
www.allitebooks.com

http://www.allitebooks.org

Bitter EJB

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Bitter EJB
BRUCE TATE
MIKE CLARK

BOB LEE
PATRICK LINSKEY

M A N N I N G
Greenwich

(74° w. long.)
www.allitebooks.com

http://www.allitebooks.org

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: manning@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books they publish printed on acid-free paper, and we exert our best efforts to that
end.

ISBN 1-930110-95-2

Manning Publications Co. Copyeditor: Adrianne Harun
209 Bruce Park Avenue Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03
www.allitebooks.com

http://www.allitebooks.org

contents

preface xv
acknowledgments xviii

about this book xxii

PART 1 THE BASICS ..1

1 Bitter choices 3
1.1 A storm of controversy 5

1.2 A history of EJB antipatterns 6
March 1998: EJB 1.0 7 ■ November 1999: EJB 1.1 7
August 2001: EJB 2.0 8

1.3 A case study: Benchmarking PetStore 9

1.4 Antipattern: The Golden Hammer 12
Choosing unwisely 13 ■ Solution: Evaluate carefully 15

1.5 Summary: Looking ahead 19

1.6 Antipatterns in this chapter 20
v

www.allitebooks.com

http://www.allitebooks.org

vi CONTENTS
2 The bitter cost 21
2.1 Sparking controversy 22

The value of EJB 23 ■ EJB-appropriate applications 23
Using a litmus test 25 ■ Passing the test 26
Weighing complexity 27 ■ Evaluating your talent 28

2.2 Antipattern: A Sledgehammer for a Fly 30
Adding complexity 32 ■ Solution: Simplify 33
Consider the cost of managing many files 36
Grading the finer points 39

2.3 Entity beans are a horse of a different color 41
The black sheep of the bean family 42

2.4 Entity beans: Take two 43
Local interfaces 44 ■ Container-managed relationships 45

2.5 Entity beans—a closer look 45
Employee management 45

2.6 Summary 50

2.7 Antipatterns in this chapter 51

3 Bitter interfaces 52
3.1 Building a good interface 53

Breaking down remote invocation performance 54
Passing by reference vs. value 55

3.2 Designing the application tier 57
Looking back on entity beans 59 ■

Questioning EJB local interfaces 59
3.3 Antipattern: Local & Remote Interfaces

Simultaneously 60
Combined interfaces muddle exception management 61
Combined interfaces hurt performance 62 ■ Mini-antipattern:
Ubiquitous Distribution 63 ■ Mini-antipattern: Transparent
Distribution 63 ■ Solution: Achieving equilibrium 64
Knowing when to distribute 65

3.4 Antipattern: Customers in the Kitchen 66
Nudging the diners toward the door 68
Solution: Funnel the customers through a waiter 70
Using Data Transfer Objects 71
www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii
3.5 Antipattern: Custom DTOs 73
Solution: Refactor to preserve flexibility 75

3.6 Summary 77

3.7 Antipatterns in this chapter 78

PART 2 SESSIONS AND MESSAGES................................. 81

4 Bitter sessions 83
4.1 Threading and synchronization 85

Antipattern: Tangled Threads 86 ■ Solution: Standardization
to the rescue 87 ■ Coping with hung threads 88
Searching for a solution 90

4.2 Handling exceptions 92
Mini-antipattern: Logic in Exception Implementations 92
Solution: Refactor logic out of exceptions 93 ■ Antipattern:
Swallowing Exceptions 94 ■ Solution: A simple exception
handling strategy 95 ■ Antipattern: Killer System Exceptions 97
Solution: Throw the correct exception type 98

4.3 Iterating large datasets 99
Antipattern: Database Connection Hog 101 ■ Solution: Manage
connections with surgical precision 103 ■ Antipattern: Eager
Iterator 103 ■ Solution: Test, test, test 106 ■ Caching
results 107 ■ Exporting results 108 ■ Determining the size of a
result set 109 ■ Iterating shuffled data 110

4.4 Interoperating efficiently 111
Using IIOP 112 ■ Antipattern: Narrow Servlet Bridges 113
Solution: A generic servlet bridge 113

4.5 Summary 120

4.6 Antipatterns in this chapter 121

5 Bitter session states 126
5.1 Making a case for session state 128

5.2 A pivotal antipattern: Conversational Baggage 129
The burden of state 130 ■ Lightening the load 131
Solution 1: Strive for statelessness 132
Solution 2: Leverage session state when beneficial 134
www.allitebooks.com

http://www.allitebooks.org

viii CONTENTS
5.3 Managing sessions with stateful session beans 134
Shopping using a stateful session bean 135
Looking under the hood 136

5.4 Managing sessions with servlets 140
Keeping it simple with HttpSession 140 ■ Shopping using a
servlet 141 ■ Scaling up servlet sessions 142

5.5 Antipattern: Golden Hammers of Session State 143
Storing sessions on the client 144 ■ Storing sessions on the
server using servlets 145 ■ Storing sessions on the server
using stateful EJB 147 ■ Storing sessions in a
database 148 ■ Revisiting the shopping cart 149
Overall solution: Pick the right tool for the job 151

5.6 Mini-antipattern: Stateful Session Beans as Shared Data
Caches 151

5.7 Antipattern: Session Hodgepodge 152
Solution: Be explicit and conservative 154

5.8 Mini-antipattern: Session Thrashing 155

5.9 Mini-antipattern: Rotting Session Garbage 155

5.10 Summary: Taming the beast 156

5.11 Antipatterns in this chapter 157

6 Bitter messages 162
6.1 A brief overview of JMS 163

6.2 An early antipattern: Fat Messages 165
One size doesn’t fit all 167 ■ Solution 1: Put messages on a
diet 167 ■ Solution 2: Use references 168

6.3 Mini-antipattern: Skinny Messages 169
Solution: Use state to allow lazy loading 170

6.4 Seeds of an order processing system 171
Defining the system 171 ■ Designing messages 172
Choosing messaging models 173 ■ Responding to change 173
Building the OrderRequest producer 175

6.5 Antipattern: XML as the Silver Bullet 177
Solution: Use XML messages judiciously 177
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
6.6 Antipattern: Packrat 179
Putting a price on persistence 179 ■ Paying for durable
subscriptions 181 ■ Solution: Save only what’s important 181

6.7 Mini-antipattern: Immediate Reply Requested 182

6.8 Using message-driven beans (MDBs) 184
Pooling with MDBs 184
Building the OrderRequest consumer 185

6.9 Antipattern: Monolithic Consumer 188
Listening to the test 188
Solution: Delegate to modular components 189

6.10 Antipattern: Hot Potato 191
Solution: Acknowledge the message, not its result 193

6.11 Antipattern: Slow Eater 194
Solution: Eat faster, if you can 194

6.12 Antipattern: Eavesdropping 195
Solution: Use message selectors 196 ■ Declaring message
selectors 197 ■ Going beyond message selectors 198

6.13 Antipattern: Performance Afterthoughts 199
Solution: Measure early and often 199

6.14 Summary: Getting the message 201

6.15 Antipatterns in this chapter 202

PART 3 EJB PERSISTENCE 211

7 Bitter entities 213
7.1 Understanding entity bean antipatterns 214

Understanding the entity bean antipattern landscape 214
7.2 Antipattern: Face Off 215

Network round-tripping chokes applications 216 ■ Losing
transactional integrity 217 ■ Solution: A Session Façade 219
Using a façade for transactional integrity 220
Using local interfaces 220

7.3 Antipattern: Ham Sandwich; Hold the Ham 222
The choice between BMP and CMP 223
Solution: Choose CMP when possible 225
www.allitebooks.com

http://www.allitebooks.org

x CONTENTS
7.4 Antipattern: Application Joins 228
Solution: Delegate joins to the database 228
Common examples of application joins 229

7.5 Antipattern: Application Filters 230
Understanding the types of application filters 230

7.6 Antipattern: Rusty Keys 233
Solution: shorten your primary key 234

7.7 Antipattern: Revolving Doors 235
Solution 1: Refactor to avoid re-entrancy 237
Solution 2: Disable the container’s re-entrancy checking 238
Solution 3: Lobby the EJB specification team 238

7.8 Summary 239

7.9 Antipatterns in this chapter 240

8 Bitter alternatives 245
8.1 Understanding entity bean alternatives 246

8.2 Using EJB persistence 249
Implementing CMP 250 ■ Adding the DTO and facade 253
Including deployment details 257
Rolling your own with BMP entity beans 259

8.3 Simplify with JDBC 260
Implementing a simple JDBC model 261 ■ Implementing the JDBC
Façade 263 ■ Deploying a Session Façade for JDBC 265

8.4 Using object persistence frameworks 267
Surveying the object persistence landscape 267 ■ Understanding
JDO 269 ■ Implementing a simple model with JDO 270
Implementing the JDO model’s façade 272 ■ Deploying the
solution 273 ■ Comparing the options 274

8.5 Antipattern: Persistent Problems 275
Generic entity bean weaknesses 276 ■ Inheritance and
polymorphism 276 ■ Query language flexibility is often
critical 279 ■ DTOs require non-EJB solutions for local
entities 281 ■ Container-bound persistence 282

CONTENTS xi
8.6 Solution: Do not “inherit” a persistence architecture—
choose it 282

8.7 Summary 283

8.8 Antipatterns in this chapter 284

PART 4 BROADER TOPICS.. 285

9 Bitter tunes 287
9.1 Measures of success 289

Response time 289 ■ Throughput 290
9.2 Antipattern: Premature Optimization 291

Tuning EJB applications blindfolded 292
Solution 1: Plan, but don’t act (yet) 293
Solution 2: Write well-factored, modular code 294

9.3 Antipattern: Performance Afterthoughts 296
Solution: Plan early and often 296

9.4 Grist for the tuning mill 298
Putting an EJB to the test 299 ■ Passing the test 300
Specifying response time as a measure of success 301
Seeing light at the end of the tuning tunnel 302

9.5 Antipattern: Thrash-tuning 303
Solution: Use a performance testing methodology 304

9.6 Mini-antipattern: Manual Performance Testing 305
Solution: Automate performance testing 306

9.7 Automated performance testing with JUnitPerf 307
JUnitPerf overview 307 ■ Testing response time 308
Tweaking code 309 ■ Specifying scalability as a measure of
success 310 ■ Testing response time under load 310
Using a connection pool to increase throughput 312
Testing throughput 314

9.8 Modeling performance 315

9.9 Mini-antipattern: Stage Fright 317
Solution: Practice on stage 317

xii CONTENTS
9.10 Summary: Tuning with confidence 318

9.11 Antipatterns in this chapter 319

10 Bitter builds 324
10.1 Wrapping big packages without bows 326

Understanding an example EJB 326 ■ Organizing your
directory structure 328 ■ Filling the EJB JAR 329
Loading classes 330

10.2 Antipattern: System Loaded Application Classes 332
Solution: Follow the J2EE guidelines 332

10.3 Antipattern: EJB Code Duplication 332
Solution: Autogenerate the EJB classes 333
Solution: Autogenerate the manifest 334
Solution: Autogenerate the EAR descriptor 336

10.4 Antipattern: Build Guru 337
Solution: Use Ant for heavy lifting 338

10.5 Antipattern: Running with Scissors 339
Solution: Test with impunity 339

10.6 Antipattern: Integration Hell 341
 Solution: Integrate early, often, and automatically 341

10.7 Summary 342

10.8 Antipatterns in this chapter 343

11 A bittersweet future 348
11.1 Marking our place in history 349

Early mistakes 349
11.2 Plotting the next moves 351

Into the future 351 ■ Fix persistence 353
Fix the deployment strategy 354
Putting the economic house in order 354

11.3 Antipatterns and next moves 355

CONTENTS xiii
A Bitter tales 356
A.1 A Java development free fall 357

Antipatterns in life 359
A.2 Using design patterns accentuates the positive 360

Design patterns online 361
UML provides a language for patterns 362

A.3 Antipatterns teach from the negative 362
Some well-known antipatterns 363 ■ Antipatterns in
practice 364 ■ Antipattern resources 365

A.4 Antipattern ideas are not new 366
Learning from the industry 367 ■ Detective work 368
Refactoring antipatterns 370

A.5 Why Bitter Java? 370
The Bitter Java approach 371 ■ Bitter Java tools 371
The Bitter Java organization 372
The Bitter Java audience 373

A.6 Looking ahead 374

B Bitter basics 376
B.1 Developing in the EJB architecture 378

Getting acquainted with the cast, the bean triad 378
Know your host, the EJB container 381

B.2 Crafting enterprise beans 384
Defining the client interfaces 385 ■ Implementing the business
logic 390 ■ Playing it safe with transactions 397
Configuring the bean 397 ■ Packaging it 399
Invoking your beans from a client 400

bibliography 401
index 403

preface
I told Mike Oehrtman, my best friend for more than ten years now, about the
adventure stories in Bitter Java. In fact, he was my partner in crime for more than
half of the stories in the book. I asked him if he had any stories of his own to con-
tribute, because we were doing another Bitter book. He told me he had a few hik-
ing stories. I laughed and informed him that walking around wasn’t exactly my
idea of high adventure. Mike said, “Indulge me. You’ll like this one.”

 So we’re in Alaska for some backpacking. We talk to a park ranger at Denali
National Park, and he tells us that our hike has to be planned down to the day. The
park has an elaborate grid system in place, so that even though you won’t see any
other hikers on your route, the rangers still know where you are, give or take a mile or
two. I’m an Eagle Scout, so I’ve got no problem with mapping. I plan the trip, submit
the map, and then we catch a bus. Our hike starts in the middle of nowhere.

 The bus is full of locals and a driver who truly belongs in Alaska. His beard is
longer than Beth, who sits at my side. As we ride, we see tons of wildlife: elk, moose,
and even a few rams. You name it; we see it. We round a bend, and there in front of
us is a river and a bear—and not one of those little browns that we saw in the
Smoky Mountains last year. It’s a grizzly bear, and it’s huge. Beth taps me on the
shoulder and points. On the other side of the bus, massive bears are everywhere. I’ve
seen a few grizzly bears in my lifetime, but never in these numbers. The bus slows as
it drives right through the group of bears. Now, I’m getting nervous. I wonder if the
bears might get nasty and charge the bus, because we’ve got a lot of food on board.
xv

xvi PREFACE
Suddenly, the bus driver stops, and I wonder if he’s scared too. He just sits there,
and I’m really starting to sweat. Have we got engine trouble?

 Finally, the bus driver turns around, looks at Beth and me, and says, “Well?”
Then, it dawns on me. This is our bus stop. We have to get out of the bus, right
there, in the middle of all those bears. I’ve never felt so scared—or so alive.

People frequently ask me how I can be so passionate about a job in which I regu-
larly spend twelve hours straight in front of a keyboard. They think of writing and
see a stained keyboard, a dusty monitor, and a dreary desk.

 I see bears and lots of them. If you depend on Java development for your liveli-
hood, you probably have seen your share of bears, too. The economy is probably
the biggest of the bunch. I went down with a startup at the beginning of the mas-
sive recession that started in 2000. I wrote Bitter Java and started my consulting
business in the midst of this chaos. Some of the companies that form the founda-
tion of the Java industry are being shaken. Sun is struggling, and WebGain is
gone. Power structures are changing. As we were writing this book, Oracle bought
TopLink, shifting the balance of power in the object persistence market. And IBM
bought Rational, dramatically changing the dynamics at that company.

 I also need to guide my clients, readers, and students past another bear—.NET. I
know it’s a real bear for the client and in Microsoft shops. I need to understand
what .NET may do in the enterprise environment. Will it ever be big enough to eat
J2EE? Will it take a bite out of my livelihood? I don’t see that happening yet, but that
bear is still out there, eating and growing. The PetStore benchmark, which we talk
about in chapter 1, brought home to me the magnitude of the threat. Things can
turn in a hurry, and all of us need to make sure that we don’t turn our backs on a
dangerous predator like Microsoft.

 Which brings us closer to home and another big, fat bear—EJB. The industry
has certainly fed it well. IBM, Sun, Oracle, BEA, and many others have let EJB
gorge itself. EJB has teeth: We’re finally seeing commercial EJB applications that
scale to massive proportions. EJB also has stamina: The application server market
is still strong.

 I’ve checked out EJB many times from a safe distance and then wandered away,
afraid that the bear would turn on me and wind up picking the last of me out of
its teeth. And EJB can turn on you. EJB projects fail with frightening regularity.
That tendency to fail provides the subject for this book. I think that you can be a
good developer by studying successful patterns and best practices, but if you want
to become a great developer, you’ve got to know a technology’s limits. Push EJB
over the edge, and you will be well on your way to the kind of experience that
sharpens your skills and opens your mind—and gets you hurt. Fortunately, a

PREFACE xvii
better way to learn exists. Bitter Java proved to me that learning from the mistakes
of others can be appealing and productive, too.

 With Bitter EJB, my coauthors and I are finally out of the bus. We are not saying
that we’ll recommend EJB for every project that we encounter—far from it. We
are saying that EJB has a place and, in the right circumstances, can be an awesome
beast to behold. So, step out of the bus with us. Explore the darkest caves where
the biggest bears are sleeping. And embrace the danger and thrill of EJB.

 BRUCE TATE

acknowledgments
Bitter EJB was a demanding and enlightening project for each of us. It would never
have come to pass without extraordinary support for these ordinary authors. Our
friends, family, coworkers, colleagues, and publisher made this book possible. We
even received a stunning amount of feedback from people we’ve never met, many
of whom were promised nothing in return.

 Thanking all of you individually would be impossible, but your contributions
obligate us to try.

Collectively First, we thank the wonderful people at Manning Publications. You
provided truly world-class editing support when we needed it the most, and space
to breathe when we didn’t. Thanks first to those who toil behind the scenes, who
get things rolling and keep things moving. Thanks to Helen Trimes for tireless
and effective promotion. Bitter Java gave you a tough Amazon record to beat, but
we’ve got every confidence that you will try. Thanks also to Mary Piergies, who
always seemed to know what we needed before we asked. Thanks to Chris Hilman
for your work on the book’s web page, and all of the little things that you do.
Thanks in advance to Lee Fitzpatrick for keeping the checks rolling, and Susan
Capparelle for doing whatever needed doing, every time we asked. All of you con-
tributed as much as anyone who edited, typeset, reviewed, or illustrated some-
thing in the book. As we learn more about the publishing business, we continually
come to appreciate more the things that go beyond the printed page.
xviii

ACKNOWLEDGMENTS xix

bejb_00d.fm Page xix Sunday, May 18, 2003 9:14 AM
 Next, we want to thank the production team who helped shape and direct the
book. Thanks to Marjan Bace. You have simultaneously been a dear friend, men-
tor, editor, and visionary. Your hand has helped to maintain the Manning quality
that all of us so jealously guard. Thanks to the editors: Lori Piquet and Adrianne
Harun for your necessarily brutal edits, applied with kindness and a feather’s
touch. We’re in awe of what you do. Thanks too to Tony Roberts and Leslie
Haimes, who know how to build beautiful books. We are all human, so reviews
were critical. Thanks to Thomas Walkama for an excellent technical review, and to
Elizabeth Martin for the proof review. Thanks to Ted Kennedy for leading Man-
ning’s review. Thanks to each of you who devoted countless hours reviewing the
book for Manning: John Crabtree, Jack Herrington, Adam Maass, Barry Nowak,
Dimitri I. Rakitine, and Jon Skeet.

 Thanks too to Ed Roman and Floyd Marinescu of TheServerSide.com, for your
generous offer to help us review Bitter EJB on your portal. As expected, we got
some tremendous feedback, so we’d like to thank everyone who participated. Sin-
cere thanks to Jerome Abela, Charles Bear, Peter Bonney, Neelan Choksi, Joanne
Christian, David Copeland, Taylor Cowan, Scott Dodson, Pierre Fauvel, Rob
Hafernik, Don Hanson, Mike Hogan, Konstantin Ignatyev, Erik Jensen, Shailen-
dra Kadre, Oliver Kamps, Rajesh Koilpillai (thanks for trying, anyway), Eugen
Kuleshov, Darrell W. Rials, Seb Rose, Ravi Shankar, Curt Smith, Scott Stanchfield,
James Strachan, Bernard Trigaux, Christopher Webster, Matthias Weidmann,
Mike Wertheim, Glen Wilcox, Dave Wiltz, David Ziegler, and Dick Zetterberg. Spe-
cial thanks go to Matt Gibbs and to BORN for sharing him enough to provide
some outstanding feedback.

Mike Clark At first, I was to write a single chapter of this book. Then just two. By
the time I was finished, I’d written three chapters and could only wonder where
the winter had gone. Thinking back, I realize I have more to show for the work
than just the text you see here. Through the writing process I found new friends
and colleagues that I hope to keep even when the book has been long out of print.

 My sincerest thanks to: Bruce Tate, the tireless architect of this book, for giving
me the opportunity to fulfill a lifelong dream; Thomas Walkama for reviewing
everything I wrote and making it immeasurably better, and then accepting the mis-
sion to be the tech proofer for the whole book; Jason Hunter for being a trusted
friend and mentor, gently putting my misguided thoughts on managing session
state back on track, and helping me become a better photographer; James Dun-
can Davidson for teaching me to blog so I could practice writing and for subtly
challenging me to expand my horizons; Tyler Jewell for letting me pick his brain
about stateful session beasts and graciously sharing material; James Strachan for

xx ACKNOWLEDGMENTS
his outstanding contributions to the messaging chapter after reviewing every draft
while commuting to work; Glen Wilcox for listening to my ramblings over count-
less lunches; and Steve Walker for his honest insights on thrash tuning while
crammed in coach somewhere over Nebraska.

 And a very special thanks to Mom and Dad for the warmth of their love and
for instilling in me a work ethic that made this accomplishment possible. It didn’t
seem fair at the time, but indeed it has served me well.

 This book is for Nicole, my soul mate, for the invaluable gift of time and for
always being in my balcony cheering me on. You encouraged me to keep writing
and reminded me when it was time to go snowboarding. Thank you for your
unconditional love, around-the-clock support, and generous sacrifices through-
out this marathon process. You bring me great joy.

Bob Lee Thanks, Bruce, for this awesome opportunity and for spotting me on
my first writing endeavor; you’ve done way more than your fair share. Thanks to
Mike and Patrick for taking some particularly controversial subjects head on and
helping to keep the project rolling. It’s been a long, trying road, but I’m confi-
dent that we’ve tread a great deal of previously uncovered territory in an incredi-
bly short time. The collective wisdom in these pages has value to enterprise
developers that extends far beyond the confines of EJB.

 Throughout this project, I dredged up many of the least desirable moments in
my career, an admittedly crude but highly effective foundation for this book. In
doing so, I also had the pleasure of recalling some of the best aspects, most nota-
bly those who helped me along the way (in alphabetical order): Scott Antle, Rick
Bayers, Paul Brown, Tim Burns, Dr. Hilton Chen, Bob Cringely, Dan Gluck, Jay
Goff, Lori Harvey, Dr. Jim Hayes, Karthik Krishnamoorthy, Pat Niemeyer, Jim
Owens, Ed Rich, Tim Saunders, Ken Shealy, Mark Volkmann, Christina Ware,
Debbie Wiler, Tim Williams, and Jim Zhou.

 I’d like to give special thanks to my family. My dad Rick tricked me into think-
ing math was a game at an early age and never really minded when I played with
(and even broke) his computer. My mother Nan taught me writing and has been
an endless source of self-confidence and inspiration. You’re my heart, Mom. I’d
like to thank my Sigma Chi fraternity brothers and my paternal brother Tim, all of
whom made especially sure that I didn’t work too hard; no matter where I find
myself, I take comfort in the fact that there are strong arms around me. In hoc
signo vinces.

Patrick Linskey I would like to thank Steve Kim, Marc Prud’hommeaux, and Abe
White for their help and insights. Without their support, my knowledge and
understanding of the EJB specification in particular and enterprise development

ACKNOWLEDGMENTS xxi
in general would not be nearly as complete. I am also grateful to Bruce Tate for
getting me involved in Bitter EJB and for all the support, wisdom, and guidance
he’s provided me throughout the process of writing this book.

 I could not have written this book without the support of all the folks at Solar-
Metric, who put up with me even during the periods when writing took me away
from my regular work.

 Greg Campbell, Eric Lindauer, David Karger, and Pat Thomas have all taught
me in their own ways that anything worth doing is worth doing well, correctly, and
completely.

 Finally, I’d like to thank my parents for teaching me that writing can be fun,
and my sister for providing the grist of some of the vignettes in this very book.

Bruce Tate Bitter Java was pure joy. Bitter EJB wasn’t—at least not at first. Thanks
to Bob Lee for helping me to slog through the early stuff, and make life bearable
amid the carnage as we tried to build the team. You’ve got promise. Keep writing.
Bitter EJB became fun when Patrick Linskey and Mike Clark rounded out the team,
and gave me some breathing room. Thanks to Patrick, who bravely took on the
task of writing three of the most pivotal chapters in the book, without a whole lot
of writing experience. You were patient and kind throughout, and your insight
was critical to this project. Thanks especially to Mike, who like Frodo Baggins,
never quite grasped the enormity of the road ahead: I hope I didn’t lead you
wrong. But without you, there would be no Bitter EJB. I value your time and talent,
your incredible work ethic, your sense of humor, and especially your friendship.

 Thanks to Marjan, for taking a chance on something different. You’ve had a
tremendous influence on my second career. Here’s to a continued, successful
partnership. Thanks to Ed Roman and Floyd Marinescu for your friendship, and
for access to TheServerSide.com, which turned out to be an invaluable source of
feedback, and an outstanding balancing influence on this book. Thanks to Jay
Zimmerman for taking me on the road, and giving me the opportunity to evange-
lize everything bitter.

 Thanks to Mike Oehrtman for dragging me along throughout your crazy
adventures. I know that your mother is still watching, and probably wincing, with
each new hydraulic. Thanks for sharing her with me.

 Finally, thanks to Maggie, for your tireless support, love, and friendship. It’s
not always easy to be married to an author, but you’ve always carried yourself with
grace, dignity, and charm. You’ve also treated my partners in crime far better than
they deserve. I delight in your presence, and my love for you grows always.

about this book
Why EJB?

After taking a ten-year break from writing books, Bruce Tate returned to publish-
ing in 2002 with the bestseller, Bitter Java. In Bitter Java, he introduced the concept
of antipatterns, which he defined simply as common programming problems that
trap software developers every day. Bruce’s goal was to attack basic Java program-
ming problems and establish the concept of antipatterns as a serious topic for Java
developers. Considering antipatterns in Bitter Java was certainly fruitful, but the
scope of the book was limited to beginning Java, and Bruce soon decided he’d
like to move the discussion into more challenging territory. Enterprise JavaBeans
(EJB) promised a meatier technological context for looking at antipatterns. Con-
sider the following:

■ Though strong, the EJB community is in a near constant state of uproar,
over one issue or another. Controversial frameworks usually are fertile
ground for antipatterns.

■ Microsoft’s .NET—the primary competitor to Java and, by extension, EJB—is
gaining traction, creating the kind of controversy that makes for interesting
reading.

■ J2EE is experiencing good success in the marketplace but not without some
growing pains.
xxii

ABOUT THIS BOOK xxiii
■ In particular, J2EE’s persistence frameworks, though improved, are under
increasing fire and often can’t hold up under the weight of commercial
implementation. Poor frameworks are suspect to misuse.

■ New J2EE frameworks have been released at a frightening pace, often with
mixed success. With so many new tools and techniques, developers are
bound to misuse some of them.

In short, EJB is experiencing the mixture of practical success and controversy that
promises a good Bitter book. In Bitter EJB, we discuss the antipatterns, or common
traps, that developers fall into when working with EJB. We cover many different
aspects of EJB, from transactions to persistence to messaging. We also talk about
other important topics such as performance and testing.

 Together, this team of authors hopes to offer two novel things:

1 Give you a fresh perspective. Most EJB books talk about how easy using EJB
can be, if you only adopt this design pattern or that development method.
We’d like to acknowledge that EJB can be hard, and you can make big mis-
takes if you don’t know where the difficulties lie.

2 Give you fresh insights. For example, we have yet to see a book that offers
a good discussion on choosing a session state management philosophy.
We don’t claim that one size fits all, or that one philosophy is sufficient for
your needs. Instead, we offer a variety of ways to look at messaging, intro-
ducing several new messaging antipatterns. We offer insight on persis-
tence alternatives that have not been presented in this way in a pro-EJB
book. We also cover performance tuning, which can be difficult for EJB
developers without the right approach.

This book is not about bashing EJB. It is about how to get the most out of the EJB
frameworks. That doesn’t mean that we support and endorse every part of EJB.
Indeed, you’ll see that we come down hard on entity beans, because we think that
better, more practical ways exist for solving your persistence problems. Support-
ing EJB also does not mean that we recommend you use it in every circumstance
just to boost your skills. (Mike calls this practice “design by resume.”) You’ll see us
put EJB into a fairly restricted, but important, box. Our support for EJB means
that within the confines of that box, you can learn to apply EJB effectively to build
distributed, transactional, scalable systems that solve real problems.

The style

Today, we find two unsettling trends in computer books. The first is the imposing
volume of content in many books. While exploring every avenue of a topic and

xxiv ABOUT THIS BOOK
providing a comprehensive reference is sometimes appropriate, fitting every book
into this template can be counterproductive. Many authors feel obligated to
stretch content too thinly, across too many pages. The result is that you’re proba-
bly not reading computer books from cover to cover any more. We promise not to
fall into that trap. We’ll tell you what you need to know, and then we’ll shut up.

 Most publishers are also stripping everything to do with an author’s personal-
ity out of a book. That’s a good way to keep a book from being offensive, trite, or
criticized unfairly. It’s also a good way to keep books from being interesting. We
did not fill Bitter EJB with useless trivia about the lives of the authors, but we tried
to keep it interesting. Each chapter begins with a short adventure story. Not only
are tales from adventure sports fun, they typically provide great metaphors for
antipattern themes. Our true stories are gleaned from the authors’ lives or those
of our close companions. Many readers of Bitter Java reported that the book was
fun to read, and that the stories broke up the monotony that plagues some com-
puter books. We kept our vignettes short and placed them in italics so that you
can skip them if you want. Tell us what you think.

 Although chapters were individually authored, to avoid confusion, we use a
collective first person pronoun throughout the book. Think of the voice of the
book as belonging to a team with the combined experience of all the authors. We
think that this book is far more unified than some other multiauthor creations as
a result. When you do come across an “I” in the book, as in the short stories, its
identity is the author who wrote the chapter.

 The authors of Bitter EJB share a common philosophy: We believe our job is to
communicate. We’re not trying to impress you with jargon. We use plain lan-
guage, the familiar second person, and shorter sentences, so that you can focus
your attention on the subject rather than the words. We communicate with fig-
ures or tables when words aren’t enough, and we try to have fun along the way.
Because EJB examples are long, when we need code we’ve snipped out the
important parts for the book and made the rest available for download at
www.manning.com/tate2. There, you can also find the Manning’s Author Online
forum, where you can communicate with us directly.

The team

To attack EJB, we needed not just programmers, but experts capable of identifying
antipatterns and distilling them down to their essence. We also needed to find
gifted writers comfortable with the Bitter Java style. The Bitter EJB team is:

■ Bruce Tate, author of the successful Bitter Java, Manning’s first Bitter book.
Bruce’s consulting experience spans fifteen years. His first job was at IBM,

ABOUT THIS BOOK xxv
where his ten-year career included database and tools development. At IBM,
he wrote his first two books and created eight patented inventions. He was
recruited from IBM to lead Client Services at Contextual, an Austin startup.
He is now an independent consultant in Austin, Texas, where he works with
the Middleware Company and other clients to promote and teach effective
Java design to his clients.

■ Mike Clark is president of Clarkware Consulting, Inc. (www.clarkware.com)
in Denver, Colorado. He has been crafting software professionally since
1992 and immersed in Java since 1997. He first started stumbling into EJB
pitfalls in 1998 while developing a custom EJB container, prior to the emer-
gence of commercial J2EE servers. He has developed several open source
tools including JUnitPerf, a collection of JUnit extensions for continuous
performance testing. In addition, Mike regularly speaks and writes about
his experiences in the trenches helping teams build better software faster.

■ Bob Lee, an independent consultant and open source developer working
out of St. Louis, Missouri, has more than ten years of software development
experience. Bob hosts a Java themed web log at www.crazybob.org; feel free
to visit and join Bob in his ongoing bitter journey.

■ Patrick Linskey is the vice president of engineering for a Java persistence
company called SolarMetric in Washington, D.C. He’s spent the last two years
speaking on the problems of Java persistence and building alternatives. A
popular speaker and gifted communicator, he has experience that spans EJB
application development and product development.

The structure

We build Bitter EJB from a simple base, then dive into the core session and messag-
ing APIs, before moving to a lively persistence discussion. We end by offering finer
points on building a system and tuning for performance. The book is divided into
four parts.

Part 1: The basics

1 Bitter Choices We introduce Bitter EJB and talk about whether you should
use EJB. We also take a look at the EJB controversy and how it has impacted
the development of J2EE over time. Author: Bruce Tate

2 The Bitter Cost Here we introduce the costs inherent in developing EJB.
We also deepen our earlier arguments. Specifically, we look again at why
the EJB framework should not be chosen rashly. Finally, we cast the first

xxvi ABOUT THIS BOOK
critical eye on EJB entity beans and the high cost they incur as a fine-grained ser-
vice in a coarse-grained wrapper. Authors: Patrick Linskey and Bruce Tate

3 Bitter Faces We talk about traps that get in your way when you try to build an
interface. Antipatterns in this chapter serve as a foundation for Bitter EJB.
Author: Bob Lee

Part 2: Sessions and messages

4 Bitter Sessions We introduce stateless session beans, the workhorse of the EJB
architecture. We explore hints for proper use and also look at several antipat-
terns. Author: Bob Lee

5 Bitter Session States In this chapter, we turn to a discussion of stateful session
beans, the most misunderstood of the distributed communication beans. We
spend a good deal of time determining exactly when stateful session beans fit
your architecture, and look at antipatterns along the way. Author: Mike Clark

6 Bitter Messages In chapter 6, we define antipatterns for message-driven
beans. Because this type of EJB is relatively new, some of these antipatterns have
not been catalogued before. Author: Mike Clark

Part 3: Persistence

7 Bitter Entities Though we’re clearly not fans of EJB entity beans, here we
explore antipatterns that may trap you should you decide to use them. We also
explore solutions to these problems. Author: Patrick Linskey

8 Bitter Alternatives This chapter is a departure from other chapters in the
book. Here we recommend against using EJB entity beans and discuss two
major alternatives: object persistence frameworks on relational databases
(including OR mapping layers and JDO) and plain old Java objects (POJOs)
with a session façade. Authors: Patrick Linskey and Bruce Tate

Part 4: Broader topics

9 Bitter Tunes When you work with EJB, you will have to tune your application
for performance. Here we talk about the ways in which tuning techniques can
go awry. Finally, we turn to remedies, including automated testing. Author:
Mike Clark

10 Bitter Builds In chapter 10 we look at how day-to-day management of a com-
plex framework like EJB can get out of control. We then talk about some reme-
dies, all of which fit into your daily build, including code generation with
XDoclet and unit testing with JUnit. Author: Bob Lee

ABOUT THIS BOOK xxvii
11 A Bittersweet Future We reconcile some of the tension we’ve chronicled
throughout the book. We talk about what’s right with EJB, and what the
future likely holds. Author: Bruce Tate, with feedback from the entire team.

Appendix A: Bitter Basics Since many of you may be new to antipatterns,
we decided to include the first chapter of Bitter Java, which has a nice intro-
duction to antipatterns.

Appendix B: Bitter Tales Since some readers do not have experience
with EJB, we include a brief introduction to EJB to get you started.

Bibliography We include complete bibliographical information for any
books or articles mentioned in Bitter EJB, along with references to other
useful books.

At the end of each chapter, we also present a valuable review of the antipatterns,
using the template established in Antipatterns: Refactoring Software, Architectures, and
Projects in Crisis. Readers who would like more information about this antipattern
template may refer to that text.

The reader

Bitter EJB is more advanced than Bitter Java. Readers should possess intermediate
and advanced Java skills. It’s best if you’ve had experience with EJB, but it is not
required. You don’t need previous experience with antipatterns. We lay that foun-
dation for you.

The coding conventions

When we use code, if it’s in a paragraph, it looks like this(), in Courier font, in
line. If we need to use a longer code segment, it is also in Courier font, but bro-
ken into a different block and annotated, like this:

if(we.need(code()) {
 code.show(likeThis); Code annotation
}

Our names use camelCaseLikeThis, with the first letter capitalized for class
names, and the first word in lowercase for instance variables and method names.
We put optional braces around all code blocks. In general, we try to use Sun’s con-
ventions for coding where possible.

 Bitter EJB wouldn’t be the same without bitter code. Therefore, we’d like to
show you bad ways to do some things. To do so, we’ve got to print bad code. How-
ever, we want to warn you when we do so. Regular code looks like this:

 goodCode(looksLikeThis);

xxviii ABOUT THIS BOOK
And bitter code looks like this:

| bitterCode(looksLikeThis);

The black bar alerts you to bad code, highlighting the difference between good
code and bad.

 We promise to keep things brief. May your cup of Bitter EJB be a sweet one.

The cover illustration

The figure on the cover of Bitter EJB is a “Turca en trage de ir al Bano,” a Turkish
woman in her bathing dress. The illustration is taken from a Spanish compen-
dium of regional dress customs first published in Madrid in 1799. The book’s title
page states:

 Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

 General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this
drawing. The “Turca en trage de ir al Bano” is just one of many figures in this col-
orful collection. The diversity of this collection speaks vividly of the uniqueness
and individuality of the world’s towns and regions just 200 years ago. This was a
time when the dress codes of two regions separated by a few dozen miles identi-
fied people uniquely as belonging to one or the other. The collection brings to
life a sense of isolation and distance of that period—and of every other historic
period except our own hyperkinetic present.

 Dress codes have changed since then, and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life—or a more varied and interest-
ing intellectual and technical life.

 In spite of the current downturn, we at Manning celebrate the inventiveness,
the initiative, and, yes, the fun of the computer business with book covers based
on the rich diversity of regional life of two centuries ago‚ brought back to life by
the pictures from this collection.

Part 1

The basics

 Summer 1999: In the Texas hill country, I get my first taste of mountain biking on
the difficult rocky terrain of Steiner Ranch. The lessons learned are painful and
immediate: Squeezing the front brakes can send you over the handlebars. Going
slowly over smaller bumps can cause you to lose your balance. I discover I need to
quickly identify what is wrong with my style and how to fix it. My mind is focused:
I read about biking and spend time with talented bikers. My ride improves rapidly,
and my mistakes gradually become less painful.

On Steiner Ranch I learned to identify antipatterns—wrong solutions to common
problems that have negative consequences. I learned to take advantage of other
bicyclists’ experiences. Bitter EJB offers you a similar advantage, helping you to
learn from the mistakes of others.

 Chapters 1, 2, and 3 lay the foundation for EJB. Chapters 1 and 2 answer an
important but often neglected question: Should you use EJB for a given applica-
tion? We discuss the types of projects that are likely to succeed with EJB and those
that are likely to fail. We look at two major antipatterns: The Golden Hammer
occurs when you apply a tool or framework, like EJB, to every problem, even inap-
propriate ones. Swatting a Fly with a Sledgehammer happens when you try to
apply a heavyweight tool to a flyweight problem.

 In chapter 3, we look at interfaces, a cornerstone of object-oriented design.
The antipatterns in this chapter relate to the more difficult interfaces—remote
interfaces, data transfer objects, facades, and exception management within inter-
faces. These topics cover the basic knowledge that you will need to begin to
smooth out your ride through this rocky landscape.

www.allitebooks.com

http://www.allitebooks.org

1Bitter choices
This chapter covers
■ The controversy surrounding EJB
■ A benchmarking case study
■ Guidelines for applying EJB appropriately
3

4 CHAPTER 1

Bitter choices
July, 2002: the storms line up next to Austin like jets on the Dallas Fort Worth tar-
mac. The water has no place to go. The ground is soaked, and the lakes are full.
The Austin community braces for more flooding. At the Barton Creek put in, vehi-
cles of every size and shape, all with the omnipresent kayak racks, form a line of a
different sort, leading right down to the water’s edge. The water is higher than nor-
mal, and the kayakers are nervous at first. But before long, the fear gives way to
paddling bliss. Six-mile class III runs with the accessability and seclusion of Barton
Creek are rare for any community, especially for the dry state of Texas. Unfortu-
nately, as the fear dissipates, so does caution. One night, the skies open up with a
tremendous storm. Another five inches of rain fall, and the angry creek roars, but
still the kayakers come. Each kayaker faces a choice, based on the conditions, his
experience, and training. Some choose wisely and walk away. Others persist, betting
that their skills will carry them through safely.

As my party of ten puts into Barton Creek, the water is covering the bridge across
the creek. The first few rapids show us that this run is much more serious than any-
one has anticipated. Throughout the run, we make many decisions. Sometimes, we
choose to walk a dangerous rapid, or we pull over and scout a different section. At
other times, we choose to plow ahead, confident of our ability to manage the conse-
quences. Our first choice is critical: we divide into three small groups to keep an eye
on each other. We see some firefighters lining the banks as we come down the river
and wonder what’s up. While we’re in an eddy contemplating our next move, one of
them tells us that hours ago, an expert kayaker, an off-duty firefighter, had gotten
trapped in a hydraulic and drowned. Soon after, we notice that our last threesome is
no longer behind us.

We think it is fitting to begin this book with a true tale about life-threatening
choices, because these are ominous times. The choices that the software industry
makes have far reaching implications for the technology economy, the Java pro-
gramming language, and the careers of many developers reading this book. Our
day-to-day choices also have a much greater impact than ever before. Enterprise
JavaBeans demand early commitment to sound design principles if you have any
hope of achieving adequate performance. In this book, we’ll look at the tumultu-
ous backdrop behind EJB, and we’ll make the case that such an environment
demands a different set of strategies. We need to take a critical look at the tech-
nology and understand where the hydraulics are likely to be.

A storm of controversy 5
1.1 A storm of controversy

As champions of software antipatterns, we were thrilled that Bitter Java achieved
such commercial success. The book reached #9 on the Amazon best seller list, an
unheard-of ranking for technical books without Amazon advertising. The success
of Bitter Java prompted a search for other interesting and controversial subjects
that might benefit from a similar treatment. The technology should have tremen-
dous value as well as potential for gross misuse. To further validate the Bitter Java
concept, the topic must also contain great complexity. The next subject was obvi-
ous: Enterprise JavaBeans.

 Like Austin in July of 2002, the EJB community is currently in the midst of a
stormy season. The economic fallout resulting from the technology crash in 2000
has left the software industry reeling, with a staggering list of victims. Gartner
warns us that the industry overspent by $1 billion dollars on application server
technology between 1998 and 2001. Customers are indeed tightening belts, result-
ing in a more difficult landscape for Java 2 Platform Enterprise Edition (J2EE) soft-
ware companies.

 Given these economic forces, the shape of the industry is changing with
remarkable implications. Consider the following industry shifts and the questions
these changes raise:

■ IBM scrapped VisualAge, supported the open source Eclipse project, and
bought Rational. How will this impact current Rational customers with com-
peting development environments?

■ To accelerate the market acceptance of its J2EE application server, Oracle
bought the industry’s leading relational mapping software just as WebGain
was dissolving. Will Oracle continue to support TopLink customers with
WebLogic or DB2?

■ BEA, once the runaway market leader, now faces growing competition from
IBM. Is BEA still the obvious J2EE choice?

■ The Open Source community has a rapidly growing footprint that’s gaining
traction outside of the web server market, with smash hits like Ant for
builds, Tomcat as a servlet engine, and JBoss as a viable full-service J2EE
server. Do you need to pay for an application server to get value?

Along this journey, J2EE is predictably taking some lumps. Early versions of EJB
had significant problems. Compatibility was nowhere near what customers

6 CHAPTER 1

Bitter choices
expected. The open standards often evolve much more slowly than their propri-
etary counterparts. Customers report growing complexity and a high failure rate.

 External competition, too, is growing. Behind the marketing muscle of
Microsoft, .NET is growing rapidly and is directly attacking J2EE’s market share. As
we write this, J2EE is under a cloud of controversy and scandal. The community is
buzzing over a recent benchmark that showed .NET with a performance lead over
J2EE. Critics rightfully claim that the comparison isn’t accurate or fair, but gave
Microsoft a much-needed infusion of credibility.

 Under these storm clouds, we write Bitter EJB. It’s not our intent to further sow
the seeds of dissention. Each Bitter EJB author is a strong proponent of J2EE and
EJB, who also feels that EJB are complex and prone to misuse. By exploring anti-
patterns, we’d like to give you the tools to effectively navigate the stormy waters —
as a software architect or as a programmer. In the next section, we’ll take a brief
tour through the evolution of EJB. By doing so, we’ll gain some insight into the
problems that EJB developers encounter. We’ll also have a better appreciation for
the tradeoffs made by the fathers of EJB.

1.2 A history of EJB antipatterns

Like many ambitious technologies, EJB started with a bang. If you’d like to amuse
yourself, search the Internet to see what people were saying about EJB in 1998
and 1999. We were truly enamored by the possibilities of EJB. The robust infra-
structure promised unprecedented security. With a new portable component
model, the industry would agree on standards and compete on price. We would
soon buy components from a global software EJB component marketplace, and
we would choose from a variety of vertical applications that would simply snap
into our waiting application servers. With such a head start, we would build
enterprise applications in weeks instead of years. Thus simplified, operations per-
sonnel would handle menial tasks like enterprise application development, sav-
ing Java application developers for important tasks like going to meetings and
drinking beer.

 In all fairness, we were greatly encouraged in our high hopes. The industry,
fearful of Microsoft’s toehold on server-side application development, supported
EJB with a tremendous amount of muscle and enthusiasm. Oracle, Sun, and IBM
formed the front line of support that would eventually drive EJB into the fabric of
corporate server-side development. To fully understand the evolution of EJB use,
let’s look at the history of the EJB specifications.

A history of EJB antipatterns 7
1.2.1 March 1998: EJB 1.0

Behind the scenes EJB has always existed in a near continuous state of controversy.
Right out of the chute, Oracle refused to support the EJB persistence model. The
other major players compromised with Oracle to make entity bean support
optional. Data persistence wasn’t the only early problem. The EJB specification
left too much room in each implementation, so that the promised portability—
not to mention server-to-server compatibility—never materialized.

 While the EJB marketing engine was in overdrive, the real world was having
mixed results with its product. While a few excited customers began to play with
the technology, the technology was much too young to be seriously considered by
most customers. The rare early applications ran with significant performance
problems and fell short of the promised reality. Some vendors, including IBM, had
a hard time releasing critical products on schedule. Others had difficulty getting
early customers to adopt EJB. In general, the complexity of the early specifications
frustrated all but the most seasoned developers. The best practices and expertise
that we now take for granted took time to build. The result of EJB’s first release
was a hopeful marketplace with limited real-world success.

1.2.2 November 1999: EJB 1.1

In November of 1999, Sun released the first minor revision to the EJB specifica-
tion to an eager community. For the first time, it mandated support for entity
beans, the component model that provides EJB persistence. The new specification
also added much needed support for XML and moved deployment descriptors
from proprietary serialized objects to open XML documents. The security model
was strengthened. Industry consultants lauded EJB as ready for the big time.

 As EJB 1.1 was being developed, the Java language was making headway into
the enterprise. Mainstream enterprise developers, looking for relief from tedious,
distributed application development issues like security and transaction manage-
ment, turned to EJB for solutions. Yet, as the first wave of real customers began to
use EJB, they stumbled onto these major problems:

■ Objects in a container did not have local interfaces. That meant that com-
ponents had to use expensive communication alternatives to collaborate,
with severe performance penalties.

■ Entity beans did not have a way to represent or capture relationships.
Because EJB typically were deployed on relational databases, database per-
formance became problematic. Relational databases could process relation-
ships in the form of joins many times faster than an application, but without

8 CHAPTER 1

Bitter choices
relationship management, EJB developers were forced to process relation-
ships within the application.

■ Stateful session beans provided only a limited implementation that could
not be clustered.

■ No messaging application programming interface (API) existed, meaning
that all communications had to be synchronous.

■ The adoption of the entity bean specification further compromised portability.

EJB developers were beginning to get the picture: EJB would allow you to do enter-
prise applications with distributed objects, but would in no way guarantee good
performance. We began to see “best practices” appear in many different places.
Ironically, many best practices were simply remedies for problems that existed in
the frameworks. Others provided solutions to common performance problems
inherent in any distributed system. Readers of Bitter Java recognize these program-
ming traps as antipatterns.

 The J2EE community was growing so rapidly that many sample applications
and early tutorials created in the formative Java years were never updated suffi-
ciently to take advantage of the J2EE best practices. As with any new promising
complex technology, many projects failed to take advantage of new optimizations.
The seeds were sown for a future EJB backlash.

1.2.3 August 2001: EJB 2.0

Under increasing pressure from competition, economic downturns, and custom-
ers, Sun released EJB 2.0, with many enhancements that we use today. Currently,
local interfaces enable both local and distributed component models, creating
huge performance boosts. Relationship management and EJB QL allow relational
databases to process entity queries with joins in the database, instead of in the
applications. Message-driven beans (MDBs) now permit both synchronous and
asynchronous communications. The specification is good enough to provide the
following significant advantages:

■ You can build enterprise applications with EJB that can scale and perform.
Notable enterprises have built and deployed significant applications on EJB
with impressive throughput and reliability.

■ J2EE, for the most part, supports the critical legacy components. You can
access relational database data, integrate with third-party transaction
monitors (with a little extra effort), build a unified security policy with a cen-
tral directory, and integrate with key message-oriented middleware vendors.

A case study: Benchmarking PetStore 9
■ While EJB 2.0 does not have perfect portability, skills do transfer pretty well
across J2EE platforms. J2EE skills are available and, at least for the short
term, relatively affordable.

■ J2EE has a viable economy, outside traditional application server vendors.
Consulting companies, like the Middleware Company, can provide effective
education and third-party services. Other companies, like Sonic and Pre-
cise, produce components, middleware, and tools.

■ The Open Source community for J2EE is thriving. A full-fledged EJB server in
JBoss has many features that the commercial counterparts don’t yet support.

■ Industry support for EJB is as strong as ever, with IBM and BEA now carrying
the torch from a product perspective and a wide community contributing to
the open Java community process (JCP), which forms the standards.

The J2EE community is now large enough to support several highly successful
portals such as TheServerSide.com and IBM’s developerWorks. Communities
like these post and discuss J2EE news and developments. At TheServerSide.com,
you can find highly charged political conversation, ask or answer development
questions, and check out reviews of the major application servers. At developer-
Works, you can find articles from some of the best Java developers in the world,
with free downloads.

 While EJB has turned the corner in some ways, we’re still wandering in the wil-
derness in others. The specification continues to leave a whole lot of discretion to
individual vendors, so we don’t yet have a portable standard. Though effective for
a set of problems, EJB is undoubtedly highly complex. As we write this in early
2003, we’re also seeing a meaningful backlash against all things related to EJB.
The trigger, this time, is performance and complexity.

1.3 A case study: Benchmarking PetStore

In 2002, the J2EE community found itself in the most tenuous position in its short
history. As the founder of Java, Sun was no longer the unassailable giant. The
company was under real attack from an increasingly competitive server market-
place, and the software strategy and execution, outside Java, had met with mixed
results. Microsoft was also eager to cut into the J2EE marketplace, and in late
2002, that company managed a marketing coup.

10 CHAPTER 1

Bitter choices
 PetStore is a sample application written to
show people how to use EJB. Designed to pro-
mote reuse over performance, PetStore offers
none of the performance optimizations required
for a typical benchmark. It’s been updated sev-
eral times, but still lacks fundamental techniques
for achieving high performance, like a uniform
caching strategy. And, as a sample available for
most commercial and Open Source J2EE servers,
PetStore is probably the most visible J2EE applica-
tion. These factors made it an ideal target for a
Microsoft benchmarking effort.

 Just as a hunting lion will separate the weakest
and youngest antelope from the herd, Microsoft
identified PetStore as a perfect candidate for a
benchmarking contest. Microsoft asked the Mid-
dleware Company to step forward as the J2EE
champion and to manage the J2EE implementa-
tion. The Middleware Company started with the
original PetStore design, with JSP user interfaces
accessing BMP entity beans through a session
façade, and tuned the design to achieve a 17-fold
increase in performance (figure 1.1). Still the
Microsoft benchmark was nearly twice as fast.
This benchmark was stacked in Microsoft’s favor
from the beginning for many reasons:

■ The benchmark pitted old J2EE technology
against recent Microsoft technology. At the
time Microsoft performed its benchmark,
one of the industry’s leading J2EE engines did not support the latest J2EE
performance and design enhancements. (The vendor names were never
released, but many assume the non-supporting vendor was IBM.) Though
the most popular application server used a much more recent version of
J2EE, the benchmark used two-year-old technology, with few of the perfor-
mance optimizations supported by EJB 2.0.

■ The Microsoft design optimized performance, but the PetStore design was
modular and loosely coupled, optimizing ease of maintenance over

Session façade

BMP entity beans

ASP user
interfaces

Database

Figure 1.1
The original PetStore design
adopted by the Middleware
Company uses an ASP user
interface to access Bean Managed
Persistence entity beans through
a session façade. Accessing the
database directly from the façade
would have been faster, but
tougher to maintain.

A case study: Benchmarking PetStore 11
performance. In particular, it used a full-service persistence layer. This
decision was questionable, because the persistence was hand-coded as
bean-managed persistence. Therefore, the benefits of using a persistence
layer at all are unclear.

■ PetStore’s original code base does not
take advantage of many best practices that
EJB developers have come to understand.
As such, it may have been better to design
the application from scratch, instead of
starting from such a loose foundation.

While the Middleware Company was tuning the
original poor PetStore application, Microsoft
wrote a version of PetStore from scratch, with-
out consideration of a multitiered approach.
Microsoft did little to separate the data access
layer from its business logic. It even cached full
tables in memory! The code was tightly coupled
and difficult to maintain, but brutally simple
and effective. Without the overhead of a full-ser-
vice persistence layer and with unrealistically
aggressive caching, Microsoft’s version of Pet-
Store outperformed J2EE’s PetStore by a factor
of two (figure 1.2). It should have—it was doing
less than half of the work.

 The incendiar y responses from both
Microsoft and J2EE camps made immediate
claims and counter claims. Microsoft shouted
“Victory” and immediately equipped their sales
staff with a PowerPoint presentation and report
to take maximum advantage of the benchmark
results. On the other side, more than 30 cri-
tiques from major J2EE news services and independent consultants published
scathing reviews of the Middleware Company’s PetStore application. Microsoft rep-
resentatives continued to use the report to full advantage while confusion reigned.

 So what should we make of the PetStore fiasco? Obviously, the preponderance
of evidence strongly suggests that the comparison between the original PetStore
and Microsoft’s redesign was not an equitable one. The Middleware Company has

BMP entity beans

ASP user
interfaces

Database

Combined model

and data access

layer

Figure 1.2
By contrast, the Microsoft design
accessed the database directly
from the model logic. This design
effectively tightly couples the
business logic to the database.
Removing one layer improves the
performance significantly, but
would make the application
maintenance more difficult.

12 CHAPTER 1

Bitter choices
accepted some responsibility for the failings of the initial benchmark. Don’t be
satisfied with assigning the blame, though. We, the J2EE community, need to do
some things to put our own house in order. If we’re willing to listen, the PetStore
example can teach us much. Consider the following:

■ Even seasoned developers are susceptible to antipatterns. Many of the prob-
lems inherited in the original PetStore design went against accepted best
practices. Perhaps we need a catalog of basic J2EE antipatterns.

■ We should take as much care designing sample applications as we do in the
code base. Samples are far more than “gee whiz” demonstrations; they form
templates for countless enterprise applications. We need to take notice
when a consulting company with a highly touted reputation is unable to
execute on a benchmark of a reasonably simple application. In several ways,
EJB examples need revision.

■ EJB 1.0 persistence continues to need revision. EJB 2.0 entity beans did not
go far enough to plug the holes in the EJB persistence strategy.

This case study brings us to the crux of the matter. It’s tough for even seasoned
consultants to keep a firm grasp on all of the pitfalls of EJB development. While
the J2EE community has been diligent about capturing design patterns and best
practices, proponents of EJB must stand back and take an inventory of a different
sort. We need to make an honest assessment of where the EJB land mines are
likely to be. Throughout Bitter EJB we will catalog basic EJB antipatterns and
prompt frank discussion about EJB problems and pitfalls. We believe that this dis-
cussion is healthy for EJB and for application developers.

1.4 Antipattern: The Golden Hammer

The surreal day on Barton Creek continues. We hope that the missing group has
taken some time to scout one of the rapids, or has taken out, uncomfortable with the
danger. We head down the river and find the empty boat of the drowned kayaker, a
poignant reminder of the danger all around us. We wait in an eddy until the
approaching night makes further delay dangerous. When we finally reach the bot-
tom safely, we are relieved to meet our missing friends. They tell us a hair-raising
story about a thirty-minute battle with a hydraulic, a losing struggle followed by a
helicopter rescue. We are shaken. After losing its first expert kayaker, the paddling
community in Austin will never be the same.

Antipattern: The Golden Hammer 13
 Often, techniques that serve a kayaker well in one situation will prove disastrous
in another. Nonetheless, kayakers—like application designers—often remain loyal
to approaches that may not fit every situation. Unfortunately, when you have a
golden hammer, such as EJB, every problem looks like a nail. In Bitter EJB, the
golden hammer will be a recurring theme. Many EJB problems stem from misuse
of individual EJB components. With this technology, you need to consider a prob-
lem at two levels. Throughout this book, we’ll explore one of those levels—under-
standing each piece of a problem and determining how individual EJB services
and components might create a solution. Another level demands that you step
back and view your problem from a broader perspective, deciding whether EJB is
the correct match for your problem at all, or whether EJB has become your golden
hammer. In this first chapter, we’ve begun to take a look at the historic turmoil sur-
rounding EJB. Customers who have opted to enter the EJB waters so far have dem-
onstrated some successes as well as more than their share of spectacular failures.

1.4.1 Choosing unwisely

Every five years or so, a massive new technology, like DCE or CORBA, comes along.
Some early adopters apply the technology well, with clear understanding and
often with good results. Vendors, having read the latest marketing strategy books
like Crossing the Chasm, understand the value of early references, and they take
advantage of early success, selling others with references. Then come the lem-
mings. Eager to reap over-hyped benefits, these developers follow the leaders into
all kinds of peril, long before the technology is ready. J2EE and EJB are merely the
latest iterations of this phenomenon. We saw the hype of early expectation. We
saw disillusionment as the early masses tried to adopt EJB and failed. Now, we’ve
got better technology—and an opportunity. EJB will thrive only to the extent that
the community understands how to apply the technology correctly.

 Enterprise application programming is difficult even with the right tools. EJB
development is also tough in the best of circumstances. When the marriage
between the tool and the problem is a good one, the benefits can be astounding.
When they aren’t, success is nearly impossible to achieve. Let’s look at some of the
reasons not to use EJB:

■ You’ve already paid for the server Most Java servers include EJB, so you
may as well get the benefit, right? And while you’re going in for open-heart
surgery, you may as well have your appendix out, too. After all, there’s no
need in healing twice, and you may need it out one day.

14 CHAPTER 1

Bitter choices
 Regardless of who sold you a set of tools, you should be using the right
tool for the job. If you need to supplement your tool set to do a job, do so. If
you don’t need all the features of brand X’s super-charged web application
server, don’t use them. Additional costs of using poorly fitting tools will
dwarf the small savings gained by skimping on software or saving a few lines
of code by using a complex component architecture.

■ You’re doing Java enterprise development EJB is the best way to do enter-
prise development in Java, right? And you should trade in that six-cup cof-
fee maker for your tiny department for an industrial-strength, 50-cup
Starbucks job. It’s industrial strength, and you’re a business.

 Many forms of enterprise development do not need all the services of
EJB. A prevalent architecture (and need) is to put a simplistic user interface
around a basic database table or small collection of tables. Such applica-
tions, along with those that create reports, are inherently relational in
nature. These types of problems do not require the sophistication of EJB. In
fact, a persistence framework gets in the way.

■ You want to use a sexy technology on this project to improve your resume or
attract better talent And we’d like to add brain surgery to our resumes.
Are there any volunteers?

 You’d be amazed at how often we see “design by resume.” To build your
skills in a meaningful way, you’ve got to attack the right problems with the
right technologies in the right context.

■ You want a fully portable architecture And we want a Ferrari for Christmas.
 EJB is not a fully portable architecture. In fact, you’ll probably find your-

self using vendor-specific enhancements for things like integration, cach-
ing, and even object-relational mapping. You will find that EJB skills
commute reasonably well.

Not all misguided projects choose EJB for such superficial reasons. Many prob-
lems appear to be perfect fits for EJB on the surface. You can successfully imple-
ment simple applications with EJB, but you’ll write more code, with more
complexity, than you would with simpler alternatives. You may decide to imple-
ment a reporting application with EJB entity beans, but you’ll wind up translating
from relational database tables to entities and back to relational tables again. In
many instances, EJB just don’t add enough value. Most of this stuff is probably not
new to you, but with the number of projects that misapply EJB, it bears repeating.

Antipattern: The Golden Hammer 15
1.4.2 Solution: Evaluate carefully

More and more, knowledgeable architects are looking at EJB with a critical eye—
and walking away. Though this team of authors firmly supports EJB, we believe
that this attitude is healthy. More than anything else, this technology needs suc-
cess that comes from confident application to the right set of problems. In table
1.1, and in the following discussion, you’ll see some factors that should influence
your decision.

EJB and high complexity
The best reason to use EJB is that it simplifies your life. With EJB, you begin with
high complexity. Your potential solution then must be highly complex without EJB
for you to break even. Most developers underestimate the break-even point.
Figure 1.3 shows the break-even threshold—the point at which your project com-
plexity without EJB surpasses your project complexity with EJB. Our experience
tells us that EJB makes the most sense for large enterprises, for the compilation of
a variety of applications and application services, for the creation of a monolithic
architecture, and for web-based deployment. You’ll see more about what complex-
ity means to an EJB application in chapter 2.

EJB

Plain
 old Ja

va
objects

 w
ith

 se
rvle

ts

Project size

P
ro

je
ct

 c
om

pl
ex

ity

Figure 1.3 The EJB complexity graph shows that EJB starts complex, but ramps up more slowly with
project size. Other simpler technologies tend to start simple, but break down as project complexity
grows. The break-even point with EJB tends to be with larger, more complex projects. This chart does
not reflect a formal study.

16 CHAPTER 1

Bitter choices
EJB and J2EE development skills
In our experience, the top reason for J2EE project failure is the lack of sufficient
skills. EJB can insulate you from a few technical complexities, but will introduce
many others. You’ll still need specialized skills to develop and tune complex, dis-
tributed applications. Experience with the J2EE tool set is preferred; experience
with EJB is a must. A good understanding of design patterns, best practices, and
antipatterns will help you choose designs that work and avoid those that don’t.

Table 1.1 EJB projects are more successful when you apply EJB appropriately. In this table, you can
see a few factors surrounding an EJB decision. On the technical side, you should consider specialized
needs, your application design, and the value you’re likely to generate. Your choice is dependent on
technical issues and the skills of your development staff.

Decision criteria EJB fit better when: EJB fit worse when:

Complexity ● Higher complexity
● Large projects
● Massive integration concerns

● Lower complexity
● Small projects
● Minor integration concerns

Skills ● Staff has EJB skills
● Budget allows for mentors
● Developers are well compensated, making

it easier to retain key personnel
● Enterprise understands EJB deployment

and tuning issues, and staffs accordingly
● Staff understands distributed object

development

● Staff has little EJB skill
● Budget does not allow for mentors
● Developers are not compensated

well
● Enterprise has little EJB deploy-

ment experience
● Staff experience is limited to

development centered on one tier

Value ● Application needs to be
❍ Distributed
❍ Transactional
❍ Secure
❍ Scalable
❍ Persistent

● Application does not require many
major EJB services or components

Application
design

● Application has classic J2EE tiered struc-
ture

● Classic EJB clustering works
● Required third-party components integrate

with EJB well

● Clustering is problematic with this
design

● Third-party components require
massive integration or duplicate
many services

● Legacy components require differ-
ent transactional or security
model

Specialized
needs

● Single-threaded transactions
● Traditional resources like relational data-

bases and legacy transactions
● EJB servers available on required hardware

● Highly specialized needs don’t
match EJB

● Multithreaded transactions
● Rigid hardware requirements

make EJB unfavorable

Antipattern: The Golden Hammer 17
This understanding is not a substitute for experience. You’ll want a team that
understands how to

■ set up and administer an automated J2EE build environment with effective
source control

■ build automated tests for EJB applications

■ design multitier applications with low communications overhead

■ work efficiently in your development environment, whether with an IDE or
a collection of OpenSource tools like EMACS, Ant, and XDoclet

■ avoid J2EE services that are problematic or poor matches for your application

■ deploy J2EE applications

True, your team can learn some of this stuff on the fly, but if you try to force a staff
which is not ready into this environment, you’ll be courting disaster. Luckily, EJB is
mature enough that you should not have any problems finding good skills in the
work force. In fact, as we write this in early 2003, the technology economy remains
soft, and the market favors the employer.

EJB services and components and value
Perhaps the key to choosing the right platform is to make your decisions based on
the value that you’ll get from employing EJB, and offset that value with EJB’s
added costs, including the complexity of the platform. At each step, you’ll want to
justify the value—and the fit—of each EJB service you plan to use. If the service
doesn’t provide enough value, don’t use it. In chapters 7 and 8, we’ll see that the
EJB entity model is frequently not the best choice for EJB persistence. Don’t be
afraid to walk away from parts or all of EJB if it’s not meeting your needs. Usually,
to be a good fit for EJB, applications should be one or more of the following:

■ Distributed If your application is not distributed, it will rarely be a good fit
for EJB. The core problems for many EJB services revolve around distributed
name lookup, distributed transaction management, messaging, and con-
nection services. Conversely, with highly distributed applications, EJB can
easily make sense.

■ Transactional Integration of a single global transaction context can signif-
icantly simplify enterprise development.

■ Secure Not all EJB applications have a strong security requirement, and
some applications have needs that don’t fit the structure of the EJB security

18 CHAPTER 1

Bitter choices
model. Nevertheless, if you’re able to use the built-in security model, you
can save yourself significant time and effort.

■ Persistent Of course, EJB entity beans can provide persistence, and
improvements to EJB 2.0 make the solution much more viable than it has
been in the past. Considering the position we take on persistence manage-
ment later in this book, you may be surprised to see persistence listed here.
But even though EJB entity beans are rarely the best option for persistence,
using EJB may make it easier to wrap your persistence model with services
that you need, like transactional awareness, distribution, and security.

■ Scalable One of the unforeseen benefits of web-based development has
been the relative ease of building scalable solutions. Because EJB are
designed with clustering and scalability in mind, scalable solutions are often
much easier to build with this architecture.

EJB and your application design
Good recognition is another consideration to keep in mind when deciding
whether to use EJB. If your application has a tiered structure similar to those
described in Sun’s recommended application blueprint (http://java.sun.com/
blueprints/patterns/catalog.html), then you’ll probably find that your applica-
tion has a better chance for a good fit with EJB. If you intend to fully separate your
data access tier from your model and user interface, EJB will allow you to do so. If
your application needs third-party components, you must evaluate whether you
can buy or integrate components easily into your expected design.

Specialized requirements and EJB development
Your application may have special development needs that eliminate EJB from
consideration. If you’re integrating certain types of legacy software, EJB integra-
tion may be difficult or impossible without significant effort. For example, if you
need a high degree of control over your own threads, EJB development can be
much more difficult. The current paradigm is that the EJB container balances and
manages single-threaded transactions. Adding your own can be problematic.

 Keep in mind that politics will nearly always cloud your decision. The expense
of an application server, the “resume potential,” and the vendor relationship can
easily influence major decisions. The key to good decisions is to recognize those
factors and compensate. Ultimately, your call is simple: Will EJB make your life
better or worse?

Summary: Looking ahead 19
1.5 Summary: Looking ahead

Like Bitter Java, Bitter EJB is about war stories. We want to change the way that you
think about patterns. This book will help you identify new EJB traps and use your
experience to create solutions. We also want to cast light on the beneficial aspects
of EJB as well as those that potentially should be avoided. We hope to provide this
information in an entertaining and thought-provoking manner. If you’ve come to
Bitter EJB by way of Bitter Java, you’re familiar with the concept and importance of
antipatterns. If you’re new to the subject—or you need a refresher—please read
appendix A, which contains the first chapter of Bitter Java. This chapter contains
the basic ideas behind the use of antipatterns. If you’d like to be sure that your
EJB skills are what you need to follow this book, you can check out our EJB 101
chapter in appendix B. Once you’re ready to roll up your sleeves and get busy,
you’ll want to start with chapter 2. We’ll discuss a few core antipatterns for all EJB
applications. We’ll talk about the basic pitfalls that occur when designing an over-
all EJB application interface, and then we’ll work through the foundational design
patterns that solve those problems, like session façades and value objects. In the
chapters that follow, we’ll then consider each major EJB component, from sessions
to entities to messages. Finally, we’ll look at important issues related to a sound EJB
development process, including strategies for performance tuning and builds.

20 CHAPTER 1

Bitter choices
1.6 Antipatterns in this chapter

This section covers the Golden Hammer antipattern.

DESCRIPTION
When you have a golden hammer, everything looks like a nail. A
development team or architect can become infatuated with a par-
ticular solution, and apply it inappropriately.

MOST FREQUENT SCALE
Application, enterprise

REFACTORED SOLUTION NAME
Litmus test

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
You should first decide whether a technology is appropriate for a
given project. A litmus test can help you decide.

ANECDOTAL EVIDENCE
“I didn’t know that you could use a spreadsheet as a word proces-
sor.” “EJB is perfect for our department calendar.”

SYMPTOMS, CONSEQUENCES
When you use the wrong tool for a job, you wind up with solutions
that don’t work, perform badly, or are difficult to maintain.

GOLDEN HAMMER

2The bitter cost

This chapter covers
■ A litmus test for deciding whether to use EJB
■ The inappropriate use of EJB for flyweight problems
■ An introduction to problems inherent in EJB entity beans
21

www.allitebooks.com

http://www.allitebooks.org

22 CHAPTER 2

The bitter cost
When the days get shorter and the nights longer, Austin high-tech mountain bikers
turn to night riding. Night riding is significantly more dangerous than day riding,
but we bear these risks gladly for the opportunity to scream through the Texas hill
country after a full day of work. As we approach each ledge or rock, the flat light
hides the variations in terrain that can deflect a wheel or send a rider over the bars.
Our tiny two-foot circle of visibility gives us little time to respond to the many turns
of the terrain.

One danger lies heavily on our minds. In the central Texas hill country, the
rumor is that the big cats—large black panthers—are back. We paid only passing
attention to the tiny newspaper article that reported a sighting but one night as we
hear an intense, guttural, blood-curdling growl from a backyard near our favorite
trails, the risk we are taking snaps into focus.

The EJB framework can provide substantial value, but most EJB books pay little
attention to an important question: Does the cost of using EJB ever outweigh its
value? As you might expect, “cost” stands for not just the measurable dollar value
of the application server software, but also the unquantifiable effects of schedule
delays and added workloads that come from building solutions with a complex
framework. If you want to have success with EJB, it’s critical that you apply it to the
right problem. In this chapter, we’ll take a hard look at the question of EJB’s value
versus its cost. And we’ll consider the fundamental question, “Should you even
use EJB?”

2.1 Sparking controversy

At the turn of the century, customers—with increasing frequency—signed massive
contracts with software and services firms for EJB projects. Everyone was eager to
usher in the new emperor. Giga Information Group estimates that the J2EE appli-
cation server market was at $2.25 billion in 2002. Undoubtedly, some of this
money was well spent. EJB can hide much of the complexity from our applica-
tions. Component-oriented designs allow you to reuse major services from the
container. Deployment descriptors let you delay major decisions until deploy
time. But Nirvana has not been achieved.

 Gartner (www.gartner.com) estimates that customers overspent $1 billion on
EJB technologies in 2001. Today, the outcry against EJB is, at times, deafening:
“Entity beans are too bloated and slow.” “Deployment descriptors are too com-
plex.” “Technologies and frameworks swirling around J2EE move so fast that we
can’t keep up.”

Sparking controversy 23
 Only the rare EJB project succeeds when measured against the expectations
raised by all the marketing hype surrounding the capabilities of EJB. In this chap-
ter, we will attempt to deflate the hyperbole of each polarized perspective, shifting
the balance back toward the center. We’ll address the services that make EJB useful,
and we’ll discuss the cost of services. We’ll work through the criteria for using EJB
and address situations when an alternative might be a better choice. For the most
part, we’ll let other books address specific alternatives to EJB. In the second part of
the chapter, we’ll take a focused look at entity beans. For reasons that will become
clear, entity beans are different beasts—that demand particular treatment.

2.1.1 The value of EJB

Many early antipattern studies were based on software engineering principles.
Books like the Mythical Man Month and Death March have made the case that our
software complexity has outpaced our ability to organize and manage the develop-
ment process. One could make the same case for software architecture. As com-
plexity goes up, productivity plummets. The role of EJB, then, is to abstract out
necessary core services for enterprise software development. Doing so allows the
developers on a project to focus solely on their application logic, rather than on
reimplementing infrastructure code.

2.1.2 EJB-appropriate applications

The EJB specification marked the entrance of Java into the enterprise space. The
goal of the EJB team was to put together a standard, portable mechanism for cre-
ating, assembling, deploying, and managing distributed components in Java. EJB
was designed to integrate seamlessly with CORBA, a pre-existing distributed com-
ponent standard. In this standard, multiple components deployed on multiple
Java Virtual Machines (JVMs) can all participate in a single logical transaction, and
the system administrators can control access to sensitive component methods.

 The resulting specification, EJB, was the enterprise equivalent of Java’s original
WORA (Write Once, Run Anywhere™) badge of honor—Write Once, Deploy Any-
where. The EJB specification now makes it theoretically possible to write a set of
distributable components, deploy them to a variety of application servers, and
build applications with these and other third-party components. Such a process is
even relatively painless, provided you carefully follow the rules. Take that, CORBA!

 EJB applications are scalable. They also provide failover services more easily,
and communicate with a variety of client technologies. Think about it. A Java cli-
ent can be

24 CHAPTER 2

The bitter cost
■ a swing client

■ a servlet

■ a J2ME device

■ a JMS-based message producer

■ anything with a CORBA binding

The benefits don’t stop there. You can execute transactions involving a number of
components on disparate systems, using only a little declarative transaction cod-
ing. System administrators, rather than developers, manage security policy at
deploy time or even dynamically at runtime. You can see that the EJB specification
provides features that truly help you build enterprise-strength applications.

 So, when would you actually use these features in the real world? The EJB spec-
ification provides services that make it easier to build complex distributed compo-
nents. For that reason, EJB has become tightly associated with enterprise
applications. You could claim, then, that you should use the EJB specification
when working on enterprise applications. That would be fine, except that the
term “enterprise application” conveys two vastly different types:

1 Large-scale, complex, distributed applications On the one hand, enter-
prise applications are applications that glue together many different IT
services used by a large company or set of companies. In this sense, the
enterprise application must integrate large pre-existing systems that were
never designed to work together. These systems typically have a set of
rigid, documented APIs used to perform business operations; for exam-
ple, a warehouse inventory application communicating with a parts pro-
curement system.

These types of systems also usually have complex business requirements
defined by disparate, but equally important, projects. Additionally, the
subsystems glued together by the enterprise application are often under
the control of different departments, or even different organizations alto-
gether. So, it is essential that the different subsystems be broken down
into sets of well-defined APIs. The EJB specification was defined for this
type of enterprise application.

2 All applications built in an enterprise On the other hand, the term enter-
prise application is often applied to anything written by enterprise applica-
tion developers. Of course, this definition is circular, and that’s the point—
the IT industry has essentially redefined the term enterprise application to

Sparking controversy 25
include merely those applications written by people working at a company,
especially if that application has any HTTP-based or client/server capabili-
ties. In this sense, corporate websites, discussion forum software, and front-
office sales tools are all enterprise applications. These types of enterprise
applications generally don’t mesh well with the EJB specification.

2.1.3 Using a litmus test

Sometimes, you may want to simplify the choice of a technology. You’d like a lit-
mus test of sorts. Dip the test paper into your application. If it comes out red,
choose EJB. If it comes out blue, look for something else. To make your determi-
nation, take a look at properties that enterprise applications—both those defined
by the EJB specification and those written within a company—tend to exhibit.
Enterprise applications may possess any of the following:

■ Loosely coupled components Enterprise applications often contain sev-
eral independent components, potentially developed by different compa-
nies. These components generally do not share the same life cycle or
release schedules.

