 arg withObject: err];

 else
 [delegate performSelector: selector withObject: err];
 }

 else
 NSLog(@"Missed Method");
}

If you have not implemented the delegate method, you will see an NSLog in the console

for “Missed Method.” This is solely here to assist in debugging, and will save you some

head scratching in trying to debug the protocol methods.

The last thing that we need to do in our GameCenterManager class is to add the

delegate property. Modify the relevant parts of the header file to look like the following

code.

@interface GameCenterManager : NSObject <GameCenterManagerDelegate>
{
 id <GameCenterManagerDelegate, NSObject> delegate;
}

@property(nonatomic, retain) id <GameCenterManagerDelegate, NSObject> delegate;

In addition to these modifications, you also need to synthesize the delegate as well as

release it in dealloc. This completes the required changes to the GameCenterManager

class.

TIP: If you are receiving warnings that GameCenterManager might not respond to any of the

methods we have implemented, make sure that you are adding them to the interface file.

Authenticating from UFOViewController
Now that we have modified the GameCenterManager class to support authentication,

we need to create a new object to represent the GameCenterManager in the

UFOViewController class.

Import the header for GameCenterManager and create a new GameCenterManager

object called gcManager. You also need to add the GameCenterManagerDelegate to the

interface of UFOViewController.h. When you are done, UFOViewController.h should look

like the following.

CHAPTER 2: Game Center: Setting Up and Getting Started 25

#import <UIKit/UIKit.h>
#import "GameCenterManager.h"

@interface UFOViewController : UIViewController <GameCenterManagerDelegate>
{
 GameCenterManager *gcManager;
}

-(IBAction)playButtonPressed;
@end

You will again be modifying the viewDidLoad method of UFOViewController. Make the

necessary changes to the viewDidLoad method to match the following code snippet.

-(void)viewDidLoad
{
 [super viewDidLoad];

 if (![GameCenterManager isGameCenterAvailable])
return;

 gcManager = [[GameCenterManager alloc] init];
 gcManager.delegate = self;
 [gcManager authenticateLocalUser];
}

The first new line of code that we added initializes and allocates an instance of

GameCenterManager. The next line sets self for the delegate to the UFOViewController

class; this will allow us to get callbacks from the GameCenterManager.

Once we have completed these two steps, we can call our convenience method,

authenticateLocalUser. Game Center handles the required login views and

authentication as well as any account creation at this point. However, we do need to

watch our delegate method processGameCenterAuthentication, in order to catch any

errors encountered while authenticating.

CAUTION: If you have cancelled a Game Center login three or more times from within an app,

you will not be able to sign in from that app again until you have gone to the GameCenter.app
and signed in. This is an undocumented behavior and can be a real pain to trace if you do not
know what you are searching for. In addition, if you find you are unable to sign in even from

Game Center.app, you can reset the simulator or restore the device to resolve these issues.

If you run the app again, you will see a console log stating “Missed Method.” This is

because we have not yet added the optional protocol method that is called when the

authentication is completed. We need to add the following method to

UFOViewController.m.

- (void)processGameCenterAuthentication:(NSError*)error;
{
 if (error != nil)
{
NSLog(@"An error occured during authentication: %@", [error localizedDescription]);

CHAPTER 2: Game Center: Setting Up and Getting Started 26

 }
else
{
 NSLog(@"Successfully authenticated");
}
}

Now when you log in, you should see “Successfully authenticated” printed to the

console, as well as the image shown in Figure 2–2 (with your Game Center name

instead).

CAUTION: When logging in to Game Center for testing purposes, always create a new Apple ID.

Never use an existing Apple ID to log in to Game Center from the Sandbox environment.

Figure 2–2. The standard welcome back message the user will see when logging in to Game Center

TIP: If you are having trouble logging in, make sure your bundle ID in the info.plist matches a
bundle ID that has Game Center enabled for it in iTunes Connect. See the Chapter 1 for more

information on configuring Game Center in iTunes Connect.

The Sandbox
To help test your app before it goes live, Apple has provided a Sandbox environment for

Game Center. The Sandbox functions exactly as the production version of Game

Center, while keeping all activity hidden from normal users.

The Sandbox allows the developer to work on new Game Center functionality in secret,

as well as not polluting the leaderboards and achievement systems with their test data.

When logging in to a Sandbox environment, the login alert will state “*** Sandbox ***” at

the top.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Game Center: Setting Up and Getting Started 27

CAUTION: At the time of writing, there is a bug that prevents the Sandbox message from

showing up while in landscape orientation.

Once logged in, there is no way to determine whether you are currently logged in to the

Sandbox from within the app. However, if you open Game Center.app, you will see

whether you are in a Sandbox environment. The information in Table 2–1 will help you

determine what mode you are currently running in.

Table 2–1. Determining the Sandbox Status on Various Types of Builds

Type of Build Sandbox Status

iOS Device Simulator Sandbox Environment Only

Developer Provisioned Build Sandbox Environment Only

Ad-Hoc Distributed Build Sandbox Environment Only

Signed Distributed Build Production Environment Only

Watching for Status Changes
Beginning with iOS 4.0, iOS devices gained the ability for multiple apps to run

simultaneously on a device. This can create some complex behavioral bugs when

dealing with state, especially if the user is accessing two different Game Center–enabled

apps at the same time. For example, the user may log out of Game Center, or even log

in as a different user, while your app is in the background. Therefore, it is vital that you

listen for changes to the local user through the NSNotification system.

Add the following snippet of code in viewDidLoad of UFOViewController.m, right after

the test is performed to verify whether Game Center is available.

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(localUserAuthenticationChanged:)
 name:GKPlayerAuthenticationDidChangeNotificationName
 object:nil];

NOTE: Don’t forget to remove the NSNotification observers in viewDidUnload or you could

experience crashes and other unintended behavior.

You also want to add a new method to UFOViewController. This method will be called

whenever player authentication status changes.

-(void)localUserAuthenticationChanged:(NSNotification *)notif;
{
 NSLog(@"Authenication Changed: %@", notif.object);
}

CHAPTER 2: Game Center: Setting Up and Getting Started 28

This new method will print the description for the new GKLocalPlayer when

authentication changes. You will need to determine what special steps need to be taken

in your app to handle local player changes.

TIP: Do not forget to test user switching before shipping your app, as Apple will test it in the

review stage.

Working with GKLocalPlayer
The GKLocalPlayer will always exist and be non-nil when authenticated with Game

Center; this object is a representation of the user. You will never create an instance of

GKLocalPlayer; this is handled through the class method localPlayer. The localPlayer

singleton will be the only way that you will interact with the localPlayer.

The GKLocalPlayer has three properties associated with it: authenticated, friends, and

underage. We will be dealing with the friends property in the following section. We have

already worked with the authenticated Boolean in our authentication code in the

previous sections.

The underage property is useful for restricting content in a Game Center–enabled app to

users over the age of 17. The following code performs an underage check.

if ([GKLocalPlayer localPlayer].underage)
{
 NSLog(@"User is underage");
}

The friends property will return nil until we complete the steps required to retrieve the

user’s friends list. Once this has been done, the friends property will return an array of

the local user’s friends. This procedure is detailed in the following section.

Retrieving a Friends List
The friends list is an array of user IDs that you have assigned as friends in Game

Center.app. With this data, you can do things such as create a friends list only in game

voice channel, or highlight your friends’ scores in the global scores list.

We will add a call to retrieve the friends list in our sample project, but won’t be doing

anything specific with the data in this chapter. For the time being, we will simply print it

to the debugger console.

We begin by modifying our Game Center Manager class to add a new method for

retrieving the local player’s friends list. Add the following method to the implementation.

- (void)retrieveFriendsList;
{
 if ([GKLocalPlayer localPlayer].authenticated == YES)
 {

CHAPTER 2: Game Center: Setting Up and Getting Started 29

[[GKLocalPlayer localPlayer] loadFriendsWithCompletionHandler:^(NSArray *friends,
 NSError *error)
 {
[self callDelegateOnMainThread: @selector(friendsFinishedLoading:error:) withArg:
 friends error: error];
 }];
 }
 else
{
 NSLog(@"You must authenicate first");
 }
}

This method looks a lot like the previous authenticate method that we added earlier in

this chapter. After we determine that the GKLocalPlayer is valid, we can call

loadFriendsWithCompletionHandler. This method returns an array of player IDs. We will

see how we can use these player IDs to retrieve GKPlayer objects in the next section.

We then use our thread-safe callDelegateOnMainThread method to return the data to

our delegate.

Before this code will execute, we still need to modify the header file and add a new

protocol method to our delegate. We modify the header file to look like the following

code snippet.

@protocol GameCenterManagerDelegate <NSObject>
@optional
- (void)processGameCenterAuthentication:(NSError*)error;
- (void)friendsFinishedLoading:(NSArray *)friends error:(NSError *)error;
@end

@interface GameCenterManager : NSObject <GameCenterManagerDelegate>
{
 id <GameCenterManagerDelegate, NSObject> delegate;
}

@property(nonatomic, retain) id <GameCenterManagerDelegate, NSObject> delegate;

+ (BOOL)isGameCenterAvailable;
- (void)authenticateLocalUser;
- (void)callDelegateOnMainThread:(SEL)selector withArg:(id) arg error:(NSError*) err;
- (void)callDelegate:(SEL)selector withArg:(id)arg error:(NSError*) err;
- (void)retrieveFriendsList;
@end

The change we made in the preceding code snippet adds a new optional protocol,

which will be called when the friends block is finished executing. We return an array of

friend IDs as well as any errors we encounter. We also add a new method called

retrieveFriendsList to the class methods.

The last thing that needs to be done before we can run the app is adding a call to

retrieveFriendsList and adding the protocol method to UFOViewController.m. Since we

are unable to make the call to retrieve the friends list until after we have successfully

authenticated with Game Center, we can add the call to do so in the authentication

callback. Modify that method to match the following snippet.

CHAPTER 2: Game Center: Setting Up and Getting Started 30

- (void)processGameCenterAuthentication:(NSError*)error;
{
 if (error != nil)
 {
NSLog(@"An error occured during authentication: %@", [error localizedDescription]);
}
 else
 {
 [gcManager retrieveFriendsList];
 }
}

We will also add the protocol method that will print the friends list to the console. Add

the following method to UFOViewController.m.

- (void)friendsFinishedLoading:(NSArray *)friends error:(NSError *)error;
{
 if(error != nil)
 {
NSLog(@"An error occured during friends list request: %@", [error
 localizedDescription]);
 }
 else
 {
 NSLog(@"Friends: %@", friends);
 }
}

If you have any friends in your friends list, you should see output that looks similar to the

following.

2011-02–01 12:56:32.759 UFOs[3328:207] Friends: (
 "G:1093075676"
)

NOTE: If you have not yet added any friends to your Sandbox environment, now is a good time to
do so. You can create new accounts in the Game Center.App and add them as friends to your test
account. Having a populated friends list will be valuable throughout this book in debugging Game

Center code.

The next section deals with working with the player data that was retrieved from your

friends list.

Friend List Avatars
iOS 5.0 adds support for friends’ avatars. Players are required to set their avatar in the

Game Center app. If they have not set an avatar, Game Center will assign them a default

avatar. To access avatars in your app, you will need to be running on iOS 5.0 or newer,

and you will need to implement one new method. The following method is called on an

existing GKPlayer object (see the previous section for more information on GKPlayer).

There are two options for avatar image sizes: GKPhotoSizeNormal and

CHAPTER 2: Game Center: Setting Up and Getting Started 31

GKPhotoSizeSmall. As of iOS 5.0 beta 4, they are undefined sizes, so you will need to

experiment with them to see which offers the image size you need.

[player loadPhotoForSize:GKPhotoSizeNormal withCompletionHandler: ^(UIImage *photo,
 NSError *error)
 {
 if(error == nil)
 {
 playerAvatarImageView.image = photo;
 }
 else
 {
NSLog(@"An error occurred loading player avatar: %@", [error localizedDescription]);
 }
 }];

Working with Players
At the heart of the Game Center it is a social service, and as such, it revolves around

players. You need to be aware of three properties associated with a GKPlayer object. The

isFriend property is a Boolean that returns whether the player is a friend of the current

local player. The other two properties handle the name of the player, playerID, and alias.

The playerID is static and will always point to the same player. The playerID string should

never be shown to the user in your app. The alias, on the other hand, is dynamic and can

be changed by the user at any time. It should never be used to test the identity of a user,

but it should be the only string used to identify the player to your app’s user.

CAUTION: Do not make assumptions about the structure of the player identifier string. Its format

and length are subject to change.

When we retrieved the friends list, we did not get back an array of GKPlayers. Instead,

we got back an array of their IDs. This is common behavior in Game Center. To help us

work with players, we will add two additional convenience methods to translate player

IDs into GKPlayers objects.

We need to create two new methods: one will handle an array of player IDs, and the

other will handle a single player ID. This will save us extra work down the road. We add

the helper methods to our GameCenterManager class. First, add the new protocol

method, and modify the relevant section of the GameCenterManager.h file to match the

following code.

@protocol GameCenterManagerDelegate <NSObject>
@optional
- (void)processGameCenterAuthentication:(NSError*)error;
- (void)friendsFinishedLoading:(NSArray *)friends error:(NSError *)error;
- (void)playerDataLoaded:(NSArray *)players error:(NSError *)error;
@end

We will also add the following two new methods to the implementation file of the

GameCenterManager class.

CHAPTER 2: Game Center: Setting Up and Getting Started 32

- (void)playersForIDs:(NSArray *)playerIDs
{
[GKPlayer loadPlayersForIdentifiers:playerIDs withCompletionHandler:
^(NSArray *players, NSError *error)
 {
[self callDelegateOnMainThread: @selector(playerDataLoaded:error:)
 withArg: players error: error];
 }];
}

- (void)playerforID:(NSString *)playerID
{
[GKPlayer loadPlayersForIdentifiers:[NSArray arrayWithObject:playerID]
 withCompletionHandler:^(NSArray *players, NSError *error)
 {
[self callDelegateOnMainThread: @selector(playerDataLoaded:error:) withArg:
 players error: error];
 }];
}

Both methods will be using loadPlayersForIdentifiers. The only difference is that one will

take a string and convert it to a single-item array, and the other will just take in an array.

Again, we will use our thread-safe delegate callback.

The last thing that we need to do is to implement the delegate callback in

UFOViewController. We start by modifying the friends loaded method. This will translate

our friends list into an array of GKPlayer objects. Modify your friendsFinishedLoading

method to match the following.

- (void)friendsFinishedLoading:(NSArray *)friends error:(NSError *)error;
{
 if (error != nil)
 {
NSLog(@"An error occured during friends list request: %@",
 [error localizedDescription]);
 }
 else
 {
 [gcManager playersForIDs: friends];
 }
}

You also need to add the new protocol method that we just defined. Add the following

to the UFOViewController.m file.

- (void)playerDataLoaded:(NSArray *)players error:(NSError *)error;
{
 if (error != nil)
 {
NSLog(@"An error occured during player lookup: %@", [error localizedDescription]);
 }
 else
 {
 NSLog(@"Players loaded: %@", players);
 }
}

CHAPTER 2: Game Center: Setting Up and Getting Started 33

Now, when the App is run (assuming you have friends associated with your Game

Center account), it will pull down a list of your friends’ playerIDs, then perform a lookup

and print the GKPlayer description to the console. Your output should look similar to the

following.

2011-02–01 14:20:23.335 UFOs[4038:207] Authenication Changed: <GKPlayer
 0x5f46fb0>(playerID: G:1092793231, alias: the_other_kyle, status: (null), rid:(null))
2011-02–01 14:20:23.471 UFOs[4038:207] Players loaded: (
 "<GKPlayer 0x6a201e0>(playerID: G:1093075676, alias: johncash, status: (null),
 rid:(null))"
)

Summary
In this chapter, you learned how to test for Game Center compatibility and authenticate

the local user. You should now have a strong grasp of how we will be using the Game

Center Manager class and the benefits it will have on creating a clean code environment

that will be easily reusable across multiple projects.

In addition, you should now be comfortable working with GKLocalPlayer, GKPlayer, and

the friends list. In the next chapter, we will take an in-depth look at leaderboards and

expand on topics learned in this chapter. If you have any difficulty with anything

discussed in this chapter, remember that the included sample code contains working

examples of all the topics discussed.

35

 Chapter

Leaderboards
Leaderboards are older than video games themselves. The leaderboard, as we know it,
goes back to the days of the original pinball games of the 1950s. The makers of these
pinball games soon realized that adding a high-score list increased competition, which
translates to more time played and more money earned.

During the 1970s, when video games began to emerge, leaderboards were quickly
adopted into these new games, making their first appearance in Sea Wolf, released in
1976 (see Figure 3–1). Since then, they have played an integral part of the gaming
culture. Leaderboards have become so widespread that, in 2007, The King of Kong, a
full-length documentary, was released about the heated competition over the high score
on Nintendo’s Donkey Kong. Leaderboards have become so mainstream that they are
now an expected part of any video game.

Figure 3–1. Sea Wolf (1976), the first video game to feature a high score

3

CHAPTER 3: Leaderboards 36

Game Center for iOS greatly simplifies adding leaderboards to an app. This is a huge
improvement when you consider that, previously, the developer had to write and
maintain a server. In this chapter, we examine the steps required to implement multiple
leaderboards under Game Center, as well as all the required leaderboard support. You
learn how to post scores, retrieve leaderboards, customize the graphical user interface
(GUI) of leaderboards, and everything else needed to create leaderboards that are the
right fit for your app.

Why a Leaderboard?
Before we get into working with leaderboards themselves, it is important to understand
why leaderboards are an integral part of your social app or game.

 Leaderboards create a sense of community in an app or game that,
otherwise, might not allow your user to interact directly with other
users.

 Leaderboards drive users to return to your app in an effort to beat their
own scores or their friend’s high scores.

 Leaderboards create a sense of goal and accomplishment in an app.

 Leaderboards make it easier for users to share their app experience
and progress with their friends, family, and co-workers.

 Leaderboards in Game Center are easy to implement and can make
your app quickly feel more polished and finished.

An Overview of Leaderboards in Game Center
A leaderboard, in the sense of Game Center, is an array of GKScore objects related to a
specific leaderboard identifier, of which many can exist per app. Leaderboards can be
retrieved and further filtered based on friend status and date submitted.

GKScore objects represent each entry on a specific leaderboard. A GKScore always has
a player ID associated with it. When submitting a new GKScore to a leaderboard, the
player ID is set automatically by the API and cannot be changed. There are also values
for the date and rank that are automatically set and updated. You are required to set
only the raw score value and leaderboard category to which the score belongs.

There are two ways to retrieve and display leaderboards. The most common, and
easiest, method is by using Apple’s leaderboard GUI. This will be the first approach we
learn about in the following sections. The second option is to retrieve the raw GKScore
values and display them in your own GUI; this method is also discussed later in this
chapter.

CHAPTER 3: Leaderboards 37

NOTE: Game Center currently has a limit of 25 leaderboards per bundle ID. There has been a lot
of community chatter about it being increased, but as of iOS 5.0, there has not yet been an

increase or announced increase to this limit.

Benefits of Using Apple’s Leaderboard GUI vs. a Custom GUI
Benefits of using Apple’s leaderboard GUI include the following:

 The design was created by some of the best designers in the world.

 It is very simple to implement and present the leaderboard.

 Users will see a familiar interface that they already know how to
interact with.

Benefits of using a custom GUI include the following:

 Your leaderboard can match the custom design of your app.

 You have more freedom over the resulting data and can filter using
additional criteria.

 You can implement your own custom caching behavior.

As you can see, there are benefits and disadvantages of each system, and there is no
right answer in which one you should be using. At the end of this chapter, you will have
a strong background in both options and will be able to make the correct decision on
which method to implement based on the specific needs of your app.

Configuring a Leaderboard in iTunes Connect
Before working with the code side of leaderboards, you must first set up a new
leaderboard in iTunes Connect. Log in to iTunes Connect and select the app that we
have already been working with from Chapters 1 and 2. Once you have selected your
app from the control panel, go to the Manage Game Center area.

The Game Center portal for your app will have a section labeled “Leaderboards.” If this
is the first leaderboard that you have set up for this app, you will see a button labeled
“Set Up.” If you already have leaderboards in place, the steps here will be different and
are covered later in this section.

Once you are in the leaderboard section (see Figure 3–2), select the Add Leaderboard
button in the upper left-hand corner of the web page. You will be prompted to select
either a single leaderboard or a combined leaderboard. A single leaderboard will be one
collection of stored score objects that can be queried independently from other
leaderboards. A combined leaderboard can also be accessed independently from other
leaderboards, but it is a collection of single leaderboards. The combined leaderboard is

CHAPTER 3: Leaderboards 38

useful for showing data such as all-time high scores across all levels, or similar
combined data.

Figure 3–2. Adding a new leaderboard in iTunes Connect

We begin by creating a new single leaderboard, as shown in Figure 3–3. The first thing
you need to enter is the Leaderboard Reference Name. This value is used solely as a
reference within iTunes Connect. The reference name is designed to help you quickly
find leaderboards within iTunes Connect; the user never sees it. For this example, you
can use the reference name “Leaderboard Foo.”

Figure 3–3. Creating a new single leaderboard in iTunes Connect

The next field is the Leaderboard ID, the value you will query in your code to retrieve a
particular leaderboard. Apple recommends that you use a reverse DNS-type entry for
this field, such as com.company.appname.leaderboardname. Fill in the appropriate

CHAPTER 3: Leaderboards 39

values for your app here; it is not important what they are, but you will need to
remember them throughout the remainder of this chapter.

The Score Format Type is also required when creating a new leaderboard. Select the
score format that meets the requirements for your score data. For information on score
data formats, see Table 3–1.

Table 3–1. Score Format Types for Adding a New Leaderboard in iTunes Connect

Score Format Type Example Output

Integer 12,345

Fixed Point - To 1 Decimal 12,345.1

Fixed Point - To 2 Decimals 12,345.12

Fixed Point - To 3 Decimals 12,345.123

Elapsed Time - To the Minute 3:45

Elapsed Time - To the Second 3:45:55

Elapsed Time - To the Hundredth of a Second 3:45:55.82

Money - Whole Numbers $182,121

Money - To 2 Decimals $182,121.68

TIP: If none of the provided format types match your requirements, select the one that best
matches your needs. Later in this chapter, you will see how to customize these values by

retrieving the raw score values.

You also need to select whether you want the leaderboard to sort by ascending or
descending order. Ascending order will display the lowest score first, as in a golf game
or a lap around a track. Descending order will show the highest scores first, as in a
game of football or a typical score in a first-person shooter.

The last thing that needs to be done when creating a new single leaderboard is entering
the localized score information, as shown in Figure 3–4. iTunes Connect contains built-in
localization support for Game Center; you will need to create a new entry for each
language you want to support.

The Name field is the display name for your leaderboard in the chosen language. The
Score Format field will vary depending on the score format type you selected on the
previous screen. (See Figure 3–4 for an example of money formatting.) You also need to
provide a Score Format Suffix. This string will be appended to the end of your score
value when retrieving the formatted score property.

CHAPTER 3: Leaderboards 40

CAUTION: You will need to add at least one language for every leaderboard you create before it

can be considered valid.

Figure 3–4. Editing the localization information on a new leaderboard

TIP: If you want a space to appear between the score and the score format suffix in the

formatted score value, don’t forget to add a space before the beginning of the score suffix.

You now have a single leaderboard configured for your app. In order to enable the
combined leaderboard, we need at least two leaderboards that share the same type of
score format. Go ahead and create a second single leaderboard now.

Once you have two leaderboards that share the same score format type, you can create
a combined leaderboard. Follow the same procedure for creating a single leaderboard,
as described in the previous example. This area is similar to a single leaderboard
creation screen. The main difference is that you need to select the leaderboards you
want to combine, as shown in Figure 3–5. You will need create a new leaderboard ID, as
well as specify the localization data for the new combined leaderboard.

CHAPTER 3: Leaderboards 41

Figure 3–5. Creating a combined leaderboard

We will also add one last single leaderboard to let us work with a single uncombined
leaderboard, as the two previous leaderboards that we had created are now “Attached”
type leaderboards. Your leaderboard panel should now have four leaderboards in it: two
attached, one combined, and one single leaderboard. Now that we have a handful of
valid leaderboards to work with, we can move back to Xcode and begin to work with the
leaderboard-specific code.

IMPORTANT: Once a leaderboard has gone live in a shipping app, it can never be removed, so

double-check your leaderboard information before shipping an app.

Posting a Score
Before a leaderboard provides any useful functionality, we need to populate it with some
score data. We begin this process by modifying our GameCenterManager class once
again. Add the following method to the implementation; it should look very familiar as it
follows the same pattern that we used when we implemented the authentication
methods.

CHAPTER 3: Leaderboards 42

- (void) reportScore: (int64_t) score forCategory: (NSString*) category
{
 GKScore *scoreReporter = [[[GKScore alloc] initWithCategory:category]
 autorelease];
 scoreReporter.value = score;
 [scoreReporter reportScoreWithCompletionHandler: ^(NSError *error)
 {
 [self callDelegateOnMainThread:@selector(scoreReported:)
 withArg:nil
 error:error];
 }];
}

This new method takes an int64 for the score and an NSString for the category. It then
allocates and initializes a new instance of GKScore. The only property that we need to
set on the GKScore object is the raw score value. The date and user values are already
set for us by the API, and when we initialize the GKScore object, we do so with an
argument for the category. We will continue to use the standard callback block to pass
the result to our delegate.

We also need to modify the header file to incorporate a new protocol method. Modify
the existing protocol declaration area of the GameCenterManager header to include the
scoreReported method, as shown in the following code snippet.

@protocol GameCenterManagerDelegate <NSObject>
@optional
- (void)processGameCenterAuthentication:(NSError*)error;
- (void)friendsFinishedLoading:(NSArray *)friends error:(NSError *)error;
- (void)playerDataLoaded:(NSArray *)players error:(NSError *)error;
- (void)scoreReported: (NSError*) error;
@end

This concludes all of the required modifications to our GameCenterManager class. We
can now turn our focus back to the game itself. We will need to first implement some
new gameplay dynamics to handle high scores.

Setting a Default Leaderboard
With the release of iOS 5.0 Apple has added just one method to Game Center
leaderboards. You now have the ability to set a default leaderboard for the local user. If
you set a default leaderboard you can omit setting a category for a leaderboard when
submitting and it will default to the correct one. The following method will take an
NSString identifier as an argument for the leaderboard that you would like to specify as
the default for the local player.

[GKLeaderboard setDefaultLeaderboard:@"com.dragonforged.leaderboardToBeDefault"
 withCompletionHandler:^(NSError *error)
 {
NSLog(@"An error occurred when setting the default leaderboard: %@",
 [error localizedDescription]);

 }];

CHAPTER 3: Leaderboards 43

Adding Score Posting to UFOs
There are two obvious ways that we can score in our UFOs game. First, we could
implement a system that counted how many cows were abducted and submit that as
the score. Although this approach is the easiest to implement for us, it is not a very fun
gameplay technique, because there is no logical point at which the game ends. The
second, high-score method is harder to implement, but makes more sense. It clocks
how long the user took to abduct ten cows; the user with the lowest time is the winner.

These are topics that must be carefully considered for your own app. For the purpose of
this book, we will demonstrate the first method in which the number of cows abducted
is the user’s score. If you were going to implement a timer-based system, the approach
is very similar: you would start a timer at the beginning of the round, and when ten cows
are abducted, you would submit the time in seconds on the timer.

In order to implement this score-based system, we need to add a way for the player to
end a game. In an actual game, this could be handled by something being able to kill
your player, or a time limit. However, for the purpose of this example, we will simply add
an exit button. This will allow the user to simulate a game-over event, while keeping the
code Game Center–focused without adding extra complexity.

We add an exit button in UFOGameViewController.xib, as shown in Figure 3–6. We will
need to create a new IBAction for the exit button as well. Add the following code to
UFOGameViewController and connect our exit button to it. For the time being, we will
just pop the navigation controller back to the root view.

-(IBAction)exitAction:(id)sender;
{
 [[self navigationController] popViewControllerAnimated:YES];
}

NOTE: You are not required to wait until the end of a game to submit a new score, but it is
generally thought of as good practice. You want to avoid submitting a new score multiple times
per game if it can be prevented.

A notable exception might be a continuous role-playing game in which the score continually

updates and there is no proper ending to submit a score during the game.

CHAPTER 3: Leaderboards 44

Figure 3–6. Adding the ability to exit the game so a high score can be submitted

We will also want to add our protocol method from the GameCenterManager class to
UFOGameViewController. Add the following code snippet into UFOGameViewController.m.

 (void)scoreReported: (NSError*) error;
{
 if (error)
 {
 NSLog(@"There was an error in reporting the score: %@",
 [error localizedDescription]);
 }

else
 {
 NSLog(@"Score submitted");
 }
}

The only remaining step is to actually submit the score to Game Center; if you recall, we
have already written the method to handle this in our GameCenterManager class. We
already have an instance of our GameCenterManager class that we used in
UFOViewController to authenticate the user. We will want to keep a pointer to the
instance of our object that was already created in the previous class.

Create a new property for UFOGameViewController, make it an instance of
GameCenterManager, and name it GCManager as we did in the previous class. Once
the property has been synthesized, we can hook into it from our previous class. Modify
the playButtonPressed method of UFOViewController to match the following.

-(IBAction)playButtonPressed
{
 UFOGameViewController *gameViewController = [[UFOGameViewController alloc]
 init];
 gameViewController.gcManager = gcManager; //Changed Code
 [self.navigationController pushViewController: gameViewController animated:YES];
 [gameViewController release];
}

CHAPTER 3: Leaderboards 45

Now our game controller class has a reference to the GameCenterManager that we will
be using throughout the project. We also have to set a new delegate for gcManager in
the viewDidLoad method of UFOGameViewController. We want to make sure that
UFOGameViewController will be handling the callbacks for the score submitted. Add the
following method to the implementation.

- (void)scoreReported: (NSError*) error;
{
 if (error)
 {
 NSLog(@"There was an error in reporting the score: %@",
 [error localizedDescription]);
 }

 else
 {
 NSLog(@"Score submitted");
 }

 [[self navigationController] popViewControllerAnimated: YES];
}

We will also modify the exitAction method to just submit the score. To do so, replace the
old exitAction method with the following. Notice how we are using the leaderboard ID
that we set in iTunes Connect; make sure to use the same one that you entered, as it will
probably not match this example.

-(IBAction)exitAction:(id)sender;
{
 [self.gcManager reportScore:score forCategory:@"com.dragonforged.ufo.single"];
}

When you now play and click Exit, you should see a console message that looks similar
to the following output.

2011-02-10 12:32:47.629 UFOs[15092:207] Score submitted

TIP: See the section, “A Better Approach,” at the end of this chapter for a more complex, but

user-friendly, approach to submitting scores.

Now that we have a score submitted to a leaderboard, in the following sections we will
learn how to present this data back to the user. This action has been greatly simplified
for the purpose of making this section as easy to learn as possible. This will not be the
user experience you want to present to your user; we are simply trapping the user in the
game screen while we wait for a network callback. In reality, you will want to handle the
delegate callback in the previous view. This ensures the user is not waiting when they do
not have to be. For simplicity sake, we will continue to use the easier-to-follow
methodology.

CHAPTER 3: Leaderboards 46

TIP: You can only have one score posted per leaderboard category for each player. You might
notice that scores that you are submitting never appear on the leaderboard. If you are noticing
this behavior, make sure that the score you are submitting is higher than the highest score for

that player.

Handling Failures When Submitting a Score
If a score fails to submit, you as the developer are solely responsible for storing the
score and resubmitting it when the error has been resolved. Nothing is more frustrating
to a user than earning a new high score and losing it due to a network failure. This is
also a step that Apple likes to test for during app reviews.

There are many different ways to store the score information for resubmitting it later;
however, I feel that the following approach is the easiest for the novice to implement.
Feel free to implement your own system if you feel that the provided one does not suit
the needs of your app.

We will use NSKeyedArchiver to store our GKScore object for use later. The reason to
serialize the object itself is to preserve the data that is created for us once we initialize
an instance of GKScore, namely the date. Although you could simply store the raw score
data, submitting the raw score with a new GKScore object will use the current
timestamp, as opposed to the time when the score was actually earned. The problem
with this is that it provides a poor user experience, as the first player to earn a high
score might not be recognized as such.

There are three steps that need to be completed to handle and recover from a score
submitting failure. The first step is to save the score data. Although we do not inform the
user of the failure in this example, it is a good idea to notify the user that their score
could not be submitted at this time, and that you will automatically retry later. Modify the
following class in GameCenterManager.m to match the following code.

- (void) reportScore: (int64_t) score forCategory: (NSString*) category
{
 GKScore *scoreReporter = [[[GKScore alloc] initWithCategory:category]
 autorelease];

 scoreReporter.value = score;
 [scoreReporter reportScoreWithCompletionHandler: ^(NSError *error)
 {
 if (error != nil)
 {
 NSData* savedScoreData = [NSKeyedArchiver
 archivedDataWithRootObject:scoreReporter];

 [self storeScoreForLater: savedScoreData];
 }

 [self callDelegateOnMainThread: @selector(scoreReported:) withArg:

CHAPTER 3: Leaderboards 47

 NULL error: error];
 }];
}

We have added a few additional lines of code that will run if an error is detected. The
first line takes the GKScore object and encodes it using NSKeyedArchiver, which will
return an NSData object. We will later retrieve the GKScore from this NSData. We also
call a new method that we have named storeScoreForLater. Let’s take a look at that
method now; add the following method to the implementation of the
GameCenterManager class.

- (void)storeScoreForLater:(NSData *)scoreData;
{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

 NSMutableArray *savedScores = [[defaults arrayForKey:@"savedScores"]
 mutableCopy];

 [savedScoreArray addObject: scoreData];
 [defaults setObject:savedScoreArray forKey:@"savedScores"];

 [savedScoreArray release];
}

This snippet of code will save the NSData that represents our score to the user defaults.
You could also write this data to a file or even store it in core data. Never assume the
user has only one unsubmitted score; they may have racked up a number of scores
across many different leaderboards while playing offline.

We caught a posting failure as well as saved the score to disk to be retried later. The last
remaining step is to attempt to resubmit the score to Game Center. This step can be
very complex, depending on how intelligent you want the system to be. Most failures of
score submissions are related to network access issues, but could also be caused by
Game Center being down, or even a DNS issue.

There is no correct answer in when to repost a score, but the guideline is that you don’t
want to hold on to a score that could be submitted. Before we worry about where to tie
in the method to resubmit failed scores, let’s first implement a method to retry a score
posting. Add the following method to your GameCenterManager class.

-(void)submitAllSavedScores
{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSArray *savedScores = [defaults arrayForKey@”savedScores”];

 [defaults removeObjectForKey: @"savedScores"];

 GKScore *scoreReporter = nil;
 NSData *savedScoreData = nil;

 For (NSData *scoreData in savedScores)
 {
 scoreReporter = [NSKeyedUnarchiver unarchiveObjectWithData: scoreData];

 [scoreReporter reportScoreWithCompletionHandler: ^(NSError *error)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Leaderboards 48

 {
 if (error != nil)
 {
 savedScoreData = [NSKeyedArchiver
 archivedDataWithRootObject:scoreReporter];

 [self storeScoreForLater: savedScoreData];
 }
 else
 {
 NSLog(@"Saved score submitted");
 }
 }];
 }
}

The preceding code will loop through all of the saved scores and attempt to resubmit
them. Since there is no delegate for this behavior, we do not need to provide a delegate
callback. We merely log any successes and failures to add back to our array of non-
submitted scores for retrying again later.

As mentioned earlier, there are dozens of ways to tie back in resubmitting failed scores.
To keep it simple, we add a call to the submitAllSavedScores after we properly
authenticate with Game Center. Modify the authenticateLocalUser method of
GameCenterManager.m to match the following.

- (void)authenticateLocalUser
{
 if ([GKLocalPlayer localPlayer].authenticated == YES) return;

 [[GKLocalPlayer localPlayer] authenticateWithCompletionHandler:^(NSError *error)
 {
 if (error == nil)
 {
 [self submitAllSavedScores];
 }

 [self callDelegateOnMainThread: @selector
(processGameCenterAuthentication:)
 withArg:nil
 error:error];
 }];
}

Presenting a Leaderboard
Now that we have a leaderboard in iTunes Connect, and populated a score into that
leaderboard, it is time to present the leaderboard to the user. There are two ways of
presentation: the first is with Apple’s GUI; the second is with a custom GUI. This section
will take a look at the implementation using Apple’s GUI. In the next section, you will
learn how to present a leaderboard with custom graphics.

Before we can begin, we need to create a new button that will trigger the leaderboard.
We want to do this outside of the game screen, because you do not want to drag the

CHAPTER 3: Leaderboards 49

user away from a game in progress to view a leaderboard. Begin by adding a new
button to the UFOViewController view, as shown in Figure 3–7.

Figure 3–7. Adding a leaderboard button

Hook up the button to a new action that matches the one shown next. Do not forget to
change the category property to the leaderboard that you set in iTunes Connect.

-(IBAction)leaderboardButtonPressed;
{
 GKLeaderboardViewController *leaderboardController = nil;
 leaderboardController = [[GKLeaderboardViewController alloc] init];

 if (leaderboardController == NULL)
 return;

 leaderboardController.category = @"com.dragonforged.ufo.single";
 leaderboardController.timeScope = GKLeaderboardTimeScopeAllTime;
 leaderboardController.leaderboardDelegate = self;
 [self presentModalViewController: leaderboardController animated: YES];
}

You also need to add in the delegate call for GKLeaderboardViewController. To do so,
add the following required method to your implementation. Don’t forget to add
GKLeaderboardViewControllerDelegate to your header as well.

- (void)leaderboardViewControllerDidFinish:(GKLeaderboardViewController *)viewController
{
 [self dismissModalViewControllerAnimated: YES];
}

When you run the program and click on the newly added Leaderboard button, the result
should look similar to the image in Figure 3–8. As you can see in the image, the title of
our leaderboard (as set in iTunes Connect) is shown in the navigation bar. You can also
see the highest submitted score as well as score suffix that was set.

CHAPTER 3: Leaderboards 50

Figure 3–8. A leaderboard being presented using Apple’s GUI

The GUI provides a back button to take us to a list of all the leaderboards (see initial
view in Figure 3–9) that we have configured for the app. If you omit entering a category
when you create the GKLeaderboardViewController instance, you will be presented with
whatever leaderboard has been selected as the default leaderboard in iTunes Connect.

This is all there is to creating and presenting a leaderboard using Apple’s GUI. In the
next section, we will look at how to customize a leaderboard to match your own GUI.

NOTE: Remember that you cannot access any Game Center functionality, including leaderboards,
before a local user has authenticated. If you try to do so, you will receive a

GKErrorNotAuthenticated error.

Figure 3–9. A collection of leaderboards, shown with Apple’s GUI

CHAPTER 3: Leaderboards 51

TIP: You can change the order that leaderboards appear (see Figure 3–9) by dragging

leaderboard entries up and down in iTunes Connect.

Customizing the Leaderboard
As demonstrated in the previous section, presenting a leaderboard to the user is
straightforward. However, what if you want to customize the appearance of a
leaderboard? In this section, you will be walked through the process of receiving the raw
leaderboard information so that you can present it in your app in whatever fashion suits
your needs.

We begin the process of adding a custom leaderboard by adding a new button and
associated action for it to UFOViewController. Add a new button adjacent to the
previous leaderboard button, and create a new action for it.

In the previous example, Apple provides a view controller for us. When we are working
with our own custom leaderboards, we need to create a view controller to handle the
presentation. Create a new subclass of UIViewController and name it
UFOLeaderboardViewController. Modify the action of the new custom leaderboard
button to present a new instance of UFOLeaderboardViewController, as seen in the
following code snippet.

-(IBAction)customLeaderboardButtonPressed;
{
 UFOLeaderboardViewController *leaderboardViewController = nil;
 leaderboardViewController = [[UFOLeaderboardViewController alloc] init];

 [self presentModalViewController:leaderboardViewController animated:YES];
 [leaderboardViewController release];
}

The next step is to set up the xib for the new UFOLeaderboardViewController. We will
use the setup as shown in Figure 3–10; however, you may provide whatever kind of
customization you want here. Create the outlets and objects, as shown in the figure, and
hook up connections for all of them, including the delegate and dataSource for the table.

Figure 3–10. Creating the xib for a custom leaderboard

CHAPTER 3: Leaderboards 52

The first thing that should be hooked up is the Dismiss button. Add the following code
snippet to your action that you connected to the Dismiss button.

-(IBAction)dismiss;
{
 [self dismissModalViewControllerAnimated: YES];
}

We also want to make sure that the new view controller respects our landscape
orientation. Add a shouldAutorotateToInterfaceOrientation call to the implementation of
UFOLeaderboardViewController. It should look like the following.