■ Massive scalability requirements A fundamental aim of an application
server is to provide a transaction monitor that serves as a “throttle.” Without
this kind of service, every client in an enterprise could dive head first for the
same database resource, creating a hot spot. With a transaction monitor in
front of a resource, it’s possible to gate the number of concurrent users that
can use the resource. In EJB, stateless session beans serve that role well.

■ Distributed business transactions Heterogeneous back-ends and loosely
coupled components may all need to participate in the same logical busi-
ness transaction. In other words, if one component or back-end fails to
commit its part of a unit of work, it may be essential that the other compo-
nents and back-ends involved in the transaction be able to roll back, allow-
ing all the components to participate in a single atomic unit of work.

■ Asynchronous APIs Clients will communicate with your application via a
message queuing service or via web service APIs such as SOAP.

Each of these four needs should serve as a piece of a decent litmus test for EJB.
The more criteria that an application passes, the better the fit for EJB. Of the four,
the two most critical are massive scalability and distributed business transactions.
Many applications could use these services, but consider how strong their actual

26 CHAPTER 2

The bitter cost
need might be. The additional costs of EJB may not warrant the burden of EJB for
just a passing need.

 Be careful, though. No litmus test is perfect. Many applications make excellent
use of stateless session beans, without using EJB persistence or messaging at all.
With complex business transactions and the need for the scalability, the security,
and the clustering that EJB provides, its use is perfectly justified. By contrast, some
applications demand these requirements in spades, but specialized requirements
like the support for certain threading models in legacy Java applications make EJB
completely impractical. Although not foolproof, this test nonetheless offers one
quick method for narrowing the criteria and determining whether EJB are appro-
priate for an application (figure 2.1).

2.1.4 Passing the test

Before we look at a poor fit for EJB, let’s take a look at a few applications that meet
the requirements well:

■ An online order processing system might need to integrate with a bank’s
automated account access services. This integration might not be achiev-
able through a few simple APIs that provide enough functionality for the
business needs without EJB.

■ A rail yard management system may need to manage the trains in the yard.
The application may need to integrate with several back-end databases,
including Informix and DB2. Since tracks are shared across multiple enter-
prises, a transactionally aware messaging layer using message driven beans
and XML would fit well.

■ The OSS Java Initiative (http://java.sun.com/products/oss) is a set of stan-
dards designed to address the needs of telecommunications operations sup-
port systems (OSS). As an industry standard, different telecommunications
companies implement a variety of loosely coupled distributed components
for their individual systems. These systems may use different technologies
for storing application data and may interact with different proprietary
components to perform the new standards-based business operations using
distributed transactions.

You can see that EJB can work well for massive and complex enterprise applica-
tions. In fact, we’ve seen enterprise Java applications work in each of these situa-
tions. The people working on these types of problems can muster the
considerable resources necessary to make an EJB application fly.

Sparking controversy 27
2.1.5 Weighing complexity

When scoring your application’s requirements against the four pieces of our lit-
mus test, consider how important each is to your application and make a decision
based on all considerations. Do not choose to go with EJB solely because of a need
for a single EJB service. For example, if you find yourself in need of just distrib-
uted transaction support, consider a stand-alone transaction manager instead of a
full-blown EJB container.

 Once you’ve analyzed how much your application can use the services pro-
vided by the EJB specification, you will be able to determine where it falls in the
continuum between the two types of enterprise application. If your application
will take advantage of several EJB services, then your project will likely benefit
from the power of the EJB specification. If, on the other hand, your application is
not likely to use much of the EJB specification, then deciding to go with EJB might
cause more problems than it solves.

 Applications appropriate for EJB will generally score well against a good litmus
test, which simply represents common sense. In contrast, any application will pos-
sess one or more of the following design goals:

■ simple data persistence

■ transactional integrity requirements

Application 1 Application 2

Loosely coupled

com
ponents

M
assive

scalability

Distributed

transactions

Asynchronous

APIs

Loosely coupled

com
ponents

M
assive

scalability

Distributed

transactions

Asynchronous

APIs

Figure 2.1 When considering EJB for an application, you want to balance the application’s complexity
against the capabilities of EJB. Application 1 has a number of loosely coupled components and relatively
high scalability requirements, but is not transactional and does not have many asynchronous API needs.
It would probably not be a good fit. Though application 2 has few asynchronous transactions, it’’s a much
better fit for EJB, in terms of complexity.

28 CHAPTER 2

The bitter cost
■ three-tiered design

■ scalability or future scalability

■ performance

When you evaluate an application, take a close look at the goals and the implied
requirements. For each requirement, you need to ask yourself if that rumored cat
is real, and if it has the teeth that you’re imagining. These design goals are not the
only determining factors for choosing the EJB specification. Many good frame-
works address each of these problems quite well. For example, the Java Data
Objects (JDO) and the Java Database Connectivity (JDBC) standards are excellent
persistence frameworks for many applications, and newer tools, like Hibernate,
will likely evolve into competitive persistence solutions as well. In addition, other
aspects of the J2EE specification, without EJB, can achieve perfectly acceptable
scalability and performance metrics for many uses. So, unless your application
already meets a few of the more complex requirements for EJB use outlined ear-
lier, you should favor non-EJB solutions to these problems.

 A common EJB misconception is that an EJB container is necessary to guarantee
transactional integrity. This is not correct. The EJB specification provides semantics
for defining transactional boundaries in a declarative manner, but does nothing
else with transactions. This declarative transaction behavior is useful, but not
required for configuring multiple data sources to participate in a distributed trans-
action. So, if your transactional requirements only require that you interact with a
single data store (a relational database, for example), then a non-EJB solution such
as pure JDBC will be just as transactionally correct as an EJB solution.

2.1.6 Evaluating your talent

The perfect architecture will result in the perfect application only if the team
executing the design has the necessary skills. This is especially true of EJB appli-
cations because many requirements of the EJB specification involve seemingly
arbitrary rules that place limitations on the availability of certain Java language
features, such as threading. Some may even change the semantics of certain parts
of the Java language. So, in addition to learning EJB APIs and file formats, an EJB
developer must also unlearn a few familiar Java concepts and replace them with
the EJB equivalents.

 An old maxim says that you should never use a tool until you understand fully
what it does. You can—and should—debate the meaning of “fully” in the EJB
domain. Tool vendors (BEA, Borland, IBM and Sun, for starters) continue to push
their particular solutions as silver bullets that will make EJB development easy. The

Sparking controversy 29
top market research consulting firms, including Gartner, Giga, and Forrester, all
agree that the tools’ battle will play a crucial role in the future of J2EE—both in
terms of J2EE’s relationship to .NET and in terms of the relative positions of the
players within the J2EE space. However, for the most part, these tools merely auto-
mate a portion of EJB’s tedious development. With few exceptions, they do not
address the more fundamental differences between EJB development and J2EE
development without EJB.

 For example, the use of threads is not allowed in the EJB specification. You
can’t get around that fact, no matter what tool you choose. For all practical pur-
poses, the EJB specification does not have a concept of component inheritance—
an EmployeeEJB entity bean cannot extend the PersonEJB entity bean (except in a
language convenience manner). Nor can you change the fact that remote inter-
faces to EJB use pass-by-value semantics.1 These and other fundamental restric-
tions in the EJB specification make it important that a team working on EJB
development knows the specification very well. In general, a team should under-
stand the following:

■ All high-level EJB concepts, so that they can effectively apply the appropriate
parts of the specification to the project at hand

■ General EJB concepts such as implications of re-entrancy, the relationship
between transactions and threads, and restrictions on resource loading and
threading

■ More specific EJB concepts for the areas being used, such as session, entity
or message-driven beans

■ Higher-level concepts of client/server programming with EJB

Teams short on such expertise should either invest in training—mentoring and
cross training on other internal EJB projects works well—or consider alternatives
to EJB. Note: The team members who write the client code that use the EJB

1 In this book, we will use the terms pass-by-value and pass-by-reference a little loosely. When we
say that a technology uses pass-by-value semantics, we mean that non-primitive method argu-
ments and return values are copied (via cloning or serialization) before invoking the method.
When we say that a technology uses pass-by-reference semantics, we mean that non-primitive
method arguments and return values are not copied, but that object references are passed
around instead. This differs from the compiler definitions of pass-by-value and pass-by-refer-
ence. Technically, Java bytecode is always pass-by-value—what we think of as pass-by-reference
in Java is actually implemented by passing a copy of an object reference to a method.

30 CHAPTER 2

The bitter cost
components can have a less complete understanding of EJB, but they’re not com-
pletely excused.

 Now that we’ve discussed EJB-relevant needs, let’s consider a few ineffective EJB
applications.

2.2 Antipattern: A Sledgehammer for a Fly

The mere thought of swatting a fly with a sledgehammer evokes a certain cartoon-
like impossibility. Super-human ninjas or ultra-lucky uber-geeks may be able to
pull it off. Though you might get lucky, the results are usually going to be predict-
able. You’ll have lots of damage without meaningful results.

 In our J2EE world, EJB is like a sledgehammer. It provides considerable power
and durability to applications that need it, but is heavy and unwieldy. Look at one
uncontroversial example of a service that should not be implemented using
EJBs—logging. Full-featured logging frameworks already exist and are sufficiently
mature. One is even bundled into the J2SE APIs as of the J2SE version 1.4. How-
ever, bear with me. I chose this problem because it’s well understood, because
many people choose to build from scratch, regardless of alternatives, and because
a logging framework may have enterprise characteristics that might seduce an
unwary team into choosing EJB.

 System event logging is a common component of any application of medium-
to-large scale. Developers typically expect a logging framework to be easily config-
urable and deployable. They also expect high availability and reliability from a
logging framework. Multiple machines often are able to log to a central location
and, usually, you want to analyze the resulting logs as a whole. Consider the follow-
ing points and note how each might indicate EJB as a good approach:

■ Logging is a component, often written by a third party and never tightly cou-
pled to the application domain. Well, EJB is a component architecture. It is
designed with loosely coupled, independent components in mind.

■ EJB is a distributed component architecture. So, assuming the common case
of the application in question running on multiple machines, it will need a
distributed logging framework, right?

■ Most EJB containers provide failover, so high availability is no problem with
EJB. For a system event logger, failover is a useful, but not a central issue.

■ Application servers often include features targeted at simple component
configuration and deployment. A simple configuration for our logging
component would be a nice extra.

Antipattern: A Sledgehammer for a Fly 31
■ Loggers must manage resources efficiently. Because deployments typically
have fewer application servers than clients, memory-intensive resources
such as database connections can sometimes be pooled more effectively in
systems that access the resources exclusively from the application server tier.

As we said, if you looked at only these criteria, EJB would seem the obvious choice.
This EJB application is a potential solution. EJB best practices indicate that you
should perform all client access through session beans, not entity beans, and that
you should use EJB 2 container-managed persistence (CMP) entity beans to store
data in a database. So, we will define a session bean façade with a single method:
logMessage (int severity, String message). This façade will then create a CMP
entity bean through that bean’s local interface and set the log severity and mes-
sage. That’s it.

 As we examine the implementation in table 2.1, we quickly see we are holding
a sledgehammer. This simple task requires that we author as many as ten (yes,
ten) files, including two configuration files and a simple test class. The existence
of the configuration files and the complexity is dependent on your application
server; our test class represents what the application code in a servlet, a Swing
GUI, or another client environment would have to incorporate to interact with
this logging component if no extra levels of abstraction were put in place. We
chose to use WebLogic as our application server, but most other application serv-
ers have similar configuration requirements.

 You could simplify this test application by putting a generic interface in front
of our session bean, but the purpose of this discussion is to analyze the complexity
involved in an inappropriate use of EJB, not to demonstrate ways to hide that com-
plexity. Additionally, bear in mind that adding such an interface would add at
least one file to our picture, making the EJB solution even larger. With these goals
in mind, take a look at the breakdown of the example Logging EJB in table 2.1.

32 CHAPTER 2

The bitter cost
2.2.1 Adding complexity

It seems as if you’ve authored a lot of code for what should have been a pretty sim-
ple problem and solution. Maybe using EJB for our logging framework is not such
a good idea after all. Let’s look at what the EJB specification gives us:

■ Declarative transactions Typically, transactional integrity is not a big con-
cern when it comes to a logging framework. An application developer gen-
erally does not care if some messages are recorded and others are not. In
fact, the opposite is usually true. An application developer expects each log
attempt to succeed independently of any other log invocations. So, the EJB
semantics for declarative control of transactions is not of much value. It is
often desirable for a single log message to be logged in an atomic fashion,
but this is a different concern than the transactional behavior of multiple
logging statements.

■ Distributed transactions Because transactions are not typically important
in logging frameworks, distributed transactions (transactions involving mul-
tiple transactional resources) are even less important. For example, you
don’t want to roll back log messages when a database insert fails. If you’re
not going to use transactional features in the first place, then you are cer-
tainly not going to integrate with another transactional resource.

Table 2.1 This file listing for session bean façade logging implementation shows the complexity of a
simple logging component. The line count provides a pretty good handle of the potential complexity and
drudgery that we’re dealing with in the EJB arena.

Classification File name File line count

Entity bean LogEntry.java 8

LogEntryBean.java 48

LogEntryHome.java 13

Session bean Logger.java 10

LoggerBean.java 54

LoggerHome.java 9

Sample client code TestLogger.java 58

Deployment descriptor ejb-jar.xml 55

Vendor-specific deployment
configuration

weblogic-cmp-rdbms-jar.xml 26

weblogic-ejb-jar.xml 28

Antipattern: A Sledgehammer for a Fly 33
■ Security Logging is not typically a big security risk. So, it is unlikely that
anyone would care to implement strict security policies for our logging
framework.

■ Distributed component architecture This logging tool is a reusable com-
ponent, so you do receive advantages from the component architecture that
EJB provides. However, log entries are predominantly write-only, so while
you need to be able to log messages in a distributed fashion, you rarely (if
ever) need to mutate or read those messages. Thus, most of the life cycle
management parts of the EJB specification are wasted on our example.

■ Component-level caching An application server’s ability to cache instances
of particular components can result in considerable performance improve-
ments. However, since you do no reads, typical forms of caching won’t help
much. Write-behind caches in some application servers might help, but the
major application servers do not offer write-behind caches as part of a stan-
dard product offering.

Because the EJB specification tends to bundle all these services together, you will
pay a price in coding complexity and runtime performance for unused features.
If you were to choose not to use an EJB container, you would lose a couple of the
services provided by EJB: simple, unified, standardized configuration interfaces
and high availability support. So, you need to decide whether or not these two
needs merit the complexity and likely performance implications of using an EJB-
based architecture for our logging framework.

2.2.2 Solution: Simplify

Ten files and 300 lines of code seems like rather a lot for a task as simple as storing
a string and an integer. So, how could we rewrite this application to be simpler?
First, let’s consider the simplest solution—go with a product like the Apache
Jakarta Commons Logging component. The Commons Logging component
(available at http://jakarta.apache.org/commons/logging.html) provides a pow-
erful, full-featured logging API that can delegate to a number of standard logging
tools, such as Log4J (http://jakarta.apache.org/log4j/index.html) or the
java.util.logging package available in Java 2 Platform Standard Edition Version1.4
(http://java.sun.com). It is simple to write your own custom logging back-ends for
the Commons Logging component to use, so we could conceivably use either our
JDBC or EJB example with Apache’s tool:

34 CHAPTER 2

The bitter cost
import org.apache.commons.logging.*;

...

Log log = LogFactory.getFactory ().getLog ("log-channel");
log.info ("log-message");

Assume for now that Commons is not appropriate for your application, for what-
ever reason. The logging problem is representative of flyweight problems often
erroneously implemented using EJB. For the sake of argument, let’s see how you
could simplify things if excellent third-party solutions to our problem did not
exist already. For the purpose of this discussion, assume that you need your own
logging framework because you must put log information into a table in a rela-
tional database, so that entries may be mined by your enterprise-reporting tool.
This table is named LogEntry and has the following:

+-----------------+---------------+
| Field | Type |
+-----------------+---------------+
log_entry_id	numeric(10)
severity	numeric(10)
message	varchar(255)
+-----------------+---------------+

This is the same basic schema definition we used earlier.2 However, you’ve imple-
mented this system in just two files. As before, one file is a test harness, so in real-
ity, your non-EJB implementation is just a single class. The file breakdown in this
situation looks like that in table 2.2.

Now, let’s compare the client code in these two examples. Listing 2.1 shows the
important excerpts from the EJB and the JDBC test client applications.

2 We used container-managed persistence for our LogEntry entity bean, so the details of this
mapping are stored in the vendor-specific configuration files.

Table 2.2 This table shows the files for a JDBC logging implementation, including line count. We’ve
reduced the total lines of code by two-thirds and expect a similar reduction in complexity.

Classification File name File line count

JDBC logging component JDBCLogger.java 51

Sample client code TestJDBCLogger.java 42

Antipattern: A Sledgehammer for a Fly 35
public class TestLogger
{
 private Context ctx;

 public void test ()
 throws Exception
 {
 Object loggerOb = getContext ().lookup (LoggerBean.class.getName (
 LoggerHome loggerHome = (LoggerHome)
 PortableRemoteObject.narrow (loggerOb, LoggerHome.class);

 Logger logger = loggerHome.create ();

 String msg;
 for (int i = 0; i < 5; i++)
 {
 msg = "Test Message: step " + i + " of 5";
 logger.logMessage (i, msg);
 System.out.println ("Logged:" + msg);
 }
 }

 private Context getContext ()
 throws Exception
 {
 if (ctx == null)
 ctx = new InitialContext (System.getProperties ());

 return ctx;
 }
}

public class TestJDBCLogger
{
 public void test (String url, String username, String password)
 throws Exception
 {
 JDBCLogger logger = null;
 try
 {
 logger = new JDBCLogger (url, username, password);

 String msg;
 for (int i = 0; i < 5; i++)
 {
 msg = "Test Message: step " + i + " of 5";
 logger.logMessage (i, msg);
 System.out.println ("Logged:" + msg);

Listing 2.1 Partial code from TestLogger.java, the test client for the EJB logging
implementation

Listing 2.2 Relevant excerpt from TestJDBCLogger.java

Look up the session
bean in JNDI

Create a new home
interface for our test

Set provider and naming
environment variables

Create a new
JDBCLogger
object

36 CHAPTER 2

The bitter cost
 }
 }
 finally Manually manage the JDBC logger object
 {
 if (logger != null)
 logger.close ();
 }
 }
}

Listings 2.1 and 2.2 are roughly comparable. Obtaining the logger home interface
is a bit more difficult in listing 2.1, the EJB example, than the comparable process
of creating a new JDBCLogger object in listing 2.2, the JDBC example. However, in
listing 2.1, you do not need to do any resource cleanup as we do in listing 2.2. So
JDBC has a marginal advantage so far.

2.2.3 Consider the cost of managing many files

Next, compare the EJB session bean (listing 2.4) to the JDBCLogger class
(listing 2.3). The JDBCLogger class is defined in a single file. On the other hand,
the Logger session bean definition consists of three Java files and entries in one
deployment descriptor and two WebLogic-specific metadata files (assuming we’re
not using XDoclet or another tool to generate part of this). So, before even look-
ing at the business logic, EJB is already losing the battle; maintaining four or more
files will inevitably cause problems.

public class JDBCLogger
{
 private long id = System.currentTimeMillis ();
 private Connection conn;
 private PreparedStatement ps;
 private boolean closed = false;

 public JDBCLogger (String url, String username, String password)
 throws SQLException
 {
 conn = DriverManager.getConnection (url, username, password);
 ps = conn.prepareStatement
 ("INSERT INTO LogEntry (log_entry_id, severity, message) "
 + "VALUES (?, ?, ?)");
 }

 public void logMessage (int severity, String message)
 throws SQLException

Listing 2.3 Excerpts from JDBCLogger.java

Obtain a connection and set up a prepared statement

Antipattern: A Sledgehammer for a Fly 37
 {
 if (isClosed ())
 throw new IllegalStateException ("This JDBCLogger is closed");

 ps.setLong (1, ++id); Do the database insert
 ps.setInt (2, severity);
 ps.setString (3, message);
 ps.executeUpdate ();
 }

 /**
 * Closes any resources maintained by this logger. After this is
 * invoked, {@link #logMessage} should no longer be invoked.
 */
 public void close ()
 throws SQLException
 {
 closed = true; Free up resources
 ps.close ();

 if (conn != null)
 conn.close ();
 }

 public boolean isClosed ()
 {
 return closed;
 }
}

public class LoggerBean implements SessionBean
{
 public void logMessage (int severity, String message)
 throws RemoteException, EJBException
 {
 try
 {
 Context ctx = new InitialContext ();
 Object candidate = ctx.lookup (LogEntryBean.class.getName ());
 LogEntryHome entryHome = (LogEntryHome) candidate;

 String id = System.currentTimeMillis () + "";
 entryHome.create (id, severity, message);
 }
 catch (Exception e)
 {
 throw new EJBException (e);
 }
 }
}

Listing 2.4 Session bean version of LoggerBean.java

Find the bean’s
home interface

Create a new
bean with the
appropriate
values

38 CHAPTER 2

The bitter cost
We’ve left out the CMP entity bean definition, because it has no business logic at
all. We also excluded standard implementations of the methods in the Session-
Bean interface. However, do not forget that, in the session façade plus CMP entity
bean solution presented here, you must create three more EJB files and make
modifications to the deployment descriptors.

 The session bean snippet shown in listing 2.4 is considerably simpler than that
shown in listing 2.3, the JDBC version. Our JDBC code must know how to obtain a
connection to a database and how to create and execute prepared statements.
Additionally, the JDBC code must handle closing resources. On the other hand,
the session bean just looks up an entity bean home and creates a new bean.
Because the EJB specification takes care of life cycle management issues, the client
code need not deal with any resource management issues. The decision points are
shown in table 2.3.

If you assign +1 to each win, the score is 4 to 2 in favor of the simpler JDBC
approach to your logging scenario, with the gray-zone issue of performance. Per-
formance tradeoffs are discussed in more detail in section 2.2.4. To summarize
thus far, you can see at least two principal costs of using EJB exist: the complexity,
which impacts the total lines of code, and a possible performance dip due to
added overhead. These costs translate directly and indirectly to dollar costs, due
to added development time and maintenance. You do have the benefits of EJB,
including improved deployment and management of resources, but you’ve got to

Table 2.3 The decision between EJB and the JDBC alternative is often easier when you take a critical
look at what the EJB framework is actually doing for you. One look at this table shows that EJB will
probably not be the best solution for our logging framework.

JDBC EJB

Amount of code Win Lose

Complexity of implementation APIs Win Lose

Client API allows for potential pitfall
(resource closing)

Lose Win

Performance Win (probably) Lose

Migration to non-relational back-end Tie—would require
rewrite of one class

Tie—would require a CMP imple-
mentation for the back-end

Standard configuration and adminis-
tration interface

Lose Win

Dollar cost Probably win Lose

Antipattern: A Sledgehammer for a Fly 39
conclude that, in many cases, the added benefits do not offset the additional cost.
Let’s now address the finer points in greater detail.

2.2.4 Grading the finer points

The complexity of implementation APIs bears further discussion. JDBC wins over
EJB in this category because the JDBC implementation uses standard Java and SQL
syntax. So, any developer familiar with basic Java and basic SQL can easily develop
and maintain this code. On the other hand, the EJB implementation requires that
the initial developer and any maintainers obey the numerous contracts specified
in the EJB specification that are not enforceable by a compiler. The developer
must ensure that threads are not used, remember pass-by-value vs. pass-by-refer-
ence semantics, and guarantee that EJB-related method names (finders, CMP field
accessors, ejbCreate methods) all obey the correct syntax and have the correct
parameter types and count.

 A number of tools—like XDoclet and integrated development environments—
that use EJB can help reduce the complexity of some issues. However, none of
these tools can address the basic fact that the EJB specification imposes constraints
upon a developer whose violation cannot be effectively detected by a compiler—
the developer must remember them on his own. A post-compilation verifier can
detect some constraints, but others cannot be validated.

 Performance deserves a few words as well. As we listed no performance num-
bers, our claim that the JDBC solution probably wins requires a little more justifica-
tion. Our conclusion is based on the assumption that write-behind caching is not
common in application servers. Because of this, and because this CMP example
stores data in a relational database, it will take the application server at least as
many cycles to write to the data store as it took our JDBC example. The application
server could get a slight edge by doing better connection pooling, but the JDBC 3
example could replicate that easily by using a JDBC 3-compatible pooling data
source, though it would further complicate the example.

 Additionally, the application server interposes itself between the client code
and the EJBs in order to do transaction management and perform security checks.
Even though our example does not make use of these services, that no-op inter-
posed code is still there, so a certain amount of overhead will be added.

 Further, the application server might be on a separate physical machine than
the client code, putting an extra network step between the client and the data-
base. This will significantly increase the time needed to execute each logging
operation. Based on these factors, it would be quite surprising if the EJB imple-
mentation outperformed a straight-JDBC solution.

40 CHAPTER 2

The bitter cost
 Finally, the claim that the JDBC solution will be cheaper also requires some jus-
tification. Let’s assume that the size and makeup of the development team is con-
stant and everyone already has the enterprise development tools they plan to use.
Let’s also ignore any other potential development-time costs (such as training).
That leaves us with deployment considerations. If this logging framework is the
only EJB component in our system, then it will be responsible for 100% of the cost
of license and hardware fees for an application server. If there are already other
EJB components in the architecture, then the cost will be proportional to the
amount of extra load the logging framework puts on the application server. This
deployment cost could be directly manifested as a need for more hardware and
licenses in a cluster or could more indirectly affect hardware or software costs by
increasing the load on the server, slowing down business transactions, and limit-
ing the number of simultaneous users of the system.

 On the other hand, depending on system configuration, the JDBC solution
could incur heavy costs. We mentioned that systems that use an application server
can reduce the costs (from either a computational or price standpoint) incurred
by expensive resources such as database connections. This cost reduction can
occur because the resources in question can be pooled by the application server
more effectively than by each client. Imagine a system with 100 clients that all
communicate with a database. In the best-case scenario, that means 100 connec-
tions to the database. If the clients begin any connection pooling, this number
could easily jump to 500 or even 1,000 open connections. If all the clients commu-
nicated with the database through the application server, then a single connec-
tion pool of, say, 10 connections could serve all 100 clients. This last scenario
could produce considerable savings in costs for both pay-per-connection database
licensing and database hardware necessary to keep up with the extra connection
management overhead.

 Sledgehammers are not for swatting flies, and the EJB framework is not for fly-
weight applications. Given our analysis, we must conclude that, to justify EJB, an
application needs to have significant size and complexity. So far, we’ve discussed
general needs used to justify EJB for any given application. In the next section,
we’ll switch gears and take a more detailed look at EJB persistence, uncovering a
few inherent problems.

Entity beans are a horse of a different color 41
2.3 Entity beans are a horse of a different color

The night after we hear the big cat, we’re on the trail again. Everyone knows that
cats hunt nocturnally. His shadow stalks us on every trail. Though we never
encounter him, the big cat still creates mischief, distracting us from the trail long
enough to cause us to crash or lose our way. Three years go by, and although no one
has yet seen the big cat, he continues to plague many riders in the Texas hill country.

Like night rides in the Texas hill country, it’s not always clear where the danger
lies. The trail, the night, and the fear of both intangible and concrete danger all
contribute to the overall risk. Likewise, the EJB landscape hides peril. It’s impor-
tant to discriminate between real and imagined danger. Let’s cast some more light
on the trail itself: the EJB framework. In the earlier sections, we’ve seen that the
EJB architecture forces the developer to conform to certain design restrictions to
realize the benefits provided by an application server. These are relatively small
problems, like tree roots on a mountain bike trail. In this section, we’ll encounter
a more serious obstacle—entity beans.

 Many people who approached the EJB specification a couple years ago didn’t
quite understand what session beans did. Entity beans, on the other hand, seemed
simple. Entity beans provide a mechanism for dealing with data stored in a data-
base as Java objects, so the entity beans can be used to implement a persistent
domain object model. If you implement persistent classes such as Employee,
Invoice, and PurchaseOrder as entity beans, everything will be great. Right?

 Wrong. Entity beans are not merely classes whose instances may be stored to a
database; they are full-fledged EJB components, capable of being deployed to an
EJB container. Entity beans differ from session beans in that they support a more
durable persistent state than that supported by session beans. (Keep in mind that
stateful session beans can lose state in the event of a crash.) However, the persis-
tent state supported by entity beans does not really map to the needs of a persis-
tent domain object model. The additional services contained within the entity
bean specification may be useful in isolation, but they present complexities and
constraints that get in the way when you need to use entity beans to implement a
persistent domain object model.

 In this section, we’ll talk about the origins of entity beans and what they were
designed to accomplish. We’ll look at how the industry has used them in the past,
and we’ll consider the changes made in EJB2 to accommodate the industry’s
desires. We’ll determine when it’s appropriate to use entity beans and when to
avoid them. By the end of this chapter, you will understand why using entity beans

42 CHAPTER 2

The bitter cost
seems a bit clumsy, and you’ll see that the entity bean and EJB specifications
require this awkwardness. We will not discuss how to use entity beans—or how not
to use them, for that matter. That topic will be covered in greater depth in
chapter 7. Here we’ll simply focus on the cost of the service.

2.3.1 The black sheep of the bean family

Entity beans are one of three types of beans defined in the EJB specification. Like
session beans and message-driven beans, you can access entity beans from remote
JVMs. Entity bean methods can also participate in global transactions governed by
a transaction manager. Further, you can control access to entity bean methods via
the security services provided by an EJB container. In addition to these common
services available to all Enterprise JavaBeans, entity beans provide a mechanism
for persisting data into a database.

 Because of this persistence mechanism, J2EE users primarily use entity beans to
implement persistent domain object models. To do so, you define an entity bean
for each class that must be persisted into a database. This approach has problems
because it means that the domain classes must adhere to all EJB specification
rules. Often all we want is a way to make application-defined objects persistent. As
table 2.4 illustrates, we don’t need all the services built into EJB. As you can see, we
need only the persistence services and not the declarative transaction, security, or
distributed object services

At first glance, the existence of these extra services may not seem problematic.
But on closer examination, a key difference becomes apparent. The transac-
tional, security, and distribution services are typically applied at a coarse-grained
level, whereas persistence services are typically used in a much fine-grained manner

Table 2.4 Many EJB services typically go to waste. The problem is that the EJB container provides
coarse-grained services, but persistence needs to be a fine-grained service. Persistence, security, and
distributed declarative transactions do not belong at the fine-grained level.

Service Granularity

Declarative, distributed transactions Coarse

Security and authentication Coarse

Distributed object access
● failover
● scalability

Coarse

Persistence Fine

Entity beans: Take two 43
(see figure 2.1). That is, typical applications perform many persistence operations
in a given transaction or in a given remote method invocation.

 From a design standpoint, we can see that the EJB specification team never
intended entity beans to represent a complex domain object model. Data persis-
tence is mentioned only in passing in the EJB 1.0 specification. Instead, the speci-
fication focuses on the distributed object issues mentioned earlier. The best that
the original specification does is to say that an entity bean “represents data in the
database.” (EJB 1.0, section 4.3.2) However, object persistence remains one of the
biggest everyday infrastructure challenges for EJB developers. This need is more
pervasive than the need for true distributed components. As a result, when EJB hit
the streets, everybody used entity beans—preferably container-managed persis-
tence entity beans—in the hopes that they would provide a solution for the object
persistence problem.

 Unfortunately, EJB was not designed with this problem in mind, and entity
beans were not quite up to the challenge. Entity beans were an optional part of the
original EJB standard, yet all major EJB containers were quick to implement them.
Entity bean methods were exclusively remote-capable, meaning that method argu-
ments and return values were copied even if the entity bean was in the same JVM as
its client. The role of the entity bean in a domain object model was not clearly
defined. The 1.1 specification clarified that entity beans should be used only to
represent independent objects. The specification went on to define dependent
objects as those wholly managed by independent objects (EJB 1.1, section 9.1.2).
This definition includes common object model situations such as an Employee class
that contains one or more Address instances. An instance of Employee owned each
Address object, so Address objects are dependent objects and therefore not appro-
priate candidates for entity beans, according to the 1.1 specification.

2.4 Entity beans: Take two

The EJB 2.0 specification acknowledged the unexpected use of patterns and made
changes to the EJB standard to accommodate them. The members of the spec
team embellished CMP greatly. (EJB 2.0 CMP is essentially a complete rewrite of the
CMP specification.) They added local interfaces to bypass most of the significant

1
Employee Address

1

Figure 2.2 This design with a 1-1 relationship between
Employee and Address is not recommended in EJB 1.1 because
Address is dependent on Employee. But with container-managed
relationships, this design is fine for EJB 2. The design is not
inherently wrong, but we’ll see problems as we dive deeper.

44 CHAPTER 2

The bitter cost
overhead involved in a local call between beans. Then they added container-man-
aged relationships (CMR) to the CMP spec, allowing CMP entity beans to establish
relations to the local interfaces of other entity beans. The spec team also added a
standardized query syntax for CMP entity beans. Nonetheless, the EJB specifica-
tion remains fundamentally concerned with distributed components, not data
model persistence.

2.4.1 Local interfaces

The most immediately visible problem with EJB 1.x entity beans was remote inter-
faces. Entity beans coupled distributed method invocation with object model per-
sistence. The utopian goals of the specification team were ambitious—to create a
persistent model with complete location transparency. A model could be
deployed in one container or within many containers across distributed servers.
That model completely ignored the overhead of distributed models and local
interfaces. So, as we’ve said, conventional wisdom dictated that you wrap your
entity beans in a session bean façade and deploy your entity beans to the same
machine as their façades, to reduce network overhead.

 Given that the entity beans were in the same JVM as their façade, and that cli-
ent code was forbidden to access the beans, entity bean performance became
manageable. However, EJB 1.x left yet another hole. A significant amount of over-
head remained in the entity bean method invocation process. The container had
to guarantee that the method semantics were the same even if the invocation hap-
pened to be in the same JVM. At a bare minimum, method parameters and return
values had to be serialized and deserialized to ensure that the pass-by-value
method invocation semantics were maintained within the container. Amazingly,
some containers simply used the same expensive Remote Method Invocation
(RMI) pathways that two remote JVMs would use, even when method calls were
made in the same JVM! (We’ll talk more about this problem in chapter 3.)

 The EJB 2 team solved this problem by adding the concept of a local interface
to the EJB specification. Local interfaces differ from remote interfaces in calling
semantics; parameter values in local interface method invocations are passed by
reference, rather than by value as with remote interfaces. For that reason, local
interfaces can be invoked only from within the same JVM, allowing a bean devel-
oper to design a system that bypasses the method invocation overhead of remote
interfaces. Local interfaces are not unique to entity beans, but they are most
useful with fine-grained entity beans such as those you would see when imple-
menting a domain object model with entity beans.

Entity beans—a closer look 45
 We’ve gone into great detail to make an important point. As you’ve seen, EJB 1.x
supported only remote interfaces, leading to unacceptable performance. The
EJB 2.x specification solves this problem by adding local interfaces. You’ll soon see
that local interfaces are a necessary addition, even though they remain a compro-
mise. First, let’s consider the additional improvements in the EJB 2.x specification.

2.4.2 Container-managed relationships

Local interfaces were a key prerequisite for another new entity bean—CMR. CMR
make it possible for an entity bean to have complex relationships with other
entity beans. To guarantee that CMR perform well, the EJB 2.0 team required that
all CMR always relate to a local interface. For example, if an Invoice entity bean
has a relation to a LineItem entity bean, the LineItem bean must have a defined
local interface.

 The introduction of CMR lets you implement more fine-grained object models
with entity beans. With EJB 2.0, the Invoice-LineItem relationship that was not
recommended in the EJB 1.1 specification is now efficient. You have local inter-
faces, a session façade, and CMR, so your EJB problems are solved, right? Take a
deeper look, then decide for yourself.

2.5 Entity beans—a closer look

Let’s look at what happens inside a container when an entity bean method is
invoked. First, we’ll see what happens when we implement an example using EJB 2
CMP entity beans. Then, we’ll compare it to what we actually need.

2.5.1 Employee management

Imagine that we are developing an employee management system. One require-
ment of the system is that it be capable of changing an employee’s home address.
Additionally, the system must be designed with high fault-tolerance limits in mind,
so this operation must be idempotent.3 If we were to implement this algorithm as
a session bean that employs EJB2 CMP entity beans for representing the Employee
and Address domain objects, our code might look like that in listing 2.5.

3 An idempotent operation is one that can be repeated without altering the final state of the sys-
tem. That is, if an idempotent method is invoked twice, the final state of the system will be the
same as if it had been invoked only once. i = i+1 is not idempotent, but i = 9 is. Idempotent
EJB methods can be transparently re-executed in the event of container failover.

46 CHAPTER 2

The bitter cost
public class EmployeeManager implements SessionBean {

 /**
 * Finds the employee referenced by <code>employeeId</code> and
 * Changes the home address to reflect the new information.
 */
public void resetHomeAddress (long employeeId, String addr1, String addr2,
 String city, String state, String zip) {

 EmployeeEJB employee =
 employeeHome.findByPrimaryKey (new Long (employeeId));

 AddressEJB address = employee.getHomeAddress ()
 address.setAddress1 (addr1);
 address.setAddress2 (addr2);
 address.setCity (city);
 address.setState (state);
 address.setZip (zip);
 }
}

Let’s assume that the session bean method in listing 2.5 is invoked from a remote
client, and that the client allows the application server to perform transaction
management. Additionally, assume that EmployeeEJB and AddressEJB are local
interfaces for CMP 2 entity beans, and that the methods invoked on these entity
beans represent CMP and CMR fields. The interaction between our application
objects and the EJB container demonstrates that the EJB 2 specification is rela-
tively efficient compared to what we would have seen with EJB 1, but is still compo-
nent-oriented. The EmployeeEJB get method and each AddressEJB set method in
the example code will be interposed with container code to check the state of the
current transaction and ensure that the current security principal has access to
the AddressEJB methods invoked.

 While this overhead is small compared to the cost of method parameter serial-
izing or RMI communications overhead, it does increase significantly the amount
of work that the JVM must do each time a persistence operation is performed. If
entity beans were accessed through local interfaces only, this overhead would be
hard to justify because the security and transactional EJB services would have
already been performed at the session bean invocation level.

 Now what if our session bean looped over an arbitrarily long list of addresses?
You can see that the number of interactions between the session bean code and
the application server would be proportional to the number of operations that

Listing 2.5 Session façade for Employee bean

Entity beans—a closer look 47
the session bean performs on the address list. So the extra time consumed by the
transactional and security code would grow with the number of operations per-
formed, making each access to the entity beans slower (figure 2.3).

 In a distributed component system, this extra overhead is negligible since invo-
cations of the remote public component APIs are typically coarse-grained in
nature. However, if an object model is represented via entity beans, this overhead
can quickly add up. Because each field access is part of the entity bean API, it is
therefore subject to this additional overhead. So if your data model includes

Employee Façade

Client Distribution TransactionSecurity
Employee
Manager

Employee Entity

Txn Sec
Emp
EJB

Address Entity

Txn Sec
Address

EJB

Useful services

Wasted services

Figure 2.3 This simplified object interaction diagram shows the inherent overhead for EJB persistence.
The problem is that EJB uses a coarse-grained framework for a fine-grained problem—persistence. You
can see the wasted services in dark gray.

48 CHAPTER 2

The bitter cost
objects with—or many objects with an average number of fields—you can see that
merely accessing all the data necessary to perform a business operation would be
a heavyweight task.

 Now, let’s imagine that the EJB container did not couple the coarse-grained ser-
vices mentioned in figure 2.2 with the persistence service we are using in this
example. Then, the object interactions would be more along the lines of what we
would expect, as in figure 2.4. The extra overhead and complexity of checking and
re-checking transactional status and security parameters would be eliminated, and
the necessary execution time for a single operation would decrease. This means
that the overhead of using the EJB specification would be less, and our application
would be able to run faster on a given hardware configuration or process more
user requests at the same speed in that hardware configuration.

 However, this imaginary EJB container would not be compliant with the EJB
specification as it currently stands, because the Employee and Address entity
beans would not be performing many services required of an Enterprise Java-
Bean, namely, the orthogonal services mentioned earlier: transaction control,
security, and distribution. As we’ve seen, the EJB specification team revised the
specification to permit using beans without the distribution service. Perhaps
future versions of the specification will decouple the rest of the services provided
by the application server, making transactional and security services optional. A
developer would then be able then to pick and choose among the services pro-
vided by the EJB specification, incurring the performance and design penalties
implied by each service only when that service is needed. That the EJB specifica-
tion team has decoupled remote access from the other services indicates progress
may appear in this area in future specification updates. In fact, JBoss 4 will allow
just this type of service decoupling and, hopefully, other application server ven-
dors will follow its lead.

Entity beans—a closer look 49
Employee Façade

Client Distribution TransactionSecurity
Employee
Manager

Employee
EJB

Address
EJB

Figure 2.4 This simplified object interaction diagram shows a hypothetical modified EJB implementation
of the EmployeeManager.resetHomeAddress() session bean method. The entity beans need not use the
transactional or security services of the EJB specification, saving significant overhead and making a
much cleaner design.

50 CHAPTER 2

The bitter cost
2.6 Summary

We began Bitter EJB with a premise: you may not want to use EJB at all. In fact, you
should carefully justify EJB each time you choose to use it. We have seen that the
EJB specification has a number of costs—some related to performance, others to
developer productivity. We weighed the constant tension between cost and value
considering factors for choosing EJB and determining which projects are truly
“enterprise applications” from the standpoint of the EJB specification. We con-
cluded that you should not dive into EJB as if it were a lifeboat. Instead, you
should thoughtfully weigh the pros and cons of using EJB. Plenty of both exist. In
other words, carefully consider your application requirements and make sure that
the benefits you’ll see from EJB will offset the additional complexity that you’re
bound to encounter.

 In addition to considering application requirements, we considered the entity
a possible hidden cost of EJB. Shoehorned into a role for which it was not
designed, the entity bean specification contains services that may be unnecessary
baggage for certain implementations and, consequently, may cause problems that
certainly would add to the cost of using EJB. In subsequent chapters, we’ll assume
that you’ve concluded that EJB is a framework that will work for you. We’ll look at
global EJB issues in chapter 3. From there we’ll drill into each major EJB compo-
nent, including session beans, message-driven beans, and entity beans. Through-
out our discussions, remember to keep the tradeoff between value and cost in the
back of your mind.

Antipatterns in this chapter 51
2.7 Antipatterns in this chapter

This section covers the A Sledgehammer for a Fly antipattern.

DESCRIPTION
Using the wrong tool can often result in disaster. EJB is often ap-
plied to situations when much simpler technologies would be bet-
ter choices.

MOST FREQUENT SCALE
Project

REFACTORED SOLUTION NAME
Well-chosen technologies

REFACTORED SOLUTION TYPE
Technology

REFACTORED SOLUTION DESCRIPTION
Choose a technology appropriate for the needs of your project.
Choosing an overly complex solution could cause a simple project
to fail.

ANECDOTAL EVIDENCE
“We’re using EJB CMP entity beans on one part of our project, so
we should just use it for all database access.”

SYMPTOMS, CONSEQUENCES
Overly complicated implementations of simple projects, inade-
quate scalability, and/or performance

A SLEDGEHAMMER FOR A FLY

3Bitter interfaces
This chapter covers
■ Rules for good interfaces
■ Local and remote interfaces
■ Rules for distributing an application
■ Data transfer objects
52

Building a good interface 53
I want to be one of the few people who learns to surf on a long board in the mighty
Hawaiian waves. I am an avid skateboarder and a strong swimmer, so I’m sure
that I can handle the surf. I rent a long board that’s waxed to provide good traction
and feel. It’s huge. I lather up with SPF 40 to protect my mainland skin, and get fif-
teen minutes of pointers from a pro. Then, I paddle out to the big breakers over the
reef. There the waves look bigger and more powerful than they did near the shore. As
I paddle out, the sunscreen on my chest rubs off on the board and makes it as slip-
pery as an eel in grease. After every third wave, I slip off and must chase down the
board and paddle through the ocean toward the swells. Finally, I’m ready to go. I
turn, look over my shoulder, and see a monster seven-foot wave. Against my better
judgment, I go for it, frantically plunging my hands into the surf, to catch the tiger
by the tail.

3.1 Building a good interface

Well-designed interfaces are crucial to success in the EJB architecture. EJB compo-
nents break down into three fundamental parts:

■ The interface

■ The implementation

■ The deployment

Although implementation and deployment descriptions may change, once some-
one starts using your component, you are stuck supporting the interface. The
interface embodies the essence of a component’s contract. We often see develop-
ers dive into the EJB architecture, abandoning everything they know (or don’t
know) about Java programming and object-oriented design. Making the right
interface design decisions up front can determine whether or not you can easily
plug, reuse, and maintain an interface. In the simplest terms, good design will
ensure the success or failure of your component.

 The EJB container implicitly provides many services that seem like magic, and
until we understood the details, breadth, and depth of these services, we had a dif-
ficult time deciphering where exactly this magic begins and ends. EJB does not
supplant objects. Quite the contrary, EJB complements plain Java by abstracting
some domain-specific, system-level concerns and facilitating modular reuse in a
standard fashion. When it comes to designing bean interfaces, no substitute exists
for strong Java skills and traditional object-oriented (OO) design practices.
Throughout this chapter, we’ll explore the decisions that go into making the best
possible interface. We’ll pay close attention to the decisions that can and should

54 CHAPTER 3

Bitter interfaces
be made early on in the development life cycle and to the factors that influence
these decisions.

3.1.1 Breaking down remote invocation performance

The EJB architecture features transparent object distribution. As an EJB developer,
you can invoke an Enterprise JavaBean, regardless of whether you’re invoking a
bean running in the same process, in a different process running in the same
machine, or in a process running in an entirely different machine across a net-
work. Though EJB puts remote concerns out of sight, they are certainly not out of
mind. Even though EJB doesn’t expose you directly to the mechanics of remote
invocations, you must remain mindful of the performance and reliability con-
cerns surrounding remote distribution. Though local and remote method invoca-
tions appear similar on the surface, under the hood they are very different.
Effective interface design makes the difference between an application that
responds like a finely tuned European sports car and one that behaves more like
my brother’s vintage VW bus (0 to 60 in four-and-a-half days).

 Local method invocations—method calls within the same process or virtual
machine—are lightweight, so much so that the HotSpot compiler can often opti-
mize them away. An in-process method invocation primarily consists of the following:

1 Creating a new stack frame

2 Redirecting execution to the method’s instructions

The Java language passes the method arguments and returns value by reference,
using their pointer, with the exception of primitive types. Rather than copy the
argument objects in their entirety, the virtual machine passes a reference or
pointer to the target method. In a 32-bit virtual machine, whether the size of a
method argument is 10 or 10,000 bytes, the invocation time will be relatively con-
stant. The machine passes a 4-byte reference on the method stack in either case.
The same applies to the return value. (Note that Java uses strictly pass-by-value
semantics, but we’ll play a little loosely with the language in this chapter to keep
the concepts readable.)

 Remote invocations have considerably more overhead. The caller must mar-
shal the method invocation, serializing the method arguments and passing them
in their entirety to the remote virtual machine. Then, the target machine invokes
the desired method and marshals the result back to the caller. J2EE passes the
arguments and result by value. Consequently, the method invocation time
increases proportionally with the sizes of the method arguments and return value.

Building a good interface 55
A 10,000-byte argument may take three orders of magnitude (1,000 times) longer
to transmit than a 10-byte argument.

 Additionally, round tripping also affects remote invocation performance. An
invocation takes a finite amount of time to get to the remote process. And,
depending on network conditions and the size of the values, the return value
takes a comparable amount of time to get back to the calling process. Depending
on the network speed, the number of switches, and the distance between the
source and target machines, the length of time these trips take may vary, but
remote call times will always dwarf local invocation times by many orders of mag-
nitude. EJB client code typically invokes methods in sequence. Consequently, even
invocations between processes on the same machine take far longer than in-pro-
cess invocations. EJB invocations also entail passing the security and transaction
context. Throw in Web services, which brings along XML creation and parsing for
each method invocation, and you can quickly drive performance down to unac-
ceptable levels.

 That brings us to our first set of design compromises. If method invocations
are too small and frequent (we’ll call these fine-grained invocations), the cost of
these round trips can add up quickly. However, finer grained interfaces are more
flexible. You need to balance interface flexibility and performance. We’ll dive into
this compromise in more detail through the course of this chapter.

3.1.2 Passing by reference vs. value

Whether an EJB method passes arguments and return values by their object refer-
ence or their serialized value bears heavily on performance and the bean’s con-
tract with the client. In pass-by-value semantics, the virtual machine passes the
object in its entirety; the caller and callee work with completely separate copies of
the object. In pass-by-reference semantics, the virtual machine passes the object’s
reference; the caller and callee work with the same copy of the object. Conven-
tional Java code passes objects (anything that inherits from java.lang.Object) by
reference, and primitives (int, long, double, boolean, etc.) by value. This
approach amounts to, at most, copying a few bytes per parameter, per method
invocation, regardless of the argument’s size. For example, when code passes a
String object into a local, vanilla Java method, whether the passed String con-
tains someone’s name or the complete text of Romeo and Juliet, the machine copies
only a 4-byte reference (table 3.1). In other words, the two invocations should
take about the same amount of time.

 Let’s look at a few finer points of Java’s parameter passing. When you’re calling
across JVMs or using EJB, you’re passing-by-value. That means that you must make

56 CHAPTER 3

Bitter interfaces
a copy of your argument before you use it. When your argument is an object, you
must serialize it. When your value is a primitive, the serialization is no big deal,
but when you’re dealing with a Shakespearian play, then you have real perfor-
mance implications. Both the following list and table 3.1 detail the intricacies of
pass-by-reference.

■ Java uses pass-by-reference by default Pass-by-reference, in absence of
other concerns, is much faster than pass-by-value.

■ Changes are visible to both method and caller When using pass-by-refer-
ence semantics, changes to objects passed or referenced from method argu-
ments will reflect in the client’s view of the objects. Likewise, client changes
to a return value object reflect in the service’s view, because both reference
the same object in memory.

■ The EJB specification requires pass-by-value semantics Because pass-by-
value semantics are required, the client method and the service method
work on completely independent copies of the method arguments and the
return value.

■ Calls between JVMs are by-value and automatic When the client and ser-
vice run in two different virtual machines, this copying happens implicitly as
the client stub serializes the method arguments and transports them to the
target virtual machine. There, the service’s container deserializes the argu-
ments, creating new objects, and passes them to the service method. The
same holds true for the return path and the method result.

With these tidbits in mind, consider what we can accomplish with local interfaces.
When the EJB client and the target service run in the same virtual machine, the

Table 3.1 When you pass objects by reference, the entire text of Romeo and Juliet is passed in the
same amount of time as the name “Mercutio.” EJB mandates pass-by-value, which is much slower, but
EJB2 allows local interfaces, which pass by reference.

Object type Passed by Notes

Plain Java objects, same JVM Reference The size of arguments is irrelevant to performance.

Plain Java across JVM Value The Java objects are copied transparently by Java.

EJB Value EJB mandates pass-by-value, since EJB can be
remote.

EJB local interfaces Reference Pass-by-reference for local interfaces is a perfor-
mance optimization. Local interfaces pass-by-refer-
ence in the same JVM.

Designing the application tier 57
container can optimize the invocation. Technically, the container should clone
the arguments and return value to maintain the pass-by-value semantics, but in
our experience this is not often the case. Many application servers implement the
local optimizations with pass-by-reference semantics by default. As long as a bean
client and implementation don’t depend on having exclusive access to an object
and its state, passing-by-reference doesn’t hurt anything. However, application
developers should anticipate an extra degree of added performance overhead
when moving an EJB client outside the container’s virtual machine.

 Given many containers’ optimizations, the EJB implementation of our name vs.
Shakespearean play example may perform comparably to the local implementa-
tion. In other words, invocations with one argument may take nearly the same
amount of time as with the other. When the client moves to a separate container
from the deployed EJB and pass-by-value semantics becomes inevitable, invoking a
method with the full text of Romeo and Juliet will take far longer than passing a 20-
character name. The invocation time may depend on numerous factors: the pro-
tocol, the network bandwidth, the network speed, the distance, or the status—
open/closed—of the network cable in the door.

3.2 Designing the application tier

When we model the application tier or design an application’s business logic
implementation, our design approaches tend to fall into one of two categories.
One approach starts with the use cases and works backward (figure 3.1). We’ll call
this “service-driven.” The other centers heavily on the domain objects. We’ll refer
to this approach as “domain-driven” (figure 3.2).

BookingAgent

Booking

Trip

User

<uses>

<uses>

<uses>

Service-oriented architecture

Figure 3.1 Service-oriented interfaces start from a use case and work back. The majority of the business
logic resides in the service classes. The domain objects are lightweight mere data place holders.

58 CHAPTER 3

Bitter interfaces
In a purely service-driven design, most business logic resides in the service classes.
The domain objects—objects that model entities in the application’s domain—
are relatively lightweight, limited mostly to simple data holders. The service meth-
ods correspond closely to the use cases, each method manipulating the domain
objects and performing a specific task. When a new use case requirement comes
along, you simply implement another method in the service. For example, in a
trip-booking application, you might have a Booking domain object to represent a
trip booking and a BookingAgent service to manage the actual business logic.

 A purely domain-driven approach lays more responsibility on the domain
objects, coupling function with data. The domain-oriented approach moves func-
tion to objects in the know. For example, a Trip object, representing one of many
possible trips that can be booked, most likely knows best what to charge. Rather
than hard coding the pricing logic for each trip type into a BookingAgent, the
Booking object simply asks its Trip object how much to charge the client.

 Though the service-oriented approach seems more straightforward in the con-
text of simple domain models, the object-oriented nature of the domain-driven
approach scales in a maintainable manner when applied to more complicated
domains (figure 3.2). The key here is that, as in object-oriented programming in
general, the domain-driven approach factors logical complexity into the object
model. Rather than confusing the business logic with a single dimensional nest of
if-then-else blocks, the domain-driven approach relies on the objects to delegate
responsibility to the most natural locations.

Booking

Trip

User

<uses>

<uses>

<uses>

Domain-oriented architecture

Figure 3.2 Domain-oriented architecture uses the objects of a business domain as the building blocks
of the system. Entity beans embrace a domain-oriented design, but fine-grained access to the model
usually harms performance. Modern designs hide the fine-grained objects of a domain behind a facade.

Designing the application tier 59
3.2.1 Looking back on entity beans

The original entity bean conception (EJB 1.0-1.1) wholly embraced a purely
domain-oriented design. At the time of those earlier specifications, the EJB commu-
nity advocated entity beans as an indispensable member of the architecture.

 What could be better? Imagine a design consisting purely of your domain
objects, modeled using heavyweight, distributed, pluggable components, and
likely tied to the underlying persistent store. Continuing our example, Trip beans
talk to Booking beans, which talk to User beans, none of which cares whether the
sibling component lives in the same virtual machine, in a separate process, or in a
separate machine all together. If the Booking bean starts running low on
resources, we can deploy Booking to more machines. The client meanwhile
orchestrates this ubiquitously distributed domain layer with the flexibility you’d
expect from an object-oriented system.

 Unfortunately, reality sets in. We see past the vendor brochures’ glossy veneers.
Yes, the application server hides the mechanical differences between local and
remote invocations quite well, but abstracting the performance and stability issues
associated with remote communication is another story altogether.

 In addition, early entity bean developers following the distributed domain
model fell subject to another pitfall. With the fine-grained flexibility of the meth-
ods in the domain model often came numerous, fine-grained queries to the per-
sistent store. These queries were flat and expensive for the most part, making
more round trips and pulling back more data than needed, neglecting such sim-
ple tools as database joins. Many entity bean early adopters learned these inter-
face lessons as we did—the hard way.

3.2.2 Questioning EJB local interfaces

The EJB 2.0 specification introduced the concept of separate local and remote
interfaces. The performance issues associated with entity beans’ fine-grained
nature contributed primarily to this addition. The EJB API already contained EJB-
Home and EJBObject, representing the base home and client interfaces for EJB,
respectively. The extension added local versions of the two interfaces, EJBLocal-
Home and EJBLocalObject, solidifying the legacy interfaces as implicitly remote.

 The decision to add separate local interfaces did not come easily, and right-
fully so. For example, during the specification’s development, the specification
team solved problems with entity beans by using dependent objects, the idea
being that lighter, dependent objects for which the container could maintain car-
dinality relationships would back the heavyweight entity bean components. How-
ever, once the team took into account the complications and reusage roadblocks,

60 CHAPTER 3

Bitter interfaces
they abandoned dependent objects and solved the entity bean problem in a more
general sense with local interfaces.

 Local interfaces empower developers to create fine-grained EJB components—
entity beans, in particular—and prevent clients from misusing these same compo-
nents by trying to access them remotely. At the same time, explicitly limiting com-
ponent access to a single VM allows container implementers more flexibility,
specifically enabling the EJB container to manage entity bean relationships and
improve query performance.

 This would be fine except that we’ve traded in our utopian distributed domain
model in favor of a local model, negating many of the features provided by entity
beans. Now we must tuck our entity bean domain model away behind a coarse-
grained, service-oriented remote interface, such as a session bean. In that case,
features such as the component model, transactions and security become redun-
dant, as we discussed in chapter 2, section 2.5. If our domain model must be
locally restricted, we might as well go with a lighter-weight, easier-to-use persis-
tence framework and dodge the restrictions imposed on entity beans by their leg-
acy obligations—that is, by their obligations to their original design—and their
heavyweight component-oriented nature. (See chapter 9 for alternative persis-
tence frameworks.)

3.3 Antipattern: Local & Remote Interfaces Simultaneously

Every once in a while, we’ll see a miracle pattern solution posted to a J2EE pat-
terns list, claiming to have solved the problem with separate remote and local inter-
faces. The posting designer usually outlines an elaborate interface hack that
enables EJB developers to swap local and remote EJB interfaces without affecting
the bean’s implementation or the client code.

 Figure 3.3 shows the implementation of the pattern, which usually goes some-
thing like this: The developer creates a non-EJB business interface. The bean’s
local and remote EJB interfaces extend both the generic business interface as
well as their respective interface from the EJB API. The developer codes the EJB
client to the generic interface. After swapping out the local and remote versions
of the EJB interfaces, the only task that remains is a simple tweaking of the
deployment descriptor.

 Sounds good in theory but in practice, myriad semantic and design-related
issues rear their ugly heads. You can read about many of these issues in the time-
less paper from Sun Research called A Note on Distributed Computing (http://
research.sun.com/techrep/1994/abstract-29.html). The specification designers

Antipattern: Local & Remote Interfaces Simultaneously 61
chose to separate local and remote interfaces, not because they had to do so,
but because they wanted to do so. In the next two sections, we’ll talk about some
of the reasons why the specification designers made that decision.

3.3.1 Combined interfaces muddle exception management

The exceptions thrown by the EJB methods present both semantic and design
issues. With Java inheritance (actually object-oriented inheritance in general), a
subclass can only weaken the contract imposed by the superclass. For example, if
a superclass method throws RemoteException, the subclass implementation of that
method may choose to not throw RemoteException, such as in listing 3.1. However
it cannot throw another type of checked exception—that is, a checked exception
that does not inherit from RemoteException.

public interface BadBusinessInterface {
 public void methodA() throws java.rmi.RemoteException;
 public void methodB() throws java.rmi.RemoteException;
 public void methodC() throws java.rmi.RemoteException;
}

public interface LocalBadBusinessInterface
 extends BadBusinessInterface, javax.ejb.EJBLocalObject {
}

public interface RemoteBadBusinessInterface
 extends BadBusinessInterface, javax.ejb.EJBObject {
}

BadBusinessInterface

methodA()
methodB()
methodC()

LocalBadBusinessInterface RemoteBadBusinessInterface

Figure 3.3 This attempt to gain the flexibility of both local and remote interfaces falls flat. This design
has tactical problems, including increased overhead for all objects. The bigger trap lies here: To handle
the performance implications, you need to stay aware of how an object is deployed. You should treat
remote objects differently than local ones.

Listing 3.1 BadBusinessInterface exposes remote and local versions of the same interface

62 CHAPTER 3

Bitter interfaces
Since all methods in remote EJB interfaces are required to throw RemoteExcep-
tion, to get our antipattern code to compile, the generic business interface meth-
ods must throw at minimum RemoteException as well, even though the local
implementation will never use it as shown in listing 3.1. Likewise, the client bound
to the generic interface must deal with the complications of handling and recov-
ering from RemoteExceptions—whether or not it needs to—simply because the
potential exists.

 The client’s implementation suffers from these same issues. When it comes to
exceptional conditions, local and remote invocations are two different animals. In
the local context, identifying and recovering from failures comes easily. In a dis-
tributed setting, determining when and what failures have occurred and how to
get the system back to a consistent state is a mixed bag. Did the remote system
fail? Did the network go down? Did the method execute on the remote system
and fail on the way back, or did the request not make it there at all? Should the
client throw its hands up and croak, or should it sit around until the remote sys-
tem comes back up? Will it even help to reattempt the request? The problems
with exceptions only scratch the surface. Next, we discuss performance—a much
more serious concern.

3.3.2 Combined interfaces hurt performance

Worse, when combining local and remote interfaces, you have performance
implications. Though not explicitly declared in the interface, clients of local and
remote interfaces have certain expectations. Local clients depend on consistent
performance and immediate responses. Remote clients, on the other hand, are
more complicated and must anticipate such issues as latency and network conges-
tion. An invocation taking longer than expected should not drag the system to its
knees. Also, if performance drives the decision to support both local and remote
interfaces, explicitly implementing the local EJB interfaces is not necessary. Even
though the bean supports a remote interface, many containers detect that a client
and bean live in the same virtual machine, and they optimize accordingly. (Of
course, if you’re developing an EJB that’s intended to be truly portable, you can’t
make this assumption.)

 On a similar note, the local-interface performance optimization creates other
problems. Memory issues directly affect the implementation of the enterprise
beans. Local invocations share the same memory space. The bean’s implementa-
tion creates defensive copies for variables. On the other hand, since different cop-
ies of the objects exist on the local and remote machines, remote invocations
implicitly defend. If a bean implementation supported both local and remote

Antipattern: Local & Remote Interfaces Simultaneously 63
interfaces, the implementation would have to err on the side of caution, always
creating defensive copies of shared objects. When accessed through the remote
interface, redundant copies would be made. Let’s take a look at a few variations of
this antipattern.

3.3.3 Mini-antipattern: Ubiquitous Distribution

When faced with the decision between local and remote interfaces, leaving the
door open by designing every interface to be accessed remotely may seem a logi-
cal conclusion. Then, you can run the entire system locally, breaking it out across
multiple boxes at arbitrary points as needed. You can rely on the container to rec-
ognize interactions within the same machine and optimize accordingly.

 In doing so, you severely limit the flexibility of your interfaces, overcomplicate
the implementation of the client code and, all in all, take on monster responsibil-
ities and headaches to match. Given that any interface may be or may not be
accessed remotely, you must always program to the distributed case.

 Your interfaces must guarantee a degree of consistency after a failure. Is the
method idempotent—in other words, will the result be the same no matter how
many times you invoke the method? Is it okay to retry a request after a failure? If
not, should the client throw up and die? Is there any state that needs to be
cleaned up? In a remote context, a designer must anticipate all these issues in the
interface design and developers must code for them in the client. On the other
hand, while local interfaces still need to manage exceptions, they need not shoul-
der any of these complications, so exception management can be simplified.

 Next, you must face the issue of performance and method granularity. Given
the cost of remote invocations, remote interface methods must be combined and
their frequency limited as much as possible. This combination leads to a lack of
flexibility in the interface and duplication across the method implementations as
requirements for slightly different functionalities arise. By forcing an interface to
handle distribution, the application designer inevitably sacrifices both robustness
and ease of maintenance for the sake of performance.

3.3.4 Mini-antipattern: Transparent Distribution

While we’re building all components of our application for possible distribution,
designing our system with the coarse-grained, service-driven approach, we might
as well see how the other half lives. If method granularity weren’t an issue in dis-
tributed performance, would our purely distributed domain model be viable?
Unfortunately, the answer is, “No.”

64 CHAPTER 3

Bitter interfaces
 A recurring theme in distributed system design is that state is evil. Our distrib-
uted domain model is an object-oriented design. By definition, objects have state
and identity. If we modify the state of a domain component on another box, we’ve
essentially signed on with that instance for the duration of our transaction. We
can’t go to another box, because the component deployed there will not necessar-
ily reflect the state change we just made. If the box hosting my component goes
down, we can’t just fail over to another deployment. One alternative is to replicate
the component’s state to a backup deployment. In the event that one component
fails, our client fails over to the duplicate on another box. Replication, however,
comes with its own myriad issues including, but not limited to, bad perfor-
mance—we must effectively duplicate the component’s state in its entirety, possi-
bly over the wire or to a database. Another issue concerns synchronization. In the
event of a fail-over, how can we as a client definitively determine where the failed
component’s state left off, or even that of the backup deployment?

 These are just a taste of the issues associated with distributed state. Like other
distributed computing concerns, the application server can abstract away and
hide some of these issues, but, like the distributed performance concerns, there
are limits to this abstraction.

3.3.5 Solution: Achieving equilibrium

As the massive wave approaches, my speed builds. Just like my instructor told me, I
press the front of my board to accelerate it down the concave surface of the front of
the wave. I keep my balance as I get up to my knees, but the sunscreen that’s all over
the board mixes with the wax to make a slippery interface between me and the board.
I slip off and the waves rake me across the reef.

Like the body and surfboard in Hawaii, you need to think about how the parts will
fit together before you implement your system. In Hawaii, sunscreen and board
wax protect bodies and boards from the elements; they just don’t work together.
In your system, you want a seamless bridge that meets the needs of both sides of
an interface. Often, when you’re defining an interface between client and server,
the crucial points are that, for the purposes of designing the remote interactions,
state should be avoided where possible and remote interfaces should be suffi-
ciently coarse-grained. In designing an EJB-based architecture, the safest
approach is to find a balance and draw a clear line between an object-oriented
local domain model and a procedural remote service layer. Essentially, we work
hard to get the best of both worlds. Our preferred approach includes implement-
ing as much of the functionality as possible in the domain model. How we map

Antipattern: Local & Remote Interfaces Simultaneously 65
the domain layer to the persistent store (entity beans, plain Java objects, or
another persistence framework) is less important than the purity of the interface:
you should be able to easily and independently understand, extend, and test the
layer’s functionality. To enable remote access, we then wrap our domain layer with
a thin service layer. In the EJB context, the service layer may be implemented as a
Session Façade, a common EJB design pattern we’ll discuss momentarily. The ser-
vice layer provides a coarse-grained, stateless view of the underlying domain
model. Where the service methods may correspond closely to the required use
cases, the functionality in the model is fine grained by comparison and reusable
across multiple use cases.

 The most robust, flexible (however slowly performing) design enables the cli-
ent to access the domain model directly. A thin service layer, the next best thing
when it comes to flexibility, essentially serves as an isolated extension of the client
and reduces the frequency of network traffic. As code duplication in the service
layer starts to crop up, simply refactor the redundant logic into the domain model
where the service methods can build off of it.

3.3.6 Knowing when to distribute

Spreading your application heterogeneously across multiple nodes hurts perfor-
mance and complicates your application, not to mention its deployment and
management. To some, the moral of this story is: avoid distribution at all costs,
trading your left thumb if you have to. After all, if the network is the computer, it’s
a wonky, crashy computer that takes forever to get anything done. Dodging distri-
bution increases performance and simplifies development, letting the developer
concentrate on the real problems at hand, meeting the customer’s requirements.

 Antidistribution zealotry aside, sometimes having a remote boundary makes
sense. For example, distributing between the client and server is definitely accept-
able, as figure 3.4 illustrates. In a typical client/server environment, where the cli-
ent and server applications execute on physically different machines, separating
the two with a Session Façade makes sense. The separation between a web server
and application server falls into this category.

 Putting a clean separation between the web interface and the business logic
can also enable a team to easily plug in new clients including thick, stand-alone
applications or even other middleware applications, which brings us to a second
reason to distribute: integration. Remotely communicating with pre-existing
third-party components makes sense, whether it’s an off-the-shelf component or
one that you developed in-house. Databases fit into this category, SQL being the
coarse-grained remote interface, as do message-oriented middleware systems.

66 CHAPTER 3

Bitter interfaces
Figure 3.4 shows a reasonable architecture. We’ve got strong reasons for each of
these distribution decisions. Sun provides some guidelines for classic J2EE deploy-
ment tiers at java.sun.com, but this good advice may be overkill in some cases.

 We’ve talked about some general issues that help you define interfaces
between components. In the next part of the chapter, we begin to talk about how
interfaces within a logical tier fit together.

3.4 Antipattern: Customers in the Kitchen

You’d rarely, if ever, see a restaurant that lets its customers into the kitchen. They
would distract the cooks, interfere with the cooking process, and clog all of the
hallways and doors throughout the kitchen. But even with the warnings against it,
clients frequently access entity beans directly. In this antipattern, I’ll discuss the
interface issues related to this practice. In chapter 7 we’ll look at more of the per-
formance implications.

 Remote performance and stability issues aside, other reasons exist for clients
to not access entity beans directly. We once joined a hastily constructed JSP/EJB
project. To save time, the application designer skipped the Session Façade and
coded direct access to the entity beans in the Java Server Pages (JSP). The EJB and
web containers ran together, alleviating remote performance concerns.

 The application ran more than acceptably despite minor shortcomings in its
maintainability, until the team upgraded to a later version of the application
server. Suddenly, the system testing team started complaining of excessive perfor-
mance problems (beyond that of JSP compilations). Upon examination, the
heavier the page that accessed the database, the slower it ran. Many page response
times ran in minutes.

Network

Network

Client
Application

Server
Database

/EIS

Figure 3.4 Distribution is expensive, so you’ve got to make sure that each distribution step has value.
In this classic three-tier scenario, distributing the client separates the view and simplifies deployment,
and separating the application and resource tiers makes it easier to manage the logistics of integrating
legacy applications.

Antipattern: Customers in the Kitchen 67
 Contrary to our initial hypothesis, remote calls did not degrade the perfor-
mance (not those between the JSPs and entity beans anyway). The vendor had not
started separating the web and EJB containers into different class loaders or vir-
tual machines. The culprit here was transactions. The EJB specification requires
containers to always invoke ejbLoad() on entity beans at the beginning of transac-
tions and ejbStore() at the end of transactions. This requirement ensures that
the database and container’s views of the data state are synchronized.

 In the application’s current design, the JSP invoked the entity bean accessors
and mutators directly. The transaction attribute for these entity bean methods was
set to Required. This transaction attribute is defined as follows: “If a client invokes a
method in the context of a running transaction, the EJB method inherits that
transaction. If the client is not running a transaction, the container starts and com-
mits a new transaction for the duration of the method invocation.” This means
that, for each call on a getter method, the container started a new transaction,
loaded the data for that field from the database, and committed the transaction.
For each call to a setter, the container at a minimum started a new transaction,
updated the field in the database, and committed the transaction.

 It got worse. Additionally, the database transaction’s atomicity had field granu-
larity. Because rows were modified one field at a time, independent requests could
query or update the same row concurrently, resulting in collisions and poor perfor-
mance. Why the sudden performance degradation? Between the old and new ver-
sions of the application server, the vendor modified the default caching strategy.

 In the old version, the vendor configured the server to have exclusive access to
the database by default. The container knew it was the only application capable of
modifying the database. In effect, there were no cluster and no external applica-
tions that wrote to the database. What this means is that the container could per-
form caching that would not otherwise be possible. The container did not have to
make a trip back to the database (by calling ejbLoad()) if the application did not
modify the data. Additionally, the container could batch updates, resulting in
fewer calls.

 In the new version, the vendor’s default changed to what it called database syn-
chronization, undoubtedly to make cluster setups smoother. The new strategy
relied on the underlying data store to handle concurrent access to data, the side
effect being that the container called ejbLoad() and ejbStore() for each and
every transaction.

68 CHAPTER 3

Bitter interfaces
3.4.1 Nudging the diners toward the door

As a temporary fix, we simply reconfigured the beans so that the container knew
it had exclusive access to the database. The current architecture had one
application server (it was a big box) with manual failover to a completely differ-
ent location with a separate database. Our fix, however, simply put functional
testing back on track, yet did not solve the underlying problems, even in the
short term. The following difficulties remain:

1 The transaction granularity was still too fine. The transactions started and
committed each time the application read or wrote a single field; there may
as well have been no transactions at all. Independent requests within the
database modified the same rows concurrently and one operation could see
another’s partial updates. The implications of this issue are dependent on
the nature of the application, the operations, and the data model.

2 More importantly, the fix only worked for the current architecture. If the
client added another application that modified the same data or clusters
the current application, the exclusive caching strategy would no longer
be an option. Each transaction would need to synchronize at the data-
base each time to prevent stale data and update collisions, resulting in
nasty performance.

The simple solution to this second problem would be to manually start and com-
mit JTA (Java Transaction API) transactions that surround the entity bean access
code; however, given that the client application is implemented using JSP, this
would be easier said then done. The JSP developer needs to take care that a trans-
action starts and commits or rolls back for each logic flow through the page,
accounting for redirects, includes, and exceptions. Otherwise transactions may
not get started or may be left hanging, in which case the results will be unpredict-
able at best. A hanging transaction may even throw an exception when the cur-
rent thread services the next client. In a nutshell, embedding transaction logic
into JSP plasters on a new level of complexity and potential fragility that a web
developer typically doesn’t have to deal with. We’ll discuss a more robust
approach in a moment, the Session Façade pattern.

 Last, business logic directly accessing entity beans embedded in JSP scriptlets is
a unit testing nightmare and a surefire recipe for disaster. It’s simply too tough to
automate. The only testing possible in this scenario is system testing, in which case
the developer must manually click through and test each page or use a tool capa-
ble of testing web applications. Developers tire quickly of monotonous, repetitive

Antipattern: Customers in the Kitchen 69
tests and tend to neglect them. Tools that test the web application automatically
must be modified themselves each time the interface changes, whether or not the
change is pertinent to the test’s goal. Additionally, GUI design changes run the
risk of breaking working code. Before you know it, the quick solution turns into
an intertwined nest of if-then-else statements and JSP includes, and you have a
maintenance nightmare on your hands.

 A cleaner design is the Model-View-Controller (MVC) pattern shown in JSP and
the controller logic uses servlets and plainer Java. The view JSPs contain the mini-
mal logic necessary to query the model classes and generate HTML pages that
present the information and—as required—post requests to the controllers. In
this design, you can easily unit test the model and controller business logic auto-
matically. Discussion of MVC falls out of the scope of EJB; however, the Jakarta
Struts project is a popular open source framework based around the pattern.

 The designer can further abstract the entity bean persistence layer in such a
way that the business logic code can run against stubbed test classes rather than
actual entity beans. In this case, unit tests can run without an EJB container and
consequently without the overhead of running an application server.

 In the past, we’ve passed over this design suggestion. Instead, we’ve favored
lighter weight persistence mechanisms such as JDO or even a custom persistence
framework instead of entity beans. The benefits here are that the code is easy to
test outside an application server and, perhaps even more importantly, reusable
outside a J2EE environment. This can be a real boon for productivity as it reduces
testing times and makes your code available for use in stand-alone J2SE applica-
tions. See chapter 8 for details on implementing alternative persistence layers.

Model
Plain Java & EJB

View
JSP & Plain Java
(View Helpers)

Controller
Servlets & Plain Java

Queries Updates

Posts to

Figure 3.5 Model-view-controller simplifies interfaces by delegating the responsibility for business
logic, user interface, and data marshaling to different components. Each view queries the model
independently, and all updates to the model go through the controller, yielding an application that’s
easier to build and maintain.

70 CHAPTER 3

Bitter interfaces
3.4.2 Solution: Funnel the customers through a waiter

Of course, modern restaurants funnel orders and complaints to the kitchen
through a waiter. A Session Façade fills that role for us, providing a thin (hence
façade), coarse-grained layer over your fine-grained, in-process classes. You use
Session Façades primarily for remote invocations; they are a kind of gateway or
adaptor from remote clients to the fine-grained local methods.

 Going back to our trip booking service example, take the client in figure 3.6
that accesses trip booking information. It’s not practical for a remote client to
request each field of a Booking instance individually, making multiple round trips
to the server. Alternatively, the client accesses a method in the Session Façade
and completes its work in a single trip. Such methods are typically referred to as
bulk accessors. Likewise, methods that group data modifications are referred to
as bulk mutators.