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation
{
 return (UIInterfaceOrientationIsLandscape(interfaceOrientation));
}

If you were to run the app at this point and click on the Custom Leaderboard button, it
should launch a blank table in the correct orientation and allow you to dismiss it to
return to the first view.

Now that we got the view controller overhead out of the way, we can begin to focus on
the Game Center–specific features. First, set up the table view delegate and datasource
methods that we will be using. We need to create a new class property to hold the score
data for display. Create a new NSArray object and name it scoreArray. Also create an
associated property for the array and synthesis it. Add the following two methods to
your implementation.

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [self.scoreArray count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:
(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
CellIdentifier];

 if (cell == nil)
{
 cell = [[[UITableViewCell alloc] initWithStyle:
UITableViewCellStyleSubtitle
 reuseIdentifier:
CellIdentifier] autorelease];

 cell.selectionStyle = UITableViewCellSelectionStyleNone;
 }

 GKScore *score = [self.scoreArray objectAtIndex: indexPath.row];

 cell.textLabel.text = score.playerID;
 cell.detailTextLabel.text = score.formattedValue;

CHAPTER 3: Leaderboards 53

 return cell;
}

The first method returns the number of items in our table view. We deal with only one
section in this example, so the number of rows will always equal the number of scores
that are in our array. The next method displays the score into the cell. We use
UITableViewCellStyleSubtitle in this example, but in most cases, you will want to create
a more customized cell. The main label is set to the player ID and the secondary label is
set to the formatted score value. In the previous chapter, it was noted that you should
never show a player ID to the user. We will add a method to convert a player ID to a
player alias in the following section; until then, we will use the player ID for debugging
purposes.

Modifying GameCenterManager
Let’s take a moment to switch over to our GameCenterManager class. In the header file,
create a new optional protocol as shown in the following.

(void)leaderboardUpdated: (NSArray *)scores error:(NSError *)error;

Next, we create a new method to retrieve scores from the Game Center servers. Add the
following method to the implementation of the GameCenterManager class.

- (void)retrieveScoresForCategory:(NSString *)category
 withPlayerScope:(GKLeaderboardPlayerScope)playerScope
 timeScope:(GKLeaderboardTimeScope)timeScope
 withRange:(NSRange)range;
{
 GKLeaderboard *leaderboardRequest = [[GKLeaderboard alloc] init];
 leaderboardRequest.playerScope = playerScope;
 leaderboardRequest.timeScope = timeScope;
 leaderboardRequest.range = range;
 leaderboardRequest.category = category;

 [leaderboardRequest loadScoresWithCompletionHandler: ^(NSArray *scores,NSError
 *error)
 {
 [self callDelegateOnMainThread:@selector(leaderboardUpdated:error:)
 withArg:scores
 error: error];
 }];
}

We want to keep this call as generic as possible because the ultimate goal of the
GameCenterManager class is to be a reusable class that can easily be dropped into any
of your future projects.

The preceding method takes all the arguments that are required to create a new
GKLeaderboard object. Once we have created the object and set the properties that are
required, we can call the method loadScoresWithCompletionHandler on the
GKLeaderboard object. We will continue to use our standard thread-safe delegate

CHAPTER 3: Leaderboards 54

callback. These are all the modifications that are needed in the GameCenterManager
class for this section.

Filtering Results on a Custom Leaderboard
Let’s shift our focus back to the UFOLeaderboardCiewController class again. We will
next add an action for our segmented controller. This will allow the user to switch
between global scores and friends-only scores. Connect the following method to the
valueChanged action of the segmented controller.

-(IBAction)segementedControllerDidChange:(id)sender;
{
 GKLeaderboardPlayerScope playerScope;

 if ([scopeSegementedController selectedSegmentIndex] == 0)
 {
 playerScope = GKLeaderboardPlayerScopeFriendsOnly;
 }
 else
 {
 playerScope = GKLeaderboardPlayerScopeGlobal;
 }

 self.scoreArray = nil;

 [self.gcManager retrieveScoresForCategory:@"com.dragonforged.ufo.single"
 withPlayerScope:playerScope
 timeScope:
GKLeaderboardTimeScopeAllTime
 withRange:
NSMakeRange(1,50)];

 [leaderboardTableView reloadData];
}

This method calls the GameCenterManager method to retrieve our score list. The
segmented control has two values: one for friends, and one for everyone. You could
easily modify the preceding code to retrieve different time scopes as well, but in this
example we request only the all-time scope. An important step here that can be easy to
overlook is setting the array to nil and reloading the table. Doing so will remove the
scores that are in the table when the segmented controller value is changed.

The retrieve scores call is fairly straightforward. We use the category we set in iTunes
Connect for the leaderboard we wish to retrieve, and set our time and player scope. The
last argument on the method is a range. In the previous example, we return scores from
1st place to 50th place.

You also need to create a new property for the UFOLeaderboardViewController class;
this will be a pointer to our GameCenterManager class. This is done exactly the same as
when we did it for the UFOGameViewController class.

CHAPTER 3: Leaderboards 55

NOTE: Score ranges always start at an index of 1. You could modify the above example with a
new range of NSMakeRange(50,50); this will retrieve scores from 50th place to 100th place.
Make sure you don’t request too many scores at a time, as the time it takes to retrieve the score

data is related to how many scores you are attempting to retrieve.

Displaying the Custom Leaderboard
If you were to run this project now, you would notice the table is always blank. This is
caused by two different omissions. The first is that we never set a value for our
gcManager, and the second is that we never called the retrieveScore method. To rectify
this, modify the viewDidLoad method of the UFOLeaderboardViewController
implementation to match the following.

-(void)viewDidLoad
{
 [super viewDidLoad];

 self.gcManager.delegate = self;
 [self segementedControllerDidChange:nil];
}

The last step is to pass a reference to the gcManager to our leaderboard class. We do
this in the UFOViewController class. Modify the existing IBAction method to set the
property for gcManager to the instance that exists in the UFOViewController. Your code
should look like the following example.

-(IBAction)customLeaderboardButtonPressed;
{
 UFOLeaderboardViewController *leaderboardViewController = nil;
 leaderboardViewController = [[UFOLeaderboardViewController alloc] init];
 leaderboardViewController.gcManager = gcManager;
 [self presentModalViewController:leaderboardViewController animated:YES];
 [leaderboardViewController release];
}

If you were to now run the app again, you would see output similar to that shown in
Figure 3–11. The number of scores, the score values, and the player IDs will be different,
but you should be able to see at least one score listed.

CHAPTER 3: Leaderboards 56

Figure 3–11. An initial view of our custom leaderboard

IMPORTANT: It cannot be guaranteed that you will not be returned cached data for a

leaderboard request. You should assume that the data you are retrieving is cached and might not

be the most up to date.

Mapping a Player ID
In the previous section, we learned how to pull down the raw score values of a
leaderboard. However, we ended up with a leaderboard that contained only player IDs
rather than the aliases (which the user expects to be shown). In this section, we will
create a new method that will translate player IDs into player aliases. We will begin this
process by adding some new methods to our GameCenterManager class. These will
enable searching for a single name and an array of names. Add the following two
methods to the GameCenterManager class.

- (void)mapPlayerIDtoPlayer:(NSString*)playerID
{
 [GKPlayer loadPlayersForIdentifiers: [NSArray arrayWithObject: playerID]
 withCompletionHandler:^(NSArray *playerArray, NSError
 *error)
 {
 GKPlayer* player = nil;
 for (GKPlayer* tempPlayer in playerArray)
 {
 if ([tempPlayer.playerID isEqualToString: playerID] == nil)
 continue;

 player = tempPlayer;
 break;
 }

CHAPTER 3: Leaderboards 57

[self callDelegateOnMainThread:@selector(mappedPlayerIDToPlayer:error:)
 withArg:player
 error:error];
 }];
}

- (void)mapPlayerIDstoPlayers:(NSArray*)playerIDs
{
[GKPlayer loadPlayersForIdentifiers: playerIDs withCompletionHandler:^(NSArray
 *playerArray, NSError *error)
 {
[self callDelegateOnMainThread: @selector(mappedPlayerIDs:error:) withArg: playerArray
 error: error];
 }];
}

The first method will return a single GKPlayer object, while the second method will return
an array of GKPlayer objects. We also need to add two new protocol methods to handle
the delegate callbacks.

Though we could use the same callback and return a single-item array for the first call,
we will want to keep both methods around. Nothing prevents you from passing a single
player ID into the second method; however, the first method will serve useful purposes
from time to time as well. Do not forget we are building a reusable library of Game
Center calls.

Your protocols for GameCenterManagerDelegate should now look like the following
code, assuming you have been following along since the beginning of this book.

@protocol GameCenterManagerDelegate <NSObject>
@optional
- (void)processGameCenterAuthentication:(NSError*)error;
- (void)friendsFinishedLoading:(NSArray *)friends error:(NSError *)error;
- (void)playerDataLoaded:(NSArray *)players error:(NSError *)error;
- (void)scoreReported: (NSError*) error;
- (void)leaderboardUpdated: (NSArray *)scores error:(NSError *)error;
- (void)mappedPlayerIDToPlayer:(GKPlayer *)player error:(NSError *)error;
- (void)mappedPlayerIDsToPlayers:(NSArray *)players error:(NSError *)error;
@end

Once you have a GKPlayer object for a given playerID, there are many ways to look up
one based on the other. For simplicity’s sake, we will store all fetched players into an
array and use a simple lookup.

The first thing we need to do is add a new NSMutableArray to our
UFOLeaderboardViewController class. Let’s name this new object playerArray. Don’t
forget to allocate and initialize it in the viewDidLoad method. Add a method for the new
protocol that we just set up, initialize shown in the following.

- (void)mappedPlayerIDToPlayer:(GKPlayer *)player error:(NSError *)error
{
 if (error != nil)
 {
 NSLog(@"Error during player mapping: %@", [error localizedDescription]);
 }
 else

CHAPTER 3: Leaderboards 58

 {
 [playerArray addObject: player];
 }

 [leaderboardTableView reloadData];
}

This method merely stores the retrieved GKPlayers into an array for future reference. If
you were using the method that returns an array of players, your delegate callback
would look like the following instead.

- (void)mappedPlayerIDsToPlayers:(NSArray *)players error:(NSError *)error
{
 if (error != nil)
 {
 NSLog(@"Error during player mapping: %@", [error localizedDescription]);
 }
 else
 {
 [playerArray addObjectsFromArray:players];
 }

 [leaderboardTableView reloadData];
}

We also need to add a new method that will handle iterating through our array and
looking for a player match.

-(NSString *)playerNameforID:(NSString *)playerID;
{
 for (GKPlayer *player in playerArray)
 {
 if ([player.playerID isEqualToString: playerID])
 continue;

 return player.alias;
 }

 return nil;
}

The preceding method searches through the player array for a match on the playerID
and returns the alias for that player. You could just as easy return the entire GKPlayer
object if you wanted more information in your table cell, such as whether they are
underage or are one of your friends.

The final step is to modify our cellForRow method to handle the new name lookup code.
The following method will replace our old cellForRow method in
UFOLeaderboardViewController.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:

CHAPTER 3: Leaderboards 59

CellIdentifier];
 if (cell == nil)
 {
 cell = [[[UITableViewCell alloc] initWithStyle:

UITableViewCellStyleSubtitle reuseIdentifier:CellIdentifier]
autorelease];

 cell.selectionStyle = UITableViewCellSelectionStyleNone;
 }

 GKScore *score = [self.scoreArray objectAtIndex: indexPath.row];

 NSString *playerName = [self playerNameforID: score.playerID];

 if (playerName == nil)
 {
 [self.gcManager mapPlayerIDtoPlayer: score.playerID];
 cell.textLabel.text = @"Loading Name...";
 }
 else
 {
 cell.textLabel.text = playerName;
 }

 cell.detailTextLabel.text = score.formattedValue;

 return cell;
}

TIP: You can access the raw score data with the value property on GKScore. This will allow you

to perform even more customization than is available in the score format type in iTunes Connect.

As you can see in the preceding method, we get a GKScore as we did in the previous
example. We created a new string called playerName and use our new method to
populate it. The first time this method is called, playerNameforID will return nil. During
that event, we call our mapPlayerIDtoPlayer method and set the text in the cell to
“Loading Name…”. This serves as a placeholder until we can load in the full username.
When we get a callback from the GameCenterManager, we reload the table. At this
point, playerNameforID should return the alias for the player.

If the app is run again, you will see that we are now displaying proper player aliases as
opposed to the player IDs (see Figure 3–12).

NOTE: Remember that the user can change their alias at any time, and you should always
display the most up-to-date alias. With this in mind, you should always attempt to update the

alias whenever displaying it. Do not cache once and never request an update.

CHAPTER 3: Leaderboards 60

Figure 3–12. A custom leaderboard that properly maps player aliases

Local Player Score
There are often times that you will want to know the local players score on a given
leaderboard. Maybe you want to display their score at the top of your leaderboard, or
perhaps you want to fetch a leaderboard that shows other player scores that are close
to your local player’s score.

Apple has provided an easy technique for determining the local players score. During
any GKLeaderboard request, it contains a property for localPlayerScore. We create a
new method in our GameCenterManager to handle retrieving the local player score for
us. Add the following method to your GameCenterManager class.

-(void)retrieveLocalScoreForCategory:(NSString *)category
{
 GKLeaderboard *leaderboardRequest = [[GKLeaderboard alloc] init];
 leaderboardRequest.category = category;

 [leaderboardRequest loadScoresWithCompletionHandler: ^(NSArray *scores,NSError
 *error)
 {
 [self callDelegateOnMainThread:@selector(localPlayerScore:error:)
 withArg:
leaderboardRequest.localPlayerScore
 error:error];
 }];
}

This method functions almost the same as our previous score function. However, we
care about only the local player score for the category we are requesting. We also need
to add a new protocol method to pass this data back to our delegate. Go ahead and set
it, as shown in the following code snippet.

(void)localPlayerScore:(GKScore *)score error:(NSError *)error;

CHAPTER 3: Leaderboards 61

We now need to add our protocol implementation to UFOLeaderboardViewController.
That method is presented next. We will not be directly using the local player’s score in
this demo, so we just print the value to the console.

- (void)localPlayerScore:(GKScore *)score error:(NSError *)error;
{
 if (error != nil)
 {
 NSLog(@"Error getting local score: %@", [error localizedDescription]);
 }
 else
 {
 NSLog(@"Local User Score: %@", score);
 }
}

Next, we call the GameCenterManager method for retrieving our local user score. Let’s
add that code to the viewDidLoad method of UFOLeaderboardviewController. Don’t
forget to change the category to match the one for the leaderboard you want to request.

[self.gcManager retrieveLocalScoreForCategory: @"com.dragonforged.ufo.single"];

If you run the app again, now you should see console output that looks similar to the
one here.

2011-02-14 14:38:41.940 UFOs[22485:207] Local User Score: GKScore player=G:200192907
rank=2 date=2011-02-14 04:08:04 +0000 value=3 formattedValue=3 Points

A Better Approach
In the section, “Posting a Score,” earlier in this chapter, we discovered how to post new
scores to Game Center. Our methodology, while simple, was not the best approach
from a user-interaction standpoint. It is now time to refactor the posting new score code
to improve usability. This approach is more complex, but delivers better performance
and has less of an impact on the user.

The first thing we need to do is move our scoreReported method from
UFOGameViewController to UFOViewController. We also want to modify the exit action
in the UFOViewController. Modify that method to match the following.

-(IBAction)exitAction:(id)sender;
{
 [[self navigationController] popViewControllerAnimated: YES];
 [self.gcManager reportScore:score forCategory:@"com.dragonforged.ufo.single"];
}

We also need to add a single line of code the UFOViewController viewWillAppear
method, as follows.

gcManager.delegate = self;

This resets the delegate for our Game Center calls back to the UFOViewController. This
allows us to exit the game without waiting for a network callback from the Game Center
delegate. This method is more user friendly, but involves some delegate switching.

CHAPTER 3: Leaderboards 62

Summary
This chapter introduced leaderboards in Game Center. We covered the benefits of using
a leaderboard, as well as the two available types. We learned how to post a score and
recover for any errors that occurred during posting. We also looked at the requirements
of getting leaderboards up and running in your app, using either Apple’s provided GUI or
a custom one.

Throughout the chapter, we continued to build our GameCenterManager class, adding
the required methods to post scores, retrieve scores both local and global, map
playerIDs to GKPlayer objects, and display custom and built-in leaderboards.

You should now feel confident in adding a leaderboard to any existing or new iOS app.
In the next chapter, we will explore all that Game Center achievements offer.

63

 Chapter

Achievements
The relatively new gaming concept, achievements, came along much later than

leaderboards and has gained a dramatic rise in popularity with the release of Microsoft’s

Xbox 360. Achievements offer a level of detail overlooked in leaderboards.

Leaderboards show who possesses the leading score; on the other hand, achievements

demonstrate a player’s skills and strengths by rewarding the player for completing tasks

or levels. When the achievements start to serve in-game purposes, they become more

of a power-up over other players. The ability to view the achievements by others gives

players a type of “bragging rights.”

As social network–enabled gaming spreads and becomes prevalent, the achievement

system feature has skyrocketed into even more popularity.

Foursquare was one of the first to bring achievements out of the gaming world and into

the social app universe. Foursquare calls its achievements “badges,” (see Figure 4–1)

but the basic concept is the same. Players receive a reward for completing a task, but

the number of badges does not affect gameplay, or in this case, the ability for the user

to use the app in any direct manner.

4

CHAPTER 4: Achievements 64

Figure 4–1. Foursquare for iPhone showing badges or achievements

Game Center has made adding an achievement system to your iOS app simple. In this

chapter, we will learn how to add achievements to our demo game, UFOs. You will learn

everything needed to fully integrate an achievement system into your app quickly and

easily. Notably, you will learn how to:

 Create new achievements

 Display achievement progress

 Add achievement hooks into your app

 Progress and reset achievements

 Customize the appearance of achievements

CHAPTER 4: Achievements 65

Why Achievements?
If it is not already apparent what achievements can add to your social app or game, let’s

take a moment to review some of the many benefits.

 Achievements give your users an extra sense of accomplishment.

 Achievements bring users back into your app more often. Users are

more apt to return to your app to complete more achievements,

making completing the game a more rewarding and fun process.

 Achievements add an easy way for users to share experiences with

other users.

 Achievements in Game Center provide a polished look and feel to the

shipping product.

 Achievements give users a greater sense of progression as they make

their way through your app or game.

 Achievements provide an alternative way to play the game. If users do

not enjoy the campaign, they can enjoy a sense of accomplishment

through your achievement system.

 Achievements attribute game brand awareness. As users share their

accomplishments on Twitter and Facebook, name recognition

increases, and with it sales.

An Overview of Achievements in Game Center
Achievements, also known as badges in certain circles, function slightly differently in

Game Center than on other platforms. As with leaderboards, achievements first need to

be configured in iTunes Connect on a per-app basis. You will be creating new instances

of a GKAchievement object to report progress (more on this object later). Unlike

leaderboard entries, which are created when a score is reached and submitted,

achievements can report incremental progress.

Another notable change from working with leaderboards (see Chapter 3 for more on

leaderboards) is that you will use two different types of objects to submit and retrieve

achievements. GKAchievement is used to submit new achievements or update progress

on achievements, and GKAchievementDescription is used to display achievement data

to the user. This is contrary to what we saw when working with leaderboards, in which

GKScore objects were used to submit data as well as retrieve it.

As with leaderboards, achievement progress can be shown using either Apple’s

included graphical user interface (GUI) or a customized one that better matches the look

and feel of your app. The benefits and disadvantages of each system are the same as

with leaderboards. Those benefits and disadvantages follow for your convenience, with

minor achievement-specific information added where appropriate.

CHAPTER 4: Achievements 66

Benefits of Using Apple’s Achievement GUI vs. a Custom GUI
The following are some of the benefits that you will gain by using Apple’s included GUI

for working with achievements.

 The look and feel of your achievements is created by some of the best

designers in the world.

 The GUI is very simple to implement, making it easy to present the

achievement progress to your users.

 Users appreciate a familiar interface with which they already know

how to interact.

 Your app is more future-proof than it otherwise would be if you

implemented your own system.

The following are a few of the benefits of using your own GUI when working with

achievements on iOS devices.

 Your achievement progress can match the custom design of your app.

 You have more freedom over the returned data and can filter using

additional criteria.

 You can implement your own custom caching behavior.

 You can use custom images for incomplete or in-progress

achievements.

As you can see, there are advantages and disadvantages of each system, and there is

no right answer in which one you should be using. By the end of this chapter you will

have a better understanding of the options and be better equipped to decide which

approach is the best fit for your app.

As mentioned in the beginning of this section, you will need to begin with achievements

in the same manner as we did for leaderboards, in iTunes Connect.

Configuring Achievements in iTunes Connect
As we saw with leaderboards, you cannot begin working with achievements without first

setting up at least one new achievement in iTunes Connect. Log in to iTunes Connect

(itunesconnect.apple.com) using your Apple connect username and password, and

select the app that we have already been working with from the previous chapters (see

Chapter 2 for more information). Once you have selected your app from the control

panel, return to the Manage Game Center area that was introduced earlier in this book.

The Game Center portal for your app will have a section labeled “Achievements.” If this

is the first time working with achievements in this app, a button labeled “Set Up” will

appear. If you already have achievements in place, the steps are different and will be

covered later in this section.

CHAPTER 4: Achievements 67

Clicking the Set Up button will bring up the Achievements Configuration Screen. Select

the Add New Achievement button in the upper left-hand corner of the page, as shown in

Figure 4–2. This will bring you to the view shown in Figure 4–3.

Figure 4–2. Adding a new achievement through the iTunes Connect Portal

You might notice that there are a lot of similarities between this portal page and the

leaderboard portal page. I break down the attributes in Table 4–1.

Table 4–1. Achievement Attributes in iTunes Connect.

Attribute Description

Achievement Reference Name A string that is not used outside of iTunes Connect, this string is

used to easily locate and reference this achievement within

iTunes Connect.

Achievement ID This is the identifier that you will refer to in your code. As with

leaderboard categories, Apple recommends that you use a

reverse DNS system such as

com.company.appname.achievementname.

Hidden If an achievement is hidden, the user will not see it in the

achievement list until they have either completed it or increased

the progress.

Points Achievements can be assigned points. Your app is allocated

1,000 points. Each completed achievement progresses the user

toward that total. Once the user has reached 1,000 points, he or

she has unlocked all achievements.

You should assign more points to achievements that are more

difficult to complete. This provides the user with a better sense

of how valuable the achievement is.

Point values are optional and can be ignored if you do not want

to use them within your app.

CHAPTER 4: Achievements 68

TIP: You aren’t required to have your achievements add up to 1,000 total points, but you cannot

exceed 1,000 points.

Figure 4–3. The configuration view for new achievements in iTunes Connect

It is now time to make a new achievement. We will create an achievement that will be

reached when the user abducts 25 cows. We will use “Abduct 25” for the achievement

name so it will be easy to find when we have dozens of achievements. For our

achievement ID, we will use “com.dragonforged.ufo.abduct25.” Feel free to use

whatever ID you want here, but make sure to substitute it for

com.dragonforged.ufo.abduct25 in the upcoming examples. We will make this an

unhidden achievement, and assign it a point value of 10.

IMPORTANT: No achievement can have more than 100 points awarded for completing it.

For an achievement to be valid, you must configure at least one language. As you can

see in Figure 4–4, the localization area of achievements is much different than that

encountered when creating leaderboards in the previous chapter. Refer to Table 4–2 for

information on each attribute.

CHAPTER 4: Achievements 69

Figure 4–4. Localizing an achievement in iTunes Connect

NOTE: Each game owns its achievement descriptions; you may not share achievement

descriptions between multiple games.

Table 4–2. Localized Achievement Attributes in iTunes Connect

Attribute Description

Language Select the language in which this achievement will appear. You must

set up a language for each localization that you will support in your

shipping product.

Title This is the title that will appear within the app to describe this

achievement.

Pre-earned Description This is the description that appears when the achievement is unhidden

and is unearned or only partially completed.

Earned Description This is the description that is shown when the achievement has been

fully unlocked and completed.

Image This is the image that will be displayed to the user when the

achievement is earned. Apple will supply the unearned image, or you

can specify your own when working with a custom achievement GUI.

This image must be 512 512 and 72 DPI.

CHAPTER 4: Achievements 70

For our purposes, we will configure this achievement for English. I will use “Abduct 25

Cows” as the title, but you may use any title that you prefer. For the pre-earned

description, I chose “Abduct 25 cows with your UFO.” For the earned description, I used

“You have mastered the art of cow abduction.” I will also use a cow crossing road sign

as the image. When you are done, you should have a fully set up achievement, which

should look similar to the view shown in Figure 4–5.

Figure 4–5. A new achievement, as shown in iTunes Connect

We will want to work with a couple of different achievements setups for our game. Go

ahead and create another new achievement for abducting a single cow; this will be our

non-progressive achievement. Then, make a third achievement for five-minute play time

and set it to hidden. This last achievement will let us work with timers, progressive

achievements, and hidden achievements. You may select any point values, descriptions,

titles, and images you want for these achievements, but make sure you remember the

achievement IDs.

You should now have three achievements configured in iTunes Connect for our game.

We can now get back into Xcode and begin working with these achievements.

Presenting Achievements
Unlike leaderboards, there will be plenty to preview GUI-wise before we populate user

data into our achievement system. It is helpful to see the effects that modifying

achievements have on how they are displayed through the default GUI. In this chapter,

we will begin by presenting Apple’s achievement GUI, then move on to submitting user

data. We will also cover custom GUI achievements later in this chapter.

CHAPTER 4: Achievements 71

Before we can begin, we need to create a new UIbutton that will trigger the achievement

view. We most likely want to do this outside of the game screen, as we did with our two

leaderboard buttons. We begin by adding a new button to the UFOViewController view,

as shown in Figure 4–6.

You also need to create and hook up an IBAction to our new achievement button. Insert

the following code into the action that you hooked up to the achievement button.

-(IBAction)achievementButtonPressed;
{
 GKAchievementViewController *controller = nil;
 controller = [[GKAchievementViewController alloc] init];
 [achievementViewController setAchievementDelegate:self];
 [self presentModalViewController:controller animated:YES];
 [controller release];
}

Figure 4–6. Adding a new button to trigger our achievement view

In addition, we need to hook up a delegate callback used with the

GKAchievementViewController. Add the following method to your implementation file.

- (void)achievementViewControllerDidFinish:(GKAchievementViewController *)viewController
{
 [self dismissModalViewControllerAnimated:YES];
}

If you were to run the App and tap on the achievement button, you would now see a view

similar to the one shown in Figure 4–7. The achievements shown are using Apple’s unearned

image. Apple recommends that you always use its unearned image, but when working with

a custom achievement GUI, you can override this image and return your own.

Next, recall that we set up three achievements, one of them hidden. As you can see in

Figure 4–7, the provided view shows us only two achievements. Because we have not

submitted any kind of progress to the third achievement, its details are hidden from the

user. However, you can see that the top information line reflects that there is a hidden

CHAPTER 4: Achievements 72

achievement (0 of 3 Achievements). Also notice that the achievements are using the

localized unearned description that was set in iTunes Connect.

Figure 4–7. Our achievements, as shown with Apple’s default GUI

These are the only necessary steps to show the user his or her achievement progress

through Apple’s built-in GUI. In the next section, we will look at how to update and

progress these achievements. Later in this chapter, you will learn how to present

achievement using a custom GUI.

NOTE: A user can always see his or her achievement progress in Game Center.app, but it is

recommended allowing your user a way to view their progress from within your app as well.

Modifying Achievement Progress
Unlike a leaderboard entry, achievements can be constantly modified and progressed

through user interaction. As with the other Game Center functionality we have been

working with, we will create a new method in our GameCenterManager class to handle

interacting with achievements. Once the following method has been added, we will

review the method to understand exactly how it functions.

TIP: Remember that all this source code is made available to you online. When dealing with large

methods, it might be easier to copy it from the source code downloaded from apress.com.

- (void)submitAchievement:(NSString*)identifier percentComplete:(double)percentComplete
{
 if ([self earnedAchievementCache] == NULL) {
 [GKAchievement loadAchievementsWithCompletionHandler:^(NSArray *achievements,
 NSError *error) {
 if (error == NULL) {
 NSMutableDictionary *tempCache = [NSMutableDictionary dictionaryWithCapacity:

CHAPTER 4: Achievements 73

[achievements count]];

 for (GKAchievement* achievement in achievements) {
 [tempCache setObject: achievement forKey: [achievement identifier]];
 }

 [self setEarnedAchievementCache:tempCache];
 [self submitAchievement:identifier percentComplete:percentComplete];
 } else {
 [self callDelegateOnMainThread:@selector(achievementSubmitted:error:)
 withArg:NULL error:error];
 }
 }];
 } else {
 GKAchievement *achievement = [[self earnedAchievementCache]
 objectForKey:identifier];

 if (achievement != NULL) {
 if (([achievement percentComplete] >= 100.0) ||
 ([achievement percentComplete] >= percentComplete)) {
 achievement = NULL;
 }
 [achievement setPercentComplete:percentComplete];
 } else {
 achievement = [[[GKAchievement alloc] initWithIdentifier:identifier] autorelease];
 [achievement setPercentComplete:percentComplete];
 [[self earnedAchievementCache] setObject:achievement forKey:[achievement
 identifier]];
 }

 if (achievement != NULL) {
 [achievement reportAchievementWithCompletionHandler:^(NSError *error) {
 [self callDelegateOnMainThread: @selector(achievementSubmitted:error:)
 withArg: achievement error:error];
 }];
 }
 }
}

Before this code can be executed, you need to add a new class property. Create a new

mutable dictionary (and don’t forget to synthesize it). The relevant section of the header

of GameCenterManager should now look like the following.

@interface GameCenterManager : NSObject <GameCenterManagerDelegate>
{
 id <GameCenterManagerDelegate, NSObject> delegate;
 NSMutableDictionary* earnedAchievementCache;
}

@property(nonatomic, retain) id <GameCenterManagerDelegate, NSObject> delegate;
@property(nonatomic, retain) NSMutableDictionary* earnedAchievementCache;

Now look at the submitAchievement:percentComplete: method we added. There are two

primary if/else blocks. The first one is executed if [self earnedAchievemenetCache] is

NULL, which it will always be the first time this code is executed. Let’s take a look at

that block of code now.

CHAPTER 4: Achievements 74

[GKAchievement loadAchievementsWithCompletionHandler:^(NSArray *achievements, NSError
 *error) {
 if (error == NULL) {
 NSMutableDictionary *tempCache = [NSMutableDictionary dictionaryWithCapacity:
[achievements count]];

 for (GKAchievement *achievement in achievements) {
 [tempCache setObject:achievement forKey:[achievement identifier]];
 }

 [self setEarnedAchievementCache:tempCache];
 [self submitAchievement:identifier percentComplete:percentComplete];
 } else {
 [self callDelegateOnMainThread:@selector(achievementSubmitted:error:) withArg:NULL
 error:error];
 }
}];

IMPORTANT: The array that is returned by loadAchievementsWithCompletionHandler will not

show any achievements that you have not yet submitted a percentageCompleted for.

The primary function of this code snippet is to load a list of achievements into the

earnedAchievementCache. We call loadAchievementsWithCompletionHandler on

GKAchievement. This call returns an array of all the achievements that were set up in

iTunes Connect. We then store the GKAchievement object into the dictionary with the

identifier as the key. At this point, the code calls submitAchievement:percentComplete

again. This time, earnedAchievementCache is not NULL and the second set of code is

executed. If we encounter an error during this process, we use our standard delegate

callback to send the error back to our delegate.

You will need to add a new protocol method to GameCenterManager to handle this

delegate callback; this is a good time to do that. Add the following optional protocol to

the header file.

- (void)achievementSubmitted:(GKAchievement*)achievement error:(NSError*)error;

Now let’s take a look at the second section of code. The following code, when

successfully executed, submits the achievement to the Game Center servers.

GKAchievement *achievement = [[self earnedAchievementCache] objectForKey:identifier];
if (achievement != NULL) {
 if ((achievement.percentComplete >= 100.0) || (achievement.percentComplete >=
 percentComplete)) {
 achievement = NULL;
 }

 [achievement setPercentComplete:percentComplete];
} else {
 achievement = [[[GKAchievement alloc] initWithIdentifier: identifier] autorelease];
 [achievement setPercentComplete:percentComplete];

 [[self earnedAchievementCache] setObject:achievement forKey:[achievement identifier]];
}

CHAPTER 4: Achievements 75

if (achievement != NULL) {
 [achievement reportAchievementWithCompletionHandler: ^(NSError *error) {
 [self callDelegateOnMainThread:@selector(achievementSubmitted:error:)
 withArg:achievement error:error];
 }];
}

The first line of code retrieves a GKAchievement object from our

earnedAchievementCache, based on the identifier string that is passed into this method.

If the achievement is completed or the reported progress is equal to what we have on

the Game Center server, we set the achievement to NULL. This prevents us from tying

up networking time by submitting progress on something that will be ignored. We also

set the property for percentComplete on the GKAchievement object to the double that

was passed into this method.

In the event that the achievement doesn’t exist in the cache, we allocate and initialize a

new instance of it. In this event, we also want to add it to our local achievement cache.

The final step, after doing a NULL check, is to submit the achievement. We call

reportAchievementWithCompletionHandler on the achievement object. We then pass

the results back to our delegate using our existing protocol.

NOTE: All achievements have a percentageComplete regardless of whether they allow a
percentage to be completed at a time. If your achievement can only be completely earned or

unearned, then you will want to pass 100 for earned.

The last thing that we need to do in this section is implement our protocol method in

UFOGameViewController. Add the following method to the implementation of that file; all

we will worry about right now is printing the error and success information to the

console.

- (void)achievementSubmitted:(GKAchievement *)achievement error:(NSError *)error;
{
 if (error) {
 NSLog(@"There was an error in reporting the achievement: %@", [error
 localizedDescription]);
 } else {
 NSLog(@"achievement submitted");
 }
}

Resetting Achievements
There are circumstances when you might want to reset user achievements. Besides

being extremely helpful in debugging, you might find it useful to provide users with an

option to reset. You might want to add a prestige mode or give the users a chance to

start your game over from the beginning. The following code snippet will completely

reset all achievements in your app for the local user.

CHAPTER 4: Achievements 76

- (void)resetAchievements
{
 [self setEarnedAchievementCache:NULL];

 [GKAchievement resetAchievementsWithCompletionHandler:^(NSError *error) {
 if (error == NULL) {
 NSLog(@"Achievements have been reset");
 } else {
 NSLog(@"There was an error in resetting the achievements: %@", [error
 localizedDescription]);
 }
 }];
}

IMPORTANT: Don’t forget to remove the cached information you have stored on the achievements,

or you will not be able to progress the reset achievements until the app is restarted.

Adding Achievement Hooks
The biggest challenge in implementing achievements into your app is adding the hooks

to activate and progress those achievements into your normal routines. In my personal

experience, I have found that adding these hooks when the program is almost finished is

easier than trying to add them in as you go. In this section, I will provide a number of

examples of how to tie in achievements; your own app may differ significantly, but you

should be able to easily adapt the examples to suit your needs.

To make achievements easier to retrieve progress details, we first add a few

convenience methods to our GameCenterManager class. This is the first method we will

use to populate the local achievement cache.

-(void)populateAchievementCache
{
 if ([self earnedAchievementCache] == NULL) {
 [GKAchievement loadAchievementsWithCompletionHandler:^(NSArray *achievements,
 NSError *error) {
 if (error == NULL) {
 NSMutableDictionary* tempCache= [NSMutableDictionary dictionaryWithCapacity:
 [achievements count]];

 for (GKAchievement *achievement in achievements) {
 [tempCache setObject:achievement forKey:[achievement identifier]];
 }

 [self setEarnedAchievementCache:tempCache];
 } else {
 NSLog(@"An error occurred while loading achievements: %@", [error
 localizedDescription]);
 }
 }];
 }
}

CHAPTER 4: Achievements 77

The preceding method functions very similarly to the cache population code in the

submit achievement progress method previewed in the previous section. We will need to

populate the local cache in order to work with the other two convenience methods. We

will want to call the populateAchievementCache as soon as we can after authenticating;

in our demo app, I have added a call to it from the local player did authenticate method

in GameCenterManager. Add the following method as well.

- (double)percentageCompleteOfAchievementWithIdentifier: (NSString*)identifier
{
 if ([self earnedAchievementCache] == NULL) {
 NSLog(@"Unable to determine achievement progress, local cache is empty");
 } else {
 GKAchievement *achievement= [[self earnedAchievementCache] objectForKey:identifier];

 if (achievement != NULL) {
 return [achievement percentComplete];
 } else {
 return 0;
 }
 }
 return -1;
}

The preceding method returns a double for the percent complete for the achievement

with the identifier passed to it. If it cannot find a copy of the achievement in the local

cache, we can assume the percent complete is 0. The next method uses the preceding

method to return either YES or NO on whether an achievement has been completed.

- (BOOL)achievementWithIdentifierIsComplete: (NSString*)identifier
{
 if ([self percentageCompleteOfAchievementWithIdentifier:identifier] >= 100) {
 return YES;
 } else {
 return NO;
 }
}

NOTE: Do not forget to call populateAchievementCache as soon as possible after authentication.

Otherwise, these convenience methods will not return correct information.

Now that we have some helper methods in place, we can begin to hook up the

achievement hooks for UFOs. We have three different achievements we need to tie in.

The first two both have to do with the number of cows that we have abducted, so let’s

start there. Modify the finishAbducting method of UFOGameViewController to match the

following.

- (void)finishAbducting
{
 if (!currentAbductee || !tractorBeamOn) return;

 [cowArray removeObjectIdenticalTo:currentAbductee];

 [tractorBeamImageView removeFromSuperview];

CHAPTER 4: Achievements 78

 tractorBeamOn = NO;

 score++;
 [scoreLabel setText:[NSString stringWithFormat:@"SCORE %05.0f", score]];

 [[currentAbductee layer] removeAllAnimations];
 [currentAbductee removeFromSuperview];

 currentAbductee = nil;

 [self spawnCow];

 if (![[self gcManager] achievementWithIdentifierIsComplete:
@"com.dragonforged.ufo.aduct1"]) {
 [[self gcManager] submitAchievement:@"com.dragonforged.ufo.aduct1"
 percentComplete:100];
 }
}

We are concerned with only the last few lines of this method at this time. First, we call

our convenience method achievementWithIdentifierIsComplete on our identifier string for

a single abduction. Because this is an earned or unearned achievement, we don’t need

to worry about current percentage complete. To mark the achievement as complete, we

set its percent complete to 100.

NOTE: Don’t forget to change the identifier string from the example to the one that you used in

iTunes Connect for a single abduction.

The next achievement is hooked up in a similar fashion; the only difference is that we

use incremental progress. Add the following code snippet onto the end of the

finishAbducting method.

if (![[self gcManager] achievementWithIdentifierIsComplete:
 @"com.dragonforged.ufo.abduct25"]) {
 double percentComplete = [[self gcManager]
 percentageCompleteOfAchievementWithIdentifier: @"com.dragonforged.ufo.abduct25"];

 percentComplete += 4;
 [[self gcManager] submitAchievement:@"com.dragonforged.ufo.abduct25"
 percentComplete:percentComplete];
}

In the preceding code snippet, we use the same methodology that we did for submitting

a complete achievement, but with one main difference. We first need to determine the

current progress on the achievement. We then add 4 to it, since 4 percent of 25 is 1. To

increment by 1 abduction out of 25, we need to add 4.

CHAPTER 4: Achievements 79

TIP: Do not forget about the resetAchievement method that we added to GameCenterManager. It
is very useful in debugging the submit code. I find it is helpful to keep a call to this in the

didAuthenticate section to always put the app back to a clean state during debugging.

Go ahead and run the game and abduct a few cows. When you are done, you will notice

that the achievement screen now shows progress similar to that shown in Figure 4–8. If

you abducted at least one cow, you should have a complete achievement. If you

abducted less than 25 cows, you should have one progressed achievement. Notice that

the user is not informed when he or she completes an achievement; we will discuss a

method of notification in the later section, “Achievement Completion Feedback.”

Figure 4–8. Progressing achievements

The last hook we add for this project handles the player for the five-minutes

achievement. Your first instinct is probably to keep track of time played, and submit it as

progress when your user exits the game. This might not be the best approach. We want

to inform the user when he or she completes an achievement. You don’t want them to

have to wait until they finish a game to see which achievements they have earned. There

are many approaches to this problem. For this example, we will fire an NSTimer every

three seconds (which is one percent of five minutes) and update the achievements

progress. Add the following to UFOGameViewController.