 Session Façade interfaces should be grouped to reflect use cases that are simi-
lar to one another. As the implementation for the façade method is typically sim-
ple, catering to many use cases in a single façade implementation is not usually a
maintainability issue. However, having too many Session Façades does create ques-
tions about maintenance. If you have too many façades, the client will spend too
much time and effort dealing with lookups and home interfaces. In general, your
application should have few façades. One is often sufficient. Don’t treat this rule
as an absolute. Your façades are simply stateless libraries, and you (the library
developer) and your customers (the library clients) need to be able to navigate
and organize them efficiently. Just understand that each façade has associated
overhead, and plan them wisely.

Network

Client BookingAgent Booking

getBookingData()
getDate()

getUser()

getAttendees()

Figure 3.6 This customer gets booking data through the booking agent. The booking agent serves as
a Session Façade. The façade tends to implement individual use cases, and serves as the point of access
to the objects in the model. From an interface standpoint, it simplifies our implementation, and isolates
the client from the business model.

Antipattern: Customers in the Kitchen 71
 The methods in a Session Façade should not contain domain logic. This
includes data validation. Such logic should be incorporated into the domain layer
where it can be reused. As with all object-oriented development, you should try to
separate and encapsulate concerns. Separation of concerns is one of the philoso-
phies that drove development of JSP. A designer can create JSP in a scripting lan-
guage with little support from a dedicated programmer. In our case, we want to
separate and encapsulate all logic pertaining to remote access in the Session
Façade implementation and no more.

 I typically implement the Session Façade using a stateless session bean. If we
find ourselves needing to maintain some client-specific state, we usually try our
damnedest to refactor some logic to the client side and simply pass the state back
to the server each time. As it can get monotonous passing the same data to the
server over and over with each method call, we like to abstract out these state
arguments as part of a Business Delegate, a design pattern we’ll discuss shortly.

 Choosing a stateless over a stateful implementation is more about scalability
than performance. Passing the state back and forth may have overhead, but stor-
ing state in the server has substantially finite limitations. First, you have memory.
For thousands of concurrent users, the server must maintain thousands of
instances of the state information until the user explicitly leaves or their session
times out in which case the server automatically destroys the state (in our case a
stateful session bean instance).

 Second, you have failover. If you want to support failover with stateful session
beans, the server has to replicate the state to a backup server. In this case the state-
ful session bean instance must be serialized and transferred to another server at
the end of each invocation. The client might as well provide the state itself each
time, especially if the client is on the same network as the cluster. With a stateless
session bean, the client holds on to the state information and can simply fail over
to any other machine in the cluster.

3.4.3 Using Data Transfer Objects

The Data Transfer Object (DTO) pattern often comes in handy in the develop-
ment of Session Façades. Actually, in our trip booking service example, the
BookingAgent.getBookingData() method returns a booking data transfer object
(listing 3.2).

 A DTO is nothing more than a plain JavaBean or lightweight data holder. The
implementation consists of a Java object, the required fields, and getters and set-
ters (if the object is mutable) to access the fields.
www.allitebooks.com

http://www.allitebooks.org

72 CHAPTER 3

Bitter interfaces
package bitterejb;

import java.util.*;

/**
 * Booking data transfer object. Immutable.
 */
public class BookingData implements java.io.Serializable {

 private final long date; // truly immutable
 private final String user;
 private int attendees;

 /**
 * Constructs a new Booking data transfer object.
 */
 public BookingData(Date date, String user,
 int attendees) {
 this.date = date.getTime();
 this.user = user;
 this.attendees = attendees;
 }

 /**
 * Gets the date of the booking.
 * @return A Date instance.
 */
 public Date getDate() {
 return new Date(this.date);
 }

 /**
 * Gets the user that booked the trip.
 * @return The user's ID.
 */
 public String getUser() {
 return this.user;
 }

 /**
 * Gets the number of attendees for this trip
 * booking.
 */
 public int getAttendees() {
 return this.attendees;
 }

}

Listing 3.2 BookingData.java is a data transfer object, not a domain object

Antipattern: Custom DTOs 73
Though they may present the same data, DTOs are typically separate from domain
objects. This mostly has to do with the object relationships. It may not be desirable
or possible from a performance standpoint to return your entire domain object
map. Also, your domain implementation may contain logic only pertinent to the
server environment such as code for accessing external services such as databases
or other applications. These services may not even be physically visible to the cli-
ent. Also, the client may only be interested in a subset of the data, in which case
having a separate DTO implementation comes in handy.

3.5 Antipattern: Custom DTOs

In large applications with many clients and/or use cases, the clients often require
varying subsets of the application data. Continuing our example of a trip-booking
agency, figure 3.7 shows applications A and B accessing our middleware. As illus-
trated by the class diagram, client A queries user information and accesses the
user’s trip bookings. Client B looks up trip types and their corresponding bookings.

 The DTOs for client A consist of a user DTO and a booking DTO. The user DTO
has a getter for a collection of booking DTOs while the booking DTO has the
inverted getter for the user DTO. The DTOs for client B follow a similar pattern
supplanting the user with a trip.

 Note that the two use cases require two variations on the booking DTO. This
exemplifies the Custom DTO pattern. In the Custom DTO pattern, the designer
implements custom DTOs to fit the requirements of the use case. In the case of cli-
ent A, the booking DTO contains a reference to the DTO for the user that booked
the trip. To fill client B’s requirements, the booking DTO for client B contains a

UserForClientA

TripForClientB

BookingForClientA

BookingForClientB

Booking

Base Class For
Booking DTOs

1 *

1 *

DTOs for Client A

DTOs for Client B

Figure 3.7 Client A and Client B use different DTOs. This approach severely inhibits the reuse of code
between client applications, even within the same application. Second, it requires dual maintenance
as a single change in the interface can hit all DTOs.

74 CHAPTER 3

Bitter interfaces
reference to a trip type DTO containing trip information. A single booking DTO
base class contains the methods common to the booking DTO implementations,
and the client-specific DTOs contains the client-specific references that make up
the custom DTO map. This approach has many problems.

■ This approach inhibits code reuse between client applications (or even
within the same application if multiple use cases use custom maps). Client
A must take care to code as much logic as possible to the booking DTO base
class, otherwise the logic will be incompatible with client B’s own version of
the booking DTO and thus unusable.

■ The approach requires duplicated relationship logic What happens when
client A’s requirements change such that it needs to look up the trip infor-
mation for a particular booking? Client A can’t reuse client B’s booking
DTO implementation because client A needs the reverse reference back to
the DTO for the user that booked the trip. The developer has to duplicate
B’s trip relationship logic for client A. Additionally, this change requires a
change and redeployment for both the server and the client application. In
the event the clients A and B could share DTO implementations, the devel-
oper creates fragile dependences and runs the risk that changes in client A
or B’s requirements could require duplication or heavy refactoring of the
blocks of code dependent on the common DTO.

 One alternative is for client A to take the trip’s unique identifier (if it’s
even available) from the booking DTO and make another query to the
server for the trip DTO. This strikes me as messy and inconsistent, especially
considering that the server knows how to create trip DTOs and provides the
implementation of the booking DTO to the client. Having the client call a
getter to follow an object relationship in one case and perform an entirely
separate query to the server in another similar operation seems counterin-
tuitive from a client perspective.

■ This approach takes a lot of up-front guesswork The developer must
decide at design time how the clients will typically use the provided services.
For example client A realizes that it only needs user information 90% of the
time and that the added booking information hurts performance. Modify-
ing the code so that client A re-queries the server for booking information
can prove to be a big ordeal for both the application and client developers.

Antipattern: Custom DTOs 75
3.5.1 Solution: Refactor to preserve flexibility

The solution is simple. Refactor the logic that requeries the server and fulfills the
DTO relationships into the DTO itself and implement a lazy-loading scheme. For
example, when client A now queries user information, client A only gets user
DTOs. When A needs booking information, client A simply calls user.get-
Bookings() and gets back a collection of booking DTOs. Behind the scenes, the
user DTO implementation checks to see if it already has the booking information.
If not, the user DTO implementation queries the server for the booking DTOs and
returns them to the client (listing 3.3).

 Clients A and B can use the same generic booking DTO implementation.
Should client B ever need access to user information from a booking instance, cli-
ent B simply calls the getter. In the meantime, client B need not incur the over-
head of downloading the unnecessary information.

public class UserData implements java.io. Serializable {

 . . .

 // bookings for this user.
 private Collection bookings = null;

 /**
 * Gets bookings for this user.
 * @return Collection of BookingDatas.
 */
 public synchronized Collection getBookings()
 throws RemoteException {
 if (bookings == null) {
 // ‘server’ is the remote stub with the
 // query methods.
 bookings = server.getBookings(this.getId());

 // we must set the inverse relationship.
 Iterator i = bookings.iterator();
 while (i.hasNext())
 ((BookingData) i.next()).setUser(this);
 }
 return bookings;
 }

}

The real beauty of this implementation shines through its three-tiers of perfor-
mance configuration options:

Listing 3.3 UserData.java is refactored to add flexibility and preserve reuse

76 CHAPTER 3

Bitter interfaces
1 Lazy loading The server can simply return the user DTO to the client. In
the event the client needs booking information for a user, it simply calls the
accessor and the user DTO transparently queries the server.

2 Preloading If client A always needs the booking information, the service
method that returns the user DTOs can call the user.getBookings()
method before it returns the user DTO. This effectively causes the user
DTO to query for the booking DTOs and cache them while still in the
application server. As the call runs in the server, the container can opti-
mize it as if it’s a local invocation saving the client the cost of the round
trip. This can also be useful if there’s a chance the data can become stale
and the relationship should be fulfilled within a single transaction.

3 The old-fashioned way If preloading results in too many queries and
hurts performance, the server implementation can resort to executing a
single query with a join and building the DTO map manually. This modifi-
cation does not affect the client as the DTO implementation stays the same.

You may choose to implement your lazy loading as we did in the code example,
having a different method for each type of query you will run. We took a different
approach on a recent project. Using a JDO-like persistence tool, we implemented
a single remote data access service that took an arbitrary query and returned a col-
lection of DTOs. The client passes in an identifier for a particular query along with
the query arguments and the service returns the results in a collection. The appli-
cation manages security per query and thus has a comparable model to that of the
EJB architecture, which manages access at method granularity.

 In implementing this solution there are a couple of traps to watch out for, one
of which we account for in the previous code example. Take care to set the inverse
of many-to-one relationships. When you don’t do this, tools that recursively
traverse the object hierarchy will overflow the stack, as each call to the relation-
ship method will requery the server, returning a new and different (reference-
wise) instance.

 Second, if there’s a chance your relationship can be null, avoid hitting the
server each and every time, by differentiating between not-yet-loaded and null. In
our personal implementation, the data access service always returns a collection
of objects. In the case of a one-to-many relationship, you will always get an empty
collection rather than null. In the case of a reference to a single object, we always
store the collection (which will be empty when you should return null and con-
tain a single object otherwise). In the getter method for that relationship, we
return either the single object or null if the collection is empty.

Summary 77
 Lastly, we’ve never personally run into a many-to-many relationship when
implementing this pattern. Should you find one, we’d advise implementing it the
old-fashioned way (option #3), since the alternative lazy-loading approach would
be highly involved, bug prone, and most likely inefficient.

3.6 Summary

In this chapter, we identified the importance of interface design and discussed
the effect of interface design on an application’s performance, scalability, and
reliability. We also considered patterns for maximizing your application’s main-
tainability and robustness in the face of distribution fallacies. We looked at both
the antipatterns related to local and distributed interfaces and the perils of DTO
maps. And we refactored solutions that balanced the concerns of local and
remote interfaces, and we developed a flexible solution.

 In the next chapters, we’ll dive into session beans. We’ll look at the best times
to use session beans, and we’ll consider the types of issues that should be consid-
ered when designing an effective session bean. You’ll see how to manage a trans-
action effectively and how to avoid common mistakes.

78 CHAPTER 3

Bitter interfaces
3.7 Antipatterns in this chapter

This section covers the Local and Remote Interfaces Simultaneously, Customers
in the Kitchen, and Custom DTOs antipatterns.

DESCRIPTION
Many developers try to implement an interface that supports both
local and remote interfaces.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Local or remote interfaces, but not both

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Local and remote interfaces have dramatically different require-
ments, in terms of performance and exceptions.

ANECDOTAL EVIDENCE
“That’s cute, but I don’t know if it will work.” “What do I do if a lo-
cal framework throws a distributed exception?”

SYMPTOMS, CONSEQUENCES
Exception management becomes muddied, and performance is
weak.

LOCAL AND REMOTE INTERFACES SIMULTANEOUSLY

Antipatterns in this chapter 79

DESCRIPTION
Accessing fine-grained objects directly can complicate the model.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Session Façade

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Use a Session Façade to build a coarse-grained interface.

ANECDOTAL EVIDENCE
“Does my business logic really have to worry about that?”

SYMPTOMS, CONSEQUENCES
Changes in one layer have rippling effects on the model.

DESCRIPTION
Building custom DTOs for every menial task leads to additional
coding and maintenance.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Refactor

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Build an architecture that will accept more general DTOs. Reduce
coupling by building additional responsibilities into the DTO it-
self, using the techniques described in section 3.5.1.

ANECDOTAL EVIDENCE
“Does my business logic really have to worry about that?”

SYMPTOMS, CONSEQUENCES
Changes in one layer have rippling effects on the model.

 CUSTOMERS IN THE KITCHEN

 CUSTOM DTOS

Part 2

Sessions and messages

 In the Royal Gorge, one of our kayakers spills out of his boat and is swimming.
Half of the remaining kayaks go after the swimmer, and the rest go after the boat
and paddle. After twenty minutes, the empty boat is pinned against a rock on the
north bank, and the swimmer is in an eddy, hanging onto a piece of iron rebar
against a cliff on the south bank. With no way to communicate, we set up an elabo-
rate rope system that allows two kayaks to ferry the empty boat to the other side.
Unaware, the other kayakers are ferrying the swimmer back to our side of the river.
The teams succeed in exacting and demanding tasks, but do not communicate. In
the end, we’re left no better than when we started: We’re still on opposite banks. It
takes us another hour and a half to get the boat and kayaker back together, so that
we can continue the run.

This story shows the importance of maintaining effective communication and
handling transactions. You can’t simply finish an atomic task, however effectively
you perform. Each portion of a transaction must succeed or fail based on the rest
of the system’s state. In these chapters, we address sessions and messages, which
manage both transactions and distributed communications.

 Chapter 4 deals with the workhorse of EJB, the stateless session bean. Antipat-
terns in this chapter cover managing large data sets within a session, threading
issues, and other session bean concerns. Chapter 5 deals with the often misunder-
stood stateful session bean. We discuss the best way to manage session state. In
chapter 6, we focus on messaging, including message content, the deliverer, and
the receiver of JMS messages. The common thread is the management of transac-
tions across a distributed boundary.

4Bitter sessions
This chapter covers
■ An overview for session beans
■ Rules for threading session beans
■ Traps related to exceptions with sessions
■ Problems with large data sets within sessions
83

84 CHAPTER 4

Bitter sessions
I fly down the hill, feeling the wind through the vents in my helmet. The two- and
three-foot ledges are rattling my spine to the core. The loose rocks and curves only
add to the danger. I am going as fast as I possibly can in these conditions. I don’t
like to be last but, today, the bikers ahead of me are simply better, with superior con-
ditioning and skill. I surrender to prudence and slow down. I concentrate on biking
within my abilities and keeping myself in one piece. Finally, I turn the corner
toward the last hill that will take me back to the safety of my car. The backs of my
peers are barely visible thousands of yards below.

As I round the corner, one that I’ve ridden dozens of times, I anticipate the
bumpy terrain and loose rocks. I loosen my shoulders and knees, absorbing the
bumps made by the landscape timbers that control erosion. I see a tangle of bikers
below me, a massive pileup. Even with my reduced speed, the hill proves too steep. I
am about to crash.

Session beans, the first of the three major bean types in the EJB architecture,
model services and contain the meat and potatoes of business logic. Session beans
effectively extend a client’s functionality to the server. Entity beans persist across
server restarts, but session beans have a more transient nature. While message-
driven beans respond to asynchronous messages, clients invoke session beans syn-
chronously, much as they would a normal Java object. Unlike plain Java objects,
however, session beans expose hooks enabling the EJB container to provide
implicit, declarative security authentication and authorization, distributed trans-
actions, error handling, scalability and failover, interoperability via web service
and CORBA Internet Inter ORB Protocol (IIOP) interfaces, and more.

 Session beans come in two flavors: stateful and stateless. A stateful session bean
maintains client-specific state across method invocations. When a client invokes a
stateless session bean, the EJB container may route the invocation to any available
stateless session bean instance. If a client invokes the same method on a stateful
session bean twice in a row, the invocation will make it to the same bean instance
on the server side. When a client invokes the same method on a stateless session
bean twice in a row, the two invocations may not even go to the same physical
server, let alone the same bean instance.

 When we first started developing with EJBs, given our sincere affection for
object-oriented programming, we definitely found the stateful variety to be more
intuitive. By the object-oriented definition, objects have state, identity, and behav-
ior. Stateful session beans share these same three characteristics:

Threading and synchronization 85
■ Stateful session beans have state A bean’s state stays consistent across mul-
tiple method invocations from the same client.

■ Stateful session beans have identity A client can compare two stateful ses-
sion bean stubs for identity equality. In other words, a client can see if the
stubs reference the same bean instance on the server side. A client does so
by using the EJBObject.isIdentical() method. Methods obviously fulfill
the third behavioral aspect.

■ Stateful session beans have behavior Of course, the primary job of a ses-
sion bean is to have behavior.

Stateless session beans, on the other hand, share only behavior in common with
plain Java objects or stateful session beans. Each time a client invokes a stateless
session bean, the bean reverts to its original state. If a client compares two state-
less session bean stubs for identity equality, the result will always return true for
beans of the same type. These characteristics represent a severe departure from
the OOP concepts you’ve grown to love. Statelessness, however, is both a necessary
evil and an unlikely comrade when battling the latency and unpredictability of dis-
tributed enterprise systems. Luckily, you have strong shoulders on which to stand.
Proven design strategies enable us to factor these concerns into shallow façades
whose sole purpose is to make the transformation from service to object-oriented
and back again.

4.1 Threading and synchronization

The EJB specification imposes a number of restrictions on bean implementations,
such as using the threading or core I/O APIs, using AWT, and accessing statics.
Some restrictions are hard and fast, and others are just suggested best practices, but
reasoning exists for backing them all. Nonetheless, the need to question the valid-
ity of each restriction, combined with the behind the curtain nature of EJB architec-
ture, leaves many new EJB developers confused. As a result, posts such as, “My utility
class uses a static variable—Is this okay?” are common on EJB interest lists.

 Many limitations, the use of synchronization primitives included, stem from
the fact that EJB applications must run in a cluster, even when the application
server spreads the application across multiple virtual machines. Because the scope
of static variables and synchronization primitives ends at the virtual machine, you
can’t expect a static variable to be unique for the entire application (as you could
with plain Jane, single virtual machine Java applications). Nor can you expect the
synchronized keyword to apply to the whole cluster.

86 CHAPTER 4

Bitter sessions
 Take the GoF Singleton pattern, for example. The goal of the traditional Java
implementation of the pattern is to have only one instance of a given object for
the entire application. The implementation accomplishes this by storing the Sin-
gleton instance in a static field. Obviously, this implementation breaks down in a
distributed environment because, in actuality, you have one instance per class
loader and, potentially, multiple instances per virtual machine.

 By disallowing static fields, the EJB specification protects developers who may
not know better, who may, in fact, use a Java GoF Singleton implementation for an
object that really must be a Singleton for the scope of the entire application. A
globally unique ID generator is one example. If you rely on a static instance to
dole out unique IDs within the scope of the application, you’ll find yourself in
trouble. Two instances running in different virtual machines may pass out the
same ID. On the other hand, where you can tolerate duplication, in a local cache
for example, you can safely use static variables and synchronization.

4.1.1 Antipattern: Tangled Threads

Many restrictions imposed on EJB implementations revolve around threading—
spawning new threads or synchronizing multithreaded access, for example. The
EJB container alleviates many concurrency concerns by guaranteeing single-
threaded access to beans. Two clients will never share the same bean instance at
the same time. If you’re using a stateless session bean, you can be sure that, for the
duration of the method invocation, you will have sole access to your own dedi-
cated bean instance.

 One limitation listed in the specification prohibits spawning new threads. Talk
about a bag of traps. Threads spawned by application code compete with the appli-
cation server’s threads for resources. Most application servers finely tune thread
counts and priorities to optimize performance and response times. Spawning new
threads undermines this effort, limiting your ability to monitor resource usage.

 We’ve witnessed situations where new threads competed so strongly for
resources that some of the application server’s threads received virtually no CPU
time. A bean implementation’s custom threads can prevent critical tasks such as
updating leases on remote resources and cleaning up expired data. Allocating
new threads is an expensive and fragile operation.

 Application servers pool and manage threads well, balancing workloads, pre-
venting leaks, and so on. Many application servers depend on thread contexts to
implement such services as transactions and security. However, new threads may
not inherit these contexts correctly and can lead to undefined results, depending
on how the vendor implements them.

Threading and synchronization 87
 Next, the EJB specification restricts use of thread synchronization primitives.
Java handles concurrent access by multiple threads to shared resources using
mutually exclusively (mutex) locks. Every Java object has an implicitly associated
monitor that threads can use as mutex lock. When multiple threads synchronize
on an object, each thread must obtain the object’s monitor before entering the
synchronized code block. The virtual machine ensures that only one thread can
hold a lock at time.

 J2EE throws a wrench into this thread synchronization model by allowing for
multiple virtual machines. An application server may have multiple VM instances
in a cluster or even within the same deployment. Each virtual machine will have
its own copies of the object and its monitor, meaning that, within the scope of the
entire application, multiple threads that should be synchronized will indeed pro-
cess concurrently.

 As an added drawback, a lengthy synchronized block of code can seriously bot-
tleneck an application’s scalability if all client threads line up, waiting for synchro-
nous access to a shared resource. Session beans solve this problem for some
situations through pooling. If each client can operate on its own instance of a non
thread-safe resource, the session bean can create and reuse multiple instances.
With stateless session beans, a developer stores an instance of the shared resource
in an instance field and gets both pooling (the container will reuse bean
instances) and synchronization for free. Examples include synchronizing access
to socket connections, pooling socket connections, or generating unique IDs.

 The specification also lists read/write static fields as prohibited. This restric-
tion falls under the same umbrella of issues as the prohibition against using the
synchronized keyword. Rather than having a single copy of your static field as you
would in a classic Java application, you now have one copy per class loader and no
clear way to synchronize access to it.

4.1.2 Solution: Standardization to the rescue

Thankfully, you can use the standard APIs provided by the J2EE framework to solve
the majority of concurrency-related problems. JMS and message-driven beans sim-
plify asynchronous invocations and executing concurrent processes. You have
both the Java Management Extensions (JMX) and EJB 2.1 timer services, which
you can use to schedule system- and business logic-related tasks, respectively.

 Vendor-specific APIs usually fill in the remaining holes, enabling developers to
utilize the application server’s thread management infrastructure. In this case, the
application designer must weigh the risks of disrupting the server’s runtime envi-
ronment with foreign threads against those of binding the code to a proprietary

88 CHAPTER 4

Bitter sessions
API. You can hope that future versions of the J2EE specification standardize on this
service but, in the meantime, the aforementioned timer services are certainly a
step in the right direction.

 In situations where we side with the vendor’s framework, we decouple the
code as much as possible, minimizing future porting efforts. In the handful of sit-
uations where we’ve introduced new threads into the virtual machine, we’ve
always gone the conservative route, using minimally sized thread pools and docu-
menting and testing exhaustively.

 When it comes to keeping data consistent across clusters and multiple virtual
machines, transactions are your friends. Among other things, transactions can act
as distributed synchronization. Rather than synchronizing access to data stored in
a static field, you can offload this responsibility to a database instead. The data-
base will ensure that only one client modifies the data at a time, in effect using
transactions as a sort of distributed synchronization block.

 As another alternative, some developers host a single instance of an object for
the entire cluster and access it through JNDI. I usually avoid this practice,
because every instance in the cluster synchronizes on this single instance. Conse-
quently, the machine hosting the instance stands as a single point of failure for
the entire application.

4.1.3 Coping with hung threads

Time and time again, frozen threads wreak the most havoc and pose the greatest
threat to an application’s stability. As with almost all thread-related code, tracking
down bugs can be a daunting task. Java threads hang for a number of reasons.

 First, you have deadlocks. For example, when thread A holds a lock to resource
A and waits for resource B, and thread B holds onto resource B and waits for
resource A, both threads will wait in an infinite, deadly embrace. As another
example, consider an object pool with four objects, where threads A and B each
need three objects to complete their task. If thread A holds two objects and
thread B holds two objects, the threads will deadlock waiting for a third. When
resource pools have set size limits such as this, they should take care to implement
timeouts for waiting clients to prevent deadlocks. Most application server data-
base connection pools do exactly this.

 A second and more complicated situation occurs during blocked I/O—for
example, while creating a connection, opening a stream, or reading from an
input stream. Solving these situations is a little less straightforward as some I/O
framework implementations ignore timeouts. These situations can take down an
application server easily as clients place multiple requests, eventually hanging

Threading and synchronization 89
every thread in the server’s thread pool until the application can service no
more requests.

 In either case, your best comrade in tracking down the cause or causes of a
deadlock is the thread dump. You can trigger a thread dump on a running appli-
cation by hitting Ctrl+Break in a Windows environment or by invoking a “kill -3”
against the process in a Unix environment. In both situations, the virtual machine
prints a thread dump to standard out (listing 4.1):

"Thread-2" prio=5 tid=0x119570 nid=0x11 waiting for monitor entry
[f1681000..f168199c]

 at MyClass.run(Hang.java:54)
 - waiting to lock (a java.lang.Object)
 - locked (a java.lang.String)

"Thread-3" prio=5 tid=0x118a18 nid=0x10 waiting for monitor entry
[f1781000..f178199c]

 at MyClass.run(Hang.java:54)
 - waiting to lock (a java.lang.String)
 - locked (a java.lang.Object)

"Thread-1" prio=5 tid=0x117660 nid=0xf waiting on condition
[f1881000..f188199c]

 at java.lang.Thread.sleep(Native Method)
 at Deadlock$3.run(Hang.java:35)
 - locked (a java.lang.Object)
 at java.lang.Thread.run(Thread.java:536)

As you can see in listing 4.1, a thread dump looks a lot like an exception stack
trace. The dump shows the call stack for every thread in the VM in addition to
what locks the thread holds, where it’s holding them, what locks the thread waits
for and where it waits for them.

 Many times, when a thread hangs due to blocked I/O, you can do little to
recover. You can, however, do your best to isolate temperamental operations from
other operations and the client. We once worked on an application that accessed
a highly secure database. The database required user-based authentication for
each request, coupled with other implementation limitations, which forced a new
connection for almost every request. (Users ran one or two queries at a time,
negating any benefits that might be derived from pooling.)

 One day we came in to find that the entire application had inexplicably
crashed, with no sign of a pending return, and our team was listed at the top of

Listing 4.1 A sample thread dump

90 CHAPTER 4

Bitter sessions
the company vice president’s daily report (not a good place to be—questions are
asked, bonuses lost; you get the picture).

 When the database in question went down, threads attempting to open the
database connection simply hung. Even worse, thanks to thread dumps, we discov-
ered that the crashing code used java.sql.DriverManager.getConnection(String
url) to open connections. The DriverManager implementation synchronizes all
access to the class. Once the first thread hung waiting for a connection, any other
thread accessing the DriverManager class hung as well. This occurred whether or
not a second thread accessed the inoperable database, because the original
thread still held a lock on the class’s synchronization monitor. As the clients tried
apparently failed requests again, more and more threads locked up, until no
more threads existed to service client requests (figure 4.1).

4.1.4 Searching for a solution

As a first step toward a solution, we modified the code to use DriverManager.get-
Driver(String url) to look up the correct driver implementation, then call
Driver.connect(String url) to open a connection directly. This approach still used
the DriverManager to choose driver implementations. However, threads that hung
while opening a connection would not have the DriverManager class’s monitor.

 The application still collapsed because the bad code eventually monopolized
the entire thread pool. These threads continued to hang on opening connec-
tions. And those connections just would not time out, no matter what we did. One
developer suggested using transaction timeouts. No help. Most transaction time-
out implementations simply roll back the transaction and throw an exception if

Booking

Trip

User

DriverManager

hung

waiting

waiting

Figure 4.1 Threads hung while connecting to database through DriverManager

Threading and synchronization 91
the transaction exceeds the timeout duration. For reasons we’ll discuss shortly,
they do not attempt to stop the thread midexecution when the timeout expires.

 A second developer suggested stopping the thread explicitly using the
Thread.stop() method. Sun deprecated the use of this method for a reason. First
and most importantly, doing so leaves the application in an inconsistent state,
whose results will be unpredictable at best. Sun’s FAQ “Why are Thread.stop,
Thread.suspend, Thread.resume, and Runtime.runFinalizersOnExit Deprecated?”
(http://java.sun.com/j2se/1.3/docs/guide/misc/threadPrimitiveDepreca-
tion.html) details the reasons why these methods will probably never provide such
functionality. Additionally, the success of stopping depends heavily on the hung
code’s implementation. The best we could hope for was to fail quickly, providing
the end user with a meaningful error as soon as possible. Users of web applications
almost always favor seeing a descriptive error message after two seconds, rather
than waiting the full minute it might take for their browser to time out, during
which they’re left wandering who’s at fault and how they should proceed.

 To accomplish a swift failure, we decoupled the questionable code as much as
possible, in which case a JMS server was our friend. Using JMS, we simulated a syn-
chronous request by sending a request to one queue and receiving the response
on a temporary queue, using the javax.jms.MessageConsumer.receive(long tim-
eout) method. The method returned null if the timeout expired before receiving
a response message, causing us to throw an error to the client. (To simplify things,
we could have hidden these details behind a synchronous interface that looked
exactly like the original implementation.) Next, we implemented a message con-
sumer that took those requests, delegated to our original hang-prone code, and
then sent the response back on the temporary queue.

 Now, so long as we configured our application server to use separate thread
pools to service client requests and messages on our JMS queue, only the con-
sumer that delegated to the questionable code hung, and the client code ran
freely. We could have even moved the consumer into a separate virtual machine
that we bounced independently of the remaining application elements to clean
up the hung threads. The reliability and robustness of the JMS architecture made
this a snap.

 Now, we come to the moral of the story. In the absence of a JMS implementa-
tion, or when the client and questionable code absolutely must run in the same
virtual machine, you may alternately implement this model using application
server-specific threading facilities and the Object.wait(long timeout) method to
implement the timeout functionality. In doing so, you execute the troublesome
code in a separate thread to prevent hanging the client thread. In addition, you

92 CHAPTER 4

Bitter sessions
pause the client thread up to a given timeout duration by waiting on an object
monitor. When and if the code returns successfully, it notifies and wakes the client
thread so that the thread can immediately pick back up the execution. Using the
vendor’s API to implement the threading—or, at least, using a well-implemented
thread pool—is key. A pool not only allows you to reuse threads; it also limits the
number of threads that will spawn. If you spawn a new thread each time without
limit, the application server may stay up a little longer. Eventually, however, the
application server will come down. Still, if you have the choice between failing
early and gracefully or slowly grinding to a halt and taking the rest of the applica-
tion down with it, you want to opt for the former.

4.2 Handling exceptions

Based on countless interactions with other EJB developers, we’ve concluded that
exception handling easily stands as one of the fuzziest, oft-misinterpreted aspects
of EJB development. Handling exceptions well can mean the difference between
an API that works intuitively and instructively and an API that seems to bust at the
seams. You’ve all fallen victim to the latter at one time or another. Either you’ve
shuffled countless checked exceptions that have little relevance to the task at
hand, or you’ve given in and thrown up the java.lang.Exception superclass, thus
defeating the original intentions of exceptions altogether.

 In normal, localized Java applications, you can easily handle exceptions by fol-
lowing simple rules: First, use clearly named application exceptions that fit with the
semantic nature of the API to denote conditions clients can handle. Secondly, throw
RuntimeExceptions for programming errors or other unexpected conditions.

 Moving to an EJB environment complicates the situation. You now have a new
class of system exceptions. These new system exceptions identify system-level
errors, not pertinent to an application’s business logic. These errors are classified
as RuntimeExceptions as well. The EJB specification provides a degree of guidance.
In fact, the specification dedicates an entire chapter to the subject However,
because RuntimeExceptions now shoulders dual responsibilities, the developer will
find the tasks of keeping things straight and determining client reactions touch
and go to say the least.

4.2.1 Mini-antipattern: Logic in Exception Implementations

Coding logic into exception class constructors often leads to obfuscation of the
call path, unnecessary coupling, and inconsistent implementations. Exceptions
are not meant to hold business logic, hence Throwable is a class rather than an

Handling exceptions 93
interface. We’ve had the pleasure of debugging/deciphering in two specific
cases—rolling back transactions and logging.

 Rolling back transactions upon exception instantiation confuses program flow.
In the first place, looking up a transaction manager and rolling back a container-
managed transaction (CMT) is not a straightforward task. EJB developers should
really use the EJBContext.setRollbackOnly() method instead. Secondly, rolling
back a transaction in response to an exception is not always appropriate. Once
you have factored this logic into your exception implementation, you’re stuck.
You either have to always roll back, or you have to track down every point where
the code instantiates a rolling back transaction and refactor out the rollback logic.
Thirdly, rolling back falls apart outside transactions. What if the application
throws an exception from an EJB method running with the NotSupported transac-
tion attribute? Should the surrounding, suspended transaction roll back? It
won’t—unless you catch the exception on the way through and explicitly roll
back. You’re left with a rift in your application’s consistency. That is, sometimes
transactions roll back automatically; sometimes you have to roll them back explic-
itly; and sometimes they roll back unexpectedly. Unfortunately, the applicable sit-
uation is not always immediately evident from the application code. In contrast,
consistently rolling back explicitly leads to clear, straightforward code.

 Embedding logging logic into exception implementations creates multiple
issues as well. If you do so, you’ll find that messages either won’t log, will log multi-
ple times, or will fail to record pertinent state surrounding the exception. If all
exceptions log upon creation, error messages will log each time an application nests
an exception. Missing exceptions and exceptions logged at random points in the
application flow (sometimes multiple times) can make tracking down bugs difficult.

4.2.2 Solution: Refactor logic out of exceptions

You have two options for refactoring your exception logic. The first and most
straightforward solution would be to move the code to the exception catch block.
This code admittedly has a slight odor, which is most likely the reason the crafty
developer moved it into the exception implementation in the first place. Unfortu-
nately, traditional object-oriented development doesn’t handle this sort of dupli-
cated logic very well. Another programming paradigm, Aspect-Oriented
Programming (AOP), helps organize these types of crosscutting concerns. Visit
http://aosd.net/ for information on tools supporting this relatively new
approach. For a more in-depth discussion, take a look at Manning Publications’
AspectJ in Action.

94 CHAPTER 4

Bitter sessions
4.2.3 Antipattern: Swallowing Exceptions

The most common and detrimental mistake we’ve come across regarding excep-
tion handling—simply logging the exception message and continuing execu-
tion—results in debugging difficulty, uncertainty of outcomes, inconsistent
application state, and security holes:

try {
 ...
}
catch (Exception e) {
 System.err.println(e);
}

This code simply prints the error message to the log, which is not much help
when we have to track down the cause. We once worked on a fairly complicated
web-based application for a credit card company. The application mysteriously
failed, and upon investigation of the server logs, we found this (and only this):

java.lang.NullPointerException

What could we do? Nothing. When faced with poor exception reporting, the best
you can do is to roll up your sleeves, start looking for the erroneous code, and fix it
as soon as you find it—a task easily on par with searching for a needle in a haystack.

 Instead of simply logging the exception message, you can print the location of
your logged message—that is, the class and method name. In the end, however,
you really care more about where the exception was thrown and how it origi-
nated—all information provided by the stack trace. Go Java.

 So you don’t know where the exception occurred, and simply continuing exe-
cution leads to unexpected results at best. Most developers program to the best-
case scenario. After all, fulfilling the requirements leaves you with plenty on your
plate. If you ignore exceptions in a complex application, predicting every possible
outcome will be next to impossible. We once witnessed one extreme case. A finan-
cial institution’s web-based application ignored TransactionRolledBack-
Exceptions. The exception ignorance facilitated a separate SQL injection security
hole, enabling an attacker to pull back arbitrary records until the transaction
timed out.

 Exceptions enable you to handle situations just like this by allowing you to fail
early and cleanly. When you fail early, you’ll find that you spend less time tracking
down the causes of bugs. If the method parameter should not be null, you can
throw a NullPointerException rather than waste time trying to handle the invalid

Handling exceptions 95
value. This will save time down the road when debugging other pieces of function-
ality that could break as a result of the null value.

 Exceptions also enable you to separate code (for exceptional conditions) and
error handling from your application logic. With exceptions, you can break exe-
cution midstream, preventing further damage. Catching and rethrowing excep-
tions awards you the perfect opportunity to react and restore your system to a
consistent state.

4.2.4 Solution: A simple exception handling strategy

We’ve settled on a simple process for exception handling. First and foremost, you
should maintain the stack trace. The exception stack trace tells a developer
exactly what has happened, exactly where it happened (possibly even the line
number in the source code), and exactly what path led to it. If you don’t know
how to handle a checked exception pertinent to the task at hand, you can throw it
up until someone knows how to handle it. If the current process can’t recover
from a checked exception, you can simply wrap it in a runtime exception (main-
taining the stack trace) and throw it to the top. Listing 4.2, inspired by a friend
and mentor, Tim Williams, does exactly that.

import java.io.*;

/**
 * Turns a nested exception into a runtime exception.
 * Shields client from vendor-specific implementations.
 * Use for exceptions that you don't
 * know how to or shouldn't handle in your code.
 * Maintains original exception's message and stack trace.
 *
 * @author Bob Lee (crazybob@crazybob.org)
 */
public class NestedException extends RuntimeException {

 /** Wrap another exeception in a RuntimeException. */
 public static RuntimeException wrap(Throwable t) {
 if (t instanceof RuntimeException)
 return (RuntimeException) t;
 return new NestedException(t);
 }

 private String message;
 private String stackTrace;

Listing 4.2 A class for wrapping checked exceptions in runtime exceptions while
maintaining the stack trace

96 CHAPTER 4

Bitter sessions
 /** Wraps another exeception. */
 private NestedException(Throwable t) {
 super();
 this.message = t.getMessage();
 StringWriter out = new StringWriter();
 t.printStackTrace(new PrintWriter(out));
 this.stackTrace = out.toString();
 }

 public String toString() {
 return this.getMessage();
 }

 public String getMessage() {
 return this.message;
 }

 public void printStackTrace() {
 System.err.print(this.stackTrace);
 }

 public void printStackTrace(PrintStream out) {
 printStackTrace(new PrintWriter(out));
 }

 public void printStackTrace(PrintWriter out) {
 out.print(this.stackTrace);
 }
}

Let’s consider the preceding implementation. First, you can implement the nest-
ing in a number of ways. In fact, JDK 1.4+ adds support for nesting causal excep-
tions to the Throwable base class. Because we use this approach most often to
debug unexpected conditions, we’re more interested in preserving the informa-
tion than the exception instance itself. Additionally, as is often the case with third-
party persistence frameworks, the class for the wrapped exception may be present
in the server application, but not in the client application. With this in mind, you
can see that the implementation captures and outputs the information, rather
than the nested exception instance itself. This enables the nested exception
instance to safely propagate to the client, free of ClassNotFoundExceptions.

 Secondly, we built the logic for wrapping exceptions into a factory method in
the NestedException class itself, greatly simplifying the effort required by client
developers. The factory method only wraps checked exceptions, returning Run-
timeExceptions without modification. Client code simply catches, wraps, and
throws unexpected exceptions as we can see in listing 4.3:

Handling exceptions 97
try {
 ...
}
catch (CheckedException e) {
 throw e;
}
catch (Exception e) {
 throw NestedException.wrap(e);
}

4.2.5 Antipattern: Killer System Exceptions

The EJB specification breaks up exceptions into two categories: system and appli-
cation. System exceptions denote truly unexpected, system-level events. Applica-
tion exceptions, on the other hand, signify exceptional events at the application
level. They are also part of the API.

 Application exceptions are checked exceptions and are part of the applica-
tion’s interface. If a bean implementation throws an application exception, the
container must propagate the exception to the client as is. Examples of applica-
tion exceptions include input validation errors and exceptions concerning the
business logic. In a trip-booking application, trying to book a trip naming an
unacceptable number of travelers or an invalid date would result in application
exceptions being thrown.

 System exceptions denote errors not related to the application’s business logic.
The EJB specification classifies RuntimeExceptions as system exceptions. EJB-
Exception extends RuntimeException making it a system exception. System-level
events such as network outages, running out of memory, or I/O errors also result
in system exceptions.

 If a system exception results from a bean implementation, the container must
log the exception, mark the current transaction for rollback, and throw away the
bean instance. The container then throws remote clients a RemoteException and
local clients an EJBException.

 We often see bean developers throw unchecked exceptions as an easy way to
roll back a transaction in response to an application-level event. Doing so creates
subtle side effects. First, you have the logging aspect. Standard compliant contain-
ers log system exceptions when thrown by the bean implementation. When you
encounter truly unexpected exceptions in your application logic (possibly due to
a system failure, a misconfiguration, or a low resource), you can simply wrap the

Listing 4.3 Wrapping a checked exception in a runtime exception

98 CHAPTER 4

Bitter sessions
cause in a runtime exception and throw it to the top. You can count on the EJB
container to log the event, wrap the exception, and throw it to the client. The
same pattern applies to servlet containers. There, the servlet container displays
the default error page to the user and logs the exception. Expected or applica-
tion-level exceptions thrown as system exceptions pollute the logs, which
increases the noise level and makes tracking down bugs and their causes difficult.

 You must also face the issue of state. A bean that catches and rethrows an appli-
cation exception has ample opportunity to restore the bean instance’s state.
Throwing a system exception lays this responsibility on the container—kludgy at
best. The container automatically rolls back the current transaction in an attempt
to leave the application data in a consistent state. Next, the specification requires
the EJB container to dispose of the bean instance. The container may not invoke
any more business or even container callback methods on the bean instance.
This fact can disrupt the container’s ability to cache and pool instances. If a sys-
tem exception occurs, the container will not invoke ejbRemove().

 Lastly, you must consider the semantic differences between a system and appli-
cation exception. A system exception insinuates that a problem exists with the sys-
tem itself and that another application instance or even another invocation on
the same instance may not fall victim to the same issue. With an application
exception, the container knows that the outcome is expected and will be the same
in any setting. Some containers implement automatic retry logic. If a bean devel-
oper marks a method as idempotent, the container can catch system exceptions
and automatically retry the invocation on another instance. This approach would
obviously not be desirable for application logic since the invocation would have
the same outcome from instance to instance. Throwing an application exception
as a system exception cripples your ability to utilize system exceptions to handle
genuine system failures.

 Clients have a vested interest in semantic issues as well. If the application throws
an application-level exception as a system exception, the container will throw the
client a RemoteException or an EJBException. The client won’t be able to tell from
the API that the exception may be thrown, as system exceptions are unchecked.
Any client that knows about and wants to handle the exception in question must
also develop fragile logic that unwraps the RemoteException or EJBException.

4.2.6 Solution: Throw the correct exception type

You should consider system exceptions’ automatic rollback of transactions as a
side effect rather than a means to an end. Application code should catch an
application exception explicitly and roll back the transaction using either

Iterating large datasets 99
setRollbackOnly() on the bean’s context for CMTs or the UserTransaction for
bean-managed transactions (BMTs). When you choose the correct exception type,
the container logs the correct exceptions, keeps the system logs clean, reuses
resources properly, and awards beans the opportunity to clean up their state,
when appropriate. When developers throw application exceptions and system
exceptions appropriately, you know exactly the EJB-thrown exceptions you can
handle and those that are beyond your ability to control. Consequently, you can
implement robust retry logic for idempotent methods, in addition to any support
the container already provides. If the application frequently throws application
exceptions as system exceptions, retrying the method will always throw the same
exception, and you can’t sacrifice these superfluous invocations. On the other
hand, when you only have to consider true system exceptions and programming
errors, you can hope that the programming errors are rare enough that any
resulting retries would have little impact on system performance and stability.
Table 4.1 shows the causes and results of both applications and system exceptions
to help you apply them appropriately.

4.3 Iterating large datasets

Remote clients often work with subsets of larger result sets. One such example is a
web-based search engine. A client’s query may return thousands of results. Yet, the
web application will transfer only a few results at a time, since the client often
works with only the first couple of pages of results before altering and rerunning
the query. We have encountered such a requirement at least once in every project
on which we’ve worked. Without fail, the implementation of a solution pattern
has been a subject of great debate.

Table 4.1 Exception type matrix

Exception
category

Exception types Causes Result

Application Checked Exceptions Application-level events—for
example, trying to book a
trip on an invalid date

The container throws the excep-
tion to the client.

System RuntimeExceptions
(including
EJBException)

System-level exceptions,
such as network and mem-
ory errors, and programming
errors, such as unexpected
NullPointerExceptions.

The container logs the exception,
throws away the bean instance,
rolls back the transaction, and
throws remote clients a Remote-
Exception and local clients an
EJBException.

100 CHAPTER 4

Bitter sessions
 The variations in the requirements will greatly influence your implementation
choice. We’ve designed applications that paged threaded message lists on a bulle-
tin board where the backing data is globally shared. We’ve also faced situations,
such as credit card transactions, where the data is largely user-dependent and secu-
rity is of the utmost concern. And then we’ve encountered gray areas, like doctor
listings, where the data pertains to clients subscribed to a given insurance plan.
Each requirement and environment calls for a differently tuned implementation.

 A high-level pattern extends the GoF Iterator pattern, providing a clear inter-
face for clients iterating these datasets. This pattern appears under many different
names. Some developers refer to these as Page-by-Page Iterators. The Sun Core
J2EE Patterns use the name Value List Handler, as the pattern describes the itera-
tion of what was once called Value Objects. Actually, the name Value List Iterator
more appropriately describes the pattern since Sun’s detailed description refers
to the interface as ValueListIterator and the interface implementation as
ValueListHandler. Further complicating things, the Core J2EE Patterns have
stopped using the name Value Object to describe objects meant to transfer data
between tiers. Instead, the Core J2EE Patterns use a more common name: DTO.
So what should you call this high-level pattern—Data Transfer Object List Itera-
tor? That’s a mouthful. Herein, we’ll stick with our personal preference: Page-by-
Page Iterator.

 Superfluous naming debates aside, you must make several decisions when
implementing your Page-by-Page Iterator. We’ll talk more about those decisions in
the paragraphs that follow. For now, we want to emphasize that these decisions dra-
matically impact your application’s scalability and performance. A wrong decision
can result in an implementation that simply does not work. In other words, you
might end up with an implementation that hogs memory or other resources for
extended periods of time, or one that takes an unreasonable amount of time to
deliver a response to the user, effectively defeating the pattern’s original purpose.

 In any case, whether the client is a web browser or stand-alone Swing applica-
tion, when an application server hides the details of the data model, session beans
can suit Page-by-Page Iterator implementations well. One iterator interface varia-
tion defines a single method, enabling users to pull collections of DTOs from a
larger data set:

public interface MyIterator implements javax.ejb.EJBObject {
 java.util.Collection retrieve(int startIndex, int count);
throws RemoteException;

}

Iterating large datasets 101
Clients simply provide the service with the start index and the number of records
desired, and the service returns the corresponding Collection of DTOs. You can
see (in figure 4.2) that the service does not require a fixed page size. Consequently,
one or more clients can easily query the service for pages of arbitrary sizes.

4.3.1 Antipattern: Database Connection Hog

Early versions of the JDBC API, —that is, those before version 2.0—defined a syn-
chronous ResultSet. An application ran a query, then iterated over the result
from beginning to end—no going back, no jumping ahead. The introduction of
JDBC 2.0 with the J2SE 1.2 brought a scrollable ResultSet interface, enabling
applications to access result sets randomly. Specifically, using the new API,

Client

Create

Data Access Object

Page-by-Page Iterator

Get Next

Execute Search

Get Next

Execute Search

Figure 4.2 Sequence diagram illustrating client invoking a Page-by-Page Iterator.

102 CHAPTER 4

Bitter sessions
developers could jump to the result set’s beginning or end, to an absolute posi-
tion within the result set, or even to a position relative to the current position.

 With this new tool in our belts, our first thought was how incredibly instru-
mental this new API could be in implementing patterns such as the Page-by-Page
Iterator. For example, an active ResultSet could back an iterator instance, pull-
ing records randomly and constructing the corresponding data transfer objects
on demand.

 Our euphoria was short-lived, however. An open database connection backs
the open ResultSet. So, monopolizing a database connection for the duration of
a user’s session simply does not scale. For example, consider a web application
that keeps a pool of 20 database connections. You implement your Page-by-Page
Iterator using a stateful session bean (or a plain Java object stored in the HTTP ses-
sion) with a ResultSet instance field. The stateful session bean executes the query
upon creation and holds onto the ResultSet. Effectively, the bean retains a cursor
containing the database’s query results, along with the corresponding connec-
tion. Each time the user moves to a different web page, you hit the stateful session
bean, which in turn uses the JDBC 2.0 ResultSet to scroll to the desired location
and returns the requested records.

 To implement this procedure properly, you must address a few difficulties. The
first problem is how to maintain the stateful session bean and result set for the
user session duration. You could limit the user to one instance at a time, but if you
do, you also prevent the user from opening multiple browser windows and run-
ning and paging multiple queries concurrently—not a good practice.

 Maintaining the bean instance for the user session duration means you must
hold onto the bean instance until the user explicitly logs out (which, in the best of
circumstances, users won’t always do) or until the user’s session expires. Session
timeouts typically run somewhere between 20 minutes and an hour. Let’s say you
have 20 database connections in your pool. If you dedicate a database connection
to each user, your application can only handle 20 unique users over a given
20-minute period, or more if the session timeout is longer. Keep in mind that 20
minutes is the best case scenario, because an active user will not time out at first.
Compounding the problem, a user will often accidentally or intentionally close
their browser, then reopen it and relog in. You can’t definitively differentiate this
situation from one in which two people are logged into the same account from dif-
ferent computers. Therefore, in this case, the user effectively counts as two unique
users and monopolizes two database connections. As you can see, it doesn’t take
many concurrent users under this model to drag the system to its knees.

Iterating large datasets 103
4.3.2 Solution: Manage connections with surgical precision

The real problem in our database connection hog antipattern is idle time. In
expectation of the user’s return (and thus the next request), you greedily hold
onto resources, memory, and database connections. In reality, the user may never
return or, conversely, a user may make another request 10 seconds later. If you
wait around for the length of the session timeout or for 10 seconds, you’ll have
monopolized resources for too long. And you can’t afford to waste scarce
resources in this manner.

 Let’s look at that second possible scenario—a 10-second wait. The user browses
several records and clicks through to the next page fairly quickly. You’ve made use
of your database connection only twice over that 10-second span. However, your
application could handle hundreds of requests per second. If you could instead
return this user connection to the pool at the end of each request, you could use
this connection to service hundreds of requests in the time it takes for your user
to click through one page. Making resource usage dependent on user behavior
will not scale. By keeping as little state as possible and using resources with surgi-
cal precision—that is, by holding onto resources for the smallest amount of time
possible—your application can handle thousands of unique users concurrently,
rather than a double-digit number smaller than or equal to the number of con-
nections in your connection pool.

 Bean implementations should retrieve a connection, use it quickly, and return
it to the pool. Holding onto database connections between requests is hardly ever
a good idea. First, look into optimizing the query time at the database level. When
all else fails, look into caching in the application server, preferably using an off-
the-shelf solution.

4.3.3 Antipattern: Eager Iterator

Most Page-by-Page Iterator pattern descriptions primarily address a remote inter-
face’s location between the client and application tier, which makes transferring
the entire result set impractical. However, the descriptions fail to consider the
most common mistake we see in the pattern’s actual implementation. Developers
tend to forget that another remote interface sits between the application and data
tiers. Though the throughput may be much higher than that of the client inter-
face, it’s a remote interface nonetheless, and you must limit the amount of data
that passes across it as much as possible.

 How you design your Page-by-Page Iterator implementation depends heavily
on your application and your environment’s unique characteristics. Does the

104 CHAPTER 4

Bitter sessions
database sit on the same machine or across a network? How big is a typical result
set? To whom are the results applicable? Developers often incorrectly assume that
executing the query consumes most application effort. If queries have an optimal
configuration and a properly worded SQL command (combined with indexing,
partitioning, caching, and other optimizations in the data tier), they typically run
surprisingly efficiently.

 Developers often fail to realize the possible efficiency of query execution, nor
do they keep in mind that they can’t keep the database connection open across
requests. Consequently, developers often implement a Page-by-Page Iterator that
executes the query and pulls back all results up front. The implementation stores
the entire DTO collection in the user’s session, either globally or in a stateful ses-
sion. In any case, the results consume nontrivial amounts of memory, even past
the duration of a user’s request.

 Storing large amount of nonglobally applicable data for extended time peri-
ods may severely cripple an application’s scalability. For example, if the results of a
query take up 5 MB of memory and you’ve allocated 128 MB to your application,
you can support a maximum of 25 unique users before you use up all your mem-
ory. On the other hand, if you maintain no state across requests, you can scale to
serve as many clients as the server can throw. Doing so would incur a reasonably
low amount of memory.

 Another option would be to rerun the query each time the user makes a
request, then pull back only the necessary data. Those who have implemented
these types of applications in the past know that queries don’t always lend them-
selves to pulling out randomly located pages, especially when the SQL WHERE
clause gets complicated. Two options for pulling out given pages remain. First,
you can use a vendor-specific SQL extension. For example, with Oracle, you’d use
the ROWNUM keyword:

SELECT * FROM (SELECT e.*, rownum rn FROM employee e WHERE id=?)
 t WHERE t.rn >= [startIndex] AND t.rn < [startIndex+_count];

Another possibility would be to use PostgreSQL, which accomplishes the same
using the LIMIT and OFFSET keywords:

SELECT * FROM employee WHERE id=? LIMIT [count] OFFSET [startIndex]

The approach you choose will depend primarily on performance and platform-
independence considerations. When marshaling objects from a ResultSet to Java
objects by hand, we’ve found the PostgreSQL keywords perform more efficiently. In
other cases—that is, when we’re not sure which database the application will run

Iterating large datasets 105
against or we don’t have access to the generated SQL—we’ll chose the Oracle key-
word, ROWNUM, sacrificing performance for vendor independence. For example, we
chose the scrolling ResultSet implementation when using Castor (http://cas-
tor.exolab.org/) as a persistence framework. Castor did not enable us to use the
vendor-specific result set limiters. Castor did, however, provide a scrolling result set
of its own, undoubtedly implemented behind the scenes by the JDBC 2.0 ResultSet.

 Using a test setup, we implemented a small suite of performance test cases to
exercise and further explore these conjectures. In our test setup, the application
server and database sit on different boxes across a LAN, as is often the case with
n-tier enterprise applications.

 Our test cases include running the query itself without pulling back any
results; running the query and pulling back all results (as blindly implemented
Page-by-Page Iterator implementations often do); and pulling back 20 records
from the middle of the result set using the two aforementioned implementations.
We ran these tests multiple times, excluded the outliers, and used the mean of the
results. We executed the suite for small row counts in excess of 200,000 records.

 As you can see from the graphed results in figure 4.3, the time necessary to
pull back all records from the database grew much more quickly than the time
needed to execute the query alone (not to mention the time required to pull
back a single page (20 records) using either of your implementations).

Figure 4.3 These test case performance results show the performance implications of strategies for
iteration. As you can see, rerunning the query and pulling a page using the vendor’s SQL extension yields
the best performance for this configuration.

106 CHAPTER 4

Bitter sessions
 You can also see that pulling back a single page of data using the vendor-
specific SQL extension performed many times faster than sticking to the scrollable
ResultSet. In fact, note that pulling back a page of data using the vendor’s exten-
sion barely took longer than running the query itself.

 Pitting one approach—pulling back a single page using the vendor’s SQL—
against another—pulling back the entire result set upon the first request—the
user will have to view more than 13 pages of data to make up for the performance
cost incurred on the first request. We know from usage statistics from our applica-
tions that users typically stop at one or two pages before executing a new query or
moving on.

 In this scenario, if you decide to go with the implementation that pulls back all
data up front, you will risk memory-based scalability issues. In addition, the user
will have to wait an inordinate amount of time to receive a response to their first
request, quite possibly the only one they really care to see.

Mini-antipattern: Paging with a Scrollable ResultSet
The JDBC 2.0 API supports the notion of a scrollable result set. In earlier imple-
mentations, developers were forced to synchronously iterate a ResultSet from
beginning to end. Now they can jump to random, absolute positions. Using a
scrollable result set to implement a page-by-page iterator may seem like a tempt-
ing, database vendor-independent approach. Be careful. In practice, scrollable
ResultSet implementations aren’t all they’re cracked up to be. A typical scrollable
ResultSet implementation actually behaves more like a caching result set. A
developer can jump to a random position in the result set but, behind the scenes,
another action occurs. Rather than moving the database cursor to the absolute
position, the implementation actually scrolls to the absolute position, pulling back
and caching each row along the way. When using a page-by-page iterator, this
behavior is equivalent in performance to using a normal result set and simply iter-
ating to the absolute position of the page. If we need rows 890 through 900 out of a
1,000 row result set, and we execute the query and use ResultSet.absolute(int) to
scroll to row 890, then pull back 10 rows, the operation will actually result in pull-
ing back 900 rows. This results in unacceptable performance. The alternative, of
course, would be to use a vendor-specific SQL extension to limit the result set size.

4.3.4 Solution: Test, test, test

The only way to truly know which implementation strategy works best for you is to
test in the target environment. Network speed on the client and database ends of
the application server, database vendors’ implementations, memory restrictions,

Iterating large datasets 107
database indexing, and result set sizes are just a few factors that affect the perfor-
mance of the Page-by-Page Iterator implementations. If you begin by running a
simple test suite, you’ll most likely save yourself a lot of heartache down the
road—not to mention the time gained and team spirit enhanced by avoiding
subjective arguments between team members over which implementation will
perform fastest.

 When performance issues do arise, you’ll want to measure and find out exactly
where your problem lies. They may be in the data tier. If so, you’ll determine the
problem, and repair it, possibly by tweaking an SQL query or the database config-
uration; pulling back excess data from the database to the application tier is a foul
practice. You should leave this data in the database, if possible, to avoid incurring
the overhead of remotely transferring.

4.3.5 Caching results

When the time arrives for you to cache in the application tier, you must ask your-
self the following questions:

■ How expensive is the query?

■ How big is the result set?

■ How fast is the network between the application server and the database?

■ How applicable is the data? Does it apply to one user, ten percent of users,
all users?

■ How long until the data expires?

If the query doesn’t change often, is executed repeatedly, and produces globally
applicable results, you should attempt to cache the results. If the results apply to a
single user or expire quickly, caching isn’t much of an option.

 To make an educated decision, you should consider performance tests in the
target environment as your best option. Again, you can speculate all you want as
to how the query time compares to the time it takes to pull results back from the
database, but from our experience you’ll be wrong as often as you are right. You
really can’t know for sure until you execute at least rudimentary tests in your tar-
get environment.

 In deciding on a caching strategy, we’ve found that we can rarely—if ever—get
by without caching. However, we’ve found a reasonably safe alternative: limiting
caching to already-requested data, rather than trying to predict future data
requests. The latter leads down a slippery and often wasteful slope.

108 CHAPTER 4

Bitter sessions
 When caching data, developers often like to roll their own custom frameworks
using hash tables and soft references and expiration algorithms. Caching imple-
mentations can complicate quickly, especially in concurrent, distributed environ-
ments. Creating a String instance when memory is tight easily results in
OutOfMemoryErrors. When creating caching implementations, you should take care
to account for all possibilities. Inadvertently strongly referencing cached objects
can prevent the collection of those objects. Expiring and synchronizing cached
data across a cluster (or across different applications) can require a bag of tricks.

 In a nutshell, you should consider the benefits of using an off-the-shelf caching
framework before implementing your own. Implementing custom, robust caching
can be rocky, at best. Worse, this approach can be detrimental to an application’s
scalability—and even its functionality. Like application server vendors, caching
tool vendors have the time and resources to dedicate to testing, performance, and
quality. Additionally, such tools are varied enough to fit any application’s needs,
from explicit custom APIs to JDBC proxies that operate completely transparently.

4.3.6 Exporting results

In some Page-by-Page Iterator clients, users may browse a couple pages, then
export the entire result set to a different format, one viewable outside a web
browser. We’ve used applications that exported results to spreadsheets, comma-
delimited flat files, Adobe PDFs, and more.

 Just because users might possibly utilize the export functionality frequently
doesn’t mean you should cache all results in memory on the first request. Once
again, the performance increase you’d observe in the export functionality
wouldn’t outweigh either the performance degradation incurred on the first
request or the scalability risks associated with holding the result set in memory
between the initial request and the export request.

 In most configurations, the connection between the client and the application
tier uses more overhead than that of the connection between the application tier
and the data tier. Therefore, the client connection is the limiting factor. Of
course, the client might be many things, including a Java applet, a JSP, or a servlet
talking directly to EJBs. The export implementation should execute the query on
demand, streaming the results to the client. Specifically, to reduce the amount of
memory necessary to fulfill the export request, the application should read
records from the result set collection in a streaming fashion. The application can
then transform and output the data to the client, if possible. This use enables the
application to perform exports that wouldn’t fit on the heap otherwise, to scale
and serve more clients concurrently, and to increase its responsiveness. In other

Iterating large datasets 109
words, the application will start sending data to the client almost immediately
instead of pulling all data into memory first.

4.3.7 Determining the size of a result set

Developers new to JDBC often ask how they can determine the number of records
a query returned. For example, in your Page-by-Page Iterator implementation,
you may want to tell the user exactly how many pages of data were returned.

 The ResultSet interface has no notion of a size() method. Consequently, you
must derive the size indirectly. We follow one of two patterns to determine the
size of a ResultSet. The pattern we choose depends on the environment’s charac-
teristics such as the time needed for query execution, the JDBC version supported
by the driver, and the nature of the query. For example, does the query run rela-
tively quickly? How well does the database cache? Am I already using a scrollable
result set?

 The first implementation consists of a simple variation on your SQL query. For
example, if I’m executing

SELECT * FROM employee WHERE id=?

I execute a separate query with the COUNT() function ahead of time:

SELECT COUNT(*) FROM employee WHERE id=?

The SQL-based implementation applies when the query time is low or when the
database can execute the two queries efficiently. This implementation also applies
if you don’t have a JDBC 2.0 driver or you’re not using a scrollable result set.

 If you’re already using a scrollable result set, you may determine the row count
size by scrolling to the end of the ResultSet and obtaining the row number:

ResultSet rs = ...;
int size = (rs.last()) ? rs.getRow() : 0;

If ResultSet.last() returns false—that is, if the current row is not valid—you
know that you have zero results. Otherwise, the current row number is the size.

 In the absence of a JDBC 2.0 driver or a scrollable result set, some developers
erroneously suggest calling ResultSet.next() over and over again and increment-
ing a counter-variable until you reach the end of the ResultSet. We avoid this
practice, choosing instead the SQL COUNT() approach. Depending on the JDBC
driver implementation, rerunning the query and iterating over all results will
almost always result in lower performance.

110 CHAPTER 4

Bitter sessions
4.3.8 Iterating shuffled data

Every once in a while, a truly unique requirement comes down the pipe. A few
years ago, shortly after the release of EJB 1.0, we signed onto a team developing
medical decision management software. Roughly halfway through the project
life cycle, the team fell victim to a few minor scalability issues. One application
function, displaying a paged list of medical care providers, came under immedi-
ate scrutiny.

 In practice, when utilizing a Page-by-Page Iterator pattern, users typically exe-
cute a query, view the first couple pages of data, then either tweak and rerun the
query or leave. This case was no different. But because the users were selecting
from an alphabetical list of doctors’ names, the application inadvertently gave doc-
tors whose last name came earlier in the alphabet an unfair advantage. To remedy
the situation, the business analysts required that the list be shuffled or randomized
to ensure that the application awarded consistent exposure to each doctor.

 The initial implementation generated a randomized list copy for each user
and stored it in the session. Each time the user requested another page, the appli-
cation simply queried against the user’s in-memory list copy. Though simple, this
approach fell flat on its face when it came time to scale. With multiple lists of hun-
dreds or thousands of doctors, giving each user his own randomized copy sitting
in memory quickly took its toll. Additionally, having so much stateful data severely
limited our options for failover because the application server had to replicate all
data to another server in the cluster.

 Thanks to the elegance of the J2SE APIs, our vision of complete statelessness
came to fruition. The random number generator used by the collections API,
java.util.Random, allows developers to specify the random seed, or starting value,
for the generator. Two random number generators, each seeded with the same
value, generate identical sequences of pseudorandom numbers. So, given the
original list and a seed value, we could regenerate the randomized list upon each
request (listing 4.4):

List doctors = ...;

// create a defensive copy.
List copy = new ArrayList(doctors.size());
copy.addAll(doctors);

// shuffle the list.
long seed = ...;
Collections.shuffle(copy, new Random(seed));

Listing 4.4 Statelessly creating the shuffled list

Interoperating efficiently 111
By deriving the seed value from user information—that is, the hash of the user
ID—you can ensure that the user will see the identically ordered list across login
sessions, assuming the data and the random number generator implementation
stay the same. In our case, clients added new doctors sparingly. And, because the
java.util.Random class publicly and clearly documents its internal implementa-
tion details (based on well-proven algorithms), the chances of the generator
implementation changing were now slim to none.

4.4 Interoperating efficiently

While sizing up my options on the steep hill, I realize that all that I can do is buy
time. Slamming on the brakes will send me over the handlebars. I delicately feather
the brakes and begin a sideways slide. That slows my momentum just enough, and
I spot a gap between two trees beside the trail. I manage to slip through and am able
to bring the bike slowly to a stop. As I reach the pileup below, I learn that the biker at
the bottom of the pile is one of my companions. His shoulder is broken. Too much
confidence is as dangerous as too little.

EJB applications frequently integrate with other EJB applications as well as with
plain Java applications. The best path toward integrating two different applica-
tions is not always clear. Firewalls, security restrictions, and implementation differ-
ences often obstruct the path. The problems are intricate, requiring patience and
thought. Like the hill in Austin, overconfidence and imprudence can prove fatal.

 The safe path may run between two enterprise applications sitting behind the
firewall. If so, you must still worry about the underlying protocols used in remote
calls. Sometimes your clients sit on the other side of HTTP firewalls. When they
do, you must often tunnel invocations and cope with all the associated tradeoffs.

Mini-antipattern: Passing DOM Objects
Java applications may pass around XML as document object model (DOM) object
trees rather than parsing and marshaling the same data over and over. Though
many consider this practice acceptable in certain situations, developers should
never pass DOM objects across a remote interface. A problem occurs in the serial-
ization step. Depending on the DOM implementation, the DOM objects may not
be serializable at all. When DOM objects are serializable, the client or server may
have a different, incompatible DOM implementation or the client or server may
not have DOM implementation at all. Applications planning on passing XML
remotely—or even just serializing it—should work with the XML in its text form.

112 CHAPTER 4

Bitter sessions
4.4.1 Using IIOP

The Object Management Group (OMG) provides a standard for distributed sys-
tems, the Common Object Request Broker Architecture, or CORBA for short.
CORBA uses a wire protocol called IIOP to communicate remotely in a platform-
independent manner. As long as you have a CORBA binding in place, applica-
tions implemented in C can communicate with applications written in Java and
with applications running on completely different platforms.

 Java introduced CORBA support in version 1.2. Java 1.3 went one step further,
adding support for RMI-IIOP, an RMI implementation that uses IIOP as the under-
lying wire protocol. Java applications running in servers implemented by different
vendors (or even different versions from the same vendor) may use incompatible
RMI wire protocols. In these situations, the applications can communicate com-
patibly using RMI-IIOP instead.

 The EJB 2.0 specification mandates support of RMI-IIOP in addition to optional
vendor-specific wire protocols for EJB containers. In other words, EJB 2.0-compli-
ant containers from different vendors theoretically should be able to communi-
cate. As an added bonus, non-Java applications using IIOP can invoke EJBs with no
extra development effort.

Understanding narrowing
Because your application may be using IIOP for the underlying communications,
the EJB specification requires clients to perform the added step of narrowing the
stub:

InitialContext context = new InitialContext();
MyHome myHome = (MyHome) PortableRemoteObject.narrow(
 context.lookup(...), MyHome.class);

Why can’t you just down cast the stub as you would with normal Java objects and as
you have in the past? Because you transferred the object using IIOP, you lost any
notion of the object’s Java type. The returned object does not implement your
bean’s Java interface. The returned object, a generic CORBA stub, actually imple-
ments org.omg.CORBA.Object. This interface provides generic mechanisms for
invoking the remote methods.

 The javax.rmi.PortableRemoteObject.narrow() method instantiates a new
stub that implements your Java interface, wraps the generic CORBA stub, and
delegates method invocations to it. If your application uses another protocol and
the returned stub already implements your Java interface, the narrow() method
will return the object unmodified.

Interoperating efficiently 113
4.4.2 Antipattern: Narrow Servlet Bridges

CORBA and even Web services fall short in some interoperability endeavors. Sim-
ply routing IIOP through firewalls can be like opening a can of worms, not to
mention that the clients must run J2SE 1.3 or later. Web services potentially bloat
method invocations, reduce performance, limit functionality, and require an even
later version of Java, making them at times impractical to use for Java-to-Java com-
munications. You can tunnel RMI over HTTP, but vendor incompatibilities and
stub class sizes may anchor you here. Stub class sizes are especially important in
situations, such as within an applet, where the client may be communicating over
a low bandwidth connection. Transferring megs of stub support classes in such
cases is not acceptable.

 In these types of situations, servlet bridges come to the rescue. Servlet bridges
use plain HTTP, requiring no vendor-specific classes or web service frameworks.
With a servlet bridge, the client makes an HTTP request to a servlet, which in turn
delegates to a service (a stateless session bean, in your case), and returns the
result to the client.

 Most servlet bridge implementations that we’ve encountered are not problem-
free. They are servlet-specific and convert all types to strings, shoehorning us into
some of the same limitations you find with web services. They also don’t hide the
implementation details of the servlet bridge. Additionally, while implementing
custom servlet bridges, we often run into issues with type-checking that can be
horribly difficult to debug.

4.4.3 Solution: A generic servlet bridge

You can avoid these faults by implementing a generic servlet bridge. You can easily
implement the mapping of a servlet to a stateless session bean and generate the
stubs that delegate to that mapping generically, completely eliminating duplicate
coding and type-checking concerns.

 Listing 4.5 illustrates how a bridge instance maps to a stateless session bean.
You map the bridge to a given URL in the web.xml file, specifying the JNDI bind-
ing for your session bean in an initialization parameter (listing 4.5).

114 CHAPTER 4

Bitter sessions
<servlet>
<servlet-name>MyBeanBridge</servlet-name>
<servlet-class>Bridge</servlet-class>
<init-param>
<param-name>jndi</param-name>
<param-value>ejb/MyBean</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>MyBeanBridge</servlet-name>
<url-pattern>/MyBeanBridge</url-pattern>
</servlet-mapping>

The bridge servlet implementation looks up and narrows the session bean stub
upon initialization. The bridge receives the method and arguments from an
HTTP POST, then reflectively delegates the implementation to the configured
service. Afterwards, the bridge marshals the result back to the client in the HTTP
response (listing 4.6).

/**
 * Servlet bridge for stateless session beans.
 */
public class Bridge extends HttpServlet {

 /** EJBObject instance for stateless session bean. */
 private Object homeObject = null;

 /** Home interface's create() method. */
 private Method createMethod = null;

 public void init(ServletConfig config)
 throws ServletException {
 try {
 // get home interface jndi binding parameter.
 String jndiBinding = config.getInitParameter("jndi");
 if (jndiBinding == null)
 throw new ServletException(
 "JNDI binding init. parameter required.");

 // look up home object.
 InitialContext context = new InitialContext();
 Object homeObject = context.lookup(jndiBinding);
 if (homeObject == null)
 throw new ServletException(

Listing 4.5 Bridge servlet mappings

Listing 4.6 Example bridge servlet implementation

Get the JNDI
binding in
web.xml

Look up the
home stub
using JNDI

Interoperating efficiently 115
 "Home object not found in JNDI tree.");
 EJBHome ejbHome =
 (EJBHome) PortableRemoteObject.narrow(
 homeObject, EJBHome.class);
 Class homeClass =
 ejbHome.getEJBMetaData().getHomeInterfaceClass();
 this.homeObject = PortableRemoteObject.narrow(
 homeObject, homeClass);

 // find create() method on home interface.
 this.createMethod =
 homeClass.getMethod("create", null);
 }
 catch (ServletException e) {
 throw e;
 }
 catch (Exception e) {
 throw new ServletException(
 "Error creating EJBObject instance.", e);
 }
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 try {
 // read invocation from request.
 ObjectInputStream in =
 new ObjectInputStream(request.getInputStream());

 BridgeInvocation invocation =
 (BridgeInvocation) in.readObject();
 in.close();

 Object result;
 try {
 // create EJBObject instance.
 Object ejbObject =
 createMethod.invoke(homeObject, null);

 // invoke bean method on EJBObject instance.
 result = invocation.invoke(ejbObject);
 }
 catch (BridgeException e) {
 result = e;
 }

 // output result.
 ObjectOutputStream out = new ObjectOutputStream(

response.getOutputStream());
 out.writeObject(result);
 out.close();
 }

You must
narrow the
stub twice

Look up the
create()
method

Read the client’s
Invocation data
transfer object

Create an object
with create()
method

Invoke business
method on
EJBObject

Output the
results to the
client

116 CHAPTER 4

Bitter sessions
 catch (InvocationTargetException e) {
 throw new ServletException(
 e.getTargetException());
 }
 catch (IllegalAccessException e) {
 throw new ServletException(e);
 }
 catch (ClassNotFoundException e) {
 throw new ServletException(e);
 }
 } catch(IOException e) {
...
 } catch(IllegalArgumentException e) {
...
 }
 }
}

You implement the example client using dynamic proxies. J2SE introduced
java.lang.reflect.Proxy, a class that dynamically generates new classes that
implement a specified set of interfaces and delegate to an instance of the
java.lang.reflect.InvocationHandler interface. This framework enables us to
dynamically implement arbitrary interfaces at runtime.

 Client code simply creates a stub and invokes it as it would the normal service:

MyBean myBean = (MyBean) BridgeClient.create(
 new URL("http://myhost/MyBeanBridge"), MyBean.class);
myBean.doSomething();

You can generate stubs using dynamic proxies that implement your service inter-
face as we do in the client stub factory example in listing 4.7. The underlying
InvocationHandler implementation posts the method invocations to the specified
bridge URL and extracts and returns the result.

/**
 * Bridge stub factory. Manufactures session bridge stubs.
 * The default implementation uses dynamic proxies.
 */
public class BridgeClient {

 private static BridgeClient instance = new BridgeClient();

 /** Prevent public instantiation. */
 private BridgeClient() {}

 /** Gets factory instance. */

Listing 4.7 Example client stub factory

Interoperating efficiently 117
 public static BridgeClient getInstance() {
 return instance;
 }

 /** Marshals invocations to session bridge. */
 private static class ClientInvocationHandler
 implements InvocationHandler {

 private URL bridgeUrl;

 /**
 * Constructs new invocation handler for a session
 * bean type.
 */
 private ClientInvocationHandler(URL bridgeUrl) {
 this.bridgeUrl = bridgeUrl;
 }

 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 // create invocation value object.
 BridgeInvocation invocation =
 new BridgeInvocation(method, args);

 // post invocation object to bridge Servlet.
 URLConnection connection = bridgeUrl.openConnection();
 connection.setDoOutput(true);
 connection.setDoInput(true);
 connection.setUseCaches(false);

 // output session invocation object.
 ObjectOutputStream out = new ObjectOutputStream(
 connection.getOutputStream());
 out.writeObject(invocation);
 out.flush();
 out.close();

 // input result.
 ObjectInputStream in = new ObjectInputStream(Input the result
 connection.getInputStream());
 Object result = in.readObject();

 // if the result is an exception, throw it.
 if (result instanceof BridgeException) throw
 ((BridgeException) result).getCause();

 // return the result.
 return result;
 }
 }

 /**
 * Gets a session object client stub.
 * Stub uses session bridge to marshal invocations.