- (void)tickThreeSeconds
{
 if ([[self gcManager]
 achievementWithIdentifierIsComplete:@"com.dragonforged.ufo.play5"]) return;

 double percentComplete = [[self gcManager]
 percentageCompleteOfAchievementWithIdentifier:@"com.dragonforged.ufo.play5"];
 percentComplete++;
 [[self gcManager] submitAchievement:@"com.dragonforged.ufo.play5"
 percentComplete:percentComplete];
}

CHAPTER 4: Achievements 80

As well as modifying the viewDidAppear and ViewWillDisappear methods to match the

following, we will start a three-second timer. Every time the timer fires, we call

tickThreeSeconds. This gives us our current progress of the achievement, to which we

add one percent, then submit it back to the server. In the event that the achievement is

already complete, we simply return.

-(void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear: animated];

 timer = [NSTimer scheduledTimerWithTimeInterval:3.0 target:self
 selector:@selector(tickThreeSeconds) userInfo:nil repeats:YES];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear: animated];
 [timer invalidate];
 timer = nil;
}

Another Convenience Method
There might be occasions where you would like to get GKAchievement when all you

have available is an achievement identifier. The following method will return a

GKAchievement when passed an achievement identifier.

- (GKAchievement*)achievementForIdentifier:(NSString*)identifier
{
 GKAchievement *achievement = [[self earnedAchievementCache] objectForKey:identifier];

 if (achievement == nil) {
 achievement = [[[GKAchievement alloc] initWithIdentifier:identifier] autorelease];
 [[self earnedAchievementCache] setObject:achievement forKey:[achievement
 identifier]];
 }

 return achievement;
}

Achievement Completion Feedback
It is important to let users know when they have completed an achievement. However,

you don’t want to just present a UIAlertView, as that would be very distracting,

considering most achievements are going to be completed in the middle of an action,

such as completing 20 laps in a racing game. You wouldn’t want to take the user away

from any interaction, so we need a better system. I have always been a fan of the small

view that slides in from the bottom or top to inform the user of the accomplishment—

very similar to the fashion in which you get feedback from logging in to Game Center.

The first thing we need to do in order to implement a feedback system is add a new

protocol method to GameCenterManager. We will use this to inform the delegate that an

CHAPTER 4: Achievements 81

achievement has been completed for the first time. Add the following method to the

header file, as an optional protocol.

-(void)achievementEarned:(GKAchievementDescription*)achievement;

In addition, we need to modify our existing submitAchievement:percentComplete:

method. Take a look at the last if statement block of that method. We want to modify it

as follows, but add an if statement to determine whether we have a

percentageComplete over 100, which will call our new protocol. Also notice that we are

using GKAchievementDescription instead of GKAchievement. We will discuss this

further in the next section, “Custom Achievement GUI.”.

if (achievement != NULL) {
 [achievement reportAchievementWithCompletionHandler:^(NSError *error) {
 if (percentComplete < 100) {
 [self callDelegateOnMainThread: @selector(achievementSubmitted:error:)
 withArg:achievement error:error];
 return;
 }

 [GKAchievementDescription loadAchievementDescriptionsWithCompletionHandler:
^(NSArray *descriptions, NSError *error) {
 for (GKAchievementDescription *achievementDescription in descriptions) {
 if (![[achievement identifier] isEqualToString:[achievementDescription
 identifier]]) continue;

 [self callDelegateOnMainThread:@selector(achievementEarned:)
 withArg:achievementDescription error:nil];
 }
 }];

 [self callDelegateOnMainThread: @selector(achievementSubmitted:error:)
 withArg:achievement error:error];
 }];
}

This completes the modifications that we need to make to the GameCenterManager

class. Now we need to hook up the visual feedback for the user. Move back into

UFOGameViewController.m and add our new protocol method achievementEarned:.

You could add any type of feedback here including a standard UIAlertView, but we will

be exploring something a little more user friendly in this section.

We need to create some new IBOutlets as part of our UFOGameViewController. Make a

new view and set its dimensions to 480 25. Then, set the background of the view to

black with 70% opacity. We also create a new label, place it in the center of this view,

and set the text alignment to center. Your view should look similar to that shown in

Figure 4–9.

Figure 4–9. Achievement earned view and label

CHAPTER 4: Achievements 82

Hook up both the view and the label to IBOutlets. I have named mine

achievementCompletionView and achievementCompletionLabel, respectfully. We then

modify our achievementEarned: method, as well as add an additional method to handle

the animations.

- (void)achievementEarned:(GKAchievementDescription *)achievement;
{
 [achievementCompletionView setFrame:CGRectMake(0, 320, 480, 25)];
 [[self view] addSubview:achievementCompletionView];
 [achievementcompletionLabel setText:[achievement achievedDescription]];

 [UIView beginAnimations:@"SlideInAchievement" context:nil];
 [UIView setAnimationDuration:0.5];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationDidStopSelector:@selector(achievementEarnedAnimationDone)];
 [achievementCompletionView setFrame:CGRectMake(0, 295, 480, 25)];
 [UIView commitAnimations];
}

-(void)achievementEarnedAnimationDone
{
 [UIView beginAnimations:@"SlideInAchievement" context:nil];
 [UIView setAnimationDelay:5.0];
 [UIView setAnimationDuration:1.0];
 [achievementCompletionView setFrame:CGRectMake(0, 320, 480, 25)];
 [UIView commitAnimations];
}

Both of these methods are fairly straightforward. When we get a delegate callback from

completing the achievement, we add our achievementCompletionView to our game

view. Then, we animate it onto the bottom of the view. After a five-second delay, we

animate it back off the view. You also have access to the images used in

GKAchievementDescription. We will look more into these properties in the next section.

TIP: You might need to reset your achievements to see any completion progress. I find it is

helpful to create a new button that resets achievements for use during testing.

If you run the app now and abduct a single cow (assuming you haven’t yet

accomplished that achievement), you should see output very similar to that shown in

Figure 4–10.

CHAPTER 4: Achievements 83

Figure 4–10.

iOS 5 Completion Banners
In iOS 4 you were responsible for creating and displaying achievement feedback for your

users. Apple has added a very easy-to-use property onto the GKAchievement class to

allow you to quickly implement this step: setting the showsCompletionBanner property

as seen in the following code snippet with display a message to the user when an

achievement has been completed. The default property of showsCompletionBanner is

NO.

myAchievement.showsCompletionBanner = YES;

Custom Achievement GUI
There might be times when you will want to customize the appearance of your

achievement system to match the custom GUI in your app. As we saw with

leaderboards in the previous chapter, we have the ability to work with the raw data and

present it in whatever fashion we choose. This section focuses on adding achievements

to your app using your own GUI. As with the leaderboard section, the first thing that we

need to do is to add a new button to get to our custom achievement progress view. Add

a new button and associated action, as shown in Figure 4–11.

CHAPTER 4: Achievements 84

Figure 4–11. Adding a custom achievement button in Interface Builder

We will need to create a new class to handle processing and displaying the achievement

progress information. Create a new class named UFOAchievementViewController and

make it a subclass of UIViewController. Set up actions and outlets in the XIB for a table

view, a navigation bar, and a dismiss button. Don’t forget to set the datasource and

delegate for the table view as well. Your XIB should look like the one shown in Figure 4–

12.

Figure 4–12. Custom achievement progress view, as shown for interface builder

We also want to create an array that will be used to hold onto the achievement data.

Create a new NSArray object and name it achievementArray. We also want to import the

GameCenterManager header and conform to its protocol. The header file for

UFOAchievementViewController should now look similar to the following one.

CHAPTER 4: Achievements 85

#import <UIKit/UIKit.h>
#import "GameCenterManager.h"

@interface UFOAchievementViewController : UIViewController <UITableViewDelegate,
 UITableViewDataSource, GameCenterManagerDelegate>
{
 GameCenterManager *gcManager;

 UITableView *achievementTableView;

 NSArray *achievementArray;
}

@property (nonatomic, retain) GameCenterManager *gcManager;
@property (nonatomic, retain) NSArray *achievementArray;
@property (nonatomic, retain) IBOutlet UITableView *achievementTableView;

- (IBAction)dismissAction;

@end

Next, hook up the action to present our new UFOAchievementViewController class. Edit

the action that was created in UFOViewController to reflect the following changes.

- (IBAction)customAchievementButtonPressed;
{
 UFOAchievementViewController *achievementViewController =
 [[UFOAchievementViewController alloc] init];

 [achievementViewController setGcManager:gcManager];

 [self presentModalViewController:achievementViewController animated:YES];

 [achievementViewController release];
}

Let’s take a minute to switch over to the implementation file for

UFOAchievementViewController. First, add a method to ensure the view is properly set

for landscape orientation. Add the following method.

-(BOOL) shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation
{
 if (UIInterfaceOrientationIsLandscape(interfaceOrientation)) return YES;

 return NO;
}

we also need a dismiss action, add that method as well.

- (IBAction)dismissAction
{
 [self dismissModalViewControllerAnimated:YES];
}

If you were to run the app now, you should see a plain and boring table view, similar to

the one shown in Figure 4–13. In addition, the dismiss button should now be working.

CHAPTER 4: Achievements 86

Figure 4–13. The blank custom table that we will be using for our custom achievements

Before we can go on with our UFOAchievementViewController, we need to move back

into our GameCenterManager class. Add the following method as an optional protocol

to the GameCenterManagerDelegate.

- (void)achievementDescriptionsLoaded:(NSArray *)descriptions error:(NSError *)error;

Then add the following new method to the implementation of GameCenterManager.

- (void)retrieveAchievementMetadata
{
 [GKAchievementDescription loadAchievementDescriptionsWithCompletionHandler:
^(NSArray *descriptions, NSError *error) {
 [self callDelegateOnMainThread:@selector(achievementDescriptionsLoaded:error:)
 withArg:descriptions error:error];
 }];
}

This method will return all the GKAchievementDescriptions that are found on the Game

Center server. We can now move back to our UFOAchievementViewController class and

finish implementing the custom achievement table.

IMPORTANT: The retrieveAchievementMetadata method will return hidden achievements as

well. If you want to hide these from the user, you will have to filter them out of the results.

Modify the viewWillAppear: method of UFOAchievementViewController to match the

following.

- (void)viewWillAppear:(BOOL)animated
{
 [[self gcManager] setDelegate:self];

 [super viewWillAppear: YES];

 [[self gcManager] retrieveAchievementMetadata];
}

CHAPTER 4: Achievements 87

In addition, add the new protocol method that we created earlier. If we do not encounter

any errors, we simply set the returned descriptions to our local array. When we get the

new data, we will also want to refresh the table to show the data to the user.

- (void)achievementDescriptionsLoaded:(NSArray *)descriptions error:(NSError *)error;
{
 if (error == nil) {
 [self setAchievementArray:descriptions];
 } else {
 NSLog(@"An error occurred when retrieving the achievement descriptions: %@",
 [error localizedDescription]);
 }

 [achievementTableView reloadData];
}

For our numberOfRowsInSection method, we simply return the count on the

achievementArray, as follows.

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [[self achievementArray] count];
}

We also need to implement a cellForRowAtIndexPath method. Add the following method

to the implementation as well. After it is added, we will look at it in more detail.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 [cell setSelectionStyle:UITableViewCellSelectionStyleNone];
 }

 GKAchievementDescription *achievementDescription = [[self achievementArray]
 objectAtIndex:[indexPath row]];
 [[cell textLabel] setText:[achievementDescription title]];

 if ([achievementDescription image] == nil) {
 [[cell imageView] setImage:[GKAchievementDescription
 placeholderCompletedAchievementImage]];
 [achievementDescription loadImageWithCompletionHandler:^(UIImage *image, NSError
 *error) {
 if (error == nil) {
 [[cell imageView] setImage:image];
 }
 }];
 } else {
 [[cell imageView] setImage:[achievementDescription image]];
 }

 return cell;
}

CHAPTER 4: Achievements 88

The first half of this method is rather standard; we create a new table cell or we use one

from our reusable collection. We are using the default built-in table cell to save some

time as well. We create a new GKAchievementDescription and populate it based on the

row number from our achievementArray.

The first property we work with is the title, which we use to set the textLabel of the cell.

In most circumstances, you will want to use the achievedDescription or

unachievedDescription as well as the title. For the sake of simplicity, we use only the title

here. Next, we need to set the image for the achievement. This is slightly more complex.

GKAchievementDescription has an image property associated with it, which is nil until

you populate it. First, check to see whether the property is populated; we can

accomplish this with a simple nil check. If it is populated, we set the cell image to the

one that we have cached. If not, we need to load an image from the Game Center

servers. To populate it, we call loadImageWithCompletionHandler on the

GKAchievementDescription object. This returns the earned image. Notice that we used

the default placeholder image, which we can access through a class method on

GKAchievementDescription.

TIP: When setting an image in the UITableViewCellSytleDefault cell, do not set the image to nil.
This will cause the cell to left align the text and remove the image view. If we then use our block

to load the image, it wouldn’t appear until the cell or table has been reloaded. This is the reason

we set the placeholder image first.

If we were to run the app and visit our custom achievement view, it should look similar

to the one shown in Figure 4–14.

Figure 4–14. Achievement data, as displayed in a custom GUI

We are able to view only a list of achievements and associated images, but not how far

the user has progressed toward unlocking the achievements. If you recall, earlier in this

chapter we wrote a few convenience methods, which can be useful here. We have two

CHAPTER 4: Achievements 89

methods that will return just the progress for the achievement,

percentageCompleteOfAchievementWithIdentifier: and

achievementWithIdentifierIsComplete. In addition, if we want access to the entire

GKAchievement object, we can use achievementForIdentifier. Let’s use the

percentageCompleteOfAchievementWithIdentifier: to display the percentage complete

here. Modify the section of code in the cellForRowAtIndexPath: that sets the text label of

the cell. The new code snippet should look like the following.

NSString *percentageCompleteString = [NSString stringWithFormat: @" %.0f%% Complete",
 [[self gcManager] percentageCompleteOfAchievementWithIdentifier:
[achievementDescription identifier]]];

[[cell textLabel] setText:[[achievementDescription title]
 stringByAppendingString:percentageCompleteString]];

If you run the game again, you will notice a more helpful output, as shown in Figure 4–15.

Figure 4–15. Achievements with custom GUI and completion percentage

Recovering from a Submit Failure
You as the developer are solely responsible for handling achievement-submitting

failures. You do not want your users to lose any achievement progress. Losing an

achievement is very frustrating to your users and should be avoided at all cost. To

prevent this, take the same approach that we used when working with score failures.

The primary difference is that there is no need to store the GKAchievement object

because it does not contain any date information or time-sensitive information. We just

need to store the percentageComplete. We will create a new method to handle this

behavior for us. Add the following method to the GameCenterManager class.

-(void)storeAchievementToSubmitLater:(GKAchievement *)achievement
{
 NSMutableDictionary *achievementDictionary = [[NSMutableDictionary alloc]
 initWithArray:[[NSUserDefaults standardUserDefaults]
 objectForKey:@"savedAchievements"]];

3

CHAPTER 4: Achievements 90

 if ([achievementDictionary objectForKey:[achievement identifier]] == nil) {
 [achievementDictionary setObject:[NSNumber numberWithDouble:[achievement
 percentComplete]] forKey:[achievement identifier]];
 } else {
 double storedProgress = [[achievementDictionary objectForKey:
 achievement.identifier] doubleValue];
 if ([achievement percentComplete] > storedProgress) {
 [achievementDictionary setObject:[NSNumber numberWithDouble:[achievement
 percentComplete]] forKey:[achievement identifier]];
 }
 }

 [[NSUserDefaults standardUserDefaults] setObject:achievementDictionary
 forKey:@"savedAchievements"];

 [achievementDictionary release];
}

This method will treat an achievement as an argument, and verify whether it is not

already stored as a reference in our achievements that have failed to properly be

submitted. If it has, then we need to see which one is progressed further so we do not

have any instances in which we delete a user’s progress. Once that is done, we store it

into userDefaults as a dictionary, using the identifier as the key and the percentage

completed as the value. We add a call to this method from an error in the

submitAchievement:PercentComplete: method. You can find the relevant snippet of

code, as follows.

if (achievement!= NULL) {
 [achievement reportAchievementWithCompletionHandler: ^(NSError *error) {
 if (error != nil) {
 [self storeAchievementToSubmitLater: achievement];
 }

 if (percentComplete >= 100) {
 [GKAchievementDescription loadAchievementDescriptionsWithCompletionHandler:
 ^(NSArray *descriptions, NSError *error) {
 for (GKAchievementDescription *achievementDescription in descriptions) {
 if (![[achievement identifier] isEqualToString:[achievementDescription
 identifier]]) continue;
 [self callDelegateOnMainThread:@selector(achievementEarned:)
 withArg:achievementDescription error:nil];
 }
 }];
 }

 [self callDelegateOnMainThread: @selector(achievementSubmitted:error:)
 withArg: achievement error: error];
 }];
}

TIP: I recommend informing your users their achievement could not be submitted at this time,
but it has been saved and will be submitted later. This lets the user know that any progress has

not been lost.

CHAPTER 4: Achievements 91

We also need a new method that will check to see whether we have uncommitted

achievement progress. There is no right answer for when it is a good time to call this

method. You can typically get away with calling it after a user authenticates with Game

Center, but you may want to add additional methods that it is called from, such as

whenever the reachability status is updated. Add the following method to your

GameCenterManager class.

- (void)submitAllSavedAchievements
{
 NSMutableDictionary *achievementDictionary = [[NSMutableDictionary alloc]
 initWithArray:[[NSUserDefaults standardUserDefaults]
 objectForKey:@"savedAchievements"]];
 NSArray *keys = [achievementDictionary allKeys];

 for (int x = 0; x < [keys count]; x++) {
 [self submitAchievement:[keys objectAtIndex:x] percentComplete:
[[achievementDictionary objectForKey:[keys objectAtIndex:x]] doubleValue]];

 [[NSUserDefaults standardUserDefaults] removeObjectForKey:[keys objectAtIndex:x]];
 }

 [achievementDictionary release];
}

This method loads a copy of our unsubmitted progress and loops through each item,

attempting to resubmit them as they go. In the event that they fail to be submitted again,

they will be added back to our saved data.

Summary
You now have all the tools you need to add rich and complex achievements into your

Game Center–enabled app. You now know the value of adding achievements, as well as

how to set up and configure them in the iTunes Connect Portal. We have discussed the

pros and cons of using both Apple’s default GUI and a custom GUI that you have

designed. You now know how to expand our GameCenterManager class to include

posting achievement progress, getting achievement feedback, and resetting

achievement progress all together.

The most important step completed in this chapter is expanding the reusable

GameCenterManager class, which will allow you to easily add achievements in future

projects. In the next chapter, we will explore Game Center’s matchmaking and invitation

systems so you can add multiplayer capabilities and other networking features.

93

 Chapter

Matchmaking and
Invitations
Beginning with this chapter, and through the next few chapters, we will discuss how to

add networking with Game Center, and later Game Kit, into your app or game. Adding

networking capability to your app is almost considered essential technology in the

modern era. Virtually all modern software has some sort of networking component

associated with it today, whether it is talking to an online service to retrieve or post

information, or talking directly to a peer device to exchange data.

In the following chapters we will discuss communicating with other peer devices,

although not all of our networking configurations will be peer to peer (see Chapter 7 for

details on network design).

This chapter, in particular, explores how to use Game Center to find and invite peers into

your app using Game Center’s invitation system.

Game Center provides an amazingly undervalued selling and distribution tool to you for

very little overhead, in regards to handling invitations. When inviting non-local users to

begin a multiplayer experience in your game or app, you have the option to invite any of

your Game Center friends. If the friends that you invite do not currently have the app

installed, they will be prompted to purchase the app instantly and begin playing. There

are no other methods on the iPhone to send a “buy now” link to another user in this

manner. This functionality provides a great way to grow your user base—just let your

users do the selling for you.

Why Add Matchmaking and Invitations to Your App?
When looking at the list of the top-ten selling PC or console games for any recent year,

you will find it heavily dominated by games that demonstrate a strong focus on

multiplayer interaction. Let’s take a quick look at the number one selling PC game for

2010, Call of Duty: Black Ops. While this game does feature a single-player mode, this is

considered more of an add-on to the game as opposed to the primary selling point. The

5

CHAPTER 5: Matchmaking and Invitations 94

focus was obviously the multiplayer gaming, even at the sacrifice of the single-player

campaign. In recent years, the industry’s focus has shifted from creating rich and in-

depth single-player campaigns to putting more effort into the multiplayer. There is a

perfectly reasonable answer for this new phenomenon: you get more bang for the buck

with multiplayer.

Humans are, by nature, social creatures. We crave social interaction for healthy mental

development. Video games and other social software are increasingly becoming an

outlet for that interaction. Whether you agree with the politics of that statement is not

what is important here, but the fact remains that multiplayer games are becoming more

and more popular. Software users have grown increasingly fond of multiplayer

interaction, be it a massive multiplayer online role-playing game, or your garden-variety

first-person shooter.

Adding a multiplayer element to your game can increase user playtime by a hundredfold.

If you need proof, look at Quake 3 or Unreal Tournament, both of which were released in

1999 and both of which still had users logging in for many years after. If these games

had focused solely on single-player, they most likely wouldn’t have had such a devoted

fan base. Listed here are some additional reasons why adding matchmaking and

invitations through Game Center should be a simple business decision for your

products.

 Adding a multiplayer component to a game is a great way to add

additional polish. Depending on the type of game you are working

with, it might be very minor additional work to add a multiplayer

element.

 Users have come to expect multiplayer from top-notch games on the

App Store.

 You can justify a higher selling point if you have a well done

multiplayer component.

 There is no better way to have users download your app on the fly

than the auto-buy invitation system. If you can set up perspective

users for a situation in which they are invited to play and can purchase

immediately, you will have a much better chance of closing the sale.

 You can increase playtime or use-time in your app or game, if you are

using an ad-supported system. This will result in more income. If you

are selling a paid app, users will feel like they have gotten more for

their money.

 Humans like to compete, so encourage your users to do what they

enjoy. Multiplayer might not be for everyone, but for many, it is all they

are interested in when shopping for a new game.

TIP: Whenever possible, also provide your users with a single-player option for your game, as

there is still a noticeable user base that prefer single-player campaigns.

CHAPTER 5: Matchmaking and Invitations 95

Common Matchmaking Scenarios
Before we begin working with matches and invitations themselves, it is important to

understand some of the scenarios that you might encounter in your quest to implement

multiplayer networking into your iOS app or game.

 The first, and probably most common, scenario that you could

encounter would be players who are already in your app and want to

create an auto-matched game. Both players will already have the app

installed and loaded, as well as be in a place where it is expected that

they will want to begin a networked session with each other. The

invitee player will receive a notification asking whether he or she wants

to join a game with the inviter. When both agree, the matchmaking GUI

is dismissed and a new match is created.

 Another common scenario that you could encounter would be if the

user creates a new matchmaking event and invites other players from

their Game Center friends list. The invited friends will receive a push

notification informing them that they have been invited to a game; if

they already have the game installed and accept the invitation, the

game will be launched. Once all invited players have entered the

match, the game will begin. If they do not yet have the game installed,

they will be prompted to install it and it will automatically be launched

after it has been successfully installed.

 A slightly different event path would occur if a friend is invited, and

they do not yet have the app installed, and have decided to install the

app. After the install process, the app will automatically launch and

you can continue with the normal flow of the matchmaking event.

 A player can also create a new matchmaking event from within the

Game Center.app itself. In this scenario, All players are launched into

the app and receive an invitation to join the match. The best part about

this scenario is that if your app already supports invitations, you don’t

need to write any additional code to support this scenario.

 A player can also invite a friend or multiple friends and fill any

remaining slots with the auto-matcher. This is a mix and match of the

first two scenarios and, if support for both of them is added, you

shouldn’t have any additional programming to do for this scenario.

 The last scenario you could encounter (optionally) is to

programmatically auto-match players. In this case, a request would be

sent to the Game Center servers and matches would be returned for

you. The player would not see any standard GUI and you have the

option to implement your own interface.

CHAPTER 5: Matchmaking and Invitations 96

NOTE: Matchmaking can only be done between two of the same apps. If the bundle identifier

doesn’t match, the apps will not be able to communicate over the matchmaking system.

Creating a New Match Request
To create a new match, you first have to create a new GKMatchRequest object. This

object represents the desired parameters for the new match that you will be creating. A

GKMatchRequest is used both when presenting a GUI as well as when creating matches

programmatically. When working with the GUI, you will pass the GKMatchRequest

object to a new instance of GKMatchmakerViewController; on the other hand, if you are

handling the matchmaking programmatically, you will pass the object to an instance of

GKMatchmaker. See the following sections for more details on programmatic match

interaction. For the time being, let’s focus on how to create a new match request in your

code. Take a look at the following code snippet.

GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 2;
request.maxPlayers = 2;

This example is the simplest demonstration of how to create a new match. You must

specify the maximum number of players as well as the minimum. In this example, we are

creating a new request that will require exactly two players.

A GKMatchRequest also has a property titled playersToInvite, in which you can use an

array of GKPlayer identifiers to automatically populate into a new match. This can be

very helpful when playing multiple games that are chained back to back and you want to

keep the same groups of players together. This property is also prepopulated when your

app is launched from the Game Center.app with the players that invited you into the

app.

NOTE: When accepting an invite to a match with a friend, the event is handled from the Game

Center.app and the playersToInvite property will be populated.

GKMatchRequest also has an additional two properties that you will be working with in

later sections of this chapter. These are playerAttributes and playerGroup. These two

properties are discussed in length in the sections that share their names.

NOTE: If you are using Game Center as your server for hosting games, you are limited to a
maximum of four players. However, if you implement your own server as discussed in the “Using

Your Own Server” section of this chapter, you can include up to 16 players.

CHAPTER 5: Matchmaking and Invitations 97

Presenting Match GUI
We begin by first working with the standard matchmaking GUI provided to us by Apple.

Start by first adding a new button to handle presenting the view on the main screen of

our test game. I have also gone ahead and renamed the old Play button to Single Player,

and created a new button called Multiplayer (see Figure 5–1). We will use the

UFOViewController to act as the delegate for our matchmaking behavior, so set the view

controller to conform to GKMatchmakerViewControllerDelegate. Additionally, modify the

action method of the multiplayer button we just added to match the following code.

- (IBAction)multiplayerButtonPressed;
{
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 2;

 GKMatchmakerViewController *mmvc = [[GKMatchmakerViewController alloc]
initWithMatchRequest:request];
 mmvc.matchmakerDelegate = self;
 [request release];

 [self presentModalViewController:mmvc animated:YES];
 [mmvc release];
}

We create a new instance of GKMatchRequest, as we did in the previous section. Our

demo game will consist of exactly two players, so we set the max and the min both to

two.

Figure 5–1. Adding a new button for multiplayer in the UFOViewController.xib

In the next part of the code snippet, we create a new instance of

GKMatchViewController and alloc and init it with the GKMatchRequest we just created.

CHAPTER 5: Matchmaking and Invitations 98

We also set the delegate to our UFOViewController class. When that is done, we present

it as we present any other modal view. You should have output that looks similar to that

pictured in Figure 5–2.

If you haven’t already done so, now would be a good time to populate your friends list

on your sandboxed Game Center account. It is helpful to have several unused email

addresses available for this process, as you don’t want to use any email addresses that

have previously been used with iTunes Connect or with Game Center. Once you have

populated a friend or two, you can go ahead and tap on the Invite Friend button pictured

in Figure 5–2. You should now see a list of your friends and have the ability to invite

them into your app, as shown in Figure 5–3.

REMINDER: Do not use any email addresses you have previously used in iTunes Connect or
Game Center when creating sandboxed accounts, as it can cause strange and unexpected

behavior.

Figure 5–2. MatchmakerViewController creating a new match GUI with two players

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5: Matchmaking and Invitations 99

Figure 5–3. Inviting a friend from your Game Center friends list

Before we can continue, we need to implement the required delegate methods for the

GKMatchmakerViewController. We need to implement the following three methods

before we can continue working with matchmaking.

- (void)matchmakerViewControllerWasCancelled:(GKMatchmakerViewController
 *)viewController
{
 [self dismissModalViewControllerAnimated:YES];
}

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
 didFailWithError:(NSError *)error
{
 [self dismissModalViewControllerAnimated:YES];

 if (error != nil)
 {
 NSString *message = [NSString stringWithFormat:@"An error occurred:
 %@", [error localizedDescription]];

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@""
 message:message
 delegate:nil
 cancelButtonTitle:@"Dismiss"
 otherButtonTitles:nil];

 [alert show];
 [alert release];
 }
}

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
 didFindMatch:(GKMatch *)match
{
 [self dismissModalViewControllerAnimated:YES];
}

CHAPTER 5: Matchmaking and Invitations 100

The first two methods handle user cancellations and failures, while the third method

handles the successes. The last method will return a GKMatch object upon success; we

will use this object in the following chapters to begin a new match.

When working with a variable number of players allowed per match, the user will have

the option of adding and removing player slots from the matchmaker view controller as

seen in Figure 5–4. When inviting friends into a Game Center match, you will have the

option of supplying a short message to be displayed with the invitation, as seen in

Figure 5–5.

Figure 5–4. A matchmaker screen with a variable number of players. Notice the Remove Player and Add Player
buttons, and the modified navigation bar.

Figure 5–5. Sending an invitation method to a friend asking them to begin a match with you. This message will
be sent as a push notification and displayed in the fashion of an incoming text message on the invitee’s device, as
shown later in Figure 5–6.

CHAPTER 5: Matchmaking and Invitations 101

Handling Incoming Invitations
When implementing matchmaking into your app, you also have to implement a system

to handle invitations from friends. The invitee’s device will receive a push notification

informing them that one of their friends has invited them to play a game. Assuming they

have the game installed and accept the invitation, you will be required to handle

connecting the two players together via a new match. If the invitee does not have the

game or app installed, they will be instructed to download it. After the download is

finished, the normal invitation process is followed.

NOTE: You will also need to process invitations from new matches created within Game
Center.app. You most likely won’t need to write any additional code; however, you do want to

thoroughly test this interaction path.

We will process invitations using an invitation handler (special thanks to Apple for the

naming). The invitation handler accepts two parameters; only one of these parameters

will be non-nil, depending on the type of invitation you are handling.

 The acceptInvite parameter is non-nil when the app receives an

invitation from a Game Center friend. The match request has already

been created by the player who invited you, so your app will not need

to create its own when accepting the invitation.

 The playersToInvite parameter, which we discussed earlier in this

chapter, is non-nil when Game Center.app launches your app. The

property contains an array of player identifiers for the player to invite

with a new GKMatchRequest. When playersToInvite property is non-

nil, you will be required to create a new GKMatchRequest and

populate it with the players that you received here.

IMPORTANT: When working with the sandboxed mode and invitations, there can be some
quirkiness. If you find yourself never getting the invited push notification, open up the app on
both devices and invite the other player on both devices. After this has been done once, it

normally restores the ability to test invitations from the Springboard.

Now that we know what kind of parameters that we will be working with, as well as the

scenarios that we will encounter, we can begin to write a new invitation handler.

GKMatchmaker has a singleton method called sharedMatchmaker, which accepts a

property for inviteHandler. We use a block here to set up and handle the invitations as

they are received. To keep things clean and simple, we wrap our invitation handler in its

own method in our GameCenterManager class. Add the following new method to

GameCenterManager.

CHAPTER 5: Matchmaking and Invitations 102

- (void)setupInvitationHandler:(id)inivationHandler;
{
 [GKMatchmaker sharedMatchmaker].inviteHandler = ^(GKInvite *acceptedInvite,
 NSArray *playersToInvite)
 {
 GKMatchmakerViewController *mmvc = nil;
 if (acceptedInvite)
 {
 mmvc = [[GKMatchmakerViewController alloc] initWithInvite:acceptedInvite];
 }
 else if (playersToInvite)
 {
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 2;
 request.playersToInvite = playersToInvite;
 mmvc = [[GKMatchmakerViewController alloc] initWithMatchRequest:request];
 [request release];
 }
 mmvc.matchmakerDelegate = inivationHandler;
 [inivationHandler presentModalViewController:mmvc animated:YES];
 [mmvc release];
 };
}

Let’s break down this method to see exactly what is happening at each step of the

process. The first thing we do is set a block to the inviteHandler property on the

shareMatchmaker singleton. When this block is executed, which will happen when a

user accepts an invite, we have two possible outcomes.

The first is acceptedInvite is not nil. In this scenario, we create a new instance of

GKMatchmakerViewController and init it with the invite that was accepted. We then

present the view controller to the user.

In the second scenario, playersToInvite is non-nil, in which case we then need to create

a new instance of GKMatchRequest. In our example game, we only ever allow two

players, but you will set this to the total maximum players that can be played against

here. We set the playersToInvite property of the request to the array of player IDs that

was passed in from the block. After we have created the new request object, we can

create a GKMatchmakerViewController to present the information to our user. They will

see the standard matchmaker view with the players prepopulated for them.

IMPORTANT: You cannot accept or otherwise process an invitation formally until you have

authenticated a local user with Game Center. It is, therefore, important to register an invitation

handler as soon after a successful authentication as possible.

Because we want this to be called as soon as possible after authenticating with Game

Center, we add a call to our new method after we have successfully authenticated.

Modify the processGameCenterAuthenication method of UFOViewController to match

the following one.

CHAPTER 5: Matchmaking and Invitations 103

- (void)processGameCenterAuthentication:(NSError*)error;
{
 if (error != nil)
 {
 NSLog(@"An error occured during authentication: %@",
 [error localizedDescription]);
 }
 else
 {
 [gcManager setupInvitationHandler:self];
 }
}

TIP: If you don’t have two devices to test invitations on, you can use the simulator as one of the
devices. Don’t forget to sign in to the simulator and your device from two different Game Center

accounts, or you won’t be able to invite each other.

We will use self (UFOViewController) as the delegate for our invitation handler. If you

completed the required delegate calls in the last section, “Presenting Match GUI,” you

will not need to make any additional changes to this class.

Congratulations! You can now handle incoming invitations to your app (see Figure 5–6).

In the next section, we will explore how to configure auto-matching to populate invitees

for you.

NOTE: The buy now feature of invitations cannot be tested in the sandboxed environment; this

can be used only in live apps. The app must be installed on every device being used in order to

test invitations while in sandbox.

CHAPTER 5: Matchmaking and Invitations 104

Figure 5–6. Receiving an invitation outside of your App. The name of your app is automatically populated into the
alert view. While inviting, you have the option of specifying a message, as shown previously in Figure 5–5.

Auto-Matching
Auto-matching is a great feature provided to you for no extra work when working with

Game Center. Game Center keeps an online queue of people who are waiting to join a

multiplayer game in your app. If you do not fill up a new match request with all invited

friends, the auto-matching feature will automatically populate the remaining spots with

other unmatched players online.

You can filter down the auto-matched results using player groups and player attributes,

which will be discussed later in this chapter. In addition, you can query the activity of

any live player group to see what the average wait time is to be paired up with a new

match; this is also discussed more in a later section.

CHAPTER 5: Matchmaking and Invitations 105

Matching Programmatically
It is also possible for your app to find matches programmatically, without using the

matchmaker interface. You could use this methodology to implement your own custom

GUI for matchmaking or create an “instant match” type action, in which users are

automatically paired and a game begins with no additional user interaction. We will not

be using this style of matchmaking in our demo app, but the following method will allow

you to implement a match programmatically.

- (void)findProgrammaticMatch
{
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 4;

 [[GKMatchmaker sharedMatchmaker] findMatchForRequest:request
 withCompletionHandler:^(GKMatch *match, NSError *error)
 {

 if (error)
 {
 NSLog(@"An error occurrred during finding a match: %@",
 [error localizedDescription]);
 }

 else if (match != nil)
 {
 NSLog(@"A match has been found: %@", match);
 }
 }];
 [request release];
}

The preceding is fairly straightforward. We create a new GKMatchRequest and set the

minimum players to two, as well as set the maximum players to four. We then call a new

method, findMatchesForRequest. This will call our block when a match is found, so it

might be a good idea to provide an activity indicator if a match isn’t returned quickly.

After you have a GKMatch, you can begin a new multiplayer game, as discussed in the

following chapters.

When working with programmatically added matches, it is important to allow users a

way to cancel the match request if it is taking too long or if they have changed their

minds. That action can be accomplished with the following line of code.

 [[GKMatchmaker sharedMatchmaker] cancel];

CHAPTER 5: Matchmaking and Invitations 106

Adding a Player to a Match
There might be occasions in which you will want to add a new player to a match after it

has already been created. For example, maybe you have a player drop from a game and

want to replace him without starting the game over, or a player fails to connect after a

game starts and you want to substitute in a replacement. The following method will

automatically add a new player to the match using the auto-matching behavior.

- (void)addPlayerToMatch:(GKMatch *)match withRequest:(GKMatchRequest *)request
{
 [[GKMatchmaker sharedMatchmaker] addPlayersToMatch:match matchRequest:request
 completionHandler:^(NSError *error)
 {
 if (error)
 {
 NSLog(@"An error occurrred during adding a player to match:
 %@", [error localizedDescription]);
 }

 else if (match != nil)
 {
 NSLog(@"A player has been added to the match");
 }
 }];
}

After a player has been added to a match, you will need to sync that player up with the

current match. Adding a player will now allow the player to receive and send data, but

they will not have any access to data that has already been sent through the match.

iOS 5 Reinvites
With the release of iOS 5.0, Apple added the ability to automatically try to reinivite a

disconnected player. This method is only supported in two-person Game Center

matches. The following method is called when a player is disconnected; Game Center

will automatically try to reconnect to that player. If successful, you will receive an

additional call to match:player:didChangeState:. This functionality is only available in iOS

5 or greater.

-(BOOL)match:(GKMatch *)match shouldReinvitePlayer:(NSString *)playerID
{
 return YES;
}

CHAPTER 5: Matchmaking and Invitations 107

Player Groups
Player groups allow you to specify different classifications for each player. Game Center,

by default, auto-matches everyone into the same group. With player groups, you can

specify that certain players are looking for groups that contain only other players of that

group.

For example, players who want to play a certain level of a dungeon or a specific

racetrack will be grouped together so they are paired up with other people who want to

play that same level. Player groups can be used to segregate players into many different

types of groupings, such as:

 Players who wish to play the same level of a map (such as a

racecourse), area in an RPG, map in a first-person shooter, or level in

an action game.

 Separate players based on skill level. Either have players choose the

skill level that they wish to play at, or automatically determine their skill

level based on past performance.

 Type of game that is being played. For example, players can be

broken down into who wants to play Capture the Flag, Team

Deathmatch, Domination, or Last Man Standing.

 Players of the same Clan, Guild, Team, or Network who want to play

together.

 Players who have purchased additional in-app content and can no

longer be paired up with those who have not.

A player group isn’t restricted to these items, and can be used to group players together

in whatever fashion meets the needs of your app. A player group is represented by the

playerGroup property on a GKMatchRequest. The only restriction placed on this

property is that it must be represented by an NSUInteger. Specifying a playerGroup is

rather straightforward, as seen in the following code snippet.

#define kMyForestMap 123456789
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 2;
request.maxPlayers = 4;
request.playerGroup = kMyForestMap;

Under most circumstances, you will want to let your users select the playerGroup that

they belong to; however, there might be instances in which this is not true, such as

automatically determining a player’s skill level.

CAUTION: After you set playerGroup to any non-zero value, players will only be matched with

other players of that group.

CHAPTER 5: Matchmaking and Invitations 108

Player Attributes
Like player groups, player attributes are used during matchmaking to narrow down the

possible available games to the user. Player attributes, which generally function the

same as player groups, do handle some things in a different manner. Some of the many

uses for player attributes include the following.

 Often, in role-playing games, characters pick a class. It is common to

require a group of multiple classes—such as a healer, a fighter, and a

mage—in order to complete a quest.

 Sports games often have various positions on a team, such as

goalkeeper, fullback, midfielder, and forward. A team will require a mix

of all of these to be able to play.

 In a submarine simulator game, you could also have various players,

such as a captain, sonar operator, pilot, and weapons systems.

 In a first-person shooter game, you could need players in roles such

as close-quarter combat specialist, sniper, medic, and platoon leader.

Understanding Player Attribute Limitations
Player attributes can be used to assign these values to each player so that you can

balance a team that contains the required players. However, as of iOS 4.3, there are a

number of limitations when using player attributes; it is important that you familiarize

yourself with them before you begin working with player attributes.

 Only a single player may fill a role. For example, you cannot require

three midfielders in a soccer game.

 All roles must be filled before the game is considered ready to start.

For example, you can’t have a first-person shooter without a sniper

(based on the preceding example).

 Each player can fill only one role at a time; players cannot offer to join

a game in a position that would fill more than one role. For example,

you couldn’t have a player in a first-person shooter willing to play

either a sniper or a medic; they will need to pick one before the match

request is finalized.

 Player attributes are used during auto-matching. If you invite a friend

into a game, they are not tested to see whether they match the role

that needs to be filled. Instead, they will automatically be assigned a

random, unassigned role. In short, friends do not get to pick their

player attributes.

CHAPTER 5: Matchmaking and Invitations 109

 Roles are not displayed anywhere in the standard matchmaking

graphical user interface. You will need to implement your own system

prior to entering this view to allow users to select their roles.

 The GKMatch object does not contain information about which players

have been assigned which roles. You will need to implement your own

system after the match is connected to determine who is playing

which role.

 There is no system in place to determine which roles are overfilled or

which are harder to find matches for. For example, everyone might

want to play a mage in a role-playing game and no one might want to

be a healer; therefore, it would be much harder for a mage to find an

open game, while a healer can easily find one.

Working with Player Attributes
Don’t let the long list of limitations scare you off from player attributes. Even with the

listed limitations, they can be extremely valuable in creating a better multiplayer

experience. Let’s look at an example of how to build a match using player attributes.

#define class_SquadLeader 0xFF000000
#define class_Breacher 0x00FF0000
#define class_Grenadier 0x0000FF00
#define class_LightMachineGun 0x000000FF

We begin by defining a mask for each of our player attributes, which we will refer to as

“classes” for the rest of this section. This example represents a standard squad in a

modern military-style game. Each class is assigned a different value of a mask. Game

Center uses an algorithm to match these players together, using the following rules.

 A match’s mask will always begin with the mask of the inviting player.

 Game Center will ignore all players who have not set a player attribute

mask if the inviting player has set a player attribute mask.

 A player will be added to a match only if their player attribute mask

doesn’t overlap any section of a mask from any players already invited

into the match.

 After adding a player to the match, the value of that player’s attributes

value is logically ORed into the match’s mask.

 If a match’s mask value is equal to FFFFFFFFh, then the match is

considered complete and can begin; if the mask does not equal

FFFFFFFFh, then Game Center will continue searching for a player

who can fill the match.

 There is no way to query Game Center to see which player is still

currently being waited on.

The following is based on the classes we just defined.

CHAPTER 5: Matchmaking and Invitations 110

A blank match will have the player attribute mask shown in Figure 5–7.

Figure 5–7. An empty player attribute mask (0x00000000)

Player 1 begins a new match and selects Squad Leader as his class. When that player

creates the match, it will now have a player attribute mask that looks like that shown in

Figure 5–8.

Figure 5–8. A player attribute mask representing the Squad Leader class (0xFF000000)

Now the creator of the match uses Game Center to auto-match for new players. The first

player Game Center finds has selected a class of Grenadier. The Grenadier will have a

mask, which looks like that shown in Figure 5–9.

Figure 5–9. A player attribute mask representing the Grenadier class (0x0000FF00)

When compared to the already existing match’s mask, as shown in Figure 5–10, we can

see there are no overlaps, so that player can be invited into the game.

Figure 5–10. Comparison of 0xFF000000 and 0x0000FF00

When these masks are combined to form the new match mask, it will look like that

shown in Figure 5–11.

Figure 5–11. A new match mask, representing two players (0xFF00FF00)

Player 3 selects Breacher as his class and searches for a game. Game Center finds the

match that we have been working with and determines that there is room for a Breacher

by comparing the match’s mask to the Breacher’s mask, as shown in Figure 5–12.

Figure 5–12. The top is the current match’s mask (0xFF00FF00), and the bottom is a Breacher’s mask
(0x00FF0000)

Since there is no overlap between the masks, the Breacher can be invited into the game.

Player 4 selects the class of Grenadier and has Game Center look for a match. Game

Center again will find our match in progress and attempt to add the new player to it.

CHAPTER 5: Matchmaking and Invitations 111

Since the mask supplied by Player 4 overlaps a part of the match’s mask (see Figure 5–

13), that player is not allowed to join. If Game Center cannot find an open match for that

player, then it will begin looking for new players to fill in the holes on that player’s match.

Figure 5–13. The top is the current match’s mask (0xFFFFFF00), and the bottom is a Grenadier mask
(0x0000FF00)

Player 5 selects Light Machine Gun as his mask and begins looking for a game to join.

Game Center compares his mask to the current match’s mask, as shown in Figure 5–14.

Figure 5–14.The top is the current match’s mask (0xFFFFFF00), and the bottom is a Light Machine Gun’s mask
(0x000000FF)

Since there is no overlap between the two mask sets, Player 5 can join the match. This

will create a complete player attribute mask for the match, as shown in Figure 5–15.

Figure 5–15. A completed match mask (0xFFFFFFFF)

If Player 5 never joined the game, and the original inviter wanted to fill the slot with a

friend from Game Center, the invited friend would not have an option to select his class.

The match, in that case, would have a mask that looks like that shown in Figure 5–16.

The invited friend would then be assigned the mask, shown in Figure 5–17, that would

complete the match’s mask. This would complete the player attribute masks and allow

the game to begin.

Figure 5–16. The current match’s mask (0xFFFFFF0)

Figure 5–17. A Machine Gun’s mask (0x000000FF), needed to complete the match’s mas

Setting a player attribute is very straightforward, and is shown in the following code

snippet.

#define class_SquadLeader 0xFF000000
#define class_Breacher 0x00FF0000
#define class_Grenadier 0x0000FF00
#define class_LightMachineGun 0x000000FF

...

GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4;

CHAPTER 5: Matchmaking and Invitations 112

request.maxPlayers = 4;
request.playerAttributes = class_SquadLeader;

Player Activity
Game Center provides a method to query for recent player activity. Your users will often

want as much information as possible about how long of a wait they could experience

while looking for a multiplayer match. It is important to establish that player activity is

recent activity and not current activity. There is no Apple-provided method for

determining exactly how many players are waiting for a match, but Apple does provide a

way to determine how many users have recently looked for a match. Let’s take a look at

the required source code to get player activity. Add the following two new methods to

your GameCenterManager class’s implementation file.

- (void)findAllActivity
{
 [[GKMatchmaker sharedMatchmaker] queryActivityWithCompletionHandler:
^(NSInteger activity, NSError *error) {
 [self callDelegateOnMainThread:@selector(playerActivity:error:)
 withArg:[NSNumber numberWithInt: activity] error:error];
 }];
}

- (void)findActivityForPlayerGroup:(NSUInteger)playerGroup
{
 [[GKMatchmaker sharedMatchmaker] queryPlayerGroupActivity:playerGroup
 withCompletionHandler:^(NSInteger activity, NSError *error) {

 NSDictionary *activityDictionary = [[NSDictionary alloc]
 initWithObjects: [NSArray arrayWithObjects:
 [NSNumber numberWithInt: activity],
 [NSNumber numberWithInt: playerGroup], nil]
 forKeys:[NSArray arrayWithObjects:@"activity", @"group", nil]];

 [self callDelegateOnMainThread: @selector(playerActivityForGroup:
error:) withArg: activityDictionary error:error];

 [activityDictionary release];
 }];
}

We also need to add two new protocol methods in GameCenterManager’s header file.

Add the following two optional protocols.

- (void)playerActivity:(NSNumber *)activity error:(NSError *)error;
- (void)playerActivityForGroup:(NSDictionary *)activityDict error:(NSError *)error;

When you implement these new protocol methods in your UFOViewController as

follows:

- (void)playerActivity:(NSNumber *)activity error:(NSError *)error
{
 if (error != nil)

CHAPTER 5: Matchmaking and Invitations 113

 {
 NSLog(@"An error occurred while querying player activity: %@",
 [error localizedDescription]);
 }

 else
 {
 NSLog(@"All recent player activity: %@", activity);
 }

}

- (void)playerActivityForGroup:(NSDictionary *)activityDict error:(NSError *)error
{
 if (error != nil)
 {
 NSLog(@"An error occurred while querying player activity: %@",
 [error localizedDescription]);
 }

 else
 {
 NSLog(@"All recent player activity: %@ For Group: %@", [activityDict
 objectForKey:@"activity"], [activityDict objectForKey:@"group"]);
 }
}

You should get output similar to the following.

2011-03-08 11:11:04.007 UFOs[3000:207] All recent player activity: 3 For Group: 12345
2011-03-08 11:11:04.008 UFOs[3000:207] All recent player activity: 3

So now that we have player activity for a specified player group, what do these numbers

mean? Apple has never specified the exact meaning of these numbers, but through

careful research, it appears that they represent the number of users who attempted to

connect to a game using the auto-matching feature in the last one to three minutes. The

numbers seem to reset at an undeterminable interval somewhere within that time frame.

In addition, there appears to be a 15–30 second delay until new numbers are reflected

from users attempting to join a match.

Even with the limitations imposed by player activity, it can still be a very valuable tool in

determining possible wait times for your users to find a match. However, you want to

make sure these numbers are used for informational purposes only, as they tend to be

just unreliable enough to depend upon.

NOTE: You can implement your own server system to keep track of exactly how many players
are waiting for a match if the Apple system does not provide specific enough information on

player activity for the needs of your app.

CHAPTER 5: Matchmaking and Invitations 114

Using Your Own Server (Hosted Matches)
Under normal circumstances, Game Center will host your match for you; however, Apple

has provided a technique for implementing your own server to host a match. This

approach is called a “hosted match,” and can be implemented in any app to add

increased flexibility to Game Center–based multiplayer networking.

When using Game Center to host a match, every device that is connecting to that match

creates an instance of GKMatch. The GKMatch class does all the legwork of connecting,

handshaking, sending and receiving data, and handling errors. However, there are times

when you will need to implement your own server, most notably if you want to allow

more than four people to connect to a single match at a time. In this scenario, you can

use Game Center to find peers for your match and use your own server to connect those

peers.

TIP: Using a hosted match allows you to connect up to 16 users, as opposed the limit of four

while using Game Center hosting.

There are several downsides to using your own server, however, most notably that you

are now responsible for all the legwork that was previously given to you for free by

Game Center. Specifically the following:

 You must design and implement all of your own networking code to

connect the peers together. Game Center will find the matches for

you, but its involvement stops there.

 If your app is using the standard matchmaking interface, your server

must inform the app when a new peer successfully connects, so that

is can update the GUI.

 Voice chat is no longer provided for you for free. You can still,

however, use the GKVoiceChatService class to send voice data over

your own networking system. See Chapter 9 for more information.

We will need to make a handful of minor changes to our code base in order to support

hosted matches on the device side. We begin by modifying our multiplayer button action

method that we set up earlier in this chapter.

- (IBAction)multiplayerButtonPressed
{
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 4;

 GKMatchmakerViewController *mmvc = [[GKMatchmakerViewController alloc]
 initWithMatchRequest:request];
 [request release];

 mmvc.matchmakerDelegate = self;

CHAPTER 5: Matchmaking and Invitations 115

 mmvc.hosted = YES;

 [self presentModalViewController:mmvc animated:YES];
 [mmvc release];
}

As you can see, we added a new line—matchmakerViewController.hosted = YES—

which tells the matchmaker GUI that this match will be hosted on our own servers. In

addition to setting the matchMakerViewController to hosted, you will need to have each

device connect to your server. This section does not deal with how to code the server

itself, as there are dozens of languages and approaches that can be taken here.

However, after a device has connected to your server, it needs to call the following with

the playerID of the player who is joining.

[matchmakerViewController setHostedPlayerReady: playerID];

This will update the GUI on all the connected players’ screens, informing them that a

new player is ready to begin a match. After all the players are connected to your server,

and have confirmed that they are ready, your delegate is called to begin the game.

When working with Game Center matches, we used the delegate callback

matchmakerViewController:didFindMatch: to begin a match. However, for a hosted

game we use the following.

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
 didFindPlayers:(NSArray *)playerIDs
{
 [self dismissModalViewControllerAnimated:YES];

 NSLog(@"Players: %@", playerIDs);

 //Begin Hosted Game
}

At this point, you can begin the game with your server handling the communication

between the connected players. In addition, you can begin a hosted match

programmatically, as we saw with a Game Center–hosted match earlier in this chapter.

- (void)findProgrammaticHostedMatch
{
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 16;

 [[GKMatchmaker sharedMatchmaker] findPlayersForHostedMatchRequest:request
 withCompletionHandler:^(NSArray *playerIDs, NSError *error)
 {
 if (error)
 {
 NSLog(@"An error occurrred during finding a match: %@",
 [error localizedDescription]);
 }

 else if (playerIDs != nil)
 {
 NSLog(@"Players have been found for match: %@", playerIDs);
 }

CHAPTER 5: Matchmaking and Invitations 116

 }];
 [request release];
}

As you can see, it is very similar to our previous method; however, instead of getting

back a GKMatch object, we are returned an array of playerIDs. You will also note that

we can also increase the maximum players to 16.

Summary
In this chapter you were introduced to the concepts of matchmaking and invitations. We

discussed the overwhelming benefits of adding multiplayer to your iOS app or game, as

well as some of the hurdles you might need to jump along the way. We explored the

matchmaking process from presenting the standard Apple GUI to highly customized

matches using player groups and player attributes. We reviewed how to process

invitations in every possible scenario, as well as how to query for player activity. Finally,

we discovered how it is possible to implement your own server to remove some of the

limitations placed on Game Center. We expanded our reusable Game Center Manager

to handle matchmaking, invitations, and the required overhead, so that you can quickly

add multiplayer ability to your apps.

In this chapter, we deeply explored how to create matches and populate them with

peers. In the upcoming chapters, we will not only learn how to communicate between

the peers, but also explore new methods for locating peers with whom to communicate.

The next chapter covers information on how to use Game Kit to find peers using the

Peer Picker.

117

 Chapter

The Peer Picker
In the last chapter, we explored how to find matches using Game Center. In this chapter,

we will look at the other provided system for finding peers to connect to. This system is

called the Peer Picker and can be used to create a connection between two iOS devices

using either Bluetooth or a local Wi-Fi network.

Before we begin working with the actual code, we let’s take a quick look at the history

surrounding Game Kit and Game Center. When Apple released iOS 3.0, at the time

called iPhone OS 3.0, it implemented a new set of API calls, collectively referred to as

Game Kit. Game Kit, in the 3.0 days, handled Bluetooth, LAN networking, and voice chat

services. When Game Center was added in iOS 4.0/4.1, it brought with it significant

improvements to Game Kit. Game Center can really be thought of as an extension to

Game Kit, as opposed to a completely new API.

In this chapter, we will look at how to establish new connections using Bluetooth and a

LAN. In Chapter 8, “Exchanging Data,” we will learn how to use shared methods to send

data, regardless of whether the peer was found via Game Center or Game Kit.

Benefits of the Peer Picker
With the introduction of iOS 4.0, Game Kit networking has become generally neglected

by the developer community. This is a great injustice, as Game Kit remains an

extraordinarily helpful tool for iOS developers. Game Kit remains the easiest way to add

peer-to-peer networking to an iOS app.

In most of the multiplayer type apps that I have developed, I have implemented both

systems of iOS networking. Game Center networking and Game Kit networking both

have different strengths and weaknesses, and it is normally easier to provide both to

your users than to be forced into a corner by the limitations of one. The following offer

some reasons for including both.

 Your users might not have access to an outside network connection,

but still want to engage in multiplayer activity. Such a scenario might

occur with passengers in a car or in a plane that allows Bluetooth

devices to be turned on during the flight.

6

CHAPTER 6: The Peer Picker 118

 You might want to allow users to easily connect to other nearby

(location based) users. Although this can be done through player

groups with Game Center, it is much easier to do with Game Kit.

 You are looking for a lower latency connection between two devices.

 You want to target users who have iPod touches or Wi-Fi iPads who

might not have consistent access to Wi-Fi or no access to a cellular

network.

 Implementing Game Kit networking is quicker and easier than a full

multiplayer system done with Game Center.

As you can see, the Peer Picker approach to finding peers has some important

differences from the Game Center matchmaker system. There is nothing in place from

stopping you from implementing both and is highly encouraged by at least me, if not by

Apple as well.

In the upcoming chapters, you will learn some methods for making it easy to have both

systems side by side. However, if you choose to implement only one or the other,

carefully consider your options for which one will better suit the needs of your users.

Real-World Examples
Since the release of iOS 3.0, we have seen Game Kit networking used in very

unexpected ways. Here, we discuss some of the notable examples of apps that use

Game Kit networking to enhance user experience. Both of the apps that we show you in

this section are better suited for Game Kit networking than Game Center networking.

First, let’s take a look at Bristomath (see Figure 6–1) from Black Pixel. The central

purpose of this app is to split up a bill among multiple diners at a restaurant. This idea

has been done to death on the iPhone and there are literally dozens of apps on the App

Store that provide this service. Bristomath remains hugely popular, even at a higher

price point than most of the competition. Why is this?

Bristomath sets itself apart. Not only is it well designed and visually appealing, but it

offers something that no other check splitter does: Game Kit networking. Bristomath

uses Game Kit to establish a Wi-Fi or Bluetooth connection between multiple devices,

allowing a user to log in to the “host” app and enter their meal items.

CHAPTER 6: The Peer Picker 119

Figure 6–1. Bristomath from Black Pixel, which uses Game Kit networking to split checks

This simple feature has put Bristomath ahead of the curve in this niche. Adding in Game

Kit networking removed the need for a user to pass an iPhone around the table and have

everyone enter what they ordered. Small additions such as this to your app can make a

major difference in the perceived value of your app.

Handshake (see Figure 6–2) was an app that was developed by Skorpiostech in the early

days of the App Store. It was the first app that allowed a user to send his or her

business cards to another user. More than six months of work was put into the server

that powered Handshake’s network connections. The server needed to support a large

number of clients logging in and provide matches to other clients who were physically

located within a certain distance of each other.

CHAPTER 6: The Peer Picker 120

Figure 6–2. Handshake from Skorpiostech, which uses its own server system to share data between two local
devices

Each device would determine its location and inform the server where it was and that it

was looking for peers. The server would then return nearby peers and allow the app to

establish a connection between them. This process could have been accomplished in

days rather than months if Game Kit networking had been available at the time

Handshake was being written. Handshake was never rewritten to support Game Kit;

however, it was considered end-of-life when Apple introduced contact sharing alongside

Game Kit in iOS 3.0.

REMINDER: Game Kit and Game Center are not restricted to just games, while Apple has
recently cracked down on using Leaderboards and Achievements in non-games, the argument

can always be made that they add gaming functionality to your app. Game Kit networking

remains unrestricted in any app.

Working with Sessions
When working with Game Kit networking, you will be using a GKSession object (see

Figure 6–3) to tie everything together. This object is used to create and manage an ad-

hoc Bluetooth or local wireless network connection between devices. Copies of your

app, running on multiple devices, can use these services to discover each other,

connect, handshake, exchange data, and gracefully disconnect.

CHAPTER 6: The Peer Picker 121

IMPORTANT: Bluetooth networking is not supported on the original iPhone or the original iPod

touch.

Figure 6–3. Peer-to-peer networking over Bluetooth using GKSession

A GKSession object primarily works with peers. A peer, in this context, is any iOS device

made visible by creating and configuring a GKSession object of its own. Peers can only

see other peers on apps that have the same bundle identifier as each other.

Each peer is represented by a peerID string, which will always be unique. Your app can

use a peer’s peerID to obtain a user-readable handle or name for that peer. Similarly,

when your app begins a GKSession, it creates a peer to represent the local user, and

this peer becomes visible to all nearby devices. Nearby devices, in this sense, would be

any devices on the same local Wi-Fi network or within the range of Bluetooth, as

detailed in Tables 6–1 and 6–2.

NOTE: As of iOS 5, the only Apple-approved way of using Bluetooth is via Game Kit. Apple does

not support custom implementations of Bluetooth in App Store apps.

Table 6–1. Range of Standard Bluetooth Devices

Bluetooth Class Milliwatts (mW) dBm (dBmW) Approximate Range

Class 1 100 20 ~100 Meters, or ~320 Feet

Class 2 (iPhone) 2.5 4 ~10 Meters, or ~32 Feet

Class 3 1 0 ~1 Meter, or ~3 Feet

CHAPTER 6: The Peer Picker 122

Table 6–2. Data Rates for Standard Bluetooth Versions

Version Data Rate Maximum Application Throughput

Version 1.2 1 Mbit/s 0.7 Mbit/s

Version 2.0 + EDR (iPhone) 3 Mbit/s 1.4 Mbit/s

Version 3.0 +HS 24 Mbit/s N/A

NOTE: Apple has recently enabled support for Bluetooth connections between a device and the
iOS Simulator. However, it does have some limitations: most notably, a device cannot find the

Simulator through Bluetooth, so the Simulator will have to initiate the connection.

Additionally, the iOS Simulator doesn’t detect whether the Mac has Bluetooth enabled.

Finally, when the device receives a connection, it appears to come from the bundle ID

string and not the device name, as shown in Figure 6–10 later in this chapter. Peers are

discovered by other peers by using a unique string to identify the service that they are

implementing. This unique string is the sessionID property. Sessions can be configured

in one of three ways. A session can be configured to broadcast its sessionID, making it a

server; or to search for other peers advertising with a sessionID, making it a client; or,

finally, as both a server and a client simultaneously, referred to as a peer. In the next

chapter we will explore network design on iOS in more depth.

GKSession has an associated GKSessionDelegate protocol. The delegate is called

whenever a new remote peer is discovered, attempts to connect, or when the

connection state of a peer has changed. In addition, you will have to set a data-received

handler to specify a delegate callback when new data is received. This can be different

than the main GKSessionDelegate. We will explore exchanging data in complete detail in

Chapter 8.

NOTE: GKSession and its associated methods are thread-safe; however, the session will always

call its delegate methods on the main thread.

Presenting a Peer Picker
We will begin, as we have in the past, by adding a new button for our Peer Picker in our

UFOViewController.xib, as shown in Figure 6–4. Create a new action for the button and

name it localMultiplayerGameButtonPressed. In addition, you need to create two new

class variables, one instance of GKPeerPickerController and another for a GKSession.

Name these peerPickerController and currentSession, respectively. You also need to

conform the UFOViewController to the delegate GKPeerPickerControllerDelegate.

CHAPTER 6: The Peer Picker 123

Figure 6–4. Adding a button for a local multiplayer game

Add the following code to the action that you created for the new local button.

- (IBAction)localMultiplayerGameButtonPressed
{
 peerPickerController = [[GKPeerPickerController alloc] init];
 [peerPickerController setDelegate:self];

[peerPickerController setConnectionTypesMask:GKPeerPickerConnectionTypeNearby];

 [peerPickerController show];
}

This code is fairly self-explanatory: we alloc and init a new instance of

GKPeerPickerController, and set its delegate to self.

We do need to specify a connection type mask. There are two options available to us,

GKPeerPickerConnectionTypeNearby and GKPeerPickerConnectionTypeOnline. In this

example, we are using GKPeerPickerConnectionTypeNearby, which will allow Bluetooth

connections. The GKPeerPickerConnectionTypeOnline constant will allow online

connections through the local wireless network.

You can also supply both and allow the user to select. After the user selects an option,

you can continue as if you had provided only one choice to the user. If you were to run

the app now and select Local, you should see a new UIAlert that looks like that shown in

Figure 6–5.

CHAPTER 6: The Peer Picker 124

Figure 6–5. The alert shown while searching for Bluetooth peers. Notice how the alert is gray instead of the
typical blue usually seen with UIAlerts.

Go ahead and install the app on a second device, or the Simulator if you don’t have a

second device. When the app is ready on both devices, launch it and select the Local

game option. You will, at first, see an image similar to that shown in Figure 6–5. After

several seconds, the devices should find each other, and you should see an alert similar

to that shown in Figure 6–6.

NOTE: It can take up to 30 seconds for two Bluetooth devices to find each other. The farther

away the devices are, the longer it can take to establish a connection.

Figure 6–6. Finding a peer with the Peer Picker

CHAPTER 6: The Peer Picker 125

TIP: If Bluetooth is turned off on the user’s device and you begin a GKSession, the user will be

prompted to enable Bluetooth, as shown in Figure 6–7.

Figure 6–7. Prompting the user to enable Bluetooth on a device. You cannot enable Bluetooth through any other
manner from inside of your apps.

If you select one of the peers from the list of available peers, you will get a waiting

message, as shown in Figure 6–8. The device that was invited will see a message, as

shown in Figure 6–9; or, if invited by the Simulator, the device will show a message such

as that shown in Figure 6–10.

With the relatively small amount of code we have written, all the functionality is provided

to us via the API. If you happen to tap on the Accept button, you will notice that nothing

happens. In the section “The Peer Picker Delegate,” we will implement the delegate calls

required to complete the functionality of the Peer Picker.

Figure 6–8. Bluetooth waiting on a connect to be established

CHAPTER 6: The Peer Picker 126

Figure 6–9. Incoming invitation to a device from a peer device

Figure 6–10. Incoming invitation to a device from the Simulator. Notice the bundle ID as the device name.

CHAPTER 6: The Peer Picker 127

Advanced GKSession Interaction
There might be times when you want to get your hands dirty and dig into your

GKSession object a little deeper than we saw with the initial configuration. Table 6–3

lists the available properties for customization of the GKSession object.

Table 6–3. Properties Available on a GKSession Object

Property Name Description

available The available property is used to determine whether your peer is visible to

other peers looking for a connection. This property is typically set for you

through the Peer Picker, but you can set it yourself.

After the Boolean is set to YES, you will remain connected to any peer that

you have already connected to, but you will not receive new connection

requests.

delegate The GKSession delegate property is discussed at length in the following

section.

disconnectTimeout The disconnectTimeout property is the time amount that your session will

wait before it disconnects a non-responsive peer. Apple provides a default

number for this value, which through testing, appears to be between 20 and

30 seconds. The exact number is not disclosed in the documentation.

displayName The displayName property is a read-only NSString that represents the

peer’s human-readable name; this is the property that should be displayed

to other users through your GUI.

peerID The peerID property is a read-only string that identifies your session peer to

other devices. This value is unique.

sessionID The sessionID property is used by sessions configured as servers to

advertise themselves to other peers, and by sessions configured as clients

to search for compatible servers. The sessionID should be the short name

of an approved Bonjour service type.

sessionMode The sessionMode property is the session used to find other peers. This

value is read-only and is configured when you first initialize a new session. It

has three possible values: GKSessionModeServer, GKSessionModeClient,

and GKSessonModePeer.

The Peer Picker Delegate
In the previous sections, we saw that we get a lot for free when using a

GKPeerPickerController. However, after we accepted a connection from another user,

our app didn’t yet know how to proceed.

CHAPTER 6: The Peer Picker 128

In this section we, discuss the GKPeerPickerControllerDelegate. The

GKPeerPickerControllerDelegate is called by the Peer Picker to create a new session

object and used to handle state changes that occur thoughout the course of normal

networking.

The GKPeerPickerControllerDelegate has three main responsibilities that you need to

implement and respond to. It needs to create the session, respond to new connection

messages, and handle the user cancelling out of the Peer Picker.

First, let’s look at peerPickerController:didSelectConnectionType:. This delegate method

informs us what connection type the user has selected. If you recall from the earlier

sections, we worked with connectionTypeMask. If you provide the user with an option

for selecting whether they want to connect using the LAN or Bluetooth, this delegate

method will return the selection. If the user selects an online connection, you should

dismiss the peerPicker controller and display your own LAN connection view; see the

following code snippet for an example of this behavior.

- (void)peerPickerController:(GKPeerPickerController*)picker
 didSelectConnectionType:(GKPeerPickerConnectionType)type
{
 if (type == GKPeerPickerConnectionTypeOnline)
{
 [picker dismiss];
 [picker release];

 // Display your own user interface here.
 }
}

The GKPeerPickerControllerDelegate is also responsible for returning a GKSession.

When your Peer Picker needs a session object, it will call peerPickerController:session

ForConnectionType:. If you are implementing this method, you must either create or

return an existing GKSession.

IMPORTANT: If you are creating a new GKSession as part of

peerPickerController:sessionForConnectionType:, the session that you create must advertise
itself as GKSessionModePeer.

If you do not need to implement peerPickerController:sessionForConnectionType:, and the

session is using the Bluetooth protocol, the peer controller allocates a new session with the
default sessionID and displayName parameters. If you are creating a new LAN connection, you
will need to implement peerPickerController:sessionForConnectionType: and return the required

GKSession.

You also need to implement peerPickerControllerDidCancel:. Even though this method

is optional, Game Kit expects it to be implemented. After this method is returned, the

Peer Picker will automatically be dismissed, so you will not need to add code to handle

this event.

CHAPTER 6: The Peer Picker 129

The last delegate method we need to implement when working with the

GKPeerPickerControllerDelegate is peerPickerController:didConnectPeer:toSession:.

This method is called whenever a new peer is connected to the session.

- (void)peerPickerController:(GKPeerPickerController*)picker
 didConnectPeer:(NSString*)peerID
 toSession:(GKSession*)session
{
 currentSession = session;

 //hold onto session and peerID
 [self dismissModalViewControllerAnimated:YES];
}

When this method is called, we will want to keep a reference to the session and peerID.

We will use these in the upcoming chapters when we begin to work with sending data

back and forth. Once a peer has successfully connected, your app should take

ownership of the session and dismiss the Peer Picker.

Figure 6–11 represents an iPhone that has entered the connected state and set its

availability flag to NO.

Figure 6–11. The iPod touch has set its availability status to false

IMPORTANT: Although peerPickerController:didConnectPeer:toSession: is optional, you will be

required to implement it before you can fully enable Game Kit networking.

Summary
In this chapter we learned about using Game Kit networking to connect two devices

together using either the local area network or Bluetooth. In the previous chapter, we

worked with matchmaking and invitations. Between these two technologies we have

CHAPTER 6: The Peer Picker 130

completely covered all the available methods to find and connect to peers using Game

Center and Game Kit technology on the iOS platform.

We also looked at some real-world examples of iOS apps that have benefited from

Game Kit networking integration, and you saw how easy it was to move your app up to

the next tier of quality with only a small amount of invested time.

In addition, we explored the workings of the Peer Picker, including how to request a new

session using either Bluetooth or the LAN, and how to connect peers together. We also

covered all the required delegate and controller overhead to get these systems up and

running quickly in your own apps.

In the next chapter, we will discuss how to design a network for mobile devices, the dos

and don’ts of network design, and overview. In Chapter 8, we will learn how to tie

together all the peers that we have been establishing connections with and have them

begin to talk to each other.

131

 Chapter

Network Design Overview
In previous chapters, we learned how to find and establish connections to peers through
a variety of methods using both Game Center and Game Kit. In this chapter, we will look
at how to design a networking experience for not just an iOS game but also a game on
any platform. This chapter is designed slightly different than the previous chapters you
have encountered in this book. Primarily, there will be no associated source code with
this chapter and we will only briefly touch on Game Kit networking topics themselves.
This chapter will focus on the concepts of network design, as opposed to actually
implementing the network itself. In the next chapter, you will discover how to tie
everything together and have your peers begin to communicate with each other.

While it is entirely possible (and often done) to go ahead and just start writing your
network logic, it is probably not a great idea. After all, you wouldn’t begin writing a new
app or game without first planning out how it will function. Networking is a complex
topic and you should approach it with a plan; otherwise, you could find yourself rewriting
the entire system after you put a lot of work and effort into it. You don’t want to find
yourself up against a wall because the approach you took limited your options for future
expandability. Just like with software, you shouldn’t jump right into writing code on the
first day. You should whiteboard things out a little and get a feel for the requirements of
the project.

Take, for example, a desktop role-playing game called Clan Lord that was written in the
late 1990s for the Mac. Clan Lord has maintained a very dedicated fan base that has
kept the game active and continual to the present day. However, when the game was
originally written, many network-related issues were not properly thought through.

Clan Lord uses frame-by-frame syncing for all of its network calls. This means that every
frame, every element visible on the player’s screen, has to be transmitted. This approach
works, and works well while you have a small game, a small user base, and limited
functionality. However, when you are designing software, you cannot have a limited
vision for the future. Always plan for the best, or depending on your perspective, the
worst case. When designing a network, you must take into account what you will want
to do six months, a year, or even ten years from now with your game or app.

7

CHAPTER 7: Network Design Overview 132

Clan Lord now suffers from long-ingrained problems, such as an eight frames per
second rendering engine, due to the fact that you cannot sync more than eight full
frames of data per second on the average home network. This could have been
prevented by implementing some logic into the client when the project was first started;
for example, it would have been much more efficient to inform the client where objects
are and when they move, as opposed to fully syncing everything each frame. In addition,
player movement is limited to eight frames per second because actions have to be
synced back to the server, making it hard to react to events. This also could have been
prevented by using prediction algorithms, discussed later in this chapter, to determine
where a player will end up during movement.

Clan Lord is one example of a game that was much more popular than planned, and
lived a lot longer than anyone expected. Sadly, when this happens, you are limited to the
vision and design that you had when the project was first started. It is much harder to
undo something later than to do it initially. When designing your network, take time to do
it carefully and intentionally, as it can follow you around for a very long time.

Three Types of Networks
Although there are many different types of network designs available, there are three
primary kinds of networks that you can implement when designing your network. Picking
a primary type of network is a good place to start, as it will guide you toward the next
step in the design process.

We will be focusing on just three of the primary types of network designs, but keep in
mind that there are dozens of other well known network configurations, some of which
we will briefly touch on in this section. The three types of networks we will be discussing
in length throughout this chapter are peer-to-peer, client-to-host, and ring networking.

Peer-to-Peer Network
A peer-to-peer network (see Figure 7–1) is the most common network that you will see
on the iOS platform. No device is treated any differently than any other device, and each
device is in charge of sending and receiving data to all the other peers it wishes to
communicate with.

CHAPTER 7: Network Design Overview 133

Figure 7–1. A visual representation of a peer-to-peer network using six iOS devices

A peer-to-peer network is commonly used when dealing with Game Center networking
because it is the easiest to implement on the iOS platform. While this approach has the
benefit of being extremely easy to set up, it has an equal amount of weaknesses.
Primarily, it can cause a lot of redundant overhead. Each peer needs to inform every
other peer about its actions. In a six-way network like the one shown in Figure 7–1, this
means that each device needs to send out five messages every time it wants to update
the game state. In addition, if you are implementing a system in which each peer
confirms a successful message, you will also need to receive five messages.

Another disadvantage of a peer-to-peer network is that it can become very confusing to
work with a large number of peers. As you can see from Figure 7–1, things can get
messy pretty quickly. Unlike the other primary types of networks that we will discuss in
this section, the peer-to-peer approach is the only one without a clear flow. Each peer
can message any other peer, by definition. This also means that you have to keep track
of what every peer needs to know. Under most circumstances, this is a perfectly
acceptable approach. However, when you begin to deal with more complex types of
networks, this configuration might no longer be ideal.

In addition, no one device is in control of the state of the game. If there are artificial
intelligence components, then you will need to figure out a system that will allow them to
stay in sync between all the devices.

z

CHAPTER 7: Network Design Overview 134

Client-to-Host Network
A client-to-host network designates one device to be the host. This device is
responsible for sending information to all the connected clients. The clients never speak
to each other; they speak only to the host who then relays the required information back
to the other clients. An example of what a client-to-host setup looks like is shown in
Figure 7–2.

Figure 7–2. A visual representation of a client-to-host network using five iOS devices

A client-server network simplifies the flow of data. Each peer or client only needs to
worry about itself and the host; they do not need to be aware of the other devices that
might exist on the network. The benefit of this type of network is that one device keeps
everything in sync and handles the flow of information; this makes it a very secure
network (in the sense of anti-cheating). Cheating, however, is not a large concern on the
iOS platform because it’s a sandboxed system to begin with.

There are other benefits to this system as well, such as the fact that only one device
needs to worry about the state of the network, and that sole device is in charge of the
behavior of the network. This type of network simplifies events such as connections,
disconnections, transmission errors, and other state changes such as computer-
controlled objects like artificial intelligence. However, this same setup could be

CHAPTER 7: Network Design Overview 135

troublesome on the iOS platform; if the host device has too much information to
process, that device could run slower or use more battery.

Ring Network
A ring network (see Figure 7–3) has no host and no clients. It works similarly to a peer-
to-peer network, but a peer is in charge of communicating with only one designated
peer and will receive information from only another separately defined peer. The
information flows through a group of devices in the shape of a ring, hence the name.

This type of network isn’t very common on the iOS platform, as there is not a lot of
argument for the redundancy that it typically provides for disconnected peers. Apple has
done a lot of the groundwork to ensure that networks remain active and stable, without
the need for the developer to spend additional design hours ensuring that there won’t be
instances where peers lose contact with other peers that are currently joined together.
There are times, however, were you might find this type of configuration useful when
designing your network on the iOS platform.

Figure 7–3. A visual representation of a ring network using six iOS devices. Notice how much simpler this
diagram appears than the peer-to-peer network shown in Figure 7–1.

CHAPTER 7: Network Design Overview 136

Less Common Networks
There are many additional types of network designs available in computer science.
Some are more practical than others and some are mostly theoretical. In this section, we
cover some of the better known “uncommon” networks. Although some of these can be
implemented on iOS devices, most will likely not have any real benefit for the average
project.

 Headless Client—The client has no data whatsoever, and is controlled
by a host device. You can think of this type of setup as a computer
terminal that is booted from a server disk.

 Dedicated Server—The host in this example does not participate in the
game or activity and is dedicated to sending the information out from
the peers and collecting new input. This is typically seen deployed by
large companies creating a gaming community.

 Mesh/Partial Mesh Network—This is a peer-to-peer network in which
each peer may not be aware of the other peers that exist on the
network. The packets are tagged with a destination and every hop
attempts to get the packet closer to the destination. A full-mesh
network means that every peer is interconnected, which is more or
less the same as a peer-to-peer network.

 Tree Network—This type of network consist of a tree of peers
interconnected to each other and each controlled by a centralized
point. The central point passes messages to other central points and
each tree branch passes messages back and forth along that branch.

 Hybrid Network—This type of network combines two or more
technologies, such as two groups of peers who are linked together
through a centralized server.

This covers most of the networks you will encounter during a career of software
engineering. There is really no limit to the type of network that you can design, and every
year better designs and flows become available. In the next section, we will look at the
actual packets that will be sent and received on your network.

Reliable Data vs. Unreliable Data
When dealing with network design, packet reliability is an important topic. When
discussing packet reliability outside of the iOS platform, we are specifically referring to
the priority of the data, the ordering of the packets, and the retry determination factor.
Let’s look at all these attributes separately and how they relate to network design (see
Table 7–1) before we dig into the specifics we need for our implementation when dealing
specifically with iOS.

CHAPTER 7: Network Design Overview 137

Table 7–1. Common Packet Attributes and How They Affect Network Behavior

Attribute Relationship to Network Design

Priority When you are working with low-level networking, you are dealing with packets. Each
packet is a predetermined sized and contains information about the event that you
want to send to another peer. Packets are typically sent to a queue and then sent
out to the peer they are addressed for, but because networking isn’t precise
(especially if you are trying to get the lowest latency), packets might not always be
received in the order that they are generated.

For example, in a standard online game, you might be passing two types of
information, game state changes and chat information. Obviously, your character
requesting an action, such as attacking an enemy or dodging an attack, is more
important to have in a timely manner than a chat message.

The solution to this type of problem is to set priority for packets. The peer will send
cycle through all its pending messages and send the highest priority ones first. This
allows the vital messages to be retried in the event of failure first, as well as bump
the important packets to the top of the queue.

Ordering The order in which packets are received can be crucial. For example, if you are
sending 10 packets, which together make up a very long chat message, then the
order in which those packets are received is important to the receiving peer.

If the packets aren’t received and processed in order, your message could appear
scrambled. When this happens with a state engine, very unpredictable behavior may
follow. There is a certain cost overhead involved when ensuring packets are ordered,
however. If you are waiting for packet 1 of 10, then you can’t do anything with the
packets you might have already received. This creates a situation in which your
network is only as fast as your slowest packet. If ordering isn’t critical to your
network functioning correctly, then you should not worry about the order.

Retry Networks are, by nature, unreliable. Even a desktop machine hooked up to a
dedicated connection will have lost packets and experienced other failures. When
you are dealing with network reliability on a mobile device, the only thing you can
count on is failure. When you send a packet to another peer, you can handle it two
ways: the first is a send-and-forget system; the second is a send-and-verify system.

In the first approach, you send a packet and you don’t really care if it gets there. Let
me clarify: you do care, but if it fails, there is nothing you can do about it. A good
example of this type of acceptable failure is a voice chat packet. If it fails to reach the
end of the line successfully, resending it will merely bring things out of sync; it is
better to just continue on streaming the data.

In the second approach, the packet is considered vital, such as player opening a
chest, searching a slain foe for treasure, or updating their direction of movement.
The peer needs this data to be sent to continue smoothly executing the commands.
If you skip this packet, it will be frustrating to the user, as they will have to retry the
action themselves instead of having the network retry it for them.

CHAPTER 7: Network Design Overview 138

Now that we have covered the issues that are important when dealing with sending the
actual data packets from one device to another, we can look at how these principles
apply to the iOS platform itself.

There are two types of modes that data can be sent in with Game Kit: the first is
GKSendDataReliable; the second is, naturally, GKSendDataUnreliable. Let’s take a look
at what each one of these modes do for us and how they fit in with the topics we just
discussed. See Table 7–2.

Table 7–2. Packet Attributes and How They Apply to Game Center

Attribute GKSendDataReliable GKSendDataUnreliable

Priority Game Kit networking doesn’t factor in
any type of priority when dealing with
packets. Packets are sent in the order
that they are fed into the system.