InvocationHandler for
the dynamic proxy

Construct a
BridgeInvocation
value object

Open a connection
to the bridge

Output the
BridgeInvocation
instance

If the result is a
BridgeException,
unwrap the cause
and throw it

118 CHAPTER 4

Bitter sessions
 * @param bridgeUrl URL of bridge Servlet.
 */
 public Object create(URL bridgeUrl,
 Class remoteInterface) {
 return Proxy.newProxyInstance(
 remoteInterface.getClassLoader(),
 new Class[] { remoteInterface },
 new ClientInvocationHandler(bridgeUrl)
);
 }
}

The bridge and client stubs communicate using a BridgeInvocation object. The
BridgeInvocation (listing 4.8) simply encapsulates the method and arguments in
a serializable form so that you can pass them via HTTP:

/**
 * Bridge invocation.
 * @author Bob Lee
 */
class BridgeInvocation implements java.io.Serializable {

 static final long serialVersionUID = -1;

 private Class remoteClass;
 private String methodName;
 private Class[] parameterTypes;
 private Object[] parameters;

 /**
 * Constructs a session bean invocation to be invoked
 * at a later time. Used by the client.
 * @param jndiBinding Location of home object in JNDI tree.
 * @param method Method to invoke.
 * @param parameters Parameters to pass the method.
 */
 BridgeInvocation(Method method, Object[] parameters) {
 this.remoteClass = method.getDeclaringClass();
 this.methodName = method.getName();
 this.parameterTypes = method.getParameterTypes();
 this.parameters = parameters;
 }

 /**
 * Invokes method on EJBObject instance.
 * @param ejbObject Object to invoke on.
 */
 Object invoke(Object ejbObject) throws BridgeException {

Listing 4.8 BridgeInvocation.java

Create new stub using
dynamic proxy

Convert method
invocation into a
Serializable form

Interoperating efficiently 119
 try {
 Method method = remoteClass.getMethod(this.methodName,
 this.parameterTypes);
 return method.invoke(ejbObject, this.parameters);
 }
 catch (NoSuchMethodException e) {
 // never happens for a valid request.
 throw new IllegalArgumentException(
 "Method not found. Invocation: " + this);
 }
 catch (InvocationTargetException e) {
 // target method threw an exception.
 throw new BridgeException(e.getTargetException());
 }
 catch (Exception e) {
 // covers other exceptions (i.e. RuntimeException).
 throw new BridgeException(e);
 }
 }

}

This basic example bridge implementation allows us to do almost anything you
could do with a normal, stateless RMI-based invocation. However, extensions
could make your implementation more robust and production-worthy. Consider
these possible extensions:

■ Support for stateful beans using an HTTP session

■ Support for plain Java objects. You could run your application in a Servlet
container to begin with and easily migrate to a full-blown application server
down the road.

■ Declarative XML configuration for client lookups

■ Support for generating the source for the clients stubs at build time rather
than using dynamic proxies to support clients using older virtual machines
and to reduce the overhead of reflection

■ Support for pooling HTTP connections using the HTTP 1.1 keep alive
header

We’ve used a similar implementation, without Dynamic Proxies, to invoke EJBs
between different incompatible versions of the same vendor’s application server.
The vendor’s interoperability track depended on support for RMI-IIOP requiring
J2SE 1.3 or later. As is often the case, many invoking clients ran older virtual
machine versions.

Invoke method
invocation on
passed object

120 CHAPTER 4

Bitter sessions
 Using a generic servlet bridge reduced the workload considerably since config-
uring a new stateless session bean only required adding an entry to the web.xml
file, and invoking the service from the client took a single line lookup. As an
added bonus, the error potential was greatly reduced because we regained com-
pile time type-checking.

4.5 Summary

In this chapter, we explored half the session bean story: the stateless session bean.
We identified the implications of handling threads and using thread primitives in
an EJB container. We discussed how the EJB architecture impacts your existing
exception handling strategies; we examined the performance and scalability of
Page-by-Page Iterator implementations; and we outlined options for interoperat-
ing safely and efficiently in heterogeneous environments.

 In the next chapter, we’ll dive into a traditional problem child of the EJB speci-
fication—the stateful session bean. In addition, we’ll cover many state manage-
ment techniques at your disposal, considering when each should be applied.

Antipatterns in this chapter 121
4.6 Antipatterns in this chapter

This section covers the Tangled Thread, Swallowing Exceptions, Killer System
Exceptions, Database Connection Hog, Eager Iterator, and Narrow Servlet Bridge
antipatterns.

DESCRIPTION
The EJB specification restricts the multithreading of applications.
Still, some break the rules.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Refactor

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
The EJB specification has strict rules on threading applications.
Though you can break the rules by understanding the intent of
the restrictions, it is not recommended.

ANECDOTAL EVIDENCE
“It seems to work OK in the debugger.”

SYMPTOMS, CONSEQUENCES
Applications behave unpredictably, because libraries and code
are not adequately protected.

TANGLED THREADS

122 CHAPTER 4

Bitter sessions

DESCRIPTION
It’s easy to ignore exceptions by just logging them and continuing
processing as if nothing happened.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Exceptions

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
When possible, be deliberate about your handling of exceptions.
Test adequate exception management.

ANECDOTAL EVIDENCE
“This bug happened from a method called long ago.”

SYMPTOMS, CONSEQUENCES
Exceptions do not get processed correctly, resulting in unpredict-
able crashes and other problems. Bugs are difficult to find.

SWALLOWING EXCEPTIONS

Antipatterns in this chapter 123

DESCRIPTION
Often, the easiest way to roll back a transaction is to throw a sys-
tem exception, but it’s a problematic solution.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Application exceptions

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Use application exceptions for application errors. Use system ex-
ceptions only for system type errors.

ANECDOTAL EVIDENCE
“Don’t write all of that code to roll it back. System exception will
do it all for you automatically.”

SYMPTOMS, CONSEQUENCES
The consequences are not always clear at first. Code is difficult to
maintain. Logs become muddied with application errors, making
it difficult to find the cause of true system exceptions. The heavy-
handed approach often leads to poor performance if the applica-
tion logs many exceptions.

KILLER SYSTEM EXCEPTIONS

124 CHAPTER 4

Bitter sessions

DESCRIPTION
Some database extensions can cause a long-term database con-
nection, limiting connection pooling and scalability.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Refactor

REFACTORED SOLUTION TYPE
Software, technology

REFACTORED SOLUTION DESCRIPTION
Refactor your database code to use database extensions that re-
lease the connection after each logical operation.

ANECDOTAL EVIDENCE
“Our connection pooling doesn’t make any difference.”

SYMPTOMS, CONSEQUENCES
Poor scalability and poor performance.

DESCRIPTION
Sometimes, developers neglect the performance between the da-
tabase and application tier, hurting performance.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Test and refactor

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
The best solution is to automate performance tests (see chapter
9) and refactor based on the results.

ANECDOTAL EVIDENCE
“I thought page-by-page iterators were supposed to help performance.”

SYMPTOMS, CONSEQUENCES
Changes in one layer have rippling effects on the model.

DATABASE CONNECTION HOG

EAGER ITERATOR

Antipatterns in this chapter 125

DESCRIPTION
Building servlet bridges can solve some problems, but implement-
ing a separate servlet bridge per interface is cumbersome and ex-
pensive.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Generic server bridge

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Generalize the servlet bridge. Map a bridge onto a servlet and ses-
sion bean combination. The bridge looks up the bean and nar-
rows it upon invocation.

SYMPTOMS, CONSEQUENCES
Each interface requires a new servlet bridge, adding layers, com-
plexity, and maintenance burdens to the code.

NARROW SERVLET BRIDGES

5Bitter session states
This chapter covers
■ A definition of session state
■ A discussion of stateless vs. stateful services
■ An example of storing session state in a stateful session bean
■ An example of storing session state in a servlet
■ A guidebook for choosing where best to store session state
■ Antipatterns when stateful session beans are misused
126

127
Snowboarding in the Colorado backcountry offers breathtaking views and bountiful
untracked powder. Anxious to take it all in, we’ve organized a multiday outdoor
adventure. Each night we’ll relax in a different hut, one of a series of huts connect-
ing segments of premium terrain.

After arriving at the trailhead late in the day, we gear up in snowshoes for the
short hike to our first hut. As I lift my backpack from the vehicle, I’m reminded of all
that it contains. In preparing for the trip, I had thought obsessively about each item
I would bring, knowing it would be strapped on my back for the duration of the trip.
Yet as we approach the end of the hike, I’m once again having second thoughts
about what I’ve packed. My back and shoulders are already protesting under the
heavy load.

With the benefit of a good night’s sleep, we’re ready to go in the morning. We
notice that a fresh blanket of snow has fallen overnight, adding to an already spec-
tacular base. A snowboarder’s dream—sick powder!

Donning my heavy pack, I start getting hooked into my board. I have to rock
back and forth a little longer than usual before I finally break free of the board’s
depression in the snow, deepened by the weight of my pack. I look back over my
shoulder as last night’s shelter fades into the distance. The safety of our next hut is
miles away, miles over the remote backcountry. As we start into our first turns of the
day, I feel a twinge of fear that before long this pack will prove to be my millstone.

Stateful session beans have been around since the earliest version of the EJB spec-
ification. Indeed, stateful session beans were intended to be the rule; stateless ses-
sion beans the exception. Over time, however, stateful session beans have fallen
out of favor. As with most technologies, after a few years of actual use, significant
chinks appeared in the stateful session bean armor. Unfortunately, in many cases,
stateful session beans have been dismissed outright by misguided strokes of the
broad scalability brush. Mention stateful session beans now, and you’ll frequently
evoke the gag reflex. Stateless session beans, on the other hand, have arguably
become EJB’s crown jewel. In this chapter we’ll put stateful session beans under
the microscope in an effort to uncover their advantages and disadvantages. We’ll
start by defining session state, and we’ll discover why it’s handy in certain situa-
tions. Then we’ll polish up that rusty stateful session bean tool to review its true
purpose in managing session state, just in case we need it.

 We’ll also review how session state can be stored in servlets, giving us a differ-
ent perspective on the session landscape. Then we’ll distill all this information
into a guidebook of sorts, one that can tell us when to reach for stateful session
beans as the best tool for the job. Finally, we’ll identify common ways in which

128 CHAPTER 5

Bitter session states
stateful session beans are misused. In the end, we’ll have gained a better sense of
how to pack our gear to ensure a safe and swift journey to our next project.

5.1 Making a case for session state

Before we dive headlong into choosing tools for storing session state, we need to
fully understand what we’re trying to achieve with these tools. Specifically, what is
session state and when is it valuable?

 Session state is simply a working set of information that spans a given conversa-
tion. In fact, it’s often referred to as conversational state. We’ll use both terms inter-
changeably throughout this chapter. We rely on conversational state anytime we
engage in any meaningful conversation. As we’re chatting with someone, we build
up a history that gives context to our conversation. That is, the words we hear and
speak have meaning insofar as they are relevant to something we’ve already said.
Using this conversational state as a backdrop, we can communicate much more
efficiently. We don’t need to qualify every statement by reiterating the sum of the
conversation to date.

 Conversations between software clients and servers are no different. For exam-
ple, if you’ve purchased anything over the Internet recently, then you’re probably
familiar with the virtual shopping cart. When you show up at an online store to
shop, you get your own personal shopping cart. You push your virtual cart around
the e-commerce site, filling it with goodies from the vendor’s shelves. If you hap-
pen to wander off for a moment, leaving the cart in the middle of an aisle, you’ll
find it right where you left it when you return. Moreover, your cart will still con-
tain all the items you’ve already added. Once you’re done shopping, you wheel
the cart to the checkout line and surrender your wallet.

 From the time you take control of the shopping cart until the checkout pro-
cess is complete, you are holding a stateful conversation with the e-commerce
server. As you navigate through pages of the web site and pluck merchandise from
the shelves, the server at all times remembers who you are and what is in your cart.
The contents of your shopping cart represent the session state—a history of you
and your shopping spree. Figure 5.1 depicts your private conversation with the
e-commerce server.

 Imagine what the same conversation might be like if, every time you added
something to your shopping cart, the server conveniently forgot what it already
contained. The exchange would probably sound more like “The Twelve Days of
Christmas” in which adding a new item in turn causes all prior items to be named.

A pivotal antipattern: Conversational Baggage 129
In other words, you’d be responsible for repeating all the conversational history
each time a new piece of information was introduced.

 As another experiment, imagine the chaos that would ensue if the server failed
to keep your conversation private. That is, suppose the server forgets which shop-
ping cart belongs to you. As you’re rummaging through the shelves with your
back turned, another eager shopper fills your cart with 1970s love song albums.
You’re in for an unwelcome surprise at the checkout line!

 In summary, session state is a private workspace of information that’s retained
throughout a conversation. Keeping this information intact is valuable because it
reduces the amount of data that must be exchanged back and forth to carry on a
meaningful dialogue. Alas, there’s no such thing as a free lunch, especially here.
The convenience of session state comes at a price that must be carefully consid-
ered. This is the subject of our first antipattern.

5.2 A pivotal antipattern: Conversational Baggage

Using state simplifies a conversational exchange. Only new information needs
to be offered, and once relayed, information does not need to be repeated.
That sounds efficient, but there’s a rub—someone has to remember the history
of the conversation.

 Take, for example, the e-commerce server that greets each customer with a
personal shopping cart. Throughout a customer’s shopping experience, which
could vary from a few minutes to several days, the server is burdened with the
responsibility of remembering the cart’s contents. And no matter how much floor
space the store might have, at some point all the aisles become crowded. In other
words, the server has a finite amount of memory in which to juggle all the
assigned shopping carts.

Browser Server

Big Spender’s Cart
Big Spender’s CartLaptop

Big-screen TV
Digital camera

Big Spender’s Cart

“Big Spender”

User

Figure 5.1 Session state is simply a working set of information relevant to any given conversation.
HTTP, the communication protocol used by web applications, is stateless. When a dialogue between
the web browser and the server is dependent on conversational state, the server must have a strategy
to manage session state.

130 CHAPTER 5

Bitter session states
 In addition to the memory overhead of session state, customers expect their
shopping carts to be reliable. If the server were to suddenly develop a case of
amnesia, a customer would be faced with starting her shopping adventure all over
again. To minimize the risk of a memory lapse, the server could record the con-
tents of shopping carts in a backup location, such as a database. While this
approach is more convenient and robust for online shopping, it nevertheless
requires double-entry bookkeeping. Each time the contents of a cart are changed,
the server must take the time to update the backup cart.

 Therefore, the convenience afforded by session state often comes at a steep
price in memory resources and performance. At the end of the day, someone
must be responsible for hauling around the conversational baggage. This over-
head can be especially problematic in distributed systems such as those developed
using EJB components. On the surface, the use of session state simplifies the inter-
faces through which distributed components communicate. However, that sim-
plicity masks a more complex need—the session state must be stored and
managed efficiently. So, before we tap into the potential benefits of session state,
it’s important we understand its cost.

5.2.1 The burden of state

Let’s dig a bit deeper into the burden of state by taking a sneak peek at the type of
EJB intended to manage session state—the stateful session bean. Later in this
chapter, we’ll look at an example of a stateful session bean in detail. First, we can
draw important conclusions by looking at how stateful session beans manage state.

 A stateful session bean stores conversational state on behalf of its client over the
course of a business process, such as online shopping. A stateful session bean that
models a shopping cart, for example, retains the contents of a particular cart asso-
ciated with a particular shopper across multiple requests to the e-commerce
server. In other words, a stateful session bean always has a one-to-one relationship
with its client. As such, a representative amount of exclusive memory is needed to
store each bean’s state. Figure 5.2 illustrates the relationship between stateful ses-
sion beans and their clients.

 As the number of simultaneous stateful conversations increases, the overhead
in juggling the necessary memory resources while delivering tolerable perfor-
mance takes a toll on the server. Consider, for example, a case in which 1,000
shopping carts are active at the same time. The EJB server is burdened with man-
aging the memory resources required by 1,000 shopping carts, many of which may
be piled high with items. Fortunately the EJB server has tricks up its sleeve to make
the most out of limited memory. For example, it can use secondary storage like

A pivotal antipattern: Conversational Baggage 131
virtual memory to store idle shopping carts. These techniques may yield accept-
able results under certain conditions but, eventually, shoppers will begin to notice
sluggish performance.

 When a tool such as stateful session beans shows up in our toolbox, we usually
start noticing all kinds of wonderful opportunities for storing session state to sim-
plify conversations. This zeal has a deceptive way of blinding us to the potential
drawbacks. Consequently, we can accumulate conversational baggage quickly
throughout our application. Before we take on that additional weight, let’s con-
sider an alternative.

5.2.2 Lightening the load

Now, imagine a slightly different shopping experience. Rather than pushing
around a shopping cart and intermittently adding items over time, let’s say we
keep a shopping list offline instead. When we’re ready to purchase the items on
our list, we submit it to the e-commerce server, which performs the checkout pro-
cess. We’ve made a subtle, but important, change to the way we communicate with
the server. From the server’s perspective, the conversation is now stateless. This
alleviates the need for the server to keep track of our shopping cart contents.
Consequently, the server can make do with much less memory.

 Designing the checkout process as a stateless service offers another advantage.
Since the process holds no state, nothing can be lost. If the service fails, the shop-
ping list can be submitted to another identical service. Again, there’s no free
lunch; something must store the shopping list. In this case, the shopping list
could be stored in the client itself. A number of advantages to shifting this
responsibility may exist, including the distribution of memory requirements
across a wider range of resources.

Client A

Client B

Client CClient C

EJB Container

A’s State

B’s State

C’s State

Figure 5.2
Stateful session beans are dedicated to one client throughout
their life. As with other state management alternatives, every
client’s unique state incurs a memory and management
overhead.

132 CHAPTER 5

Bitter session states
Stateless conversations are best handled by the other type of session bean—the
stateless session bean. Unlike stateful session beans, stateless session beans don’t
hold onto conversational state between client requests. The client is responsible
for passing any relevant state each time it communicates with the bean. For exam-
ple, a stateless session bean modeling a checkout process could provide a check-
out() method that takes a shopping list as a parameter.

 The upshot is that stateless session beans have no allegiance to any given client
and can therefore be shared among many clients. The EJB container simply cre-
ates a pool of identical stateless session beans and meters them out to handle cli-
ent requests. As soon as the checkout() method returns from processing one
client’s shopping list, it can be reused immediately to service a different client.
Figure 5.3 illustrates how a stateless session bean can be reused by multiple clients.
By reusing stateless session beans in a pool, a small number of beans can handle a
large number of concurrent clients. Consequently, stateless session beans gener-
ally scale better than stateful session beans. That’s not to say that one type of bean
is always better than the other, but it should nudge us toward making services
stateless where possible.

5.2.3 Solution 1: Strive for statelessness

Although certain situations do justify creating stateful services (e.g., e-commerce),
you should avoid creating stateful services without close consideration of your sit-
uation’s particular needs. Shopping cart applications specifically rely on a rela-
tively large amount of conversational state to ensure a robust shopping
experience. Indeed, we’re willing to pay the price of managing shopping cart
resources in return for lots of satisfied customers in the checkout line. However, if
you do begin by building stateful services, you may add unnecessary complexity to
other services added later. And, if you begin by creating stateless services, you can

Client A

Client B

Client C

EJB Container

Stateless Bean
Instance Pool

A

B

B

A

B

Figure 5.3
Stateless session beans are pooled and swapped
between clients to achieve higher levels of
scalability. In this example, bean instance A is busy
servicing Client A. When Client B invokes a method
on a stateless session bean, bean instance B is
plucked from the pool to service the request. Once
the request is complete, bean instance B is
returned to the pool and later reused by Client C.

A pivotal antipattern: Conversational Baggage 133
avoid overburdening future services. When no real benefit to managing session
state exists, using stateful session beans should be avoided. In other words, stateful
services should be the exception, not the rule—not because they don’t scale, but
because, in the absence of session state, they’re the wrong tools for the job. Just as
you wouldn’t go to the trouble of pushing around a shopping cart just to buy one
item, you shouldn’t use stateful session beans for stateless conversations. If the
conversation is stateless, then stateless session beans are a better choice. Indeed,
stateless session beans scale better because they’re not burdened by state.

 For this reason, you should strive to design business methods that take client-
specific information as parameters when convenient. An example might be a credit
card processing service that takes a DTO representing the card number, expiration
date, and transaction amount as a parameter. It could then return the results in a
separate DTO. Figure 5.4 illustrates a stateless credit card processing service.

 By all means, use stateless session beans to the maximum extent possible. Then
use stateful services when necessary.

Client

response:
PaymentResponse

CreditCardProcessor

request:
PaymentRequest

response := process(request)

Figure 5.4 Stateless services, such as this credit card processor, take client-specific information as
method parameters. Consequently, these services aren’t burdened with remembering session state
across multiple method requests. As a result, stateless services are generally less complex and more
scalable. Packaging information in data transfer objects helps to keep the interface to a stateless service
clean and efficient.

134 CHAPTER 5

Bitter session states
5.2.4 Solution 2: Leverage session state when beneficial

So because stateless session beans scale better, stateful session beans should be
banished from our toolbox, right? Not so fast! Remember, stateful session beans
are a tool for storing session state. If we don’t need session state, then stateful ses-
sion beans aren’t the right tool. Therefore, the fundamental question we must
answer is not, “Should we use stateless or stateful session beans?” Instead, we
should step back and contemplate the question “Do we really need session state?”

 Often, making the choice to use session state is a no-brainer. The online shop-
ping cart illustrates a common situation where the benefits of session state defi-
nitely outweigh its burdens. We can offer a friendlier shopping experience by
keeping track of shopping cart contents for users. Moreover, managing session
state in this way helps ensure the maximum selling opportunity. When an item
goes into the cart, it should stay in there until the customer completes the check-
out process. Using a tool designed to manage session state on the server makes
this job easier.

 If after considering the needs of a service, you decide that, yes, you really do
need session state, the next question that arises is, “How should we manage ses-
sion state?” In the next two sections we’ll get our hands dirty using two tools for
managing session state—stateful session beans and servlets. Keep in mind that
stateful services can be more complex and less scalable than stateless services.
Nevertheless, these tools are invaluable when we can’t live without session state.

5.3 Managing sessions with stateful session beans

Stateful session beans are server-side components that model a business process
while encapsulating session, or conversational, state. The conversation is nothing
more than a sequence of business methods invoked by a client on the bean. The
client may be a servlet, a fat-client application, or any other component with
access to the stateful session bean.

 Once a client initiates a conversation with a stateful session bean, the bean’s
sole purpose in life is to do work at the request of that client. Their conversation is
kept private. As the client invokes methods, the bean stores conversational state in
its instance variables. Any changes made to the state during the conversation can
affect the results of subsequent method invocations. In this sense, a stateful
session bean is nothing less than we’d expect from any self-respecting object. It
encapsulates state as well as the logic that operates on that state.

 Despite their relative simplicity, over time stateful session beans may have
become rusty tools in your toolbox. You’ve no doubt heard that they don’t scale as

Managing sessions with stateful session beans 135
well as stateless session beans. Indeed, they generally don’t. (There, that’s out of
the way!) In all fairness, stateful services of any variety generally can’t be scaled as
efficiently as stateless services. Memory resources are limiting factors to scalability
and stateful services require exclusive memory. Nevertheless, when session state is
beneficial, we need to use a tool best suited for the job, and stateful session beans
are one obvious choice. With this in mind, let’s look at how a stateful session bean
can be used to model a shopping cart.

5.3.1 Shopping using a stateful session bean

Shopping carts are a staple of any e-commerce site. Building a stateful session
bean to hold a shopping cart’s contents is relatively easy. For brevity’s sake, we’ll
assume you’ve probably already crafted a few stateful session beans, so we won’t
get mired down with drawn-out examples. We’ll forego creating the required EJB
remote and home interfaces. The stateful session bean class is worth looking at in
detail, however, before we move on to bitter things. (And trust us, we will!)

 The canonical shopping cart, reinvented by nearly every e-commerce shop in
the universe, is simply a wrapper enclosing a collection of items. Clients can add
items, delete items, and query for all the current items in the cart. Okay, some
shopping carts do have a bit more gold plating, but if you’ve seen one shopping
cart, you’ve seen them all. Listing 5.1 shows the implementation of a simple shop-
ping cart as a stateful session bean.

public class ShoppingCartEJB implements javax.ejb.SessionBean {

 private Map cart;
 private javax.ejb.SessionContext context;

 public void ejbCreate() {
 cart = new HashMap();
 }

 public void addItem(String item, int quantity) {
 cart.put(item, new Integer(quantity));
 }

 public void removeItem(String item) {
 cart.remove(item);
 }

 public Map getItems() {
 return cart;
 }

 public void ejbActivate() {

Listing 5.1 Managing a shopping cart using a stateful session bean

136 CHAPTER 5

Bitter session states
 // Called after bean has been activated
 }

 public void ejbPassivate() {
 // Called before bean is passivated
 }

 public void ejbRemove() {
 // May be called before bean is destroyed
 }

 public void setSessionContext(javax.ejb.SessionContext context) {
 this.context = context;
 }
}

Aside from the EJB life cycle methods that we must implement (which we’ll discuss
in section 5.3.2), there’s not much to constructing the shopping cart. When the cli-
ent creates a cart, the ejbCreate() method is called indirectly to initialize an empty
collection of items. As the client looks through a vendor’s catalog of products, it
invokes the addItem() method for any items of interest. Invoking this method
incurs a side effect: the bean commits the item to memory by updating the cart
instance variable. The same holds true whenever the client removes an item by
invoking the removeItem() method. Because the bean retains the contents of the
shopping cart across method invocations, at any time the client can invoke the get-
Items() method to obtain all the items added since the shopping cart was created.

 It’s important to note that session state is temporary. It exists for the duration of
the conversation. As long as the client continues to use the same shopping cart ref-
erence, the server will recognize it as the owner of the cart. Once the client has bro-
ken off communication with the cart, its contents are lost forever. In other words,
this example shopping cart is not saved to any long-term storage, such as a database.

 Now that we’ve laid down the code for a stateful session bean, let’s peek inside
the EJB container—the environment that sustains the life of a stateful session bean.

5.3.2 Looking under the hood

Developing stateful session beans is relatively easy, thanks in no small part to the
EJB container. It does all the heavy lifting; all we have to do is supply the business
logic. That sounds like a pretty sweet deal and, indeed, relying on the EJB con-
tainer often pays off. Nevertheless, before we commit to using stateful session
beans, we need to understand the role of the EJB container.

 The EJB container’s first responsibility is to maintain the one-to-one relation-
ship between a client and its stateful session bean. When a client invokes a

Managing sessions with stateful session beans 137
business method on a bean’s remote or local interface, the container must ensure
that the right stateful session bean instance receives that request. If the container
fails to correctly match up the request with its bean instance, then conversations
quickly will become scrambled with irrelevant state.

 In addition, the EJB container has the unenviable job of maximizing memory
resources for the best possible performance. Every stateful session bean managed
in memory takes up prime real estate that could be used to store other things. If
resources were infinite, we’d want to put everything in memory for fast access.
Realistically, memory is a limited resource, so the EJB container must strike a toler-
able balance between memory and performance.

 Looking under the hood of the container reveals the tricks the container uses to
service multiple concurrent clients with maximum responsiveness. It’s a relatively
straightforward series of life cycle events, focused on using a finite amount of mem-
ory efficiently. Figure 5.5 illustrates the life cycle of a stateful session bean instance.

 Let’s consider each stage in the life cycle of a stateful session bean instance
more closely:

■ Creation event When a client wishes to strike up a conversation with a
stateful session bean, it invokes the create() method (or an overloaded
variant) on the bean’s home interface. This causes a new instance of the
bean to be created and brought to life in the EJB container’s cache. Before
the bean instance is assigned to the client, the bean’s ejbCreate() method
is invoked to initialize any session state. Once initialized, the bean instance
is assigned to the client that created it and enters the method ready state.

■ Method ready state In this state, the bean instance dutifully goes about the
work requested by its client. To fulfill the needs of its client, the bean

Does Not Exist Method Ready Passive
ejbCreate()

ejbRemove()

timeout timeout

ejbPassivate()

ejbActivate()

Figure 5.5 Once created, a stateful session bean stands ready to do its client’s work. It’s either
immediately ready in the EJB container’s cache or activated into the cache from its passive state. To
conserve cache space, the container may passivate the bean if it goes idle. If the client lets the bean
go idle for too long, or explicitly removes it, the bean is destroyed.

138 CHAPTER 5

Bitter session states
instance may employ the services of other resources, such as entity beans or
a database.

■ Passivation event If the bean instance remains idle for a relatively long
time between client requests, the EJB container may choose to evict it from
the cache to conserve memory. The criteria used by the container to make
this decision are vendor-specific, though usually influenced by the bean’s
deployment configuration. In general, to maximize limited memory the
container will favor active bean instances. Before a bean instance is passi-
vated, the container invokes its ejbPassivate() method to give it an oppor-
tunity to close any open resources and prepare its state to be written to
secondary storage.

■ Passive state In this state the bean instance’s nontransient instance vari-
ables are written to secondary storage, usually the file system. The EJB con-
tainer stores the bean’s state relative to the client that created it. If the client
calls on the bean to do subsequent work, the container knows where to find
it. Meanwhile, by using secondary storage such as virtual memory the con-
tainer’s cache can be used for popular bean instances.

■ Activation event While a bean instance is in the passivated state, its client
may once again pick up the conversation by invoking one of the bean’s busi-
ness methods. At this point the container restores the passivated bean
instance into the cache. When the bean has been successfully revived in the
cache, the container invokes its ejbActivate() method. This gives the bean
instance an opportunity to refresh any transient instance variables or
reopen resources closed prior to passivation. Once this callback method has
returned, the bean goes back into the method-ready state.

■ Remove event At any time, a client may choose to end the conversation
with its stateful session bean instance by invoking its remove() method.
Prior to the bean instance actually being destroyed, the container invokes
its ejbRemove() method to give it a chance to clean up any loose ends. Once
destroyed, the bean instance’s state is lost forever. A bean instance may also
be destroyed if it’s left idle for too long and its timeout value expires. This
may occur while the bean is in the method ready or passivated state. Note,
however, that when the timeout occurs on a passivated bean, the container
is not required to invoke the bean instance’s ejbRemove() method.

Wow! There’s a lot going on under the hood of the EJB container. But because the
client always accesses its bean instance indirectly through the container, it’s

Managing sessions with stateful session beans 139
oblivious to the gyrations the container must go through to make sure the bean
instance is always ready to service requests. Indeed, when a client invokes a
method on a passivated bean instance, it appears as if the bean has always been
active in the cache. In truth, the bean may be passivated and activated multiple
times over the course of the conversation. If the container is doing its job well, its
resource management duties are hidden from the client.

 That’s all well and good, but when the container is under a lot of stress, cracks
begin to show. Remember, only so much memory is available for the cache. When
there’s not enough memory to hold all active bean instances in the cache, clients
can become painfully aware of the passivation/activation shell game. It’s similar to
the thrashing of multiple applications on your desktop, all competing for space in
physical memory. To bring an idle application into physical memory, another
application must be swapped out to virtual memory on disk. The familiar grinding
sound usually indicates a lot of disk reads and writes going on. Figure 5.6 illus-
trates the sacrifice of one stateful session bean instance to make room for another
in the cache.

 Alas, often we create unnecessary work for the container. This needless work is
the subject of many antipatterns explored throughout the remainder of this chap-
ter. Before we take a look at those antipatterns, let’s detour briefly to explore
another tool for storing session state—the HttpSession class offered by Java serv-
lets. (Note that, although we’ll discuss the use the Servlet API in this section as a
comparison to stateful session beans, a comprehensive discussion of servlets is
beyond the scope of this chapter.)

EJB Container

Cache

A

B

Disk

A

B

Figure 5.6
The stateful session bean cache has limited headroom.
To make space for instance B to be activated in the
cache, instance A is passivated to disk. The shell game
of passivating beans to allow others to be activated can
lead to excessive thrashing if the cache size and the
number of concurrent clients are unbalanced.

140 CHAPTER 5

Bitter session states
5.4 Managing sessions with servlets

When users visit our web site, we’d like to store information for them as they move
from page to page. This ability to identify users and manage their private session
state is often referred to as session tracking. Although HTTP is stateless, and does
not include built-in support for session tracking, several techniques are com-
monly used to track a session across multiple page requests. As a default strategy,
servlets can store a cookie on the browser machine. The browser then automati-
cally sends the cookie to the server every time the user requests a page. In this way,
the server is able to identify the client. Alternatively, the client can be identified by
rewriting all requested page URLs to include the client’s unique session identifier.
By inspecting each requested URL, the server is then able to recognize the client.

 Fortunately, the Java Servlet API defines an HttpSession class that offers a con-
venient façade to session tracking. The beauty of this API is that the session-track-
ing details are hidden from the servlet programmer. If the user’s browser won’t
take a cookie, for example, then the server can resort to URL rewriting.

5.4.1 Keeping it simple with HttpSession

So where does a web client keep its private stash of session state? Well, it’s stored
in the Web server, but the client must present its golden key before getting its
hands on the goods. The first time a client makes a request of the server, the
server generates a unique session identifier. This session ID may then be set in a
cookie on the browser’s machine or used to rewrite subsequently requested URLs.
Regardless of where it is stored, the session ID must be presented to the server on
each request for the server to recognize the client.

 Once the session ID has been generated, the servlet can create an HttpSession
object on behalf of the client. The HttpSession object is simply a collection of key-
value pairs used to hold a client’s session state. The server stores the HttpSession
object in memory mapped to the client’s session ID. That way, every time the cli-
ent makes a request and presents its session ID, the server can look up the client’s
corresponding HttpSession object. Figure 5.7 shows the relationship between ses-
sion IDs and their associated HttpSession objects.

 Note that a servlet may also store a handle to a stateful session bean in the
HttpSession object. This is especially useful when a web application is designed to
delegate session management to a stateful session bean.

 Now, let’s put a servlet to work storing the items in a shopping cart.

Managing sessions with servlets 141
5.4.2 Shopping using a servlet

Using the Servlet API to track the contents of a shopper’s cart is remarkably easy
and convenient. Listing 5.2 shows an abbreviated version of our shopping cart as
managed by a servlet.

public class ShoppingCartServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 HttpSession session = request.getSession(true);

 Map cart = (Map)session.getAttribute("ShoppingCart");

 if (cart == null) {
 cart = new HashMap();
 session.setAttribute("ShoppingCart", cart);
 }

 String item = request.getParameter("item");
 String quantity = request.getParameter("quantity");
 if (quantity == null) {
 quantity = “1”;
 }

 if (item != null) {
 cart.put(item, new Integer(quantity)); Add the item to the cart
 }
 }
}

Session IDs

9qLe3n1jtZN

9qLFxXgX2F

HttpSession 9qLe3n1jtZN

“ShoppingCart” Cart Contents

“UserID” User’s ID

HttpSession 9qLFxXgX2F

“ShoppingCart” Cart Contents

“UserID” User’s ID

Web Server

Figure 5.7 Each session ID relates to one HttpSession object that may
contain zero or more key-value pairs representing a user’s session state.

Listing 5.2 Managing a shopping cart using a servlet

Obtain the client’s
HttpSession object

Bind the client’s
shopping cart
into the
HttpSession
object

Identify the item
and quantity to add

142 CHAPTER 5

Bitter session states
When the client first accesses the servlet, invoking the request.getSession(true)
method creates a new HttpSession object. If a session had already been created
for this user, this method simply returns the existing HttpSession object. The serv-
let then queries the user’s HttpSession object, using its getAttribute() method
to see if a shopping cart already exists. If this is the first time the client has
accessed the servlet, then a new HashMap object representing the shopping cart
must be created. Once created, the new object is bound into the HttpSession
object under the “ShoppingCart” key using the setAttribute() method. If a shop-
ping cart already exists for this client, the same cart continues to be used through-
out the shopping spree.

 With the shopping cart now in position, the servlet identifies the item and
quantity to be added by parsing the URL request parameters. After a bit of valida-
tion, the new item is added to the shopping cart.

 That’s it! The coding was relatively painless. We just dumped data in the ses-
sion and let the server figure out which data goes with which client. If we always
had web clients and we could afford to lose their session state, that would be the
end of the story. However, we can’t always live with these limitations.

5.4.3 Scaling up servlet sessions

Invariably, every time a discussion about stateful session beans comes up, scalabil-
ity is the focal point. After a round of teeth gnashing, the discussion usually gravi-
tates toward the use of HttpSession as a superior way to store state. While we may
wish servlet sessions were a panacea for poor scalability, they’re not. As we’ve
already learned, there’s no free lunch when session state is involved, regardless of
the tool used.

 A servlet container will attempt to manage resources to yield optimal scalabil-
ity. Not unlike an EJB container, it may passivate and activate HttpSession objects
to conserve memory resources. This feature is a vendor value-add, however, and
not standardized like the life cycle of stateful session beans. Depending on how
the servlet container chooses to juggle resources, it may scale equally well as or
better than an EJB container. On the other hand, it might not scale as well. In any
event, remember that the degree to which a servlet or EJB container is able to
scale is vendor-specific. Unfortunately, we can’t make any generalizations without
tying ourselves to a particular vendor’s implementation.

 More to the point, the scalability argument can be a red herring. The argu-
ment draws attention away from the critical decision—where best to store neces-
sary session state. Deciding whether to use a stateful session bean or the
HttpSession isn’t based solely on scalability. In the next section, we’ll drive some

Antipattern: Golden Hammers of Session State 143
stakes in the ground as guideposts. Using these guideposts and our objectives as
guides, we can navigate through the possible session state storage choices.

5.5 Antipattern: Golden Hammers of Session State

By midafternoon I’m miserable. I’ve been fighting my heavy-laden pack all morn-
ing. When I’m pointed downhill, it’s pushing me too far forward on the board.
When I lay into each turn, my body must absorb the G-force of the extra weight. And
when I stop to rest, it tries to drown me in the powder.

A couple times when riding through deep drifts, I’m sucked down into heavy
powder and lose my balance. What would normally be soft spills end up being pain-
ful falls as the torque of the flailing pack jerks me around. Digging out of the crash
site with the heavy tug on my back is exhausting. Worse yet, all that thrashing
about in the snow has made my gear wet: I cannot look forward to the comfort of a
warm bed at the end of this day.

As we finally approach the second hut, I couldn’t be more relieved. A snowmobiler
with a grin from ear to ear reads our tired faces. For a small fee, he’ll make sure our
gear is cached at each hut along our route. We can ride with freedom all day and be
greeted by warm clothes and dry food each night. This is money well spent!

Reflecting on that trying day, we can see now that we could have avoided a lot of
frustration by considering some options while planning the trip. Unfortunately,
our experience as backpackers blinded us to the possibility of having our gear
stored for us rather than hauling it around all day. Indeed, hiking on dry ground
with a heavy pack is a lot less dangerous than carrying the same load while barrel-
ing through the backcountry on a snowboard. Applying the same approach uni-
versally to every situation usually sets us up for a painful fall.

 Once we’ve decided that session state is a must-have, we stand at a crossroads.
We’re faced with the decision of where best to store it. Down each possible road
lies a solution crafted with a distinct tool set. Some roads appear well traveled.
Depending on prior experience, we may have become more comfortable follow-
ing a particular path and wielding a certain trusty tool. Other roads may appear
overgrown or littered with debris. The solutions they offer may require unfamiliar
tools or approaches that have let us down in the past.

 In general, session state can be stored in one of three locations: the client, the
server’s memory using a stateful session bean or a servlet session, or a database. As
we’ll find out, the solution we choose will depend heavily on the type of data we
plan to store in a session. At first glance, we might be tempted to use a familiar

144 CHAPTER 5

Bitter session states
tool that has served us well over time. We know the tool can get the job done,
though the solution might get ugly and take a little more time. On the other
hand, when we continually reach for the same tool for every job, it can become a
golden hammer that may negatively influence the quality of the work. Once we
start swinging that golden hammer, everything around us starts looking like a nail.
At best, we might miss an opportunity to learn how to use a tool better suited for
the job. At worst, we might end up botching the job completely.

 We’ll break form slightly in this section to compare and contrast different tools
used to store session state. Try as we might, we won’t succeed in coming up with a
grand unifying principle (and that’s the point—a unifying principle doesn’t
exist). Rather than taking a shortcut by suggesting that one size fits all, we’ll just
take a short stroll down each road. Along the way we’ll point out advantages and
disadvantages to each approach, then describe scenarios in which each approach
really shines. At the end of our walking tour, we’ll offer quick rules of thumb for
picking the right tool for the job.

5.5.1 Storing sessions on the client

For the purposes of this discussion, a client can be a web browser or any fat-client
application. Regardless of the approach, the chosen client will need to store an
unambiguous identifier for the user. This identifier may be a cookie containing a
unique session ID or a reference to a stateful session bean. When the client pre-
sents the cookie or uses the reference, the server is able to match a user with her
corresponding session.

 At the other end of the spectrum, a client can be designed to store all the ses-
sion state, not just references to it. That’s exactly the kind of client we’re referring
to in this section. For example, a web browser can store all session values in cook-
ies, URL parameters, or hidden HTML form fields. In fat-client applications, the
state can be represented as first-class objects held in the client’s memory or per-
sisted to disk. Table 5.1 summarizes the advantages and disadvantages of storing
all the session state on the client.

Antipattern: Golden Hammers of Session State 145
An important benefit of this approach is the opportunity to design the server to
be stateless. This of course requires that the client send an amount of session state
with each request. The server may then send back updated session state with each
response. Being stateless puts the server in a good position to deliver the best pos-
sible scalability. Pooling stateless session beans to be reused between client
requests is one way to maximize resources. However, this advantage may be offset
by the overhead of frequently transferring state over the network. Another down-
side is that the life of the session state is at the mercy of its hosting client. If the
user moves to another client machine, their session state is no longer available.

5.5.2 Storing sessions on the server using servlets

As we’ve seen, using an HttpSession object to store session state is easy and conve-
nient. Doing so does, however, require that clients communicate with the server
using HTTP. With each request they must also send a unique session ID. Table 5.2
summarizes the advantages and disadvantages of storing session state on the
server using servlets.

Table 5.1 Storing session state locally on the client allows for fast access and the potential for high
scalability at the expense of session volatility.

Advantages Disadvantages Best used when:

Allows the client to use state-
less server-side components
that offer optimal scalability

Distributes the memory require-
ments of session state across
clients.

Improves performance of clients
that manage UI workflow using
local session state

When users move to a different
client machine or change/restart
their browsers, their session
state is lost.

If the client crashes, all session
state may be lost.

Some data must be transferred
across the network to the server
with every request.

Session state must be trans-
formed from client’s format to
server’s format.

If session state contains sensi-
tive information, it must be
encrypted before being transmit-
ted to ensure security.

The loss of session state is tol-
erable.

Only small amounts of data are
exchanged with the server to
avoid the cost of network round-
trips.

Session state can be used
locally to efficiently control a cli-
ent-specific workflow.

146 CHAPTER 5

Bitter session states
This approach makes sense when web clients need to store temporary informa-
tion relevant to a user’s current location. Pay careful attention to the number of
conditions that result in a user’s session being lost. It’s evident that a session is
intended to live for a limited time at any given location. As such, only temporal
information should be added to a session. When a user moves locations, the ses-
sion should be able to be destroyed without adverse side effects.

 Take, for example, the case where a session tracks whether a user is currently
logged in. When the user logs out using a form in the browser, a well-designed
servlet invokes the session.invalidate() method. This, in turn, destroys all ses-
sion state. That’s a good thing since you don’t want someone maliciously using
your session when you’re gone. It’s a bad thing if you want to log the user out
without losing the session state. That is, if the HttpSession object is storing shop-
ping cart contents, they’ll vanish when the user logs out. A servlet session is best
when you need to store information that can be recreated easily when the user
logs in from any location. For example, the existence of information in the ses-
sion can be used to indicate a user’s login status.

Table 5.2 For web clients, the simplicity of a servlet has appeal insofar as session state is kept in a
local cache.

Advantages Disadvantages Best used when:

Easy and convenient to use for
servlet programmers

Minimizes the amount of data
passed between the client and
server over the network

Quick access to local session
state without incurring network
round-trips to back-end
resources

When users move to a different
client machine or change/restart
their browsers, their session
state is lost.

When users log out, their ses-
sion state is lost.

If the Web server crashes, all
session state may be lost.

When a user’s session timeout
expires, their session state is
lost.

Not accessible by non-web
clients

Web server’s memory resources
are a limiting factor to scalability.

The loss of session state is tol-
erable.

All clients are web browsers or
use HTTP to communicate with
the server.

No existing investment in an EJB
server

Antipattern: Golden Hammers of Session State 147
5.5.3 Storing sessions on the server using stateful EJB

As we’ve discussed, the EJB container manages the life cycle of stateful session
beans. The most active bean instances are held in memory for maximum perfor-
mance. Beans that have not been used recently may be passivated to disk to con-
serve memory resources. When a client invokes a method on a stateful session
bean’s remote interface, the container dispatches the request to the bean
instance originally created by the client. Table 5.3 summarizes the advantages and
disadvantages of storing session state on the server using stateful session beans.

This approach really shines when applications need to retain session state across a
multirequest sequence, but they don’t have a servlet front-end. In these cases, a
stateful session bean is the logical equivalent of a servlet’s HttpSession object.
This approach is also advantageous when web and non-web clients can benefit
from reusing the business logic offered by a stateful session bean. Remember,
however, that if a bean isn’t used frequently by its client, its timeout may expire
and the bean may be destroyed. Therefore, only temporary information should
be stored between service requests.

 It’s also possible to use a hybrid approach in cases where your Web server
doesn’t scale as well as you’d like with large numbers of HttpSession objects. For

Table 5.3 Stateful session beans encapsulate reusable business logic with session state for use by dis-
parate types of clients.

Advantages Disadvantages Best used when:

All the benefits of an EJB compo-
nent, including concurrency,
declarative transactions, and
security management

Accessible by web and non-web
clients alike

Encapsulates business logic
with session state

Minimizes the amount of data
passed between the client and
server over the network

Wide support for clustering and
failover to prevent a single point
of failure.

When users move to a different
client machine, their session
state is lost.

If the EJB server crashes, all
session state may be lost.

When a bean’s timeout expires,
the user’s session state is lost.

EJB server’s memory resources
are a limiting factor to scalability.

The loss of session state is tol-
erable.

Web and non-web clients can
benefit from sharing the same
business process or workflow.

An investment in an EJB server
has already been made.

Your Web server doesn’t suffi-
ciently manage a cache of
HttpSession objects to meet
your scalability needs.

148 CHAPTER 5

Bitter session states
example, if your web server doesn’t support the passivation and activation of
HttpSession objects to control memory consumption, a servlet can instead dele-
gate cache management duties to the EJB server by simply storing a reference to
a stateful session bean in the HttpSession object for each user. This keeps the
memory requirements of the Web server at a minimum so that cache manage-
ment isn’t warranted. The EJB server can then manage the cache of stateful ses-
sion beans in a standardized fashion. If the servlet and stateful session bean
aren’t colocated in the same server, the benefits of this hybrid approach may be
offset by network round-trips.

 Stateful session beans are not intended to survive in the event of an EJB server
crash. Don’t let the advanced clustering and failover support offered by some EJB
server vendors lull you into thinking otherwise. Even if a stateful session bean has
been replicated to a backup server in a cluster, a possibility still exists that the serv-
ers hosting the bean could crash. If data is important, don’t store it in something
as fragile as a stateful session bean.

5.5.4 Storing sessions in a database

Every approach we’ve touch on so far has at least one thing in common—it’s best
used when users can afford to lose their session forever. When state in a session
must be permanent, transcending the length of a conversation, a database is the
best tool for the job. This may involve directly accessing a database, using an EJB
component that fronts a database, or applying any other persistence mechanism.
The session ID is typically used as a key for locating a user’s session-oriented data.
Table 5.4 summarizes the advantages and disadvantages of storing session state in
a database.

 Using a database creates confusion, however, when it comes to defining session
state. A session may have both temporary and permanent values. For example,
login information would exist only as long as the current session is valid, while the
contents of the user’s shopping cart may be stored over the long term. A stateful
session bean or HttpSession object can be used to cache the stored information
to avoid hitting the database for read-only operations. Updating important infor-
mation in the session will require a write operation on the database. This over-
head is generally outweighed by the need to permanently store state critical to
your business or the happiness of your customers.

 Unlike the other approaches, state stored in a database doesn’t automatically
expire. You’ll need to develop a strategy for reaping old session data, such as peri-
odically searching the database for session data that falls outside a set time limit.

Antipattern: Golden Hammers of Session State 149
This process is easy if a database table associates user IDs with the last modification
time of their session.

5.5.5 Revisiting the shopping cart

So, which approach is best suited for our shopping cart application? Let’s use the
guideposts we set up in previous sections to help steer our decision.

 Most shopping cart applications are web-based, so we can easily rule out stor-
ing all the session state on a fat client. We could elect to store all the session state
in the browser, but if our Web server already supports servlets then we won’t gain
much by taking that route. What about using stateful session beans or the
HttpSession object in a servlet? From an accessibility standpoint, not much differ-
ence actually exists between the two in this instance. Even though we’re building a
web-based application, a servlet could store a handle to a stateful session bean in
the HttpSession object. And, if our Web server has difficulty balancing the mem-
ory requirements of many sessions, that would certainly be an option. However,
both approaches share a common disadvantage. Our choice is made easier if we
consider the implications of losing session state.

 When a shopper puts things in a cart, we’d rather those items stay there until
checkout is completed. Yet myriad possibilities exists for disaster. For starters, if
either the Web server or the EJB server crashes, all session state could be lost. This
risk might be minimized in a clustered environment with good support for

Table 5.4 Databases offer the most reliable storage of permanent session state, though sometimes at
the expense of network round trips and development time.

Advantages Disadvantages Best used when:

All or part of the session state
can be made durable to outlive a
conversation.

Reliable and recoverable storage
of critical information

Authenticated users can access
data from any client platform at
any time.

State must be marshaled
between the database and the
Web/EJB server.

If state is also cached in the
Web/EJB server for fast access,
it must be kept consistent with
the database.

Session state must be trans-
formed from server’s format into
database tables.

Not as easy to develop as in-
memory alternatives

Information contained in a ses-
sion should never be lost.

Users frequently move to differ-
ent client platforms but don’t
want to lose important informa-
tion.

An opportunity exists to cache
user-specific information for bet-
ter performance.

150 CHAPTER 5

Bitter session states
failover, but barring any failures, the end result will be the same if a shopper puts
a few items in his cart using the browser at work, logs out, then goes home later to
finish shopping. Once logged in at home, he’ll be staring slack-jawed at an empty
cart. In other words, to avoid losing their shopping carts, shoppers must add all
their items and check out using the same browser, on the same client machine
before the session expires or lose their previous shopping. If the session is lost,
chances are shoppers won’t take the time to readd everything. Therefore, if we
put the shopping cart contents in a stateful session bean or an HttpSession object,
we can affect our bottom line directly—and in a bad way.

 Sessions are just too transient and unreliable to be held responsible for manag-
ing a shopping cart full of goods. That leaves us with the choice of storing the
cart’s contents in a database. Figure 5.8 illustrates our shopping cart architecture.

 In figure 5.8, we use an HttpSession object both to store the user’s unique ID
and to serve as a local cache of the cart’s contents. Each time a new item is added
to the cart, the item is also pushed back into the database relative to the user’s ID.
If a shopper logs out and switches browsers, the session is invalidated to keep the
cart secure without losing its contents. When the shopper successfully logs in at
the new location, the user ID is once again stored in an HttpSession object. At
that time, the database is queried to populate the local cache represented by the
HttpSession object with the current cart items.

 Users that don’t log in are considered guests. As such, the contents of their
carts are only stored in the HttpSession object. That is, their cart is volatile; its life-
time is tied to the length of their session. In contrast, when a user logs in, the state
of the cart in the session is replicated to the database. The session is then just a
local cache. In other words, guests don’t enjoy the benefits offered by a database-
backed session. With this solution in place, shoppers can shop ’til they drop! Now,
let’s sum up what we’ve discovered by looking at the session management tools
available to us.

Browser

User’s
Session ID

Server

User’s ID
Shopping Cart Contents

User’s Session ID

Database

Shopping Cart
Contents

User’s ID

Figure 5.8 Shopping cart applications are best designed using a combination of temporary session
state for user information and local caching, and a database for reliable, location-independent shopping.

Mini-antipattern: Stateful Session Beans as Shared Data Caches 151
5.5.6 Overall solution: Pick the right tool for the job

Throughout this chapter, we have surveyed the session landscape and sifted
methodically through a lot of information. If you remember just one thing, let it
be that all the approaches we’ve looked at have distinct advantages and disadvan-
tages. You must pick the one that best meets your application’s needs. To do so,
you may have to learn how to use a new tool. So be it. The alternative may be like
using a hammer as a pipe wrench. Before you know it, water will be running down
your arms and dripping off your elbows, and you’ll be swearing like a sailor.

 Keep in mind the limitations of stateful session beans and HTTP sessions.
Here’s the bottom line: If the data exchanged in a conversation is vitally impor-
tant and can’t be easily reconstructed, don’t store it in a stateful session bean or
an HttpSession object. If losing conversational state would be considered a disas-
ter, store it someplace safe. Databases are particularly good at that kind of thing.
Sessions in any form are best used in the following situations:

■ Storing temporary user information Examples include a login status, pref-
erences, and anything else that’s dependent on the user’s location.

■ Storing user-specific cached data Local caches of this sort can reduce the
number of round-trips to back-end data sources. Cached data—for exam-
ple, search results—can be easily recreated if lost.

■ Managing a repeatable business process Some business processes that
span multiple client requests can benefit from session state. Just make sure
the potential loss of that state isn’t damaging to your business.

■ Storing UI-specific state A history of user gestures or workflow steps is
expected to remain intact only for the duration of a user’s interaction with
a user interface. Resetting this state on a failure or location change is usu-
ally tolerable.

If you’ve decided to use stateful session beans for any of these situations, then you
won’t want to miss the antipatterns that round off this chapter.

5.6 Mini-antipattern: Stateful Session Beans as Shared Data Caches

Because of their ability to manage data in memory, stateful session beans can
tempt you into misusing them as shared data caches. EJB server vendors have
added fuel to the fire by permitting concurrent client access to a single stateful
session bean. The temptation is stronger once you discover that a stateful session
bean can optionally implement the javax.ejb.SessionSynchronization interface
to make it a transactionally aware object.

152 CHAPTER 5

Bitter session states
 The SessionSynchronization interface provides callback methods to notify the
bean at three junctures: when the container-managed transaction in which the
bean participates has begun; when the transaction is nearly finished; and when
the transaction is fully completed. The intent of the SessionSynchronization
interface is to allow stateful session beans to use transactional notifications to
manage and store persistent data across client requests. For example, after a trans-
action has begun, the bean’s state can be initialized by reading the database.
Before the transaction completes, the bean can update the database to reflect the
bean’s state. With every client request, the bean’s state can be kept in sync with
the database.

 From a distance, a stateful session bean might walk and talk like a shared data
cache, but up close it certainly is not one! Stateful session beans shouldn’t be used
as shared data caches for the following reasons:

■ The data managed by stateful session beans is not transactional. A true data
cache must provide concurrency control to ensure data integrity.

■ Stateful session beans may be passivated at the whim of the container to
make room for active objects in memory. The activation/passivation
scheme may be slow for a cache of shared data. Moreover, passivation is an
all-or-nothing proposition, so passivating an entire cache of data may slow
down the system unnecessarily.

■ Stateful session beans may be destroyed, either explicitly or as a result of the
timeout value expiring. The cost of creating a new stateful session bean
instance and reloading its cache is relatively high.

Using stateful session beans as shared data caches is a specific instance of the
golden hammer antipattern. Stateful session beans are best used as local caches of
client-specific data that could be lost without consequence. If multiple clients can
benefit from a shared cache of persistent data, then you should use an entity bean
or any other truly transactional object.

5.7 Antipattern: Session Hodgepodge

Storing conversational state in memory between client requests can be a slippery
slope. It’s all too easy to fall into a habit of using the session as a dumping ground
for data. Most sessions start off innocently, as a flat structure holding a handful of
simple types. However, before long, the session is bloated with a hodgepodge of
information, perhaps even strung out across a deep and wide object graph. The

Antipattern: Session Hodgepodge 153
poor sod maintaining this tangled mess can’t always tell what data is actually used,
where exactly to find it, or even what it represents.

 Session Hodgepodge tends to germinate quickly when conversational state is
stored in a hash table (or map) structure, such as that used by an HttpSession
object. The convenience this structure offers—easily storing an assortment of data
types—is offset by its crude key-value pair interface. To understand what’s in a ses-
sion, we’re faced with turning each key to see what data it unlocks. To do so
requires that we not only know the names of all keys, but also that we can properly
cast their corresponding value to the correct type. In other words, the session isn’t
explicit. We can’t look at it and easily understand the data it contains, nor can we
easily to access that data. Consider the code used to coerce the data out of an
HttpSession object in listing 5.3.

String item = (String)httpSession.getAttribute("Item");
int quantity =
 ((Integer)httpSession.getAttribute("Quantity")).intValue()
double price =
 ((Double)httpSession.getAttribute("Price")).doubleValue();

What other data might be available in the session? We can’t discern the answer
from the example code. Unfortunately, the compiler can’t help us out much with
the data types. If we fail to properly cast a data type contained in the session, an
onerous ClassCastException will be raised at runtime.

 Equally troubling is the cost of session hodgepodge from the server’s perspec-
tive. Bloated HttpSession objects work against the server’s cache management
strategy. For starters, when an HttpSession object is cached, the transitive closure
of all its bound objects must be held in memory. That means all instance variables
of objects in a session, and any objects they in turn reference recursively, occupy
limited cache space. So, if the HttpSession object is passivated, all nontransient
instance variables and any objects reached from those variables must be serialized
to disk. Finally, if the HttpSession object is activated once again, the same bulk of
information must be deserialized from disk into the cache. Session hodgepodge is
the unwanted gift that keeps on giving.

 Keep in mind that the overhead of adding new information to a session is
incurred on a per-session basis. Adding a new attribute to each user’s HttpSession
object, for example, will have a multiplying effect on resources. If that attribute
references a node in an object graph, the resulting overhead may be exponential.

Listing 5.3 Storing a hodgepodge of data in an HttpSession object

154 CHAPTER 5

Bitter session states
 Another unwanted side effect of session hodgepodge is the potential for nam-
ing collisions. Without knowing the keys already being used in a session, it’s easy
to end up using the same session key for two completely different purposes. Take,
for example, the case where two developers unknowingly use the same key, such
as “id.” One developer expects the key to map to a unique customer while the
other expects it to map to a unique bank account. If this “unique” key maps to a
String value, then tracking down the collision will be difficult. Keeping the ses-
sion well organized prevents a hodgepodge of information.

5.7.1 Solution: Be explicit and conservative

Sessions can be made more explicit—and therefore easier to understand—by
organizing data in simple JavaBeans. Such classes offer a clean, object-oriented
interface to session state. If we look at their methods, we can know right away what
type of data these classes contain. Contrast the code in listing 5.3 with the use of
an explicit Session object stored in the HttpSession object in listing 5.4.

Session session = (Session)httpSession.getAttribute("Session");
String item = session.getItem();
int quantity = session.getQuantity();
double price = session.getPrice();

The second code sample is both type-safe and easier to read. Better yet, we can
look at the methods of the Session class to see what other data might be available.
Stateful session beans generally define explicit methods like this for managing ses-
sion state. To get the same effect using an HttpSession object, you’ll need to bind
exactly one object value by a well-known key. This single object should then pro-
vide access to all other objects containing session state, either directly or through
the composition of other explicit objects.

 For maximum performance and scalability, it’s imperative that only essential
information be stored in a session. Superfluous information consumes memory
and taxes the server with expensive passivation and activation. Before adding a
new piece of information to the session, see if the same information can be
derived from data already in the session. If new information must be added, make
sure to get your arms around the transitive closure of other objects it references.
Use the transient keyword with impunity on instance variables to pare down the
session as much as possible. Being conservative also helps avoid session thrashing,
the focus of our next antipattern.

Listing 5.4 Storing an explicit Session object in an HttpSession object

Mini-antipattern: Rotting Session Garbage 155
5.8 Mini-antipattern: Session Thrashing

The use of virtual memory as an extension to physical memory is a wonderful
thing, but it’s not without limitations. Though idle applications can be put on the
back burner, active applications must use some physical memory. Therefore, the
available amount of physical memory is a limiting factor to the number of active
applications that can peacefully coexist. You can have all the virtual memory space
in the world on disk, but trying to run too many applications with a machine with
only 64 MB of RAM will be painful.

 Conceptually, stateful session beans are managed in the same way virtual mem-
ory is used. The EJB container has only a finite amount of physical memory.
Adjusting the size of the stateful session bean cache size allows you to throttle the
cache’s memory footprint as a subset of the total amount of physical memory.
When the cache fills up, the container attempts to passivate inactive bean
instances to disk. If a passivated bean is called to action once again, it is activated
back into physical memory, possibly by replacing a less active bean.

 The number of bean instances that can live in the cache at any given time typ-
ically is configurable in a vendor-specific deployment descriptor. Unfortunately,
the folks who set the default cache values before putting the EJB container in the
box didn’t know much about your application. Once you’ve unwrapped the box,
it’s up to you to set the size of the cache, based on your in-depth knowledge of
the application.

 Failure to tune the cache size for an application’s expected load may have an
adverse affect on performance and scalability. The goal of tuning the cache size is
to minimize the number of expensive passivation/activation cycles. As a general
rule, the best performance is realized when the cache size is equal to the maxi-
mum number of concurrent clients. This ideal is realistically bound by the
amount of physical memory and threads available to the EJB container.

 But wait! Before you start turning performance knobs willy-nilly, you should set
up some performance tests to establish a benchmark. Once you’ve made an
adjustment, rerun the tests to see if adjusting the cache size actually improved per-
formance. Measure, don’t guess!

5.9 Mini-antipattern: Rotting Session Garbage

It’s only fitting to talk about the final moments of a stateful session bean’s life at
the end of this chapter. Up until its last moments, a bean faithfully serves at the
pleasure of its client. Barring any exceptional conditions, a bean will live as long

156 CHAPTER 5

Bitter session states
as its client continues to use it. It may be passivated and activated at the whim of
the EJB container many times throughout the conversation.

 A stateful session bean’s life is also running on a clock. If a bean instance is
inactive for a configurable amount of time, the EJB container may destroy it to
conserve memory. The timeout may expire when the bean instance is in the cache
or passivated on disk. While this is a convenient housecleaning feature of the con-
tainer, it’s no excuse for the client to get sloppy with its trash.

 If you put the garbage out a couple days early in the sweltering heat of summer,
you’re likely to get a visit from your neighbors as soon as the foul smell wafts down
the block. Stateful session beans have neighbors, too—the other beans in the
cache. Once a client is done using a stateful session bean, it should let the con-
tainer know so that it can pick up the session garbage before it starts to rot. Explic-
itly invoking the remove() method of the bean’s home or remote interface not only
gives the bean an opportunity to perform any necessary cleanup of resources it
uses, but also allows the EJB container to pick up the trash as soon as possible.

 If a bean is not explicitly removed by its client, the orphaned bean will con-
tinue to live until it times out. In the meantime, the EJB container may be bur-
dened with the relatively expensive job of passivating the doomed bean to make
room for other active beans. This same advice applies to servlet sessions as Web
servers must continuously keep memory in check. Explicitly invoking the
HttpSession.invalidate() method when the session is no longer needed will
keep the streets of the Web server clean.

5.10 Summary: Taming the beast

In this chapter, we went head-to-head with the stateful session beast. We waged a
rather long and methodical battle, but we hope it made you hurt in the good kind
of way. Stateful session beans are generally misunderstood, and rightfully so.
Throughout their history, they have earned an undeserved reputation for having
a nasty bite. In some cases, blind ambition has cornered them into situations
where they have no choice but to show their teeth, such as shared data caches. In
other cases, irrational fears have convinced us to lock stateful session beans away
in a cage and throw away the key. Alas, situations they were designed specifically to
handle often end up being bent nails under another golden hammer.

 Keeping the beast on a leash requires that we start by casting a skeptical eye on
session state. When it benefits our design—and often times it does—then we have
several tools at our disposal. Choosing the best tool involves carefully considering
a tool’s respective advantages and disadvantages in light of your application.

Antipatterns in this chapter 157
When tamed, stateful session beans are a viable solution to managing temporary
data on behalf of their master. Let loose to roam, they can mercilessly bring your
application to its knees. Above all, remember to put important session data in a
safe location, and then add any necessary layers for local caching.

 In the next chapter, we’ll shift gears to look at the newest type of EJB—the mes-
sage-driven bean.

5.11 Antipatterns in this chapter

This chapter covers the Conversational Baggage, Golden Hammers of Session
State, Stateful Session Beans as Shared Data Caches, Session Hodgepodge, Ses-
sion Thrashing, and Rotting Session Garbage antipatterns.

DESCRIPTION
Stateful conversations are inherently more complex and resource-
intensive than stateless conversations. For every stateful conversa-
tion, something has to remember the history of the conversation.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Strive for statelessness

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
When it’s possible, design services to be stateless to increase their
potential to scale under load. Stateful services should be the ex-
ception rather than the rule.

ANECDOTAL EVIDENCE
“The server is spending most of its time passivating and activating
session state.”

SYMPTOMS, CONSEQUENCES
Memory is a limiting factor to scalability.

CONVERSATIONAL BAGGAGE

158 CHAPTER 5

Bitter session states

DESCRIPTION
Using the same tool universally to store session state

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Pick the right tool for the job.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
The tool for storing session state is dependent on the application
requirements rather than experience with a specific tool. One
size doesn’t fit all. Consider all the options for managing session
state before making a decision.

ANECDOTAL EVIDENCE
“Stateful session beans are evil.” “We always use servlets to store
session state because it’s the easiest approach.”

SYMPTOMS, CONSEQUENCES
The tool, rather than the requirements, drives the solution. The
system may become more complex than necessary when an inap-
propriate tool is used.

GOLDEN HAMMERS OF SESSION STATE

Antipatterns in this chapter 159

DESCRIPTION
Caching data in stateful sessions beans for use by multiple concur-
rent clients

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Use entity beans.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
If multiple clients can benefit from a shared cache of persistent da-
ta, then use an entity bean or any other truly transactional object.

ANECDOTAL EVIDENCE
“We spent a lot of time designing an intelligent stateful session
bean that serves as a transaction-aware data cache.”

SYMPTOMS, CONSEQUENCES
Cache suffers from dirty reads; passivation cost is high; and the
cached data is frequently lost.

STATEFUL SESSION BEANS AS SHARED DATA CACHES

160 CHAPTER 5

Bitter session states

DESCRIPTION
Using the HttpSession object as a dumping ground for session
state

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Be explicit and conservative.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Organize data in the HttpSession in simple JavaBeans. Under-
stand what’s already in a session before adding something new.

ANECDOTAL EVIDENCE
“I don’t know what’s available in the session.” “This session key
maps to a different type of value than I expected.”

SYMPTOMS, CONSEQUENCES
The session state is not explicit or understood; the servlet contain-
er must manage extra memory; and naming collisions frequently
occur when new session state is added.

SESSION HODGEPODGE

Antipatterns in this chapter 161

DESCRIPTION
Failure to size session state caches based on the system’s intended
use and user load

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Tune caches for best performance.

REFACTORED SOLUTION TYPE
Process

REFACTORED SOLUTION DESCRIPTION
Write performance tests to validate that caches are sized appropri-
ately for the system’s operating environment and user load.

ANECDOTAL EVIDENCE
“I’m sure the default cache sizes are fine.” “What’s that thrashing
sound coming from the disk?”

SYMPTOMS, CONSEQUENCES
Inability to scale and increased hardware costs with minimal gain

DESCRIPTION
Not explicitly removing session state when it’s no longer needed

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Take out the garbage.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Explicitly remove session state rather than let the server clean it
up when it finally times out.

ANECDOTAL EVIDENCE
“Just let the container handle collecting all the garbage.”

SYMPTOMS, CONSEQUENCES
Increased memory utilization and inability to scale

SESSION THRASHING

ROTTING SESSION GARBAGE

6 Bitter messages
This chapter covers
■ An overview of JMS and message-driven beans
■ An example messaging application using JMS and MDBs
■ Message-level design antipatterns
■ Application-level design antipatterns
■ Asynchronous communication antipatterns
■ Performance antipatterns
162

A brief overview of JMS 163
We have been shredding the powdery slopes relentlessly since catching the first lift of
the day. As we ascend one of Colorado’s epic mountains to take yet another adrena-
line ride, a storm rolls in and quickly begins blowing in a fresh layer of powder.
Once off the lift, we take a seat, snowboarder style, at the top of the run to plot our
line of descent. The density of snowflakes swirling in the low light conditions has
decreased our visibility. Donning goggles, we push off and immediately fall into a
rhythm of parallel S-turns that kick up wispy snow fans. Halfway down the moun-
tain the slope suddenly forks, but I fail to see it through the blowing snow. After a
few more turns, it hits me—I don’t hear the familiar sound of another board carv-
ing across the snow. I wait at the edge of the silent slope for a while, but it’s soon evi-
dent that my buddy zigged when I zagged. We’re out of synch on an enormous
mountain enveloped by a storm.

In Bitter Java, our fellow author, Bruce Tate, accurately predicted that message-
driven beans (MDB) would provide fertile ground for antipatterns. Unveiled in
EJB 2.0, MDB are still relatively new, yet unfortunate antipatterns have already
begun to rear their ugly heads. The painful lessons these antipatterns teach aren’t
new. Indeed, message-based systems have been around for a relatively long time.
Many seasoned developers wear the battle scars of messaging gone bad, but fueled
by the need to quickly integrate applications with other internal and external
applications, messaging has become increasingly pervasive. With the advent of
MDBs, which promote asynchronous messaging as a first-class distributed comput-
ing model in the J2EE platform, the stakes have been raised. Yet another tool has
found a home in our already brimming toolbox. And, as always, the wisdom of a
craftsman will lie in knowing how and when (or when not) to use it.

 In this chapter, we’ll review the Java Message Service (JMS) and its recent intro-
duction into the J2EE platform in the form of MDBs. Working through a simple
example, we’ll encounter potential pitfalls in designing message-based applica-
tions. Some antipatterns we’ll uncover are related to application performance,
while others fester at the application design level. As we look at each bitter sce-
nario, we’ll explore practical alternatives to ensure that our applications don’t
end up stranded.

6.1 A brief overview of JMS

JMS is an API that allows applications to communicate asynchronously by exchang-
ing messages. JMS is to messaging systems what JDBC is to database systems. JMS is
best used to glue together applications through interapplication messaging.

164 CHAPTER 6

Bitter messages
These applications, referred to as JMS clients, engage in asynchronous conversa-
tions by using a common set of interfaces to create, send, receive, and read mes-
sages. That’s not to say you also couldn’t use JMS for intra-application messaging
to send messages between multiple threads, for example.

 JMS itself is an industry-standard specification, not an implementation. Ven-
dors of messaging products—commonly referred to as message-oriented middle-
ware (MOM)—support JMS by providing implementations of the interfaces
defined in the JMS specification. By relying only on vendor-neutral interfaces,
applications are decoupled from any specific vendor. That is, the underlying ven-
dor’s implementation can be changed or substituted with another without break-
ing the JMS clients.

 A vendor’s JMS implementation is known as a JMS provider. A JMS provider
includes the software that composes the JMS server, or message broker, and the
software running within each JMS client. A JMS application therefore comprises
multiple JMS clients exchanging messages indirectly through a JMS server.
Figure 6.1 illustrates a common JMS application.

 Notice that the JMS server acts as a middleman between JMS clients. This
enables loosely coupled communication; neither client knows about the other.
This loosely coupled communication improves reliability, since one client will not
be dependent on the location, availability, or identity of another. Indeed, clients
are free to come and go without adversely affecting reliability. This situation is in
stark contrast to the remote procedure call (RPC) computing model used by
CORBA and Java RMI. Applications using RPC communicate directly with each
other. As such, they tend to be tightly coupled.

 That’s enough theory. We’ll learn far more about JMS by getting our hands
dirty building an example application.

JMS
Server

Java Application

JMS API

JMS Provider

Client 1

Java Application

JMS API

JMS Provider

Client 2

Messages Messages

Figure 6.1 In a JMS application, applications use the interfaces of the JMS API to
communicate indirectly through the JMS server. Under the hood of each JMS client and
within the JMS server, a vendor’s JMS implementation does all the heavy lifting.

An early antipattern: Fat Messages 165
6.2 An early antipattern: Fat Messages

Messages are the lingua franca of messaging systems. Any application that can
speak in messages is welcome to join in conversations. Message producers are JMS cli-
ents that send messages. Message consumers are JMS clients that receive messages.

 The message language is defined by the JMS specification, which specifies six
different message types that vary with the type of payload they transport. Think of
these message types as dialects of the message language. They all sound similar,
but each has a slightly different accent. Their similarity lies in a common struc-
ture: headers, properties, and a payload. The headers and properties define rout-
ing and other information about the message. The payload, or message body, is
the meat of the message. It contains data of specific interest to message consum-
ers. The structure of the payload is unique to each message type. Table 6.1 breaks
down each message type by its respective payload.

Each message type is useful in different scenarios. Picking the best message for
the situation is a critical design decision that affects not only the semantics of the
message exchange, but also the performance of the system. Table 6.2 presents
each message type that contains a payload, along with a few considerations to
keep in mind when choosing a message type.

Table 6.1 JMS message types vary by the structure of their payload.
Each can carry light or heavy loads. Fat messages clog up the messaging
pipes and invariably impact the performance of a messaging application.

Message type Payload

Message No payload, just headers and properties

TextMessage Java string (text or serialized XML document)

MapMessage Set of name-value pairs

ObjectMessage Serialized Java object

BytesMessage Stream of uninterpreted bytes

StreamMessage Stream of primitive Java types

166 CHAPTER 6

Bitter messages
It’s not always clear which message type is best to use. Some message types are
used more commonly than others, based simply on the type of data being
exchanged. The TextMessage, for example, is the natural choice for exchanging
structured text. Without carefully considering the flavor of payload consumers
will require, you may easily fall into the comfortable habit of using the same mes-
sage type for all situations. Often, the result will be awkward, like fitting square
data in a round message.

Table 6.2 Before picking a message type, carefully consider if the data being exchanged fits neatly
into the payload the message type was designed to carry.

Message type Key considerations

TextMessage Because the JMS specification does not define a standard XML message type, the
TextMessage commonly is used to transport a serialized XML document. However,
any time the payload contains formatted text, such as XML, it must be parsed by
consumers before it can be used intelligently.

MapMessage Messages of this type are the most versatile. Predefined keys are used to read spe-
cific values of the payload. This allows the payload to grow dynamically over time
without affecting consumers. Consumers that aren’t aware of new keys will be igno-
rant of their existence. If consumers always read the entire payload in a well-defined
order, carrying the keys around may become a dead weight. In these cases,
StreamMessage may yield better performance.

ObjectMessage Producers and consumers of this type of message must be Java programs. When a
producer sends a message of this type, the object in the payload and the transitive
closure of all objects it may reference must be serialized. That is, if the object in the
payload references other objects, then consumers will receive the graph of objects
reachable from the object in the payload. Deep object graphs bloat the message
and restrict message throughput. Additionally, all consumers must be able to suc-
cessfully deserialize the object(s) in the payload using a class loader within their
respective JVMs. This means that all consumers must have access to the class
definitions of the objects in the payload.

BytesMessage Because this message type’s payload is raw uninterpreted bytes, all consumers
must understand how to interpret the payload. No automatic data conversions are
applied to the payload as it’s transported between consumers. This message type
is rarely used, and, when it is, only to transport data of a well-known format, such
as a MIME type, supported by all consumers. In most other cases, a StreamMes-
sage or a MapMessage is more convenient.

StreamMessage Unlike the BytesMessage, the StreamMessage retains the order and type of the
primitives in the payload. Moreover, data conversion rules are automatically applied
to the primitive types as they are read by consumers. A StreamMessage is a more
rigid variation of a MapMessage in that keys do not index its data. However,
because it doesn’t carry around keys, this message type is generally more light-
weight than a MapMessage. Nevertheless, unlike the MapMessage, a StreamMes-
sage requires that consumers have explicit knowledge of the message format.

An early antipattern: Fat Messages 167
6.2.1 One size doesn’t fit all

Designing messages in a vacuum is like designing a software component in the
absence of clients. Speculation often leads to messages that are neither useful nor
efficient. Take, for example, a message representing a purchase order. How much
information must the message carry to be useful? The answer depends on the
consumer of the message.

 If the consumer is a sales automation system using the message to spot cross-
selling opportunities, then including a wealth of information about the customer
may be important. If the message is too brief, this type of consumer may have
insufficient information to efficiently process the message. Attempting to gather
more information may lead to a two-way dialogue between the producer and the
consumer. Chattiness of this sort negates the benefits of loose coupling and asyn-
chronous communication offered by JMS.