Game Kit networking doesn’t factor in any
type of priority when dealing with packets.
Packets are sent in the order that they are fed
into the system.

Ordering Packets will be received in the order
that they are sent.

Packets using this method are not guaranteed
to be received in the same order that they
were sent.

Retry A packet will be continuously retried
until it is successfully received. The
next packet will not be sent until the
first one has been confirmed received.

A packet is sent and then removed from the
queue. The API does not wait to receive a
received notification before it sends the next
packet. This is naturally faster than waiting for
a response between each packet.

Sending Only What Is Needed
One of the vital mistakes that first-timers make when designing a network is sending too
much data. It is easy to just send everything. In the beginning of this chapter, we talked
about a game that exhibited this very problem.

“If I had more time I would write a shorter letter.”

— Blaise Pascal

Pascal could have very well been talking about network packets, in this often-
misattributed quote. The size of the packet can be directly related to the speed, stability,
and scalability of your network. It is important to spend the time to figure out what the
absolute bare minimum is that can be sent.

Take a look at a hypothetical example that some of you might encounter while designing
a game. For this example, let’s say you are working on a role-playing game. You control
your hero and guide him or her through a series of dungeons. In these dungeons, you
can interact with items and encounter various enemies, which you will fight in real time.

CHAPTER 7: Network Design Overview 139

Well, we know we will have some static data; for example, the layout of the dungeon
probably will not be changing while you are inside it, so instead of sending the map tiles
to the client every frame or even periodically, we should send that data when the player
first enters the zone. There might be elements that will be moving, but we can predict
their behavior infinitely, such as a river flowing or a torch flickering. These items can also
be loaded once with the information they need to stay in sync.

There are, of course, items that will need to be updated throughout the player’s
adventures in the dungeon. The player himself will need to be updated every time the
user creates a new action. For example, if you are running east, you could send a packet
every frame to tell the server that you are running east. However, a much more efficient
way to handle this interaction is to tell the server to begin moving east at full speed.
When you are done moving east, you should inform the server that you want to stop.
This type of interaction drastically reduces the number of messages that need to be sent
to the server to accomplish the same task. Optimizations such as these is why, when
playing modern games, you sometimes see disconnected players running into walls—
the server never received a stop-running command before the client disconnected.

Take the time to carefully design how you will structure your network data. You can
always add more information, but it becomes very difficult to remove data as you dig
deeper into your network design. Always look for a way to reduce packet size, as there
is no downside to packets being too small, but a packet that is too large will cause you a
lot of suffering down the road.

Prediction and Extrapolation
Let’s take another example into consideration: this time, a racing game. Each player
controls a car that is guided around a track. We know where each car is at the start of
the race. We also know that any messages we send to the server will have an inherited
latency due to the round-trip network time. Should we not update the car positions until
the server tells us to? That would result in a very choppy racing game. To account for
this very common issue, we use predictive technology.

We know that racecars will, more than likely, continue on a current course for the next
handful of frames. We will assume things will continue doing what they are doing until
the server tells us otherwise; if the user steers slightly to the left or right, that is a minor
correction we will need to make when the server informs us of the update. The fact that
an object in motion will stay in motion until acted on by an outside force is not just a law
of physics; it is also the first rule of designing a predictive network.

The chances of an object completely reversing its current course are much less likely
than slightly modifying its current course. This makes it easier to account for minor
changes if the server informs you that things are out of sync. In the event that a player
does completely change direction or otherwise break your prediction about what actions
were going to continue, you are only off the mark by as much as your current latency,
which is typically only a small fraction of a second. If you have an object that is likely to
continue doing what it is doing—such as a player moving, objects in a falling state,

CHAPTER 7: Network Design Overview 140

bullet trajectory, or any type of physics simulation—the best bet is to continue assuming
that those actions will continue until the server informs you that they have changed.

Formatting Messages
Whenever you are dealing with designing a network for a game or game-like application,
you are guaranteed to be dealing with at least two types of messages. These are often
referred to as state messages and server messages. A state message is a message that
will directly affect your game engine, such as a player moving or opening a chest. Server
messages deal with the glue that holds everything together, such as connections,
disconnections, pings, and errors.

It becomes important to quickly sort these messages to different handlers. It is a good
design pattern to keep the parsing of these messages in different places. After all, you
don’t want to be scanning all your chat messages in a first-person shooter for client
timeout messages. There are many different methods to handle this segregation, but I
have found a simple prefix is suitable for most cases. If you prefix all of your state
messages with a character that you will not see in server messages, you can quickly
check the first character in incoming messages to make sure they are delivered to the
correct parser. If you are designing a more complex network, you can use a large
number of possible prefixes to make sure things get to the correct place. In Chapter 8,
we will look at practical examples of message formatting when we begin to send and
receive data.

Preventing Cheating and Preventing Timeout-
Related Disconnections
One thing that has not become a big concern on the iOS platform, as of yet, is cheating
through network exploits. If you are an online gamer, you are probably all too familiar
with this behavior. A clever user will determine how the network behaves, and then send
commands that the client itself would never send, such as increase hit points to max
float or decrease respawn time to zero. Although you might need to have your server
respond to things such as increase or decrease hit points, you want to make sure the
server is in control. For example, instead of letting the client say “increase moment
speed to fifty,” you should set up the message to something like “request increase
moment speed” and then have the server return the new speed. If you put clients in
charge of variables, at some point someone will take advantage of this and exploit your
system.

If your client doesn’t have any updates to send out to the server or its peers, it is good
practice to send a message that simply states, “I’m still here don’t disconnect me,”
which is known as a “keep alive” message. Although you don’t have to worry about
timeout disconnection on the iOS platform, it is still a good idea to make sure that you
keep your own line of communication open between idle peers.

CHAPTER 7: Network Design Overview 141

When you are designing a message architecture, you can really think of it as designing
an API; there are a lot of similarities and you have to follow the same guidelines. If you
ship version one of your app with a command that lets users query for their movement
speed, you can’t easily pull out that command in version two, because previous clients
might still be depending on it. Follow the same guidelines that API developers do: test
everything thoroughly, because after it is out in the wild, it is very hard to get it back.

What to Do When All Else Fails
An issue that is bound to come up when you have been working with networks long
enough is that of what to do when the system you have designed no longer meets your
needs. Let’s discuss something that might be familiar to those of you who have taken
some logic or business courses. There is a syndrome known as the “Sunk Cost Fallacy,”
where when dealing with non-refundable resources, such as time, those cost are
weighed as equally as refundable costs.

Take a look at the following equation.

Payoff = project revenue – open cost

Now let’s look at the same example using some real-world data. In 1968, Knox and
Inkster approached 141 horse bettors: 72 of the people had just finished placing a $2.00
bet within the past 30 seconds, and 69 people were about to place a $2.00 bet within
the next 30 seconds. The hypothesis was that people who had just committed
themselves to a course of action would reduce post-decision dissonance by believing
more strongly than ever that they had picked a winner. Knox and Inkster asked the
bettors to rate their horse’s chances of winning on a seven-point scale. What they found
was that people who were about to place a bet rated the chance that their horse would
win at an average of 3.48, which corresponded to a “fair chance of winning,” whereas
people who had just finished betting gave an average rating of 4.81, which
corresponded to a “good chance of winning.” This hypothesis was confirmed: after
making a $2.00 commitment, people became more confident that their bet would pay
off. Knox and Inkster performed an ancillary test on the patrons of the horses
themselves and managed to repeat their finding almost identically.1

What we are talking about is accepting when it is time to give up and start over. Giving
up is never a popular solution; our brains are wired against it. We look at the non-
refundable cost and calculate that into our favor. Once you have already made an
investment, it is easier to justify that investment and try to defend it. No one wants to be
the person to call it quits and throw away all the time and money already invested into a
project; however, when you spend time and resources on a development project, they
are spent and they cannot be recouped. You cannot justify more time simply based on
time spent.

1 Knox, R. E., & Inkster, J. A. (1968). “Postdecision dissonance at post time”. Journal of
Personality and Social Psychology, 8, 319–323.

CHAPTER 7: Network Design Overview 142

There is no right answer on when to give up and start over, and there is no wrong
answer. The only thing you can do is look at the problem objectively. If you hadn’t
already invested into this problem, what solution would you pick?

Summary
In this chapter, we looked at the design of the actual network, as opposed to the iOS-
specific information that we have dealt with in the rest of this book so far. You could
easily design a working network without the information in this chapter, through
common sense and gut instinct, but keep in mind the lesson learned throughout this
chapter: just because it works, doesn’t mean it works well. Designing a network is easy;
designing a network correctly is very difficult.

There is significantly more information on network design than can easily fit into a single
chapter, or even a single book. If I can leave you with a final piece of advice: when you
begin to look at how to structure your network, think through everything as you go, and
never feel the need to be satisfied with your first solution.

In the next chapter, we will finally get to work with sending our messages from one
device to another. Chapter 9 will also be an extension of that technology where we look
into how to add voice chat services to your iOS app.

143

 Chapter

Exchanging Data
In the past few chapters, we explored how to connect to peers through a variety of
methods. So far, we have not been able to do much with that connection. In this
chapter, we will learn all that there is to know about exchanging data between sets of
peers using Game Kit and Game Center networking. We have already added the ability
to find peers using both Game Center and the Peer Picker (Game Kit) to our UFO game.
We will now add the ability to actually play a multiplayer match.

Because all the groundwork has already been laid out in previous chapters, there are
only two items that we need to worry about in regards to exchanging data. First, we
need to send the actual data; second, we need to receive and process that data on the
other side. Everything else that you need to do is already done, except some logic for
disconnecting. Let’s jump right into it by modifying our source code from Chapter 6.

Modifying a Single-Player Game
There are a few modifications that we need to make to our single-player game in order
to transform it into a multiplayer game.

 Once we connect to a new peer, we need to begin the game. We also
need a way to inform our existing engine that the new game is
multiplayer.

 One device needs to be designated the host device. We will have this
one device control the movements of the cows, since both devices
can’t control cow movement themselves. This is an important step if
we want both devices to appear in sync.

 Each peer needs to inform the other peer(s) about its actions, such as
movement and tractor beam usage.

 Each peer needs to parse the other peer’s device and update its own
game state to keep both devices in sync with each other.

These steps are a representation of the bare minimum that is typically required to turn a
single-player game into a multiplayer game. Your particular game or app might be much

8

CHAPTER 8: Exchanging Data 144

more complex. For example, your multiplayer experience might be so different from your
single-player gameplay that you cannot reuse the same class for both modes. On the
other hand, your game might be even simpler. For example, a multiplayer game of
battleship wouldn’t require either device to be the host because there are no computer-
controlled elements that you need to worry about keeping track of.

Setting Up Our Engine for Multiplayer
The very first thing that we need to do is let our game engine know whether the state
should be set to multiplayer or single player. There are complex ways and simple ways
of doing this. Depending on your needs, you will most likely be able to get away with a
simple state variable.

A state variable is the approach that we will use for our example, since our game is
extremely straightforward. In UFOGameViewController.h, we create a new ivar to
represent a BOOL, which will be set to inform the class whether we are in single-player
or multiplayer mode. Add the following two bold lines into our already existing header
file, and don’t forget to synthesize gameIsMultiplayer in the implementation.

@interface UFOGameViewController : UIViewController <UIAccelerometerDelegate,
 GameCenterManagerDelegate>
{
 BOOL gameIsMultiplayer;
}

@property(nonatomic, assign) BOOL gameIsMultiplayer;

We will use this property throughout our code base to determine whether the game is
running in multiplayer mode.

We have two existing methods that will be called when our game begins a new
multiplayer match. The first method is called when Game Center finds a match, and the
second will be used when we find a peer through our Peer Picker. We will deal with two
different identifiers for our peers: Game Center returns a GKMatch object, and the Peer
Picker returns an NSString to represent the peer. We will also add some new methods in
our GameCenterManager class to handle using the same code to communicate to both
of these systems at once. For now, we will simply focus on getting the game up and
running in a new state.

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
 didFindMatch:(GKMatch *)match
{
 [self dismissModalViewControllerAnimated:YES];
}

- (void)peerPickerController:(GKPeerPickerController *)picker didConnectPeer:(NSString
 *)peerID toSession:(GKSession *)session
{
 currentSession = session;
 [self dismissModalViewControllerAnimated: YES];
}

CHAPTER 8: Exchanging Data 145

Next, we add a section of code to the end of each one of these methods to begin a new
multiplayer game after we find a peer that we want to play against. Go ahead and add
the following snippet of code into each method.

 UFOGameViewController *gameVC = [[UFOGameViewController alloc] init];
 gameVC.gcManager = gcManager;
 gameVC.gameIsMultiplayer = YES;
 [self.navigationController pushViewController:gameVC animated:YES];
 [gameVC release];

We also need to hold onto either the GKMatch or the NSString that represents a peer.
Create two new properties in the UFOGameViewController, named peerIDString and
peerMatch. Set these up in the same fashion that you did for the gameIsMultiplayer ivar.
The new section of your header should look like the following abstracted snippet.

@interface UFOGameViewController : UIViewController <UIAccelerometerDelegate,
 GameCenterManagerDelegate>
{
 //…

 NSString *peerIDString;
 GKMatch *peerMatch;
}

@property(nonatomic, retain) NSString *peerIDString;
@property(nonatomic, retain) GKMatch *peerMatch;

Now we need to add logic to set these properties in both of the methods for beginning a
new multiplayer game. These methods should now look like the following ones. As you
can see, we nil out the unused property; we will always have one of the two properties
being set to nil, because you can never have a game that is using both the Peer Picker
and Game Center at the same time.

When we load our game view controller, we know whether it is multiplayer or not, as well
as having a reference to our peer or peers. Our GameViewController now has all the
information it needs to begin a new multiplayer game.

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
 didFindMatch:(GKMatch *)match
{
 [self dismissModalViewControllerAnimated:YES];
 UFOGameViewController *gameVC = [[UFOGameViewController alloc] init];
 gameVC.gcManager = gcManager;
 gameVC.gameIsMultiplayer = YES;
 gameVC.peerIDString = nil;
 gameVC.peerMatch = match;
 [self.navigationController pushViewController:gameVC animated:YES];
 [gameVC release];
}

- (void)peerPickerController:(GKPeerPickerController *)picker didConnectPeer:
(NSString *)peerID toSession:(GKSession *)session
{
 currentSession = session;
 [self dismissModalViewControllerAnimated: YES];
 UFOGameViewController *gameVC = [[UFOGameViewController alloc] init];

CHAPTER 8: Exchanging Data 146

 gameVC.gcManager = gcManager;
 gameVC.gameIsMultiplayer = YES;
 gameVC.peerIDString = peerID;
 gameVC.peerMatch = nil;
 [self.navigationController pushViewController:gameVC animated:YES];
 [gameVC release];
}

Picking a Host
Picking which device will be the host is harder than it sounds. Both devices, when first
connected together, are treated as equals. How do we then determine which device will
have more control than the other?

The most straightforward and foolproof system that I have discovered is having each
device generate a random number. Whichever device has the largest random number
becomes the host. In the very rare event that both devices generate the same random
number, we simply try again.

After we have determined the random number a device has picked for its chance at
being the host, we need to send that data to the other device. On the other side, we
need to process the data and have both devices come to the same conclusion about
which one has been selected as the host. This section deals only with generating the
host number; the next two sections handle how to send and receive this data. We now
add the following method to our UFOGameCenterViewController class.

-(void)generateAndSendHostNumber;
{
 double randomHostNumber = arc4random();
 NSString *randomNumberString = [NSString stringWithFormat: @"%d",
 randomHostNumber];
 [self.gcManager sendStringToAllPeers:randomNumberString reliable: YES];
}

For the purpose of this particular example, we will work with an NSString for sending the
data back and forth. You could easily send this as an NSNumber as well, but whatever
we send will first need to be converted to NSData, which we will cover in the next
section. In addition, we want to make sure this method is called whenever we are
dealing with a multiplayer game. To do so, we need to add the following to the end of
our viewDidLoad method. We also need to slightly modify our logic to spawn cows. If it
is a multiplayer game, only the host is responsible for spawning and updating cow
paths.

TIP: When you begin to deal with more complex networking, it is often beneficial to switch to a

data type that can easily store more data with less parsing, such as a dictionary or an array.

-(void)viewDidLoad
{
 //…

CHAPTER 8: Exchanging Data 147

 [self generateAndSendHostNumber];
 if (self.gameIsMultiplayer == NO)
 {
 for (int x = 0; x < 5; x++)
 {
 [self spawnCow];
 }

 [self updateCowPaths];
 }
}

Sending Data
We will work with two primary methods to send data to other connected peers. One will
handle sending data to every peer we are connected to, and the other will send data
only to specified peers, such as teammates or other groups of players. First, add the
following two methods to our GameCenterManager class.

-(void)sendStringToAllPeers:(NSString *)dataString reliable:(BOOL)reliable;
-(void)sendString:(NSString *)dataString toPeers:(id)peers reliable:(BOOL)reliable;

We will use these methods to send strings back and forth, but you can add additional
methods to accept any type of input you want. Keep in mind that everything will need to
be converted to NSData along the way. You might also notice that the first method is the
same method we called previously from our generateAndSendHostNumber.

TIP: It is a good idea to implement methods to handle arrays and dictionaries. These are both

very common data types when working with networking messages.

Before we can really begin to send data back and forth, we need to know either the
GKSession or the GKMatch that was created for our multiplayer game. To do this, we
create a new ivar in the GameCenterManager class. We name it matchOrSession and
set it to an ID type. We need to set this property before we begin a new multiplayer
game, after we have been returned either a new GKSession or GKMatch. Let’s first take
a look at sending data to all peers. The new method is posted as follows. After you have
examined it, we will discuss it in further detail.

-(void)sendStringToAllPeers:(NSString *)dataString reliable:(BOOL)reliable
{

 if (self.matchOrSession == nil)
 {
 NSLog(@"Game Center Manager matchOrSession ivar was not set, this
 needs to be set with the GKMatch or GKSession before sending or receiving data");
 return;
 }

 NSData *dataToSend = [dataString dataUsingEncoding:NSUTF8StringEncoding];
 GKSendDataMode mode;
 if (reliable)

CHAPTER 8: Exchanging Data 148

 {
 mode = GKSendDataReliable;
 }
 else
 {
 mode = GKSendDataUnreliable;
 }

 NSError *error = nil;
 if ([self.matchOrSession isKindOfClass: [GKSession class]])
 {
 [self.matchOrSession sendDataToAllPeers:dataToSend withDataMode:
mode error:&error];
 }

 else if ([self.matchOrSession isKindOfClass: [GKMatch class]])
 {
 [self.matchOrSession sendDataToAllPlayers:dataToSend withDataMode:
mode error:&error];
 }

 else
 {
 NSLog(@"Game Center Manager matchOrSession was not a GKMatch or
 a GKSession, we are unable to send data");
 }

 if (error != nil)
 {
 NSLog(@"An error occurred while sending data: %@", [error
 localizedDescription]);
 }
}

We need to make sure that we have properly set the matchOrSession property. If we
haven’t, we will not be able to continue, as we will be using this object to send data.
After we have ensured that we have the proper information to continue, we then
transform our NSString to an NSData object. This encodes the string into a format that is
safe for sending over the network. We also need to set the reliability mode, as discussed
in Chapter 7.

Now that we have everything in place to actually send data, we first detect whether we
are working with a GKMatch from a Game Center type connection or a GKSession from
a Peer Picker type connection. All that is left to do is send the data using the Game Kit
APIs.

Now is a good time to look at how we will selectively send data only to certain peers.
We can build off the example we already have for sending data to all peers. Let’s take a
look at our sendString method.

-(void)sendString:(NSString *)dataString toPeers:(id)peers reliable:(BOOL)reliable
{
 if (self.matchOrSession == nil)
 {
 NSLog(@"Game Center Manager matchOrSession ivar was not set, this

CHAPTER 8: Exchanging Data 149

 needs to be set with the GKMatch or GKSession before sending or receiving data");
 return;
 }

 NSData *dataToSend = [dataString dataUsingEncoding:NSUTF8StringEncoding];
 GKSendDataMode mode;
 if (reliable)
 {
 mode = GKSendDataReliable;
 }
 else
 {
 mode = GKSendDataUnreliable;
 }

 NSError *error = nil;
 if ([self.matchOrSession isKindOfClass: [GKSession class]])
 {
 if ([peers isKindOfClass:[NSArray class]])
 {
 [self.matchOrSession sendData:dataToSend toPeers:peers
 withDataMode:mode error:&error];
 }

 else
 {
 NSLog(@"Game Kit requires peers be sent as an NSArray of Peer
 ID Strings");

 }
 }

 else if ([self.matchOrSession isKindOfClass: [GKMatch class]])
 {

 if ([peers isKindOfClass:[NSArray class]])
 {
 [self.matchOrSession sendData:dataToSend toPlayers:peers
 withDataMode:mode error:&error];
 }

 else
 {
 NSLog(@"Game Center requires peers be sent as an NSArray of
 Peer ID Strings");
 }

 }

 else
 {
 NSLog(@"Game Center Manager matchOrSession was not a GKMatch or
 a GKSession, we are unable to send data");
 }

 if (error != nil)
 {

CHAPTER 8: Exchanging Data 150

 NSLog(@"An error occurred while sending data: %@", [error
 localizedDescription]);
 }
}

This method is very similar to the method for sending data to all peers. The main
difference is that we use a new API call and feed in an array of peer IDs. You can, of
course, change these methods to accept more than an NSString when sending data, but
for the simplicity of our test game, a string is all we need.

This concludes everything you need to know about sending data between two or more
iOS devices. In the next section, we will look at how to receive and parse the data we
get from another peer.

Receiving Data
GKSession and GKMatch each have their own system for receiving delegate callbacks
for incoming data. Both of these systems depend on a delegate. Game Center uses the
same delegate that we used for our invitation handler in Chapter 5; Game Kit allows us
to use a separate call, setDataReceiveHandler:withContext:, to specify the instance that
will be in charge of handling incoming data from the network.

The first step in setting up our app to receive data is to set the receive data delegate for
both systems to our GameCenterManager class. We will use the GameCenterManager
class as a filter point for passing data back into our game. While you could easily receive
data in your game controller itself, if we pipe everything throughout
GameCenterManager, it makes it much easier to plug this class into future apps and we
can direct both Game Kit and Game Center networking to the same protocols to make
life easier later down the road.

Modify both matchmakerViewController and peerPickerController of
UFOViewController.m to match the following.

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
 didFindMatch:(GKMatch *)match
{
 [self dismissModalViewControllerAnimated:YES];
 gcManager.matchOrSession = match;
 //Set a new received data handler
 [gcManager setupInvitationHandler: gcManager];
 UFOGameViewController *gameVC = [[UFOGameViewController alloc] init];
 gameVC.gameIsMultiplayer = YES;
 gameVC.peerIDString = nil;
 gameVC.peerMatch = match;
 [self.navigationController pushViewController:gameVC animated:YES];
 [gameVC release];
}

- (void)peerPickerController:(GKPeerPickerController *)picker didConnectPeer:
(NSString *)peerID toSession:(GKSession *)session
{
 [picker dismiss];
 currentSession = session;

CHAPTER 8: Exchanging Data 151

 gcManager.matchOrSession = session;

 //Set a new received data handler
 [session setDataReceiveHandler: gcManager withContext: nil];
 UFOGameViewController *gameVC = [[UFOGameViewController alloc] init];
 gameVC.gameIsMultiplayer = YES;
 gameVC.peerIDString = peerID;
 gameVC.peerMatch = nil;
 [self.navigationController pushViewController:gameVC animated:YES];
 [gameVC release];
}

The important change to focus on in the two preceding methods is setting the delegate
to handle the incoming data request to our GameCenterManager class. This allows us to
handle all incoming data in one centralized place; from there, we can relay it out to the
relevant sections of the app.

Next, you need to add the following two methods to your GameCenterManager class.
The first handles incoming data from Game Kit and the second handles incoming data
from Game Center. Both of these methods assume we will be working with only
incoming strings, because that is the design we have chosen when dealing with sending
data in our game. You can easily adapt these methods to handle receiving other types of
objects. In addition, we need to add a new protocol method to handle sending the data
back to our game classes. You can also further adapt this setup to use a more complex
and intelligent system of data parsing, but it will be more than suitable for the needs of
UFOs.

- (void)receiveData:(NSData *)data fromPeer:(NSString *)peer inSession: (GKSession
 *)session context:(void *)context;
{

 NSString *dataString = [[NSString alloc] initWithData:data
 encoding:NSUTF8StringEncoding];
 NSDictionary *dataDictionary = [NSDictionary dictionaryWithObjects:
[NSArray arrayWithObjects:dataString, peer, session, nil] forKeys:
[NSArray arrayWithObjects:@"data", @"peer", @"session, nil]];
 [dataString release];
 [self callDelegateOnMainThread: @selector(receivedData:) withArg:
 dataDictionary error: nil];
}

- (void)match:(GKMatch *)match didReceiveData:(NSData *)data fromPlayer:
(NSString *)playerID
{
 NSString *dataString = [[NSString alloc] initWithData:data
 encoding:NSUTF8StringEncoding];

 NSDictionary *dataDictionary = [NSDictionary dictionaryWithObjects:
[NSArray arrayWithObjects:dataString, playerID, match, nil] forKeys:
[NSArray arrayWithObjects:@"data", @"peer", @"session", nil]];
 [dataString release];
 [self callDelegateOnMainThread: @selector(receivedData:) withArg:
 dataDictionary error: nil];
}

CHAPTER 8: Exchanging Data 152

TIP: You can use the context property to pass any data to the received delegate method.

The new protocol method is named receivedData, and you can see how it fits into our
existing list of available protocols, as follows.

@protocol GameCenterManagerDelegate <NSObject>
@optional
- (void)processGameCenterAuthentication:(NSError*)error;
- (void)friendsFinishedLoading:(NSArray *)friends error:(NSError *)error;
- (void)playerDataLoaded:(NSArray *)players error:(NSError *)error;
- (void)scoreReported: (NSError*) error;
- (void)leaderboardUpdated: (NSArray *)scores error:(NSError *)error;
- (void)mappedPlayerIDToPlayer:(GKPlayer *)player error:(NSError *)error;
- (void)mappedPlayerIDsToPlayers:(NSArray *)players error:(NSError *)error;
- (void)localPlayerScore:(GKScore *)score error:(NSError *)error;
- (void)achievementSubmitted:(GKAchievement *)achievement error:(NSError *)error;
- (void)achievementEarned:(GKAchievementDescription *)achievement;
- (void)achievementDescriptionsLoaded:(NSArray *)descriptions error:(NSError *)error;
- (void)playerActivity:(NSNumber *)activity error:(NSError *)error;
- (void)playerActivityForGroup:(NSDictionary *)activityDict error:(NSError *)error;
- (void)receivedData:(NSDictionary *)dataDictionary;
@end

All that is left now is to implement our received data protocol method. We need to add
the following method to the UFOGameViewController implementation file.

- (void)receivedData:(NSDictionary *)dataDictionary;
{
 if ([[dataDictionary objectForKey: @"data"] doubleValue] == randomHostNumber)
 {
 NSLog(@"Host numbers are equal, we need to reroll them");
 [self generateAndSendHostNumber];
 }

 else if ([[dataDictionary objectForKey: @"data"] doubleValue] >
 randomHostNumber)
 {
 NSLog(@"We are the host");
 isHost = YES;
 }

 else if ([[dataDictionary objectForKey: @"data"] doubleValue] <
 randomHostNumber)
 {
 NSLog(@"They are the host");
 isHost = NO;
 }
}

If you run the game on two devices now, you can see that each log reflects whether the
device has been designated a host or whether the other device is the host. The
receivedData method is very flawed, though, because it only works with the host data
message. In the next section, we will refine this method to accept not only the host

CHAPTER 8: Exchanging Data 153

message, but also input for player movements, cow movements, and other game
actions.

You now have all the basic skills required to send data between two different iOS
devices, as well as receive and parse that data and have your system react to it. If you
want to experiment with working with these calls in practice, the next section will walk
you through several examples of sending and receiving data in our UFOs game.

Putting Everything Together
In the last section, we learned how to receive the data that has been sent to a device. In
this section, we walk through the exercise of actually using received data in a useful way
for our game. We add a second player, allow movement information to be sent over the
network, sync up state data across both devices (such as cow movement), track each
player’s score, and complete various other required overhead tasks associated with our
particular game.

Selecting the Host
Let’s start by improving the host selection logic that was implemented in the previous
section. Right now, any data that we receive is assumed to be the host number.
Because most of the data we receive will not be the host number, we need to find a way
to filter that data to where we can parse it. Modify the generateAndSendHostNumber
method to match the following code block.

-(void)generateAndSendHostNumber;
{
 randomHostNumber = arc4random();
 NSString *randomNumberString = [NSString stringWithFormat: @"$Host:%f",
 randomHostNumber];
 [self.gcManager sendStringToAllPeers:randomNumberString reliable: YES];
}

As you can see, we now add an identifier prefix to the message that we will send. I have
chosen for this example the prefix of $Host:, but you can use whatever system you
want. In addition, we need to modify the receivedData callback to support the new
format.

- (void)receivedData:(NSDictionary *)dataDictionary;
{
 if ([[dataDictionary objectForKey: @"data"] hasPrefix:@"$Host:"])
 {
 [self determineHost: dataDictionary];
 }
 else
 {
 NSLog(@"Unable to determine type of message: %@",
 dataDictionary);
 }
}

CHAPTER 8: Exchanging Data 154

If we determine that the message is a host message, we send it to a new helper method
called determineHost to determine which device is the host. If we are unable to
determine the type of message, we print a warning message to the console, which will
help us debug later down the road. We need to move the old code from receivedData
into determineHost. In addition to moving the code, we need to strip off the prefix.
Although stripping off the prefix has a lot of overhead, it is the easiest way to
accomplish this task. In more complex apps, you might need to design a more robust
message system.

-(void)determineHost:(NSDictionary *)dataDictionary
{
 NSString *dataString = [[dataDictionary objectForKey: @"data"]
 stringByReplacingOccurrencesOfString:@"$Host:" withString:@""];
 if ([dataString doubleValue] == randomHostNumber)
 {
 NSLog(@"Host numbers are equal, we need to reroll them");
 [self generateAndSendHostNumber];
 }

 else if ([dataString doubleValue] > randomHostNumber)
 {
 NSLog(@"We are the host");
 isHost = YES;
 }

 else if ([dataString doubleValue] < randomHostNumber)
 {
 NSLog(@"They are the host");
 isHost = NO;
 }
}

Now we can still determine who the host is, but we have opened the door to be able to
process more than only this type of data.

The next step will be transmitting and displaying our peer’s UFO into our game. In this
chapter, I have added two new images to the project, EnemySaucer1.png and
EnemySaucer2.png. These are the same as the originals, but with a different color
scheme applied to them. We will use this new artwork to display the opponent’s
spacecraft.

Displaying the Enemy UFO
The first thing we need to do is detect whether we are a multiplayer game, and if so, we
need to draw the enemy UFO in the viewDidLoad method of UFOGameViewController.
You will notice this is the exact same code we use for drawing the player in single-player
mode except we use a different graphic asset.

-(void)viewDidLoad
{
 if (self.gameIsMultiplayer)
 {
 CGRect otherPlayerFrame = CGRectMake(100, 70, 80, 34);

CHAPTER 8: Exchanging Data 155

 otherPlayerImageView = [[UIImageView alloc] initWithFrame:
 otherPlayerFrame];
 otherPlayerImageView.animationDuration = 0.75;
 otherPlayerImageView.animationRepeatCount = 99999;
 NSArray *imageArray = [NSArray arrayWithObjects: [UIImage imageNamed:
 @"EnemySaucer1.png"], [UIImage imageNamed: @"EnemySaucer2.png"], nil];
 otherPlayerImageView.animationImages = imageArray;
 [otherPlayerImageView startAnimating];
 [self.view addSubview: otherPlayerImageView];
 }
}

If we were to run the game on two devices and begin a new multiplayer game, we would
now see a red enemy UFO that just sits in the sky. The next step is to send our
movement data to our peer so that they can update where the enemy player is. To do
so, we add a new code snippet to the end of our movePlayer method.

-(void) movePlayer:(float)vertical :(float)horizontal;
{

 //…

 if (self.gameIsMultiplayer)
 {
 NSString *positionString = [NSString stringWithFormat:
 @"$PlayerPosition: %f %f", playerFrame.origin.x, playerFrame.origin.y];
 [self.gcManager sendStringToAllPeers:positionString reliable:
 NO];
 }
}

Here we send your player’s x and y coordinates to the peer every time you move. We
will be sending the data as unreliable, since if we fail, we can just use the next packet;
the data will always be updating while the player is moving. This would be a great place
to use predictive technology, as discussed in Chapter 7, but for simplicity’s sake, we will
be syncing every frame. In addition, there are better ways to send the x and y
coordinates to another device, such as a dictionary or custom data format. However,
encoding them into a string is the easiest to understand. As you develop your game or
app, you can design this type of function to be more streamlined with less overhead.

TIP: Using stringWithFormat carries with it a lot of overhead. In practice, you should use methods

such as stringByAppendingString to further optimize this type of code.

We also need to update our receivedData method to handle the new type of data we are
expecting. Modify that method to match the new one as follows. In addition, we add a
new method to parse the incoming data. Also add a new method called
drawEnemyShipWithData, as follows.

- (void)receivedData:(NSDictionary *)dataDictionary;
{
 if ([[dataDictionary objectForKey: @"data"] hasPrefix:@"$Host:"])
 {

CHAPTER 8: Exchanging Data 156

 [self determineHost: dataDictionary];
 }

 else if ([[dataDictionary objectForKey: @"data"] hasPrefix:@"$PlayerPosition:"])
 {
 [self drawEnemyShipWithData: dataDictionary];
 }

 else
 {
 NSLog(@"Unable to determine type of message: %@",
 dataDictionary);
 }
}

-(void)drawEnemyShipWithData:(NSDictionary *)dataDictionary
{
 NSArray *dataArray = [[dataDictionary objectForKey: @"data"]
 componentsSeparatedByString:@" "];
 float x = [[dataArray objectAtIndex: 1] floatValue];
 float y = [[dataArray objectAtIndex: 2] floatValue];
 otherPlayerImageView.frame = CGRectMake(x, y, 80, 34);
}

This method parses the incoming data from the network. We pull the x and y
coordinates out of the string that we received and we update the enemy player’s frame
with the new position. This type of approach is syncing the two devices frame by frame
and is very inefficient. Given more time, this method should be updated to use predictive
technology to determine where the player is heading, and only update the feed if the
player goes against the prediction. However, for the purposes of this demo, it suits our
needs. For more information on predictive networking see Chapter 7.

If you were to run the game now and begin a new multiplayer game, you would see that
each device reflects the movement of its partnered device. We still need to spawn the
cows, add the tractor beam, and update the scores, but we have a functional (albeit dull,
for the time being) multiplayer game, as shown in Figure 8–1.

Figure 8–1. Adding a second player to UFOs. Each player can move around independently and is kept in sync
through the network.

CHAPTER 8: Exchanging Data 157

Spawning Cows
Because we want the cow movement to be synced between each device, we need to
dedicate one device to handling the cow spawning and movement paths. We have
already picked a host device, so we will let the host determine where the cows will be
placed. We begin by modifying the determineHost method. As you can see in the
following code, if we are the host, we begin our normal spawn cow process.

-(void)determineHost:(NSDictionary *)dataDictionary
{
 NSString *dataString = [[dataDictionary objectForKey: @"data"]
 stringByReplacingOccurrencesOfString:@"$Host:" withString:@""];
 if ([dataString doubleValue] == randomHostNumber)
 {
 NSLog(@"Host numbers are equal, we need to reroll them");
 [self generateAndSendHostNumber];
 }

 else if ([dataString doubleValue] > randomHostNumber)
 {
 isHost = YES;
 for(int x = 0; x < 5; x++)
 {
 [self spawnCow];
 }

 [self updateCowPaths];
 }

 else if ([dataString doubleValue] < randomHostNumber)
 {
 isHost = NO;
 }
}

We also need to modify our spawnCow method to support the new networking
behavior. All we are doing here is determining whether we are a network game and
whether we are the host, and then sending the data to our network handlers.

-(void)spawnCow;
{
 int x = arc4random()%480;
 UIImageView *cowImageView = [[UIImageView alloc] initWithFrame:CGRectMake(x,
 260, 64, 42)];
 cowImageView.image = [UIImage imageNamed: @"Cow1.png"];
 [self.view addSubview: cowImageView];
 [cowArray addObject: cowImageView];
 [cowImageView release];

 if (isHost && self.gameIsMultiplayer)
 {
 [gcManager sendStringToAllPeers:[NSString stringWithFormat:
@"$spawnCow:%i", x] reliable:YES];
 }
}

CHAPTER 8: Exchanging Data 158

Modify the receivedData method to support the new $spawnCow message type. We
also want to extract the x axis origin from the message and pass it to a new method that
will handle spawning a cow from the network. Both of these methods are shown next.

else if ([[dataDictionary objectForKey: @"data"] hasPrefix:@"$spawnCow:"])
{
 int x = [[[dataDictionary objectForKey: @"data"]
 stringByReplacingOccurrencesOfString:@"$spawnCow:" withString:@""] intValue];
 [self spawnCowFromNetwork: x];
}
-(void)spawnCowFromNetwork:(int)x
{
 UIImageView *cowImageView = [[UIImageView alloc] initWithFrame:CGRectMake(x,
 260, 64, 42)];
 cowImageView.image = [UIImage imageNamed: @"Cow1.png"];
 [self.view addSubview: cowImageView];
 [cowArray addObject: cowImageView];
 [cowImageView release];
}

TIP: Our host doesn’t need to pass the y axis coordinate for the cows because they are always

spawned on the same y axis. If you can eliminate data from a packet, it is always beneficial.

If you were to run the game now, you would see that both devices spawn cows in the
exact same location, but the host device is the only device that animates the cow
movements.

The next step is to add the logic to share the animation control for the cows. Modify the
existing updateCowPaths method to send the newX and array position of the cow we
want to update. The following new code should be added to the end of the for loop.

if (self.gameIsMultiplayer)
{
 NSString *dataString = [NSString stringWithFormat:@"$cowMove:%i:%f", x, newX];
 [gcManager sendStringToAllPeers:dataString reliable:YES];
}

NOTE: Because we set the data for the spawn cow call to reliable, it is guaranteed to be received
in the order that it was sent. This means that we can be assured that the objects in our cowArray

on both devices will be in the same order.

We also need to add a new data handler to our receivedData method. We pass the
entire dictionary to our new updateCowPathsFromNetwork method.

else if ([[dataDictionary objectForKey: @"data"] hasPrefix:@"$cowMove:"])
{
 [self updateCowPathsFromNetwork: dataDictionary];
}

-(void)updateCowPathsFromNetwork:(NSDictionary *)dataDictionary;

CHAPTER 8: Exchanging Data 159

{
 NSArray *dataArray = [[dataDictionary objectForKey: @"data"]
 componentsSeparatedByString:@":"];
 int placeInArray = [[dataArray objectAtIndex: 1] intValue];
 UIImageView *tempCow = [cowArray objectAtIndex: placeInArray];
 float currentX = tempCow.frame.origin.x;
 [UIView beginAnimations:@"cowWalk" context:nil];
 [UIView setAnimationDuration: 3.0];
 [UIView setAnimationCurve:UIViewAnimationCurveLinear];
 float newX = [[dataArray objectAtIndex: 2] intValue];
 if (tempCow != currentAbductee)
 {
 tempCow.frame = CGRectMake(newX, 260, 64, 42);
 }

 [UIView commitAnimations];
 tempCow.animationDuration = 0.75;
 tempCow.animationRepeatCount = 99999;

 //flip cow
 if (newX < currentX)
 {
 NSArray *flippedCowImageArray = [NSArray arrayWithObjects: [UIImage
 imageNamed: @"Cow1Reversed.png"], [UIImage imageNamed: @"Cow2Reversed.png"], [UIImage
 imageNamed: @"Cow3Reversed.png"], nil];
 tempCow.animationImages = flippedCowImageArray;
 }

 else
 {
 NSArray *cowImageArray = [NSArray arrayWithObjects: [UIImage
 imageNamed: @"Cow1.png"], [UIImage imageNamed: @"Cow2.png"], [UIImage imageNamed:
 @"Cow3.png"], nil];
 tempCow.animationImages = cowImageArray;
 }

 [tempCow startAnimating];
}

This method is very similar to our existing method for updating cow paths. The two
differences are that we get our place in the array from the network, and we don’t
randomly generate a newX position. If you were to run the game again, you would see
that both sets of cows are now in sync with each other. When a cow changes position, it
is reflected exactly the same on both devices. Figure 8–2 shows the current state of the
game.

CHAPTER 8: Exchanging Data 160

Figure 8–2. Syncing up the cow movements over the network between two iOS devices

Each player can now abduct cows and increment their score. There are, however, still
two remaining issues that need to be addressed. The first is that we don’t share scores
between devices, and the second is that we don’t show the other player’s tractor beams
or animate the cows into the UFO during the abduction. Let’s start off by adding in
support for the score.

Sharing Scores
When we increment the score, we send that data to our peers. Add the following snippet
of code to our finishAbducting method, right after we increment the score.

if (self.gameIsMultiplayer)
{
 [gcManager sendStringToAllPeers:[NSString stringWithFormat:@"$score:%f",
 score] reliable:YES];
}

We, again, need to modify our receivedData method to support the new $score
message. I have chosen to increment the enemy score within the receivedData method.
You can, of course, write a new method to handle this functionality. In addition, we need
to add a new label for the enemy score. It will be placed directly below the local player’s
score. Figure 8–3 shows the scores in place.

else if ([[dataDictionary objectForKey: @"data"] hasPrefix:@"$score:"])
{
 float enemyScore = [[[dataDictionary objectForKey: @"data"]
 stringByReplacingOccurrencesOfString:@"$score:" withString:@""] floatValue];
 enemyScoreLabel.text = [NSString stringWithFormat: @"ENEMY %05.0f",
 enemyScore];
}

CHAPTER 8: Exchanging Data 161

TIP: Technically, you don’t need to pass the score value in with the network call, because scores
are always incremented by one; we can assume a new score message means increment the

value by one.

Figure 8–3. Adding the score for the networked player

Exercise It would be very easy to add logic to declare a winner of the game when either player

reaches a score of ten. Try to add this logic into the game.

Adding Network Abduction Code
The last thing that we need to handle is tying in network support for the abduction code.
We need to properly remove and respawn cows as they are abducted, as well as show
the enemy UFO using their tractor beam and animating a cow into the ship.

Let’s begin by showing and hiding the tractor beam on each device. Because we start a
tractor beam every time a user touches the screen, and end it when the user releases
that touch, we can begin there. We have no values that need to be transmitted; the only
thing we need to be aware of is starting and stopping the animation itself. Modify the
touchesBegan and touchesEnd methods to send a message to the peer. The modified
methods are shown as follows.

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 currentAbductee = nil;
 tractorBeamOn = YES;
 if (self.gameIsMultiplayer)
 {
 [gcManager sendStringToAllPeers:@"$beginTractorBeam"
 reliable:YES];

CHAPTER 8: Exchanging Data 162

 }

 tractorBeamImageView.frame = CGRectMake(myPlayerImageView.frame.origin.x+25,
 myPlayerImageView.frame.origin.y+10, 28, 318);
 tractorBeamImageView.animationDuration = 0.5;
 tractorBeamImageView.animationRepeatCount = 99999;
 NSArray *imageArray = [NSArray arrayWithObjects: [UIImage imageNamed:
 @"Tractor1.png"], [UIImage imageNamed: @"Tractor2.png"], nil];
 tractorBeamImageView.animationImages = imageArray;
 [tractorBeamImageView startAnimating];
 [self.view insertSubview:tractorBeamImageView atIndex:4];
 UIImageView *cowImageView = [self hitTest];
 if (cowImageView)
 {
 currentAbductee = cowImageView;
 [self abductCow: cowImageView];
 }

}

-(void)endTractorFromNetwork
{
 [otherPlayerTractorBeamImageView removeFromSuperview];
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 tractorBeamOn = NO;
 if (self.gameIsMultiplayer)
 {
 [gcManager sendStringToAllPeers:@"$endTractorBeam"
 reliable:YES];
 }

 [tractorBeamImageView removeFromSuperview];
 if (currentAbductee)
 {
 [UIView beginAnimations: @"dropCow" context:nil];
 [UIView setAnimationDuration: 1.0];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseIn];
 [UIView setAnimationBeginsFromCurrentState: YES];
 CGRect frame = currentAbductee.frame;
 frame.origin.y = 260;
 frame.origin.x = myPlayerImageView.frame.origin.x +15;
 currentAbductee.frame = frame;
 [UIView commitAnimations];
 }

 currentAbductee = nil;
}

As you can see, we simply check to make sure that we have a network game, and then
pass a message to begin or end the tractor beams. Next, we add a handler to our
receivedData method to call two new methods that will display and animate the tractor

CHAPTER 8: Exchanging Data 163

beam on the peer’s device. These two methods are modifications of our current tractor
beam animation methods and are shown next for your convenience.

-(void)beginTractorFromNetwork
{
 otherPlayerTractorBeamImageView.frame =
 CGRectMake(otherPlayerImageView.frame.origin.x+25,
 otherPlayerImageView.frame.origin.y+10, 28, 318);
 otherPlayerTractorBeamImageView.animationDuration = 0.5;
 otherPlayerTractorBeamImageView.animationRepeatCount = 99999;
 NSArray *imageArray = [NSArray arrayWithObjects: [UIImage imageNamed:
 @"Tractor1.png"], [UIImage imageNamed: @"Tractor2.png"], nil];
 otherPlayerTractorBeamImageView.animationImages = imageArray;
 [otherPlayerTractorBeamImageView startAnimating];
 [self.view insertSubview:otherPlayerTractorBeamImageView atIndex:4];
}

-(void)endTractorFromNetwork
{
 [otherPlayerTractorBeamImageView removeFromSuperview];
}

If you were to run the game now, you would see that when each user touches the
screen, the tractor beam appears on both devices. We don’t need to worry about
locking the movement for the UFO while the tractor beam is on since this is handled for
us in the single-player game, and movements are only transmitted to another device if
they are acceptable on the single-player mode. Next, we need to add additional code to
handle the hit test, so modify the hitTest method, as follows.

-(UIImageView *)hitTest
{
 if (!tractorBeamOn)
 {
 return nil;
 }

 for (int x = 0; x < [cowArray count]; x++)
 {
 UIImageView *tempCow = [cowArray objectAtIndex: x];
 CALayer *cowLayer= [[tempCow layer] presentationLayer];
 CGRect cowFrame = [cowLayer frame];
 if (CGRectIntersectsRect(cowFrame, tractorBeamImageView.frame))
 {
 tempCow.frame = cowLayer.frame;
 [tempCow.layer removeAllAnimations];
 if (self.gameIsMultiplayer)
 {
 [gcManager sendStringToAllPeers:[NSString
 stringWithFormat: @"$abductCowAtIndex:%i", x] reliable:YES];
 }

 return tempCow;
 }
 }

CHAPTER 8: Exchanging Data 164

 return nil;
}

Here we are using the same trick that we used earlier when we populated the cow array.
Because we sent the data reliably to enter objects into our array, we know that the order
of the array is always going to be the same. Because we know the order of the array, we
can pass the index of the cow we want to modify. In addition to sending the data, we
also need to write a new if statement to catch this message, as shown below. You can
see this method is set up a lot like the score method in which we extract the value that
we are interested in and call a new method using it.

else if ([[dataDictionary objectForKey: @"data"] hasPrefix:@"$abductCowAtIndex:"])
{

 int index = [[[dataDictionary objectForKey: @"data"]
 stringByReplacingOccurrencesOfString:@"$abductCowAtIndex:" withString:@""] intValue];
 [self abductCowFromNetworkAtIndex:index];
}

The following two methods handle the abduction animations that are received over the
network. They are both very similar to the methods that we use to animate an abduction
in the single-player mode. You could even modify your existing methods to handle the
network behavior by calling them with a flag to indicate that they are coming from a
remote device.

-(void)abductCowFromNetworkAtIndex:(int)x
{
 otherPlayerCurrentAbductee = [cowArray objectAtIndex: x];

 otherPlayerCurrentAbductee.frame = otherPlayerCurrentAbductee.frame;
 [otherPlayerCurrentAbductee.layer removeAllAnimations];
 [UIView beginAnimations: @"abductNetwork" context:nil];
 [UIView setAnimationDuration: 4.0];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseIn];
 [UIView setAnimationDelegate: self];
 [UIView setAnimationDidStopSelector: @selector(finishAbductingFromNetwork)];
 [UIView setAnimationBeginsFromCurrentState: YES];
 CGRect frame = otherPlayerCurrentAbductee.frame;
 frame.origin.y = otherPlayerImageView.frame.origin.y;
 otherPlayerCurrentAbductee.frame = frame;
 [UIView commitAnimations];
}

-(void)finishAbductingFromNetwork;
{
 [cowArray removeObjectIdenticalTo:otherPlayerCurrentAbductee];
 [self endTractorFromNetwork];
 [otherPlayerCurrentAbductee.layer removeAllAnimations];
 [otherPlayerCurrentAbductee removeFromSuperview];
 otherPlayerCurrentAbductee = nil;
 if (isHost)
 {
 [self spawnCow];
 }
}

CHAPTER 8: Exchanging Data 165

We also need to do some overhead to make sure we don’t generate any new bugs. For
example, we add a new pointer to keep track of which cow the enemy is currently
abducting, if any. If you recall, in the updateCowPaths method we don’t want to update
the path for the cow that is being abducted because it will break the animation that is
being used for the abduction. We need to modify that method to also ignore whatever
cow the enemy happens to be abducting. If you were to run the game again, you would
now notice that we have a fully functional multiplayer game, as seen in Figure 8–4.

Figure 8–4. A fully functional multiplayer UFO game being played by two people using a Bluetooth connection

Disconnections
The last step that we need to take when working with multiplayer support is to add in
logic to handle disconnections and other failures that are unrecoverable. Luckily for us,
Apple’s APIs handle most of the legwork. We do, however, want to add a more universal
call to our GameCenterManager class to make things easier for us.

- (void)disconnect;
{
 if ([self.matchOrSession isKindOfClass: [GKSession class]])
 {
 [self.matchOrSession disconnectFromAllPeers];
 }

 else if ([self.matchOrSession isKindOfClass: [GKMatch class]])
 {
 [self.matchOrSession disconnect];
 }
}

This method should be called whenever you wish to end a multiplayer game. It will make
sure that the peers are safely disconnected and prevent a number of issues that would
be very hard to troubleshoot.

CHAPTER 8: Exchanging Data 166

Summary
In this chapter, we covered a lot of information in a very condensed manner. You
learned how to send and receive data between two or more iOS devices using both
Game Kit networking and Game Center networking. In addition, you learned how to
handle network state changes, such as disconnections. We put the principles learned in
this chapter into use in our UFO game, creating a multiplayer iOS game from the ground
up in less than eight chapters. In the next chapter, we will explore Game Center’s
turned-based gaming APIs, which were added with the release of iOS 5.

x

167

 Chapter

Turned-Based Gaming
with Game Center
Apple announced iOS 5 at its own World Wide Developers Conference (WWDC) in 2011.

In addition to a number of smaller enhancements that this new SDK brought to Game

Center, it included one very important new feature: turned-based gaming is the newest

addition to the Game Center platform. With turn-based gaming, you can now provide

your users with asynchronous gaming. Turned-based games are simply any game in

which players take turns playing, such as in tic-tac-toe, chess, Battleship, and

Monopoly.

Turned-based gaming on iOS has become very popular in the past few years, starting

with Words with Friends. Words with Friends, shown in Figure 9–1, is an asynchronous

word game similar to Scrabble. Each player receives a selection of letters that they must

play, in turn, on a board to create a word. They are awarded points based on the

difficulty of the word, as well as layout on the board. Turned-based gaming is

traditionally done with a store and forward type platform; the server holds on to the

game data until the next client logs in and retrieves it. Asynchronous games have

traditionally been casual games and don’t require all players to be present at all times.

9

CHAPTER 9: Turned-Based Gaming with Game Center 168

Figure 9–1. Words with Friends by Zynga

Before the introduction of iOS 5, Game Center had provided real-time gaming in which

all the devices involved needed to be active and logged in continuously throughout the

multiplayer experience. Turned-based gaming adds a more casual experience, letting

people run up to 20 matches at a time and only playing when it is their turn in a

particular match. Prior to the new Game Center enhancements, writing this type of game

would have required you to write and deploy your own server to handle the game

interaction. Now, you can add the networking component of turned-based gaming and

be up and running in less than a day of work. In this chapter, we explore how to write a

simple tic-tac-toe game using iOS 5 and Game Center’s new turned-based gaming

APIs.

A New Sample Project
Unfortunately, our existing UFOs sample game is not a suitable experience for testing

turned-based gaming. It wouldn’t make much sense to have each player make a move

and then wait for the other player to catch up. Luckily, there is another very simple type

of game that we can build a project around: tic-tac-toe. This classic children’s game is

something almost all of us have played, and we have experience with the rules and

strategy.

CHAPTER 9: Turned-Based Gaming with Game Center 169

We begin by creating a new navigation controller–based project. There are three views

that we will be working with throughout the project.

 Main View: This view simply contains a button that launches the

GKTurnedBasedMatchmakerViewController.

 GKTurnedBasedMatchmakerViewController: This is the view provided

by Apple to create and resume turned-based games. You will not need

to create this view yourself.

 Game View: This is the class that handles user input, determining

winners and ties, and populating the game board at the start of each

turn.

We begin by working with the main view. These files will be created for you when you

create the new project. The very first thing we need to do is make sure to import the

proper Game Kit frameworks and add our reusable GameCenterManager class that we

have been working on throughout this book; you can include the existing one from

Chapter 8. We also need to create a single button in the view to start a new game, as

shown in Figure 9–2.

Figure 9–2. The main view for our new tic-tac-toe game

The header file for the new base view controller class should match the following code

snippet. We need to adhere to the GameCenterManagerDelegate as well as the

GKTurnedBasedMatchmakerViewController. As in previous chapters, we also need to

CHAPTER 9: Turned-Based Gaming with Game Center 170

create a class instance of GameCenterManager. The last thing that needs to be added is

an IBAction method to begin a new game. Make sure to hook up the Start New Game

button to the IBAction in Interface Builder.

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>
#import "GameCenterManager.h"

@interface tictactoeViewController : UIViewController <GameCenterManagerDelegate,
GKTurnBasedMatchmakerViewControllerDelegate>
{
 GameCenterManager *gcManager;
}

-(IBAction)beginGame:(id)sender;
@end

We also need to modify the viewDidLoad method to check for and then authenticate our

local user with Game Center. This is the same approach that we followed in Chapter 2.

- (void)viewDidLoad
{
 [super viewDidLoad];
 if ([GameCenterManager isGameCenterAvailable]) {
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(localUserAuthenticationChanged:)
name:GKPlayerAuthenticationDidChangeNotificationName object:nil];
 gcManager = [[GameCenterManager alloc] init];
 [gcManager setDelegate: self];
 [gcManager authenticateLocalUser];
 }
}

We also need to implement two delegate methods to monitor for successful

authentication and local user changes. We are using both of these methods to print

some debugging output.

- (void)processGameCenterAuthentication:(NSError*)error;
{
 if (error != nil) {
 NSLog(@"An error occured during authentication: %@", [error
localizedDescription]);
 }
}

- (void)localUserAuthenticationChanged:(NSNotification*)notif;
{
 NSLog(@"Authenication Changed: %@", notif.object);
}

In the next section, we will see how to call the

GKTurnedBasedMatchmakerViewController and how to handle the delegate methods

that are required in order to handle errors and resuming or creating new matches.

CHAPTER 9: Turned-Based Gaming with Game Center 171

GKTurnedBasedMatchmakerViewController
Apple provides a default class to present the GUI for creating a new turned-based

match. For programmatically creating a match, see the later section “Programmatic

Matches.”

We begin by working with a new matchmaker object in the IBAction for the single button

that we created in the previous section. The approach that we use here is very similar to

iOS 4 Game Center matchmaking. We first alloc and init a copy of GKMatchRequest and

set the minimum and maximum players. We then create a new

GKTurnedBasedMatchmakerViewController and init it with the match object that we just

created. Finally, we set the delegate to self and present the view modally to the user.

The user will be presented with a view similar to the one shown in Figure 9–3.

- (IBAction)beginGame:(id)sender
{
 GKMatchRequest *match = [[GKMatchRequest alloc] init];
 [match setMaxPlayers:2];
 [match setMinPlayers:2];

 GKTurnBasedMatchmakerViewController *tmvc = nil;
 tmvc = [[GKTurnBasedMatchmakerViewController alloc] initWithMatchRequest:match];
 [tmvc setTurnBasedMatchmakerDelegate: self];
 [self presentModalViewController:tmvc animated:YES];
 [tmvc release];
 [match release];
}

NOTE: You must first authenticate with Game Center before you can create a new turned-based

game match.

There are four delegate methods that you need to implement to conform to the

GKTurnedBasedMatchmakerViewControllerDelegate. The first handles the user

canceling in the matchmaker. The only requirement here is to call

dismissModalViewControllerAnimated. You may add additional logic, as required, for

your app.

- (void)turnBasedMatchmakerViewControllerWasCancelled:
(GKTurnBasedMatchmakerViewController*)viewController
{
 [self dismissModalViewControllerAnimated:YES];
}

IMPORTANT: The list of current games does not update until you close and reopen the

GKTurnedBasedMatchmakerViewController.

CHAPTER 9: Turned-Based Gaming with Game Center 172

Figure 9–3. Starting a new turned-based match

We also need to implement a delegate method to catch any errors that occur during this

phase. The following method is called whenever an error is encountered during the

matchmaking process. For debugging purposes, we are printing the error to the

console; however, you will want to inform the user that an error has occurred.

- (void)turnBasedMatchmakerViewController:
(GKTurnBasedMatchmakerViewController*)viewController didFailWithError:(NSError *)error
{
 NSLog(@"Turned Based Matchmaker Failed with Error: %@", [error
localizedDescription]);
}

The last delegate method that we discuss in this section handles the user quitting a

match from the matchmaker screen. This is accomplished by swiping from right to left

across a game and selecting the quit option. In the following method, we call

participantQuitOutOfTurnWithOutcome on the match object that is passed to us as part

of the method. We pass in the outcome of GKTurnBasedMatchOutcomeQuit. If you do

not call the proper method here, you will be able to quit a game, but it will reappear

within a few seconds.

- (void)turnBasedMatchmakerViewController:(GKTurnBasedMatchmakerViewController
*)viewController playerQuitForMatch:(GKTurnBasedMatch *)match
{
 [match participantQuitOutOfTurnWithOutcome:GKTurnBasedMatchOutcomeQuit
withCompletionHandler:^(NSError *error) {

CHAPTER 9: Turned-Based Gaming with Game Center 173

 if (error) {
 NSLog(@"An error occurred ending match: %@", [error localizedDescription]);
 }
 }];
}

The final required method, didFindMatch, is discussed in the next section, “Starting a

New Game.”

NOTE: A user can now rate your app from inside your app when using the

GKTurnBasedMatchmakerViewController, shown previously in Figure 9–3.

Starting a New Game
Starting a new match with turned-based gaming is a very straightforward and simple

process. To do so, you need to implement the following method. This new method

dismisses the GKTurnBasedMatchmakerViewController, and then passes a copy of the

match object to your game controller. The following code snippet is the procedure we

follow for tic-tac-toe.

- (void)turnBasedMatchmakerViewController:(GKTurnBasedMatchmakerViewController
*)viewController didFindMatch:(GKTurnBasedMatch *)match
{
 [self dismissModalViewControllerAnimated: YES];
 tictactoeGameViewController *gameVC = [[tictactoeGameViewController alloc] init];
 gameVC.match = match;
 [[self navigationController] pushViewController:gameVC animated:YES];
 [gameVC release];
}

Let’s now switch attention to the tictactoeGameViewController class. Starting with the

header file, we create a new property to hold on to our match object, which we set in the

previous method. We also create a new mutable dictionary to hold on to our game data,

which will be discussed in more depth throughout the rest of this chapter.

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface tictactoeGameViewController : UIViewController
@property(nonatomic, retain) NSMutableDictionary *gameDictionary;
@property(nonatomic, retain) GKTurnBasedMatch *match;
@end

IMPORTANT: You are strictly limited to passing only 4k of data with each new turn. If you cannot
limit your game data to less than 4k, you can use a URL to point to a server holding the complete
data set. Alternatively, you could pass only the delta of the game state and store the existing data

locally.

CHAPTER 9: Turned-Based Gaming with Game Center 174

We need to pause here to configure the actual game view

(tictactoeGameViewController). We need nine spots for the user to move in the tic-tac-

toe game, as well as a forfeit option and a label to inform the players of whose turn it is.

We use simple UIButtons to handle user input. Modify the xib with a layout similar to

that pictured in Figure 9–4. You need to create IBOutlets for each of the buttons and the

label as well as new IBAction methods for both making a move and forfeiting. Connect

all the board buttons to the makeMove method that you previously created. We also

need to set tags on the UIButtons to help us locate them. Begin with tag 1 in the upper-

left corner and move left to right, up to down, numbering them.

.

Figure 9–4. A view of the game board, as seen from interface builder

You now have two new methods in your game view controller, as well as nine button

outlets and one label outlet. This covers how to begin a new turned-based gaming

match. In the next section, we look at how to make a move and pass control to the next

player.

Making the First Move
The first thing we need to do in a new match-based game, before we make a move, is

determine who the player is representing. In our example game, there are two sides: X

and O. We are going to set the first person to always be X, and the second to always be

O. This means that X will always make the first move. With this setup, it becomes easy

to determine who the player currently is representing using the following code snippet.

CHAPTER 9: Turned-Based Gaming with Game Center 175

if (match.currentParticipant == [match.participants objectAtIndex:0]) {
 myPlayerCharacter = @"X";
 identifyTeamLabel.text = @"It is X's Turn";
} else {
 myPlayerCharacter = @"O";
 identifyTeamLabel.text = @"It is O's Turn";
}

After we have determined who the users are, then we can allow them to make a move.

We will modify the code for the action to which the nine game buttons are connected.

First, let’s take a look at the method in its completed form. Then, we can break it down

and look at each part in depth.

- (IBAction)makeMove:(id)sender
{
 [sender setTitle:myPlayerCharacter forState:UIControlStateNormal];
 NSString *buttonIndexString = [NSString stringWithFormat:@"%d", [sender tag]];
 [gameDictionary setObject:myPlayerCharacter forKey:buttonIndexString];
 NSData *data = [NSPropertyListSerialization dataFromPropertyList:gameDictionary
format:NSPropertyListXMLFormat_v1_0 errorDescription:nil];
 GKTurnBasedParticipant *nextPlayer;
 if (match.currentParticipant == [match.participants objectAtIndex:0]) {
 nextPlayer = [[match participants] lastObject];
 } else {
 nextPlayer = [[match participants] objectAtIndex:0];
 }

 if ([self checkWinner] != nil) {
 if ([[self checkWinner] isEqualToString:@"Tie"]) {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Game Over"
message:@"Its a draw" delegate:nil cancelButtonTitle:@"Dimiss" otherButtonTitles: nil];
 [alert show];
 [alert release];
 } else {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Game Over"
message:nil delegate:nil cancelButtonTitle:@"Dimiss" otherButtonTitles: nil];
 [alert show];
 [alert release];
 }

 [self.match participantQuitInTurnWithOutcome:GKTurnBasedMatchOutcomeWon
nextParticipant:nextPlayer matchData:data completionHandler:^(NSError *error) {
 if (error) {
 NSLog(@"An error occurred ending match: %@", [error
localizedDescription]);
 }
 }];
 } else {
 [self.match endTurnWithNextParticipant:nextPlayer matchData:data
completionHandler:^(NSError *error) {
 if (error) {
 NSLog(@"An error occurred updating turn: %@", [error
localizedDescription]);
 }

 [self.navigationController popViewControllerAnimated: YES];
 }];
 }
}

CHAPTER 9: Turned-Based Gaming with Game Center 176

This method might appear complex at first glance, but after we have stepped through all

the details, you will see it is fairly straightforward. The first thing we do is set the

sender’s (the game button) title to our player character, which we determined with the

previous code snippet.

Next, we know that we will need to hold on to our game data to persist it throughout

each turn, so we store the player’s character into a dictionary using the button’s tag for

our key. This allows us to later iterate over the dictionary and repopulate previous moves

(more about this in the next section “Continuing a Game in Progress”).

We now need to prepare and send our game data to the next player. This requires

several steps. Because we need to send our game data as NSData, we convert our

existing game dictionary to NSData. We do this with the NSPropertyListSerialization

methods. We can then send and later retrieve this data.

The next step is to determine who the next player will be. In a two-person game, this is

fairly simple: we look at the array of our participants and determine which one isn’t us,

and then we set that one to the next player. When dealing with more players, you need

to simply determine your current index in the match’s participant array and call the next

player; or, in the case that you are the last player, call the first.

NOTE: The size and order of the participant’s array is determined when the match first begins,

and will be the same throughout the match and on each device.

TIP: You might see that there are nil objects in the participant array; these are placeholders for
unmatched players. Game Center will only match new players when it is their turn to move. This

means that every time you are automatched, it will be your turn to move.

The next section of code deals with checking to see whether there is a winner of the

match. We go over this in more detail in the “Ending a Match” section of this chapter.

The last thing that we will do at the end of each move is send the new game data to the

next player. This player will, in turn, update the game state and send it to the next player

(which happens to be the first player again). To do this, we call

endTurnWithNextParticipant on our match object. We need to pass in the next player

that we determined earlier in the method.

Continuing a Game in Progress
When you resume a game on your next turn, assuming it is not the first turn of a match,

you will need to first restore the game state to its current position. To do this, we begin

by modifying our viewDidLoad method to get the current match data. We need to call

loadMatchDataWithCompletionHandler on our match object. This returns the data that

CHAPTER 9: Turned-Based Gaming with Game Center 177

we sent to the next player in the previous method. We then convert the NSData back

into a dictionary and then add it to our gameDictionary.

- (void)viewDidLoad
{
 //Existing viewDidLoad code…
 [self.match loadMatchDataWithCompletionHandler:^(NSData *matchData, NSError *error)
{
 NSDictionary *myDict = [NSPropertyListSerialization
propertyListFromData:match.matchData mutabilityOption:NSPropertyListImmutable format:nil
errorDescription:nil];
 [gameDictionary addEntriesFromDictionary: myDict];
 [self populateExistingGameBoard];
 if (error) {
 NSLog(@"loadMatchData - %@", [error localizedDescription]);
 }
 }];
}

TIP: If you persist the game state locally, you will only need to update the turns that have

occurred since your last move. This approach will help you keep packet sizes under the 4k limit.

After populating the game data dictionary, we need to call a new convenience method to

populate our game GUI from that dictionary. This method will loop through all the keys in

our dictionary and populate the relevant game buttons with the player’s character. We

also set the enabled state of the button to NO, which prevents the player from moving

on top of their opponent’s location.

- (void)populateExistingGameBoard
{
 NSArray *dataArray = [gameDictionary allKeys];
 for (NSString *key in dataArray) {
 UIButton *button = (UIButton*)[self.view viewWithTag: [key intValue]];
 [button setTitle:[gameDictionary objectForKey:key]
forState:UIControlStateNormal];
 [button setEnabled: NO];
 }
}

With the code in place, you can now play through a complete round of tic-tac-toe using

two Game Center accounts; however, the game will never detect a winner or a draw. In

the next section, we look at the logic required to detect an end-of-game event. An

example of a populated game is shown in Figure 9–5.

CHAPTER 9: Turned-Based Gaming with Game Center 178

Figure 9–5. Populating the game board through the match’s data

Ending a Match
In the section “Making the First Move,” we saw a call to a method called checkWinner.

In this section, we take a look at that method. For tic-tac-toe, we are using a brute force

approach to see if we have a winner, by checking all the rows and columns for three

repeating characters. We also need to check for a tie if there are no more places to

move.

- (NSString*)checkWinner
{
 //top row
 if ([gameButton1.titleLabel.text isEqualToString:gameButton2.titleLabel.text] &&
[gameButton2.titleLabel.text isEqualToString:gameButton3.titleLabel.text])
 return gameButton1.titleLabel.text;
 //middle row
 if ([gameButton4.titleLabel.text isEqualToString:gameButton5.titleLabel.text] &&
[gameButton5.titleLabel.text isEqualToString:gameButton6.titleLabel.text])
 return gameButton4.titleLabel.text;
 //bottom row
 if ([gameButton7.titleLabel.text isEqualToString:gameButton8.titleLabel.text] &&
[gameButton8.titleLabel.text isEqualToString:gameButton9.titleLabel.text])
 return gameButton7.titleLabel.text;
 //first column

CHAPTER 9: Turned-Based Gaming with Game Center 179

 if ([gameButton1.titleLabel.text isEqualToString:gameButton4.titleLabel.text] &&
[gameButton4.titleLabel.text isEqualToString:gameButton7.titleLabel.text])
 return gameButton1.titleLabel.text;
 //middle column
 if ([gameButton2.titleLabel.text isEqualToString:gameButton5.titleLabel.text] &&
[gameButton5.titleLabel.text isEqualToString:gameButton8.titleLabel.text])
 return gameButton2.titleLabel.text;
 //last column
 if ([gameButton3.titleLabel.text isEqualToString:gameButton6.titleLabel.text] &&
[gameButton6.titleLabel.text isEqualToString:gameButton9.titleLabel.text])
 return gameButton3.titleLabel.text;
 //diagonal
 if ([gameButton1.titleLabel.text isEqualToString:gameButton5.titleLabel.text] &&
[gameButton5.titleLabel.text isEqualToString:gameButton9.titleLabel.text])
 return gameButton1.titleLabel.text;
 if ([gameButton3.titleLabel.text isEqualToString:gameButton5.titleLabel.text] &&
[gameButton5.titleLabel.text isEqualToString:gameButton7.titleLabel.text])
 return gameButton3.titleLabel.text;

 if (gameButton1.titleLabel.text != nil && gameButton2.titleLabel.text != nil &&
gameButton3.titleLabel.text != nil && gameButton4.titleLabel.text != nil &&
gameButton5.titleLabel.text != nil && gameButton6.titleLabel.text != nil &&
gameButton7.titleLabel.text != nil && gameButton8.titleLabel.text != nil &&
gameButton9.titleLabel.text != nil) {
 return @"Tie";
 }

 return nil;
}

If you return your attention to the makeMove method from the previous section, you will

see that if we determine the player has won, we make a new call. We need to call

participantQuitInTurnWithOutcome to end the match. We pass in

GKTurnBasedMatchOutcomeWon for the argument, but if we have a scenario in which

the player has lost, we can also pass in GKTurnBasedMatchOutcomeLost.

[self.match participantQuitInTurnWithOutcome:GKTurnBasedMatchOutcomeWon
nextParticipant:nextPlayer matchData:data completionHandler:^(NSError *error) {
 if (error) {
 NSLog(@"An error occurred ending match: %@", [error localizedDescription]);
 }
}];

CHAPTER 9: Turned-Based Gaming with Game Center 180

Quitting and Forfeiting
A player can quit a match at any time by swiping across it from the matchmaker view

controller. However, you might want to add a path for your users to forfeit or quit a

match from inside of your game itself. To allow a player to forfeit a match, use the

following code snippet.

- (IBAction)forfeit:(id)sender
{
 [self.match participantQuitOutOfTurnWithOutcome:GKTurnBasedMatchOutcomeQuit
withCompletionHandler:^(NSError *error) {
 if (error) {
 NSLog(@"An error occurred ending match: %@", [error localizedDescription]);
 }
 }];
}

Programmatic Matches
If you want to bypass the GKTurnBasedMatchmakerViewController and implement your

own GUI, there is an option to do so. Using the following method will create a new

match without having the user go through the matchmaker.

- (void)findMatch
{
 GKMatchRequest *match = [[GKMatchRequest alloc] init];
 [match setMaxPlayers:2];
 [match setMinPlayers:2];

 [GKTurnBasedMatch findMatchForRequest:match withCompletionHandler:^(GKTurnBasedMatch
*match, NSError *error) {
 if (error == nil) {
 //start new game with returned match
 } else {
 NSLog(@"An error occurred when finding a match: %@", [error
localizedDescription]);
 }
 }];
}

In addition to creating a game, you need to be able to load a list of existing games for

your local user. You can do so with the following method.

- (void)loadMatches
{
 [GKTurnBasedMatch loadMatchesWithCompletionHandler:^(NSArray *matches, NSError
*error) {
 if (error == nil) {
 NSLog(@"Existing Matches: %@", matches);
 } else {
 NSLog(@"An error occurred while loading matches: %@", [error
localizedDescription]);
 }
 }];
}

CHAPTER 9: Turned-Based Gaming with Game Center 181

NOTE: Because both of these methods use background tasks in order to handle the request,

code that you implement within the block needs to be thread safe.

GKTurnBasedEventHandler
The GKTurnedBasedEventHandler is a delegate protocol that is responsible for handling

important messages related to turn-based games. To set a delegate for events, use the

following code.

 [[GKTurnBasedEventHandler sharedTurnBasedEventHandler] setDelegate: self];

The protocol has three optional methods.

 handleInviteFromGameCenter: When your delegate receives this

method, it should populate a new GKMatchRequest with the

playersToInvite that are passed in through the method. You then need

to begin a new match or present the matchmaker GUI. This method is

called when the user accepts a match invite from a friend.

 handleTurnEventForMatch: Your delegate receives this message when

the user has accepted a push notification for an in-progress match.

You need to end whatever task you are performing and display the

game for the match that is passed in with this method.

 handleMatchEnded: When your delegate receives this message, it

should display the match’s results and game-over views to the player

and allow the player the option of removing the match data from Game

Center.

Summary
In this chapter, we learned about the new turn-based gaming additions to Game Center

in iOS 5. We worked with our existing GameCenterManager class and wrote an entirely

new sample game to work with the turn-based technology. You should now have a firm

grasp on how to create a new turn-based game, as well as retain and send turn data

between peers. With the skills learned in this chapter, you should now be able to easily

get the networking component of turned-based gaming up and running in a few hours.

In the next chapter, will be looking at another exciting topic: voice chat. Apple has gone

through tremendous lengths to make voice over IP easy to use in iOS apps, and we will

explore how to quickly get VOIP up and running in your Game Center– or Game Kit–

enabled apps.

183

 Chapter

Voice Chat
Voice chat, more than any other service provided as part of Game Kit, is a true

testament to Apple engineering. Apple has turned one of the most complicated features

on other platforms into one of the easiest to implement on iOS. When working with

Voice over Internet Protocol (VOIP) on other platforms, it is often the most complex and

daunting task of an entire project. In this chapter, we will explore how to add voice chat

services to UFOs or any iOS app. The shortness of this chapter is evidence of how much

work Apple has put into this technology to bring it within the grasp of even the greenest

of developers.

Unlike preceding chapters, we will be dealing with Game Kit Voice Chat and Game

Center Voice Chat separately, as opposed to writing a shared class as done previously.

While there are many similarities between the two services, they differ enough that it

makes sense to handle each approach separately. In addition, we will apply the topics

covered in this chapter as we implement voice chat into UFOs.

Voice Chat for Game Center
We begin by looking at voice chat for Game Center. Using a GKMatch to create a voice

chat session has many advantages, such as ease of use, quickness to implement, and

reduced required overhead compared to using Game Kit or having to implement your

own system. A GKMatch voice chat can have multiple channels, each with an

associated list of recipients. For example, you could have one channel for teammates in

a first-person shooter game, and another channel for all players. This would allow you to

talk about tactics for winning the match without giving away information to the other

team.

NOTE: Voice chat using a GKMatch is only available to participants who are connected to the

Internet via Wi-Fi; voice chat does not support cellular networks.

10

CHAPTER 10: Voice Chat 184

Creating an Audio Session
Before you can begin to work with voice chat, you first need to create a new audio

session. It is important to do this before you begin any chat services. If you create the

audio session after you create the chat session, you will not be able to send or receive

voice data. In the following example, we create a new audio session that allows our app

to play and record audio, and then set it to active.

TIP: Your app might already use an audio session for playing sound effects; if you have already
created an audio session, you are not required to make a new one. If you are reusing an existing

audio session, make sure that you set it to allow both play and record functionality.

 NSError *error = nil;
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];
 [audioSession setCategory:AVAudioSessionCategoryPlayAndRecord error:&error];
 [audioSession setActive: YES error: &error];
 if (error)
 {
 NSLog(@"An error occurred while starting audio session: %@", [error
 localizedDescription]);
 }

Creating New Voice Channels
You can have as many voice chat channels as you want in your app, and each peer can

register to be part of as many channels as they want. Channels are created and

organized by a name string. This is how we will determine what channels we want the

user to join. When two or more peers join a channel with the same name, they are

connected to the same chat.

The code snippet that follows shows an example of how to create three different

channels. Take note that the channels are created with the GKMatch object that is

returned to us when we begin a new Game Center–based networking game.

 GKVoiceChat *allChannel = [[match voiceChatWithName:@"allPlayers"] retain];
 GKVoiceChat *teamChannel = [[match voiceChatWithName:@"blueTeam"] retain];
 GKVoiceChat *squadChannel = [[match voiceChatWithName:@"BlueTeamSquad2"] retain];

In this example, we have a channel for communicating with all players, a channel for

communicating with our entire team, and a third channel that is used to talk with our

squad. Just because channels have been created doesn’t mean that they are

automatically turned on. In the next section, we will look at how to start and stop

communication on a specific channel.

CHAPTER 10: Voice Chat 185

Starting and Stopping Voice Chat
In the previous section, we created three new voice channels for use with Game Center–

type voice chat. When you want to transmit and receive voice on those channels, you

need to first tell the API that you want to begin using that channel. After you are

connected to a channel, you are able to send and receive data from that channel. If you

want to connect to a channel and do not want to transmit any voice audio, see the

following section on muting the microphone.

To begin using a voice channel, you need to call the start method on the GKVoiceChat

object that was created in the previous section.

 [allChannel start];
 [teamChannel start];

When you want to leave a channel, you simply call the stop method. This is a better

approach than simply muting all participants in the channel because the app will not be

required to receive additional network data. A stopped channel can be restarted at any

time.

 [allChannel stop];
 [teamChannel stop];

TIP: It is highly recommended that you provide both a visual and audio indicator when you are
transmitting voice data, such as a red light and a click sound. This reduces the chance that a

user will accidentally transmit voice data when they don’t intend to. Always remember that a

user’s microphone and transmitted voice should be treated as sensitive data.

Chat Volume and Muting
The voice chat volume is set on a per-channel basis. Each channel has an associated

property that can be used to lower the overall volume of that chat. You cannot raise the

volume past what the user has selected as the device’s current volume. To modify a

channel’s volume, add the following line of code.

 allChannel.volume = 0.5; //half of max volume

In addition, you can mute individual players in a channel by referencing their playerID.

Players can be muted and unmuted using the following two lines of code.

 [teamChannel setMute:YES forPlayer: playerID];
 [teamChannel setMute:NO forPlayer:playerID];

There might also be circumstances in which you do not want to transmit the user’s voice

at all times. By default, a user starts a chat in the muted state. You will need to unmute a

user before he can begin to transmit voice data.

 squadChannel.active = YES;

CHAPTER 10: Voice Chat 186

NOTE: A user can only transmit voice on one channel at a time; if you unmute a channel, the API

will automatically mute all other channels.

This is all that is required in order to completely enable voice chat in your Game Center–

based networking app. Everything else, including sending and receiving the data, is

handled for you by the APIs.

Monitoring Player State
I mentioned earlier in this chapter that it is important to let the user know that they are

currently transmitting data. Letting the player see who is speaking is also an important

step. By monitoring player state changes, you can determine which users are currently

transmitting voice and highlight them in a player list or perform some other kind of

indication of which player is speaking. The following block is easy to set up when you

begin your chat, and saves you from performing polling or delegate callbacks.

allChannel.playerStateUpdateHandler = ^(NSString *playerID, GKVoiceChatPlayerState
 state)
{
 switch (state)
 {
 case GKVoiceChatPlayerSpeaking:
 [self showSpeakingPlayer: playerID];
 break;
 case GKVoiceChatPlayerSilent:
 [self stopShowingSpeakingPlayer: playerID];
 break;
 }
 };

NOTE: Player state updates are handled per channel. You will need to configure one for each

channel that you wish to watch for changes on.

Voice Chat for Game Kit
When working with Game Kit Voice Chat, we will focus on the GKVoiceChatService

object. The fundamentals of Game Kit Voice Chat are very similar to Game Center Voice

Chat. A good starting point for implementing this system is after you are returned a

GKSession object, when you connect to another player using the Peer Picker system. It

is important to note that GKVoiceChatService is designed to send data to only one peer

at a time. Although this isn’t a limitation as of yet, as Game Kit only supports two peers,

it is important to keep in mind should the API ever be expanded.

CHAPTER 10: Voice Chat 187

NOTE: Don’t forget to check [GKVoiceChatService isVoIPAllowed] to make sure you are able to
support voice chat before you continue. Some devices, such as the first generation iPod touch,

are unable to support voice chat.

Creating an Audio Session
As with Game Center, we can begin to work with Game Kit Voice Chat by first creating a

new AVAudioSession. It is important to make sure that you create the session prior to

beginning any chat service calls.