 On the other hand, if the consumer is an inventory system using the message
to fulfill an order, then the customer information may be unnecessary. Making the
message unnecessarily verbose will fatten it up, thus requiring additional network
bandwidth and CPU resources. Moreover, if the fat message is persisted to nonvol-
atile storage to ensure guaranteed delivery, it will require additional storage
space. That being said, if the frequency at which a fat message is produced is low,
then the respective overhead may be tolerable. However, as the message fre-
quency increases, the overhead will compound until it adversely affects message
throughput.

 So, fat messages end up being a common problem because assumptions about
consumer needs are easily made. A message that tries to be everything to every-
body inevitably carries a high delivery price; it clogs up the messaging pipes and
wastes space.

6.2.2 Solution 1: Put messages on a diet

Ideally, a message should contain just enough information to enable its consum-
ers to handle it on their own. Designing such a message is akin to designing a pro-
grammatic interface to a distributed service. To decrease coupling and chattiness,
thin interfaces generally are used to encapsulate business logic behind coarse-
grained methods. Given just the right amount of information, these methods go
about their business without exposing any implementation details. In contrast, fat
interfaces usually are guilty of hiding monolithic business processes that are
tightly interdependent. Getting anything useful to happen often requires calling
multiple methods and supplying superfluous information.

168 CHAPTER 6

Bitter messages
 Therefore, when designing loosely coupled messaging applications, it’s best to
follow the lessons taught by good interface-based design:

■ Start by designing the interfaces—the shape and size of the messages.

■ Choose a message type capable of carrying the simplest payload that meets
the needs of known consumers.

■ Avoid fattening up the message by speculating about the kinds of data
needed by future consumers.

■ Eliminate duplication by omitting data that a consumer could derive from
the information already in the message.

■ Take into account how often the message will be delivered and whether the
delivery of the message must be guaranteed.

Knowing when to put a message on a diet isn’t an exact science. No scale exists
that can accurately weigh a particular message. In addition to including the size of
the static payload and any application-specific headers and properties, the JMS
provider may pile on additional properties at the time of delivery that contribute
to the overall size of the message. If you know the approximate size of the pay-
load, you’ll find that is usually sufficient as a rough estimate when planning for
performance. Remember, too, to factor in the frequency of the message delivery.
Little messages can add up quickly to big performance headaches.

6.2.3 Solution 2: Use references

Sending references to information otherwise contained in a message can help
reduce the size of the message. Rather than sending a fat message stuffed with raw
data, it’s often possible to send a lightweight message instead, one that simply con-
tains a reference to that data. Think of it as a particular type of weight loss pro-
gram where a message is encouraged to eat references. References are especially
powerful in situations where large amounts of data need to be exchanged without
incurring excessive performance overhead. A reference could be a URL, a pri-
mary key, or any other token pointing to the data.

 For example, consider a workflow application that uses messages to route elec-
tronic documents to multiple departments. As the document transitions through
its life cycle, from draft to approval, it travels from one department’s message
queue to the next. At each stopping point, more information may be added to the
message. This workflow could be implemented using the BytesMessage message
type to route the document in its native format. However, a downside to that
approach exists: as its size increases, the document will become unwieldy. Each

Mini-antipattern: Skinny Messages 169
department’s queue will be burdened with managing the document in memory
until it’s been processed. The situation turns particularly sour if a copy of this fat
message is broadcast to multiple consumers. Every network path from the pro-
ducer to each consumer will have to swallow the fat message like an egg-eating
snake. In the end, not all consumers may want the message after it’s delivered.
References can come in handy in these situations because they significantly
decrease the size of the message.

 If all message consumers have access to a shared resource, such as a database
or a file system, consider trimming down messages to contain references to shared
data. As an alternative to transporting an entire document, for example, the mes-
sage representing the document could simply contain the name of a shared file.
When a consumer receives the message, it can process the referenced document
at its leisure by reading the document from the file system. Figure 6.2 illustrates
the use of references to reduce the size of messages.

 It’s never too early to start putting messages on a weight loss program, but
don’t go overboard. MOM products have matured significantly over the years.
Some vendors have had time to optimize their products for sending large mes-
sages over different networks. Before making any assumptions, write a few tests to
measure performance. A message that may be perceived as being too large actu-
ally might transmit much faster than you think. And, if a fat message is sent infre-
quently, it may not be a problem. Prematurely hacking away at the message size
can lead to another common problem—skinny messages.

6.3 Mini-antipattern: Skinny Messages

Despite warnings about fat messages, skinny messages are equally problematic.
Striking a balance between too much and not enough information is the essence
of good message design.

Client A

702 ...
703 ...
704 ...

ID = 703

Message

Client B
Figure 6.2
References can be used to point to the actual
information otherwise contained in the message.
This approach has the potential to significantly
decrease the size of fat messages. In this
example, the message contains a primary key for
a row in a shared database table. When the
consumer receives this message, it can load and
interpret the data at its leisure.

170 CHAPTER 6

Bitter messages
 In general, it’s always better to send a bit too much information. A couple of
extra bytes on a message will generally have little overall effect on performance.
On the flip side, a skinny message with too few bytes may create more work for a
consumer. To successfully handle the message, the consumer may have to make
extra remote calls to get more information.

 Using references isn’t always the right answer either. First, each consumer is
burdened with resolving the references on his own. In other words, the producer
can’t package up all the information once and then share it with all the consum-
ers. Worse yet, consider the case where several consumers attempt to resolve a ref-
erence to a document as soon as the message arrives. Consumers may end up
competing for access to the shared file system in a flurry of network activity, caus-
ing them to block. Consequently, message throughput suffers as the consumer
can’t process new messages until the current message is handled. In the end, this
may be far more CPU- and network-intensive than just sending the entire docu-
ment in the first place.

 To reiterate, not sending enough information in a message can weigh down an
otherwise efficient messaging application. The virtues of asynchronous communi-
cation may be taken over by a much slower, synchronous conversation induced by
contention and blocking.

6.3.1 Solution: Use state to allow lazy loading

One performance-boosting variation of references is to include some state infor-
mation in the message, along with the reference. For example, in addition to the
document reference, the message could also include the current state of the doc-
ument. For instance, states might include: NEW, REVISED, or APPROVED. The
presence of the state in the message allows consumers to make a decision about
whether loading the document is necessary. Consequently, only consumers that
actually need the document will access the shared file system, reducing the
potential for delayed blocking. State can be added to a message in a variety of
ways. Putting state in the payload is one way, although the consumer will bear the
burden of filtering. In section 6.12, we’ll discuss how to use message selectors.
Message selectors tell the JMS server how to filter messages before delivering
them to consumers. The filtering is based on the contents of each message’s
headers and properties.

Seeds of an order processing system 171
6.4 Seeds of an order processing system

We ran into two pitfalls before starting our journey: fat messages and skinny mes-
sages. We would do well to keep these potential troublespots in mind before
messages start swirling around. Now, we’re ready to dive into a working example.
We want an example we can sink our teeth into, so we’ll develop the underpin-
nings of an asynchronous order processing system using JMS. Although we’ll write
gratuitous amounts of code, as an example of JMS, ours will fall well short of pro-
viding a comprehensive tour of JMS. Albeit easy to learn and use, JMS can be
applied in a range of enterprise application integration (EAI) and business-to-
business (B2B) scenarios. Our example will illustrate merely one isolated applica-
tion of JMS—with a few pitfalls sprinkled in along the way to keep us on our toes.
Throughout the rest of the chapter, we’ll continue to refactor the application
example, each time eliminating a weakness in its design.

6.4.1 Defining the system

Let’s assume that we have a legacy order fulfillment application that we’d like to
tie in with a J2EE online order processing system. Rather than modifying the leg-
acy system to interface directly with the new system, we’d prefer to integrate the
two worlds using a loosely coupled design. When an online order is initiated
through the order processing system, it should trigger the following business logic
sequentially:

1 Store the order information in an order database.

2 Deliver the order to the legacy order fulfillment application.

3 Broadcast a notification indicating the order’s status.

These tasks must be completed in lock-step as an atomic business process. If any
step fails, the entire process will also fail and would have to be repeated anew.
However, we don’t want our online customers to be blocked, waiting for the com-
pletion of this relatively lengthy business process. Customers don’t need to wait;
they are happy to place an order request and receive later notification—an email,
for example—to confirm that the order has been fulfilled.

 Reliability is paramount because we can’t afford to lose any customer orders.
When an order request is issued, we should be able to guarantee its disposition. In
light of these requirements, we decide to use JMS as the integration glue. Using it
correctly is the challenge.

172 CHAPTER 6

Bitter messages
6.4.2 Designing messages

As we learned in the previous section, designing the messages that form the inter-
face between our applications will help us determine how those applications inter-
act. Based on our admittedly simple use case, we need two messages: an
OrderRequest message and an OrderStatus message.

The OrderRequest message
An OrderRequest message is used to initiate the order fulfillment process. Mes-
sages of this type are sent to exactly one consumer—the legacy order fulfillment
application. Table 6.3 dissects the payload of an OrderRequest message.

At this point, we can’t be certain that we’ve considered all possible attributes of an
OrderRequest message. We’ll keep the message simple for now.

The OrderStatus message
The second message we need, an OrderStatus message, is just an indication of an
order’s disposition. This type of message is broadcast to any application that has
registered interest in the life cycle of orders. For example, the sales automation
system might monitor the status of an order as it progresses through the system.
This message is broadcast only after the legacy order fulfillment application has
had an opportunity to process the order represented by an OrderRequest message.

 Imagine that a message of this type contains a unique identifier for an order,
an order status code, and an optional text describing the order’s status. Notice
that the unique order identifier is actually a reference to the original order. We
don’t need to include all the details of the original order in an OrderStatus
message because subscribers of this message type are generally only interested in
the order’s disposition. However, if a particular subscriber wants the details of
the original order, the identifier can be used to query the shared order database.
In other words, the OrderStatus message is designed for a specific type of

Table 6.3 An OrderRequest message requests fulfillment of an online order.

Name Description Type Example value

Order ID The order’s unique identifier String 104-549-736

Product ID The product’s unique identifier String Ride Timeless 158

Quantity The number of units to buy int 1

Price The product’s unit price in dollars double 479.00

Seeds of an order processing system 173
consumer. A reference is used to accommodate the few subscribers that may have
special interests.

 Having considered the message design, we’re ready to decide now how these
messages should be delivered.

6.4.3 Choosing messaging models

We have a couple of choices when deciding how our messages should be delivered
to consumers. In general, the JMS server receives messages from producers and
delivers the messages to consumers. Specifically, JMS provides two different mes-
saging models: publish/subscribe and point-to-point.

 The two messaging models use a slightly different vernacular. The publish/sub-
scribe messaging model allows a message publisher (producer) to broadcast a mes-
sage to one or more message subscribers (consumers) through a virtual channel
called a topic. The point-to-point messaging model allows a message sender (pro-
ducer) to send a message to exactly one message receiver (consumer) through a
virtual channel called a queue. Figure 6.3 illustrates the two messaging models.

 By communicating indirectly through virtual channels managed by the JMS
server, producers and consumers are decoupled from one another. That is to say
that a consumer’s location, availability, and identity are unknown to the producer.

 In our example application, an OrderRequest message should be processed by
only one consumer—the order fulfillment application. Therefore, we’ll use the
point-to-point messaging model to deliver these types of messages. In contrast, an
OrderStatus message must be delivered to all clients that have registered interest
in the disposition of orders. Therefore, we’ll use the publish/subscribe messaging
model to broadcast these types of messages. Figure 6.4 shows an architectural dia-
gram of the JMS components collaborating to fulfill an order.

 Notice in the architectural diagram that the client that receives the Order-
Request message is also a publisher of OrderStatus messages. A JMS client can
serve both roles—producer and consumer—to bridge between messaging mod-
els. Also, keep in mind that each client could be running in its own virtual
machine and perhaps even on separate machines in the network.

6.4.4 Responding to change

Fortunately, the JMS API for the publish/subscribe and point-to-point messaging
models are remarkably symmetrical. In general, only the names change when
switching from one messaging model to the other. Every method and class name
containing the substring Topic can be changed to Queue, and vice versa. A few
other minor details and model-specific features exist, but by and large, the APIs

174 CHAPTER 6

Bitter messages
Publisher Topic

Subscriber A

Subscriber B

Message

Message

Message

Sender Queue

Candidate
Receiver

Candidate
Receiver

Message

Message

Publish/Subscribe Messaging

Point-to-Point Messaging

Figure 6.3 The publish/subscribe message model publishes a copy of a message to each
subscriber through a topic. The point-to-point messaging model sends any given message to
exactly one of possibly many receivers through a queue. The topic or queue decouples all
participants to allow their location, availability, and identity to vary independently.

OrderStatus
Subscriber N

OrderRequest
Sender

OrderStatus
Subscriber 1

OrderRequest

OrderStatus

OrderRequest

OrderStatusOrderStatus

Legacy
Order Fulfillment

Application

OrderRequest
Queue

JMS Server

OrderRequest
Receiver

Order
Database

OrderStatus
Topic

Figure 6.4 Messaging applications can be a hybrid of publish/subscribe and point-to-point
messaging, depending on the number of message consumers interested in each message.

Seeds of an order processing system 175
mirror each other. The upshot is that the skills you learn using one messaging
model are portable to the other. It’s worth mentioning that the open source
Messenger (http://jakarta.apache.org/commons/sandbox/messenger/) library
makes using JMS a bit easier. It effectively hides the differences between messaging
models and their delivery options.

 In the future, more than one consumer may want to know when an order is
placed. For example, a sales automation system might also track OrderRequest
messages to identify potential cross-selling opportunities. For now, we’ll use the
point-to-point messaging model, keeping in mind that the JMS APIs are on our
side if needs change down the road.

 We’ve yet to delve into how the consumer of OrderRequest messages is devel-
oped and packaged. We’ll get there in good time, but first, let’s look at the system
from the perspective of the order producer. It’s here that we’ll gain valuable
insight into the design of our application.

6.4.5 Building the OrderRequest producer

In the architectural diagram, the client that produces the OrderRequest messages
appears to be stand-alone. However, we can safely assume that this client has more
responsibilities. Indeed, if we were to zoom out a few thousand feet, we’d see that
the OrderRequestSender is actually just a single component in a larger J2EE appli-
cation. Orders are placed over the Internet through a web application that,
among other things, uses this component to integrate with the order fulfillment
application through messaging.

 Using a flexible message format will allow us to add new attributes easily to
OrderRequest messages later, if necessary. Several JMS message types will work, but
we might be tempted to use serialized XML in the payload of a TextMessage. After
all, the message could be easily represented as structured text, and XML offers the
ultimate in flexibility and portability. Indeed, XML is a wonderful technology and a
million ways exist for using it well, but this isn’t one of them. To see why, let’s look
at listing 6.1 to see how we might send an OrderRequest message containing XML.

176 CHAPTER 6

Bitter messages
public class OrderRequestSender {

 private QueueConnection connection;
 private QueueSession session;
 private QueueSender sender;

 public void connect() throws NamingException, JMSException {

 Context ctx = new InitialContext();

 QueueConnectionFactory connectionFactory =
 (QueueConnectionFactory)
 ctx.lookup("OrderRequestConnectionFactory");

 connection = connectionFactory.createQueueConnection();

 session = connection.
 createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

 Queue queue = (Queue)ctx.lookup("OrderRequestQueue");

 sender = session.createSender(queue);
 }

 public void sendOrder(OrderRequest order) throws JMSException {

 TextMessage message = session.createTextMessage();

 message.setText(order.toXML());

 sender.send(message);
 }

 public void disconnect() throws JMSException {
 connection.close();
 }
}

Notice that we create a TextMessage containing a serialized string of XML by invok-
ing the toXML() method of an OrderRequest business object. In other words, the
OrderRequest message is simply an XML representation of the OrderRequest busi-
ness object. Unfortunately, the contents of the message aren’t explicit. That is,
without parsing the XML, we can’t tell what types of data it contains.

 Now that we see the world through the eyes of the OrderRequestSender and in
the context of our architecture, we can tell all is not exactly as we imagined.
Indeed, there’s a bitter taste in our mouth. Using XML as the payload of the
OrderRequest message seemed like a good idea since XML is both flexible and
portable. However, data portability isn’t really an issue because we’ll be building
the consumer of OrderRequest messages. Furthermore, we can achieve flexibility

Listing 6.1 A JMS client that sends OrderRequest messages to a message queue

Creates a QueueSender
connected to the

OrderRequestQueue

Fills the
OrderRequest
message payload
with XML

Sends the OrderRequest
message to the Order-
RequestQueue

Disconnects from the
OrderRequestQueue

Antipattern: XML as the Silver Bullet 177
with other message types. So, given that both the producer and the consumer are
within our control, no clear advantages exist to using XML in this scenario. Before
going much further then, let’s reconsider the decision to use XML.

6.5 Antipattern: XML as the Silver Bullet

At first blush JMS and XML appear to be a match made in heaven. To some extent
they are kindred spirits that can team up to solve historically vexing problems.
One beauty of JMS is that it allows messages to be exchanged throughout a hetero-
geneous environment in a platform-neutral fashion—a noble challenge of EAI. In
practice, although Java applications themselves are platform-neutral for the most
part, not all systems glued together with JMS are Java applications. To further
extend the reach of messaging, some JMS vendors provide support for messaging
between Java and non-Java clients.

 JMS is aimed at enabling the ubiquitous transfer of messages, and XML stands
tall when it comes to expressing data in a portable and flexible format. Indeed,
because XML distills down to a stream of text, it can be interpreted by any plat-
form. It’s also flexible in the sense that, despite conforming to a well-defined
structure, an XML document can easily be extended to include new data elements
without affecting current applications using it.

 Sounds great, right? Not so fast. It comes as no surprise that XML has the poten-
tial to be overused. It’s a fate shared by many new technologies that come on the
scene with great fanfare. While some may contend that putting XML in the drink-
ing water will make everyone’s teeth whiter, XML is best used in moderation. We’ll
go out on a limb here and predict that a book on bitter XML wouldn’t be known
for its brevity. Swinging the XML hammer for the sake of XML is not without its
price. When a JMS consumer receives an XML message, that message must be
parsed before it can be used for anything meaningful. The overhead of parsing
XML will elongate the time required for the consumer to process the message. This
extra processing may in turn limit the overall message throughput of the applica-
tion. As such, XML loses many of its advantages when you control all the producers
and consumers. Regardless of the performance implications—which certainly
must be measured before forming any conclusions—the burden of parsing should
be hoisted on consumers only when a definitive advantage exists in using XML.

6.5.1 Solution: Use XML messages judiciously

XML is no panacea. In many cases, the MapMessage has all the same virtues as a
message containing XML, without the performance hit of parsing. With respect to

178 CHAPTER 6

Bitter messages
portability, most JMS vendors will automatically convert a MapMessage produced by
a Java application to an equivalent message in a non-Java environment. Native
conversions of this sort are generally less expensive performance-wise than pars-
ing XML. The format of a MapMessage is also flexible in that new name-value pairs
can be added easily without breaking existing consumers. Moreover, messages
containing XML have the disadvantage of not supporting runtime validation
afforded by the explicit, strongly typed methods of a MapMessage.

 That’s not to say a powerful synergy doesn’t exist sometimes between XML and
JMS. For example, messages that must be represented in a hierarchical structure
can certainly benefit from the flexibility of an XML message. As well, messages
that travel beyond the edges of your intranet to communicate with other systems
can reap the rewards of portable XML. In the future we’re likely to see an even
tighter coupling between these two technologies in a wide range of applications
from EAI to B2B.

 In any event, the best approach is to start with the simplest message type and
benchmark its performance. Then, if an XML message becomes necessary, you’ll
have something to compare that message against. Is parsing XML messages a per-
formance bottleneck? Wait! Don’t answer that just yet. First, gather hard evidence
with a performance test for the actual situation in question. Then, use that infor-
mation to make an informed decision. You might be pleasantly surprised.

 To reiterate, serializing XML into an OrderRequest message doesn’t buy us
much over a MapMessage in our application. We’re designing all the producers and
consumers and, at this point, the message has a flat structure. With a MapMessage,
we’re also free to add new data without affecting current clients, should that
become necessary. Listing 6.2 shows the refactored method that uses a MapMessage
type when sending an OrderRequest message.

public void sendOrder(OrderRequest order) throws JMSException {

 MapMessage message = session.createMapMessage();

 message.setString("Order ID", order.getOrderId());
 message.setString("Product ID", order.getProductId());
 message.setInt("Quantity", order.getQuantity());
 message.setDouble("Price", order.getPrice());

 sender.send(message);
}

Listing 6.2 Refactoring from an XML message to a MapMessage

Antipattern: Packrat 179
Notice that the message is now more explicit. And we get the advantage of strong
type checking. When the consumer reads the message, each attribute’s type is
unambiguous. For example, a consumer can now read an OrderRequest message
as shown in listing 6.3.

String orderId = mapMessage.getString("Order ID");
String productId = mapMessage.getString("Product ID");
int quantity = mapMessage.getInt("Quantity");
double price = mapMessage.getDouble("Price");

We finally have our messages nailed down! Next, we must decide if guaranteeing
their delivery brings anything to the party.

6.6 Antipattern: Packrat

Guaranteed message delivery, one of the cornerstones of messaging systems,
always comes at a price in terms of resources and performance. Anything adver-
tised as guaranteed seems to bear that caveat. Alas, no free lunch exists here.

 The JMS specification contains provisions for configuring a messaging system
to achieve different Quality of Service (QoS) levels. Building on that foundation,
JMS vendors compete by including value-added reliability features to their prod-
uct offerings. The QoS level we choose is dependent largely on our specific appli-
cation’s requirements. After all, we want to get something for the price we pay.

 Reliability is measured on a sliding scale. It’s not just a single toggle switch we
flip on or off, but rather a panel of control knobs. If we turn them all to their
highest setting, we’ll get maximum reliability and, possibly, horrible performance.
Turn them down to their lowest setting, and we’ll get minimum reliability with
improved performance. It’s a trade-off; the right setting usually lies somewhere in
the middle. Two mechanisms for guaranteeing message delivery with the highest
potential for misuse are persistent messages and durable subscriptions. Failure to
understand their potential cost can set us up for a big fall.

6.6.1 Putting a price on persistence

JMS defines two message delivery modes: persistent and nonpersistent. When a mes-
sage marked as persistent is sent to the JMS server, it’s immediately squirreled away
in nonvolatile storage. Only after the message is stored safely does the message
producer receive an acknowledgment that the JMS server has agreed to deliver the

Listing 6.3 Reading an OrderRequest message

180 CHAPTER 6

Bitter messages
message. By taking this responsibility, the JMS server guarantees that the message
will never be lost. As the server metes out each persistent message to consumers, it
keeps track of consumers that have actually received the message. The consumers
help by acknowledging the receipt of each message. If the JMS server fails (or is
restarted) while delivering messages, then upon recovery, the server will attempt
to deliver all persistent messages that have yet to be acknowledged.

 Non-persistent messages, on the other hand, aren’t stored on disk. Therefore,
they aren’t guaranteed to survive a JMS server failure or restart. As such, non-
persistent messages generally require fewer resources and can be delivered in less
time than persistent messages. Higher levels of message throughput usually can
be realized by using non-persistent messages at the expense of reliability.

 By default, a message producer marks all messages as being persistent. Each
message sent will be stored on disk before it’s delivered. With our OrderRequest-
Sender, that step works to our advantage because we can’t afford to lose Order-
Request messages if the JMS server fails or is restarted. Figure 6.5 illustrates the
sequence of events in delivering a persistent OrderRequest message.

 Every OrderRequest message is guaranteed to be delivered once—and only
once—to the OrderRequestReceiver. In contrast, ensuring that every OrderStatus
message is received by its consumers may not be a requirement of our business.
Instead, we may be able to deliver these messages once at most and avoid the over-
head of guaranteed delivery. That is, it won’t be the end of the world if one of these

OrderRequest
Queue

JMS Server

OrderRequest
Receiver

Datastore

1. Send 4. Receive

5. Acknowledge

6. Remove2. Persist

3. Acknowledge

OrderRequest
Sender

Figure 6.5 Persistent messages must be stored in nonvolatile storage by the JMS server
before acknowledging the message producer. These messages are then removed from storage
upon successful delivery. Not all messages require this degree of reliability. For messages that
need to be delivered once at most, better throughput can be realized.

Antipattern: Packrat 181
messages falls on the floor. Unless we explicitly mark OrderStatus messages as non-
persistent, our application will suffer the burden of guaranteeing their delivery.

 It’s important to note that messages sent using the point-to-point messaging
model must be placed on a queue in the JMS server prior to delivery, regardless of
whether or not they are marked persistent. A point-to-point message not marked
as persistent lives on the queue until it’s consumed or the JMS server fails or
restarts. Therefore, messages not consumed at a rate equal to or greater than
their rate of arrival may cause the queue to grow unchecked, putting additional
strain on the JMS server. Publish-subscribe messages, in contrast, don’t necessarily
have to be stored internally before delivery.

6.6.2 Paying for durable subscriptions

Durable subscriptions, another mechanism for guaranteeing message delivery, are
a feature specific to the publish/subscribe messaging model. A durable subscrip-
tion outlives a subscriber’s connection to the JMS server. That is, when a message
arrives at a topic for which a durable subscriber has registered interest, and the
subscriber is disconnected, the JMS server will save the message in nonvolatile
storage. In essence, the undelivered message is treated as a persistent message.
The JMS server will continue to store any outstanding messages until the durable
subscriber has reconnected. Once the subscriber has reconnected, all outstanding
messages are forwarded to it. If a message expires before the subscriber recon-
nects, the message will be removed.

 Here’s the rub: If a durable subscriber is disconnected for relatively long peri-
ods of time, and messages have a long life span, the JMS server is burdened with
having to manage all outstanding messages. The resulting strain on resources is
similar to that of persistent messages. For each durable subscription, the message
server must internally keep track of the messages each durable subscriber has
missed for a given topic.

6.6.3 Solution: Save only what’s important

Certain types of messages are so critical to your business that you can’t afford to
lose one. By all means, use the power of JMS to guarantee their delivery to the
extent necessary. If, however, certain types of messages can be missed when things
go bad, then you should avoid incurring the unnecessary overhead to guarantee
their delivery.

 In our order processing system, for example, losing an order request if the
JMS server fails will adversely affect our bottom line. We must guarantee that
every OrderRequest message ultimately arrives at our legacy order fulfillment

182 CHAPTER 6

Bitter messages
application. Therefore, the OrderRequest message is persistent. Additionally, if
the legacy order fulfillment application itself fails, or is taken offline for mainte-
nance, we must guarantee that any messages it misses will be delivered once it
has recovered. Therefore, its subscription must be durable. We don’t have to do
anything special for durability in this case. Messages sent to a queue are implicitly
durable; they’ll be waiting when the consumer comes back online. At the end of
the day, we’re willing to incur the overhead of persistence and durable subscrip-
tions in exchange for peace of mind.

 Conversely, we may be willing to tolerate the loss of an OrderStatus message, a
temporal message reflecting an order’s state at a given instant. If a subscriber
misses an OrderStatus message, the worst-case scenario is that the subscriber must
check the order status in the order database. The inconvenience of missing a mes-
sage just doesn’t warrant the cost of burdening the JMS server with the tasks of
storing each message, then deleting the message later once all interested subscrib-
ers have successfully acknowledged it. And remember, because we can easily bolt
on more reliability later, if necessary, we’ll do best by starting simple.

6.7 Mini-antipattern: Immediate Reply Requested

When I reach the base of the slope, there’s no sign of my snowboarding buddy. He
may have waited for me patiently somewhere, or already started back up. I could
wait at the base to see if he shows up, but if he’s already on the lift, I’ll miss the
opportunity of another ride. All slopes on this side of the mountain converge in this
spot, and at the head of the lift line, there’s a small whiteboard. I decide to scribble a
message for him. The next time he gets on the lift, he will be sure to see it, and we’ll
hook back up. In the meantime, the powder is getting deeper, and I’m ready for the
next ride.

If you’re blocked waiting for a reply, you’re stuck. You can’t move on or coordi-
nate new activities. As a result, you may miss out on opportunities. In other words,
waiting creates an opportunity cost. To work (and play) efficiently, you’d like to
rendezvous when it’s most convenient. Asynchronous messaging frees you from
waiting and lets you get in a few more runs.

 Excessive coupling is the enemy of asynchronous messaging. Indeed, it flies in
the face of a powerful aspect of asynchronous messaging—loose coupling. If mes-
sage producers have intimate knowledge of the consumers with which they com-
municate, then assumptions are inevitably made. In particular, a producer may
rely on a particular consumer’s identity, location on the network, and possible

Mini-antipattern: Immediate Reply Requested 183
connection times. Consequently, the system can’t grow and shrink dynamically. In
other words, producers are susceptible to the changes of the consumers on which
they rely. If, for example, a consumer on which a producer relies disconnects or
moves to a new host on the network, then the producer may end up waiting indef-
initely for the consumer to reconnect.

 That said, JMS does support a synchronous request/reply style of communica-
tion. Message producers can send a request in the form of a message to an out-
bound destination (topic or queue). When a message consumer receives the
message—either synchronously or asynchronously—it can then reply by sending a
message to a predetermined inbound destination. The two participants may agree
on well-known destinations ahead of time. Alternatively, the producer can dynami-
cally create a temporary inbound topic and assign it to the request message’s JMS-
ReplyTo property. Figure 6.6 illustrates a synchronous request/reply conversation.

 It’s true that the producer and consumer are decoupled in the sense that they
are unaware of each other’s identity or location, but an implied association exists.
Indeed, their life cycles are coupled. After publishing the request message, the
TopicSubscriber.receive() method invoked by the producer blocks until a con-
sumer sends a reply message. The producer must wait on the line until a consumer
is connected. Even then, the producer is at the mercy of the consumer’s duty cycle.
If the consumer is never able to connect and send a reply, the producer will con-
tinue to block, forever waiting for a reply. To avoid freezing the producer indefi-
nitely, use the receive(long timeout) or receiveNoWait() method. These
methods will break the producer free of the synchronous bonds before it’s too late.

Outbound
Topic

Inbound
Temporary

Topic

JMSReplyTo =
InboundTemporaryTopic

Request Message

Reply Message

request = TopicSubscriber.receive()

TopicPublisher.publish(reply)

TopicPublisher.publish(request)

reply = TopicSubscriber.receive()

Producer Consumer

Figure 6.6 Although JMS does support synchronous request/reply messaging, if used extensively
this messaging tends to create undesirable coupling between the message producer and consumer.
From the producer’s perspective, the round trip is synchronous; it blocks waiting for a consumer to
reply. If a consumer isn’t able to reply, the producer may block indefinitely.

184 CHAPTER 6

Bitter messages
 The sequence of steps required by a message producer to engage in a request/
reply conversation can be executed in one fell swoop using the javax.jms.Topic-
Requestor or javax.jms.QueueRequestor utility classes. These classes define a
request() method that encapsulates the lock-step process of sending a request
message and blocking until a reply message is received. If not executed in a sepa-
rate thread, invoking the blocking request() method from a message producer
will block the calling thread until a reply has been received. This risk alone may
warrant a move from convenience to safety by using a variant of the receive()
method directly.

 In general, asynchronous messaging is utilized best for a fire-and-forget style of
communication. When a request/reply conversation is needed, the power of asyn-
chronous communication is diminished, and the scales start to tip back in favor of
RPC communication. Therefore, before using JMS, carefully consider if your sys-
tem has the potential to benefit from asynchronous messaging. Indeed, asynchro-
nous communication should sometimes be eschewed in favor of synchronous
communication. If specific use cases require an immediate reply in response to a
request, consider using synchronous protocols such as Java RMI or SOAP.
Although JMS may afford better reliability through guaranteed message delivery, it
may also be overkill for the task at hand. Remember that it’s just another tool
whose value is derived from the circumstances in which you use it.

 Speaking of new tools, we’ve now learned enough about JMS to start cracking
message-driven beans. It’s been a long journey to this point, but you won’t want to
miss what’s around the next corner.

6.8 Using message-driven beans (MDBs)

Let’s pick up where we left off on our order processing system. We built the
OrderRequestSender, picked the best message type, and then dialed in the right
amount of reliability. It’s high time we designed the consumer of OrderRequest
messages. We could choose to create the consumer as a stand-alone JMS client.
However, we want to scale our application to handle many OrderRequest messages
concurrently. So, in the spirit of this book, and because we already have an invest-
ment in an EJB server, we’ll design the message consumer as a message-driven
bean (MDB).

6.8.1 Pooling with MDBs

MDBs were introduced in EJB 2.0 as server-side components capable of concurrently
processing asynchronous messages. In contrast, while session and entity beans can

Using message-driven beans (MDBs) 185
produce asynchronous messages, they can only consume messages synchronously.
An MDB’s life cycle is similar to that of a stateless session bean. Instances of a partic-
ular MDB are identical. They hold no state that makes them distinguishable. There-
fore, MDB instances can be pooled. Message producers unknowingly interact with
an MDB instance by sending a message to a topic or queue subscribed to by the
MDB. Figure 6.7 illustrates the advantage of pooling MDB instances.

 An MDB is equipped to handle JMS messages by implementing the
javax.jms.MessageListener interface. This interface defines a single onMessage()
method. When a message is delivered to the topic or queue, an MDB instance is
plucked from the pool and its onMessage() callback method is invoked with the
message. If more messages are delivered to the topic or queue before the
instance’s onMessage() method returns, then other instances are called into
action to handle the messages. When an instance’s onMessage() method returns,
the instance is returned to the pool to await the next message.

 To summarize, the use of MDBs offers a distinct advantage over managing mul-
tiple JMS clients. Instead of trying to load balance messages between stand-alone
JMS clients for optimal throughput, the container effectively distributes the load
using a pool of available MDB instances. So, let’s take advantage of an MDB to han-
dle requests for orders.

6.8.2 Building the OrderRequest consumer

Unlike a session or entity bean, an MDB does not have a home or remote inter-
face. In other words, an MDB does not define business methods accessible directly
from remote clients. Instead, it simply defines the onMessage() method that

MDB 3MDB 1 MDB 1

MDB 2 MDB 2 MDB 4QueueM5 M4 M3

M1

M2

J2EE Server

MDB instance pool

Figure 6.7 MDB instances are pooled in preparation for handling incoming messages. In this example,
two MDB instances have been enlisted from the pool and are now busily handling messages. When the
next message arrives (M3), if MDB1 and MDB2 are still busy, then an idle MDB instance (MDB3 or
MDB4) will be plucked from the pool to handle the message. In this way, multiple messages can be
consumed concurrently for better performance.

186 CHAPTER 6

Bitter messages
contains the business logic for handling a message. The business logic encapsu-
lated in the onMessage() method is executed in response to asynchronously receiv-
ing a message. Listing 6.4 shows how an OrderRequest is consumed by our MDB.

public class OrderRequestReceiverMDB
 implements javax.ejb.MessageDrivenBean,
 javax.jms.MessageListener {

 private MessageDrivenContext ctx;

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }

 public void ejbCreate() {}

 public void onMessage(Message message) {

 if (message instanceof MapMessage) {

 MapMessage mapMessage = (MapMessage)message;

 try {

 String orderId = mapMessage.getString("Order ID");
 String productId = mapMessage.getString("Product ID");
 int quantity = mapMessage.getInt("Quantity");
 double price = mapMessage.getDouble("Price");

 OrderRequest orderRequest = Create an order value object
 new OrderRequest(orderId, productId, quantity, price);

 recordOrder(orderRequest); Store order in order database

 OrderStatus status = fulfillOrder(orderRequest);

 notifyOrderStatusSubscribers(status);

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }

 } else {
 System.err.println("OrderRequest must be a MapMessage type!");
 }
 }

 public void ejbRemove() {}
}

In addition to the performance benefits gained by MDB pooling, this type of bean
is much easier to develop than a stand-alone JMS consumer. Notice that we didn’t

Listing 6.4 A message-driven bean that handles OrderRequest messages

Crack the
message

Send order to
fulfillment system

Broadcast
notification to
OrderStatus
subscribers

Using message-driven beans (MDBs) 187
have to write all the boilerplate setup code needed to connect to the JMS server
through JNDI and subscribe to a queue as we did in building the OrderRequest-
Sender. The EJB container takes care of all that plumbing, based on the contents
of deployment descriptors. Listing 6.5 shows the standard XML deployment
descriptor (ejb-jar.xml) relevant to our MDB example.

<message-driven>
 <ejb-name>orderRequestReceiverMDB</ejb-name>
 <ejb-class>com.bitterejb.order.ejb.OrderRequestReceiverMDB</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>
</message-driven>

By declaring the message destination as a queue using the <destination-type>
tag in the deployment descriptor, the code in the MDB itself becomes oblivious to
a message’s point of origin (topic or queue). That is, this same MDB could be con-
figured to subscribe to a topic without changing any code. This means that the
business logic this MDB encapsulates easily can be reused across messaging mod-
els. That’s a markedly easier solution than developing a new JMS consumer client.

 The actual JNDI name of the queue to which our OrderRequestSender is send-
ing OrderRequest messages is declared in a vendor-specific XML deployment
descriptor. The EJB container automatically subscribes MDB instances to this mes-
sage queue when the instances are created. This same vendor-specific deployment
descriptor may also declare the initial and maximum size of the MDB instance
pool. Sizing the pool allows us to easily throttle the message throughput, based on
expected message volumes.

 We haven’t yet discussed the actual business logic involved in handling a mes-
sage. Once a message arrives, the business logic can do whatever is necessary to
fulfill the order. That process isn’t all that relevant to the antipatterns in this chap-
ter. We could imagine the business logic using the J2EE Connector Architecture
(JCA) to communicate with the legacy order fulfillment application, for example.
The logic might even collaborate with other EJB components—session and entity
beans—in a more complex workflow. For example, to create an easily supported
order status notification, a subscriber of OrderStatus messages could use JavaMail
to send an email to the person who placed the order. The email could contain an

Listing 6.5 XML deployment descriptor for the OrderRequestReceiverMDB

188 CHAPTER 6

Bitter messages
indication of the order’s status. In any event, this arbitrary business logic should
be decoupled from JMS as we’ll see in our next antipattern.

6.9 Antipattern: Monolithic Consumer

At this point, we might be tempted to walk away from the MDB that consumes
OrderRequest messages, satisfied that it dutifully handles messages. If we did, we’d
miss a golden opportunity to improve the design. Before wandering off, let’s take
a minute to reflect on ways to keep the code clean and the design pristine. A small
investment to pay off design debt now will help prevent interest payments from
accumulating down the road.

 As it stands, our MDB’s onMessage() method creates the unfortunate side effect
of undesirable coupling. It’s not a particularly long method, but after cracking the
message, it inlines a sequence of method calls. As a result, the business logic
onMessage() encapsulates—the real meat of the order fulfillment process—is inti-
mately tied to an asynchronous messaging infrastructure. No clean separation of
concerns exists between the communication mechanism used to interact with the
business logic and the logic itself. Left untouched, this tightly wrapped ball of
code is, and forever will be, a JMS consumer. This coupling has a severe conse-
quence. The only way to execute the business logic is by publishing a JMS message
for consumption by the MDB. However, we’d like to reuse this business logic in the
absence of JMS. Without overengineering the design, what’s the simplest thing we
can do now to head off potentially painting ourselves in a corner later? It might
surprise you to hear that a test is in order.

6.9.1 Listening to the test

If we had attempted to write a test for the business logic before digging into the
implementation of the MDB, the pain that would be caused by undesirable cou-
pling would have been evident. By paying attention to the test, we would have
uncovered a better design opportunity much sooner. Indeed, when writing a test
is painful, we can usually assume that something’s wrong.

 Consider how difficult it is to write a test for the business logic through the
MDB’s onMessage() method. To do so, we would have to follow this procedure:

1 Write a full-blown JMS message producer similar to the OrderRequest-
Sender.

2 Register the message producer as a subscriber of OrderStatus messages.

3 Create and publish an OrderRequest message.

Antipattern: Monolithic Consumer 189
4 Wait for the asynchronous OrderStatus message.

5 Validate that the resulting OrderStatus message contains the expected status.

6 Query the order database to ensure the order was properly recorded.

That’s a lot of work! And most of our effort is geared toward appeasing the JMS
infrastructure. While this approach might create a good integration test, we’re
once again forced to use JMS. We really just want to know if the business logic
works. However, given the current design, testing the business logic independent
of JMS proves difficult because the test doesn’t distinguish between the two. The
test forces us to separate JMS from the business logic by refactoring the MDB to
delegate its work to a testable component.

6.9.2 Solution: Delegate to modular components

Modular designs that use cohesive and loosely coupled components are generally
easier to test. Imagine how the design improves if we look at it first in light of a
test. Without worrying about how a JMS message arrives, the test is simply con-
cerned with validating the business logic. After all, the test really only cares about
the guts of the onMessage() method. This tells us that inside the onMessage()
method is a unique component just waiting to be let free. So, let’s refactor the
logic contained in the onMessage() method into a separate component, called the
OrderRequestHandler class. Listing 6.6 shows the updated onMessage() method.

public void onMessage(Message message) {

 if (message instanceof MapMessage) {

 MapMessage mapMessage = (MapMessage)message;

 try {

 String orderId = mapMessage.getString("Order ID");
 String productId = mapMessage.getString("Product ID");
 int quantity = mapMessage.getInt("Quantity");
 double price = mapMessage.getDouble("Price");

 OrderRequest orderRequest = Create an order value object
 new OrderRequest(orderId, productId, quantity, price);

 OrderRequestHandler handler = new OrderRequestHandler();
 handler.handle(orderRequest);

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }

Listing 6.6 Refactoring onMessage() to delegate to an order request handler

Crack the
message

Delegate to encapsulated
business logic

190 CHAPTER 6

Bitter messages
 } else {
 System.err.println("OrderRequest must be a MapMessage type!");
 }
}

If we extract the inlined code into the OrderRequestHandler class, then the code’s
business logic is decoupled from asynchronous messages. The Order-
RequestHandler class is solely responsible for the order fulfillment process:
recording an order, submitting the order to the legacy order fulfillment applica-
tion, and notifying order status subscribers. In addition, the business logic easily
can be tested outside the MDB container, completely separate from JMS technol-
ogy. Once we’ve gained confidence that the handler works as expected, it can be
used by many clients. Local clients within the same JVM, for example, can submit
an order request simply by invoking a method directly on an instance of the class.
We’ve successfully put JMS in its rightful place—as a glue technology.

 Now, imagine we want to expose the logic of the OrderRequestHandler to
remote clients. Using the Session Façade design pattern, a session bean can ser-
vice remote synchronous clients by delegating directly to an OrderRequestHandler
instance. Moving a step further, we can expose the same business logic to remote
asynchronous clients by creating an MDB that either delegates directly to an
OrderRequestHandler instance or indirectly through the Session Façade.
Figure 6.8 illustrates the multiple communication paths used to access the busi-
ness logic that processes an order request.

 Notice that by decorating a modular component in a layered fashion, we’ve
effectively created two communication paths: one synchronous and the other
asynchronous. Moreover, no code duplication exists. We need only to change the
business logic in one place to affect the synchronous and asynchronous clients
uniformly. That is, the business logic can be varied, independent of the client
types that may chose to use it.

 The moral of the story is to remember that an MDB is simply a conduit
between JMS clients and business logic. As such, it should be kept as thin as possi-
ble. After receiving a message, and possibly converting it into a lightweight busi-
ness object, the MDB should delegate to other components that act on the
contents of the message. And we discovered all that by starting from a testing per-
spective. Go figure!

 Now for a little fun with a familiar, albeit tiresome, game: hot potato.

Antipattern: Hot Potato 191
6.10 Antipattern: Hot Potato

When a JMS server doesn’t receive an acknowledgment for a message sent to a
consumer, the server’s only recourse is to attempt to redeliver the message. This
sets the stage for a potentially wicked game of hot potato. The game goes some-
thing like this:

■ The JMS server sends a message to a message-driven bean.

■ The MDB raises an exception or rolls back its transaction.

■ As a result, the MDB container doesn’t acknowledge the message.

■ So the server attempts to redeliver the message.

■ The message again causes the MDB to raise an exception or roll back its
transaction.

■ Once again, the server does not receive an acknowledgment.

■ Rinse and repeat.

The JMS server and the MDB container continue to toss the message back and
forth, neither one wanting to get caught with the message when its timeout
expires (if ever). Round and round they go; where they stop, nobody knows.

J2EE Server

OrderRequest
Message

Asynchronous

Synchronous

OrderRequest

Handler

EJB Container

OrderRequest
ReceiverMDB

OrderProcessor
SessionEJB

OrderRequest
Queue

RMI/IIOP
Client

OrderRequest
Sender

Figure 6.8 Layering is a design technique used to build loosely coupled systems capable of servicing
disparate clients. By decorating a simple component that encapsulates business logic, enabling
technologies can serve as thin communication adapters. This maintains a clean separation of concerns,
improves testability, and allows the business logic to be changed in one location to affect all clients.

192 CHAPTER 6

Bitter messages
 This begs a question: what might cause a message to go unacknowledged by an
MDB. As first-class EJB components, MDBs are transaction-aware in their own right.
Often we want to execute the business logic, triggered by the arrival of a message,
as an atomic business process. Let’s look at our example again. The arrival of an
OrderRequest message kicks off a sequence of actions: updating a database, access-
ing an external system, and sending notification. If any step fails, we want the
entire business process to be rolled back.

 Using MDBs greatly simplifies handling messages within a transaction. MDBs
can manage their own transactions or let the container manage transactions on
their behalf. If CMT are used, then message consumption is included in the same
transaction as the message handling logic. Only if the transaction succeeds will
the message be acknowledged. It’s an all-or-nothing proposition. If either of the
following occurs while executing the onMessage() method, the transaction will be
rolled back and the JMS server will attempt to redeliver the message:

■ A system exception (e.g., EJBException) is thrown from the onMessage()
method.

■ The MessageDrivenContext.setRollbackOnly() method is invoked.

Because the message acknowledgment is tied directly to the success of a transac-
tion, MDBs that use CMTs are easy candidates for a game of hot potato. Rolling back
the transaction because business logic fails causes the message to never be acknowl-
edged. Figure 6.9 depicts the hot potato game played between the JMS server and
an MDB instance (note that the steps are presented in clockwise sequence).

MDB Instance

JMS
Server

X

1. Deliver message
4. Redelivery attempt

Repeat steps 1-4 until message expires

2. onMessage() failure
3. No acknowledgment sent

public void onMessage(Message m) {

 throw new RuntimeException();

 //or

 mdbContext.setRollbackOnly();

}

Message

Ack

Figure 6.9 If an MDB instance continuously throws a system exception from its onMessage()
method, or rolls back the transaction, then the MDB container doesn’t acknowledge receipt of the
message. Consequently, the JMS server assumes the message wasn’t successfully delivered. In an
effort to set things straight, the server will attempt to redeliver the message. The message becomes
like a hot potato tossed back and forth between the JMS server and MDB instances.

Antipattern: Hot Potato 193
 MDBs that choose to manage their own transactions are slightly less likely to
get into a game of hot potato, though they are not immune to it. When BMT are
used, the consumption of a message is not included in the same transaction as the
message handling logic. Messages are acknowledged, regardless of whether the
transaction is committed or rolled back. To force the JMS server to redeliver a
message if the transaction is rolled back, a system exception can be thrown from
the onMessage() method.

 Although hot potato appears to be good, clean fun, it’s not a game with
many prizes. The JMS server on one side is frazzled, juggling all outstanding
messages. On the other side, the MDB instances are thrashed, trying to deal with
recurring messages they can’t handle. Until an acknowledgment is made, the
games will continue.

6.10.1 Solution: Acknowledge the message, not its result

The easiest way to avoid a game of hot potato is to acknowledge the successful
receipt of the message, not whether the resulting business logic was successful.
The JMS server can’t do anything about the latter, so don’t put the server in a posi-
tion to let you down.

 Toward this end, you don’t want to throw system exceptions in response to
business logic errors. System exceptions should be raised only in response to gen-
uine system (or container) failures. Because application exceptions cannot be
thrown from the onMessage() method, it’s best to log any business logic errors
and return gracefully from the onMessage() method. This lets the JMS server know
that the consumer got the message, which is all the server really cares about any-
way. A variation on this theme is to send an error-related message to a special
error queue. To handle unexpected error conditions intelligently, exception-han-
dling consumers can subscribe to this queue.

 Be mindful of the repercussions of rolling back an MDB transaction by invok-
ing the MessageDrivenContext.setRollbackOnly() method. It, too, will force the
JMS server to attempt redelivery. Ask yourself whether the next MDB instance cho-
sen to handle the message will be able to execute the business logic successfully,
or if it will suffer the same fate. If the problem that triggers the rollback is unre-
coverable, then the next MDB instance to receive the redelivered message will
likely encounter the same problem. Incoming hot potato! If it’s possible that the
next MDB instance to receive the redelivered message will be able to recover from
the error, then rolling back the transaction may be appropriate.

 Some JMS providers automatically support the use of a Dead Message Queue
(DMQ). If, for example, an attempt to deliver a message is unsuccessful after a

194 CHAPTER 6

Bitter messages
preconfigured number of redelivery tries, the message is automatically redirected
to the DMQ. Our application is then responsible for monitoring this queue and
taking appropriate action when a doomed message arrives. JMS providers may also
support a configurable redelivery delay whereby the JMS server waits a predefined
amount of time before attempting redelivery. Understanding the conditions
under which a message will be redelivered helps minimize the chance of creating
a berserk message. Equally troublesome is the subject of our next antipattern: a
message that takes a while to chew on.

6.11 Antipattern: Slow Eater

An MDB can chew on only one message at a time. Until its onMessage() method
returns (swallows what’s in its mouth), an MDB cannot be used to handle other
messages. That is, an MDB instance is not re-entrant. If another message is deliv-
ered to the MDB container before a busy instance’s onMessage() method returns,
then the container will pluck another MDB instance from the instance pool to han-
dle the new message. This is true for both publish/subscribe and point-to-point
messaging. Messages published to a topic are delivered to one MDB instance in
every MDB container registering interest in the topic. Messages sent to a queue are
delivered to one MDB instance in exactly one MDB container registering interest in
the queue. In either case, an MDB instance can only handle messages serially.

 When the onMessage() method takes a relatively long time to handle a mes-
sage, more and more instances in an MDB instance pool will be needed to handle
high message volumes. Messages will start to back up any time the average arrival
time of messages is greater than the average time to consume each message,
thereby creating a bottleneck that restricts message throughput. In general, any-
time the ratio of message production to consumption is high, message through-
put will suffer.

6.11.1 Solution: Eat faster, if you can

If high message volumes are expected, it’s wise to keep the onMessage() method
as fast as possible. An MDB with a short and sweet onMessage() method can
achieve higher levels of message throughput with a smaller number of MDB
instances in the pool. Because every MDB instance in the pool is stateless and
identical, any idle instance can handle an incoming message. As soon as the
onMessage() method returns, it can immediately handle another message. That’s
all well and good, except for one minor detail: MDBs are usually tasked with time-
consuming work on which message producers can’t afford to block waiting.

Antipattern: Eavesdropping 195
Indeed, if faced with a quick and dirty job, we might just use a synchronous
method call.

 We should strive to keep the code paths invoked by the onMessage() method
optimized as necessary to support a tolerable message throughput. Delegating to
modular components that perform the actual message handling makes it much
easier to write isolated performance tests that continually measure the response
time of the logic encapsulated in onMessage().

 When we dig a bit deeper in our toolbox, we can find a few performance tricks
for helping slow eaters. If we spend time reading our JMS vendor’s documenta-
tion, we can get a feel for the possible tools we could use. For example, some ven-
dors have support for throttling, which effectively slows down producers if
consumers are lagging behind. We might as well use what’s already available to
our advantage—we paid for it! Once our MDBs are efficiently consuming mes-
sages, we need to make sure they aren’t eating more than their fair portion. This
is the subject of our next antipattern.

6.12 Antipattern: Eavesdropping

As messages fly around in a message-based system, consumers must pick and
choose the messages they’ll consume. The potential for information overload
increases with each new message producer participating in the system. A con-
sumer eating a relatively small portion of messages today may be faced with signif-
icantly larger portions tomorrow.

 Take, for example, a publish/subscribe scenario with subscribers eavesdrop-
ping on a high-traffic topic. As more and more messages are sent to that topic, the
subscribers may experience an abysmal signal-to-noise ratio. Similarly, in a point-to-
point scenario, receivers consuming messages from a high-volume queue may be
burdened with handling low priority work. Developing custom message filtering
logic in each message consumer is both time consuming and prone to error. It also
makes it difficult to uniformly improve message filtering logic and performance.

 As a work-around, multiple destinations (topics and queues) can be set up to
partition messages according to their intended use. In other words, we can break
up coarse destinations into multiple fine-grained destinations for more selective
listening. For example, we could configure two queues for our order processing
system: one for standard orders and the other for premium orders. However, the
process of setting up special interest destinations starts to fall apart at some point,
and ultimately leads to a proliferation of topics and queues, which must be admin-
istered and managed. This work-around also places the burden on message

196 CHAPTER 6

Bitter messages
producers to send only relevant messages to each destination. Message consumers
are in turn burdened with registering interest in only the appropriate destinations
necessary to get all the information they need.

6.12.1 Solution: Use message selectors

Message selectors are one way for message consumers to easily tune out messages
they don’t need or want to hear. Each message consumer can be configured with a
unique message selector, much as we use mail and news filters to receive only
information we’re interested in reading.

 A message’s filtering can be based only on its headers and properties, not on
the payload it carries. The SQL-92 conditional expression syntax—which makes
up SQL WHERE clauses—is used to declare the filtering criteria. The JMS provider
filters messages, so the process is automatic from the consumer’s perspective.

 The use of message selectors is one way to easily design queue specialization into
a message-based system. Referring back to our example order processing system,
we can see it may make good business sense to handle premium orders differently
than standard orders. Rather than creating two different queues—one for stan-
dard orders and another for premium orders—a single queue could be used by
all message consumers interested in orders. We could then create two different
types of OrderRequest handlers modeled as MDBs: a standard order handler and a
premium order handler.

 Assuming an OrderRequest message contained the total price of the order as a
message property, the standard order handler would be created with a message
selector on that property so the standard order handler would only see orders on
the queue with a total price up to $1,000. The premium order handler’s message
selector would restrict its view of the queue to only those orders that exceeded
$1,000. We could then vary the size of the respective MDB instance pools indepen-
dently. For example, the premium order handler’s pool might be increased to
improve the throughput of fulfilling premium orders. Figure 6.10 illustrates the
flow of messages when message selectors are used to handle premium orders dif-
ferently than standard orders.

 Using the same example, each subscriber of OrderStatus messages could use
message selectors to select the messages they receive. Messages that didn’t match
the selection criteria for a given subscriber wouldn’t be delivered to that subscriber.
Each subscriber would pick up a good, clean signal without any of the noise.

 How and where messages are filtered is an implementation detail of the JMS
provider. Any specific JMS vendor’s implementation may apply the message selec-
tion logic in the server-side message router or in the client-side consumer’s JVM.

Antipattern: Eavesdropping 197
Depending on the implementation, message selectors may create a measurable
drag on performance. In general, however, filtering on the server side is less
expensive and may actually improve performance by minimizing network traffic
for unwanted messages. In any event, it pays to have performance benchmarks
and automated tests that can continually check whether performance is going off
the rails. Running these tests can help determine objectively how the perfor-
mance of message selectors stacks up against custom message filtering logic in
each message consumer.

 At the end of the day, anything that can be done with message selectors can
also be achieved using multiple destinations. The use of message selectors over
multiple destinations ultimately boils down to striking a balance between resource
management and performance.

 Now, let’s apply what we’ve learned by setting up a message selector.

6.12.2 Declaring message selectors

Message selectors are declared for each message consumer when the consumer is
created. With MDBs, no extra coding is necessary. The message selection criteria
simply are declared in the XML deployment descriptor. The MDB container cre-
ates all MDB instances in the pool with the same message selection criteria.

OrderRequest
Sender
Client

OrderRequest
Message

OrderRequest
(TotalPrice >= $1000.00)

OrderRequest
(TotalPrice < $1000.00)

OrderRequest
ReceiverMDB

OrderRequest
ReceiverMDB

MDB Containers

J2EE Server

OrderRequest
Queue

Figure 6.10 Message selectors can be used to improve signal quality by filtering messages
based on header and property values. Rather than having to eavesdrop on all messages for fear
of missing an important message, consumers can be created with unique message selectors.
This allows the QoS to be varied according to the business value of the message being handled
by a pool of MDB instances.

198 CHAPTER 6

Bitter messages
 Assuming an OrderRequest message contains a property defining the total cost
of the order, adding the following XML snippet to the standard XML deployment
descriptor (ejb-jar.xml) causes only those orders exceeding $1,000 to be deliv-
ered to the MDB instances managed by this container:

<message-selector>
 <![CDATA[TotalPrice > 1000.00]]>
</message-selector>

That’s all there is to it! Of course message selectors can be arbitrarily complex,
depending on the number of message properties and the conditional logic
involved. Using a CDATA section around the message selector text means the text
won’t be subjected to XML parsing. Therefore, we won’t need to escape all the log-
ical operators to appease the XML parser.

6.12.3 Going beyond message selectors

Many JMS vendors have value-add features for going beyond message selectors. If
you choose to take these paths, just remember that you’re straying away from
portability. Fortunately, with MDBs we can take advantage of these extensions at
deployment time. That is, we usually won’t have to change any code to put these
extensions in or take them out. The deployment descriptor conveniently includes
all configuration details.

 As we learned, the JMS specification restricts message selectors to filtering,
based on a message’s headers and properties. In other words, we can’t filter a mes-
sage by inspecting its payload. In response, many vendors have added proprietary
extensions to the message selector syntax to support content-based routing. For
example, many vendors can use XPath to filter either proprietary XML message
types or a TextMessage containing XML.

 Another proprietary extension for message filtering is the use of wildcard topic
names. By using a dot notation when naming topics, we can set up a hierarchy of
information. Consumers can then easily subscribe to groups of messages. Take,
for example, a financial application that sends stock quote updates to either the
STOCKS.NYSE.IBM or STOCKS.NASDAQ.SUNW topics. If consumers want to sub-
scribe to all NASDAQ prices, they simply register interest in the STOCKS.NASDAQ.*
topic. Alternatively, they can listen to a specific stock by registering interest in the
STOCKS.NASDAQ.SUNW topic, for example.

 Up to this point we’ve covered many antipatterns related to the design of
applications using JMS and MDBs. As a parting shot, let’s look at a final antipat-
tern, one that usually reveals itself at the end of your development process.

Antipattern: Performance Afterthoughts 199
6.13 Antipattern: Performance Afterthoughts

We’ve touched on performance in many ways throughout this chapter. However,
just because some antipatterns had performance side effects doesn’t mean we
should focus on performance too early. Premature optimization is speculative at
best. On the other hand, casting performance absolutely to the wind is a recipe
for disaster. Every design decision we make, including the selection of a JMS ven-
dor, ultimately has the potential to affect performance. Our path deviates away
from a successful deployment each time a decision is made without objectively
measuring its performance implications.

 Although the JMS specification defines two messaging models and various QoS
features that may influence performance, the specification does not address the
performance implications of these decisions. This lapse gives JMS vendors a lot of
room to compete and tailor their product offerings to shine in certain deployment
scenarios. Indeed, vendors have different strengths and weaknesses. It’s entirely
possible that a vendor’s implementation designed specifically to excel in certain
scenarios may fall down in other scenarios. And then there’s the code we write!

 Simply measuring the time it takes a JMS server to transport a single message
from a producer to a consumer doesn’t give us a full picture of performance. The
performance of an individual message’s delivery cycle may be markedly different
when the JMS server is under load—for example, delivering fat, persistent mes-
sages to multiple consumers. Without a rough measure of success based on realis-
tic usage patterns, the measurements are useless.

6.13.1 Solution: Measure early and often

Our defense against performance-related antipatterns is a solid foundation of
automated tests that validate our application’s performance requirements. When
faced with decisions that may affect performance, these automated tests can be
rerun to objectively measure any impact. As our application’s design takes shape,
we’ll get confidence by continually running its performance tests to measure
progress. If a change improves performance, we can raise the bar by modifying
the tests to use the new benchmark. If performance degrades, we can undo what-
ever changes were made and try again.

 Automated performance tests can also be used as a yardstick when evaluating
different JMS implementations in terms of their performance. Before making an
investment in a specific JMS vendor’s implementation, we should create a few
benchmarks. We should start by using a simple driver that can be configured eas-
ily to produce/consume arbitrary numbers of messages and report performance

200 CHAPTER 6

Bitter messages
metrics for each action. Because the performance of messaging models will vary
between vendors, we need to make sure the test is indicative of our application’s
needs. Then we can proceed to write automated tests that use the test rig to simu-
late a representative use case and automatically check that performance is within
tolerable limits.

 Given the variation in vendor implementations and design decisions, perfor-
mance cannot be treated as an afterthought without facing potentially dire conse-
quences. Writing performance tests early and running them often illuminates
unforeseen bottlenecks and reduces the effects of downstream thrash tuning. The
following list represents factors that should be considered when writing and run-
ning performance tests:

■ Message throughput The number of messages a JMS server is able to pro-
cess over a given period of time can be a telling metric. It quantifies the
degree to which an application can scale to handle more concurrent users
and a higher message volume.

■ Message density The average size of a message impacts the performance
and scalability of an application. Smaller messages use less network band-
width and are generally easier for the JMS server to manage.

■ Message delivery mode Persistent messages must first be stored in nonvol-
atile memory before being processed by the JMS server. Effective tests must
produce messages representative of the production system to get an accu-
rate picture of production performance.

■ Test under realistic load scenarios Load testing with multiple users often
illuminates bottlenecks that aren’t evident in a single producer/consumer
scenario. Write tests that measure the message throughput capable under
average and peak concurrent user loads. Consider both the ratio of users to
actual JMS connections, and the resources required.

■ Production rate versus consumption rate If the rate at which messages are
produced exceeds the rate at which messages are consumed, the JMS server
must somehow manage the backlog of messages. Watch for any significant
disparities between the send rate and the receive rate.

■ Go the distance Endurance testing over an extended period of time can
identify problematic trends such as excessive resource usage or decreased
message throughput. Running performance tests overnight, for example,
may highlight problems that may be encountered when the system goes live.

Summary: Getting the message 201
■ Know your options JMS vendors generally support proprietary runtime
parameters and deployment options for tuning the performance and scal-
ability of their product offering. Know what options are available out-of-the-
box so that the JMS provider can be configured to yield optimal perfor-
mance and scalability relative to your application.

■ Monitor metrics Some JMS vendors include an administrative console for
monitoring internal JMS metrics such as queue sizes and message through-
put. Monitor these metrics to gain insight into the usage patterns of your
application. If an API is available for obtaining these metrics programmati-
cally, such as through JMX, write tests to check continually whether the met-
rics are within tolerable ranges.

■ Chart metrics Simple charts serve as early warning systems against unde-
sirable performance trends. For example, plotting the number of messages
processed as a function of time will help pinpoint where message through-
put plateaus. When using point-to-point messaging, plotting the queue size
over time will clearly indicate when messages are being backlogged.

Automated performance tests are invaluable for their ability to keep all these con-
siderations continually in check. Don’t settle for having to manually recheck per-
formance every time you make a change. Invest early in tests that check their own
results and run them often to gain confidence. You’ll be glad you did!

6.14 Summary: Getting the message

JMS is easy to use and extremely powerful, yet subtle implications must be carefully
considered when using JMS to build message-based applications. In this chapter, we
discussed several common pitfalls as we developed an example order processing
system glued together with asynchronous messaging. In many cases, we were able
to side-step problems by applying relatively simple refactorings. In other instances,
we avoided potential problems altogether by understanding the consequences of
design decisions and planning accordingly.

 Although many antipatterns discussed in this chapter are applicable to JMS in
general, we specifically put MDBs under the microscope. As first-class EJB compo-
nents making their debut in EJB 2.0, MDBs enable asynchronous access to server-
side business logic and resources. Moreover, they simplify the development of mes-
sage consumers that can scale to handle high-volume message traffic. Nevertheless,
designing and configuring MDBs to meet the challenges of today’s business needs

202 CHAPTER 6

Bitter messages
requires attention to detail. As we watch MDBs mature to include support for other
messaging technologies, we’ll likely bear witness to new MDB antipatterns.

 Many antipatterns we discussed in this chapter are related to performance. JMS
is used primarily as a glue technology to integrate multiple applications through
the exchange of portable messages. As such, the quality of a message-based appli-
cation is measured according to the message throughput it can reliably scale to
handle. The important lesson to be learned from these antipatterns is to size and
test your application early and often to ensure a successful deployment.

6.15 Antipatterns in this chapter

This section covers the Fat Messages, Skinny Messages, XML as the Silver Bullet,
Packrat, Immediate Reply Requested, Monolithic Consumer, Hot Potato, Slow
Eater, Eavesdropping, and Performance Afterthoughts antipatterns.

DESCRIPTION
Using the same message type for all situations and not designing
messages for their intended consumers leads to bloated messages.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Message dieting

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Design messages to carry just enough information to allow their
consumers to autonomously handle the messages. Send referenc-
es to data when sending the data itself is size prohibitive.

ANECDOTAL EVIDENCE
“This message contains a plethora of information, just in case
consumers need it.”

SYMPTOMS, CONSEQUENCES
The messaging pipes are clogged with fat messages, and message
throughput suffers.

FAT MESSAGES

Antipatterns in this chapter 203

DESCRIPTION
Messages that don’t contain enough information burden their con-
sumers with making extra remote calls to get more information.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Put some meat on the bones.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Err on the side of sending a bit too much information. Add state
information to references to let consumers decide when and if to
load referenced data.

ANECDOTAL EVIDENCE
“Why is the application spending all of its time I/O blocked?”

SYMPTOMS, CONSEQUENCES
Asynchronous communication breaks down into synchronous
communication to clarify the intent of messages. Misuse of refer-
ences causes contention of a shared resource and ends up being
slower than a fatter message.

SKINNY MESSAGES

204 CHAPTER 6

Bitter messages

DESCRIPTION
Filling messages with XML by default in the name of flexibility and
portability

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Use XML on the edges.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Use XML messages to communicate with applications beyond
your control. The MapMessage has similar flexibility and portability
when communicating with application within your control.

ANECDOTAL EVIDENCE
“XML is the only way to make this message portable.” “All the cool
developers are using XML.”

SYMPTOMS, CONSEQUENCES
Messages containing XML may incur unnecessary overhead that
limits message throughput. Message handling logic isn’t explicit
or type-safe.

XML AS THE SILVER BULLET

Antipatterns in this chapter 205

DESCRIPTION
Storing all messages, regardless of whether delivery must be guaranteed

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Save only the important messages.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Consider the ramifications of losing a message before deciding to
guarantee its delivery.

ANECDOTAL EVIDENCE
“Let’s be safe and store all messages by default.”

SYMPTOMS, CONSEQUENCES
Storing all messages limits message throughput and unnecessarily
burdens the JMS server.

DESCRIPTION
Using JMS for a synchronous request/reply style of communication

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Use synchronous communication technologies where appropriate.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
If a request/reply style of communication is needed, consider us-
ing Java RMI or SOAP.

ANECDOTAL EVIDENCE
“How can I return a result once the consumer handles the message?”

SYMPTOMS, CONSEQUENCES
Undesirable coupling between producers and consumers, negat-
ing the benefits of asynchronous messaging

PACKRAT

IMMEDIATE REPLY REQUESTED

206 CHAPTER 6

Bitter messages

DESCRIPTION
Inlining business logic in the class that consumes a message

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Delegate.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Design the message consumer to simply crack the message then
forward the message’s data to a separate class defining the actual
business logic.

ANECDOTAL EVIDENCE
“I can’t test the business logic without starting the JMS server.”
“That’s too hard to test.” “Our system’s only API is through asyn-
chronous messaging.”

SYMPTOMS, CONSEQUENCES
Business logic is tightly coupled to the use of JMS and can only be
accessed by sending it a message.

MONOLITHIC CONSUMER

Antipatterns in this chapter 207

DESCRIPTION
A message is continuously tossed back and forth between the JMS
server, and a message consumer that won’t acknowledge it has re-
ceived the message.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Acknowledge the message receipt, not its result.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Consumer should always acknowledge that they’ve received a
message. This acknowledgment should not be dependent on the
success of the business logic handling the message. Log failures in
business logic to a separate error queue.

ANECDOTAL EVIDENCE
“Where did all these messages come from?”

SYMPTOMS, CONSEQUENCES
The JMS server is burdened with attempting to redeliver messages
that no consumer will ever acknowledge.

HOT POTATO

208 CHAPTER 6

Bitter messages

DESCRIPTION
Message consumers that take a relatively long time to consume a
message negatively affect message throughput

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Eat as fast as you can.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Measure the consumption rate of messages as an early warning
system against bottlenecks. Optimize the code paths of message
consumers as necessary.

ANECDOTAL EVIDENCE
“We have to frequently increase the size of the message-driven bean
instance pool.” “The message queues continue to grow unchecked.”

SYMPTOMS, CONSEQUENCES
Message throughput is negatively affected when the production
rate is greater than the consumption rate.

SLOW EATER

Antipatterns in this chapter 209

DESCRIPTION
Listening in on high-traffic message queues and topics for fear of
missing an important message

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Use message selectors.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
The use of message selectors lets consumers tune out messages they
aren’t interested in hearing. Specialized message consumers can
handle high-priority messages with a better QoS.

ANECDOTAL EVIDENCE
“This consumer keeps getting spammed with unwanted messages.”

SYMPTOMS, CONSEQUENCES
Message consumers are burdened with handling throw-away mes-
sages and high priority work is intermixed with low priority work.
Network and CPU utilization increases.

EAVESDROPPING

210 CHAPTER 6

Bitter messages

DESCRIPTION
Focusing on performance without requirements or engaging in
premature optimizations without a baseline

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Measure early and often.

REFACTORED SOLUTION TYPE
Process

REFACTORED SOLUTION DESCRIPTION
Gather performance requirements early and often. Build auto-
mated performance tests that continuously validate performance
criteria. Use performance tests to benchmark JMS vendors based
on your application’s requirements.

TYPICAL CAUSES
Poor planning

ANECDOTAL EVIDENCE
“We will have plenty of time to performance tune at the end of
the development cycle.” “We’ll let our QA department measure
performance.” “We’re using a reputable JMS server, so it should
scale well.”

SYMPTOMS, CONSEQUENCES
Repeated delivery of poorly performing software, redesign of crit-
ical use cases late in the development cycle, and last-minute tun-
ing activities that are ineffective.

PERFORMANCE AFTERTHOUGHTS

Part 3

EJB persistence

When the summer rains flood the creeks in the Texas hill country, experienced
kayakers start seeing all kinds of unfit watercraft appear on the local creeks. The
owners of the craft, which range from nearly rotten canoes to swimming lounge
chairs, are visibly unprepared. Most have no helmet, and few have adequate life
vests. Approaching the creek this way is inherently dangerous, and we frequently try
to keep inexperienced boaters away, usually with little success. Invariably, we find
the unsafe watercraft downstream, wrapped around the rocks and the trees that
make navigation difficult under the best of circumstances.

Some of the watercraft that we might see on Austin creeks would be quite at home
in swimming pools, but have no place on area creeks. Similarly, the component-
oriented design of EJB is not well suited for persistence. In chapter 7, we discuss
antipatterns related to EJB persistence. We explore common traps like application
joins and filters. In chapter 8, we go one step further, recommending alternatives
to EJB entity beans. We present a simple example solved with EJB, JDBC, and JDO,
and then weigh the advantages and disadvantages of each approach. Our goal
here is to get you out of that swimming pool float and into something more
appropriate for the EJB development creeks that you’ll find yourself navigating.

7Bitter entitie
s

This chapter contains
■ Antipatterns related to entity beans
■ Application joins and filters
■ Rules for building efficient primary keys
213

214 CHAPTER 7

Bitter entities
After weeks of intense political campaigning in Connecticut, my sister sweeps down
the Park City, Utah slope. The snow is much lighter and fresher than she usually
sees in the East. The refreshing cold tickles her cheeks as she rips down the immacu-
late run. She had planned to spend the day skiing the easier runs as a warm-up,
but after witnessing the intensity of the sweeping Park City runs, she can’t help her-
self: she heads for the fun stuff.

It’s all coming back to her nicely. Her edges deliciously carve up the steep gully
when she sees the little mogul ahead. Feeling confident, she gets ready for the jump.
She squares her shoulders, feels the pressure of acceleration on the balls of her feet,
and as it eases up, tightens quads and calves to propel herself into the air. Only
when it’s too late and she’s in the air does she realize her timing is off.

7.1 Understanding entity bean antipatterns

Since the initial EJB specification was released, entity beans have been a topic of
great controversy. Entity beans are fraught with mixed messages and contradic-
tions and continue to cause great confusion. Between the 1.1 and 2.0 releases,
sweeping modifications (or, arguably, rewrites) were made to the specification’s
entity bean portion. These changes added to the confusion. Many argue that
entity beans should be used rarely, if at all. (In fact, chapter 8 will outline some of
these arguments.) Our overwhelming consensus is that EJB entity beans are prob-
lematic at best and fatally flawed at worst.

 But what if you want to stick with entity beans? You may not buy our argu-
ments, or you may have no choice in the matter on your project. If you must use
entity beans, you’ll find this chapter is a guide to avoiding the common antipat-
terns in the latest EJB specification. We will table the controversy and look at how
best and—more importantly—how not to implement entity beans.

7.1.1 Understanding the entity bean antipattern landscape

We will discuss three major types of antipatterns in this chapter. Some can be
addressed with impartial solutions, and we’ll talk you through the strengths and
weaknesses of each one. Here are the areas that we’ll address:

■ Object model antipatterns Several antipatterns in this chapter discuss situ-
ations that predominantly arise when using entity beans to implement a
persistent domain object model.

Antipattern: Face Off 215
■ Database design antipatterns We won’t discuss database design in detail,
but the use of keys is critical. The Rusty Keys antipattern addresses the mis-
use and length of keys.

■ Application logic antipatterns Often, the design of a framework or appli-
cation forces you to make poor decisions. Application joins and filters fall in
this category, and we’ll consider them as well.

Some of these antipatterns are not limited to EJB, but can be found in nearly every
persistence framework. However, we find that EJB offers a particularly ripe envi-
ronment for each antipattern covered here.

7.2 Antipattern: Face Off

If you were to code your application with the simplest possible design, you might
decide that directly accessing your entity beans from another application layer is
okay. You’d quickly find that communication costs—and serialization costs—
would destroy your application’s performance. Face Off occurs when you access
persistent entities directly from a distributed tier. The Face Off antipattern is
probably the biggest pitfall an EJB developer will encounter when using any kind
of persistence architecture. Fortunately, most good EJB developers quickly recog-
nize this antipattern and implement one of the well-known workarounds.

 Face off can occur whenever an entity bean is used but is most pronounced
when entity beans are used for fine-grained persistent storage, as with a persistent
domain object model. Face off is the practice of directly invoking entity bean
methods from EJB client code, without using a session bean façade.

 Because entity beans can be accessed remotely, looking up an entity bean
directly from the client and interrogating its persistent data directly is tempting.
At first glance, this simple design seems easier than wrapping a façade around the
entity bean. However, façade-less access to entity beans can have disastrous effects
on the performance and the transactional integrity of a system.

 Take, for example, a system with a Person entity bean that represents user data
in the database. Say this bean has five persistent properties—firstName, lastName,
phone, fax, and email. We will discuss accessing this entity bean directly from cli-
ent code, then look at what happens when we interpose a session bean façade
between the entity bean and the client.

216 CHAPTER 7

Bitter entities
7.2.1 Network round-tripping chokes applications

Imagine that we want to display a list of all Person objects in the database. To do
so, we look up the home interface for the entity bean and invoke a finder method
on it. Then, given the resultant list of Person objects, we iterate through each one,
spitting out information to an output stream.

 Arguably this design (figure 7.1) may not be the best for our client code,
because we should be separating the presentation from the business logic. We’ll
leave that antipattern to be addressed elsewhere. For now, let’s focus on the com-
munication cost.

 Accessing the persistent data in an entity bean directly from a client will lead to
network thrashing. The design simply requires too many network round-trips to
do all but the most basic operations. Bitter Java introduced this antipattern in
2002, but many other books discussed the problem in various forms. We cannot
say this strongly enough: In many cases, the number of network round-trips deter-
mines application performance success or failure. Solve any network communica-
tion problems, and you will be well on your way to good performance. Listing 7.1
shows an entity bean design that suffers from excessive round-tripping.