 NSError *error = nil;
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];
 [audioSession setCategory:AVAudioSessionCategoryPlayAndRecord error:&error];
 [audioSession setActive: YES error: &error];
 if (error)
 {
 NSLog(@"An error occurred while starting audio session: %@", [error
 localizedDescription]);
 }

Required Overhead
Unlike the Game Center approach, Game Kit requires a bit more overhead to get things

up and running. The first thing you need to do is implement a few required methods. The

following first method posted returns the peerID for the player that you wish to

communicate with. This value is easily retrieved from your current GKSession object.

 - (NSString *)participantID
 {
 return session.peerID;
 }

You also need to implement a method to send the actual voice data to the connected

peer, and another that will handle receiving the data; both of these methods are

available in the following code snippets. Together, these two methods will handle the

sending and receiving of voice data for your app.

-(void)voiceChatService:(GKVoiceChatService *)voiceChatService sendData:
(NSData *)data toParticipantID:(NSString *)participantID
 {
 [session sendData: data toPeers:[NSArray arrayWithObject: participantID]
 withDataMode: GKSendDataReliable error: nil];
 }

 - (void) receiveData:(NSData *)data fromPeer:(NSString *)peer inSession:
 (GKSession *)session context:(void *)context;
 {
 [[GKVoiceChatService defaultVoiceChatService] receivedData:data
 fromParticipantID:peer];
 }

CHAPTER 10: Voice Chat 188

Getting Things Running
In addition to the three new methods that we discussed in the previous section, you will

need to complete some additional steps to get everything up and running. First, you

need to initialize a new instance of GKVoiceChatClient, which should be a custom

subclass of GKVoiceChatClient that you create. For more information on this step, see

the next section, “Putting It Together.”

 GKVoiceChatClient *voiceChatClient = [[GKVoiceChatClient alloc] initWithSession:
 session];
 [GKVoiceChatService defaultVoiceChatService].client = voiceChatClient;

After you have created a new instance of GKVoiceChatClient, you need to connect your

peer to it. The following code demonstrates how to accomplish this.

[[GKVoiceChatService defaultVoiceChatService] startVoiceChatWithParticipantID:
 [self participantID] error: &error];

To end the voice chat session, you need to call a similar method, as follows.

[[GKVoiceChatService defaultVoiceChatService] stopVoiceChatWithParticipantID:
 [self participantID]];

After you have established a connection to the other peer, you will begin to receive voice

chat data. If you want to send data, all that you need to do is unmute the microphone

using the following code snippet.

 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = NO;

These are all the steps that are required to get Game Kit Voice Chat up and running.

Although it is slightly more work than Game Center Voice Chat, it is still significantly

easier than implementing your own VOIP system.

Putting It Together
In this chapter, we modify our existing code base from Chapter 8. Begin there by

creating a new audio session for your voice chat service. Add the following block of

code to the UFOGameViewController.m viewDidLoad: method. In addition, you need to

add the AVFoundation.framework to your project. Modify the relevant section of the

viewDidLoad method to match the following.

if (self.gameIsMultiplayer == NO)
{
 for (int x = 0; x < 5; x++)
 {
 [self spawnCow];
 }

 [self updateCowPaths];
}

else
{

CHAPTER 10: Voice Chat 189

 [self generateAndSendHostNumber];
 NSError *error = nil;
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];
 [audioSession setCategory:AVAudioSessionCategoryPlayAndRecord error:&error];
 [audioSession setActive: YES error: &error];
 if (error)
 {
 NSLog(@"An error occurred while starting audio session: %@", [error
 localizedDescription]);
 }

 [self setupVoiceChat];
}

CAUTION: Make sure the device you are building against has both a speaker and a microphone

available for use.

You also need to add a new method called setupVoiceChat. This method will handle the

basic configuration for both Game Center and Game Kit.

-(void)setupVoiceChat
{
 //GameKit
 if (self.peerIDString)
 {
 NSError *error = nil;
 UFOVoiceChatClient *voiceChatClient = [[UFOVoiceChatClient alloc] init];
 voiceChatClient.session = self.gcManager.matchOrSession;
 [GKVoiceChatService defaultVoiceChatService].client = voiceChatClient;
 [[GKVoiceChatService defaultVoiceChatService]
 startVoiceChatWithParticipantID:self.peerIDString error:&error];

 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;
 if (error)
 {
 NSLog(@"An error occurred when setting up voice chat: %@",
 [error localizedDescription]);

 }
 }

 //Game Center
 else
 {
 mainChannel = [[self.peerMatch voiceChatWithName:@"main"] retain];
 [mainChannel start];
 mainChannel.volume = 1.0;
 mainChannel.active = NO;
 }
}

You might have noticed that we have a new class type called UFOVoiceChatClient in the

preceding code snippet. This is the class that we will use to handle the incoming and

CHAPTER 10: Voice Chat 190

outgoing data for voice, as well as other methods used to watch status and errors. The

implementation for that class is posted next.

@implementation UFOVoiceChatClient
@synthesize session;
-(NSString *)participantID
{
 return self.session.peerID;
}

- (void)voiceChatService:(GKVoiceChatService *)voiceChatService sendData:
(NSData *)data toParticipantID:(NSString *)participantID
{
 [self.session sendData:data toPeers:[NSArray arrayWithObject: participantID]
withDataMode:GKSendDataReliable error:nil];
}

- (void)receivedData:(NSData *)arbitraryData fromParticipantID:(NSString *)participantID
{
 [[GKVoiceChatService defaultVoiceChatService] receivedData:arbitraryData
 fromParticipantID:participantID];
}

- (void)voiceChatService:(GKVoiceChatService *)voiceChatService
 didReceiveInvitationFromParticipantID:(NSString *)participantID
 callID:(NSInteger)callID
{
 NSLog(@"Did Recieve Invitation");
}

- (void)voiceChatService:(GKVoiceChatService *)voiceChatService
 didNotStartWithParticipantID:(NSString *)participantID error:
(NSError *)error
{
 NSLog(@"Did Not Start Invitation");
}

- (void)voiceChatService:(GKVoiceChatService *)voiceChatService
 didStartWithParticipantID:(NSString *)participantID
{
 NSLog(@"Did Start Invitation");
}

@end

NOTE: Make sure your voiceChatClient conforms to the GKVoiceChatClient protocol.

You also need to make some slight modifications to the GameCenterManager to handle

incoming voice data. Modify the existing receiveData:fromPeer:inSession:Context:

method to match the following.

- (void)receiveData:(NSData *)data fromPeer:(NSString *)peer inSession: (GKSession
 *)session context:(void *)context;
{

CHAPTER 10: Voice Chat 191

 NSString *dataString = [[NSString alloc] initWithData:data
 encoding:NSUTF8StringEncoding];
 if (dataString == nil)
 {
 [[GKVoiceChatService defaultVoiceChatService] receivedData:data
 fromParticipantID:peer];
 [dataString release];
 return;
 }

 NSDictionary *dataDictionary = [NSDictionary dictionaryWithObjects:[NSArray
 arrayWithObjects:dataString, peer, session, nil] forKeys:[NSArray arrayWithObjects:
 @"data", @"peer", @"session", nil]];

 [dataString release];
 [self callDelegateOnMainThread: @selector(receivedData:) withArg: dataDictionary
 error: nil];
}

Notice that we added another block of code that handles passing the data to our

defaultVoiceChatService client. We determine whether data is voice data if we cannot

decode a string from the NSData. Your app may be more complex and require a prefix

or other type of designator to determine whether the data is voice, but this is very

suitable for a simple game like UFOs.

The last thing we need to do is hook up an action to turn our microphone on and off. I

have decided to go with a simple toggle button for UFOs, but you may feel the need to

implement a different approach. Add a new button, as shown in Figure 10–1, and hook

up the new action posted next.

Figure 10–1. Adding a microphone button to our UFO game demo

-(IBAction)startVoice:(id)sender;
{
 micOn = !micOn;
 if (micOn)
 {
 [micButton setTitle:@"Mic On" forState:UIControlStateNormal];
 //GameKit

CHAPTER 10: Voice Chat 192

 if (self.peerIDString)
 {
 [GKVoiceChatService defaultVoiceChatService].microphoneMuted =
 NO;
 }

 //Game Center
 else
 {
 mainChannel.active = YES;
 }
 }

 else
 {
 [micButton setTitle:@"Mic Off" forState:UIControlStateNormal];
 //GameKit
 if (self.peerIDString)
 {
 [GKVoiceChatService defaultVoiceChatService].microphoneMuted =
 YES;
 }

 //Game Center
 else
 {
 mainChannel.active = NO;
 }
 }
}

This method determines the current state of the microphone (on/off) and toggles it to the

new state. When that happens, we update the button title and turn the microphone on or

off for the type of network that we are using.

These are all the required steps to add voice chat into our UFO example project. If you

run the game on two devices, you will be able to communicate with voice back and

forth.

Summary
In this chapter, we learned how to incorporate a traditionally very complex technology

into our iOS app with very little work. We explored the differences with using voice chat

on both Game Kit and Game Center, as well as implemented examples of both systems

into our UFO demo game. You now have the skills required to add full-featured VOIP

technology to any iPhone or iPad app. If you have been following the book along from

the beginning, you now have all the skills needed to implement all aspects of Game Kit

and Game Center into your apps.

In the next chapter, we will take a look at another important technology when writing

games or apps for iOS—StoreKit. Using StoreKit technology, we will learn how to sell

additional features and add-ons to your product.

193

 Chapter

In-App Purchase with
StoreKit
Throughout this book, we have been working with both Game Center and Game Kit to
add rich social networking into your apps. However, there is another important feature
slowly becoming more popular in modern software: in-app purchases. Allowing your
users to purchase upgrades or additional content for your app, from directly within your
app, opens up a potentially significant new revenue stream. Over the past few years, a
new business model has emerged called Freemium. Freemium is a new type of game or
product that is offered to your users for free, but is monetized through selling add-ons.

We will be taking a look at We Rule by ngmoco:) as an example. The game is initially
offered for free for both iPhone and iPad players. Each user is in control of a virtual
kingdom, in which they are responsible for constructing buildings and growing crops.
The user generates “mojo” over time and can use that in-app currency to create new
structures and farms. However, some users want to construct faster than is normally
allowed due the restrictive nature of mojo, which slowly accumulates. These power-
users can visit the in-app store to purchase more mojo in bulk. Shown in Figure 11–1 is
We Rule’s built-in store. As you can see, it offers a number of purchases ranging from
very affordable to shockingly expensive. It is important to cater to both types of users
when working with sellable add-ons. Some of your users will be interested in spending
one or two dollars occasionally, while some will be power-users who want to spend one
hundred dollars, or more, at a time.

11

CHAPTER 11: In-App Purchase with StoreKit 194

Figure 11–1. The in-app purchase store, as seen in We Rule by ngmoco:)

Freemium has become such a strong business model that ngmoco:) has stopped
working on games that do not fit into the Freemium model, going so far as to even
cancel Rolando 3 in mid-development because it couldn’t be adapted to the model. The
model appears to be paying off well for ngmoco:). As shown in Figure 11–2, the current
highest selling item in the We Rule store is a $9.99 item. This one in-app purchase is
retailing for more than most stand-alone iOS games, and the reason it was able to get
that customer is that it hooked them with a free game first.

Not all games or apps supported by in-app purchase need to be free. In fact, until
recently, you were not allowed to implement in-app purchase in free apps. You can
easily add additional features or unlocks in a paid game, such as the Mighty Eagle in
Angry Birds. In-app purchase is also not only just for games. Almost any software can
benefit from it, whether you are unlocking pro-level features or charging users a
subscription for push notification support. As we dive into this chapter, we will explore
how to add a full-featured in-app store to your iOS software.

CHAPTER 11: In-App Purchase with StoreKit 195

Figure 11–2. Current listing of the best-selling in-app purchases for We Rule by ngmoco:)

Setting Up Your App in iTunes Connect
As with Game Center, we need to begin working with in-app purchases in iTunes
Connect.

1. Log in to iTunes Connect (http://itunesconnect.apple.com), as discussed in

Chapter 2. You will need an existing project to work on. If you don’t have a project

created in iTunes Connect yet, go ahead and create one.

2. Select the project you want to add in-app purchase support to. Then, click the

button called Manage In-App Purchases, as shown in Figure 11–3.

IMPORTANT: You have 90 days from creating an app to upload a binary for review. Make sure to

save the in-app purchase configuration until you are within 90 days of finishing your project.

Figure 11–3. App listing in iTunes Connect showing Manage In-App Purchases button

http://itunesconnect.apple.com

CHAPTER 11: In-App Purchase with StoreKit 196

3. Selecting the Manage In-App Purchases button will bring you to a

screen for setting up a new product, as shown in Figure 11–4. Once

there, click the Create New button in the upper left corner of the

window.

Figure 11–4. Setting up your first in-app purchase in iTunes Connect

There are several types of in-app purchase products that you can configure. They are
detailed here for your convenience.

 Consumable: A consumable in-app purchase must be purchased
every time the user downloads it. These include in-game currency, as
we saw in the We Rule example in the previous section. Figure 11–5
shows the consumable purchase setup screen.

Figure 11–5. Setup screen for both consumable and non-consumable purchases in iTunes Connect

 Non-Consumables: A non-consumable purchase needs to be
purchased only once by each user, and is often used for unlockable
features. Examples of non-consumable purchases include additional
levels, reusable power-ups, or additional content.

CHAPTER 11: In-App Purchase with StoreKit 197

 Auto-Renewable Subscriptions: An auto-renewable subscription
allows the user to purchase in-app content for a set duration of time.
At the end of that time frame, the subscription will automatically renew
and charge the customer unless they opt out. Magazines and
newspapers follow this model, delivering a new issue every week or
month until the user opts out. Figure 11–6 shows the auto-renewable
purchase setup screen.

Figure 11–6. Setup screen for auto-renewable purchases in iTunes Connect

 Non-Renewing Subscriptions: For the most part, renewable
subscriptions have done away the need for this model. A non-
renewing subscription functions the same as an auto-renewable
subscription, except that a user is required to renew it every time it is
set to expire.

NOTE: Auto-renewable subscriptions will be sent to all devices associated with the user’s Apple ID.

We will begin by adding a non-consumable purchase. We will be using this item in our
sample UFO game.

The first item we want to add is a paid upgrade to your current ship; name the item
com.dragonforged.ufo.newShip1. I used the same title for both the product ID and the
reference name. The reference name is for reference only when searching in iTunes
Connect, whereas the product ID is what will be used in your code base to identify this
item.

CHAPTER 11: In-App Purchase with StoreKit 198

After you have created a new item, you need to add at least one localized description
and title, as shown in Figure 11–7. The last thing that you need to do is select a pricing
tier for this item. You might have also noticed that there is a section for uploading a
screenshot; we discuss this in the later section “Submitting a Purchase GUI
Screenshot.”

Figure 11–7. Adding a localized description to a product in iTunes Connect

Adding a consumable product follows the same procedure as adding a non-consumable
product. If you want to add a subscription-based product, there are a few new fields
that you need to be aware of, as shown in Figure 11–8. When configuring a subscription,
you need to define a duration. iTunes Connect allows you to set any of the following:
one week, one month, two months, three months, six months, or one year. You also
have the ability to offer a free subscription if the user agrees to a marketing campaign,
such as providing you with their e-mail address.

Figure 11–8. Configuring subscription duration in iTunes Connect

CHAPTER 11: In-App Purchase with StoreKit 199

You should now have at least one product configured for in-app purchase. Your screen
in iTunes Connect should look similar to the one shown in Figure 11–9. This concludes
the initial configuration that we need to do in iTunes Connect to get in-app purchases
working. In the next section, we begin to work with the code required to complete a
purchase on a device.

NOTE: Don’t worry about the “Waiting for Screenshot” error yet; this will be handled later in the

process. You will still be able to test your purchases while waiting to upload a screenshot.

Figure 11–9. Products set up and ready for use in our app

Adding Products to Your App
Unlike with Game Center, Apple does not offer a predesigned GUI for in-app purchases.
You, as the developer, are required to design a storefront for your user. In this section,
we learn how to get products that you add in iTunes Connect to show up for sale in your
app.

NOTE: It can take several hours for new purchases and changes to be reflected. If you double-

check everything and are still not seeing products, wait a few hours and try again.

App IDs and In-App Purchase
When working with in-app purchases, Apple requires that your App ID does not include
a wildcard, such as 76P4G6KX56.*. You are required to have a unique App ID, such as
76P4G6KX56.com.dragonforged.ufo. If you do not have a unique App ID, you need to
create one. Use the following steps to create a new unique App ID.

1. Navigate to http://developer.apple.com/iPhone in your web browser and select

the iPhone Developer Program Portal from the list on the right.

2. Select App ID from the column on the left, and select the New App ID button in

the upper right.

3. Fill in the required information about your app.

4. Click Submit.

5. Click Configure next to the listing, and make sure In-App Purchase is turned on (it

should be on by default).

http://developer.apple.com/iPhone

CHAPTER 11: In-App Purchase with StoreKit 200

Setting Up
We begin by requesting a list of products from our app. First, add the StoreKit
framework to your project. We will be modifying our existing UFO project from the
previous chapter; you can follow along in your own project if that is more convenient.

IMPORTANT: In-App Purchase does not work on the simulator; all testing needs to be done on a

device.

Create a new class called UFOStoreViewController. We will use this class to display a
store to the user. Set up the header to match the following.

#import <UIKit/UIKit.h>
#import <StoreKit/StoreKit.h>

@interface UFOStoreViewController : UIViewController <SKProductsRequestDelegate>
{
 SKProductsRequest *productsRequest;
}

@end

As you can see, we imported the StoreKit headers. Set up the
SKProductsRequestDelegate, and create a new object to hold on to the product
request. We need to create a way for the user to access the store, so go ahead and add
a button to the main screen and relevant code to present the new view controller.

Retrieving the Product List
Modify the viewDidLoad and viewDidUnload methods of our new store view controller to
begin a new store request using the product identifiers that we set up in iTunes
Connect. You might need to modify your product identifiers to match the ones that you
set up in the previous section.

- (void)viewDidLoad
{
 [super viewDidLoad];
 NSSet *productIdentifiers = [NSSet setWithObjects:
@"com.dragonforged.ufo.newShip1", @"com.dragonforged.ufo.subscription", nil];
 productsRequest = [[SKProductsRequest alloc]
 initWithProductIdentifiers:productIdentifiers];
 productsRequest.delegate = self;
 [productsRequest start];
}

- (void)viewDidUnload
{
 productsRequest.delegate = nil;
}

CHAPTER 11: In-App Purchase with StoreKit 201

The product request is released in the delegate callback, shown next. Right now, this
method just prints your product information to the console and logs any invalid
products.

- (void)productsRequest:(SKProductsRequest *)request
 didReceiveResponse:(SKProductsResponse *)response
{
 NSArray *productArray = [response products];
 for (SKProduct *product in productArray) {
 NSLog(@"Product title: %@" , product.localizedTitle);
 NSLog(@"Product description: %@" , product.localizedDescription);
 NSLog(@"Product price: %@" , product.price);
 NSLog(@"Product id: %@\n\n" , product.productIdentifier);
 }

 for (NSString *invalidProduct in response.invalidProductIdentifiers)
 {
 NSLog(@"Invalid: %@" , invalidProduct);
 }

 [request release];
}

NOTE: Although you can retrieve a list of invalid product identifiers using the code in this section,
there are no associated errors to determine why a product is being flagged as invalid. Under
most occurrences, the product ID is mistyped or not enough time has passed for the product to

be distributed to the servers.

If you were to run the game now and navigate to the store, you should get output similar
to the following.

2011–08-19 17:31:23.970 UFOs[3580:707] Product title: Ship+
2011–08-19 17:31:23.973 UFOs[3580:707] Product description: Paint your ship and show
off to your friends
2011–08-19 17:31:23.975 UFOs[3580:707] Product price: 8.99
2011–08-19 17:31:23.977 UFOs[3580:707] Product id: com.dragonforged.ufo.newShip1
2011–08-19 17:31:23.979 UFOs[3580:707] Product title: Subscription
2011–08-19 17:31:23.981 UFOs[3580:707] Product description: A subscription service
2011–08-19 17:31:23.983 UFOs[3580:707] Product price: 1.99
2011–08-19 17:31:23.987 UFOs[3580:707] Product id: com.dragonforged.ufo.subscription

NOTE: It can take several seconds to get a response from the product request. Best practices

dictate that you should present your user with some sort of loading indicator.

These are all the steps required to retrieve your products from Apple’s servers. In the
next section we present this data to the user using a standard table view.

1

CHAPTER 11: In-App Purchase with StoreKit 202

Presenting Your Products to the User
We begin by adding a table view to our store view controller. Don’t forget to hook up the
data source and delegates, as required. We also add a new property to our class to hold
on to the products. Create a new class array named productArray and set the product
results to it in the productsRequest method.

Add the two required table view delegate and data source methods to your class, as
shown in the following code snippets.

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [productArray count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:
UITableViewCellStyleSubtitle reuseIdentifier:CellIdentifier] autorelease];
 cell.selectionStyle = UITableViewCellSelectionStyleNone;
 }

 SKProduct *product = [self.productArray objectAtIndex: [indexPath row]];
 cell.textLabel.text = [NSString stringWithFormat:@"%@ - $%@",
 product.localizedTitle, product.price];
 cell.detailTextLabel.text = product.localizedDescription;
 return cell;

}

The first method simply returns the number of products that we retrieved from Apple’s
servers for the number of rows in the table. When we display them as a cel,l we use the
built-in UITableViewCellStyleSubtitle. We set the main label to the product title and
price, and use the detail label to display the description. All that is left is to add a reload
table method to the end of the productsRequest method. Upon running the game again,
your output should look similar to that shown in Figure 11–10.

NOTE: Although the API returns a localized title and description, it doesn’t localize the price. You

need to take this extra step yourself in international apps.

1

CHAPTER 11: In-App Purchase with StoreKit 203

Figure 11–10. Displaying a list of products in a standard table view

Purchasing a Product
In the previous section, we learned how to add products to your app. Without the ability
to purchase these products, our implementation is only partially complete. In this
section, we look at how to handle purchasing products directly through your app.

Purchasing Code
The first thing that we need to do is make our store’s view controller class conform to
the SKPaymentTransactionObserver protocol. After that is done, we modify our existing
viewDidLoad method. We add ourselves as a new transaction observer. Additionally, we
perform a test to make sure that we can make payments on this device, and if not,
display a UIAlert to inform the user.

- (void)viewDidLoad
{
 [super viewDidLoad];
 [[SKPaymentQueue defaultQueue] addTransactionObserver:self];
 if ([SKPaymentQueue canMakePayments]) {
 NSSet *productIdentifiers = [NSSet setWithObjects:
@"com.dragonforged.ufo.newShip1", @"com.dragonforged.ufo.subscription", nil];
 productsRequest = [[SKProductsRequest alloc]
 initWithProductIdentifiers:productIdentifiers];
 productsRequest.delegate = self;
 [productsRequest start];
 }
 else {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:nil message:
@"Unable to make purchases with this device." delegate:nil cancelButtonTitle:@"Dimiss"
 otherButtonTitles: nil];
 [alert show];
 [alert release];
 }
}

Next, we need to add a didSelectRowAtIndexPath method to register selection events in
our table view.

CHAPTER 11: In-App Purchase with StoreKit 204

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
(NSIndexPath *)indexPath
{
 SKProduct *product = [self.productArray objectAtIndex: [indexPath row]];
 SKPayment *payment = [SKPayment paymentWithProductIdentifier:
 product.productIdentifier];
 [[SKPaymentQueue defaultQueue] addPayment:payment];
}

If you were to run the app now and select a table row, you would get a confirmation
alert, as shown in Figure 11–11. However, we have not yet written any code to process
this transaction, nor have you set up a test user, so this is as far as you can currently
get.

Figure 11–11. Confirming a purchase in the Sandbox

Purchasing Multiple Items
Apple has made it easy to allow your users to purchase multiple items at a time. The
following code snippet can be used to bulk purchase multiple quantities of an item at
one time, such as a user purchasing five packs of 100 gold.

SKMutablePayment *payment = [SKMutablePayment paymentWithProductIdentifier:
 com.dragonforged.rpg.100gold];
payment.quantity = 5;
[[SKPaymentQueue defaultQueue] addPayment: payment];

Processing a Transaction
After your user has requested a purchase, there are several steps that you need to take
in order to ensure that their purchase is completed successfully. First, we implement the
required method from the SKPaymentTransactionObserver. As you can see in the
following code example, we test the current transaction state, and then call some new
methods, depending on whether the transaction succeeded, failed, or restored.

CHAPTER 11: In-App Purchase with StoreKit 205

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray *)transactions
{
 for (SKPaymentTransaction *transaction in transactions) {
 if ([transaction transactionState] == SKPaymentTransactionStatePurchased) {
 [self transactionDidComplete:transaction];
 }

 else if ([transaction transactionState] == SKPaymentTransactionStateFailed) {
 [self transactionDidFail:transaction];
 }

 else if ([transaction transactionState] == SKPaymentTransactionStateRestored) {
 [self transactionDidRestore:transaction];
 }

 else {
 NSLog(@"Unhandled case: %@", transaction);
 }
 }
}

We need to implement some convenience methods to help streamline the process. If a
transaction completed successfully or is restored, we need to record the transaction
event, unlock the content that the user purchased, and perform some cleanup. If the
transaction failed or was cancelled, we just need to perform the cleanup and probably
notify the user that something went wrong.

- (void)transactionDidComplete:(SKPaymentTransaction *)transaction
{
 [self recordTransactionData:transaction];
 [self unlockContent:[[transaction payment] productIdentifier]];
 [self finishTransaction:transaction withSuccess:YES];
}

- (void)transactionDidRestore:(SKPaymentTransaction *)transaction
{
 [self recordTransactionData:transaction.originalTransaction];
 [self unlockContent:[[[transaction originalTransaction] payment]
 productIdentifier]];
 [self finishTransaction:transaction withSuccess:YES];
}

- (void)transactionDidFail:(SKPaymentTransaction *)transaction
{
 if ([[transaction error] code] != SKErrorPaymentCancelled) {
 [self finishTransaction:transaction withSuccess:NO];
 }
 //SKErrorPaymentCancelled
 else
 {
 [[SKPaymentQueue defaultQueue] finishTransaction:transaction];
 }
}

Now let’s take a look at each of the methods that we are calling in a more broken-down
fashion, starting with the recordTransactionData method. The main purpose of this
method is to keep a virtual paper trail for our purchases. We are using NSUserDefaults

CHAPTER 11: In-App Purchase with StoreKit 206

to hold on to an array of all completed transactions, which allows us to check
transaction data at any point in the future.

- (void)recordTransactionData:(SKPaymentTransaction *)transaction
{
 NSArray *transactions = [[NSUserDefaults standardUserDefaults]
 objectForKey:@"transactions"];
 NSMutableArray *transactionArray = [transactions mutableCopy];
 [transactionArray addObject:[transaction transactionReceipt]];
 [[NSUserDefaults standardUserDefaults] setObject:transactionArray
 forKey:@"transactions"];
 [transactionArray release];
}

Next, we take a look at the unlockContent method. This is where things could differ in
your actual app. In this example, we set a flag in the NSUserDefaults that we can check
against to see whether the user has purchased a feature. Depending on how your app is
structured, you might want to take a different approach, but no matter what approach
you take, remember that you need to preserve the unlocked content through app
restarts. See the section “Tying Everything Together in UFOs” for a sample on how to
implement this approach.

- (void)unlockContent:(NSString *)productId
{
 if ([productId isEqualToString:@"com.dragonforged.ufo.newShip1"]) {
 [[NSUserDefaults standardUserDefaults] setBool:YES forKey:
@"shipPlusAvailable"];
 }

 if ([productId isEqualToString:@"com.dragonforged.ufo.subscription"]) {
 [[NSUserDefaults standardUserDefaults] setBool:YES
 forKey:@"subscriptionAvailable"];
 }
}

The last step that we take for both successful and nonsuccessful purchases is to
perform a bit of cleanup on our transaction. The most important step in the following
method is to call the finishTransaction method. We also log the results of the transaction
for debugging purposes. Until you have called finishTransaction, the transaction remains
open and in the system.

- (void)finishTransaction:(SKPaymentTransaction *)transaction withSuccess:(BOOL)success
{
 [[SKPaymentQueue defaultQueue] finishTransaction:transaction];
 NSDictionary *transactionDictionary = [NSDictionary
 dictionaryWithObjectsAndKeys:transaction, @"transaction" , nil];
 if (success) {
 NSLog(@"Transaction was successful: %@", transactionDictionary);
 }
 else {
 NSLog(@"Transaction was unsuccessful: %@", transactionDictionary);
 }
}

CHAPTER 11: In-App Purchase with StoreKit 207

Restoring Previously Completed Transactions
Often, your users will need to restore purchases that they have previously made. This
could happen if they have reinstalled your app or have begun using it on a different
device. It is important to always add a path for your user to download all of their content
again. Luckily, Apple has planned ahead for this scenario and has provided a simple
method for restoring the user’s purchases.

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions];

This will repurchase all of your content as if the user had selected it from your store. You
will receive appropriate callbacks to the paymentQueue:updatedTransactions method
and can use your existing code to unlock content.

Test Accounts and Testing Purchases
If you were to try and purchase one of your items in the Sandbox now, you would
receive an account error. You need to first create a new test account in order to be able
to test purchases without being charged for them. To set up a new test user, you need
to log in to iTunes Connect (http://iTunesConnect.apple.com). Select the Manage User
section from the main screen of iTunes Connect; from here, select the option for a new
Test User.

Test users do not need to use a real e-mail address, and you will want to select
something quick to type and easy to remember, such as abc@def.com. Although you do
need to enter a date of birth and other identifying information, there is no reason you
cannot fabricate this data. Make sure to select the iTunes Store as the one to test your
localization against. You can make a new account for each region that you will test with.

Signing in with a Test Account
You cannot simply sign in with your test account in the Settings App. Doing so would
result in you being forced to agree to the standard user agreement and being prompted
to enter a credit card number. In order to resolve this issue, you need to use the Settings
App to log out of your existing iTunes account. After you are logged out of an account,
you will be prompted to log in or create a new account during a purchase attempt. This
is where you will enter your test account credentials.

NOTE: If you are testing on your primary device, don’t forget to revisit the Settings App to log out

of your test account before making real purchases or downloading updates.

http://iTunesConnect.apple.com
mailto:abc@def.com

CHAPTER 11: In-App Purchase with StoreKit 208

Submitting a Purchase GUI Screenshot
We talked briefly about this step in the earlier sections of this chapter. Apple requires
that you submit a screenshot of your in-app purchase before it will clear it for sale. There
is some confusion about what Apple is specifically looking for in this screenshot. Apple
is looking, in the simplest terms, for a screen capture proving that your in-app purchase
is working as intended. For unlockable content, this would be a screenshot of the item
being used, such as the user playing a purchased level or using a purchased item.
However, sometimes your product might not be visible while being used. In cases such
as these, Apple has accepted a screeshot of the store showing that the item has been
purchased, an example of which is shown in Figure 11–12.

NOTE: You will not be required to submit a screenshot until you have finished writing and

debugging your app and are ready to submit it for review.

Figure 11–12. An example of an acceptable screenshot for in-app purchase when there isn’t an item to capture

Developer Approval
The last step that you need to take before your in-app purchase is ready to go is
developer approval. Return to iTunes Connect in your web browser and navigate to the
Manage In-App Purchase section of your app review page. There will be a new green
button in the upper right-hand corner of the screen.

CHAPTER 11: In-App Purchase with StoreKit 209

You will be prompted on how to submit your product. The following two options are
available.

 Submit with Binary: This option will turn on in-app purchase with your
next binary upload.

 Submit Now: This will allow you to submit a new product to an existing
app.

NOTE: If you see the option to Submit with a New Binary, it could be because the last version of

your App was uploaded before in-app purchasing was available in 3.0.

Receipts
When you successfully complete a transaction, you are provided with a receipt as part
of the competed transaction object. The following is a sample receipt from one of the
purchases in UFOs demo project.

{
 "signature" =
"AnQ+nzB60K5Lc6pI6zh8bptEO+GSGUJ+xT5DSef2p66H8gz/P/D13mBqf96ciJoLesI64fohhZTNb9NrCEkZMVy
eqkJed2t38509XpckLWeLJCDYUJqUS1t+fsoy7fwSU0v8TUBzF3Eua1h83GszxlPyylo3mRDssrG+QcgrHwFOAAA
DVzCCA1MwggI7oAMCAQICCGUUkU3ZWAS1MA0GCSqGSIb3DQEBBQUAMH8xCzAJBgNVBAYTAlVTMRMwEQYDVQQKDAp
BcHBsZSBJbmMuMSYwJAYDVQQLDB1BcHBsZSBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTEzMDEGA1UEAwwqQXBwbGU
gaVR1bmVzIFN0b3JlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MB4XDTA5MDYxNTIyMDU1NloXDTE0MDYxNDIyMDU
1NlowZDEjMCEGA1UEAwwaUHVyY2hhc2VSZWNlaXB0Q2VydGlmaWNhdGUxGzAZBgNVBAsMEkFwcGxlIGlUdW5lcyB
TdG9yZTETMBEGA1UECgwKQXBwbGUgSW5jLjELMAkGA1UEBhMCVVMwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoG
BAMrRjF2ct4IrSdiTChaI0g8pwv/cmHs8p/RwV/rt/91XKVhNl4XIBimKjQQNfgHsDs6yju++DrKJE7uKsphMddK
YfFE5rGXsAdBEjBwRIxexTevx3HLEFGAt1moKx509dhxtiIdDgJv2YaVs49B0uJvNdy6SMqNNLHsDLzDS9oZHAgM
BAAGjcjBwMAwGA1UdEwEB/wQCMAAwHwYDVR0jBBgwFoAUNh3o4p2C0gEYtTJrDtdDC5FYQzowDgYDVR0PAQH/BAQ
DAgeAMB0GA1UdDgQWBBSpg4PyGUjFPhJXCBTMzaN+mV8k9TAQBgoqhkiG92NkBgUBBAIFADANBgkqhkiG9w0BAQU
FAAOCAQEAEaSbPjtmN4C/IB3QEpK32RxacCDXdVXAeVReS5FaZxc+t88pQP93BiAxvdW/3eTSMGY5FbeAYL3etqP
5gm8wrFojX0ikyVRStQ+/AQ0KEjtqB07kLs9QUe8czR8UGfdM1EumV/UgvDd4NwNYxLQMg4WTQfgkQQVy8GXZwVH
gbE/UC6Y7053pGXBk51NPM3woxhd3gSRLvXj+loHsStcTEqe9pBDpmG5+sk4tw+GK3GMeEN5/+e1QT9np/Kl1nj+
aBw7C0xsy0bFnaAd1cSS6xdory/CUvM6gtKsmnOOdqTesbp0bs8sn6Wqs0C9dgcxRHuOMZ2tm8npLUm7argOSzQ=
=";
 "purchase-info" =
"ewoJIml0ZW0taWQiID0gIjQ1ODk4NjQ4NCI7Cgkib3JpZ2luYWwtdHJhbnNhY3Rpb24taWQiID0gIjEwMDAwMDA
wMDU4NDM1MzgiOwoJInB1cmNoYXNlLWRhdGUiID0gIjIwMTEtMDgtMjEgMjI6Mzk6NTIgRXRjL0dNVCI7CgkicHJ
vZHVjdC1pZCIgPSAiY29tLmRyYWdvbmZvcmdlZC51Zm8ubmV3U2hpcDIiOwoJInRyYW5zYWN0aW9uLWlkIiA9ICI
xMDAwMDAwMDA1ODQzNTM4IjsKCSJxdWFudGl0eSIgPSAiMSI7Cgkib3JpZ2luYWwtcHVyY2hhc2UtZGF0ZSIgPSA
iMjAxMS0wOC0yMSAyMjozOTo1MiBFdGMvR01UIjsKCSJiaWQiID0gImNvbS5kcmFnb25mb3JnZWRzb2Z0d2FyZS5
Ucml2aWFsU2NpIjsKCSJidnJzIiA9ICIxLjAiOwp9";
 "environment" = "Sandbox";
 "pod" = "100";
 "signing-status" = "0";
}

Apple urges developers to check this receipt for validitity. Although this step remains
optional, checking it adds an extra layer of security and prevents users from activating
your in-app purchases without having to pay for the content. Apple provides two servers

CHAPTER 11: In-App Purchase with StoreKit 210

for you to validate reciepts against: one for Sandbox enviroments, and one for shipping
software, as described in Table 11–1.

Table 11–1. Server Addresses for Verifying Receipts with Apple

Enviroment Server Address

Sandbox sandbox.itunes.apple.com

Production buy.itunes.apple.com

Joe D’Andrea posted two methods to help your checking for valid receipts on Stack
Overflow (http://stackoverflow.com/questions/1298998). His approach is streamlined
and efficient with no outside dependencies, so I have included it here for your
convenience.

-(BOOL)verifyReceipt:(SKPaymentTransaction *)transaction
{
 NSString *jsonObjectString = [self encode:(uint8_t *)
transaction.transactionReceipt.bytes length:transaction.transactionReceipt.length];
 NSString *completeString = [NSString stringWithFormat:
@"http://url-for-your-php?receipt=%@", jsonObjectString];
 NSURL *urlForValidation = [NSURL URLWithString:completeString];
 NSMutableURLRequest *validationRequest = [[NSMutableURLRequest alloc]
 initWithURL:urlForValidation];
 [validationRequest setHTTPMethod:@"GET"];
 NSData *responseData = [NSURLConnection sendSynchronousRequest:
validationRequest returningResponse:nil error:nil];
 [validationRequest release];
 NSString *responseString = [[NSString alloc] initWithData:responseData
 encoding: NSUTF8StringEncoding];
 NSInteger response = [responseString integerValue];
 [responseString release];
 return (response == 0);
}

- (NSString *)encode:(const uint8_t *)input length:(NSInteger)length
{
 static char table[] =
 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
 NSMutableData *data = [NSMutableData dataWithLength:((length + 2) / 3) * 4];
 uint8_t *output = (uint8_t *)data.mutableBytes;
 for (NSInteger i = 0; i < length; i += 3) {
 NSInteger value = 0;
 for (NSInteger j = i; j < (i + 3); j++) {
 value <<= 8;
 if (j < length) {
 value |= (0xFF & input[j]);
 }
 }

 NSInteger index = (i / 3) * 4;
 output[index + 0] = table[(value >> 18) & 0x3F];
 output[index + 1] = table[(value >> 12) & 0x3F];
 output[index + 2] = (i + 1) < length ? table[(value >> 6) & 0x3F] : '=';

http://stackoverflow.com/questions/1298998

CHAPTER 11: In-App Purchase with StoreKit 211

 output[index + 3] = (i + 2) < length ? table[(value >> 0) & 0x3F] : '=';
 }

 return [[[NSString alloc] initWithData:data encoding:NSASCIIStringEncoding]
 autorelease];
}

After you have added these two methods to your project, you simply need to call
verifyReceipt with the transaction that was returned to you, and then perform a boolean
test to see whether it is valid. This concludes all the steps that you need to take to check
a receipt for authenticity.

This method of verifying receipts requires you to host an intermediate server, attached is
a very stripped-down PHP script to validate receipts.

$receipt = json_encode(array("receipt-data" => $_GET["receipt"]));
// NOTE: use "buy" vs "sandbox" in production.
$url = "https://sandbox.itunes.apple.com/verifyReceipt";
$response_json = call-your-http-post-here($url, $receipt);
$response = json_decode($response_json);
// Save the data here!
print $response->{'status'};

Tying Everything Together in UFOs
Depending on the complexity of your in-app purchase, it could be very easy or very
difficult to integrate it into your code. In UFOs, we have a very simple product, in which
paying a one-time fee unlocks a different colored ship. When the user purchases the
product, we store a key in our user defaults to reflect that. To unlock this purchase in
code, we simply check for that key, and then perform the required steps. To do this, we
need to add some new art assets to the project. These have already been included in
the Chapter 11 sample code (available at the Apress web site).

After this is done, we need to modify our viewDidLoad method to change the ship’s
image. The following code snippet shows those changes.

-(void)viewDidLoad
{
 purchasedUpgrade = [[NSUserDefaults standardUserDefaults]
 boolForKey:@"shipPlusAvailable"];
 CGRect playerFrame = CGRectMake(100, 70, 80, 34);
 myPlayerImageView = [[UIImageView alloc] initWithFrame: playerFrame];
 myPlayerImageView.animationDuration = 0.75;
 myPlayerImageView.animationRepeatCount = 99999;
 NSArray *imageArray;

 if (purchasedUpgrade) {
 imageArray = [NSArray arrayWithObjects: [UIImage imageNamed:
 @"Ship1.png"], [UIImage imageNamed: @"Ship2.png"], nil];
 } else {
 imageArray = [NSArray arrayWithObjects: [UIImage imageNamed:
 @"Saucer1.png"], [UIImage imageNamed: @"Saucer2.png"], nil];
 }

https://sandbox.itunes.apple.com/verifyReceipt

CHAPTER 11: In-App Purchase with StoreKit 212

 myPlayerImageView.animationImages = imageArray;
 [myPlayerImageView startAnimating];
 [self.view addSubview: myPlayerImageView];
}

Summary
In this chapter, we covered StoreKit and in-app purchases. By leveraging StoreKit, you
gain a number of new ways to monetize your app, from expandable content to special
upgrades for your users. You should now feel confident adding a variety of products to
your own in-app store. Although StoreKit isn’t directly a part of Game Center or Game
Kit, you will undoubtedly find an in-app store an invaluable addition to your iOS
software.