 InitialContext context = new InitialContext ();
 Object personHomeOb = (PersonHome) context.lookup ("Person");
 PersonHome personHome = (PersonHome)
 PortableRemoteObject.narrow (personHomeOb, PersonHome.class);

 Collection people = (Collection) personHome.findAll ();

 Person person;

Listing 7.1 Our flawed test client makes 5n + 1 trips to the EJB container

Person

getFirstName()
getLastName()
getPhone()
getFax()
getEmail()
toString()

firstName
lastName
phone
fax
email

Figure 7.1
This Unified Modeling Language (UML) diagram is a domain model for
a Person class. It’s a reasonable design in some cases, but it’s easy
to abuse. Accessing a component like this directly from a remote
client can result in poor performance due to round tripping.

Obtain the entity bean
home interface

Get a list of all Person beans from it

Antipattern: Face Off 217
 for (Iterator iter = people.iterator (); iter.hasNext ();)
 {
 person = (Person) iter.next ();
 System.out.println ("Person: ");
 System.out.println (" first name: " + person.getFirstName ());
 System.out.println (" last name: " + person.getLastName ());
 System.out.println (" phone: " + person.getPhone ());
 System.out.println (" fax: " + person.getFax ());
 System.out.println (" email: " + person.getEmail ());
 }

This client code is massively inefficient. As the number of records (or persistent
fields in Person) increases, performance quickly degrades. In case this degrada-
tion is not obvious, figure 7.2 illustrates the bottlenecks that network communica-
tions and overhead create in the application. Each field access in our example will
incur a network round-trip. So, our test program will make 5n + 1 trips to the EJB
container, where n is the number of Person records in the database and 5 is the
number of fields that we retrieve from the Person bean. (The finder method also
makes one extra trip— + 1.) If our Person entity bean had a one-to-many relation-
ship to a set of addresses or projects, the number of database round-trips would
multiply quickly.

7.2.2 Losing transactional integrity

A slightly subtler problem with the Face Off antipattern is the loss of transactional
integrity when bean methods are accessed directly. Because of the EJB specifica-
tion’s declarative transaction management capabilities, a developer may assume
that the following code snippet would modify a Person entity bean instance in a
single atomic unit of work.

 public void updatePerson (Object personKey, String phone, String fax)
 {
 InitialContext context = new InitialContext ();
 Object personHomeOb = (PersonHome) context.lookup ("Person");
 PersonHome personHome = (PersonHome)
 PortableRemoteObject.narrow (personHomeOb, PersonHome.class);

 Person person = personHome.findByPrimaryKey (personKey);

 person.setPhone (phone); Update the phone number
 person.setFax (fax);
 }

Each method involves a
round-trip back to the bean

Listing 7.2 Nontransactional update of an entity bean

Look up
 a Person

entity beanUpdate the fax number
in a separate transaction

218 CHAPTER 7

Bitter entities
getFirstName

getLastName

getPhone

getFax

getEmail

getHome

Client
Person
Home

Person

Loop
for n

records

Figure 7.2 This object interaction diagram shows the interactions between the client and the
server. The total number of round-trips is the number of fields multiplied by the number of persistent
records. The problem is worse than this OID indicates because the get calls are within a tight loop.
We can reduce the overhead to a single network round-trip.

Antipattern: Face Off 219
In the nontransactional update in listing 7.2, the setPhone() and setFax() meth-
ods are both transactional, but these two methods will be invoked in different
transactions. Consequently, the phone number may be incorrectly updated,
leaving the entity bean in a transactionally inconsistent state. If the client crashes
between this operation and the next one, or if the fax number modification fails,
then the phone number will be updated, but the fax number will not. This prob-
lem is a different consequence of the Face Off antipattern, although the solutions
to both are similar.

7.2.3 Solution: A Session Façade

Fortunately, the solution to both the round-tripping and transactional conse-
quences is simple and effective: a session façade. Let’s discuss the impact of a ses-
sion façade on round-tripping first.

 Obviously, we can improve the initial network cost of 5n+1 network round-
trips. Looking at the client code we can see that we need to make at least one net-
work round-trip—to obtain the list of Person objects to process—but we should
also be able to eliminate the 5n round-trips altogether. We must simply transmit
all the data that we intend to process the first time that we access the bean.
Though our application receives the same number of bytes, the overhead that we
eliminate will be enormous.

 We’ll use a Session Façade between the client and the entity bean to consoli-
date our round-trips. We’ll use a DTO, also called Person, to move data from our
façade. DTOs are simple objects used to organize and hold the data for all Person
records that will be retrieved. Our façade contains a method that returns DTOs.
We can create these DTOs on the session bean side by copying data from the Per-
son entity beans to a DTO that we’ll then return to the client (listing 7.3).

InitialContext context = new InitialContext ();
Object pmHomeOb = (PersonManagerHome)
 context.lookup("PersonManager");
PersonManagerHome personManagerHome = (PersonManagerHome)
 PortableRemoteObject.narrow (pmHomeOb, PersonManagerHome.class);

Collection people = (Collection) personManagerHome.findAll ();

Person person;

Listing 7.3 Our improved test client makes a single round-trip to the EJB container

Obtain the session
bean façade home

interface

 Get a list of
all Person objects

220 CHAPTER 7

Bitter entities
for (Iterator iter = people.iterator (); iter.hasNext ();)
{
 person = (Person) iter.next ();
 System.out.println ("Person: ");
 System.out.println (" first name: " + person.getFirstName ());
 System.out.println (" last name: " + person.getLastName ());
 System.out.println (" phone: " + person.getPhone ());
 System.out.println (" fax: " + person.getFax ());
 System.out.println (" email: " + person.getEmail ());
}

Our revised client code looks just the same, except that we look up a session bean,
not an entity bean, in JNDI. The bean code is a bit more complex in this situation
because we must introduce a session bean and a Person data transfer class in addi-
tion to the Person entity bean. Figure 7.3 shows the impact of our improvements.
Ironically, we’ve added a layer, but we’ve improved the performance significantly.
The Session Façade consolidates 5n + 1 round-trips to a single round-trip. In prac-
tice, a façade can make an even more dramatic impact than we’ve shown, because
a single façade can also package composite objects, such as a person, an address,
and other necessary items for an invoice.

7.2.4 Using a façade for transactional integrity

Putting a session bean façade in front of the entity bean also resolves our transac-
tional integrity issue. In a façade scenario, the client code will invoke a single ses-
sion bean method. Provided that this session bean method has the correct
transaction mode, the container will set up a transaction for this session bean
method and all the entity bean methods involved in the update (setPhone() and
setFax() in listing 7.2) will participate in this single transaction.

 Alternately, this problem can be addressed by manually manipulating the con-
tainer’s UserTransaction from the client code to ensure that the transaction
begins before any changes take place and commits after all changes are complete.

 For a more complete discussion of this transactional aspect of the Face Off
antipattern, see chapter 8.

7.2.5 Using local interfaces

The addition of local bean interfaces in the EJB 2.0 specification provides EJB
developers with the tools to develop entity bean models immune to the Face Off
antipattern. A bean’s local interface can be used only within a single application
server. Remote clients cannot misuse beans with a local interface.

 Person is a DTO, not an EJB

 The code in the loop is local

Antipattern: Face Off 221
getFirst
Name

getLast
Name

getPhone

getFax

getEmail

getHome

Client
Person

Manager
Home

Person
Person

Manager

getPeople

Loop
for n

records

Figure 7.3 Using a Session Façade adds one layer, but eliminates the round-tripping problem in
figure 7.2. The bold line indicates distributed communications. The façade in this case reduces the total
round trips from 5n + 1 (where 1 is the number of person objects) to 1.

222 CHAPTER 7

Bitter entities
 To take things a step further, a bean can have a local interface, a remote inter-
face, or both. So you can create a bean that is accessible solely to other beans
deployed to the same container to provide remote access to only a subset of the
bean methods. By doing so, you can prevent others from remotely invoking fine-
grained methods, instead requiring that fine-grained data access be performed
through the appropriate session bean facades.

 So, you can see that the session bean façade pattern can eliminate both the
performance and transaction problems that can crop up if a client accesses beans
in an overly fine-grained manner. This commonly occurs when using entity beans
to implement a domain object model, because an object model is typically fine-
grained. However, this antipattern can occur in other situations as well—in fact, it
can occur even if you exclusively use session beans.

 With clever use of local interfaces, you can ensure that others cannot abuse
your entity beans. This is the ideal solution to the Face Off antipattern, as it allows
you to delegate the antipattern enforcement to the compiler. By withholding
remote access to fine-grained methods, you force client code to use your entity
beans in the correct manner.

7.3 Antipattern: Ham Sandwich; Hold the Ham

As soon as she’s in the air, she senses that she’s in trouble. She lands awkwardly. Her
inside edge catches and throws the rear of her right ski violently to the left. Before the
binding releases, she hears the snap, and the damage is done. She can walk without
pain, but she knows the knee will need to be surgically repaired. Only now does she
see how she took on too much mountain, too aggressively, and too soon.

That a persistence framework should leave most of the persistence coding to the
bean developer seems incredible. Yet that’s the way that most of us used EJB 1.x, if
we used it at all—a tough endeavor. For many of us, like my sister’s experience in
Park City, undertaking persistence coding can be biting off too much. The choice
between BMP and CMP when implementing an entity bean is an important one—
from the standpoint of development time, maintenance simplicity, and the ability
to leverage the persistence work done by the container vendor. The persistence
choice should be a simple one, eased by the selection guideline presented in sec-
tion 7.3.1. However, because of changes made between the 1.x and 2.x versions of
the EJB specification, the waters are a bit muddied.

Antipattern: Ham Sandwich; Hold the Ham 223
7.3.1 The choice between BMP and CMP

Entity beans were originally designed with the assumption that the entity bean
developer would perform the work of moving an entity’s persistent data from its
backing store into the container. So the EJB specification team focused on setting
up the contracts for BMP to ensure that developers would have a sufficient set of
APIs for performing this translation. In the original specification, CMP was a small
addition that allowed developers to transfer the process of mapping persistent
data into a backing store to the container. The original CMP added little real value
to the entity bean, aside from simplifying the process of storing and retrieving the
persistent fields in an entity bean.

 Additionally, using CMP forced entity bean developers to live with the generally
immature object-relational (OR) mapping capabilities offered by container ven-
dors. So, in general, the industry shied away from CMP, using bean-managed per-
sistence in conjunction with an OR mapping tool or custom SQL. When choosing
between BMP and CMP in the 1.x specification, BMP was usually the better choice.

 With the advent of the EJB 2.0 specification, CMP underwent a dramatic rede-
sign. Some weaknesses in the original specification have been addressed, and the
CMP specification has been greatly expanded. Given these improvements, the situ-
ation has reversed: It is now better to stay away from bean-managed persistence
and, instead, take advantage of the power of the CMP 2.0 specification, when spe-
cial requirements don’t force you to choose otherwise. This recent change has
made the inappropriate use of BMP more common than one would expect since
developers learned that CMP with EJB 1.x caused more problems than it solved
and that impression has endured despite the specification changes. Let’s take a
look at some of those problems.

■ BMP complicates database portability BMP requires that the entity bean
developer communicate directly with the data store. Often, developers
choose to implement the marshaling of data between a data store and an
entity bean by using JDBC to talk directly to an SQL database. In this situa-
tion, portability among different SQL databases is unlikely because SQL dia-
lects vary greatly among database vendors.

■ BMP does not typically match the performance of container-managed
persistence BMP entity beans often suffer from performance problems
when loading and storing data. BMP implementations frequently include all
data for an entity bean when loading the object. This is known as eager load-
ing. The opposite—loading data on an as-needed basis—is known as lazy
loading. You often want to eager-load a commonly used subset of the

224 CHAPTER 7

Bitter entities
persistent data and lazy-load the other fields. Similarly, BMP implementa-
tions usually flush all data to the data store on commit, instead of simply
writing the fields that have actually changed. This practice can lead to waste-
ful data transfer, reindexing of unchanged data, and even to spurious exe-
cution of database triggers. This problem can become significant if your
entity beans have many fields or have a few large fields, such as image or
document data.

■ CMP 2.x is much less restrictive than CMP 1.x The original EJB specifica-
tion required that all persistent fields be declared as publicly accessible
fields in a CMP entity bean. Given this restriction, the container had to load
all data when the entity bean was first loaded, and either write all data back
to the data store on commit or perform costly (from both a memory and a
CPU cycle standpoint) state comparisons to detect fields that changed at
commit. So CMP 1.x entity beans and common implementations of BMP
entity beans shared the same problem—eager-loading data and flushing too
much data on commit.

■ BMP cannot express relations among beans BMP entity beans are isolated
from other entity beans at the container layer. That is, the EJB container
does not have a concept of relationships between BMP entity beans. So if
you traverse any relationships, you’ve got to do it in application logic. With
BMP, you must manually establish these relations by writing infrastructure
code—a practice that the EJB specification is specifically supposed to isolate
from the business logic tier. At best, this means that you must undergo the
tedium of manually performing the appropriate SQL to maintain these rela-
tions. At worst, you might decide not to write this tedious process, either
because of fears of introducing bugs or maintenance issues, or because of
project time constraints. In addition, compromises in the project design
might be made.

■ Loading multiple results according to an application-defined filter is a
tragic flaw for BMP beans The only way to load an entity bean is to use a
finder method. If you want to write a finder method that returns all Person
entity beans whose last name starts with the letter J, you must execute the
appropriate SQL query to obtain the primary keys of all matching rows, and
then return from the finder method a list of all primary key objects for the
entity beans matching the query. The container will then look up these
objects by primary key. If the objects aren’t in cache, the container will go
back to the database to fetch the data corresponding to the returned

Antipattern: Ham Sandwich; Hold the Ham 225
primary key. This conclusion is disastrous since each finder method execu-
tion may actually involve a variable amount of SQL queries—one to find the
primary keys and another for each primary key returned by the SQL state-
ment. However, when writing containers, developers often shy away from
the IN keyword (which efficiently tests for membership), instead issuing an
individual SQL statement for each entity bean! So loading a set of 100
objects may result in upwards of 101 SQL statements.

■ BMP does not offer a standardized query syntax The only way for client
code to look up a set of entity bean instances is to execute a finder method
on that entity bean’s home interface. For BMP entity beans, these finder
methods must be hand-coded by the bean developer to return the appropri-
ate data. This practice is limiting in that queries are fixed at compile time
and are not defined in any standardized manner, making maintenance and
future development work more difficult. Further, BMP finder methods do
not provide any facilities for caching query results. So, unless the bean
developer takes special steps to cache query results—which is a complex
problem at best—each finder method will result in a query against the data-
base. Each finder is created, regardless of whether or not any data has
changed in the database since the query was last run. Additionally, when a
BMP entity bean accesses data in a relational database, we run into portabil-
ity complications again because different relational databases have different
variations of SQL.

■ BMP is harder The strongest argument for CMP is that BMP is harder.
When you can, let the computer do the work.

7.3.2 Solution: Choose CMP when possible

It seems too obvious: you should always make decisions based on the best possible
current information. However, like many antipatterns, this one is rooted deeply in
history. Differences between the 1.x version of CMP and the current version are so
significant because they have caused a complete change of course—CMP now has
significant advantages over BMP, unlike previous versions. A number of weak-
nesses remain in the CMP specification. We will table these issues for now and
address them in greater depth in chapter 8.

226 CHAPTER 7

Bitter entities
Table 7.1 shows a few good reasons to choose between CMP and BMP. In general,
you should use BMP only if you have requirements that CMP can’t handle. For
example, if you have a data store that CMP does not support, then you may want to
consider BMP. If you find yourself in this situation, you may also want to consider
developing a CMP plug-in for your application. The main application-server ven-
dors publish proprietary APIs for developing such plug-ins. The downside here is
that you must write a plug-in for each application server you want to use, limiting
portability among application servers. On the other hand, you will be able to take
advantage of the advanced facilities available only in the CMP specification, such
as EJB QL support and container-managed relationships.

 Let’s look closer at the flip side of persistence, and see how CMP solves some of
the problems we mentioned earlier.

■ CMP improves portability CMP resolves the portability issue by delegating
the responsibility for database communication to the container. So, the con-
tainer must ensure that it supports all idiosyncrasies of SQL’s different dia-
lects. This means that beans written and tested against an Oracle database
stand a fighting chance of working with a SQL Server or DB2 database with
absolutely no bean code changes.

■ Current implementations of CMP have better performance than BMP The
EJB 2.0 CMP specification rectifies some earlier performance concerns by
stating that CMP entity beans must declare abstract bean-like setters and get-
ters for each persistent field to be managed by the CMP implementation.
This is in contrast to the public field approach in the EJB 1 CMP specifica-
tion. The EJB container is now responsible for creating a concrete imple-
mentation of the abstract entity bean class. This implementation must

Table 7.1 Choosing between CMP and BMP

Choose CMP if... Choose BMP if...

● You want to minimize the hassle of storing per-
sistent entity data in a database.

● You want to have portability among different rela-
tional databases.

● You want to be able to perform EJB Query Lan-
guage (EJB QL) queries to find entity beans.

● You plan on taking advantage of container-man-
aged relationships, either for performance rea-
sons or for object model design reasons.

● You need your entity beans to access data in
esoteric back-ends not supported by CMP ven-
dors.

● You need considerable control over the loading
and storing of data not provided by the CMP
specification. Be sure to review the capabilities
of your application server before deciding that
you need this type of control, as application serv-
ers using CMP 2 can take care of many common
needs such as delayed loading.

Antipattern: Ham Sandwich; Hold the Ham 227
include implementations of these abstract accessor methods. These vendor-
created methods have the opportunity to perform sophisticated fetch algo-
rithms, such as lazy loading of certain fields, adaptive prefetching based on
runtime usage statistics, or simpler detection of data changed in a transac-
tion. By using the CMP 2.0 specification, we can easily avoid the perfor-
mance problems commonly found in BMP entity beans implementations.

■ CMR enable efficient relationship management in the database and con-
tainer CMP entity beans can define CMR in much the same way as they
declare simple container-managed fields. This allows a CMP entity bean to
delegate relation traversal to the container. This greatly simplifies the pro-
cess of defining relations among entity beans, reducing the likelihood of
errors by eliminating the infrastructure code involved in relation traversal
and trimming the amount of time needed to code, test, and maintain these
relations. Also, this simplification makes relationships between entity beans
available to bean developers who otherwise would avoid the complexity.

■ CMP has better performance through better key management CMP resolves
the n + 1 performance problem because the container is responsible for
both executing the full query and creating the findByPrimaryKey()
method. So, the container has the opportunity to perform database queries
that return multiple results efficiently, only executing a single SQL query for
a given EJB QL statement.

■ EJB QL provides a standard query language The CMP specification defines
EJB QL as a standardized declarative query language that can be used to
find objects that match a given filter. A bean developer needs only to define
an abstract finder method and a corresponding EJB QL definition in the
bean’s deployment descriptor. The container then creates a concrete imple-
mentation of the finder method that translates the EJB QL definition to an
SQL query. This improves code readability and maintenance by providing a
standard that everyone on a team understands and uses, and improves the
portability of queries. From a performance standpoint, when using EJB QL,
the container has the opportunity to do advanced caching of queries,
potentially resulting in significant performance improvements. Using a
cache for queries when possible will make your application faster, because it
will spend less time communicating with the database, and more scalable,
because the overall load on the database will be lessened.

For many reasons, the case for CMP is now convincing. Perhaps the most compel-
ling reason to use CMP is a much simpler one: CMP code is easier to write, easier

228 CHAPTER 7

Bitter entities
to manage, and easier to maintain. It decouples your application code from the
database; you don’t have to specify the individual table and field names in your
application code.

7.4 Antipattern: Application Joins

Enterprise applications often involve relationships between different entity beans.
For example, a system might have a one-to-many relation between Person and
Address—a Person entity can relate to multiple Address entities. When you persist
those beans to a data store, you can let the database or the application manage
the relationship. The application usually can’t process the relationship nearly as
fast as the database.

 A relational database can evaluate joins in concise, efficient terms, but we
often implement them in the application tier instead, leading to poor perfor-
mance. Java is simply not optimized for data lookups. Performing a join in Java
kills any possibility of database tuning and indexing that might otherwise acceler-
ate the query. When a relational database processes a join, it uses sophisticated
technology to optimize query access plans and, consequently, minimize the num-
ber of direct data comparisons.

7.4.1 Solution: Delegate joins to the database

The problem caused by application joins can often be addressed by pushing the
joining operations down to the database tier. For example, if you want to find all
Person beans who have a certain type of account, you don’t want to load all
instances into memory and loop through, doing a string comparison on each
instance’s account’s type. A far better approach would be to translate the join into
SQL (or whatever underlying query language your database supports) and let the
database do the filtering work.

 When you see this antipattern, it’s usually related to the old EJB 1.x specifica-
tion, which did not support CMR. Many legacy EJB programs use these techniques,
and many programmers still do application joins, often by habit.

 The CMR and EJB QL support added to CMP entity beans has done wonders to
reduce the occurrence of application joins. These new additions to the specifica-
tion provide bean developers with higher-level tools for creating joins, so the
developer can rely on the EJB container to create efficient SQL to perform the
necessary, low-level database work.

Antipattern: Application Joins 229
7.4.2 Common examples of application joins

Some situations that commonly lead to application joins are obvious and simple to
avoid; others like those listed below are subtler and sometimes not possible to resolve.

■ Application-defined relation in CMP entity bean Whenever possible, appli-
cations that use CMP should express any relations between entity beans in
terms of a CMR field. By doing this, the entity bean has maximum opportu-
nity to take advantage of any optimizations in the container to cache rela-
tions or otherwise ensure optimal materialization of the relationship.

■ Cross-data-store relation One major service provided by an EJB container
is the capability to execute transactions that span multiple data stores. This
means that, for example, a custom inventory system can perform transac-
tions with a third-party procurement system or with a sales database.

 However, the cross-data-store transactions are often limited—a database
cannot usually create relations to data in a different data store. So while you
can perform transactions that span multiple databases, you typically cannot
create CMR that span databases. Therefore, you must create and maintain
such relations in the application logic of the bean. This type of an applica-
tion join is usually unavoidable. In this situation, the performance hits asso-
ciated with application joins must be accepted, because no lower level exists
that can be used to express this relation.

 When creating cross-data-store relations, bear in mind that your applica-
tion must handle the relationship properly. Consider both lazy-load of the
relation, and caching the relation information, if possible, to minimize the
frequency of joins. Eager loading is typically only helpful if, by loading mul-
tiple parts of an object at the same time, you can achieve efficiencies of
scale. Because relations between different data stores are typically handled
on a one-off basis, usually no advantage exists to eager loading. Further,
eager loading will impose a performance penalty if an object is loaded when
the eager-loading relation is not necessary.

■ BMP relation You must implement relations between BMP entity beans in
the application logic; absolutely no mechanism exists to delegate this work
to the container. Relations among BMP entity beans behave in the same way
as cross-data-store relations because it’s unlikely that the database can be
used to help out with these types of relations.

 As with cross-data-store relations, caching and lazy loading of BMP rela-
tions can significantly help performance issues. Better yet, migrate the BMP
entity bean to use CMP, if possible.

230 CHAPTER 7

Bitter entities
This antipattern is trivial, but appears broadly in EJB applications, even on EJB 2.x
application servers. We mention it here because it’s so prominent. Next, we’ll
examine a similar, but far more subtle, antipattern—application filters.

7.5 Antipattern: Application Filters

A filter, in the relational language SQL, is the WHERE clause. Like joins, filters
belong on the database when it’s possible to put them there. Databases process
filters many times faster than applications for several reasons. First, applications
that use their own filters instead of database filters retrieve more rows from a data-
base than those that don’t. Second, relational databases are optimized to filter,
through features like indices and specialized optimizers. For example, an
accounting system might retrieve a list of all PurchaseOrder objects that have not
cleared and search that list for other criteria. Some application filters will be easy
to avoid. Others are much more subtle. In the next section, we’ll look at several
different types of application filters.

7.5.1 Understanding the types of application filters

Object-oriented programming encourages implementation hiding and layered
programming. Blissful ignorance makes for cleaner code, but also fertile ground
for antipatterns. Our desire to produce elegant, layered software can cause us to
produce beautiful code that runs like a crippled sloth. As a rule, filters belong in
the database. Let’s take a detailed look at the different types of filters that you’re
likely to encounter. Some, you can work around. In other cases, you’ll just have to
bite the performance bullet.

Dynamic relations.
Often, Java developers will attempt to create a relation between persistent objects
that is conditional on a runtime parameter. For example, consider a system that
has a one-to-many relation between Person and ProductOrder. You can express it
in UML, as we have done in figure 7.4.

Person ProductOrder
Figure 7.4 This UML diagram shows a one-to-many relation
between the Person and ProductOrder entity beans. This is a
relationship that might be conditional on runtime parameters, such
as whether the product has been shipped to the customer. These
types of relationships are limited for many different reasons.

Antipattern: Application Filters 231
 You might decide to parameterize this relation with information about
whether or not the ProductOrder has been shipped. In other words, you might
want to change the relation accessor method to be

public Collection getProductOrders(boolean shipped)

And you might want the values of this method to differ, depending on the bool-
ean value passed to the method.

 This is not a relation; this is a filter. Conceptually, you should store relations
between classes in a Collection, without any additional runtime information. If
the application dictates that a method such as Person.getProductOrders (boolean
shipped) is necessary, then you should implement a method to do the filtering
and document it as an application filter. Better yet, you should use two separate
relations—shippedProductOrders and unshippedProductOrders.

 Even a well-written dynamic relation usually circumvents any caching that an
EJB container can do because the conditional processing occurs in the application
code domain. Ideally, the application creates the dynamic relation by performing
an SQL query that passes the filters through to the relational database as SQL.
More often, however, dynamic relations run as an in-memory application filter
that operates on the complete relation. So, in our example, the check to see if the
product order has shipped might be executed in Java. In that case, the database
returns the entire collection of product orders placed by a given person, even if
only five of the product orders in question matched the condition. That’s far too
inefficient.

Dynamic queries
Dynamic queries are queries defined at runtime that cannot be known in
advance. For example, any application that allows a user to search for data by
combining boolean filters into a boolean expression will generate SQL that con-
tains a variable number of conditions in the WHERE clause, each joined together by
either AND or OR operators. Static SQL queries can use parameterization to allow
for runtime modifications, but the query’s structure itself cannot be modified.
Dynamic queries must be created at runtime. These types of queries are problem-
atic in EJB because EJB QL queries must be defined at deploy time. You cannot
assemble an EJB QL statement that satisfies the structural requirements of a
dynamic query.

 You have two possible workarounds at your disposal to allow dynamic querying
of CMP entity beans. On the one hand, you can dynamically create an SQL query
to determine the primary keys of the entity beans that match the filter. This is not

232 CHAPTER 7

Bitter entities
ideal because your system will be polluted with SQL statements, which, as dis-
cussed earlier, can lead to portability problems, both between different relational
database vendors and with nonrelational databases. The other workaround is to
perform part or all query filtering in memory. This approach can be prohibitively
slow, but avoids the portability issues in the previous solution.

 Which solution is better depends on the specifics of your application. In partic-
ular, you must consider the portability requirements, the performance require-
ments, and the expected data size of the collections to be filtered.

Loop filters
When looping over a data set, either in a for or while loop, or in a recursive con-
struct, programmers will often perform conditional checking and may skip data
entries that do not match given constraints. These types of conditional checks can
evolve frequently into the functional equivalent of a dynamic relation or dynamic
query. Continuing the example, you might be working on an application that
prints all purchase orders for a given customer and decide that you’d like to add
the capability of printing only those purchase orders that have not yet been
shipped. This conditional check might be put around the code that prints the
order (listing 7.4).

public void printPurchaseOrders (Person person, boolean onlyUnshipped)
{
 ProductOrder po;
 for (Iterator iter = person.getProductOrders().iterator ();
 iter.hasNext();)
 {
 po = (ProductOrder) iter.next ();
 if (onlyUnshipped && !po.isShipped ())
 print (po);
 }

When working on an existing project, beware of introducing application filters
this way. These problems are hard to spot unless you are looking for them,
because no performance degradation exists within the system, as such. Upon add-
ing the if condition in the for loop, the algorithm will run in more or less the
same time (depending on how slow the print method is) but will do considerably
less work. Look at it this way: If the print method is fast, it may print out zero pur-
chase orders, but it will still take the same amount of time to execute as if it had

Listing 7.4 Dynamic filter hidden in loop

Loop over each ProductOrder

Print only those that have
not yet been shipped. This
is our filter!

Antipattern: Rusty Keys 233
printed all the purchase orders. So, unless your project’s unit tests do perfor-
mance checking (see chapter 9 for details) and you modify that performance test
to reflect the fact that the new method should run faster, this inefficiency could
easily make it into a production system.

 The antipatterns discussed here are predominantly relevant only for entity
beans that implement a persistent object model. In the next sections, we’ll intro-
duce two common antipatterns that apply to all entity beans, regardless of how the
entity bean is used. The antipatterns can occur in entity beans that implement an
object model and in entity beans that are more traditional distributed components.

7.6 Antipattern: Rusty Keys

When a seasoned database developer is brought onto an EJB project, her initial
reactions can be absolutely priceless. EJB projects written by developers with no
database experience will often do things in exactly the wrong way, from a database
standpoint. You saw hints of this above in the application joins and filters antipat-
terns, where the database’s power was not leveraged when it could have been.
However, the most offensive database abuse commonly seen in an EJB project is
the Rusty Keys antipattern. This antipattern is second only to the Face Off antipat-
tern in terms of the damage it is likely to do. Unfortunately, it is also seldom rec-
ognized and, therefore, a more pervasive antipattern than the Face Off
antipattern. The Rusty Keys antipattern is easy to identify—you need look no fur-
ther than your entity beans’ primary keys. If your primary key is not short, then
you’ve got a big problem.

 At the most basic level, entity beans are about persistent data. An entity bean
differs from a session bean in that some representation of the entity bean persists
over time, regardless of the application server’s state. Typically, this data is stored
in a relational database. Therefore, when designing an entity bean, all the power
and restrictions of relational databases must be taken into consideration. The fun-
damental rule of databases—so fundamental that it usually goes without saying—
is that the primary key should be as short as possible. Many other important rules
exist in the relational database world, but they tend to be guidelines rather than
rules, and many of them actually conflict with each other. But any database expert
knows that primary keys must be short.

 A primary key is a unique identifier of a row in a table. As such, it is used by a
database whenever any operation is performed on a given row. A Relational Data-
base Management System (RDBMS) must be able to do a handful of things
extremely quickly. Foremost of these quick tasks is the join. RDBMSs are heavily

234 CHAPTER 7

Bitter entities
dependent on indices as the fundamental accelerators. Let’s look at a few places
where a database typically uses primary key information:

■ In the simplest case, the primary key is used to select data. To do this, a data-
base must compare a requested primary key value to the primary keys in a
table. This comparison is typically implemented using either a hashing algo-
rithm or tree, depending on index type, to improve search performance. A
longer primary key will require more computation to hash or compare than
a shorter primary key.

■ Performance optimizations for common joins use knowledge about rela-
tions between foreign keys and primary keys to build fast lookup tables.
Like most other types of data, RDBMSs cache index fields to boost perfor-
mance. When your key fields are too long, they chew up the caching space,
called index buffers, with too few entries.

■ Databases usually allow indexing on non-primary-key data in a table to
improve the performance of searching for rows that match arbitrary col-
umn filters. This task might involve simple indexing of a numeric column
or sophisticated text processing of large text columns. Regardless, the index
will again store information about which primary keys match which filter or
search parameters.

The speed of all these types of operations is dependent on primary key size. Short
primary keys will result in faster processing; longer primary keys will require more
CPU cycles to perform comparisons and lookups. More importantly, because pri-
mary key information plays such an important role in database architectures, this
data is often stored in special areas of memory, called index or join buffers. The
length of the primary key data will dictate how big this storage space must be and
how much data it can hold. Because many primary keys are implemented as a key
field, the information in a key can be repeated many times in the index buffer.

7.6.1 Solution: shorten your primary key

Fortunately, a simple fix to this antipattern exists. Simply replace long primary
keys with shorter ones. If your application requires too many different columns—
or exceptionally long columns—for a primary key, then you should think about
creating an artificial primary key instead. Most persistence strategies use this
approach. If you feel that you cannot reduce the size of your primary key because,
for example, you are using a Social Security number to identify employee records,
then consider creating a shorter surrogate key. This type of key has no business
value; it is used strictly to provide a short, efficient key for database applications.

Antipattern: Revolving Doors 235
 We’ve mentioned the term short a couple of times. This begs the question: how
long is too long? Unfortunately, no clear-cut answer exists, but table 7.2 offers a
few guidelines. The ideal size of your primary key depends on several factors,
including the amount of data you anticipate putting into the table and the partic-
ulars of your database vendor. In general, 4 bytes (or 32 bits) is a good starting
place. A 32-bit primary key provides room for a considerable number of records
but is short enough to allow for fast comparisons in most database architectures.
In fact, going below 32 bits is often not that helpful. Most CPUs these days are
designed with 32-bit registers, meaning that many CPU instructions will take the
same amount of time to process 10-bit values as it would take to process 32-bit val-
ues. Of course, this processing time also depends quite a bit on the database, the
hardware, and the operating system you are using. Bear in mind that the Java long
type is a 64-bit type, so 32 bits is not sufficient if you plan on using a long in Java.

Strings are perhaps the most common long primary key type seen in entity beans.
This antipattern has been propagated by the masses of sample code that uses
clever-looking item code or a purchase order number such as 32-XZ8G or OGN-
5703810. These values may look great in sample code, but programmers have a
nasty habit of reusing sample code, so these string-based primary keys have found
their ways into all sorts of entity beans.

 In addition, many algorithms for persistence frameworks use a concept called a
global unique identifier (GUID). If you generate these algorithms with a combina-
tion of time stamps and character keys, then your primary key is probably too long.

7.7 Antipattern: Revolving Doors

One important consideration when working with potentially multithreaded appli-
cations is re-entrancy. A re-entrant algorithm is one in which the same code oper-
ates on the same data simultaneously in multiple threads. More specifically, an EJB

Table 7.2 Guidelines for the creation of primary keys

Acceptable (small) primary key types Unacceptable (big) primary key types

Java SQL Java SQL

int
long
short
byte
char

NUMERIC
INT
TINYINT
BIGINT
CHAR(1)

String
Date
Serialized object

VARCHAR(1024)
TIMESTAMP
BLOB

236 CHAPTER 7

Bitter entities
application is re-entrant if multiple clients can simultaneously access the same
bean in the same transactional context.

 This simultaneous access raises many problems with thread safety and transac-
tion isolation. Therefore, the EJB specification prohibits re-entrant behavior, spec-
ifying that it is illegal for multiple clients to perform simultaneous operations on a
given bean in a given transactional context. Unfortunately, this prohibition can
also impose inconvenient limitations on business logic.

 If your business algorithms involve multiple tightly coupled objects acting in
concert to perform a calculation, it is likely that you will run into re-entrancy
problems when implementing these algorithms with entity beans. A side effect of
this prohibition is that it is forbidden for bean A to invoke a method in bean B,
which, in turn, invokes a method in bean A. This behavior is not semantically re-
entrant—that is, from the client perspective, all EJB rules were followed. However,
the container cannot possibly differentiate between this situation and true re-
entrant code. (Technically, containers could detect this situation, but it’s prohibi-
tively expensive because the various beans involved in the EJB call stack may be on
physically separate machines.)

 For session beans and message-driven beans, the container can easily uphold
this requirement—re-entrancy is simply forbidden on the grounds that it is not nec-
essary for typical session bean or message-driven bean uses. Operations on these
types of beans normally represent coarse-grained business processes. So designing
tightly coupled session beans or message-driven beans is not common practice.

 However, the situation is different for entity beans. Entity beans often repre-
sent fine-grained object models, so some amount of entity bean coupling is com-
mon. You can easily imagine a system that might use re-entrant code: Say you have
two entity beans, PurchaseOrder and LineItem. To compute the total cost of a pur-
chase order, your business logic dictates that you perform the following steps:

 PurchaseOrder.getTotalCost() invokes LineItem.getLineItemCost() for each
LineItem in the order.

 LineItem.getLineItemCost()invokes PurchaseOrder.getDiscount() to deter-
mine what, if any, discount to apply to the line item cost.

 As you can see in listing 7.5, these two seemingly innocuous steps are re-
entrant! This is analogous to our A invokes B invokes A description and is quite
commonplace in non-EJB development.

Antipattern: Revolving Doors 237
public float getTotalCost ()
{
 float price = 0;
 LineItem item;
 for (Iterator iter = getLineItems ().iterator (); iter.hasNext ();)
 {
 item = (LineItem) iter.next ();
 price += item.getLineItemCost ();
 }
}

public float getLineItemCost ()
{
 return getPrice () * (1 - getPurchaseOrder ().getDiscount ());
}

Unfortunately, no one clear-cut solution exists to this problem. Instead, two par-
tial solutions exist, each with its own associated problems.

7.7.1 Solution 1: Refactor to avoid re-entrancy

The problems in our simple purchase order example could be resolved with a lit-
tle clever refactoring. We could change the method signature for LineItem.get-
LineItemCost() to have a parameter for the discount code, thus avoiding the re-
entrancy problem altogether (listing 7.6).

public float getTotalCost ()
{
 float price = 0;
 float discount = getDiscount ();
 LineItem item;
 for (Iterator iter = getLineItems ().iterator (); iter.hasNext ();)
 {
 item = (LineItem) iter.next ();
 price += item.getLineItemCost (discount);
 }
}

public float getLineItemCost (float discount)
{
 return getPrice () * (1 - discount);
}

Listing 7.5 This code snippet from PurchaseOrder and LineItem demonstrates re-
entrant behavior

This method invokes a
method in LineItem ...

... which invokes a method
in PurchaseOrder

Listing 7.6 Code snippets from a refactored PurchaseOrder and LineItem that avoid
re-entrant behavior

This method passes
discount to LineItem...

... which no longer re-enters
PurchaseOrder

238 CHAPTER 7

Bitter entities
This refactoring solves our problem because the container will no longer detect a
possible re-entrant situation and, therefore, won’t throw any exceptions. However,
the refactoring is a bit ugly. The requirements the EJB server imposes are seemingly
arbitrary and hard to enforce on the Java language syntax—always a bad thing.

7.7.2 Solution 2: Disable the container’s re-entrancy checking

Unfortunately, running into more complex re-entrant situations is common, espe-
cially when working on an existing project, in which major refactoring might not
be an option. The EJB specification provides a mechanism to disable re-entrant
code checks for a particular entity bean, by setting the reentrant element in the
bean’s deployment descriptor to True.

 If you decide to go with strictly local interfaces, then disabling re-entrancy is a
safe workaround. However, this method instructs the container to disable re-
entrant code checking altogether, which is dangerous if you allow remote access
to your entity beans. The bean developer and the author of the client code must
ensure that no damaging re-entrant situations occur. Obviously, this is an error-
prone situation, and is thus not a path to be taken lightly. So, while this solves our
problem without forcing us to make ugly hacks or major refactorings, this solu-
tion forces us to do things in an ostrich-like stick-our-heads-in-the-sand manner—
we are fixing the problem by ignoring it and hoping that no re-entrant situations
occur in code.

7.7.3 Solution 3: Lobby the EJB specification team

What we really need is a third behavior for re-entrant applications. Hypothetically,
with sophisticated bytecode analysis, an application server could detect those
seemingly re-entrant situations that are not dangerous and flag them so that addi-
tional information is passed among application servers in these situations. This
additional information, which we discarded as inefficient, would be acceptable in
this case because it would only be communicated among the different JVMs when
potentially re-entrant situations are encountered. So we would be able to make a
compromise in terms of network efficiency when necessary. In other situations, we
could use the faster, but less flexible, option of disabling re-entrancy.

 However, specification teams tend to be relatively slow-moving bodies, and
other more significant outstanding issues remain with the EJB specification. A
change to re-entrant behavior any time in the near future seems unlikely.

Summary 239
7.8 Summary

In this chapter, we’ve examined common entity bean antipatterns easily resolvable
within the confines of the EJB specification. A few antipatterns have historical
undertones: Most EJB models now use a Session Façade because this information
is widely available, and most existing BMP applications have roots in old code or
habits formed under the EJB 1.x specifications. We looked at application joins and
filters, which are properly placed in the database. Finally, we looked at keys and
re-entrant code, as well as workarounds to both. An understanding of these anti-
patterns will help you create and maintain entity beans that take full advantage of
the EJB specification’s power.

 In the next chapter, we’ll discuss antipatterns that do not have solutions in the
EJB domain, and we’ll look at alternate technologies that can be used to resolve
these issues. The solutions presented in these two chapters will equip you with
techniques that can be used to address a wide variety of persistence needs.

240 CHAPTER 7

Bitter entities
7.9 Antipatterns in this chapter

This section covers the Face Off, Ham Sandwich; Hold the Ham, Application
Joins, Application Filters, and Rusty Keys antipatterns.

DESCRIPTION
Entity beans are accessed directly from the client using the entity
bean remote interfaces.

MOST FREQUENT SCALE
Project

REFACTORED SOLUTION NAME
Session bean façade

REFACTORED SOLUTION TYPE
 Technology

REFACTORED SOLUTION DESCRIPTION
Entity beans should be hidden behind session bean façades that
define business operations. In this solution, business logic that
needs to directly manipulate data must be deployed in the form
of session beans.

ANECDOTAL EVIDENCE
 “Our persistence framework uses CMP, so our client code access-
es entity beans in order to perform business logic.”

SYMPTOMS, CONSEQUENCES
Directly accessing entity beans from client code often leads to per-
formance penalties and unexpected transaction consequences.

FACE OFF

Antipatterns in this chapter 241

DESCRIPTION
BMP entity beans give you very little, compared to their limita-
tions and to what the container-managed persistence specifica-
tion provides.

MOST FREQUENT SCALE
Project

REFACTORED SOLUTION NAME
Full-featured persistence frameworks

REFACTORED SOLUTION TYPE
 Technology

REFACTORED SOLUTION DESCRIPTION
BMP entity beans provide woefully little support for common
object-relational persistence needs. You should use container-
managed persistence or a non-EJB persistence framework in-
stead of BMP if you are using entity beans just to access data in a
relational database.

ANECDOTAL EVIDENCE
 “BMP gives us more control over our persistence needs, so we’re
using it for all our relational database data access.”

SYMPTOMS, CONSEQUENCES
Using BMP when CMP (or a non-EJB persistence technology)
would work often results in complicated and error-prone entity
bean implementations that do not take advantage of all the
same techniques that a more complete persistence framework
would employ.

HAM SANDWICH; HOLD THE HAM

242 CHAPTER 7

Bitter entities

DESCRIPTION
The association between two different database entities represent-
ed by entity beans is made in application logic, rather than by us-
ing container-managed relationships.

MOST FREQUENT SCALE
Project

REFACTORED SOLUTION NAME
Container-managed relationships

REFACTORED SOLUTION TYPE
 Technology

REFACTORED SOLUTION DESCRIPTION
The CMP specification provides the ability to model relationships
between entities in such a way that the container can take care of
maintaining the relationship. This allows the developer to deal
with relationships between entity beans, using regular Java field
traversal semantics.

ANECDOTAL EVIDENCE
 “The relation between Person and Address is established using
the Person primary key. So, I’ll put a field in Address to store the
Person primary key, and look up the associated Person object by
ID as necessary.”

SYMPTOMS, CONSEQUENCES
Application joins typically result in abysmal performance and
complicated entity bean code.

APPLICATION JOINS

Antipatterns in this chapter 243

DESCRIPTION
Commonly used data filters that are implemented in Java code

MOST FREQUENT SCALE
Project

REFACTORED SOLUTION NAME
Database queries

REFACTORED SOLUTION TYPE
Technology

REFACTORED SOLUTION DESCRIPTION
Databases are designed with querying and filtering in mind. Any
significant filtering performed in Java code should be moved to
the database tier if possible. For CMP solutions, this means that
querying should be done using EJB QL when possible.

ANECDOTAL EVIDENCE
“I only want to display users located in the commonwealth of Mas-
sachusetts, so I’ll just put in an if statement that checks the user’s
address’s state code.”

SYMPTOMS, CONSEQUENCES
Massive performance penalties caused by transmitting too much
data from the database to the JVM, and by the JVM spending lots
of time churning through the filter without taking advantage of
any database indices

APPLICATION FILTERS

244 CHAPTER 7

Bitter entities

DESCRIPTION
Poor primary key choice can cripple a database

MOST FREQUENT SCALE
Project

REFACTORED SOLUTION NAME
Well-chosen primary keys

REFACTORED SOLUTION TYPE
Technology

REFACTORED SOLUTION DESCRIPTION
Using synthetic fields (ones that have no meaning at the applica-
tion level) or well-chosen, short application fields can boost data-
base performance and help prevent data limitations or costly
refactoring down the road.

ANECDOTAL EVIDENCE
“I’m making a financial application for a U.S.-based bank. All us-
ers have a Social Security number. So, I’ll just use the string field
that stores the Social Security number as the primary key.”

SYMPTOMS, CONSEQUENCES
Often, entity bean developers decide to use application-defined
fields as primary key fields. This can lead to two types of problems.
First, compound or large single-column primary keys are typically
not as fast from a database standpoint as are single, short primary
keys. Second, the evolution of a project might cause application-
defined primary keys to no longer be unique.

RUSTY KEYS

8Bitter alternatives

This chapter contains
■ Inherent problems with entity beans
■ A survey of persistence alternatives to entity beans
■ A comparison of entity beans, JDBC, and JDO
245

246 CHAPTER 8

Bitter alternatives
We watch with some amusement as Eric drags his battered and ancient Corsica
kayak to the put-in. By contrast, Stephen, who is taking time away from Olympic
training to paddle with us, shoulders his feather-light fiberglass slalom boat down to
the river easily. The kayak is beautiful, with razor sharp edges and a nose that looks
like the point of a dagger. I glance over his shoulder at the Tellico, which is running
a little low this year, and wonder how a glass boat will hold up over the river’s pro-
truding rocks. I shrug. Surely Stephen can keep his boat and his body out of trouble.
I am sure I’ll be paddling for my life, but an Olympian should be able to handle this
class IV run with no problem. We should instead be concerned about Eric. He often
panics on rivers like this one, and we aren’t sure he’ll even remember to hang onto his
paddle—or control his bladder—when he reaches the lip of fourteen-foot Baby Falls.

Stephen controls his boat with breathtaking precision over the early eight-foot
ledges. His lines and movements are precise, but he generally watches from the bank
as we play in each microeddy or hydraulic. We line up like baby ducks and slide over
Baby Falls with ease, though Eric flips and rolls at the bottom. Next is bony Diaper
Wiper, named for the shallow muddy and rocky bottom, that dirties most well-posi-
tioned boats. Stephen slides through with ease, but we all cringe when the bottom of
his kayak crackles audibly as it scrapes over the rocks. We approach Jarrod’s Knee,
named for the broken body part of a local boater. Eric lines up and most of his boat
slips over the ledge. Then we hear a loud crunch and look up to see Eric’s stern sta-
tionary at the top of the drop, revealing the situation that every kayaker dreads the
most—the vertical pin.

8.1 Understanding entity bean alternatives

This chapter will be a little different from most others that you’ll find in Man-
ning’s Bitter books. We won’t really illustrate how to use or misuse a major EJB fea-
ture. Instead, we’ll show you why EJB entity beans should be avoided and suggest
alternatives. If you’re strongly committed to entity beans, then we invite you to
skip this chapter and move on to the next one. (You won’t be tested, and you
won’t need this information to understand the rest of the book.) If you’re open to
exploring entity bean alternatives, then read on.

 In chapter 7, we discussed antipatterns caused by common, but avoidable,
misuses of the entity bean specification. In this chapter, we will focus on prob-
lems not easily solved within the realm of EJB entity beans. To provide a clear
view of the landscape, we’ll present a simple application that supports persistent
objects with three different alternatives: EJB CMP, JDBC, and object-oriented per-
sistence frameworks. Against that backdrop, we’ll fully explore several entity

Understanding entity bean alternatives 247
bean alternatives and examine some entity bean specification weaknesses that
these alternatives can address.

 In chapter 2, we began to present a case against EJB entity beans. Let’s recall
the foundation of that case:

■ EJB entity beans are awkward and complex.

■ EJB persistence is too coarse-grained, requiring container services (with
potentially significant overhead) that most persistent objects simply do
not need.

■ EJB have critical idiosyncrasies that complicate modeling.

As discussed in chapter 2, entity beans are typically used for data persistence.
While they do provide other services—including failover, security, and transaction
awareness—these additional services are irrelevant to this discussion. We don’t
mean to imply that these services aren’t valuable. We’re simply saying the way you
use entity beans doesn’t benefit from those services. To side-step the pitfalls
unearthed in chapter 7, adept EJB developers universally wrap entity beans in
façades. Thus, the client is prevented from interacting directly with an entity
bean. The façade is then responsible for providing distribution, security, transac-
tion, and fail-over services to the client (figure 8.1). Consequently, this best prac-
tice relegates entity beans to one important job—object persistence. As such, we
should compare entity beans to other object persistence frameworks and consider
several key factors that address the problems we’ve seen with entity beans.

EJB Container

Session
Façade

Persistent
component

Container
services

Container
services

Security

Distribution

Txn
Awareness

Persistence

Figure 8.1 Security, distribution, transactional awareness, and failover are all
available to the EJB entity bean, but most clients access entity beans through a
Session Façade. For this reason, these services are irrelevant to the discussion about
the merits of EJB entity beans, for all of the most practical purposes.

248 CHAPTER 8

Bitter alternatives
 With any troubled framework, a time arrives when you have to decide whether
to apply more Band-Aids, do major surgery, or pull life support and start over. Dif-
ferent pain tolerances and motivations make this decision inherently difficult, but
here we’ll opt to start over. Rather than apply one more Band-Aid to significant
problems inherent to EJB entity beans, in this section, we’ll focus on other frame-
works. We will look at the restrictions that these alternatives impose upon us, and
we’ll assess whether—and when—they should be used in place of entity beans.
We’ll discuss the goals of each technology and then look at a brief feature compar-
ison. We will consider the following issues for each technology:

■ J2EE integration How does this technology integrate with other J2EE tech-
nologies? The JCA and JTA are two components of J2EE that are particularly
appropriate points of integration for persistence frameworks.

■ Security Security refers to support for EJB-style declarative security policy
configuration. With most modern EJB applications, a session façade pro-
vides security services.

■ Remote access Remote access refers to the EJB capability to make transpar-
ent method invocations on remote objects. As we discussed in chapters 2 and
7, support for these features in a persistence framework can actually makes
life harder by increasing communications costs and adding complexity.

■ JCA A relatively new part of the J2EE standard, JCA defines a standardized
means of configuring, managing transactions for, and connecting to a data
source. Persistence frameworks that are JCA-compliant will be considerably
easier to deploy into a J2EE container and more likely to seamlessly plug in
to a greater number of J2EE containers.

■ JTA JTA provides a standard means of interaction between a transaction
manager and transactional data sources. Persistence frameworks that sup-
port JTA can participate in distributed transactions and can synchronize
their transaction boundaries with the global transaction boundaries
declared in an EJB deployment descriptor.

■ Simplicity Developers need to ask themselves how much they will have to
learn to use a given API. A simple system is one that a user can be reasonably
expected to pick up in a short amount of time with little or no training and
adequate documentation. A complex API has a steep learning curve and
requires a good deal of experience to use effectively.

■ Java language alignment We also need to know how much a given technol-
ogy differs from the Java language specification. Whereas with simplicity, we

Using EJB persistence 249
must ask how much we have to learn, here the question is: How much do we
have to unlearn in order to use a given API? An API closely aligned with the
Java language will not require any paradigm shifts on your part; one not
closely aligned with the Java language will require you to think in different
ways than you normally would when programming in Java.

■ Deployment flexibility Does this technology place any limitations on the
deployment architecture? In particular, can applications written with this
technology be used both within and without an application server? What
types of data store decisions must be made up-front?

Although these are the major connection points into J2EE, they represent only
part of the story. This chapter also covers your ability to code efficiently and build
persistence frameworks at a good pace.

8.2 Using EJB persistence

We talked about the history of CMP and EJB in the previous two chapters. To sum-
marize, CMP uses the container to provide a coarse-grained persistence strategy.
That means that each CMP bean handles distribution, security, transactions, and
database synchronization. We’ve also shown that these services are relatively
expensive. Furthermore, we’ve seen that entity beans are EJB components and not
plain Java objects. As such, they come with a whole set of restrictions and pro-
gramming conventions. Keeping that in mind, table 8.1 illustrates how CMP entity
beans stack up against key persistence framework criteria.

 Given our space constraints, we can’t build a representative application com-
plex enough to do this comparison justice, but we can, at least, present a simple
one. We’re guessing you’ve grown bored with the often-cited EJB examples that
model the “real world.” So, in the spirit of this book, we’ll choose objects in the
adventure sport domain. Let’s look first at code that persists a kayak object mod-
eled as a CMP entity bean and provides efficient access through the customary ses-
sion façade. The façade is not doing much for us, but keep in mind that EJB will
give us distribution, security, and transactional awareness, among other services.

 First, let’s look at the three Java files needed to define the Kayak EJB. We edited
these program listings for size, removing some comments and optimizing format-
ting for space. Additionally, we’ve removed distracting functionality not strictly
necessary for creating a Kayak EJB instance, such as finder methods and DTO map-
pings. We’ll address these concepts later.

250 CHAPTER 8

Bitter alternatives
8.2.1 Implementing CMP

Fortunately, CMP 2.0 has reduced the amount of code needed to implement a CMP
entity bean. Listing 8.1 shows the implementation class for our Kayak entity EJB.

package com.bitterejb.boatshop;

import javax.ejb.*;
import java.rmi.*;

/**
 * Container-managed persistence entity bean that implements the Kayak
 * domain object.
 */
public abstract class KayakEJB implements EntityBean {

 private EntityContext context = null;

 public abstract Long getId();
 public abstract void setId(Long id);
 public abstract boolean getIsRented();
 public abstract void setIsRented(boolean rented);
 public abstract String getRenter();
 public abstract void setRenter(String renter);
 public abstract String getLocation();

Table 8.1 Evaluation of CMP entity beans

CMP entity beans

J2EE integration—Security Yes

J2EE integration—Remote
access (to entity logic)

Yes

J2EE integration—JTA Yes

J2EE integration—JCA Not applicable—the underlying data store to which the data is persisted
may be JCA-compliant

Simplicity Very difficult to learn with many pitfalls

Java language alignment Many Java language features, such as inheritance and pass-by-refer-
ence, are not supported or are treated differently
Some language features can be emulated at the application level

Deployment flexibility Requires an EJB container
Can be used with many types of data stores, including RDBMS and
OODBMS

Listing 8.1 KayakEJB.java

Persistent
attributes

Using EJB persistence 251
 public abstract void setLocation(String location);
 public abstract int getCapacity();
 public abstract void setCapacity(int cap);
 public abstract boolean getHasRudder();
 public abstract void setHasRudder(boolean rudder);

 public Kayak toDataTransferObject () { A DTO controls communication costs
 Kayak k = new Kayak ();
 k.setId (getId ());
 k.setIsRented (getIsRented ());
 k.setRenter (getRenter ());
 k.setLocation (getLocation ());
 k.setCapacity (getCapacity ());
 k.setHasRudder (getHasRudder ());
 return k;
 }

 public Object ejbCreate(Long id, String location,
 int cap, boolean rudder)
 throws CreateException {

 setId(id);
 setIsRented(false);
 setRenter(null);
 setLocation(location);
 setCapacity(cap);
 setHasRudder(rudder);
 return null;
 }

 public void ejbPostCreate(Long id, String location, int cap,
 boolean rudder)
 throws CreateException { }

 public void setEntityContext(EntityContext c) {
 context = c;
 }

 public void unsetEntityContext() {
 context = null;
 }

 public void ejbRemove() throws RemoveException { }
 public void ejbActivate() { }
 public void ejbPassivate() { }
 public void ejbStore() { }
 public void ejbLoad() { }
}

While the KayakEJB class is fairly simple, it does not look much like a POJO—a
plain ol’ Java object. The first two annotations highlight all of listing 8.1’s

Persistent
attributes

Constructor
handles only
initialization

Remaining methods
manage the EJB

252 CHAPTER 8

Bitter alternatives
interesting semantics. The rest of the code merely appeases the EJB container,
which means we’re carrying around a whole lot of baggage. To persist this simple
business object, you’re forced to learn to build and access EJB entities efficiently,
using a relatively complex framework. You’re also well advised to understand the
life cycle of the EJB and the semantics of the container in which it lives.

 We should note, too, that much of this code could be automatically gener-
ated, but that’s not the point. The inherent complexity still has a cost—a devel-
oper still must understand, maintain, and possibly debug the code. For a class
this simple, that process is not too much to ask, so we’ll move on. However, keep
in mind that this complexity can erode productivity as the size of the application
increases over time.

 Next on our agenda is the local interface. Using this interface, the session
façade can directly access a KayakEJB bean instance within the same JVM.
Listing 8.2 shows the local interface to our Kayak entity EJB.

KayakLocal.java
package com.bitterejb.boatshop;

import javax.ejb.*;

/**
 * Local interface to the Kayak EJB.
 */
public interface KayakLocal extends EJBLocalObject {

 public abstract Long getId();
 public abstract boolean getIsRented();
 public abstract void setIsRented(boolean rented);
 public abstract String getRenter();
 public abstract void setRenter(String renter);
 public abstract String getLocation();
 public abstract void setLocation(String location);
 public abstract int getCapacity();
 public abstract void setCapacity(int cap);
 public abstract boolean getHasRudder();
 public abstract void setHasRudder(boolean rudder);
 public abstract Kayak toDataTransferObject();
}

The local interface is simple enough. We just define the interface that we’ll use to
access the individual bean—an inconvenience, but again, automating the inter-
face code generation is relatively easy.

Listing 8.2 KayakLocal

Using EJB persistence 253
 Moving on, let’s take a look at the KayakLocalHome interface. Now, we start to
layer on complexity. We need to understand a little more about how the EJB con-
tainer manages entity bean instances. In this case, the home object allows us to find
kayaks in our boat shop. The home object also allows us to create individual kayaks
and add them to our database. Fortunately, the container provides the method
implementation for us. Listing 8.3 shows the local home interface for our Kayak
entity EJB.

package com.bitterejb.boatshop;

import javax.ejb.*;
import java.rmi.*;
import java.util.*;

/**
 * Home interface to the local Kayak EJB.
 */
public interface KayakLocalHome extends EJBLocalHome {

 public Collection findByRenter(String renter) throws FinderException;

 public Collection findAll() throws FinderException;

 public KayakLocal findByPrimaryKey(Long id) throws FinderException;

 public KayakLocal create(Long id, String location, int capacity,
 boolean rudder)
 throws CreateException;
}

KayakLocalHome is simply the interface for creating and finding kayaks. The con-
tainer provides the implementation of this interface for us. So far each layer is
easy. However, as we layer on additional code and see the added potential for pro-
gramming error, we may start to wish that we’d brought a simpler, old-school boat
onto this river.

8.2.2 Adding the DTO and facade

Now we need to tune the design to add our façade and DTO. Because we’d rather
deal with objects than with primitives, we’ll want to use a DTO. Recall that DTOs
allow you to send entire objects, rather than primitives, back to the client,

Listing 8.3 KayakLocalHome

254 CHAPTER 8

Bitter alternatives
improving usability and saving communication costs. Our DTO, then, is a simple
kayak class with primitive attributes. Listing 8.4 shows the Kayak DTO.

Kayak.java:
package com.bitterejb.boatshop;

import java.io.*;

/**
 * Kayak data transfer class.
 */
public class Kayak
 implements Serializable {

 private Long id;
 private boolean isRented;
 private String renter;
 private String location;
 private int capacity;
 private boolean hasRudder;

 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 public boolean getIsRented() { return isRented; }
 public void setIsRented(boolean rented) { isRented = rented; }

 public String getRenter() { return renter; }
 public void setRenter(String renter) { this.renter = renter; }

 public String getLocation() { return location; }
 public void setLocation(String location) { this.location = location; }

 public int getCapacity() { return capacity; }
 public void setCapacity(int cap) { capacity = cap; }

 public boolean getHasRudder() { return hasRudder; }
 public void setHasRudder(boolean rudder) { hasRudder = rudder; }

 public String toString () {
 return "kayak id: " + id + "; location: " + location
 + "; capacity: " + capacity + "; renter: " + renter
 + "; rudder: " + hasRudder;
 }
}

Notice that the DTO looks exactly as what we’d ideally hope our persistent object
would, if the persistence framework could persist the object transparently. With
CMP, however, the DTO is only a small part of this persistent implementation.
Indeed, if you’re coding all this by hand, then you’re breaking a serious sweat by

Listing 8.4 Kayak

Using EJB persistence 255
now. Hopefully, you’re using a tool to autogenerate the code. But don’t be fooled!
Code generation is the easy part. Once the code has been spewed out, you must
maintain it. Inevitably, you’ll end up trying to debug this EJB someday (although,
of course, you might conveniently chalk it up to a mistake made by your rookie
cube mate).

 We’re only halfway home. Remember, we need to wrap the entire model with a
Session Façade because direct access to the entity beans will require unacceptable
communication costs. The session bean serving as a façade should create a Kayak-
EJB entity bean instance based on specified input parameters and return a Kayak
DTO to the client. Listing 8.5 shows the session façade to our Kayak entity EJB.

package com.bitterejb.boatshop;

import javax.ejb.*;
import java.util.*;
import java.rmi.*;
import javax.naming.*;

public class BoatshopEJB implements SessionBean { Session Façade class

 private SessionContext context = null;
 private static long seed = System.currentTimeMillis ();

 public Kayak createKayak (String location, int capacity,
 boolean rudder)
 throws RemoteException, CreateException, NamingException {

 KayakLocal kayak = getKayakLocalHome ().create
 (new Long (seed++), location, capacity, rudder);
 return kayak.toDataTransferObject ();
 }

 private KayakLocalHome getKayakLocalHome() Get local home
 throws NamingException {
 InitialContext ic = new InitialContext();
 return (KayakLocalHome) ic.lookup("KayakLocal");
 }

 public void setSessionContext(SessionContext c) {
 context = c;
 }

 public void ejbCreate() { }
 public void ejbRemove() { }
 public void ejbActivate() { }
 public void ejbPassivate() { }
}

Listing 8.5 BoatshopEJB

Method
to create
a kayak

This is not a very
good way to
create an id

256 CHAPTER 8

Bitter alternatives
Figure 8.2 illustrates the application design. The previous listings provided persis-
tence and a DTO. Listing 8.5 is a client of the persistent object, allowing a single
access point for the framework. We can use this unified interface to provide secu-
rity, distribution, and transactional awareness. The home interface manages the
data store; the EJB object implements each persistent instance; and the façade
provides a distributed access point.

 To keep this chapter brief (and make sure you stay awake), we’ve omitted the
BoatshopRemote.java and BoatshopRemoteHome.java interface listings. They will
be the same for all implementations discussed in this chapter—after all, that is the
whole point of the session bean façade.

 Keep in mind that this technique is not a good way to create an index. A better
approach would be to use a sequence generator that uses a database table and a
high-low style algorithm to atomically check batches of IDs and dole out these IDs

EJB Container

KayakEJB
KayakLocal

Home

Data
Store

BoatShop
Remote

Kayak
value
object

BoatShop
client

BoatShop
Local

Figure 8.2 The persistent entity, KayakEJB, is only a very small part of our overall design. The home
interface actually manages the data store, and provides interfaces to create, destroy, and find kayaks.
The clients actually access the business logic through a Session Façade. The Session Façade
communicates with the kayak DTO.

Using EJB persistence 257
as needed. However, implementing this approach is out of this book’s scope. Ide-
ally, identity generation is a good example of a service that your persistence
framework should provide for you.

8.2.3 Including deployment details

You will recall that EJB strives to separate deployment decisions from implementa-
tion decisions. To merge the classes we developed into a CMP entity bean and a
session bean, we must write an EJB deployment descriptor that outlines features of
the beans. Listing 8.6 shows the deployment descriptor for our Kayak entity EJB.

ejb-jar.xml
<!DOCTYPE ejb-jar
 PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
 'http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd'>
<ejb-jar>
 <enterprise-beans>
 <session>
 <!-- The JNDI name of the bean. -->
 <ejb-name>Boatshop</ejb-name>

 <!-- Class configuration for the bean -->
 <home>com.bitterejb.boatshop.BoatshopRemoteHome</home>
 <remote>com.bitterejb.boatshop.BoatshopRemote</remote>
 <ejb-class>com.bitterejb.boatshop.BoatshopEJB</ejb-class>

 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>

 <entity>
 <!-- The JNDI name of the bean. -->
 <ejb-name>Kayak</ejb-name>

 <!-- Class configuration for the bean -->
 <local-home>com.bitterejb.boatshop.KayakLocalHome</local-home>
 <local>com.bitterejb.boatshop.KayakLocal</local>
 <ejb-class>com.bitterejb.boatshop.KayakEJB</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Long</prim-key-class>
 <reentrant>False</reentrant>

 <!-- Container-managed persistence info -->
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Kayak</abstract-schema-name>

 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>location</field-name></cmp-field>
 <cmp-field><field-name>isRented</field-name></cmp-field>

Listing 8.6 Deployment Descriptor

258 CHAPTER 8

Bitter alternatives
 <cmp-field><field-name>renter</field-name></cmp-field>
 <cmp-field><field-name>capacity</field-name></cmp-field>
 <cmp-field><field-name>hasRudder</field-name></cmp-field>

 <primkey-field>id</primkey-field>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>Boatshop</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>

 <trans-attribute>Required</trans-attribute>
 </container-transaction>

 <container-transaction>
 <method>
 <ejb-name>Kayak</ejb-name>
 <method-intf>Local</method-intf>
 <method-name>*</method-name>
 </method>

 <trans-attribute>Mandatory</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

The use of deployment descriptors is actually a strength of EJB. All deployment
details are neatly separated in a separate XML configuration file. You might argue
that the deployment details are growing too complex, but in general, the flexibil-
ity here outweighs the complexity. And, again, the creation of the deployment
descriptor can be automated.

 Okay, now we’re done. Take a moment and review all the code. Keep in mind
that our simple problem—persist and retrieve simple kayak objects—caused us to
write all this code. You’ll likely be generating some of this code, but that fact alone
will not isolate you from the complexity. You’ll continue to see the files as you
build, debug, or step outside the traditional EJB box, as sometimes you must. Yet
without looking from a different vantage point, you’ll find seeing and appreciat-
ing the existing alternatives can be difficult. Indeed, sometimes we get so heads-
down in a technology that we can’t look past traditional approaches. So, let’s pop
our heads up and take a look around at useful alternatives.

Using EJB persistence 259
8.2.4 Rolling your own with BMP entity beans

In chapter 7, we saw how, in the EJB realm, public opinion has been leaning
against BMP and toward CMP for persistence needs. Nevertheless, BMP entity beans
still play an important part in the EJB specification for the following reasons:

■ CMP does not support many complex relational database schemas. Many
enterprise applications must integrate with existing applications that rely on
a given existing schema.

■ Many proprietary or legacy enterprise information systems do not have CMP
support. In these situations, CMP cannot be used.

■ Other special requirements, ones that step beyond traditional CMP limita-
tions, may require BMP.

So, how does BMP stack up? We know it dumps a whole lot of work and complexity
in your lap—you have to take on the role of the container. Otherwise, a BMP bean
looks like a CMP bean. Table 8.2 tells the story.

Table 8.2 BMP, like CMP, provides deep services through the EJB container, including distribution,
security, and management for transactions. BMP is even more difficult to learn, and does not support
key Java language extensions, but the flexibility can make it more attractive than CMP for performance
reasons or to support additional data stores.

BMP Entity Beans

J2EE integration—Security Yes, with remote interfaces; no, with local interfaces

J2EE integration—Remote
access (to entity logic)

Yes, with remote interfaces; no, with local interfaces

J2EE integration—JTA Yes

J2EE integration—JCA
Not applicable
It depends on the underlying implementation

Simplicity
Very difficult to learn with many pitfalls
More complex than CMP because persistence methods must be
implemented by the developer

Java language alignment
Many Java language features such as inheritance and pass-by-refer-
ence are not supported or are treated differently. Some language
features can be emulated at the application level.

Deployment flexibility
Requires an EJB container
Can be used with many types of data stores, including RDBMS and
OODBMS

260 CHAPTER 8

Bitter alternatives
The sample code for persisting a Kayak using BMP is similar to the CMP example
earlier, except that the developer must write the data storage and retrieval code.
For the sake of your sanity and space constraints, we’ll leave this as an exercise for
the curious.

 One considerable advantage to BMP entity beans over straight JDBC (described
in section 8.3) is that the EJB container handles many facets of object life cycle
automatically. The entity bean developer is responsible only for implementing the
methods that deal with the entity bean persistence. The container takes care of
issues such as determining when to load or store a particular instance and caching
objects for performance improvements.

 Despite the container’s good intentions with BMP, we conclude that the disad-
vantages outweigh the few advantages. You have to take on all the complexity and
many restrictions of a CMP domain model, and then layer on all the work usually
done by the container. As a reward, you lose many performance optimizations of
CMP. Indeed, it’s a zero-sum game. For more details, flip back to section 7.3 and
read “Ham sandwich, hold the ham.”

8.3 Simplify with JDBC

Contrary to what most salespeople will tell you, many programming projects do
not need an object-oriented persistence framework of any kind. A significant
number of programmers are going back to basics and using POJOs with JDBC and
a Session Façade for their persistence needs. After all, if you’re simply building a
glorified user interface to a database, then why use a persistence framework at
all? Furthermore, many feel that persistence frameworks may be too difficult to
tune, since they do not give you complete control of the underlying SQL ulti-
mately generated.

 For these reasons, any discussion of data persistence in Java must include JDBC.
Providing a standard means of communicating with SQL databases, JDBC is a sta-
ble and mature specification. As such, it’s a viable alternative for simpler projects
and those that are relational in nature.

 The JDBC standard was developed to provide Java developers with a standard
way to execute SQL statements against a relational database and to efficiently
process the data returned from SQL queries. JDBC supports transactions, and JDBC
drivers can be integrated into a container-managed transaction. This integration
with the container allows the JDBC transaction boundaries to transparently syn-
chronize with the boundaries defined in a bean’s deployment descriptor. However,
JDBC has no standard support for complex Java types. Additionally, JDBC does not

Simplify with JDBC 261
support any distributed-object concepts addressed by the EJB specification. It is
designed purely as a means to access relational databases from Java programs.
Many times, that’s enough. Table 8.3 scores JDBC against our persistence criteria.

JDBC is an ideal persistence choice for projects that involve a considerable amount
of proprietary database code and for projects closely aligned with a relational
model, rather than an object-oriented model. For example, you might choose
JDBC for persistence if you perform most of your business logic in stored proce-
dures and only use a thin Java layer for data presentation. Similarly, if your applica-
tion is a thin user interface for an existing relational database or a relational
reporting application, then JDBC is likely the right choice. Don’t underestimate
the number of applications that fit this description—they’re all over the place.
JDBC offers plenty for many simpler object-oriented applications or components,
as well.

8.3.1 Implementing a simple JDBC model

Let’s look at how we would implement the routines necessary to insert a new
Kayak object into a relational database, starting with a simple Kayak DTO—a POJO

Table 8.3 JDBC allows good flexibility but forces developers to look elsewhere for security, distribu-
tion, and transaction support. The usage is simple, but relational databases and object-oriented pro-
grams process data in fundamentally different ways.

JDBC

J2EE integration—Security No

J2EE integration—Remote
access (to entity logic)

No

J2EE integration—JTA Yes, provided that the JDBC driver supplies an XADataSource

J2EE integration—JCA Yes

Simplicity

JDBC is the simplest of the persistence alternatives. Basic usage is
well understood for traditional relational problems, and simple enough
for many object-oriented problems. For complex object-oriented prob-
lems, algorithms with SQL and JDBC can get unbearably complex.

Java language alignment
No. SQL is a relational language. Data returned by JDBC calls is in tabu-
lar form—rows with columns—instead of objects. It only supports primi-
tive data types.

Deployment flexibility
No container requirements
In general, SQL is used with RDBMS.

262 CHAPTER 8

Bitter alternatives
(listing 8.7). Most of our complexity will involve translating between this object
and the relational format required for the database code.

Kayak.java:
package com.bitterejb.boatshop;

import java.io.*;

/**
 * Kayak class.
 */
public class Kayak
 implements Serializable, Cloneable {

 private Long id;
 private boolean isRented;
 private String renter;
 private String location;
 private int capacity;
 private boolean hasRudder;

 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 public boolean getIsRented() { return isRented; }
 public void setIsRented(boolean rented) { isRented = rented; }

 public String getRenter() { return renter; }
 public void setRenter(String renter) { this.renter = renter; }

 public String getLocation() { return location; }
 public void setLocation(String location) { this.location = location; }

 public int getCapacity() { return capacity; }
 public void setCapacity(int cap) { capacity = cap; }

 public boolean getHasRudder() { return hasRudder; }
 public void setHasRudder(boolean rudder) { hasRudder = rudder; }

 public String toString () {
 return "kayak id: " + id + "; location: " + location
 + "; capacity: " + capacity + "; renter: " + renter
 + "; rudder: " + hasRudder;
 }
}

That’s not much different from our DTO in listing 8.6. This DTO actually fills a
similar role. We’ll map this object onto an inbound SQL insert or update string.
We could also map the object onto an outbound database query.

Listing 8.7 Kayak POJO

Simplify with JDBC 263
8.3.2 Implementing the JDBC Façade

We now have the equivalent of our DTO. Next, we need to make modifications to
the session bean to perform the insert via direct JDBC calls. Here, we’re basically
moving our persistence directly into the façade layer. Keep in mind that there is
more than one way to skin a cat. This approach is the most straightforward for our
example. Again, we’ll forego writing the remote and home interfaces for the ses-
sion bean. Listing 8.8 shows the session bean used to insert new kayak objects
using JDBC.

package com.bitterejb.boatshop;

import javax.ejb.*;
import java.util.*;
import java.rmi.*;
import javax.naming.*;
import java.sql.*;
import javax.sql.*;

/**
 * Stateless session bean that can insert Kayak objects.
 */
public class BoatshopEJB implements SessionBean {

 private SessionContext context = null;
 private static long seed = System.currentTimeMillis ();

 public Kayak createKayak (String location, int capacity,
 boolean rudder)
 throws RemoteException, CreateException, NamingException {

 Kayak kayak = new Kayak ();
 kayak.setId (new Long (seed++));
 kayak.setLocation (location);
 kayak.setCapacity (capacity);
 kayak.setIsRented (false);
 kayak.setRenter (null);
 kayak.setHasRudder (rudder);

 insert (kayak); The code uses native Java objects
 return kayak;
 }

 private void insert (Kayak k)
 throws CreateException, NamingException {

 DataSource ds = null;

Listing 8.8 BoatshopEJB.java, JDBC version

Create
and insert
a Kayak
Java
object

Insert maps the
relational kayak object
onto an SQL string

264 CHAPTER 8

Bitter alternatives
 Connection conn = null;
 PreparedStatement ps = null;

 try {
 ds = (DataSource) new InitialContext ().lookup ("java:/DefaultDS");
 conn = ds.getConnection ();
 ps = conn.prepareStatement ("INSERT INTO KAYAK"
 + "(ID, LOCATION, ISRENTED, RENTER, CAPACITY, HASRUDDER) "
 + "VALUES(?, ?, ?, ?, ?, ?)");

 ps.setLong (1, k.getId ().longValue ());

 String s = k.getLocation ();
 if (s == null)
 ps.setNull (2, Types.VARCHAR);
 else
 ps.setString (2, s);

 ps.setBoolean (3, k.getIsRented ());

 s = k.getRenter ();
 if (s == null)
 ps.setNull (4, Types.VARCHAR);
 else
 ps.setString (4, s);

 ps.setInt (5, k.getCapacity ());

 ps.setBoolean (6, k.getHasRudder ());

 ps.executeUpdate ();

 } catch (SQLException sqe) {
 throw new CreateException (sqe.getMessage());
 } finally {
 if (ps != null)
 try { ps.close (); } catch (Exception e) {}

 if (conn != null)
 try { conn.close (); } catch (Exception e) {}
 }
 }

 // Misc EJB Methods
 public void setSessionContext(SessionContext c) {
 context = c;
 }

 public void ejbCreate() { }
 public void ejbRemove() { }
 public void ejbActivate() { }
 public void ejbPassivate() { }
}

The datasource name is
embedded in code

Simplify with JDBC 265
Using this approach, the session bean layer must manage the database. As you can
see, this management is much less complex for simple inserts, deletes, and even
basic queries. Less code needs to be written than with the EJB alternative. The
downside is that, whenever you use SQL directly, you’re building a tighter cou-
pling to your database. That is, the session bean must know how to access the data-
base tables and columns, and then map the results into kayak objects.
Nevertheless, we can conclude that for such simple applications, the value that an
EJB entity bean adds is probably not worth the cost in complexity or performance.

 Don’t misunderstand the conclusion we’ve just made. We are not advocating
building a full persistence layer from scratch with SQL. We’re talking about using
SQL tactically to populate your objects. The requirements for a real persistence
framework are not clear with such a simple example, but as you add layers of
transactions, complex object relationships, and object interaction, the database
code and the resulting SQL become much more complex.

 How do you know when your application has become complex enough to
require a persistence framework? You simply pay attention to your pain and read
the code. If you find yourself spending unbearable amounts of time dealing with
the intricacies of SQL and relational database integration, you might be ready for
a full persistence framework. If you find your code looks more and more proce-
dural and that the database integration layer prevents you from designing simpler,
object-oriented applications, then you definitely should consider a data persis-
tence layer.

8.3.3 Deploying a Session Façade for JDBC

Because we’re not using an entity EJB, our deployment descriptor only references
a single bean—our BoatshopEJB session bean. All other deployment details, unfor-
tunately, are embedded in the code.

<!DOCTYPE ejb-jar
 PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
 'http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd'>
<ejb-jar>
 <enterprise-beans>
 <session>
 <!-- The JNDI name of the bean. -->
 <ejb-name>Boatshop</ejb-name>

Listing 8.9 Deployment descriptor ejb-jar.xml

266 CHAPTER 8

Bitter alternatives
 <!-- Class configuration for the bean -->
 <home>com.bitterejb.boatshop.BoatshopRemoteHome</home>
 <remote>com.bitterejb.boatshop.BoatshopRemote</remote>
 <ejb-class>com.bitterejb.boatshop.BoatshopEJB</ejb-class>

 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>Boatshop</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>

 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Listing 8.9 shows just part of the code needed to fully implement a mechanism for
storing objects in a database using pure JDBC. Our JDBC solution can only insert
new objects. We must write corresponding update(), delete(), and load() meth-
ods for each class in our domain object model. Of course, for a simple application
like this, the code would not be difficult to add or maintain.

 For complex problems, an intelligent JDBC-based solution may grow to include
a sophisticated loading mechanism to support many desirable loading features,
such as lazy loading relations and large fields or efficient loading of large result
sets. However, implementing these types of features, while essential for a real com-
parison, would require quite a bit of coding, and the end result would end up
looking like one of the solutions that we’ll talk about next—object persistence
frameworks. The goal of this example is to demonstrate what the code might look
like when the requirements of the project match the criteria in table 8.4.

 JDBC and SQL were not designed with the problem of object persistence in
mind, so when looking at this example, don’t forget that our code is not really
appropriate for JDBC. However, this code example is representative of how many
application developers use JDBC in enterprise applications today. While we should
be careful to remember that JDBC and SQL are valuable technologies with signifi-
cant advantages of their own, the problems faced by enterprise application devel-
opers trying to persist a domain object model are not always ones for which JDBC
is ideally suited.

Using object persistence frameworks 267
8.4 Using object persistence frameworks

CMP is basically a persistence framework that works on the level of coarse-grained
components. JDBC, in contrast, persists data at the field granularity level. For
example, with JDBC, you load and store all individual fields in an object into a row
or set of rows in the database. Because Java is object-oriented, we should consider
object persistence frameworks that address the persistence problem at the object
granularity level.

 With object persistence frameworks, you load and store entire objects,1 which is
more natural for most object-oriented applications. Object persistence frameworks
usually take care of the details of loading and storing data automatically, so all you
need to do is use familiar Java language syntax to access the data in your database.
When you’re working with a complex domain model, this approach is simpler than
JDBC, where you must manually convert between objects and raw data stored in
result sets.

8.4.1 Surveying the object persistence landscape

Within the realm of object persistence frameworks, you’ve got several viable
options. Your choice of an individual framework will depend on your application’s
requirements, your skills, and your preference. You can think of the object

Table 8.4 If you decide not to use EJB entity beans, you’ll probably wind up choosing between an
object persistence framework and straight JDBC solutions. The decision between JDBC and an object
persistence framework is a simple one that depends on the nature of the application and complexity of
the data access layer.

Decision Technology choices Selection criteria

Choose JDBC over object
persistence frame-
works

● Business logic is predominantly implemented in custom
stored procedures

● Data model is relational, not object-oriented
● The problem is simple
● The problem is relational in nature (e. g., reporting,

database population)

Choose Object persistence
frameworks over
JDBC

● Data model is complex and object-oriented
● You plan on establishing relations among classes in your

object model
● Object model uses inheritance heavily

1 Most object persistence frameworks support lazy loading semantics, so while you conceptually
load entire objects, the framework might load only a certain set of fields initially and lazy-load
larger or less frequently used fields.

268 CHAPTER 8

Bitter alternatives
persistence landscape along two separate axes. First, the potential data stores
define how data is physically stored. More interestingly, the interfaces define how
you interact with the data store. Let’s look at the major categories along each axis.

The data store
This axis answers the question, “How do you persist your data?” Object-oriented
systems store objects and links between those objects. Relational database man-
agement systems store data in related tables.

■ Object-oriented database management systems (OODBMS) represent data
in the database as lists of objects, rather than as tables containing rows and
columns. In a famous paper called “The Design of a Robust Persistence
Layer for Relational Databases,” Scott Ambler concluded that object-ori-
ented databases are nice but no match for relational databases. Still, some
applications, like CAD systems, are inherently object-oriented. It pays to con-
sider OODBMS for these types of problems. Vendors, such as Poet, Progress,
and Versant supply the key OODBMS products in the Java space.

■ Relational DBMS (RDBMS) represent databases as rows in a table. While this
approach is not inherently object-oriented, it is ubiquitous. RDBMSs are
highly efficient, due to a clean mathematical model and decades of practi-
cal experience and academic study. We understand how to maintain, tune,
code, and administer them. It’s meaningless to discuss alternatives that
don’t work well with relational databases.

Interfaces to the data store
To us, the critical question is this: How does your application access data in the
data store? Object-oriented frameworks, for the most part, use techniques that
strive for as much transparency as possible. The major distinction is proprietary
versus open. Proprietary solutions can provide more flexibility; standards are
more interoperable. Let’s look at a breakdown of the differences between object-
oriented and persistence frameworks:

■ Object-relational mapping frameworks (OR mappers) can convert between
an object and the corresponding row-set in a set of tables in a relational
database. These frameworks specialize in providing an object-oriented
domain model and building the “glue” code that connects domain models
to a database. The better frameworks are efficient. They also have highly
flexible mapping technology that can adapt to a wide variety of relational
schemas. OR mappers became much muddier when Oracle bought the

Using object persistence frameworks 269
industry’s leading OR mapper, TopLink. At this point, it’s not clear if Oracle
will continue to support rival databases or application servers as well as it
has in the past, but several good products are more than capable. CocoBase
is the main alternative to TopLink in this space, and several open source OR
mappers exist. Castor is the most popular open alternative, but Hibernate is
also gaining in favor.

■ Standardized object persistence frameworks Some alternatives attempt to
provide a standard mapping to both object-oriented databases and rela-
tional databases. Within this group, the alternative with the most momen-
tum is JDO. Most implementations have surprisingly nimble mapping
technology, good performance, and perhaps one of the cleanest program-
ming interfaces. Some JDO implementations ship with a database back end,
and some focus on relational mapping. The standardization of the JDO spec-
ification by the Java Community Process board members provides us with a
convenient common ground to use for discussion of object persistence
tools. Strong support for JDO exists from OODBMS vendors and from third-
party OR mapping products, but relational database vendors themselves

Many of the Java object-oriented persistence frameworks are remarkably similar.
They all provide fine-grained persistence, with clean, object-oriented interfaces.
For convenience, we’ll use JDO in this book, but most arguments that we’ll make
also hold true for other persistence frameworks and mapping technologies.

8.4.2 Understanding JDO

The JDO specification defines a set of abstract APIs for transactional persistence of
objects. JDO does not make any assumptions about the actual physical data store
used by an implementation, because the JDO standard is not written just for rela-
tional databases or object databases. Instead, the design focuses on generic,
flexible implementations for any transactional data store. JDO implementations
exist for relational databases and object databases, as well as legacy enterprise
information systems. Increasingly, large commercial Java projects—including
projects with Credit Suisse, Nokia, and Pacific Gas & Electricity—have demon-
strated the success of JDO. To keep our discussion clear, we will not consider
extensions to the standard that some JDO products may include.

 One important design pattern that we will bundle into this object persistence
framework category is the Data Access Object (DAO) pattern described in Core J2EE
and other sources. The DAO pattern isolates data access from the underlying data
store. The JDO standard is, in many ways, the logical conclusion of the DAO

270 CHAPTER 8

Bitter alternatives
pattern—it is an abstract API for accessing objects stored in arbitrary databases. JDO
allows the same decoupling of underlying data technology from object persistence
as does the DAO pattern. Table 8.5 measures JDO against our performance criteria.

8.4.3 Implementing a simple model with JDO

Now, let’s look at how to insert a new Kayak object using JDO (listing 8.10). Our
object is a POJO, but the persistence framework will add persistence in a post-
compile processing step. Notice that the JDO implementation is considerably
simpler than both the EJB and JDBC implementations. Also, notice that the JDO
domain object is doubling as the DTO in this example.

package com.bitterejb.boatshop;

import java.io.*;

/**
 * Kayak class.
 */

Table 8.5 JDO is an example of an object-oriented persistence framework. JDO does not offer secu-
rity or remote access services, but these features are usually provided through a Session Façade
within EJB solutions. JDO’s key benefits lie in its light weight and its simplicity, combined with supe-
rior Java alignment.

Java Data Objects (JDO)

J2EE integration—Security No

J2EE integration—Remote access No

J2EE integration—JTA Yes

J2EE integration—JCA Yes

Simplicity

Basic and complex object models are equally simple to use in
JDO. Some of the more advanced JDO options require a good
understanding for proper usage. JDO does add some deploy-
ment complexity.

Java language alignment
Yes
JDO objects behave just like regular Java objects. JDO Query
Language (JDOQL) uses Java boolean expression syntax.

Deployment flexibility
No container requirements
Can be used with many types of data stores, including RDBMS
and OODBMS

Listing 8.10 kayak.java, JDO version

Using object persistence frameworks 271
public class Kayak
 implements Serializable, Cloneable {

 private Long id;
 private boolean isRented;
 private String renter;
 private String location;
 private int capacity;
 private boolean hasRudder;

 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 public boolean getIsRented() { return isRented; }
 public void setIsRented(boolean rented) { isRented = rented; }

 public String getRenter() { return renter; }
 public void setRenter(String renter) { this.renter = renter; }

 public String getLocation() { return location; }
 public void setLocation(String location) { this.location = location; }

 public int getCapacity() { return capacity; }
 public void setCapacity(int cap) { capacity = cap; }

 public boolean getHasRudder() { return hasRudder; }
 public void setHasRudder(boolean rudder) { hasRudder = rudder; }

 public String toString () {
 return "kayak id: " + id + "; location: " + location
 + "; capacity: " + capacity + "; renter: " + renter
 + "; rudder: " + hasRudder;
 }
}

Kayak.java is a pure Java object, with nothing added and nothing lost. As Java
developers, we want our persistent object to look exactly like this. The persistence
framework completely and transparently manages persistence for us. The magic
happens behind the scenes. JDO-based implementations typically run either their
source or, more often, the compiled bytecode, of their domain object model
through a tool that enhances the source or bytecode to add persistence.

 Admittedly, this process is regarded as risky by some, and can lead to complex
build situations. For example, obfuscation programs often work by manipulating
bytecode after compilation. So, if you choose to use bytecode enhancement with
JDO (rather than source enhancement) and an obfuscator, you must take care to
run the enhancer before the obfuscation process. Further, some people feel that
bytecode should only be modified by compilers and application servers, and not
by other tools. So, you should educate yourself on these issues if they are

The persistent Kayak class
is a simple Java object

Persistent attributes
are expressed in
pure Java object

272 CHAPTER 8

Bitter alternatives
important to you, and ensure that whatever technology you choose provides you
with alternatives (such as source code enhancement with JDO) to anything that
you are uncomfortable with.

8.4.4 Implementing the JDO model’s façade

Next, we need to make modifications to the session bean to account for using
JDO. We use the persistence manager factory to manage the lifecycle of our persis-
tence objects (listing 8.11).

package com.bitterejb.boatshop;

import javax.ejb.*;
import java.util.*;
import java.rmi.*;
import javax.naming.*;
import javax.jdo.*;
/**
 * Stateless session bean that can insert Kayak objects via JDO
 */
public class BoatshopEJB implements SessionBean {

 private SessionContext context = null;
 private PersistenceManagerFactory factory = null;
 private static long seed = System.currentTimeMillis ();

 public Kayak createKayak (String location, int capacity,
 boolean rudder)
 throws RemoteException, CreateException, NamingException {

 Kayak kayak = new Kayak ();
 kayak.setId (new Long (seed++));
 kayak.setLocation (location);
 kayak.setCapacity (capacity);
 kayak.setIsRented (false);
 kayak.setRenter (null);
 kayak.setHasRudder (rudder);

 PersistenceManager pm = factory.getPersistenceManager ();
 pm.makePersistent (kayak);
 pm.close ();

 return kayak;
 }

 public void setSessionContext(SessionContext c)
 throws EJBException {
 context = c;

 try {

Listing 8.11 BoatShopEJB.java, JDO version

The JDO
persistence

manager
inserts a

kayak

Caches a reference
to persistence
manager factory

Using object persistence frameworks 273
 InitialContext ctx = new InitialContext ();
 // Cache a reference to a PersistenceManagerFactory.
 factory = (PersistenceManagerFactory) ctx.lookup
 ("java:comp/env/jdo/PersistenceManagerFactory");
 } catch (NamingException ne) {
 throw new EJBException (ne);
 }
 }

 public void ejbCreate() { }
 public void ejbRemove() { }
 public void ejbActivate() { }
 public void ejbPassivate() { }
}

Again, we have left out the remote and home interfaces for the session bean.
 This interface is every bit as simple as the JDBC implementation and is much

simpler than the comparable EJB implementation. The interface also carries none
of the overhead associated with distribution, security, or transactional awareness,
and rightfully so—those features are already managed by the session façade.

8.4.5 Deploying the solution

The deployment descriptor is the same as for the JDBC application (listing 8.12).
The deployment data for the JDO objects, which handles relational mapping and
database connection information, is now in a separate file:

ejb-jar.xml
<!DOCTYPE ejb-jar
 PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
 'http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd'>
<ejb-jar>
 <enterprise-beans>
 <session>
 <!-- The JNDI name of the bean. -->
 <ejb-name>Boatshop</ejb-name>

 <!-- Class configuration for the bean -->
 <home>com.bitterejb.boatshop.BoatshopRemoteHome</home>
 <remote>com.bitterejb.boatshop.BoatshopRemote</remote>
 <ejb-class>com.bitterejb.boatshop.BoatshopEJB</ejb-class>

 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

Listing 8.12 Deployment descriptor ejb-jar.xml

274 CHAPTER 8

Bitter alternatives
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>Boatshop</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>

 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

In addition to the EJB deployment descriptor, we must also write a JDO metadata
file to identify the classes in the system that are part of the persistent domain
object model (listing 8.13):

boatshop.jdo:
<!DOCTYPE jdo
 PUBLIC '-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN'
 'http://java.sun.com/dtd/jdo_1_0.dtd'>
<jdo>
 <package name=”com.bitterejb.boatshop”>
 <class name=”Kayak” />
 </package>
</jdo>

Realistically, this information belongs in the deployment descriptor, and this is
our first hint that JDO is not a first-class citizen in the EJB kingdom. It’s a tiny
detail, and one that we deal with gladly for the advantages that JDO brings.

8.4.6 Comparing the options

Let’s review the three solutions. Two of the solutions—object persistence and
JDBC—have clear and compelling niches. For certain applications, JDBC is a simple
and logical choice. For relational problems such as reporting and user interfaces
that are tightly coupled to a database design, using JDBC makes sense. For simple
models, JDBC is also a reasonable choice. As you start to add more difficult condi-
tions, JDBC can break down. Complex object models, demanding performance
requirements, interlaced transactional requirements, or shifting database designs
can quickly push your application needs beyond the capabilities of JDBC.

Listing 8.13 JDO descriptor boatshop.jdo

Antipattern: Persistent Problems 275
 Object persistence solutions, including relational mappers and object-oriented
database management systems, are well equipped to handle demanding and com-
plex object models. They dramatically simplify coding. The downside is that tun-
ing the performance of a relational database engine is much more difficult when
you go through an intermediate database interface. However, object persistence
vendors are making significant strides in that direction by adding features such as
synchronized distributed caches and lazy loaders. These features can strip much
of the stress off the database layer.

 We can clearly see that the EJB CMP entity bean implementation is the most
complex of the three solutions. Ironically, most of this complexity supports fea-
tures that a persistence layer does not need: role-based security, distribution, and
transactional awareness at the object level. CMP code is much more complex than
the alternatives and doesn’t even fully support Java concepts such as abstract
classes and inheritance. Chatty communications with the container add consider-
able overhead. It’s tough to think of an EJB CMP implementation that another
persistence alternative could not manage. In the next section, we’ll look at a few
problems specific to the EJB CMP framework.

The flimsy plastic of Eric’s boat flexes and bends, and the snubbed nose finally
slides off the rock, just as it’s designed to do. Relieved, we continue, but each kayak
scrapes and drags through the rocky slot until Stephen makes his run. This time,
from the bottom of the drop, the party can see the sharp nose wedge deeply between
two rocks. Stephen shifts his weight to slide the boat free, but it only wedges tighter.
Eventually, the nose gives way and his slender boat folds in half. Luckily, Stephen
works his legs free and swims away. His skills as an Olympian are not enough to
overcome a simple fact: On this day, he does not have the right tool for the job.

8.5 Antipattern: Persistent Problems

Few decisions stay with an application longer than the choice of a persistence
framework. Unfortunately, many developers and managers make this decision by
default, choosing a persistence framework based on the persistence solution pro-
vided by their application server. An unstated rule seems to guide many develop-
ers: EJB persistence must occur through entity beans. However, the overhead and
inflexibility of the entity bean architecture makes the framework impractical for
many implementations. In reality, you’re likely to spend far less by choosing a
persistence framework based on an application’s needs, even if you have to buy
additional software or training to make it happen. Software development costs

276 CHAPTER 8

Bitter alternatives
simply dwarf shrink-wrapped software costs in all but the most extreme instances.
You’ll want to consider the shortcomings of EJB entity beans. We’re not saying
that the EJB entity frameworks are completely inadequate for any task. We just
believe that if you do decide to use EJB entity beans, you should do so with your
eyes wide open.

8.5.1 Generic entity bean weaknesses

Let’s review a few arguments we
made in chapter 2. The entity
bean specification provides four
major services: declarative and dis-
tributed transactions, declarative
security, scalability and fail-over
support, and data persistence.
When you look closely, you’ l l
notice a significant mismatch
between the way persistence is
used and the way the other three
services are typically used—the lat-
ter are fine, and the former is
coarse. Figure 8.3 shows an exam-
ple. You’ll probably want coarse-
grained services for an invoice, but
fine-grained persistence for the
objects within the invoice. In fact,
you’ll probably often want your
coarse-grained services at an even
higher level. This imposes a num-
ber of architectural limitations inherent in the entity bean specification. These
limitations are at the root of most entity bean antipatterns, including those dis-
cussed in chapter 7.

8.5.2 Inheritance and polymorphism

As you know, inheritance is the capability of an object-oriented programming lan-
guage for one class to specialize or extend a base class. Polymorphism is the
capability of an object-oriented programming language for a subclass to override
a method’s behavior in one of its superclasses. Java supports both inheritance and
polymorphism. Many architectures require these capabilities as well. However, the

Line Item Part

Person
Address

Invoice

Figure 8.3 This invoice is a coarse-grained object,
composed of many fine-grained objects. The invoice
contains a person with a billing and shipping address,
and a list of invoice items, each with a part. You want
persistence at the fine-grained level, but other
services such as distribution and transaction integrity
at a higher level.

Antipattern: Persistent Problems 277
entity bean specification does not properly support these concepts. Writing an
entity bean that extends a parent entity bean is possible. However, when executing
an entity bean finder method, the container returns only objects of the same class
as the entity bean’s object interface.

 In our boat rental example, the domain object model comprises three classes:
Boat, Kayak, and Canoe. Kayak and Canoe both extend Boat. You may want to define
a findAllBoats method that can provide a list of all Boat objects in the database.
Entity beans can’t represent this relatively simple domain object model—the Boat
entity bean cannot define a finder method that returns anything other than Boat
entity beans. Worse, Boat is not actually a full-fledged entity bean in the way that
we’ve emulated inheritance in our examples. No entry exists in the deployment
descriptor for Boat because we do not want Boat objects to be created; it’s an
abstract class.

 One common workaround to this problem is to establish a convention of writ-
ing a method that finds one list of all Kayak objects and another list of all Canoe
objects, and returns the combination of these lists. This workaround presents
three major problems:

■ The method that does this work must know about all its subclasses This
means that every time you add a new subclass of Boat, you must also modify
this method to add the new type lookup. This technique does not scale well
from a development standpoint and requires that anyone extending Boat
has access to the source for this method.

■ Returned results are grouped by subclass It may be that you want to sort
all Boat objects—regardless of subclass—by storage location. To do this in
an architecture that uses the subclass-assembly finder technique described
earlier, you would have to perform a costly application sort, which would be
better performed in the database than in the Java application.

■ Results in higher cost and higher incident of defects The complexity of
this solution increases the likelihood of bugs and the cost of both mainte-
nance and initial development.

In our example, the code for this workaround might look like that in listing 8.14:

278 CHAPTER 8

Bitter alternatives
 /**
 * Lists all boats in the database.
 */
 public Collection list ()
 throws RemoteException, FinderException, NamingException {

 Collection boats = getKayakLocalHome().findAll ();
 boats.addAll (getCanoeLocalHome().findAll ());

 BoatLocal boat;
 Collection returnBoats = new ArrayList (boats.size ());
 for (Iterator iter = boats.iterator (); iter.hasNext ();)
 {
 boat = (BoatLocal) iter.next ();
 returnBoats.add (boat.toDataTransferObject ());
 }
 return returnBoats;
 }

Many other techniques and patterns emulate different parts of true polymor-
phism and inheritance. For example, the pattern that we chose does not map to
databases that use inheritance structures. Other patterns that rely on delegation
to emulate inheritance can support complex inheritance structures in databases,
but are even more unwieldy to code than our examples.

 This begs the question: Why do we have to jump through all of these hoops at
all? Java doesn’t have these problems. In the words of Martin Fowler, a famous
modeler, "Entity beans don’t bring enough to the party to offset the drinks they
consume." No workarounds are nearly as full-featured or simple as the Java lan-
guage’s basic support.

 The lack of true polymorphism is a bigger strike against entity beans than you
might guess if you’re just casting a passing glance. Polymorphism simplifies code,
but with EJB, architectures that lean heavily on polymorphism will become com-
plex and slow. Maintenance and future development of such systems are difficult
as well—the maintainers must be aware of the conventions and assumptions
decided upon when the system was first written. The crux of the problem is this:
You’ve now got to worry about translating from your component model to the
Java language! What’s next, Object-EJB mappers?

Listing 8.14 EJB inheritance

Antipattern: Persistent Problems 279
 To illustrate the absurdity of the situation, compare listing 8.15 to listing 8.14
written using JDO:

 /**
 * Lists all boats in the database.
 */
 public Collection list ()
 throws RemoteException {

 PersistenceManager pm = factory.getPersistenceManager ();
 return (Collection) pm.newQuery (Boat.class).execute ();
 }

Notice that listing 8.15 presents a single query. We won’t have to write it as we add
new types of boats. Had we performed an ordering on the query, our results
would not have been grouped by subclass as in the previous example. Our code is
simpler, more flexible, and more powerful, just as object-oriented programming
intended it to be.

8.5.3 Query language flexibility is often critical

Let’s shift gears a little and move into the realm of query language. EJB QL is a
query language defined in the EJB 2.0 specification for performing queries on
container-managed persistence entity beans. It is an object-based query language
that looks much like a subset of SQL.

 The addition of EJB QL in the EJB 2.0 specification offers a big improvement
over earlier versions, which provided no common syntax for performing queries.
Still, you’ll want to be aware of weaknesses in EJB QL that make it insufficient for
many advanced applications.

Deploy-time definition
EJB QL queries must be defined at deploy time. Therefore, queries cannot be
dynamically generated based on user input or other dynamic state. EJB QL queries
can be parameterized at runtime, but this ability is not a replacement for true
dynamic query generation. For example, data-intensive systems often need to gen-
erate queries on the fly based on the constraints expressed by the user.

Listing 8.15 Inheritance using JDO

280 CHAPTER 8

Bitter alternatives
CMP only
EJB QL is defined within the scope of CMP entity beans. So you cannot use EJB QL
to find entity beans defined using BMP. This is an inconvenient limitation because
it is based on the assumption that CMP is sufficient for all persistence needs. As
discussed previously, CMP has not yet reached a point where you can necessarily
rely on it to map to existing database schemas.

Limited relation support
EJB QL can only traverse those types of relations supported by container-managed
relationships.

Alternate 1—JDBC and SQL
JDBC fully supports any SQL that your underlying relational database supports.
For the most part, JDBC is tied to relational, SQL-based systems. (JDBC drivers exist
for other types of storage systems, but are relatively uncommon.) This connection
is limiting in that applications written to use JDBC can only run on relational data-
bases. However, because relational databases dominate the data store market-
place, tying an application to JDBC is not that big of a deal. More limiting is the
nonportable nature of many common SQL operations. Most relational databases
deviate considerably from ANSI SQL. This difference can lead to applications that
can operate only against a particular database or that behave slightly differently
when using different databases.

 SQL is an expressive and powerful query language, and a wealth of knowledge
and resources is available regarding the design of relational queries. When
dealing with complex query processing on relational data sets, SQL is indispens-
able. However, using SQL for simple queries can be problematic. In general, Java
application developers are more comfortable thinking in object terms than in
relational terms and will sometimes create inefficient queries or queries that do
not do exactly what the developer intended.

Alternate 2—Object persistence and object query languages
Object persistence frameworks such as JDO typically support a query language
more sophisticated than EJB QL. Like JDBC, queries can usually be generated
dynamically at runtime. Additionally, most object persistence tools have more
mature relation support than the EJB QL specification, supporting concepts such
as maps and many-to-many relations.

 However, the queries supported by object persistence frameworks are usually
limited by the relationships defined in the domain object model. This limitation

Antipattern: Persistent Problems 281
makes these languages easier to understand for Java developers, as they are typi-
cally more comfortable with an object model. Yet, if you need to perform complex
relational queries and you decide to use an object persistence tool, make sure that
it can handle the query types you anticipate using.

8.5.4 DTOs require non-EJB solutions for local entities

One common pattern used in conjunction with session bean façades is the DTO
pattern. Because entity beans can only be used by an EJB client in a remote man-
ner, and because the session bean façade pattern is designed to keep all entity
bean access within the EJB container, we need a non-EJB mechanism to allow the
EJB client code to access the domain object model represented by entity beans on
the server. The DTO pattern dictates that you write a normal Java class for each
class in your persistent domain object model. Then, whenever a session bean
needs to return a domain object model part, it converts the entity beans that it
wants to return into the corresponding DTOs and returns these DTOs instead.

 The standard DTO pattern is something of an antipattern itself, made neces-
sary as a consequence of other EJB issues. Implementing the DTO pattern adds yet
another set of classes to those needed for the entity bean specification and opens
up the possibility for errors when copying data to and from DTOs.

Alternate 1—JDBC
JDBC-based systems may or may not need DTOs, depending on how JDBC is used
in the system. If your JDBC solution maps data from the database into objects,
then these objects could be designed to double as DTOs as described next.

Alternate 2—Object persistence
Object persistence technologies such as JDO present an elegant solution to the
coding requirements added by the DTO. Because it is possible to use these persis-
tence technologies outside the context of an application server, a session bean
façade that uses JDO or a comparable technology for domain object model persis-
tence instead of entity beans can just return the domain objects themselves, elimi-
nating the need to have DTOs altogether. This approach reduces the complexity
of session bean coding because the extra step of performing a DTO-to-entity bean
mapping is not necessary. We’ve seen this in action in the sample Kayak creation
code beginning in listing 8.1. Both the EJB and JDBC versions had to do an extra
step of copying the data into a DTO, but the JDO implementation was able to use
the Kayak object as both the DTO and the persistent object.

282 CHAPTER 8

Bitter alternatives
8.5.5 Container-bound persistence

Using entity beans for data persistence forces you to deploy your application into a
container. Doing so is not desirable. You’ll often find advantages in designing a sys-
tem to be as flexible as possible from an implementation and deployment stand-
point. If you do, you’ll allow deployment decisions to be made as necessary at
deployment time rather than up-front as a consequence of the chosen technologies.

 The Fast Lane Reader pattern (J2EE Blueprints Patterns) presents one com-
mon example in which this flexibility is wanted. The Fast Lane Reader pattern sug-
gests that, to improve performance of read-only parts of an enterprise system, you
might consider bypassing the EJB container and instead read data directly from
the database. The pattern suggests that you use the DAO pattern (Core J2EE) to
access the data in the database. As described in section 8.4.2 , the DAO pattern is
essentially a specialization of a general-purpose object persistence framework. So,
if you use an object persistence framework for persistence needs within the con-
tainer, and that framework does not rely on a container to operate, then you can
easily use the exact same code to implement the Fast Lane Reader pattern. This
approach is valuable because it prevents the read-only classes from becoming out-
of-sync with the transactional classes, since the same classes can be deployed into
both the read-only and the container environments.

 Another situation in which maintaining deployment flexibility can be advanta-
geous occurs when developing an application for external customers. Writing
such an application so it can be deployed in a manner defined by your clients can
be valuable. Some clients might want the application to run in a clustered envi-
ronment, while others—due to varying hardware and software resources—might
want to run it stand-alone, without an EJB container. If your application relies on a
container to persist data, the latter option won’t be available to you.

8.6 Solution: Do not “inherit” a persistence architecture—choose it

If you want to be successful, you must consider each major component of your
architecture carefully. The critical criteria in choosing a persistence framework
are J2EE integration, security, JCA integration, JTA integration, simplicity, Java lan-
guage alignment, and deployment flexibility. We mention these again because
they each play a large role in your application’s eventual success or failure. Sim-
plicity with J2EE integration, including JCA and JTA, makes your application easier
to write and manage. Deployment flexibility makes your code easier to scale, easily
enabling both single-server and clustered implementation. Language alignment
protects your investment and makes code much easier to test and refine. Of

Summary 283
course, you must also consider the political realm: EJB is the most strategic envi-
ronment because it has the best political support. However, no decision is politi-
cally safe if it doesn’t meet your needs. To succeed, you must clearly and carefully
analyze your alternatives and make the best choice.

8.7 Summary

In this chapter, we argued that EJB entity beans are not the best way to handle per-
sistence. EJB entity beans present several fundamental problems that are difficult
to bypass:

■ Entity beans are more difficult than alternatives to code and maintain.

■ Entity beans are not closely aligned with Java.

■ Entity beans enforce the use of many coarse-grained services, adding too
much overhead.

These antipatterns are best resolved using alternate persistence mechanisms. We
looked at two basic alternatives. The first alternative uses JDBC with POJOs,
wrapped in a Session Façade. This approach creates a simple and scalable alterna-
tive appropriate for many applications. However, when domain object models get
too complex, the JDBC solution can break down.

 The second alternative is to use an object persistence framework, which is suit-
able for complex domain models. The alternatives presented here provide persis-
tence services and only persistence services—they do not solve any other problem
inherent in the EJB specification. Decoupling these services is a good thing and
necessary for good performance. Because persistence and other services should
not be tightly coupled, using a tool that addresses only persistence is often ideal,
provided that that tool can be used in conjunction with the EJB specification. This
pairing offers the best of both worlds—all the advantages of EJB plus a persistence
model that does not impose design-time or deploy-time limitations on a project.

 Entity beans should be reserved for situations when remotely accessible persis-
tent components are necessary. More often than not, efficient, well-designed
enterprise applications do not access their domain objects in this fashion. Instead,
applications typically need only remote access to business methods in a façade.
Remote method calls are not usually made on the domain objects themselves. The
domain objects may be accessible by business methods that return them, in the
guise of DTOs, but all distributed operations are performed through session
beans or message-driven beans.

284 CHAPTER 8

Bitter alternatives
 When starting an enterprise project, it is critical that you choose technologies
that will meet the project requirements. To do this, you must understand the tech-
nologies available for persistence and the problems inherent in each approach.
You should use a persistence framework chosen because of the business needs of
the project, instead of using an inherited framework because it comes free with
your application server.

 In chapter 10 we’ll consider a few finer points of component development and
show you how to efficiently build and deploy your applications. Chapter 9 will
show you how to automate your performance tuning.

8.8 Antipatterns in this chapter

This section covers the Persistent Problems antipattern.

DESCRIPTION
Few decisions stay with an application like the choice of a persis-
tence framework, but many development teams inherit a frame-
work, like EJB entity beans, without making a total evaluation of
the alternatives.

MOST FREQUENT SCALE
Organization

REFACTORED SOLUTION NAME
Evaluate solutions; don’t inherit one.

REFACTORED SOLUTION TYPE
Technology

REFACTORED SOLUTION DESCRIPTION
Consider the business needs of the application. Make sure that a
“default” choice is up to the challenge. Insist on customer refer-
ences, with a deployed application of the size, scope and nature of
a problem similar to the one that you’re attacking.

ANECDOTAL EVIDENCE
“We’re doing J2EE, so we guess persistence is EJB CMP entity beans.”

SYMPTOMS, CONSEQUENCES
Cost overruns, inadequate flexibility, inadequate scalability.

PERSISTENT PROBLEMS

Part 4

Broader topics

In Arkansas, we gaze at the rain-swollen Little Missouri River. We look forward
to running this Ozark jewel, which is rarely this high. Our egos, too, are swelled.
This river, now merely the promise of a fun diversion, would have been well beyond
our skill level a mere two years ago. As we suit up, we plan our run, discussing
strategy and safety issues. I notice a partner frantically scrambling through our gear
and realize that we’ve forgotten to pack a spray skirt. The function of a skirt is to
seal water out of the kayak. After eight hours of driving, we’ll have no run today.

In Arkansas, we painfully learned that issues like packing and strategizing can be
as important as fundamental skills like paddling. The same holds true of EJB
development. Part 4 of Bitter EJB addresses secondary issues like tuning and
packaging.

 In chapter 9, we discuss the importance of good performance tuning tech-
niques. We emphasize the need for an automated test suite and the importance of
testing before making assumptions about performance. In chapter 10, we discuss
the issues of building, testing, and packaging an application. We look into tools
like XDoclet and Ant that make the build process easier to automate. And we
underscore the importance of running automated tests. In chapter 11, we peek
into the future of EJB, pointing to technologies that may play a crucial role in the
future of EJB.

9Bitter tunes
This chapter covers
■ Definitions of performance
■ Antipatterns related to the EJB performance tuning process
■ A JUnitPerf tutorial
■ Tuning an example EJB application using JUnitPerf tests
■ A step-by-step performance testing methodology
■ Techniques for automating performance testing
287

288 CHAPTER 9

Bitter tunes
It’s early in the morning, and I’m locked in tightly to my new snowboard, staring
anxiously down the impossibly steep slope. I’m a skier who’s grown increasingly
addicted to the freedom of snowboarding, and I’ve learned quickly. But I’m having
a tough time getting to the next level—the confident level of the elite boarder. With a
twist of the hips, I accelerate downhill. I mechanically hammer through a couple of
turns, reacting to each tiny groove and bump in the ungroomed morning snow. My
brain gradually falls behind, and my body only barely keeps up with the descent. I’m
in a purely reactionary mode now, with my eyes tracking the terrain only inches in
front of me. I fear that I may be unable to stop, and I certainly can’t keep up this
reckless pace. I wonder if I will even see the crash come.

In this chapter, we’ll tour a few common pitfalls related to the EJB performance
tuning process. We’ll focus on developing a disciplined performance testing
methodology driven, not by irrational fears or wild speculation, but by automated
tests whose objective results aren’t distracted by emotion. By continually measur-
ing the performance of our code—and the impact of our changes to it—these
tests will help us stay ahead of the pain endured when undetected performance
problems sneak into our code.

 Ah, but tuning isn’t a development activity, you say. Configuring the applica-
tion for its operational environment is a job suited for those other geeks—the
operations folks strolling safely around the lodge—not those of us still on the
mountain. Well, we could pass the buck that way, but letting performance tuning
roll too far downhill is an incredibly inefficient way to develop software. At best, it
introduces a costly delay in the feedback cycle between making a change intended
to improve performance and seeing whether that change actually did any good.
At worst, failure to start measuring performance early invites the danger that sig-
nificant problems will crop up later, when redesigns are no longer economical.
Instead, to maximize our time and ensure a successful rollout of our application,
we must obtain immediate results on early performance testing.

 In this chapter, we will consider an EJB application that suffers from poor per-
formance. The application will employ a familiar antipattern that will serve as a
crash test dummy for our performance testing methodology, letting us focus on
tuning the application and measuring the impact of that tuning. Each time we
ratchet the performance gear a notch, we’ll receive immediate data that indicates
unambiguously whether we’ve truly improved performance. By taking the guess-
work out of the tuning process, we’ll increase our confidence, allowing us to
tackle new performance requirements without fear.

Measures of success 289
9.1 Measures of success

Before we shift into high gear, let’s first nail down a definition of performance as a
measurement. In general, two ways exist for viewing performance: response time
and throughput. We tune and test applications differently, depending on the
aspect on which we’re focusing our improvements.

9.1.1 Response time

The response time of our application refers to the speed at which the application is
able to service a given request, such as a user requesting a web page through a
browser. The request may be serviced by any number of resources in our applica-
tion, including servlets, EJB, a database, or a legacy system. We can manage certain
types of resources by placing a limit on the maximum number of concurrent
requests each resource can safely handle. That is, managed resources are control
valves that help us throttle the application for consistent performance and stabil-
ity. Consequently, each time a request requires the use of a managed resource, it
may need to wait in a queue until the resource is available.

 Take, for example, a limited resource familiar to most enterprise developers—
database connections. Figure 9.1 (a) shows a database connection servicing a
request for data. In this case, the database connection pool is sized with ample
available connections capable of servicing requests without queuing. So no cost is
incurred in waiting for a database connection to become available. In contrast,
figure 9.1 (b) shows a queue of active requests waiting to be serviced by a single
database connection. In this case, the size of the database connection pool is not
able to keep up with the number of new requests without queuing. Step right
up… and take a number!

 From figure 9.1, we can infer that the response time of a request will include
any time spent waiting in the request queue for an available database connection.
The response time may also include any network latency in obtaining a database
connection via a remote call. Furthermore, as concurrent requests for a database

Database
Connection

Database
Connection

Request queue

(a) (b)

Figure 9.1 Database connections are examples of managed resources that may cause incoming
requests to be queued before being serviced. Queuing incurs additional response time overhead.

290 CHAPTER 9

Bitter tunes
connection increase, more requests will be queued, waiting for the connection.
Therefore, to characterize the response time of our application accurately, we
must take two essential measurements: the response time for a single request and
the response time for the same request under a load of concurrent requests.

 In section 9.7.2, we’ll roll up our sleeves and write automated tests that mea-
sure the response time of a use case from our application. By continually running
these tests, we should gain confidence, knowing that any optimizations we make
have indeed improved response time. For now, let’s begin by considering the pos-
sible measurements of such tests.

9.1.2 Throughput

While response time focuses on the speed of a specific request, throughput mea-
sures the number of requests our application can service in a given amount of
time. For EJB applications, throughput is typically measured as the number of
business transactions per second (tps). What constitutes an average business
transaction is certainly application-specific, so throughput metrics always must be
taken in appropriate context. For example, our application might be capable of
processing 10 product catalog queries per second, with each query returning an
average of five products.

 From a slightly different angle, we use throughput as an indicator of our appli-
cation’s potential to scale. Scalability is a measure of a load’s affect on our applica-
tion’s performance. For example, if we say that our application can scale to
handle five concurrent users, then we’re referring to the application’s ability to
maintain a linear (not exponential) average response time for each user, while
under the stress of a five-user load.

 Applications that scale well can deliver increasingly higher levels of through-
put by adding resources, such as more hardware or more connections within a
pool. When the average response time of a business transaction becomes intolera-
ble under load, the application has reached its maximum effective throughput. Stress-
ing the application beyond this point by piling on a heavier load will further
degrade its responsiveness.

 Revisiting our example of database connections as managed resources,
figure 9.2 shows how a database connection pool can be used to work off requests
efficiently. As the number of concurrent requests increases, the single database con-
nection in figure 9.2 (a) will eventually hit a wall. Try as it might, the connection
won’t be able to keep up with the number of pending requests in the queue. Conse-
quently, the request queue will continue to grow, adding to the response time of all
waiting requests. By tuning the size of the database connection pool to include two

Antipattern: Premature Optimization 291
available connections, as shown in figure 9.2 (b), more requests can be serviced in a
given amount of time. All other things being equal, figure 9.2 (b)’s connection
pool will double the application’s throughput depicted in figure 9.2 (a).

 When attempts to get an application to scale prove frustrating, or even down-
right impossible, bottlenecks are the usual suspects. In general, a bottleneck is any
chokepoint that restricts throughput. When a bottleneck is suspected, load testing
tools are called to the rescue. Load testing tools are invaluable. They first put a
load on an application, then shine light on any bottlenecks that rear their ugly
heads. In section 9.7.5, we’ll capture a nasty little bottleneck in the wild by writing
an automated load test. Before we do, however, we must discuss an antipattern
everybody knows but nobody likes to talk about: Premature Optimization.

9.2 Antipattern: Premature Optimization

Making a chunk of seemingly slow code faster can be quite satisfying. You can get
a thrill from strutting your programming prowess and seeing immediate perfor-
mance improvements. However, that thrill can cloud your judgment. Time passes
in a flash as performance tweaking takes over, often resulting in an overly com-
plex tangle of code that might get run only once in a blue moon. But when that
code does run—man, is it fast!

 Nobody is immune to the allure of Premature Optimization. We’ve been both
victims of and witnesses to its use. Premature Optimization can take many forms: a
speculative architecture decision, the choice of a particular design, a change in
the runtime environment, or convoluted code.

Database
Connection

Request queue

Database
Connection

Database
Connection

Request queue

(a) (b)

Figure 9.2 Pooling limited resources, such as database connections, is a common technique for
improving an application’s throughput. By increasing the size of the connection pool, a scalable
application can take advantage of these additional resources to deliver better performance.

292 CHAPTER 9

Bitter tunes
 Low-level code optimizations tend to attract your attention first. The trouble is,
in most cases, the code paths you decide to optimize aren’t called frequently
enough to justify the time spent tuning the code. To make matters worse, the risk
of wasting time optimizing arbitrary code paths increases with the code base size.
Sure, you can always find a chunk of code that can be made faster, but it’s usually
the wrong one. Although you want your code to be reasonably efficient at all
times, you gamble each time you blindly optimize code at the expense of code
clarity and precious development time. Indeed, code clarity is often compromised
as a result of optimization.

 Premature Optimization has another insidious side effect. Tweaking code to
make it faster tends to break something that’s already working. That is, as you con-
tort the code to squeeze out the last little bit of performance, you inevitably make
compromises that can come back to bite you big later. Alas, your code won’t win
any awards for producing the wrong result quickly.

9.2.1 Tuning EJB applications blindfolded

EJB applications are especially unforgiving when you tune them in the dark. They
inherently use at least one other resource, such as a database. As such, any arbi-
trary EJB method may spend more time blocked, waiting on a resource, than actu-
ally using the CPU. In that case, optimizing code won’t show any significant
performance improvement.

 The runtime environment of an EJB application is also particularly fertile
ground for the Premature Optimization antipattern. You must consider the vir-
tual machine, database, and application server versions, as well as a dizzying array
of internal tuning parameters for each version. If you try to get all these parame-
ters adjusted for optimal performance before understanding their effect on your
application, you incur at least two costs. First, you divert time away from those
activities that really pay the bills. Second, you can complicate deployment unnec-
essarily by assuming that certain configuration parameters must be used.

 Another reason EJB applications are prone to Premature Optimization is the
myriad design decisions that must be weighed against performance. Indeed, it’s easy
to speculate on possible optimizations from the design perspective. Once you swerve
onto that path, you may waste a significant amount of development time before you
see any possible gain. Table 9.1 describes a few premature high-level design optimi-
zations prevalent in EJB applications, along with their potential consequences.

 At the end of the day, time spent tuning one area of our application is time
not spent tuning another. It’s a game of opportunity cost. Without a deep
understanding of your application and the behaviors of its users, arbitrary

Antipattern: Premature Optimization 293
optimizations are pure speculation. However, by first identifying the most valu-
able optimizations, whether at a high or low level, you can concentrate your
efforts where they’re most needed.

9.2.2 Solution 1: Plan, but don’t act (yet)

Performance requirements are the solution for Premature Optimization. Without
well-defined goals, you’ll try forever to optimize every line of code you write to
mitigate a performance backlash. However, by defining measurable goals for
performance-critical use cases, you can optimize pragmatically, based on patterns
in user behavior and data usage. Your energy is focused on solving the most criti-
cal performance issues first.

 In our experience, the best performance gains are realized when following the
advice given in the simple motto, “make it run, make it right, make it fast.” Notice

Table 9.1 Premature design optimizations in EJB applications may degrade performance and increase
complexity. Deferring these types of optimizations until deemed necessary and beneficial is a better use
of our time and resources.

Premature
Optimization

Potential consequences

Entity beans If your business object doesn’t require concurrent read and write access while retain-
ing stringent transactional integrity, then the use of an entity bean may incur unneces-
sary complexity and performance overhead. A servlet or session EJB using JDBC is
often sufficient.

Stored
procedures

Although stored procedures allow your database to do the heavy lifting, the business
logic they encapsulate is tightly coupled to the database schema and may be written
in a proprietary language that’s difficult to maintain. Designing a business logic layer
in your middle tier generally is easier to develop and maintain.

Bean-managed
persistence

BMP entity beans may suffer from hard-coded SQL, difficult-to-maintain database
logic, and n + 1 database calls to load n bean instances. Entity beans using con-
tainer-managed persistence generally are more efficient and easier to develop, if
used properly.

Custom pri-
mary key gener-
ator

If not designed carefully, custom primary key generators may require synchronization
that becomes a scalability bottleneck. Better scalability, with less work, may be real-
ized by using automatic primary key generators already provided by your database. To
help, JDBC 3.0 includes new methods to facilitate the retrieval of automatically gen-
erated fields.

Caches If the data in your cache is changing more often than it’s being used, then the number
of cache hits may not justify the complexity of caching while preserving data integrity.

Custom
resource pools

The use of custom resource pools in the name of better performance may prevent
your application server from managing resources effectively. Stability may deteriorate
unless the pools already provided by your server are used.

294 CHAPTER 9

Bitter tunes
that this advice speaks to the order in which you take action, not necessarily the
order in which you consider the necessity of those actions. In other words, you
should take action to improve performance only when not doing so would pre-
clude you from delivering a successful application. The earlier you know what
determines success, the better.

 Knowing when to take action isn’t always clear-cut. We’re constantly trying to
strike a delicate balance between optimizing the code we write today and building
an application that can achieve expected levels of performance. On one hand,
you want to keep the code efficient without racking up too much time tuning. On
the other hand, you need to consider the performance requirements of your
application early and often. If you don’t keep in mind how your decisions might
impact performance, chances are when you finally do look up, you’ll be aimed
straight for a tree. Nevertheless, you can avoid possible disasters by expending
effort to improve performance only when you’ve gathered sufficient evidence to
let you prioritize and focus on optimizations that will truly make a difference.

 If you defer performance tuning until it’s proven to be a high-yield investment,
you’ll have a chance to validate your design with working code and tests. At this
point in the development cycle, you will be able to understand the design well
enough to consider the potential benefits of global and local optimizations toward
meeting performance goals. Better yet, with a solid foundation of tests, you will be
able to tune safely, knowing that the tests will fail if tweaking code causes existing
functionality to break. In the meantime, writing well-factored, modular code puts
you in a position to tune economically down the road, if necessary.

9.2.3 Solution 2: Write well-factored, modular code

Until performance improvements are necessary, write code that is as simple and
clean as possible. The time you’ll save if you write the simplest and cleanest code as
a matter of course can be used later to optimize those few places where code acci-
dentally gets complex and laden.

 If you find opportunities to improve performance, remember that simple
designs that use well-factored, modular code are more amenable to performance
tuning than more complicated designs. In general, well-factored code is easier to
change. And code that’s easy to change is easier to tune. By encapsulating imple-
mentation details, modular components can respond to change, allowing us to
change their underlying code without breaking their clients. Moreover, well-fac-
tored, modular code exposes succinct methods that serve as excellent starting
points for optimizing a particular code path. Take, for example, the method in

Antipattern: Premature Optimization 295
listing 9.1 responsible for withdrawing an amount from a bank account, designed
as an entity EJB.

 public double withdraw(int accountId, double amount)
 throws Exception {

 InitialContext context = new InitialContext();

 Object homeRef = context.lookup("AccountHome");

 AccountHome accountHome = (AccountHome)PortableRemoteObject.
 narrow(homeRef, AccountHome.class);

 Account account = accountHome.findByPrimaryKey(accountId);

 account.setBalance(account.getBalance() - amount);

 return account.getBalance();
 }

Notice how all the logic is inlined in the method. If we were to run a code profiler
on this code, we would find it difficult to ascertain which piece of logic—finding
the appropriate account or withdrawing the specified amount—consumes the
most time. The profiler would merely decompose the overall method time into
the individual execution times of each method invoked. However, we’d like to
know which coarse-grained code path could benefit most from tuning. To make
this monolithic method easier to read, let’s refactor it a bit, as shown in listing 9.2.

 double withdraw(int accountId, double amount) {

 Account account = findAccount(accountId);

 return account.withdraw(amount);
 }

Our refactoring organized the inlined code into two distinct methods: find-
Account() and withdraw(). In applying this refactoring, not only have we made the
code simpler and more modular, we’ve also enabled the code profiler to help us.
The code profiler can now quantify the individual cost of each code path and point
us directly to the starting point of the most expensive path. And, as an added
bonus, once we optimize a particular method, that method can be used by other
components in our application, providing better performance many times over.

Listing 9.1 Code that is not well factored is also difficult to tune

Listing 9.2 Well-factored code enables a code profiler to help you tune effectively

Find the
specified
account
by its ID

Withdraw the
specified amount
of money

Find the specified
account by its ID

Withdraw the specified
amount of money

296 CHAPTER 9

Bitter tunes
 Now, let’s consider what would happen if, instead of building performance
into our design, we attempt to bolt on performance after the design is finished.

9.3 Antipattern: Performance Afterthoughts

Developing applications that perform well requires prior intent. If performance is
important, it must be baked in to the application, not bolted on afterwards. We
learned this lesson the hard way a few years back. (And one of us has the hairline
to prove it!) The database we were using had a serious bottleneck in its locking
strategy. When used with applications that read more data than they wrote, the
database was lightning fast. Yet whenever multiple concurrent users attempted fre-
quent database updates, this particular database was clearly the wrong tool for the
job. Unfortunately, we didn’t know the bottleneck existed until it was too late.
Although we knew from the beginning that the application needed to scale in
order to be successful, we didn’t plan for scalability early enough. We assumed
that the application would scale, and if it didn’t, we figured we would have time
later to refactor the application’s design to be more scalable. Building a prototype
that demonstrated a few performance-critical use cases under load would have
alerted us earlier to the impending doom.

 Just because you’re using EJB technology doesn’t mean you can disregard per-
formance concerns. It’s true that any worthy EJB container will help you manage
resources for the best possible performance. However, perfuming a poorly per-
forming application with the scent of EJB won’t keep the flies away.

 We can increase our application’s probability of success by using simple
designs tactically with well-factored, modular code, but that, too, is no substitute
for strategically planning for performance. This presents a conundrum. If we
delay considering performance until right before the application goes live, it’s
usually too little too late. Then again, we don’t want to speculate on performance
at the expense of rapidly delivering valuable software. The answer to this problem
lies in continuous planning and measurement.

9.3.1 Solution: Plan early and often

To counterbalance premature optimization, we need to plan proactively for perfor-
mance. That’s not to say we should attempt to predict future performance
demands and carve a plan in stone. We’ll be sorely disappointed when, as often
happens, things don’t go according to that plan. Indeed, our perspective inevitably
will alter as we learn more about our application and its users. Consequently, the
performance plan is subject to frequent change. Planning for performance

Antipattern: Performance Afterthoughts 297
requires that we constantly consider the current state and goals of our application,
by taking measurements and making course corrections throughout the project.

 As the delivery date approaches, no doubt we’ll know which aspects of our
application suffer from poor performance. Furthermore, we’ll have more accu-
rate estimates of the production load on our application and the respective hard-
ware necessary to handle that load. Performance plans may change as a result of
this information, and we should consider this a good thing.

 In the meantime, the performance planning process will help us head off
potential problems at the earliest opportunity. If we continually plan for perfor-
mance, we’ll be able to see obstacles in the terrain ahead and react in time to
avoid a crash. Let’s consider the following guidelines for performance planning:

1 Understand the application’s usage patterns Users generally expect different
levels of service, depending on the feature of the application they are using
at the time. Users expect some use cases to respond rapidly and understand
when others are slower. A web user, for example, expects to navigate a prod-
uct catalog quickly. Yet, when an online order is placed, the same user will
accept a delayed order confirmation via email. Understanding patterns in
user behavior, and the data and resources required to support that behavior,
provides invaluable input into the performance planning process.

2 Prioritize performance requirements To maximize your time and dollars,
you should satisfy the performance requirement with the highest business
value first. For example, optimizing a product catalog for maximum
responsiveness when browsed under load is arguably a better investment
than optimizing your email server for faster order confirmation. Once the
top performance requirement has been demonstrated successfully, you
can work on the next highest priority requirement. Rinse and repeat.

3 Write automated performance tests Performance tests that unambiguously
define and validate the performance requirements of your application are
essential in helping you meet desired performance goals. Without a tar-
get, you’ll never know when you’ve hit the mark. Good performance tests
express objective exit criteria in an executable format. In other words,
running these tests will help you decide if tuning is necessary, and, if so,
when tuning should stop. Tests also prevent tendencies to overoptimize
based on speculation or commit too early to designs and infrastructure
that seem to promise improved performance.

4 Build modular components Components that hide their implementation
insulate the rest of the application from changes made to improve

298 CHAPTER 9

Bitter tunes
performance. Using these components, you can start with a simple algo-
rithm that works, even if it may incur a few extra seconds of overhead. As
you learn more about your application and its uses, you can easily swap in
a new, blazingly fast algorithm or data structure, for example.

5 Revise plans based on feedback Once performance goals have been identi-
fied and prioritized, you must demonstrate performance as early as possi-
ble to get feedback. You’ll want to know sooner rather than later if you’re
making design decisions that may prohibit your application from meeting
user demands. If you feed this information back into the planning pro-
cess, you can steer the design to meet your performance goals continually.
You can respond more readily to change, rather than dutifully marching
to an inflexible master plan.

6 Understand your EJB server’s configuration options In your haste to tear the
wrapper off your new EJB server, a few finer features may go unnoticed.
Server vendors differentiate themselves from their competitors, providing
different knobs and levers you can twist and pull to improve performance.
If you understand the available options, you’ll know when to leverage
rather than build for successful performance. Study and investigate the
contents of the box. Then experiment and see what happens. Your tests
will announce impending danger if your application starts to sputter.

7 Schedule the availability of production hardware Your plan should include
testing on production-quality hardware as soon as possible. Indeed, how
your application performs for real users is what matters most ultimately.
Everything else is just preparation.

Remember, it’s not the plan that’s important, but the planning. With that in
mind, let’s get down in the trenches with a real, live application.

9.4 Grist for the tuning mill

Let’s say we’ve accepted a mission to develop yet another online product catalog.
Our customer group—those folks defining the requirements of our application—
has decided that users want to browse a list of all products for a particular
category within a product catalog. The initial user interface will be an HTML
browser, but it’s imperative that the catalog browsing service be available to other
types of distributed clients. This requirement is not unlike the others we’ve been
delivering, from which a service-oriented architecture has emerged.

Grist for the tuning mill 299
 We conclude that the simplest approach would be to publish a remote façade
that encapsulates the business logic of querying a product catalog. We dub it the
catalog service. A stateless session bean seems like the logical choice given our
architecture and experience, so let’s make it the centerpiece of our design.

9.4.1 Putting an EJB to the test

Before diving into the implementation of our catalog service, let’s start by writing
a test. Why? Well, how else will we know what code to write? If we write a test first,
we’ll have an example of the catalog service’s intended use. In addition to demon-
strating the intent of the catalog service, the test can validate automatically that
the catalog service returns the correct results. Once the test passes, we’re done!

 Listing 9.3 shows the JUnit test, which queries for all products in the snowboard
category of the product catalog. (Note: a full tutorial on JUnit goes beyond the
scope of this chapter. The JUnit Primer1 will help get you up and running quickly.)

public class CatalogTest extends TestCase {

 public CatalogTest(String name) {
 super(name);
 }

 public void testGetProducts() throws Exception {

 String snowboardCategory = “Snowboard”;

 Catalog catalog = (Catalog)getCatalogHome().create();

 Collection products =
 catalog.getProductsByCategory(snowboardCategory);

 assertEquals(25, products.size());

 Iterator productIter = products.iterator();
 while (productIter.hasNext()) {
 ProductDetails product = (ProductDetails) productIter.next();
 assertEquals(snowboardCategory, product.getCategory());
 }

 catalog.remove();
 }
}

Listing 9.3 Unit testing the product catalog service

1 http://www.clarkware.com/articles/JUnitPrimer.html

300 CHAPTER 9

Bitter tunes
The test case has a single test method, testGetProducts(), that starts by using the
Catalog home interface to create a remote reference to a Catalog session bean
instance. The Catalog remote interface represents a façade—a black box from
the client’s perspective—that finds products in a catalog. Using the remote Cata-
log reference, the test then queries for all products in the snowboard category.
We expect exactly 25 products in this category because before running the test we
created 25 example products in the snowboard category of the product catalog
database. Iterating over the resulting collection of products, the test validates that
the catalog service only returns the products in the snowboard category.

 Excellent! Now there’s just one problem: We have to get the test to pass.

9.4.2 Passing the test

To get the test to pass, we have to write the code for the Catalog EJB. All EJB com-
ponents require a remote interface, home interface, and bean class. We won’t
actually show the code here because, frankly, the implementation doesn’t matter.
Instead, we’ll just show the design of one possible solution. Our priority should be
to begin by writing clean and simple code. We won’t worry about performance
here. We just want to validate that our design is usable and our code produces the
correct results, thus avoiding the risk of overspending on performance too early.
Running the test from the remote client’s perspective gives us confidence that the
catalog service is working as we expect. We can change and tune the underlying
code without the fear that existing functionality might silently break. If it does,
the test will surely let out a scream.

 Under the hood in the Catalog bean class, we code the bean to use JDBC to
query our product table directly through a database connection. The values in our
database table are then packaged and returned to the client in a collection of light-
weight ProductDetails DTOs. In future use cases, administrative users may update
the products in a catalog. This updating might require a more complex persis-
tence mechanism, for example, the type of persistence afforded by an entity bean.
We’ll cross that bridge when we get there. Right now we’re concerned only with
retrieving read-only product information, so a simple stateless session bean wired
up to the database will do just fine. Figure 9.3 shows a UML sequence diagram illus-
trating the interaction of our recently built components.

 Notice that all business logic occurs on the server side, behind the façade of
the Catalog interface. As such, our design is modular. If performance becomes an
issue, we can tune the code behind the Catalog interface without adversely affect-
ing its remote clients. That’s reassuring because we have a sneaky suspicion that
tuning may be in our immediate future.

Grist for the tuning mill 301
We’ve written just enough code to get the test to pass. We’ve made it work and
made it right. Now, let’s make it fast.

9.4.3 Specifying response time as a measure of success

Up until now, we’ve written simple code so that the test would pass. In doing so,
we certainly didn’t forget the hard-earned wisdom we gained designing distrib-
uted systems over the years. Rather, we made a concerted effort to determine the
workability of our design and code first, before speculating on performance.

 With much pride, we demonstrate the new catalog service to our customer,
who is delighted. After kicking the tires a bit, our customer hunkers down at our
test machine and proceeds to press the button that lists the snowboard category
products over and over again. Our customer likes the fact that the new catalog ser-
vice is working this soon in the schedule, so now we’re ready to start polishing.
The customer consensus is that the service just isn’t fast enough; we need to
improve performance.

 The average response time of the web page to query and list 25 products is
approximately 1.4 seconds. We think we can do better than that with a little tun-
ing, but we need a way to measure success. So we ask our customer group to write

CatalogTest CatalogHome Catalog Connection ProductDetails

Create catalog

Get products

Get details

Create

Query for products

Create

Figure 9.3 The Catalog stateless session bean, wired directly to the database, is used to query the
catalog for all products in a product category. The test stands in for a client, demonstrating a usage
scenario and validating that expected results are returned.

302 CHAPTER 9

Bitter tunes
a new performance requirement. We watch as they scratch their heads and mum-
ble a bit, but finally they draft a performance:

 The average response time of the catalog web page listing up to 25 products should not
exceed 1 second.

 Great, now we have a goal!

9.4.4 Seeing light at the end of the tuning tunnel

To satisfy our new performance requirement, we need to shave off about a half-
second of the response time, then stop tuning before we hit the point of diminish-
ing returns. However, we’re not sure whether to start chiseling in the presentation
layer or the business logic layer. We want to focus our attention on tuning the sec-
tions of code that contribute the most overhead to the overall response time.
Guessing would be a fool’s game, so we put our trusty code profiler on the case to
hunt down the busiest code. Table 9.2 shows the results:

The code profiler identifies the CatalogEJB.getProductsByCategory() method as
the major contributor to the total response time. Well, that rules out tuning the
presentation layer for any observable gain in performance. The top contributor is
the EJB method, not the servlet method that presents its results. The profiler
results also rule out tuning the database interaction. The time it takes to obtain a
database connection and execute the SQL query is insignificant compared to the
business logic in the EJB.

 We have no question that the culprit is the code in the EJB that transforms
database rows into products. But when we’re done tuning, how will we know we’ve
made good progress? What if our tuning activities cause performance to take a
step backward? Fear begins to envelop us as we’re reminded of endless hours
spent with the subject of our next antipattern—Thrash-tuning.

Table 9.2 Using a code profiler takes the guesswork out of tuning by identifying hot spots worth
optimizing. Always seek the advice of a code profiler before attempting to tune code.

Method Total time (ms)

CatalogEJB.getProductsByCategory() 1327.0

CatalogServlet.service() 10.0

CatalogEJB.getConnection() 10.0

CatalogEJB.runQuery() 15.0

1362.0

Antipattern: Thrash-tuning 303
9.5 Antipattern: Thrash-tuning

I am barely a third of the way down the hill, contemplating disaster, when some-
thing finally clicks. Instead of focusing on every slight ripple in the snow, I concen-
trate only on obstacles that might impact my balance or my course down the
mountain. I’m able to keep my eyes further ahead, improving my ability to plan and
react. With this improvement I husband my waning strength better, saving it for the
biggest challenges—like that tree just ahead! I’ve entered the zone that my mentors
so often describe.

If you’re always looking at your feet, you can’t anticipate what’s up ahead. And if
you can’t anticipate, you can’t determine whether your microadjustments are
making any progress toward the ultimate goal. Before long, you’re bound to
diverge hopelessly off course.

 Thrash-tuning is a nasty habit born out of undisciplined performance tuning.
You know the drill: change a tuning parameter here, tweak some code there, then
run the application. Is it faster? No, it actually seems to be slower! Interesting. Now which
change caused that to happen? Lacking clear knowledge, you repeat the cycle, over
and over again.

 Without a baseline to measure against, Thrash-tuning is entirely unpredict-
able. You may spend days tuning in circles with only a minor improvement to the
application’s overall performance. Sometimes you get lucky and increase perfor-
mance by a single order of magnitude in a quick round of thrashing, but you’ll
soon find that’s the exception. As a general rule, Thrash-tuning can consume
hours or days of your life, without amounting to much good.

 The following are common ways to invoke the curse of Thrash-tuning:

■ Changing more than one thing at a time In the rush to get the most bang
for your tuning buck, you change multiple things at once, but doing so
makes the individual contributions of those changes indistinguishable from
each other. Multiple changes also makes backing out a change that
degrades performance difficult.

■ Forgetting to measure between changes Without quantifiable evidence
that a particular change improves performance, you can’t clearly determine
its impact. Performance goals always seem to be just beyond your grasp.

■ Not knowing when to stop Remember, Thrash-tuning is a habit and a par-
ticularly hard one to kick. You may find yourself tuning endlessly. Perfor-
mance tests are the cure, telling you when enough is enough.

304 CHAPTER 9

Bitter tunes
If these scenarios sound all too familiar, you’re not alone. Both novice and veter-
ans alike have suffered similar fates at the hands of EJB applications. The sheer
number of opportunities for improving EJB performance makes falling into a
vicious tuning cycle deceivingly easy. At one end of the spectrum, you can change
deployment descriptors quickly to dynamically influence performance. At the
opposite end, you can apply high-level design patterns, using general knowledge
gained from distributed computing.

 The difficulty lies in choosing an approach and measuring its impact in isola-
tion. A solution applied in hopes of improving performance for one aspect of our
application may cause unwanted secondary effects in other areas. Consequently,
performance tuning quickly turns into a delicate balancing act. We become pain-
fully aware that multiple controls often exist for performance with complex inter-
actions. Each new interaction increases the odds that making a change—one that
theoretically should improve performance—may not make a difference.

 Besides being incredibly frustrating, when thrash-tuning runs rampant, it has
the potential to rob us of enormous amounts of development time. The more you
scratch it, the more it itches. A sure-fire way to stop this irritation is to use a sound
methodology with information derived from automated performance testing.

9.5.1 Solution: Use a performance testing methodology

The only defense we’ve found against falling prey to Thrash-tuning is the use of
tests to gather evidence first, before making an attempt to improve performance.
We’ve tried predicting whether an optimization would improve performance, and
yet, after hours of navel gazing, we remained undecided. Although not as thera-
peutic as navel gazing, writing tests that measure the impact of changes has given
us much better success.

 To ensure that you’re always ratcheting forward toward optimal performance,
current performance must be automatically compared to a baseline. Doing so
keeps the performance of your application from going off the rails. If you use a
methodology like the following, your performance stays on track, never more
than one change away from the last baseline:

1 Begin with clean and modular code that’s easy to understand and modify,
and driven by tests that express its intentions and expectations.

2 Choose quantifiable performance goals for the code.

3 Profile the code to identify hot spots with the highest return on investment.

4 Write and run an automated test that baselines current performance.

Mini-antipattern: Manual Performance Testing 305
5 Make a change intended to improve performance.

6 Run the automated test again to measure the gain (or loss) in performance.

7 Repeat as often as necessary until the application meets its performance
goals.

Notice that we use a test to measure both before and after a tuning change is
made. The test tells us if the tuning did any good. If not, we can back out the
change to arrive safely at the last good baseline. Bear in mind that we might need
to give caches, pools, and other performance-enhancing mechanisms a chance to
warm up before taking a measurement. Otherwise, the observed performance
may be thrown off by a cold start. In other words, the test environment has to be
predictable, and the tests must be repeatable.

 This easy-to-use formula really shines when applied incrementally to solve
the most pressing performance problem at any given time. Once performance
has improved in one area, and a test is in place to keep that problem continu-
ally in check, you can repeat the formula with the next most important perfor-
mance problem.

 We’ll use this methodology to confidently tune our catalog service throughout
the remainder of this chapter. In fact, we’ve already taken the first steps toward
our goal. We wrote clean and modular code to make our test pass. Demonstrating
our results to our customer prompted them to draft a realistic performance
requirement we can measure. Before beginning to hack and slash, we used a pro-
filer to find high-yield tuning opportunities. Now we’re ready to begin tuning so
that we can deliver on the goal our customer has given us. First, let’s make sure we
get started on the right foot by avoiding the tedium of manual testing.

9.6 Mini-antipattern: Manual Performance Testing

When we first turned over our catalog service to our customer, we watched as they
poked and prodded, and we noticed that they grew weary of manually hitting the
web page to assess performance. A couple times, they had to redo tests because
the manual process wasn’t followed consistently. Clearly, we need a more efficient
and less error-prone testing strategy. As the suite of performance tests grows, run-
ning them all manually just doesn’t scale. So many tests to run, so little time. Our
team has earned a reputation for cranking out high-quality features like clock-
work. To live up to that great reputation, we can’t drag ourselves to the test lab to
play the role of simulated web users every time we change something that impacts
performance. That’s what computers are for!

306 CHAPTER 9

Bitter tunes
 When push comes to shove and deadlines loom, manual tests are always the
second thing (right after documentation, of course) that gets selectively ignored.
Peril usually isn’t too far behind. The next time we tune something without the
safety of automated tests, our confidence will wane, and we’ll fall back into a
Thrash-tuning cycle again. Our stress goes up, the number of defects increases,
and pretty soon we’re burnt out.

9.6.1 Solution: Automate performance testing

Automated performance tests are like canaries in a coal mine. If we keep them
running, they’ll continue to measure whether performance goals are being met
in the face of change. If a change causes performance to backslide, well, we’ll
know it at the poor birdie’s expense.

 Good performance tests offer many advantages, including

■ automatically checking their own results

■ providing immediate feedback in the form of a simple pass or fail status

■ retaining their value over time through repeated testing of expectations

■ running continuously without manual intervention

■ instilling confidence to change code with impunity

At the least, we should run our performance tests once a day as a sanity check. If
we’re actively tuning code or changing the runtime environment, we should run
them more often. The repeatability of the tests will prove our application’s readi-
ness for production.

 A plethora of tools already exists for performance testing automation. Apache
JMeter,2 for example, is an open source desktop application that measures the
performance of an application’s behavior under load. Traditionally used to test
web applications, over time JMeter has been made more extensible. You can now
write custom extensions to put almost any server, network, or object under load.
JMeter is also highly configurable; it includes a collection of test listeners for
graphically visualizing performance. It can also be configured to include test
assertions. For example, you can assert that a request for a web page returns
within a specified amount of time. Yet, although JMeter is a valuable tool for per-
formance testing, it falls short of our goals for automation. Specifically, the test
results must be manually inspected each time the tests are run. While we could

2 http://jakarta.apache.org/jmeter/

Automated performance testing with JUnitPerf 307
probably extend JMeter to satisfy our desire for automation, instead we opt to use
a complementary tool.

 In this chapter we’ll use JUnitPerf, an open source performance-testing tool
that wraps existing functional tests written in JUnit. We choose JUnitPerf because
it allows us to write tests that automatically check their own results and provide
immediate feedback with an unambiguous pass or fail status. JUnitPerf is also
tightly integrated with JUnit, so our performance tests can be run automatically
alongside our functional JUnit tests.

9.7 Automated performance testing with JUnitPerf

We’ve already validated the feasibility of our EJB design with working code and a
functional test. Making it fast enough to please our customer is our next order of
business. However, we don’t want to risk breaking functionality by complicating
our code with performance optimizations. To be useful, the catalog service has to
work right and perform well at the same time. Let’s explore how JUnitPerf can
keep both these interests in check.

9.7.1 JUnitPerf overview

JUnitPerf3 is an open source set of JUnit extensions for automated performance
testing. JUnitPerf tests transparently wrap standard JUnit tests and measure their
performance. In other words, we can build upon our existing functional test to
make sure the code continues to work right. The JUnitPerf tests tell us if the code
is fast enough. If a performance test doesn’t meet expectations, the whole test fails.
If the functional test fails, the performance test fails. Conversely, if the perfor-
mance test passes, then we have confidence that tuning didn’t cause existing func-
tionality to break. Table 9.3 describes the major JUnitPerf classes and interfaces.

 Because JUnitPerf tests can run any class that implements JUnit’s Test inter-
face, we could use JUnitPerf to measure the performance of any test conforming
to this interface. In this section, we use it to wrap the JUnit test we wrote earlier
for our catalog service. We could also use JUnitPerf to run HttpUnit tests and
measure the performance of our entire web application, for example. Another
option might be to use JUnitPerf to run Cactus tests to validate our catalog ser-
vice’s business logic from within the EJB container.

3 http://www.clarkware.com/software/JUnitPerf.html

308 CHAPTER 9

Bitter tunes
But that’s another day. Right now, our customer is getting nervous. Let’s put our
money where our mouth is with an automated response time test for the catalog
service.

9.7.2 Testing response time

Recall that we’re staring down the barrel of a response time of approximately 1.4
seconds to display 25 products on a web page. We won’t sleep well until the
response time is under 1 second. Luckily, we know what to do. The code profiler
indicated earlier that optimizing the CatalogEJB.getProductsByCategory()
method would be the smart move. How will we know when we’re done? Well,
when a performance test passes, of course.

 We want to write a test that will fail if the response time of our use case exceeds
1 second. To do that, we create a JUnitPerf TimedTest instance that wraps our
existing CatalogTest.testGetProducts() test case method. Listing 9.4 shows the
JUnitPerf test used to validate our performance expectations.

public class CatalogResponseTimeTest {

 public static Test suite() {

 long maxTimeInMillis = 1000;

 Test test = new CatalogTest("testGetProducts");
 Test timedTest = new TimedTest(test, maxTimeInMillis);
 return timedTest;

Table 9.3 JUnitPerf is a collection of classes and interfaces for performance testing JUnit tests.

Class/Interface Description

TimedTest Runs a JUnit test and measures its elapsed time. A TimedTest is constructed
with a specified maximum elapsed time. By default, a TimedTest will wait for
the completion of its JUnit test and then fail if the maximum elapsed time was
exceeded. Alternatively, a TimedTest can be constructed to immediately fail
when the maximum elapsed time of its JUnit test is exceeded.

LoadTest Runs a JUnit test with a simulated number of concurrent users and iterations.
The load can be incrementally ramped by registering a Timer instance to control
the delay between the additions of each concurrent user.

Timer An interface implemented by classes that define timing strategies to optionally
control the delay between additions of users in a LoadTest.

ConstantTimer A Timer with a constant delay.

RandomTimer A Timer with a random delay and a uniformly distributed variation.

Listing 9.4 Testing the response time of the catalog service

Automated performance testing with JUnitPerf 309
 }

 public static void main(String args[]) {
 junit.textui.TestRunner.run(suite());
 }
}

As a convenient way to run our test, our test defines a suite() method called by
the JUnit test runner in the main() method. We run the CatalogResponseTime-
Test, and it fails with the following output:

.TimedTest (WAITING):
testGetProducts(com.bitterejb.catalog.ejb.CatalogTest): 1352 ms

F
Time: 1.352
There was 1 failure:
1)testGetProducts(com.bitterejb.catalog.ejb.CatalogTest)
Maximum elapsed time exceeded! Expected 1000ms, but was 1352ms.

FAILURES!!!
Tests run: 1, Failures: 1, Errors: 0

All right, we knew that would happen. We just wanted to see if the test was really
measuring anything. The test expected the response time to be less than 1 sec-
ond, but sure enough, it measured the same response time as observed by our cus-
tomer—1.4 seconds. Now we have a solid baseline from which to work. We should
be able to optimize code, improving the response time until the test passes. If the
test doesn’t eventually pass, we’ll need to start turning the performance knob in
the other direction or look for another knob to turn.

 Be aware of a subtle “gotcha!” when writing JUnitPerf tests. The response time
measured by a TimedTest includes the elapsed time of the testXXX() method and
its test fixture—the setUp() and tearDown() methods. Therefore, the maximum
elapsed time specified in the TimedTest should be adjusted accordingly to take
into account any cost of the existing test’s fixture.

9.7.3 Tweaking code

To get the test to pass, we follow the code profiler’s advice and optimize the logic
that created ProductDetails objects from the rows in our database. The SQL
query is sufficiently fast, according to the profiler, so nothing is gained barking up
that tree. After optimizing, we run the CatalogResponseTimeTest again, and it
gives us the following output:

.

310 CHAPTER 9

Bitter tunes
TimedTest (WAITING):
testGetProducts(com.bitterejb.catalog.ejb.CatalogTest): 751 ms

Time: 0.751

OK (1 test)

Hey, that did the trick! The test tells us that we made good progress. Had the test
failed, we could have continued to optimize until it passed.

 After showing off the improved catalog service to our customer, we add this
test to our suite of performance tests. As we go forward, the automated test will
continue to keep the response time of this use case in check.

9.7.4 Specifying scalability as a measure of success

At this point we know how long it takes for one user to get a list of 25 products
using the catalog service. How long will the same process take if our application is
under the stress of multiple concurrent users? Until now we haven’t thought
much about scalability, but we’re confident that our simple design won’t let us
down. Here’s where the rubber meets the road.

 Our customer is impressed with our track record of meeting goals, and now is
ready to hand us a new challenge. Performance planning early and often has
enabled the customer to accurately estimate the expected load on the production
system. The customer now wants to improve upon our performance success by
writing a new performance requirement, which states:

 The response time of the catalog web page listing up to 25 products should not exceed 1
second under a load of five concurrent users.

 In other words, the catalog service should scale to handle five concurrent users
while consistently maintaining the single-user response time we demonstrated
earlier. That’s a tall order. Let’s use JUnitPerf to see how far off the mark our
application currently is.

9.7.5 Testing response time under load

We have an automated JUnitPerf test that measures single-user response time.
We’d like to use a similar testing technique to put this test under a load of five
concurrent users while measuring each user’s response time. We want the test to
fail if any user’s response time exceeds one second. Then we can follow our per-
formance testing methodology to tune until the test passes.

 To do so, we write a JUnitPerf test that creates a LoadTest instance passing in a
TimedTest instance and a number of concurrent users. The TimedTest in turn

Automated performance testing with JUnitPerf 311
wraps our existing CatalogTest.testGetProducts() test case method. Listing 9.5
shows the JUnitPerf test used to validate our scalability expectations.

public class CatalogLoadTest {

 public static Test suite() {

 long maxTimeInMillis = 1000;
 int concurrentUsers = 5;

 Test test = new CatalogTest("testGetProducts");
 Test timedTest = new TimedTest(test, maxTimeInMillis);
 Test loadTest = new LoadTest(timedTest, concurrentUsers);
 return loadTest;
 }

 public static void main(String args[]) {
 junit.textui.TestRunner.run(suite());
 }
}

We run the CatalogLoadTest , which fails with the following output:

..........
TimedTest (WAITING):
testGetProducts(com.bitterejb.catalog.ejb.CatalogTest): 771 ms
TimedTest (WAITING): testGetProducts(com.bitterejb.catalog.ejb.CatalogTest):

1372 ms
F
TimedTest (WAITING): testGetProducts(com.bitterejb.catalog.ejb.CatalogTest):

1963 ms
F
TimedTest (WAITING): testGetProducts(com.bitterejb.catalog.ejb.CatalogTest):

2584 ms
F
TimedTest (WAITING): testGetProducts(com.bitterejb.catalog.ejb.CatalogTest):

3255 ms
F
Time: 3.40
There were 4 failures:

1)testGetProducts(com.bitterejb.catalog.ejb.CatalogTest)
 Maximum elapsed time exceeded! Expected 1000ms, but was 1372ms.
2)testGetProducts(com.bitterejb.catalog.ejb.CatalogTest)
 Maximum elapsed time exceeded! Expected 1000ms, but was 1963ms.
3)testGetProducts(com.bitterejb.catalog.ejb.CatalogTest)
 Maximum elapsed time exceeded! Expected 1000ms, but was 2584ms.
4)testGetProducts(com.bitterejb.catalog.ejb.CatalogTest)
 Maximum elapsed time exceeded! Expected 1000ms, but was 3255ms.

Listing 9.5 Testing the scalability of the catalog service

312 CHAPTER 9

Bitter tunes
. . .

FAILURES!!!
Tests run: 5, Failures: 4, Errors: 0

Ouch! Our application can’t scale beyond one user. Notice that the first user’s
response time is within the 1-second limit, but the other users’ response times
bust the threshold. Worse yet, the response times increased for each successive
user, indicating that our application has a bottleneck restricting its ability to scale.

 So we fire up the code profiler and run the CatalogLoadTest to obtain clues.
The code profiler doesn’t let us down. Table 9.4 shows what the profiler finds
when the catalog service is under load.

The CatalogEJB.getConnection() method that was only taking around 10 milli-
seconds in our initial run of the code profiler is now taking up the majority of the
overall response time. Let’s tune that method while continuing to test the single-
user response time.

9.7.6 Using a connection pool to increase throughput

Based on the evidence provided by the code profiler, we conclude that a single
database connection is the limiting factor to scaling our application. Conse-
quently, requests for a connection are being queued. Each successive user’s
response time in turn rises above the desired threshold.

 In this case, pooling database connections is a low cost, high reward change
sure to improve scalability. Before you start rolling your eyes over yet another
example demonstrating the virtues of connection pooling, allow us to explain. We
realize connection pooling is the poster child for many discussions on perfor-
mance. Indeed, it’s a well-known performance problem, and that’s exactly why
we’re using it here. We want the problem—and the solution—to be familiar so

Table 9.4 Running a profiler on the catalog service under load reveals contention for a database
connection. Load testing tools help illuminate scalability bottlenecks.

Method Average time (ms)

CatalogEJB.getProductsByCategory() 716.0

CatalogServlet.service() 10.0

CatalogEJB.getConnection() 1248.0

CatalogEJB.runQuery() 15.0

1989.0

Automated performance testing with JUnitPerf 313
you can focus on how to test it. It’s not about the connection pool; it’s about the
technique to discover it.

 It’s also worth noting that we’ve run across more than one improperly sized
connection pool. Worse yet, we’ve seen custom connection pools that were imple-
mented incorrectly. (Yet another victim of the Not Invented Here antipattern.) In
other words, just because you’re using a connection pool doesn’t necessarily
mean you get instant scalability. You have to test for that, so let’s get back to the
technique.

 Instead of synchronizing access to a single database connection shared by mul-
tiple users, we refactor our Catalog EJB to use a database connection pool. We
then configure the pool size to five active connections to improve scalability.
Figure 9.4 shows a UML sequence diagram illustrating the use of the database con-
nection pool.

 Now we run the CatalogLoadTest again, and it passes with the following output:

.....
TimedTest (WAITING): testGetProducts(com.bitterejb.catalog.ejb.CatalogTest):

751 ms
TimedTest (WAITING): testGetProducts(com.bitterejb.catalog.ejb.CatalogTest):

812 ms

CatalogTest CatalogHome Catalog ConnectionConnectionPool ProductDetails

Create catalog

Get products

Get details

Query for products

Create

Reserve
Connection

Figure 9.4 Refactoring the catalog service to use a database connection pool improves the scalability
without sacrificing code complexity.

314 CHAPTER 9

Bitter tunes
TimedTest (WAITING): testGetProducts(com.bitterejb.catalog.ejb.CatalogTest):
822 ms

TimedTest (WAITING): testGetProducts(com.bitterejb.catalog.ejb.CatalogTest):
831 ms

TimedTest (WAITING): testGetProducts(com.bitterejb.catalog.ejb.CatalogTest):
811 ms

Time: 0.972

OK (5 tests)

Outstanding! Our scalability test is passing, and the underlying functional test
continues to pass. This tells us that refactoring to use a database connection pool
didn’t break anything. As we expected, the refactoring actually improved scalabil-
ity. Because requests don’t need to be queued before being serviced, the response
times are fairly consistent for each concurrent user. The test validates our design
as able to handle five concurrent users without any specific user experiencing a
delayed response time. If, in the future, the response time of any user increases
beyond the limit set in our load test, the test will fail.

9.7.7 Testing throughput

We may end up with performance requirements expressed as throughput rather
than as response time under load. For example, we might want to write an auto-
mated test to measure the total amount of time elapsed while servicing all five con-
current users. Using JUnitPerf, we simply reverse the order in which we create the
tests, this time wrapping the LoadTest in a TimedTest, as indicated in listing 9.6.

public class CatalogThroughputTest {

 public static Test suite() {

 long maxTimeInMillis = 1000;
 int concurrentUsers = 5;

 Test test = new CatalogTest("testGetProducts");
 Test loadTest = new LoadTest(test, concurrentUsers);
 Test timedTest = new TimedTest(loadTest, maxTimeInMillis);
 return timedTest;
 }

 public static void main(String args[]) {
 junit.textui.TestRunner.run(suite());
 }
}

Listing 9.6 Testing the throughput of the catalog service

Modeling performance 315
The CatalogThroughputTest will fail if the catalog service is unable to process at
least five catalog queries per second. After refactoring to use a database connec-
tion pool, the CatalogThroughputTest passes with the following output:

.....
TimedTest (WAITING): LoadTest (NON-ATOMIC): ThreadedTest:

testGetProducts(com.bitterejb.catalog.ejb.CatalogTest)(repeated): 972 ms

Time: 0.972

OK (5 tests)

Now that we’ve written JUnitPerf tests to measure both response time and
throughput, let’s put all the numbers together into a performance model.

9.8 Modeling performance

Using our existing JUnitPerf tests, we can ramp up the user load to sketch out a
model that represents our application’s overall performance. Doing so will answer
questions in the performance planning process like, “Will our application scale to
meet the demands of 10, 100, or 1,000 concurrent users?”

 As an example, figure 9.5 shows the average response time as a function of
the number of concurrent users. The figure example compares the use of a data-
base connection pool with 10 active connections to that of a single shared data-
base connection.

 Notice that with a single database connection the application cannot maintain
a linear response time as the number of concurrent requests increases. That is, as
more users attempt to use the application, their observed response times are elon-
gated. In contrast, using a database connection pool allows the application to ser-
vice requests to up to 25 users at a relatively constant response rate.

 Figure 9.6 shows the throughput as a function of the number of concurrent
users. This figure also compares the use of a database connection pool with 10
active connections to that of a single shared database connection.

 Notice that, regardless of the number of concurrent users, the bottleneck
caused by a single database connection limits the throughput to one catalog
query per second—the application’s maximum effective throughput. In contrast,
by configuring the connection pool with 10 active connections, the application is
able to consistently process almost 10 catalog queries per second. The application
can scale to handle at least 25 concurrent users with only 10 shared connections.

 Models such as these are great information radiators. You can look at them
quickly and know how your application performs. Many performance testing

316 CHAPTER 9

Bitter tunes
Figure 9.5 The use of a database connection pool, as indicated by the dotted line, yields a fairly
constant response time for up to 25 concurrent users. With a single shared connection, as indicated by
the solid line, the response time curve is exponential.

Figure 9.6 The use of a database connection pool, as indicated by the dotted line, delivers a throughput
roughly equivalent to the number of active connections in the pool. With a single shared connection, as
indicated by the solid line, the throughput bottoms out at one query per second.

Mini-antipattern: Stage Fright 317
tools, including JMeter, will automatically generate charts of this sort. Use them to
your advantage.

9.9 Mini-antipattern: Stage Fright

If we don’t test our application’s performance early and often in a production-like
environment, when the curtain goes up, the application may fall down in front of
its live audience. Often we assume that, when an application meets its perfor-
mance goals in development, it will perform equally well for its intended audi-
ence. We’re usually disappointed.

 To simulate realistic production traffic and usage patterns, we need to test our
application’s performance with representative data, tool versions, workloads, net-
work latency, and hardware capacity. Tests that merely simulate users continually
buying Chihuahuas from our online pet store won’t cut it. We’ll be in for an
unwelcome surprise when a real user tries to buy a furry friend not already cached
in the middle tier.

9.9.1 Solution: Practice on stage

To alleviate the fear and risk of embarrassment on stage, practice is our only
recourse. Running performance tests in a production-staging environment as
soon as possible, and keeping those tests running, will give us the confidence we
need. The best approach to practicing for a production setting is to write tests
that address our worst fears. What will happen when 10 users log in at the same
time? We won’t know until it happens, but we do know it’s better to have it hap-
pen when we’re practicing. Writing a passing login test under a 10-user load goes
a long way toward boosting our confidence for the big show. In other words, tests
let us safely play “what if” games with performance. By simulating a load, they can
help us determine the amount of hardware we’ll need to support our expected
user load.

 We need to give our application a dress rehearsal by testing under realistic sce-
narios. We’ll use the same version of the virtual machine, application server, data-
base, and other tools that will be deployed in the production environment. If
caching and pooling is used to boost performance, then we can let the applica-
tion warm up before running the performance tests. In other words, our tests
should measure the actual performance, as observed by real users, to the maxi-
mum extent possible.

 Once we’ve done our best to design and tune for performance under realistic
loads, no substitute exists for tuning an application in production. Don’t

318 CHAPTER 9

Bitter tunes
underestimate the value of a tool that can monitor a live performance. Usage pat-
terns in a live system may behave differently than expected.

9.10 Summary: Tuning with confidence

In this chapter, we looked at several antipatterns that commonly plague the EJB
performance tuning process. In our quiet moments, when we’re sure nobody is
listening, we’ve probably all admitted to ourselves that we’ve been bitten by the
need for speed. However, now that we’ve resolved to put speed in its place, we
want to avoid these antipatterns by adopting an approach that’s best summarized
in the carpenter’s motto: measure twice, cut once.

 Before tuning to improve performance, we profiled our code to find hot spots.
We then measured the performance again with a failing performance test written
using JUnitPerf. Only after reviewing this evidence did we attempt to change code
or the runtime environment to improve performance. We also put our trust in
our gauges—automated tests that specify the performance requirements set by
our customer. We leveraged these tests, using them as the qualifying measure of
success, to ensure that our application’s performance continually improved.

 The methodology proposed for side-stepping the pitfalls encountered in this
chapter is applicable to any type of performance tuning activity—EJB or other-
wise. The bottom line: When making a case for or against applying changes in the
name of performance, don’t assume facts not already in evidence. Test first, then
tune with confidence.

Antipatterns in this chapter 319
9.11 Antipatterns in this chapter

This section covers the Premature Optimization, Performance Afterthoughts,
Thrash-tuning, Manual Performance Testing, and Stage Fright antipatterns.

DESCRIPTION
Good programmers frequently try to optimize every line of code
and speculate in the name of performance, without considering
which code/design elements are actually performance problems.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Performance test automation

REFACTORED SOLUTION TYPE
Process, technology

REFACTORED SOLUTION DESCRIPTION
Use the simplest code/design that will work. Establish concrete
criteria and run automated performance tests against the criteria
to establish the need for performance tuning. Tune only problem
areas. Write well-factored and modular code that’s easy to tune
later, if necessary.

ANECDOTAL EVIDENCE
“It works fine, but I suspected future performance problems so I
spent the afternoon making it fast.” “All of my code is a little
tough to read, but it’s very fast.” “That design/technology is going
to be too slow.”

SYMPTOMS, CONSEQUENCES
Fewer development cycles are left for customer requirements or
meaningful optimization when unforeseen problems arise. De-
sign and code becomes unnecessarily complex and difficult to
maintain. Functionality breaks when it’s tweaked to be faster.

PREMATURE OPTIMIZATION

320 CHAPTER 9

Bitter tunes

DESCRIPTION
Attempting to bolt performance on to an application at the end of
the development cycle rather than bake it in from the beginning

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Continuous performance planning

REFACTORED SOLUTION TYPE
Process

REFACTORED SOLUTION DESCRIPTION
Gather performance requirements early and often. Build auto-
mated performance tests that continuously validate performance
criteria. Performance tests help to define exactly which areas do
not meet criteria to focus testing efforts. Make any necessary
course corrections throughout the project based on quantifiable
measurements.

TYPICAL CAUSES
Poor planning

ANECDOTAL EVIDENCE
“We will have plenty of time to performance tune at the end of
the development cycle.” “It’s a good design. We do not need to
tune for performance.” “We’ll let our QA department measure
performance.” “We’re using Enterprise JavaBeans, so it should
scale well.”

SYMPTOMS, CONSEQUENCES
Repeated delivery of poorly performing software, redesign of crit-
ical use cases late in the development cycle, and last-minute tun-
ing activities that are ineffective

PERFORMANCE AFTERTHOUGHTS

Antipatterns in this chapter 321

DESCRIPTION
Performance tuning is difficult without a solid baseline or when
multiple configuration parameters are changed at once between
measurements. Attempting performance tuning in these conditions
makes it difficult to gauge progress and correct problems, lengthen-
ing the overall cycle time and giving the appearance of thrashing.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Good performance methodology

REFACTORED SOLUTION TYPE
Process

REFACTORED SOLUTION DESCRIPTION
A sound performance testing methodology and a good testing en-
vironment are the primary keys. Baseline measurements are man-
datory to gauge progress. All tests should start from a common
configuration and changes should be made one at a time. Focus
on performance problems demonstrated by failed tests.

ROOT CAUSES
Haste, inadequate performance testing tools

ANECDOTAL EVIDENCE
“It feels faster, don’t you think?” “When are we done tuning?”
“What did we change to make it slower?”

SYMPTOMS, CONSEQUENCES
Inefficient performance testing and tuning, longer than expected
performance tuning cycles, and unclear results of performance
improvements

THRASH-TUNING

322 CHAPTER 9

Bitter tunes

DESCRIPTION
Manually running performance tests every time something is
changed doesn’t scale and the tests aren’t easily repeatable

MOST FREQUENT SCALE
Organization

REFACTORED SOLUTION NAME
Automated performance testing

REFACTORED SOLUTION TYPE
Process, technology

REFACTORED SOLUTION DESCRIPTION
Use a performance testing tool like JUnitPerf to build automated
tests. Let a computer run the tests continuously and consistently.

TYPICAL CAUSES
Inadequate performance testing tools

ANECDOTAL EVIDENCE
“I don’t have time to run that test.” “I can’t repeat the results of
the test from run to run.”

SYMPTOMS, CONSEQUENCES
The time it takes to run tests manually increases the pressure to
fall back into a thrash-tuning cycle. Performance problems aren’t
detected consistently.

MANUAL PERFORMANCE TESTING

Antipatterns in this chapter 323

DESCRIPTION
Failure to test software in its production environment with repre-
sentative data, tool versions, workloads, network latency, and
hardware capacity

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Production environment testing

REFACTORED SOLUTION TYPE
Process

REFACTORED SOLUTION DESCRIPTION
Test application performance in settings as close as possible to the
production environment.

TYPICAL CAUSES
Pride, ignorance

ANECDOTAL EVIDENCE
“We don’t have time to test in production. The system is going
live tomorrow!” “Don’t worry. This is good code. It should work
fine in the production environment.” “It was fast on my develop-
ment machine.”

SYMPTOMS, CONSEQUENCES
 Software that performs well in development environments, but
fails miserably in production settings

STAGE FRIGHT

10Bitter builds
This chapter contains
■ Antipatterns related to build infrastructure
■ Arguments for the automation of build tasks
■ Problems, such as redundancy, solved by XDoclet
■ Reasons for test-first development
324

325
We’re a small crew of four sailing in the Atlantic. Our eyes are focused on the storm
clouds to the south of us. What direction are they moving in and just how strong a
storm is brewing? I had not checked the weather prediction before leaving. My three
companions are inexperienced sailors, but I know enough to be wary. As we watch,
the weather front rolls over us and the wind and waves suddenly pick up in force.
The boat keels to starboard as we struggle to furl in the headsail. It is now a small tri-
angle fluttering taughtly, but our main is untrimmed and it is overpowering the
boat. My inexperienced crew cannot figure out how to take a reef—they cannot even
identify the reefing sheet. They are moving like tipsy sailors on the heaving deck, and
when one of them slips and falls on his knee, the thud makes up my mind: We’re
going to do what all sailors hate, take down all sails and start up the engine. With a
barely audible vroom over the sound of the waves, the engine starts. We breathe easier.

EJB development has proven to be a complex and time-consuming process. Build-
ing object-oriented code is demanding in the best circumstances, but dealing with
class loading issues, implementing multiple classes per bean, writing deployment
descriptors, and deploying to an Application server all take time and energy away
from the task at hand—developing business logic. Unit testing and integration
headaches further impede making headway. In this threatening storm, manual
power isn’t enough anymore.

 Fortunately, EJB development tools have finally begun to mature, negating any
need to suffer under these rote processes, regardless of any integrated develop-
ment environment (IDE) you or your peers choose. Code generation tools make
implementing EJB as easy as writing the bean implementation class, then auto-
generating everything else with simple metadata, a la Javadoc. Automated build
tools iron out the wrinkles associated with performing regular builds and deploy-
ments, helping you stay on track and keep your schedule.

 Neglect these tools at your own risk. If your development process consists of
more than making a code change and running a single command to build,
deploy, and verify that the code works, you’re working too hard. You’re also taking
yourself away from the context of your business problem, slipping off your busi-
ness’s logic development hat and slapping on a build guru beret. When making
small changes and executing tests over and over again, these context switches can
easily lead to costly mistakes, taking you out of your most productive zone. The
time spent executing manual build and deployment tasks can seriously add up,
pushing deadlines and even breaking your spirit. Waiting for long builds or server
restarts, just to verify the functionality of a bean implementation, wastes valuable
development time. The longer you wait for the results of a unit test, the more

326 CHAPTER 10

Bitter builds
likely you are to switch over and check e-mail or the latest news on Slashdot.
These small distractions add up very quickly to murder productivity.

 In this chapter, you’ll see the cost of manual development, and learn the
secrets that others have long known: how you build something is almost impor-
tant as what you build. We’ll introduce the tools and techniques that great EJB
programmers use to automate testing, streamline builds, and generate code.

10.1 Wrapping big packages without bows

The EJB specification defines the ejb-jar format as the interface between applica-
tion developers and assemblers and the container provider. An ejb-jar file is the
deployable unit for the EJB architecture. The J2EE architecture specifically
enables EJB container implementers to support loading and reloading ejb-jar
files dynamically, independent of other deployed units like other enterprise appli-
cations, EJB, and web applications.

 An ejb-jar package contains one or more beans, their classes and a deploy-
ment descriptor. The application developer constructs the initial ejb-jar file with
a basic deployment descriptor. An application assembler takes ejb-jar files and
edits the deployment descriptors: satisfying dependencies, configuring security,
etc. The EJB container then deploys the final ejb-jar file.

10.1.1 Understanding an example EJB

Let’s start by examining a trivial stateless session bean implementation and identi-
fying the components necessary to make it deployable. First, we have the bean
implementation class (listing 10.1). The bean implementation class resides only
on the server and contains the actual business logic—the meat—for our EJB:

package ejb;

import javax.ejb.*;

public class ExampleBean implements SessionBean {

 public String trim(String s) {
 return s.trim();
 }

 public void ejbCreate()
 throws CreateException {}
 public void ejbActivate()
 throws EJBException {}
 public void ejbPassivate()

Listing 10.1 Example bean implementation

Wrapping big packages without bows 327
 throws EJBException {}
 public void ejbRemove()
 throws EJBException, RemoveException {}
 public void setSessionContext(SessionContext context)
 throws EJBException {}

}

The second component of a stateless session bean implementation is the home
interface which must be deployed on both the client and server. The EJB container
will implement the home interface stub, enabling clients to obtain a different stub,
which implements the actual business interface (listing 10.2):

import javax.ejb.*;

public interface ExampleHome extends javax.ejb.EJBHome {

 public ejb.Example create() throws javax.ejb.CreateException,
 java.rmi.RemoteException;

}

Third, we have the bean’s component interface. Like the home interface, the
component interface must be deployed to the server as well as the client. The
component interface exposes the actual business logic to the client (listing 10.3):

import javax.ejb.*;

public interface Example extends javax.ejb.EJBObject {

 public String trim(String s) throws java.rmi.RemoteException;

}

Last, we have the deployment descriptor—the ejb-jar.xml file. The deployment
descriptor (listing 10.4) tells the container how to deploy the bean and contains
the out-of-band information—like transaction semantics and security restric-
tions—that can’t be determined from the bean implementation:

Listing 10.2 Example bean home interface

Listing 10.3 Example bean component interface

328 CHAPTER 10

Bitter builds
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC
 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <session >
 <display-name>Example</display-name>
 <ejb-name>Example</ejb-name>
 <home>ejb.ExampleHome</home>
 <remote>ejb.Example</remote>
 <ejb-class>ejb.ExampleBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 <container-transaction >
 <method>
 <ejb-name>Example</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>trim</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </enterprise-beans>
</ejb-jar>

10.1.2 Organizing your directory structure

Having a well-defined set of conventions for EJB naming, packaging, and storage
can go a long way toward helping developers easily identify and develop EJB, and
automating the EJB build and deployment process. The “Sun Naming Conven-
tions for Enterprise Applications” (http://java.sun.com/blueprints/code/
namingconventions.html) provides you with a good starting point.

 First, you need to decide where to store the EJB source files. We’ve found that
the easiest way is to store EJB source files with the rest of the application source
files and to use a packaging convention to separate them. For example, if your
current module is in the package com.mycompany.example, you would store the EJB
implementation and interface files in the com.mycompany.example.ejb package.

Listing 10.4 Example deployment descriptor

Wrapping big packages without bows 329
Doing so lets you easily identify and extract the EJB classes from the other com-
mon classes, and prevents potential naming collisions.

 For example, if you are working with all EJB implementation classes, a naming
collision might arise. If you name your EJB implementation classes using a stan-
dard convention, <Name>Bean.java, and operate on all files in our source tree fol-
lowing this convention, you will get plain JavaBeans as well. Storing the EJB files in
a separate package lets you filter all source files that follow the naming conven-
tion and appear in packages containing the ejb package distinction.

Before local interfaces came along, most naming conventions did not have the
Remote prefix on the class names. Using the separate ejb package for EJB classes
allows you to work equally well with these legacy implementations.

10.1.3 Filling the EJB JAR

An ejb-jar file is a Java Archive (JAR) file containing the beans’ implementation
classes, home and component interface classes, primary key classes for entity
beans, and deployment descriptors. The ejb-jar file must either contain or refer-
ence classes on which the EJB depends. The standard EJB deployment descriptor
is stored in the META-INF/ejb-jar.xml file. The META-INF directory may contain
vendor-specific descriptors as well. The ejb-jar references dependent classes out-
side of the ejb-jar using the Class-Path attribute in the JAR file’s manifest file.
For example, if an ejb-jar depends on classes stored in two other JAR files named
common.jar and client.jar, the ejb-jar should specify this dependence in the
META-INF/MANIFEST.MF file (listing 10.5):

Table 10.1 EJB classes are much easier to manage when you give them appropriate names. These sug-
gestions are conventions that will help you identify the critical EJB types. With this approach, you will
not have to worry about naming collisions, and can easily identify the purpose of an EJB.

Class naming convention Description

Remote<Name> Remote component interface

Remote<Name>Home Remote home interface

Local<Name> Local component interface

Local<Name>Home Local home interface

<Name>Bean Bean implementation

330 CHAPTER 10

Bitter builds
 Manifest-Version: 1.0
 Class-Path: common.jar client.jar

Next, you package up each ejb-jar file into another JAR called an enterprise
application archive (EAR) file. An EAR file contains one or more ejb-jar and web
application archive (WAR) files as well as any other JARs commonly referenced by
these EAR components. The EAR file has a descriptor of its own, META-INF/appli-
cation.xml, which lists all contained EJB and WAR files.

 The specification also supports an optional EJB client JAR. An EJB client JAR
contains the beans’ home and component interfaces and also contains or refer-
ences the classes upon which that these interfaces depend, such as custom excep-
tions. The ejb-jar file references this file in its manifest file’s Class-Path
attribute. For example, if the bean implementation returns a custom
java.util.Map implementation called MyMap, the MyMap class goes in the ejb client
JAR file. The interface may say that it returns Map as opposed to MyMap, however
the client will still need the MyMap implementation in its classpath at runtime.

10.1.4 Loading classes

How exactly the container loads component classes has long been a source of con-
fusion. Understanding this loading is core to successful, error-free deployment.
Java class loaders are required, by specification, to follow a hierarchical architec-
ture, starting with the system class loader at the root. Each class loader has a par-
ent class loader. When asked to load a particular class, the class loader first checks
with its parent loader, and if the parent loader cannot load the desired class, the
child loader attempts the load itself. A given class loader can see only classes made
available to itself and class loaders higher in the hierarchy. This setup enables Java
applications to isolate different parts of the application securely.

 Class loaders in different branches of the class loader hierarchy—that is, nei-
ther class loader is a parent or ancestor of the other—may load different versions
of the same class. This technology makes applets possible. Though a web browser
only uses a single virtual machine, each applet gets a different class loader, com-
pletely isolating classes from different domains. This allows two different domains
to load separate versions of the same third-party library and prevents code from
one domain from affecting another, maliciously or by accident.

 The J2EE architecture uses class loaders to deploy multiple enterprise applica-
tions into a single virtual machine. In a J2EE application, each EAR file gets a

Listing 10.5 Example MANIFEST.MF file

Wrapping big packages without bows 331
separate class loader. Next, the application has a single EJB class loader, which del-
egates to the EAR class loader parent. All EJB in an EAR file are loaded through
the same EJB class loader. Last, each web application or WAR file gets its own class
loader, which delegates to the EJB class loader.

 The container loads classes stored in the ejb-jar or WAR files in their respec-
tive class loaders. JARs referenced in the Class-Path attribute in the MANIFEST.MF
file of the EJB or WAR files are loaded in the EAR class loader.

 Essentially, a J2EE application shares all classes stored in referenced JAR files
between all components of the J2EE application. EJB share the same class loader
and thus the same classes as well. This means that two EJBs in the same application
cannot have different versions of the same class file. If you need two versions of the
same class, you must deploy them in separate EARs and access each via its remote
interfaces. WARs, on the other hand, have dedicated class loaders. Two WAR files
can have different versions of the same third-party JAR file stored in the lib direc-
tory (If the WAR file references the JAR in its Class-Path attribute, the JAR will be
loaded into the EAR class loader and thus will be visible to both web applications.)

 Why would we want to share classes? Sharing classes may or may not be desir-
able. If two components have unique copies of the same class, they cannot pass by
reference. Trying to cast a class instance from one component to the next will
result in a ClassCastException or even a ClassNotFoundException if the class isn’t
visible to the component’s class loader. The only way to pass instances back and
forth between two components is through serialization. Using a remote interface
implicitly has this effect. On the other hand, having separate copies of a class can
be desirable as well. If two components share the same class, they also share that
class’s static state. For example, in the case of the GoF Singleton pattern, both
components would share the same instance. If you don’t need or desire compo-
nents to share the same instance, you should deploy them separately.

EAR
ClassLoader

EJB
ClassLoader

WAR
ClassLoader

WAR
ClassLoader

Figure 10.1
This diagram shows the major components of the J2EE class
loader architecture, which takes advantage of loaders to enable
deploying multiple enterprise applications into a single virtual
machine. Each EAR file gets a separate loader; the application
has a single EJB class loader; and each WAR file gets a loader
of its own, which delegates to the EJB loader.

332 CHAPTER 10

Bitter builds
10.2 Antipattern: System Loaded Application Classes

Because deployment associated with class loaders is complex, you may be tempted
to take the easy way out. When you put all classes on the global classpath, you are
asking the system to load everything through the system class loader. However,
don’t take the path of least resistance. Storing application classes on the system
classpath can lead to development and deployment problems and can often skirt
real issues.

 First, as long as an instance of a class is present, that instance references its
class, which in turn references its class loader. If a third-party library loaded
through the system class path holds onto an instance of an application class, the
EAR loader for that application can never get collected. If you try to hot deploy
your application, the container would simply throw away the old EAR class loader
and create a new one, and the third-party JAR would keep our loader from getting
garbage collected. Essentially, you load two instances of your application at the
same time. Each time you redeploy, the process will repeat until you run out of
memory or another limited resource.

 Secondly, during development, if you make a change to a class loaded through
the system class loader, you have to restart the entire application server. Restarting
an application server can take many seconds and even minutes. If you develop
and deploy frequently, these delays can add up quickly.

10.2.1 Solution: Follow the J2EE guidelines

The solution is to follow the patterns laid out for the J2EE architecture and store
all applications and third-party JARs in the EAR file. This approach will enable fast
redeploys, smooth development, and reliable production systems.

 EJB containers are supposed to shield applications from third-party classes as
much as possible, but the truth is that some don’t. We’ve run into this problem
with XML parser implementations and database driver versions. If you experience
these problems, follow your vendor’s guidelines for adding third-party JAR to the
application server’s class path. If the versions of the third-party JARs used by the
application server cause problems for your application, chances are that your ver-
sions may cause problems for the Application server.

10.3 Antipattern: EJB Code Duplication

The cost of many EJB architecture benefits is that you must maintain multiple files
per bean. For each bean, you need—at minimum—the implementation class, the

Antipattern: EJB Code Duplication 333
component interface class, the home interface class, and the deployment descrip-
tor. Add business delegates, service locators, and DTOs, and things can get really
hairy. If a method signature changes in your bean implementation, you must
duplicate the change in at least two other places, changing the signatures in the
component interface and deployment descriptors to match. Adding and chang-
ing EJBs quickly becomes a monotonous task as you chase down dependencies all
over the place.

10.3.1 Solution: Autogenerate the EJB classes

A number of tools have surfaced to target just this problem XDoclet (http://
xdoclet.sourceforge.net/) is just one of them. XDoclet builds on the Javadoc
architecture, using Javadoc tags in the bean implementation class to dictate the
building of the component interface, home interface, and deployment descriptor
as well as such classes as business delegates and DTOs. Essentially, we can imple-
ment an entire EJB so that it can be deployed on multiple vendors from a single
location. Let’s revisit our earlier example bean implementation with the XDoclet
tags added (listing 10.6):

package ejb;

import javax.ejb.*;

/**
 * Example bean implementation.
 *
 * @ejb.bean
 * type="Stateless"
 * name="Example"
 * jndi-name="ejb/Example"
 * display-name="Example"
 */
public class ExampleBean implements SessionBean {

 /**
 * @ejb.interface-method
 * view-type="remote"
 * @ejb.transaction
 * type="Required"
 */
 public String trim(String s) {
 return s.trim();
 }
 /**
 * @ejb.create-method

Listing 10.6 Example bean implementation with XDoclet tags

334 CHAPTER 10

Bitter builds
 * role-name=”Administrator”
 */
 public void ejbCreate()
 throws CreateException {}
 public void ejbActivate()
 throws EJBException {}
 public void ejbPassivate()
 throws EJBException {}
 public void ejbRemove()
 throws EJBException, RemoveException {}
 public void setSessionContext(SessionContext context)
 throws EJBException {}

}

A simple XDoclet Ant target (listing 10.7) executes XDoclet against all bean imple-
mentations in your source tree, auto-generating local and remote interfaces, stan-
dard deployment descriptors, and vendor-specific deployment descriptors for
WebLogic and JBoss. XDoclet can also generate business delegates, data transfer
objects, and other utility classes.

<target name="xdoclet ">
 <ejbdoclet sourcepath="${src.java.dir}"
 destdir="${src.java.dir}"
 ejbspec="2.0">
 <fileset dir="${src.java.dir}">
 <include name="**/ejb/*Bean.java"/>
 </fileset>
 <remoteinterface/>
 <homeinterface/>
 <localinterface/>
 <localhomeinterface/>
 <deploymentdescriptor/>
 <weblogic/>
 <jboss/>
 </ejbdoclet>
</target>

10.3.2 Solution: Autogenerate the manifest

Let’s say you want to reference all of your third-party JARs and your common JARs
from your EJB and web components. You can do so using the Class-Path attribute
in the component’s MANIFEST.MF file. One approach would be to implement a

Listing 10.7 XDoclet Ant target

Antipattern: EJB Code Duplication 335
custom Ant task, but we’ve found that this can leave you in the “chicken before
the egg” scenario. You must compile your Ant task using our build script, but you
also need your task class in your build script. You could maintain classes used in
your build separately. However, for simple cases like this, we prefer to dodge this
overhead and code the task implementation directly into our build file. Ant’s
script task enables just this. The script task takes code from the task body and
executes it using a scripting engine such as BeanShell (http://beanshell.org).
Listing 10.8 generates a list of JAR files from the lib directory and outputs a MANI-
FEST.MF file that can be used in constructing the EJB and web components. Now,
adding a third-party JAR to our project is as simple as dropping it in a directory.

<target name="build.manifest">
 <mkdir dir="${manifest.dir}"/>
 <fileset dir="${lib.dir}" id="lib.fileset"/>
 <dependset> Check if we ’ve added any new JARs
 <srcfileset refid="lib.fileset"/>
 <targetfileset dir="$manfest.dir}"
 includes="MANIFEST.MF"/>
 </dependset>
 <script language="beanshell"><![CDATA[
 import java.io.*;
 import org.apache.tools.ant.types.*;
 import org.apache.tools.ant.*;

 // output file names from FileSet instance to
 // PrintWriter.
 void outputFileNames(FileSet set, PrintWriter out) {
 DirectoryScanner scanner =
 set.getDirectoryScanner(project);
 String[] files = scanner.getIncludedFiles();
 for (int i=0; i < files.length; i++)
 out.print(" " +
 new File(files[i]).getName());
 }

 // if the manifest file does not exist, create it.
 String manifestFileName =
 project.getProperty("manifest.dir") +
 "/MANIFEST.MF";
 FileSet libFileSet =
 (FileSet) project.getReference("lib.fileset");
 File manifest = new File(project.getBaseDir(),
 manifestFileName);
 if (manifest.createNewFile()) {
 System.out.println(
 "Building manifest: " + manifest);

Listing 10.8 Script to autogenerate the MANIFEST.MF file

Create a directory for
the manifest if necessary

Create a fileset with
all of the third-
party JARs

Start a script using
BeanShell as the
language

Output the
file names
from a
fileset

Look up the the
third-party JAR
fileset

Create
MANIFEST.MF

If the file doesn’t
already exist, create it

336 CHAPTER 10

Bitter builds
 PrintWriter out = new PrintWriter(
 new FileWriter(manifest));
 out.print("Manifest-Version: 1.0\n");

 // output classpath manifest entry.
 out.print("Class-Path:");
 outputFileNames(libFileset, out);

 // close manifest file.
 out.print("\n\n");
 out.close();
 }
]]></script>
</target>

10.3.3 Solution: Autogenerate the EAR descriptor

The EAR descriptor file is stored in META-INF/application.xml. The applica-
tion.xml file references the components contained in the EAR file. We would use
the application.xml file in listing 10.9 to deploy our EJB example along with a
basic web application:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC
 '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN'
 'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
 <display-name>example</display-name>
 <module>
 <web>
 <web-uri>example.war</web-uri>
 <context-root>/example</context-root>
 </web>
 </module>
 <module>
 <ejb>example-ejb.jar</ejb>
 </module>
</application>

As you can see, we could autogenerate this file using the same pattern as we used
to generate the MANIFEST.MF file. In fact, the build on our current project does
just that. My build environment generates one or more WARs and one ejb-jar
file. The name of the application here is example. We name the default web

Print the
Manifest-Version
attribute

Listing 10.9 Example application.xml file

Antipattern: Build Guru 337
application after the application name and construct a name for the ejb-jar,
using it as well. We use the WAR name to determine the context-root for the web
application. These conventions may not apply to all projects; however, our pattern
makes tweaking the generation on a per-project basis trivial.

10.4 Antipattern: Build Guru

A build guru used to be a critical member of the project team, in charge of
launching and integrating periodic builds. Today, tools and techniques have
evolved to the point that a build guru is not necessary. Stating the case more
strongly, you have an antipattern if your project needs a build guru or a specific
IDE to perform the build. Everyone should be able to cook up the software, at any
time and any reasonable location. Indeed, even a computer should be able to
cook up the software on a scheduled interval without human intervention. Build-
ing code should be like breathing, as code is the lifeblood of the application.

 We once worked on a project developing software for medical insurance pro-
viders. Those familiar with the domain can tell you that the business logic here
can be daunting. Our team developed the application using an IDE and had no
single build file and, to top it off, the interdependencies were so rampant that we
had to deploy the entire application to test a single component. The development
process consisted of making a small change, then “pointing and clicking,” deploy-
ing each component separately. This process was far from ideal. First of all, being
tied into a single IDE was not fun, especially for those of us who were more pro-
ductive in other environments. Second, the build process took ten times longer
than necessary. Needless to say, as the application got more complex, deadlines
slipped more and more. The development time scaled linearly with the applica-
tion size when it should have stayed constant. Moreover, the more components we
had to deploy, the greater the odds were that we would slip up and the longer we
were out of context. This made staying in the development “zone” difficult.

 We worked on another project for a credit card company. The build script con-
sisted of a hodgepodge of shell scripts scattered throughout the source tree. No
single build file existed. As each developer added a new component, a new build
script was also added. This was nice while we were working on a single deployment
because the build times were very fast, but the approach fell to pieces when it
came time to deploy. Deploying to production was an all-day affair as we ensured
that everything was built and deployed, frequently deploying multiple times
before we got everything right.

338 CHAPTER 10

Bitter builds
10.4.1 Solution: Use Ant for heavy lifting

As the storm howls around us, we combat the wind and the waves. Even with the
engine at full throttle, we are barely making headway against them. We divide our
attention between the effort of steering back to port and the sound of the straining
engine. We cast a nervous glance at the radio, realizing that we may be in over
our heads.

Unlike pleasure sailors on an open sea, programmers aren’t squeamish about
turning their ship’s control over to the engine room. With this antipattern, Ant
(http://ant.apache.org) was the engine that powered us out of the storm. After
struggling against the wind, my team got its act together on the project for the
credit card company, moving to a single, atomic build and EAR-based deployment
and still keeping reasonable build times. Deployments took minutes and worked
unfailingly. We got our Saturdays back and built our client’s confidence in the
project at the same time. Ant comes with a variety of scripts, called tasks, geared
toward almost any aspect of development and deployment that comes to mind,
including building ejb-jar and EAR files. Also, extracting the paths and other rel-
ative references out into Ant properties enabled us to execute the build in any
environment, even directly from many IDEs.

 Ant provides many options for building ejb-jar files. Listing 10.10 takes
classes and a deployment descriptor as input and generates an ejb-jar file con-
taining the EJB implementation and interface classes. We can build a common
JAR, using the remaining classes—that is, excluding classes in a package named
ejb—and include this file in the MANIFEST.MF file’s Class-Path attribute:

<target name="ejb">
 <mkdir dir="${build.ejb.dir}"/> Create a directory for the ejb-jar file
 <ejbjar srcdir="${build.class.dir}"

 descriptordir="${descriptor.dir}"

 manifest="${build.config.dir}/MANIFEST.MF"

Listing 10.10 Example EJB Ant target

Point to the directory containing
the compiled class files

Point to the directory with
the descriptors

Point to the MANIFEST.MF file to use

Antipattern: Running with Scissors 339
 basejarname="${name}-ejb">
 <include name="ejb-jar.xml"/>
 </ejbjar>
</target>

Adding a new EJB to your application is now a simple matter of adding the bean
implementation source file to the source tree. XDoclet autogenerates the remain-
ing EJB files and Ant builds them into an ejb-jar file. Ant’s ejb-jar task also
allows for more complicated scenarios. Specifically, you can build an ejb-jar for
each EJB or a JAR for each deployment descriptor. I personally like to stick with a
single ejb-jar unless multiple files are absolutely necessary.

 Some vendors provide EJB precompilers. After creating the ejb-jar file, we
run the EJB compiler against it and get another level of compile time checking.
For example, the EJB compiler may verify that the interface and implementation
methods line up and that all the necessary life cycle callbacks have been imple-
mented. The EJB compiler may also generate client stubs for the EJB interfaces.
Ant’s ejbjar task provides support for many EJB compilers using nested tasks.

 In the next sections, we’ll move away from code generation and build auto-
mation. We’ll enter the realm of testing, focusing on solutions that let you
automate tests.

10.5 Antipattern: Running with Scissors

Writing code without tests is like running with scissors. The further you run, the
more likely you are to fall. When (not if) you do, you’re bound to experience
pain. EJB pose no exception. Logic embedded in EJB implementations should be
tested as much (if not more) and as efficiently as logic embedded in plain old Java
classes. Unit testing EJBs should not require redeploying the application or even
having an application server running.

10.5.1 Solution: Test with impunity

The mysteriously cool nature of EJB can make testing a little daunting but,
remember, ultimately bean implementations are just plain Java classes. We do not
need to completely build and deploy them to test them. Simply instantiating a
bean implementation class and invoking methods on it provides more flexibility
than invoking the bean through the component interface. Essentially, testing a
bean by deploying it only verifies that the container works, something we can

Pick a name for
the ejb-jar file

Point to the
deployment descriptor

340 CHAPTER 10

Bitter builds
hope that the vendor has already done. Listing 10.11 instantiates and tests our
example EJB:

package ejb;

/**
 * Unit test for example EJB.
 */
public class ExampleTest extends junit.framework.TestCase {

 public ExampleTest(String name) {
 super(name);
 }

 public void testTrim() {
 ExampleBean bean = new ExampleBean();
 bean.ejbCreate();
 assertEquals("test", bean.trim(" test "));
 bean.ejbRemove();
 }

}

As you can see, the unit test merely instantiates and invokes methods on a bean
instance. The unit test calls the life cycle methods just as the container might, and
can even go so far as to mock the SessionContext object, satisfying whatever
dependencies the component may have on it. We can also test the correctness of
our bean’s behavior under normal conditions, noting if it throws an exception
when not configured properly. If our EJB accesses resources via JNDI, we can use a
simple in-virtual machine JNDI implementation and bind the necessary mock
implementations into it. When considering database access, you can either mock
out a DataSource altogether or use an embedded database implementation such
as HSQL (http://hsql.sourceforge.net/).

 JUnit, the test framework used in listing 10.12 also has convenient Ant targets
to facilitate running unit tests. With a simple target, we can execute every unit test
in our source tree or choose just one test specified on the command line:

<target name="test">
 <junit dir="${test.dir}"
 showoutput="yes"
 printsummary="yes">
 <property name="test" value="*"/>

Listing 10.11 Example EJB test case

Listing 10.12 JUnit Ant target

Antipattern: Integration Hell 341
 <batchtest todir="${test.results.dir}">
 <fileset dir="${src.java.dir}">
 <include name="**/${test}Test.java"/>
 </fileset>
 </batchtest>
 <formatter type="xml"/>
 </junit>
</target>

To execute all available tests, we simply type ant test. To execute only our exam-
ple test, we would type ant test –Dtest=Example, running any test class named
ExampleTest in any package.

10.6 Antipattern: Integration Hell

An EJB application contains many moving parts. We want assurance that the gears
consistently line up. We’ve been on projects that put off integration until the last
minute. Each developer worked independently until a couple days before we were
due to go to production. Without fail, we needed more than two days to get every-
one’s code working together, and we always came close to missing our deadline.

 On another project, we integrated on a weekly basis. Even this wasn’t often
enough. We usually spent a day and a half untangling after the team of 18
brought their individual code together all at once. Open issues always persisted
when we finished.

 The longer we put off integrating with other developers’ code, the farther we
move from each other and the harder bringing a project back together will be.
We’ve found that things tend to go much more smoothly—and integration takes a
lot less effort—if we integrate multiple times a day. The problem is that no team
member wants to bear the monotony of building and deploying three times a day,
nor should they.

10.6.1 Solution: Integrate early, often, and automatically

We’ve started using CruiseControl (http://cruisecontrol.sourceforge.net/) to
manage automatic builds. CruiseControl runs on a separate server, periodically
pulling the project from source control and building and deploying it. Cruise-
Control checks for updates in the source control. If an update has been made, it
builds. If not, it waits quietly until the next interval. CruiseControl executes the
build, using your existing Ant script, and runs the unit tests. If the build or unit
tests fail, CruiseControl sends email to the team, publicly humiliating the build

342 CHAPTER 10

Bitter builds
breaker who either failed to check everything or test that the code didn’t break
existing functionality. Mercifully, CruiseControl will restart a failed build after a
predefined amount of time.

 At any time, team members can go to the website hosted by the CruiseControl
web application and see the results of all previous builds. They can see the
updates checked in, the compilation errors, and the unit test results, all through a
nice HTML interface. Everyone knows the status of the build in source control
and knows, too, the changes others have made with almost no effort. Further-
more, you can use Ant to autogenerate a Javadoc for the project, so your docu-
mentation will always be consistent with the build.

10.7 Summary

When using EJB, you’ll find spending a little time streamlining the build process
can yield surprisingly successful results—increasing developer efficiency and the
predictability of projects. Doing so can also boost developer morale, since these
results create plenty of time for the fun stuff. In this chapter, we saw how a manual
build process can distract us from the more difficult application development
challenges. We also looked at the use of code generation with XDoclet to relieve
the duplication of effort inherent in EJB programming. We also covered the inte-
gration of extreme programming practices like continuous integration and auto-
mated tests into our build process.

 In Bitter EJB’s final chapter, you’ll find a conclusion of our thoughts about EJB
antipatterns. We’ll review the weak points of the EJB frameworks and present the
authors’ suggestions for improvements. Finally, we’ll consider the role that anti-
patterns should play in the future of EJB.

Antipatterns in this chapter 343
10.8 Antipatterns in this chapter

This section covers the System Loaded Application Classes, EJB Code Duplica-
tion, Build Guru, Running with Scissors, and Integration Hell antipatterns.

DESCRIPTION
All classes are dumped into the default class path, leaving the sys-
tem loader to handle all class loading.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
J2EE application guidelines

REFACTORED SOLUTION TYPE
Process, software

REFACTORED SOLUTION DESCRIPTION
Store all application and third-party EJB in the EAR. Changes in a
class deployed this way require a restart to the application server.

TYPICAL CAUSES
Laziness, ignorance

ANECDOTAL EVIDENCE
“We can’t get Hot Deploy to work. After we try it a couple of
times, we get strange errors.”

SYMPTOMS, CONSEQUENCES
Often, the system has difficulty garbage-collecting the loader.

SYSTEM LOADED APPLICATION CLASSES

344 CHAPTER 10

Bitter builds

DESCRIPTION
EJB forces you to duplicate code across the interface, program
files, deployment descriptors, and various implementation files.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Autogenerate code with XDoclet or template driven alternatives.

REFACTORED SOLUTION TYPE
Technology

REFACTORED SOLUTION DESCRIPTION
Template technologies like XDoclet can take a common descrip-
tion of a class (such as Javadoc tags) and generate multiple sourc-
es from the same target, eliminating the need for creating
duplicated code.

TYPICAL CAUSES
Ignorance

ANECDOTAL EVIDENCE
“For EJB, it seems like I always write the same line of code five
times.”

SYMPTOMS, CONSEQUENCES
High maintenance costs and high initial development costs.

EJB CODE DUPLICATION

Antipatterns in this chapter 345

DESCRIPTION
A single developer is responsible for running and maintaining pe-
riodic builds.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Let Ant do the heavy lifting

REFACTORED SOLUTION TYPE
Technology

REFACTORED SOLUTION DESCRIPTION
Build tools, like Ant, make it much easier to create and automate
builds, so that each member of a team can initiate and manage a
build as often as it is required.

TYPICAL CAUSES
Laziness, ignorance

ANECDOTAL EVIDENCE
“I’ll build it later. It’s too hard.”

SYMPTOMS, CONSEQUENCES
Integration occurs infrequently, or the build process (not the
code) frequently breaks. The build process has many steps or
dependencies.

BUILD GURU

346 CHAPTER 10

Bitter builds

DESCRIPTION
You develop software without automated unit tests.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Automate tests with Ant and JUnit

REFACTORED SOLUTION TYPE
Process, software, technology

REFACTORED SOLUTION DESCRIPTION
Create test cases first. Automate them with a tool like JUnit, and
integrate them into the build.

TYPICAL CAUSES
Laziness, ignorance

ANECDOTAL EVIDENCE
“It worked when I checked it in.” or “I forgot to test that part.”

SYMPTOMS, CONSEQUENCES
The team is afraid to refactor obviously broken or inefficient code
for fear of breaking the system. Quality suffers. Testing does not
catch obvious bugs. Regression is a significant problem.

RUNNING WITH SCISSORS

Antipatterns in this chapter 347

DESCRIPTION
Infrequent integrations are expensive.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Integrate early, often, and automatically

REFACTORED SOLUTION TYPE
Process, software, technology

REFACTORED SOLUTION DESCRIPTION
Development teams need discipline, and tools, to effectively inte-
grate with greater frequency. Once teams start integrating more
often, they find that it gets much easier.

TYPICAL CAUSES
Laziness

ANECDOTAL EVIDENCE
“No thanks, we’ll wait.”

SYMPTOMS, CONSEQUENCES
The longer that you take between integrations, the more expen-
sive it gets.

 INTEGRATION HELL

11A bittersweet future
This chapter contains
■ A look at EJB’s past and near future
■ Suggestions for the next step of EJB architectures
■ A glimpse at promising technologies like AOP
348

Marking our place in history 349
I’m on the face of the cliff, two thirds of the way up the Cathedral Ledge. In the past,
climbers would scar cliff faces by drilling deeply into the rock to set permanent bolts.
Today, things are a little different. We use the natural features of the cliff to wedge
or clamp our safety ropes in place. The approach is not always as secure, but it con-
serves our climbing playgrounds. Today, my protection so far has been spotty at best.
I seriously doubt that my last three anchors will hold. I’m coming to the critical
move. Up to this point, I’ve been a little sloppy, trusting the grip in my hands more
than the balance and placement of my feet. That’s a sure recipe for disaster, and the
next move won’t give me any room for error. It’s a difficult static move that will take
every ounce of strength in my fingers. I take two deep breaths and then I commit,
hoping that my anchors will hold. But even if they do, I don’t want to count on my
partner to spot me.

11.1 Marking our place in history

In Bitter EJB, we’ve taken a look at the critical problems that EJB developers face
each day. Plain, old-fashioned ignorance causes some antipatterns to germinate.
Those are easy to solve. But others arise from deeply rooted problems in the EJB
specification. The state of the art needs to improve to ensure the long-term viabil-
ity of EJB. In this chapter, we’ll briefly address the future of EJB. Much of this
future has yet to be written. Up to now, we’ve put our trust in promising, but pre-
carious, anchors while carefully traversing the wall.

11.1.1 Early mistakes

As you’ve seen, early EJB marketing was far more successful than the actual frame-
works. EJB 1.0 was nowhere near ready for prime time. Omissions in a 1.0-level tech-
nology are understandable and normally would not do much damage. However,
EJB providers oversold their technology, and the result was a set of highly publicized
failures. The problems were not trivial ones, as we can see in this brief review:

■ The caretakers of EJB bickered over whether persistence would be added to
EJB. In the end, persistence was added as an optional extension. Aggressive
vendors, like IBM, picked it up, while others, like Oracle, opted to wait for
more safety rope.

■ CMP could not perform or scale nearly well enough. BMP implementa-
tions added all existing JDBC overhead, without providing the characteris-
tic simplicity.

■ EJB security was not fully mature, so customers were left to integrate security
into their applications on their own, or choose proprietary solutions.

350 CHAPTER 11

A bittersweet future
■ EJB did not provide an alternative for performing asynchronous communi-
cation. Ironically, messaging would have been a much better fit for the EJB
component model than persistence, which was finalized in the EJB 1.1 spec-
ification. Messaging was inexplicably delayed until the EJB 2.0 specification.

■ The deployment strategy was proprietary, difficult to manage, and difficult
to understand. Instead of using some form of configuration file, EJB tech-
nology used serialized objects.

■ Productivity tools were scarce at best.

To be blunt, the inventers released EJB before it was ready and sold individual
products as if they were mature. As a result, the technology as a whole ultimately
lost both respect and its early momentum in the marketplace. The next two
releases of EJB partially or completely resolved most major problems and estab-
lished EJB as the platform of choice for web-enabled enterprise applications.
Nothing else comes close as a platform. EJB integrates enterprise concerns—
managing synchronous and asynchronous transactions—with an unmatched level
of integrated security, performance, and scalability.

 Today, you’re probably getting mixed signals regarding the market strength of
EJB. On one hand, the community is strong and impressive enterprise applica-
tions are appearing. One of the best ways to judge a technology is by the strength
of its third-party community. In the case of EJB, you need look no further than
TheServerSide. TheServerSide.com community receives 250,000 new viewers and
two million page hits every month. That’s a staggering number, and it’s only the
tip of the iceberg for EJB. You can also find vibrant and mature markets for third-
party components, tools, books, periodicals, and consultants.

 J2EE—and EJB by extension—is now the default development environment on
the server tier for today’s most successful enterprise applications. J2EE applica-
tions are appearing in numbers. One look at the customer references on the
home pages for major commercial Application servers will convince you that cus-
tomers are building real enterprise applications. The clustered deployments
made popular by static web applications are now moving into the realm of tradi-
tional distributed enterprise applications. You could argue that we are only now
realizing the benefits promised years ago by supporters of CORBA and DCE.

 On the other hand, a vocal minority is starting to speak out against EJB, and is
opting for alternative technologies to use in its place. These trends suggest a
departure from the EJB-everywhere approach that was heavily sold in the late
1990s. For example, growing technologies like JDO and proprietary relational
mappers are providing an alternative to EJB for persistence. In addition, some

Plotting the next moves 351
new research suggests that aspect-oriented programming (which we introduce in
more detail in section 11.2.1) may be a much better technology for the crosscut-
ting concerns that enterprise programmers frequently face. Finally, many new
developers are adopting POJOs to handle all but the most severe enterprise devel-
opment issues.

 This dissention is natural, and healthy. Competitive pressure and open criti-
cism from an open community can drive the Java platform in ways that a private
enterprise cannot. In the end, EJB’s success or failure will depend upon its ability
to serve its intended community. As it stands, EJB is a niche product that serves
only the most advanced enterprise applications. With some rework, it could grow
to be more of a mainstream server-side enterprise application technology. With-
out significant rework, EJB will continue to serve only a fairly specialized niche.
Let’s look at the types of enhancements that EJB needs to make to address the
concerns of its user base.

11.2 Plotting the next moves

You’ve seen how the EJB specification team has addressed some early concerns. It
has dramatically improved the performance of entity beans and rapidly addressed
deployment flexibility problems that plagued early EJB applications. The specifi-
cation team needs to move swiftly to continue the evolution toward a modern,
efficient framework suitable for today’s users. That’s going to take uncharacteris-
tic cooperation and teamwork within the whole community. Some of the technol-
ogy’s founders must admit that EJB has some core weaknesses that need to be
addressed—and addressed quickly.

11.2.1 Into the future

For all the progress that we’ve made with EJB, the specification is starting to look a
little dated. A few component-oriented architectures have failed in the past
because they force the developer to accept a whole lot of overhead for a package
of services, whether or not the services are needed. The situation is much like
going to a dishonest mechanic. You may walk in wanting only an oil change, but if
you’re not careful, you may leave with a rebuilt transmission and a tune up as well.
Instead, EJB needs to evolve to an autonomous collection of services that can be
adopted or not, as necessary. That suggests that the EJB specification team should
abandon the component-oriented model as it stands today and move toward a
platform containing optional services, with a much more transparent persistence
model at the core. As we’ll see below, JBoss has already begun to move in this

352 CHAPTER 11

A bittersweet future
direction. Also, users need to be able to consume services in a way that fits the
design of their application. Persistence is a great example of the failings of a com-
ponent-oriented approach for fine-grained services (as we discussed in chapter 2).

 If component-oriented software is not the answer, aspect-oriented program-
ming (AOP) might present a solution in certain circumstances. AOP allows you to
intercept the program execution at critical points like method execution, and add
behaviors to support crosscutting concerns. As such, AOP is a much more natural
model for the types of problems that EJB is intended to solve. Transactions, persis-
tence, security, logging, distribution and synchronization are all crosscutting con-
cerns that aspect-oriented programming manages well.

 Figure 11.1 is borrowed from Manning’s AspectJ in Action. The figure illustrates
how an aspect-oriented system takes crosscutting concerns and weaves them into a
final system. With AOP, you develop applications in a three-step process:

1 Gather requirements that identify crosscutting concerns.

2 Implement concerns independently.

3 Specify the re-composition rules that allow the system to weave concerns
together to form your final system.

You can see that this type of development would fit enterprise applications extremely
well. The JBoss Application server is already moving in that direction, with method
interceptors and an architecture that leverages AOP models to its benefit.

 Of course, research into AOP is young, and you’re likely to see that AOP is no
silver bullet, either. We still don’t have a compelling AOP language, and the best

Aspectual
Decomposition

Aspectual
Recomposition

Concern
Implementation

Requirements

Final system

Weaver

Concern
Identifier

Figure 11.1 Aspect oriented programming (AOP) is built to handle the types of crosscutting concerns
that are important to enterprise developers, like persistence, exceptions, distribution and transactions.

Plotting the next moves 353
transition path from EJB is not clear. Let’s consider the ways in which the specifica-
tion team might make a transition:

1 They could choose to move aggressively in the direction of AOP, scrapping
the cumbersome container in favor of a library of aspects addressing enter-
prise concerns, and providing a framework that enables tools or users to
support the aspectual recomposition. You would see extreme changes in the
Java language that supports this new paradigm.

2 The specification team could take a more conservative approach,
enabling AOP but not forcing that development paradigm. This type of
strategy could move container services away from the container and allow
services to be organized and consumed as aspects. You would also likely
see method interceptors that provide convenient attachment points for
AOP crosscutting concerns. Once underway, the correct AOP develop-
ment environments could evolve independently.

One still cloudy supposition is becoming clearer: The EJB container may be an
idea whose time has passed. We may have reached a time to shift away from the
component-oriented approach toward a model that lets the programmer choose
the services that she needs to get the job done and consume those services more
efficiently. Without such an approach, EJB will be saddled with deployment com-
plexity, little flexibility after deployment, and less than optimal performance.

11.2.2 Fix persistence

Many developers who say that they do not like EJB mean that they do not like
entity beans. The EJB persistence story started off with a utopian distributed
domain model idea. You could put domain object A on one machine, domain
object B on another, and they would interoperate with complete location trans-
parency. After they realized that this approach wouldn’t fly (because of something
called a network), the developers complicated their domain model with an end-
less chain of quick patches and compromises, trying desperately to make it work.
The problem is that all the original limitations and none of the benefits remain.

 We need to start over. It seems that entity beans completely monopolize the
EJB spec. Why waste all that time implementing a fundamentally flawed technol-
ogy? The answer is political—vendors have invested too much only to see entity
beans fail. However, as an industry, we need to recognize that EJB persistence is
broken. We also need to demand a fix—and use alternatives until we get one.

 When we heard the outcry over the PetStore performance benchmark (see
chapter 1), we noticed that little of the discussion centered on EJB persistence. As

354 CHAPTER 11

A bittersweet future
currently defined, entity beans lead to uncertainty, demand frequent and painful
workarounds, and often result in poor performance. A reworked persistence
framework should embrace the following ideas:

■ A better persistence strategy needs to start with a finer grained service.
Coarse-grained services can and should be attached elsewhere.

■ A revised framework needs to focus solely on providing persistence to
Java objects with all their complexity. Inheritance and abstract interfaces
are critical.

■ A revised framework needs to be more transparent.

■ A revised framework cannot impose arbitrary restrictions. Currently, the
specification asks users to avoid a warped version of re-entrance. That
demand makes modeling much more difficult.

Realistically, the EJB specification team could start with a cleaner persistence
framework like JDO. Doing so would put them much closer to an ultimate work-
ing solution. Better yet, the team should learn from the mistakes of the past and
start from scratch with a cleaner, simpler notion of persistence.

11.2.3 Fix the deployment strategy

Metadata is information about a given class, interface, object, or component.
Deployment descriptors are essentially a way to provide metadata about a class at
deploy time. The deployment descriptor approach had its benefits but, like the
component-driven architecture, it is showing its age. The complexity of deploy-
ment descriptors grows with every release and won’t be likely to get any easier. To
shift to another strategy, EJB will have to provide a richer metadata capability.

 Ideally, the metadata capability should be built into the base Java program-
ming language. Such a proposal has already been suggested in the form of Java
Specification Request (JSR) 175. By adopting this request, the EJB specification
team could move toward a richer, simpler strategy for dealing with metainforma-
tion, without the need for complex deployment descriptors. JSR 175 may be
adopted soon in a future Java release. This move would go a long way toward
improving EJB tools and simplifying the platform, in general.

11.2.4 Putting the economic house in order

To date, the Java programming language is still proprietary: a private company,
not a standards body, controls it. Further, like much of the computer industry, Sun
has shown serious weakness lately. To succeed, EJB will also need better economic

Antipatterns and next moves 355
strength from Sun or a move toward standardization. To make the current model
work, Sun must be viable and strong, with enough resources to support the com-
munity process and Java specification. A floundering Sun would present a poten-
tially significant danger to the Java community as a whole. If weakened, Sun might
try to exert more control, attempting to leverage the Java platform for more direct
financial gain at the cost of the overall strength of Java. Keep in mind that others,
notably IBM, offset this danger through significant investments in Java develop-
ment and legal control over many frameworks. Still, the gatekeeper, to a large
extent, is Sun.

 To be fair, the Java Community Process has come a long way since its inception.
Several critical extensions to Java frameworks have come from JSRs that were not
introduced by Sun. This is a step in the right direction. We must keep swinging
the pendulum toward a standardized platform for the good of the entire industry.

 Don’t underestimate your ability to make an impact on the overall process. You
can participate in any JSR about which you feel passionately. Several well-reasoned
arguments from smaller companies, and even independent consultants, have
made an impact on the overall direction of a JSR and, by extension, the EJB frame-
work. If you do decide that you’d like to participate, make sure that you’ve got the
requisite skills to understand the core issues and build a solid argument. Failing
that, work with a mentor who does understand and participate in the process.

11.3 Antipatterns and next moves

Since Bitter Java was published in 2002, you’ve seen antipatterns play an ever-
increasing role in the EJB community. From the PetStore benchmarks to the Java
persistence questions raised by many vocal Java spokespeople, the community is
starting to look at failure as an opportunity to learn. It is our hope that books like
this one will improve Java by encouraging frank and open discourse. In the end,
the strength of the Java platform lies ultimately in the community. We will deter-
mine where Java goes from here. As we participate in the Java Community
Process’s increasingly visible public debate and vote with our pocketbooks for
products that work for us, we can determine the products that will succeed.

As I look down the 400-foot vertical drop, I understand that my next moves will be
for keeps. My choices are clear. If I trust my partner to support me now, I can reach
the summit. If not, I turn around and climb back down the face to return and con-
quer this peak another time. I look at the cliff face and think.

ABitter tales
This appendix contains
Chapter 1 of Bruce Tate’s best-selling
Bitter Java, published in April 2002 by
Manning Publications Co. It is offered as
an introduction to antipatterns.
356

A Java development free fall 357
On a cold day in Eastern Tennessee, my kayak is perched precariously atop a waterfall
known as State Line Falls. The fall has a nasty reputation among kayakers. One of
our team is walking this one. He was injured and shaken up last year at the same
spot. This time around he wants no part of it.

 From the top, there is no clue of the danger that lurks around the bend, but we
know. We have been thinking ahead to this rapid for several days. We have read
about what I cannot yet see. Five truck-sized boulders guard four slots. The water
rushes through the slots and plunges to the bottom of the fall. I will see the entire
waterfall only seconds before I go over it. Most of the water lands on boulders barely
covered by two feet of water. Three of the four slots are reputed to be too violent and
dangerous for your mother-in-law. Through the fourth, the river rips into the nar-
rows and picks up speed. It drops sharply over the lip and crashes onto the jagged
rocks 16 feet below. I am a programmer by trade, a father of two, and a kayaker of
intermediate skill. I have no business going over a Class V waterfall described in
guidebooks as “marginal.” But here I am, looking for the landmarks. I pick my
slot, sweep left, and brace for the soft landing—or the crash. I am in free fall.

A.1 A Java development free fall

The sales team was strong. They got all the right sponsors, lined them up, and
marched them into the executive’s office. They all said the same thing. The devel-
opment cycle times were outrageous. Each project was longer than the last, and
the best project overshot deadlines by 85 percent. It did not take the CIO long to
add up the numbers. The cost overruns ran well into seven figures.

 The answer was Java. The lead rep presented a fat notebook showing refer-
ences from everywhere: the press, the news, and three major competitors. The
proposed tools won awards and added to the outrageous productivity claims
promised by even the most conservative vendors. They never cited the downside
or training requirements. In early 1996, hardly anyone did. The sales team
brought in the big gun: a proof-of-concept team that quickly hammered out an
amazingly robust prototype in a short time. The lead rep had practiced the close
many times, but in this case, the deal was already sealed. She was able to get even
more of the budget than she expected. After all, a product and language this easy
and this similar to C++ should not require much training, so she got most of that
allocated budget too.

 But a year and a half later, the lead programmer was sitting behind a desk in the
middle of the night while the sales rep celebrated her third National Circle sales

358 APPENDIX A

Bitter tales
award in Hawaii. In truth, the programmer seemed genuinely happy to be there.
He knew that he was in over his head, and he needed help badly. He could see that
clearly now. When the project started, the programming team had just enough
time to learn the syntax of the new language. They had been using an object-
oriented language for four years without ever producing an object-oriented design.
Their methodology called for one large development cycle, which provided very lit-
tle time to find all of the mistakes—and even less time to recover. The insane argu-
ment at the time was that there was no time for more than one iteration.

 As a member of the audit team dispatched to help the customer pick up the
pieces, I was there to interview the programmer. My team had composed a check-
list of likely culprits: poor performance, obscure designs, and process problems.
We had written the same report many times, saving our customers hundreds of
thousands of dollars, but the interviews always provided additional weight and
credibility to back up our assertions.

 “Is your user interface pure HTML, then?” I asked.
 “Yeah,” the programmer replied. “We tried applets, but that train crashed and

burned. We couldn’t deal with the multiple firewalls, and our IT department
didn’t think they would be able to keep up with the different browser and JVM
configurations.”

 “So, where is the code that prints the returning HTML?”
 He winced and said, “Do you really want to go near that thing?” In truth, I

didn’t want any part of it. I had done this long enough to know that this baby
would be too ugly for a mother to love, but this painful process would yield one of
the keys to the kingdom. As we reviewed the code, we confirmed that this was an
instance of what I now call the Magic Servlet antipattern, featured in chapter 3.
The printout consisted of 30 pages of code, and 26 were all in a single service
method. The problem wasn’t so much a bad design as a lack of any design at all. We
took a few notes and read a few more pages. While my partner searched for the
code fragment that processed the return trip, I looked for the database code. After
all, I had written a database performance book, and many of the semiretired data-
base problems were surfacing anew in Java code.

 “Is this the only place that you connect to the database?” I asked.
 “No,” he answered. “We actually connect six different times: to validate the

form, to get the claim, to get the customer, to handle error recovery, to submit the
claim, and to submit the customer.” I suppressed a triumphant smile and again
reviewed the code. Connection pooling is often neglected but incredibly power-
ful. In chapter 7, the Connection Thrashing antipattern shows how a method can

A Java development free fall 359
spend up to half of its time managing connections, repeating work that can usu-
ally be done once.

 I also jotted down a note that the units of work should be managed in the data-
base and not the application. I noticed that the database code was sprinkled
throughout, making it difficult to change this beast without the impact rippling
throughout the system. I was starting to understand the depth of the problem.
Even though most of these audits were the same, at some point they all hit me in
the face like a cold glass of water.

 Over the next four hours, we read code and drew diagrams. We found that the
same policy would be fetched from 4 to 11 times, depending on the usage sce-
nario. (The caching antipatterns at this customer and others prompted discus-
sions in chapter 5, where you’ll learn about the caching and serialization
techniques that can make a huge difference.) We drew interaction diagrams of
the sticky stuff and identified major interfaces. We then used these diagrams to
find iteration over major interface boundaries and to identify general chatty com-
munications that could be simplified or shifted.

 We left the customer a detailed report and provided services to rework the
problem areas. We supplied a list of courses for the programmers and suggested
getting a consulting mentor to solidify the development process. When all was
said and done, the application was completed ahead of the revised schedule and
the performance improved tenfold. This story actually combines three different
customer engagements, each uglier than this one. I changed some details to pro-
tect the names of the guilty, but the basic scenario has been repeated many times
over the course of my career. I find problems and provide templates for the solu-
tions. While most of my peers have focused on design patterns, I find myself
engaged with antipatterns.

A.1.1 Antipatterns in life

On the Watauga River, with all of the expectations and buildup, the run through
State Line is ultimately anticlimactic. I land with a soft “poof” well right of the
major turbulence. The entire run takes less than 20 seconds. Even so, I recognize
this moment as a major accomplishment.

How could a journeyman kayaker successfully navigate such a dangerous rapid?
How could I convince myself that I would succeed in light of so many other
failures? I’d learned from the success and failure of those who went before me.
The real extremists were those that hit rock after rock, breaking limbs and equip-
ment, while learning the safest route through the rapid. I see a striking similarity

360 APPENDIX A

Bitter tales
between navigating rivers and writing code. To make it through State Line Falls, I
simply did three things:

■ I learned to use the tools and techniques of the experts. As a programmer, I
attend many conferences to learn about best practices, and to find the new
frameworks and tools that are likely to make a difference on my projects.

■ I did what the experts did. I learned the easiest line and practiced it in my
mind. We can do the same thing as programmers, by using design patterns
detailing successful blueprints to difficult architectural problems.

■ I learned from the mistakes before me. The first time down a rapid, it’s usually
not enough to take a good plan and plunge on through, torpedoes be
damned. Good plans can go bad, and it’s important to know how to react
when they do. As a programmer, I do the same thing. I am a huge fan of
“merc talk,” or the stories told around the table in the cafeteria about the lat-
est beast of a program. This is the realm of the antipattern.

When I was told how to run State Line Falls, I asked what-if questions. What should
my precise angle be? How can I recover if I drift off that angle? How far left is too
far? What’s likely to happen if I miss my line and flip? I got answers from locals
who had watched hundreds of people go down this rapid with varying degrees of
success. The answers to these questions gave me a mental picture of what usually
happened, what could go wrong, and what places or behaviors to avoid at all cost.
With this knowledge, I got the confidence that it took to run the rapid. I was using
design patterns and antipatterns.

A.2 Using design patterns accentuates the positive

Design patterns are solutions to recurring problems in a given context. A good
example is the Model-View-Controller design pattern introduced in chapter 3. It
presents a generic solution to the separation of the user interface from the busi-
ness logic in an application. A good design pattern should represent a solution
that has been successfully deployed several times. At State Line Falls, when I read
about the successful line in guidebooks and watched experienced kayakers run
the rapid, I was essentially using design patterns. As a programmer, I use them for
many reasons:

■ Proven design patterns mitigate risk. By using a proven blueprint to a solu-
tion, I increase my own odds of success.

Using design patterns accentuates the positive 361
■ Design patterns save time and energy. I can effectively use the time and effort
of others to solve difficult problems.

■ Design patterns improve my skill and understanding. Through the use of
design patterns, I can improve my knowledge about a domain and find new
ways to represent complex models.

Embracing design patterns means changing the way we code. It means joining
communities where design patterns are shared. It means doing research instead
of plowing blindly into a solution. Many good sources are available.

Books
This is a sampling of books from the Java design pattern community and the
definitive source for design patterns (Design Patterns: Elements of Reusable Object-
Oriented Software). As of this writing, five or more are under development, so this
list will doubtlessly be incomplete. Amazon (http://www.amazon.com) is a good
source for finding what’s out there.

■ Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (The Gang of Four)

■ Refactoring: Improving the Design of Existing Code, by Martin Fowler, Kent Beck
(contributor), John Brant (contributor), William Opdyke, and Don Roberts

■ Core J2EE Patterns, by John Crupi, Dan Malks, and Deepak Alur
■ Concurrent Programming in Java: Design Principles and Patterns, by Doug Lea
■ Patterns in Java, Volume 3: A Catalog of Enterprise Design Patterns Illustrated with

UML, by Mark Grand
■ Data Structures and Algorithms with Object-Oriented Design Patterns in Java, by

Bruno R. Preiss
■ Java Design Patterns: A Tutorial, by James William Cooper

A.2.1 Design patterns online

Manning Publications has a series of author forums for discussion. These authors
discuss server-side architectures, Java programming techniques, Java ServerPages
(JSP), Extensible Markup Language (XML), and servlets. The author of this book
also has an online community to discuss Java antipatterns.

Manning authors

■ Manning author forums: http://www.manning.com/authoronline.html

■ Java antipatterns: http://www.bitterjava.com

362 APPENDIX A

Bitter tales
Java vendors

■ IBM: http://www-106.ibm.com/developerworks/patterns/

■ Sun: http://java.sun.com/j2ee/blueprints/

A.2.2 UML provides a language for patterns

The design pattern community has exploded in recent years partially because
there is now a near universal language that can be used to express patterns. Uni-
fied Modeling Language (UML) brings together under one umbrella several of
the tools supporting object-oriented development. Concepts such as scenarios
(use cases), class interactions (class diagrams), object interface interaction
(sequence diagrams), and object state (state diagrams) can all be captured in
UML. Though this subject is beyond the scope of this book, there are many good
UML books, tools, and resources as well.

Books

■ UML Distilled: A Brief Guide to the Standard Object Modeling Language, by Martin
Fowler and Kendall Scott

■