We spent some time talking about ngmoco:) and its experiments and successes with the
Freemium model. You should now feel confident with iTunes Connect and all the actions
that are required to fully set up an in-app purchase product, as well as the required code
to get that purchase to display.

We looked at how to handle failures with purchasing and also the path of a success. We
also explored some of the advanced topics, such as validating receipts and multiple
purchases at once. Lastly, we saw how we integrated the entire experience into our
UFOs demo app.

 213

Index

■ Symbols and
Numerics

$Host prefix, 153–155, 157

■ A
abducting cow, UFOs sample game,

13–14
accelerometer delegate, UFOs sample

game, 5–6
Accept button, 125
acceptInvite parameter, 101
accounts, test, 207
achievedDescription, 82, 88
achievement GUIs, custom, 83–89
Achievement ID attribute, 67
Achievement Reference Name attribute,

67
achievementArray, 84–85, 87–88
achievementCompletionLabel, 82
achievementCompletionView, 82
achievementEarned method, 81–82, 90
achievements, 63–91

configuring in iTunes Connect
application, 66–75

modifying achievement progress,
72–75

presenting achievements, 70–72
hooks, 76–91

achievement completion
feedback, 80–82

completion banners, 83
custom achievement GUI, 83–89
method for, 80

recovering from submit failure,
89–91

overview of, 65–66
reasons for using, 65
resetting, 75–76

Achievements Configuration Screen, 67
achievementWithIdentifierIsComplete,

77–79, 89
Add Leaderboard button, 37
Add New Achievement button, 67
APIs (Application Programming

Interfaces), 1
App IDs, 199
App Store, 118–119, 121
Apple, achievement GUI, 66
Apple leaderboard GUI, 37
Apple-provided method, 112
Application Programming Interfaces

(APIs), 1
Arc4Random method, 10
audio sessions

voice chat for Game Center, 184
voice chat for Game Kit, 187

authenticateLocalUser method, 48
authenticating users, 21–26

modifying GameCenterManager
class, 22–24

from UFOViewController, 24–26
auto-matching, 104
auto-renewable subscription, 197
available property, 127
avatars, friends list, 30–31
AVAudioSession, 184, 187, 189
AVFoundation.framework, 188

Index 214

■ B
banners, completion, 83
beams, UFOs sample game, 6–7
Bluetooth, 118, 120–125, 128–130
Bristomath, 118–119

■ C
CALayer, 12–13
callDelegateOnMathThread method, 23
cellForRow method, 58
cellForRowAtIndexPath method, 87, 89
Center type, 148
channels, voice, 184
cheating, preventing in network design,

140–141
checkWinner method, 175, 178
Clan Lord, 131–132
client-to-host networks, 134–135
completion

of achievements, feedback on,
80–82

banners, 83
configuring

iTunes Connect for Game Center, 14
leaderboards in iTunes Connect,

37–41
connectionTypeMask, 128
consumable in-app purchase, 196
Context: method, 190
cows

abducting, 161–165
spawning, 157–160
UFOs sample game

abducting, 13–14
setting up, 6–7
spawning and moving, 10–12

currentSession, 122, 129
Custom Leaderboard button, 52
custom leaderboard GUI, 37
custom leaderboards, 51–56

displaying, 55–56
filtering results on, 54
modifying GameCenterManager,

53–54

■ D
Dedicated Server network, 136
default leaderboard, 42
defaultVoiceChatService, 187–192
delegate methods, 127–130
delegate property, 127
determineHost method, 153–154,

156–157
developer approval, in-app purchases,

208–209
didAuthenticate, 79
didChangeState, 106
didFindMatch method, 173
didSelectConnectionType, 128
didSelectRowAtIndexPath method,

203–204
didStopSelector, 13
disconnections

handling, 165–166
preventing in network design,

140–141
disconnectTimeout property, 127
Dismiss button, 52
dismissModalViewControllerAnimated

method, 171, 173
displaying custom leaderboard, 55–56
displayName property, 127–128
drawEnemyShipWithData method,

155–156

■ E
Earned Description attribute, 69
earnedAchievementCache, 72–77, 80
ending match, turned-based gaming,

178–179
endTurnWithNextParticipant method,

175–176
exchanging data, 143–166

abducting cows, 161–165
displaying enemy UFO, 154–156
handling disconnections, 165–166
host device for, 146–147, 153–154
modifying single-player game for,

143–144

Index 215

receiving data, 150–153
sending data, 147–150
sharing scores, 160
spawning cows, 157–160

exitAction method, 43, 45, 61
extrapolation, in network design,

139–140

■ F
failures when submitting score,

handling, 46–48
feedback, on achievement completion,

80–82
filtering results, on custom leaderboard,

54
findMatchesForRequest method, 105
finishAbducting method, 13, 77–78
finishTransaction method, 205–206
first move, turned-based gaming,

174–176
ForConnectionType, 128
forfeiting, turned-based gaming, 180
formatting messages, in network

design, 140
Freemium, 193–194, 212
friends list

avatars, 30–31
retrieving, 28–30

■ G
Game Center

configuring in iTunes Connect,
16–17

configuring iTunes Connect for, 14
overview, 2

Game Center server, 75, 86
Game Kit, 1–3

Game Center, 2
networking, 2, 117–120, 129–130
voice chat, 3

Game view, 169
GameCenterManager class, 22–24,

53–54, 101, 112, 150–151, 181
GameCenterManager method, 54, 61

GameCenterManager object, 24
GameCenterManagerDelegate, 42, 57
GameCenterManager.h file, 31
gameDictionary, 173, 175, 177
generateAndSendHostNumber method,

146–147, 152–154, 157
GKAchievement object, 65, 72–75, 77,

80–81, 83, 89
GKAchievementDescription object, 65,

81–82, 86–88, 90
GKAchievementDescriptions, 86
GKAchievementViewController, 71
GKLeaderboard object, 53
GKLeaderboardViewController, 49–50
GKLeaderboardViewControllerDelegate,

49
GKLocalPlayer, 28
GKMatch class, 114, 116, 144–145,

147–149, 165
GKMatch object, 100, 109, 116, 144,

150–151, 165, 183–184
GKMatchmaker, 96, 101–102, 105–106,

112, 115
GKMatchmakerViewController, 96–97,

99, 102, 114–115
GKMatchmakerViewControllerDelegate,

97
GKMatchRequest object, 96–97,

101–102, 105, 107, 114, 171,
180–181

GKPeerPickerConnectionTypeNearby,
123

GKPeerPickerConnectionTypeOnline,
123, 128

GKPeerPickerController, 122–123,
127–129

GKPeerPickerControllerDelegate, 122,
128–129

GKPhotoSizeNormal, 30–31
GKPhotoSizeSmall, 31
GKPlayer object, 29–32, 57–58, 62
GKPlayerAuthenticationDidChangeNotif

icationName object, 170
GKScore object, 36, 42, 46–47, 65
GKSendDataReliable, 138

Index 216

GKSession class, 128–129, 144–145,
147–151, 165

GKSession object, 120–122, 125, 127,
186–187

GKSessionDelegate protocol, 122
GKTurnBasedEventHandler, 181
GKTurnBasedMatchmakerViewControll

er, 171–173, 180
GKTurnBasedMatchOutcomeLost, 179
GKTurnBasedMatchOutcomeQuit, 172,

180
GKTurnBasedMatchOutcomeWon, 175,

179
GKTurnedBasedMatchmakerViewContr

oller, 169–173
GKTurnedBasedMatchmakerViewContr

ollerDelegate, 171
GKVoiceChat object, 185
GKVoiceChatClient, 188, 190
GKVoiceChatService class, 114,

186–192
graphical user interfaces. See GUIs
Grenadier class, 110
GUIs (graphical user interfaces)

achievement
Apple, 66
custom, 66, 83–89

Match, 97–100
screenshot, submitting purchase,

208

■ H
handleInviteFromGameCenter method,

181
handleMatchEnded method, 181
handleTurnEventForMatch method, 181
Handshake, 119–120
Headless Client network, 136
Hidden attribute, 67
hitTest method, 9, 12–13, 162–163
hooks, achievement, 76–91

completion, 80–83
custom achievement GUI, 83–89
method for, 80

recovering from submit failure,
89–91

host device, for exchanging data,
146–147, 153–154

hosted matches, 114–116
Hybrid Network, 136

■ I, J, K
IBAction method, 55, 71, 85, 170–171,

174–175, 180
IBOutlets, 81–82, 174
ID string, 122
ID type, 147
Image attribute, 69
imageView, 9–10, 13
in-app purchases, 193–212

adding products to app, 199–202
App IDs, 199
presenting products to user, 202
retrieving product list, 200–201
setting up, 200

developer approval, 208–209
purchasing products, 203–207

code for, 203–204
multiple items, 204
processing transaction, 204–206
restoring previously completed

transactions, 207
receipts, 209–211
setting up app in iTunes Connect,

195–199
submitting purchase GUI

screenshot, 208
test accounts and testing purchases,

207
in UFOs, 211

insertSubview method, 9
integrating Game Center in app, 19–33

authenticating users, 21–26
modifying GameCenterManager

class, 22–24
from UFOViewController, 24–26

friend list avatars, 30–31
GKLocalPlayer, 28
retrieving friends list, 28–30

Index 217

Sandbox, 26–27
testing for support of Game Center,

19–21
watching for status changes, 27–28
working with players, 31

interaction, with GKSession object, 127
invitations, 93–116, 126

handling incoming, 101–103
hosted matches, 114–116
Match GUI, 97–100
matching

automatically, 104
programmatically, 105

and matchmaking
common scenarios for, 95–96
reasons for using, 93–94

new match requests, 96
players

activity of, 112–113
adding to match, 106
attributes of, 108–112
groups of, 107

reinvites, 106
Invite Friend button, 98
inviteHandler property, 101–102
iOS Simulator, 122
iPod touch, 121, 129
iTunes Connect

configuring achievements in, 66–75
modifying progress, 72–75
presenting, 70–72

configuring for Game Center, 14
configuring leaderboards in, 37–41
getting started with, 14–17
setting up app in, 195–199

■ L
LAN connection view, 128
Language attribute, 69
Leader class, 110
leaderboards, 35–62

adding score posting to UFOs,
43–45

better approach, 61–62

configuring in iTunes Connect,
37–41

custom, 51–56
displaying, 55–56
filtering results on, 54
modifying GameCenterManager,

53–54
in Game Center, 36–37
handling failures when submitting

score, 46–48
importance of, 36
local player score, 60–61
mapping player ID, 56–59
posting score, 41–42
presenting leaderboard, 48–50
setting default, 42

loadAchievementsWithCompletionHand
ler, 72, 74, 76

loadFriendsWithCompletionHandler
method, 29

loadImageWithCompletionHandler,
87–88

loadMatchDataWithCompletionHandler
method, 176–177

loadPlayersForIdentifiers, 32
loadScoresWithCompletionHandler

method, 53, 60
local player scores, on leaderboards,

60–61

■ M
Main view, 169
makeMove method, 174–175, 179
Manage In-App Purchases button,

195–196
Manager class, 19, 28, 33
mapping player IDs, on leaderboards,

56–59
mapPlayerIDtoPlayer method, 56, 59
Match GUI, 97–100
match mask, 110–111
matches

adding players to, 106
hosted, 114–116
new requests for, 96

Index 218

matching
automatically, 104
programmatically, 105

matchMakerViewController, 115,
144–145, 150

matchmakerViewController:didFindMatc
h, 115

matchmakerViewController.hosted, 115
matchmaking, invitations and

common scenarios for, 95–96
reasons for using, 93–94

matchOrSession, 147–151, 165
Mesh/Partial Mesh Network, 136
messages, formatting in network

design, 140
monitoring player state, voice chat for

Game Center, 186
movePlayer method, 7–8, 155
moving cows, UFOs sample game,

10–12
multiple items, purchasing, 204
muting, voice chat for Game Center,

185–186

■ N
network design, 131–142

formatting messages, 140
less common networks, 136
prediction and extrapolation,

139–140
preventing cheating and timeout-

related disconnections,
140–141

reliable versus unreliable data,
136–138

sending only what is needed,
138–139

types of networks, 132–135
client-to-host network, 134–135
peer-to-peer network, 132–133
ring network, 135

what to do when system fails,
141–142

networking, Game Kit, 2
new game, starting, 173–174

newX, 158–159
non-consumable purchase, 196–197
non-renewing subscription, 197
NSArray class, 149
NSArray object, 52, 84
NSData object, 46–47, 146–149, 151,

175–177
NSPropertyListSerialization method,

175–177
NSString, 42, 52, 56, 59, 146, 148, 151,

154, 157, 160
NSUserDefaults, 205–206, 211
numberOfRowsInSection method, 87

■ O
Ordering attribute, 137
overhead, voice chat for Game Kit, 187

■ P
participantQuitInTurnWithOutcome

method, 175, 179
participantQuitOutOfTurnWithOutcome

method, 172, 180
paymentQueue:updatedTransactions

method, 207
Peer Picker system, 117–130

benefits of, 117–118
delegate methods, 127–130
examples of, 118–120
GKSession object interaction, 127
presenting, 122–126
sessions, 120–122

peer-to-peer networks, 132–133
peerID property, 121, 127, 129
peerID string, 121
peerIDString property, 145–146,

150–151
peerMatch property, 145–146, 150–151
peerPicker controller, 128
peerPickerController, 122–123,

128–129, 144–145, 150
peerPickerControllerDidCancel, 128
percentageComplete, 75, 81, 89
percentageCompleted, 74

Index 219

percentageCompleteOfAchievementWit
hIdentifier, 77–79, 89

percentComplete, 72–75, 77–79, 81,
90–91

PercentComplete: method, 90
performSelector method, 11–12
Picker type, 148
playButtonPressed method, 44
playerGroup, 96, 107, 112
playerID, 185–186
playerNameforID method, 58–59
players

activity of, 112–113
adding to match, 106
attributes of, 108–112
groups of, 107
IDs, mapping on leaderboards,

56–59
monitoring state of, voice chat for

Game Center, 186
UFOs sample game

adding movements, 7–8
drawing, 6

working with, 31
playersToInvite property, 96, 101–102,

181
Points attribute, 67
populateAchievementCache, 76–77
posting score

leaderboards, 41–42
UFOs sample game, 43–45

Pre-earned Description attribute, 69
prediction, in network design, 139–140
presentationLayer method, 12–13
presenting leaderboard, 48–50
presenting products to user, 202
previously completed transactions,

restoring, 207
Priority attribute, 137
processGameCenterAuthentication

method, 22, 25, 29–31
processing transactions, 204–206
productArray class, 201–202, 204
products, adding to app, 199–202

App IDs, 199
presenting products to user, 202

retrieving product list, 200–201
setting up, 200

productsRequest method, 200–203
programmatic matches, turned-based

gaming, 180
purchasing products, 203–207

code for, 203–204
multiple items, 204
processing transaction, 204–206
restoring previously completed

transactions, 207

■ Q
quitting, turned-based gaming, 180

■ R
receipts, in-app purchases, 209–211
receivedData method, 151–155, 158,

160, 162
receiving data, over network, 150–153
recordTransactionData method,

205–206
reinvites, 106
reliable data, in network design,

136–138
requests, for new matches, 96
required overhead, voice chat for Game

Kit, 187
resetAchievement, 79
restoring previously completed

transactions, 207
retrieveAchievementMetadata method,

86
Retry attribute, 137
ring networks, 135
rotation events, UFOs sample game, 7

■ S
Sandbox, 26–27, 204, 207, 209–210
Score Format Type, 39
scores

adding to UFOs sample game,
43–45

Index 220

handling failures when submitting,
46–48

leaderboards, 41–42
local player, on leaderboards, 60–61
sharing, 160
UFOs sample game, 6–7

screenshot, submitting purchase GUI,
208

sending data, over network, 147–150
sending needed information, in network

design, 138–139
sendString method, 147–148
servers, using to host match, 114–116
sessionForConnectionType, 128
sessionID property, 122, 127–128
sessionMode property, 127
sessions

audio
voice chat for Game Center, 184
voice chat for Game Kit, 187

Peer Picker system, 120–122
setupVoiceChat method, 189
sharedAccelerometer, 5–6
sharedMatchmaker method, 101–102,

105–106, 112, 115
sharing scores, 160
shouldAutorotateToInterfaceOrientation,

52
shouldAutorotateToInterfaceOrientation

method, 7
signing in with a test account, 207
single-player game, modifying for multi-

player, 143–144
Skorpiostech, 119–120
SKPaymentTransactionObserver,

203–204
SKProductsRequestDelegate, 200
source code, UFOs sample game, 5–14

abducting cow, 13–14
adding player movements, 7–8
configuring iTunes Connect for

Game Center, 14
drawing player to view, 6
handling rotation events, 7
performing hit test with UIImage, 12

setting up accelerometer delegate,
5–6

setting up cows, beams, and scores,
6–7

spawning and moving cows, 10–12
watching for touch events, 8–10

spawnCow method, 147, 157–158, 164
spawning cows, UFOs sample game,

10–12
Start New Game button, 170
startAnimating, 6, 9, 11
starting voice chat, for Game Center,

185
status changes, watching for, 27–28
stopping voice chat, for Game Center,

185
StoreKit, 193–212

adding products to app, 199–202
App IDs, 199
presenting products to user, 202
retrieving product list, 200–201
setting up, 200

developer approval, 208–209
purchasing products, 203–207

code for, 203–204
multiple items, 204
processing transaction, 204–206
restoring previously completed

transactions, 207
receipts, 209–211
setting up app in iTunes Connect,

195–199
submitting purchase GUI

screenshot, 208
test accounts and testing purchases,

207
in UFOs, 211

stringByAppendingString method, 155
submit failure, recovering from, 89–91
Submit Now option, 209
Submit with a New Binary option, 209
Submit with Binary option, 209
submitAchievement:percentComplete

method, 73
submitAllSavedScores method, 47–48

Index 221

submitting purchase GUI screenshot,
208

support of Game Center, testing for,
19–21

■ T
test accounts, 207
testing for support of Game Center,

19–21
testing purchases, 207
textLabel, 87–89
tickThreeSeconds, 79–80
tictactoeGameViewController class,

173–174
timeout-related disconnections,

preventing in network design,
140–141

Title attribute, 69
touch events, UFOs sample game, 8–10
touchesBegan method, 161
touchesEnd method, 161
tractorBeam, 12
tractorBeamOn, 7–10, 12–13
transactions

processing, 204–206
restoring previously completed, 207

Tree Network, 136
turned-based gaming, 167–181

continuing game in progress,
176–177

ending match, 178–179
GKTurnBasedEventHandler, 181
GKTurnedBasedMatchmakerViewCo

ntroller, 171–173
making first move, 174–176
new sample project, 168–170
programmatic matches, 180
quitting and forfeiting, 180
starting new game, 173–174

■U
UFOAchievementViewController class,

84–86
UFOAppDelegate class, 5

UFOAppDelegate file, 5
UFOGameCenterViewController class,

146
UFOGameViewController class, 5–6, 43,

45, 61, 77, 81, 145, 151, 154
UFOGameViewController.h, 144
UFOGameViewController.m

viewDidLoad: method, 188
UFOGameViewController.xib, 43
UFOLeaderboardCiewController class,

54
UFOLeaderboardViewController class,

51–52, 54–55, 57–58, 61
UFOs sample game, 3–14

adding score posting to, 43–45
in-app purchases in, 211
source code, 5–14

abducting cow, 13–14
adding player movements, 7–8
configuring iTunes Connect for

Game Center, 14
drawing player to view, 6
handling rotation events, 7
performing hit test with UIImage,

12
setting up accelerometer

delegate, 5–6
setting up cows, beams, and

scores, 6–7
spawning and moving cows,

10–12
watching for touch events, 8–10

understanding game, 3–4
UFOViewController class, 5, 24–26, 98,

102–103, 112, 122
UFOViewController.m file, 21, 25, 27,

29–30, 32, 150
UFOVoiceChatClient class, 189–190
UIAlert, 123, 203
UIAlertView, 80–81
UIButtons, 71, 174
UIImage, UFOs sample game, 12
UIImageView, 6, 9–10, 12–13
UITableViewCellStyleSubtitle, 52–53,

59, 202
UITableViewCellSytleDefault, 88

Index 222

UIViewController, 84–85
unachievedDescription, 88
unreliable data, in network design,

136–138
updateCowPaths method, 147,

157–158, 165
updateCowPathsFromNetwork method,

158
userDefaults, 90

■ V
valueChanged action, 54
verifyReceipt method, 210–211
viewDidAppear, 80
viewDidLoad method, 6, 10, 25, 27, 55,

61, 154, 176, 200, 211
viewDidUnload method, 200
ViewWillDisappear, 80
voice chat, 183–192

for Game Center, 183–186
creating audio session, 184
creating new voice channels, 184

monitoring player state, 186
starting and stopping, 185
volume and muting, 185–186

for Game Kit, 3, 186–188
creating audio session, 187
getting things running, 188
required overhead, 187

putting it together, 188–192
VOIP (Voice over Internet Protocol), 183
volume, voice chat for Game Center,

185–186

■ W, X
Wi-Fi network, 117, 121
Words with Friends, 167–168
WWDC (World Wide Developers

Conference), 167

■ Y, Z
y axis, 158

 i

Beginning iOS Game
Center and Game Kit:
For iPhone, iPad, and

iPod touch

■ ■ ■

Kyle Richter

Beginning iOS Game Center and Game Kit: For iPhone, iPad, and iPod touch

Copyright © 2011 by Kyle Richter

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3527-9

ISBN-13 (electronic): 978-1-4302-35286

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Development Editors: Matthew Moodie and Douglas Pundick
Technical Reviewer: Marcus Zarra
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell
Copy Editor: Ralph Moore
Compositor: MacPS, LLC
Indexers: BIM Indexing & Proofreading Services
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

This book is dedicated to my mentor and friend Ian Baird,
without whom I never would have followed the path that led me to here.

–– Kyle

v

Contents

Contents at a Glance .. iv
About the Author .. ix
About the Technical Reviewer .. x
Acknowledgments ... xi
Foreword .. xii
Introduction .. xiv

■Chapter 1: Getting Started with Game Kit and Game Center 1
Game Kit: An Overview ... 2

Networking .. 2
Game Center .. 2
Voice Chat .. 3

Sample Game: UFOs ... 3
UFOs: Understanding the Game ... 3

UFOs: Examining the Source Code .. 5
Setting Up the Accelerometer Delegate ... 5
Drawing the Player to the View .. 6
Setting Up Cows, Beams, and Scores .. 6
Handling Rotation Events ... 7
Adding Player Movements ... 7
Watching for Touch Events .. 8
Spawning and Moving Cows .. 10
Performing a Hit Test with a UIImage .. 12
Abducting a Cow .. 13
Configuring iTunes Connect for Game Center .. 14

Getting Started with iTunes Connect .. 14
Configuring Game Center in iTunes Connect ... 16

Summary .. 17

■Chapter 2: Game Center: Setting Up and Getting Started 19
Testing for Game Center ... 19
Authenticating with Game Center ... 21

Modifying the GameCenterManager Class ... 22

■ CONTENTS

vi

Authenticating from UFOViewController .. 24
The Sandbox ... 26
Watching for Status Changes ... 27
Working with GKLocalPlayer ... 28
Retrieving a Friends List ... 28
Friend List Avatars .. 30
Working with Players .. 31
Summary .. 33

■Chapter 3: Leaderboards ... 35
Why a Leaderboard? ... 36
An Overview of Leaderboards in Game Center ... 36

Benefits of Using Apple’s Leaderboard GUI vs. a Custom GUI .. 37
Configuring a Leaderboard in iTunes Connect .. 37
Posting a Score ... 41
Setting a Default Leaderboard .. 42
Adding Score Posting to UFOs .. 43
Handling Failures When Submitting a Score .. 46
Presenting a Leaderboard ... 48
Customizing the Leaderboard ... 51

Modifying GameCenterManager .. 53
Filtering Results on a Custom Leaderboard ... 54
Displaying the Custom Leaderboard .. 55

Mapping a Player ID .. 56
Local Player Score .. 60
A Better Approach ... 61
Summary .. 62

■Chapter 4: Achievements .. 63
Why Achievements? .. 65
An Overview of Achievements in Game Center ... 65

Benefits of Using Apple’s Achievement GUI vs. a Custom GUI ... 66
Configuring Achievements in iTunes Connect .. 66

Presenting Achievements .. 70
Modifying Achievement Progress .. 72

Resetting Achievements ... 75
Adding Achievement Hooks .. 76

Another Convenience Method .. 80
Achievement Completion Feedback ... 80
iOS 5 Completion Banners ... 83
Custom Achievement GUI ... 83
Recovering from a Submit Failure ... 89

Summary .. 91

■Chapter 5: Matchmaking and Invitations .. 93
Why Add Matchmaking and Invitations to Your App? ... 93
Common Matchmaking Scenarios .. 95
Creating a New Match Request .. 96
Presenting Match GUI ... 97
Handling Incoming Invitations .. 101

■ CONTENTS

vii

Auto-Matching .. 104
Matching Programmatically .. 105
Adding a Player to a Match ... 106
iOS 5 Reinvites .. 106
Player Groups .. 107
Player Attributes ... 108

Understanding Player Attribute Limitations ... 108
Working with Player Attributes .. 109

Player Activity ... 112
Using Your Own Server (Hosted Matches) .. 114
Summary .. 116

■Chapter 6: The Peer Picker .. 117
Benefits of the Peer Picker ... 117
Real-World Examples .. 118
Working with Sessions ... 120
Presenting a Peer Picker .. 122
Advanced GKSession Interaction .. 127
The Peer Picker Delegate .. 127
Summary .. 129

■Chapter 7: Network Design Overview .. 131
Three Types of Networks .. 132

Peer-to-Peer Network .. 132
Client-to-Host Network .. 134
Ring Network ... 135

Less Common Networks ... 136
Reliable Data vs. Unreliable Data .. 136
Sending Only What Is Needed ... 138
Prediction and Extrapolation ... 139
Formatting Messages ... 140
Preventing Cheating and Preventing Timeout-Related Disconnections .. 140
What to Do When All Else Fails ... 141
Summary .. 142

■Chapter 8: Exchanging Data .. 143
Modifying a Single-Player Game ... 143
Setting Up Our Engine for Multiplayer .. 144

Picking a Host .. 146
Sending Data ... 147
Receiving Data ... 150

Putting Everything Together ... 153
Selecting the Host .. 153
Displaying the Enemy UFO ... 154
Spawning Cows ... 157
Sharing Scores ... 160
Adding Network Abduction Code ... 161

Disconnections ... 165
Summary .. 166

■ CONTENTS

viii

■Chapter 9: Turned-Based Gaming with Game Center 167
A New Sample Project .. 168
GKTurnedBasedMatchmakerViewController ... 171
Starting a New Game .. 173
Making the First Move .. 174
Continuing a Game in Progress ... 176
Ending a Match ... 178
Quitting and Forfeiting .. 180
Programmatic Matches ... 180
GKTurnBasedEventHandler ... 181
Summary .. 181

■Chapter 10: Voice Chat .. 183
Voice Chat for Game Center .. 183

Creating an Audio Session ... 184
Creating New Voice Channels .. 184
Starting and Stopping Voice Chat .. 185
Chat Volume and Muting .. 185
Monitoring Player State ... 186

Voice Chat for Game Kit .. 186
Creating an Audio Session ... 187
Required Overhead .. 187
Getting Things Running .. 188

Putting It Together .. 188
Summary .. 192

■Chapter 11: In-App Purchase with StoreKit .. 193
Setting Up Your App in iTunes Connect .. 195
Adding Products to Your App .. 199

App IDs and In-App Purchase .. 199
Setting Up .. 200
Retrieving the Product List .. 200
Presenting Your Products to the User .. 202

Purchasing a Product .. 203
Purchasing Code .. 203
Purchasing Multiple Items ... 204
Processing a Transaction ... 204
Restoring Previously Completed Transactions .. 207

Test Accounts and Testing Purchases .. 207
Signing in with a Test Account .. 207

Submitting a Purchase GUI Screenshot .. 208
Developer Approval ... 208
Receipts .. 209
Tying Everything Together in UFOs ... 211
Summary .. 212

Index ... 213

ix

About the Author

Kyle Richter started writing code in the early 90's on the Commodore 64, and
soon after progressed to a Mac SE. Since then he has been dedicated to
working exclusively with Apple products. In 2004 Kyle Richter founded Dragon
Forged Software to release a new shareware title. Since that time Dragon
Forged has grown into a much larger entity which now provides custom
software and training. Dragon Forged was behind the release of the first iOS
trivia game, as well as the first game to support true non-local multiplayer. He
also worked on other popular iOS titles such as Handshake and Transactions.
Kyle has devoted the last couple of years to managing Dragon Forged Software

and writing custom software for corporations and startups. He is also a frequent speaker on
software development and entrepreneurship at technology conferences and other events across
the globe. Kyle is an outspoken supporter of the indie development community and spends a
considerable amount of time moderating and contributing to various software development
forums. In his spare time he enjoys traveling, nature, and sport shooting. He can be found on
twitter @kylerichter.

x

About the Technical Reviewer

Marcus Zarra is the owner of Zarra Studios, where he builds Mac, iPhone, and
iPad software for a wide variety of clients and customers. Outside of Apple,
there are very few people with a better understanding of Core Data. He has not
only written the book on Core Data—Core Data: Apple's API for Persisting Data
on Mac OS X (Pragmatic Bookshelf, 2009)—he has also been doing iPhone, and
now iPad, development as long as it has been possible to do so, and Mac
programming for even longer. With Matt Long, Marcus is the co-author of the
popular programming blog Cocoa Is My Girlfriend. Marcus is also a co-author
(with Matt Long) of Core Animation: Simplified Animation Techniques for Mac
and iPhone Development (Addison-Wesley Professional, 2009). ©Copyright of the

photo is Lyndia Ives
Zarra 2009

xi

Acknowledgments

Writing this book would not have been possible without the support and help of many people.
Looking at the acknowledgments for any technical book shows that, while there may only be one
author, there are dozens of people needed to ship a technical book such as this. First, I would like
to thank Jordan Langille of One Toad Design for taking time out of his busy schedule to provide
the graphics for the sample program contained within.

I would also like to thank Dave Wiskus for convincing me that I should write a book in the
first place; without his counseling I may of never taken the first steps necessary. In addition, I
would like to thank all the people along with Dave who offered support and feedback over the
course of writing. Without all of their persistence, nagging, and support, this book would have
never seen the light of day.

Joe Keeley also deserves a spot of recognition. Joe took a lot off my plate with Dragon Forged
Software to allow me the time required to write this book. If it had not been for Joe, I would not
have been able to take myself away from my day-to-day work to be able to get even a single
chapter written.

Additionally I would also like to thank Marcus Zarra, who put his life on hold more often then
I care to admit in writing to offer his expertise with technically reviewing this book. Marcus, an
experienced writer himself, knows how much work goes into a technical book and without
hesitation offered to review my work. In addition, I would like to thank Brent Simmons for taking
time out of his schedule—during a product release, no less—to write the foreword.

Last but not least I would like to thank the community in whole. Never before in my life have
I met such a supportive, outstanding group of people. From Cocoaheads and NSCoders, to
conferences and forums, everyone has always been of the highest caliber. It is often said of the
Apple development community that two competing developers can be friends and share code
and secrets amongst each other. Whenever I got stuck on a seemingly unsurmountable problem,
there has always been someone there to help me through it. Throughout all my years of
development and my travels across the globe, I have never met another group of people as
awesome as the Apple development community, without whom I may have never shipped my
first app.

xii

Foreword: The Legend of Kyle,
Game Hero

by Brent Simmons for Kyle Richter's book on writing games

You picked up the right book. You’re awesome! You’re awesome and you want to write games.
Cool. If I wanted to learn to write games, what I’d do is park myself at Kyle Richter’s house and
make him teach me. But then we’d get distracted, and some friends would be in town, and we’d
end up going out and I’d learn nothing. Lucky us, lucky you and me both—we have this book.
Whew.

Let me tell you a bit about the author. Folks in the developer community will tell you that
“Kyle Richter” is of course a pseudonym. You may recognize the name from one of Tom Clancy’s
novels: “Kyle Richter” is a highly trained, highly experienced covert ops agent who retired from
service before turning 30 and who then made millions by creating simulations—games—out of
the tangles he encountered in various undeclared theaters around the world and in low-earth
orbit.

It’s obvious, if you think about it—the name “Kyle Richter” is a transparent fiction. “Kyle”
sounds like “Guile,” and “Richter” is obviously a reference to earthquakes. A perfect name for a
perfect game hero: smart, cunning, and dangerous. However, in the interest of
comprehensiveness, I should point out that a small minority of people claim that “Kyle Richter” is
actually an elite group of ninja Valley Girl programmers. This claim has been investigated, and
not a single shred of evidence has been found. Nothing. Our top people have looked, I assure you.

“Which proves the point,” some say. “If they weren’t ninjas, there’d be some evidence. Ergo,
they’re ninjas.” (I should also point out that this theory and this faulty logic come from designers,
not programmers. As Kyle would say: “I know, right?”)

Since I know Kyle personally, I can clear this up. Let’s take the superficial qualities first: Kyle
is built like Thor, but has a decided height advantage. His cherry-red hair is so radiant you can tell
when he’s coming around the corner. Children, squirrels, and vegetarians often mistake his face
for the sun.

And then there’s the laugh, that laugh, which is, well, pleasant enough, I guess.
Anyway, what’s important is his mind, how he thinks, how he communicates. In a recent

conversation with him, he recounted how he handles firing employees and contractors. “The
second I realize things aren’t working out, then it’s over,” he says. (Kyle drags a hand across the
throat here. I recoil in horror until he assures me he’s just letting them seek their bliss elsewhere.)
“No point in dragging it out,” he says.

What that tells me is that he has no patience for nonsense, that he’s highly practical, and that
he has Vulcan-like emotional control. All of which are superb characteristics in a teacher,
especially for technical topics. In other words, you want to learn how to write games without
having to wade through a bunch of fluff and nonsense. That’s where this book comes in. (Fluff

■ FOREWORD

xiii

and nonsense are strictly relegated to this Foreword. The rest of the book is information-packed
and well-written.)

Not that Kyle is trigger-happy to fire people. He isn’t. Quite the opposite. This industry is very
short on talent, and Kyle, like everybody else, works hard to find good iOS developers. There
aren’t enough of them—so please learn what’s in this book and help us all out!

At the same time, Kyle’s knowledge and the contents of this book go beyond the merely
technical. Kyle knows the history of games and what makes some successful and others not.

You have questions. (“Longevity. Morphology. Incept dates.”) The book has answers.

 Does your game need a leaderboard? See Chapter 3.

 How awesome is it to add a multiplayer element to your game? Find out in
Chapter 5.

But the book is a technical book, and it has the goods. And the code and the explanations—
even for the newest APIs. Chapter 9, for instance, talks about turn-based gaming via GameCenter.
Not a ton of people are expert at this yet, much less expert enough to write about it. Kyle is,
though, and it’s in the book.

If, in the end, it turns out that Kyle is “just this guy, you know?”—and a good sport who’s fun
to tease, and not actually Thor-like—it doesn’t matter, because this book is a gold mine. And I’m
proud of him.

In the eternal words of George Clinton: “Nothing is good unless you play with it.” By which I
mean: read, learn, and play. The book is technical, but the things you make will be for play, and
making those things should be like playing. Have fun!

In the immortal, sunny words of Kyle Richter (or “Kyle Richter”): “I know, right?”

Index

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword: The Legend of Kyle, Game Hero
	Introduction
	Prerequisites
	How This Book Is Organized
	Required Software, Materials, and Equipment

	Getting Started with Game Kit and Game Center
	Game Kit: An Overview
	Networking
	Game Center
	Voice Chat

	Sample Game: UFOs
	UFOs: Understanding the Game

	UFOs: Examining the Source Code
	Setting Up the Accelerometer Delegate
	Drawing the Player to the View
	Setting Up Cows, Beams, and Scores
	Handling Rotation Events
	Adding Player Movements
	Watching for Touch Events
	Spawning and Moving Cows
	Performing a Hit Test with a UIImage
	Abducting a Cow
	Configuring iTunes Connect for Game Center

	Getting Started with iTunes Connect
	Configuring Game Center in iTunes Connect

	Summary

	Game Center: Setting Up and Getting Started
	Testing for Game Center
	Authenticating with Game Center
	Modifying the GameCenterManager Class
	Authenticating from UFOViewController

	The Sandbox
	Watching for Status Changes
	Working with GKLocalPlayer
	Retrieving a Friends List
	Friend List Avatars
	Working with Players
	Summary

	Leaderboards
	Why a Leaderboard?
	An Overview of Leaderboards in Game Center
	Benefits of Using Apple’s Leaderboard GUI vs. a Custom GUI

	Configuring a Leaderboard in iTunes Connect
	Posting a Score
	Setting a Default Leaderboard
	Adding Score Posting to UFOs
	Handling Failures When Submitting a Score
	Presenting a Leaderboard
	Customizing the Leaderboard
	Modifying GameCenterManager
	Filtering Results on a Custom Leaderboard
	Displaying the Custom Leaderboard

	Mapping a Player ID
	Local Player Score
	A Better Approach
	Summary

	Achievements
	Why Achievements?
	An Overview of Achievements in Game Center
	Benefits of Using Apple’s Achievement GUI vs. a Custom GUI

	Configuring Achievements in iTunes Connect
	Presenting Achievements
	Modifying Achievement Progress

	Resetting Achievements
	Adding Achievement Hooks
	Another Convenience Method
	Achievement Completion Feedback
	iOS 5 Completion Banners
	Custom Achievement GUI
	Recovering from a Submit Failure

	Summary

	Matchmaking and Invitations
	Why Add Matchmaking and Invitations to Your App?
	Common Matchmaking Scenarios
	Creating a New Match Request
	Presenting Match GUI
	Handling Incoming Invitations
	Auto-Matching
	Matching Programmatically
	Adding a Player to a Match
	iOS 5 Reinvites
	Player Groups
	Player Attributes
	Understanding Player Attribute Limitations
	Working with Player Attributes

	Player Activity
	Using Your Own Server (Hosted Matches)
	Summary

	The Peer Picker
	Benefits of the Peer Picker
	Real-World Examples
	Working with Sessions
	Presenting a Peer Picker
	Advanced GKSession Interaction
	The Peer Picker Delegate
	Summary

	Network Design Overview
	Three Types of Networks
	Peer-to-Peer Network
	Client-to-Host Network
	Ring Network

	Less Common Networks
	Reliable Data vs. Unreliable Data
	Sending Only What Is Needed
	Prediction and Extrapolation
	Formatting Messages
	Preventing Cheating and Preventing TimeoutRelated Disconnections
	What to Do When All Else Fails
	Summary

	Exchanging Data
	Modifying a Single-Player Game
	Setting Up Our Engine for Multiplayer
	Picking a Host
	Sending Data
	Receiving Data

	Putting Everything Together
	Selecting the Host
	Displaying the Enemy UFO
	Spawning Cows
	Sharing Scores
	Adding Network Abduction Code

	Disconnections
	Summary

	Turned-Based Gaming with Game Center
	A New Sample Project
	GKTurnedBasedMatchmakerViewController
	Starting a New Game
	Making the First Move
	Continuing a Game in Progress
	Ending a Match
	Quitting and Forfeiting
	Programmatic Matches
	GKTurnBasedEventHandler
	Summary

	Voice Chat
	Voice Chat for Game Center
	Creating an Audio Session
	Creating New Voice Channels
	Starting and Stopping Voice Chat
	Chat Volume and Muting
	Monitoring Player State

	Voice Chat for Game Kit
	Creating an Audio Session
	Required Overhead
	Getting Things Running

	Putting It Together
	Summary

	In-App Purchase with StoreKit
	Setting Up Your App in iTunes Connect
	Adding Products to Your App
	App IDs and In-App Purchase
	Setting Up
	Retrieving the Product List
	Presenting Your Products to the User

	Purchasing a Product
	Purchasing Code
	Purchasing Multiple Items
	Processing a Transaction
	Restoring Previously Completed Transactions

	Test Accounts and Testing Purchases
	Signing in with a Test Account

	Submitting a Purchase GUI Screenshot
	Developer Approval
	Receipts
	Tying Everything Together in UFOs
	Summary

	Index
	Symbols and Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I, J, K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V 185–186
	W, X
	Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

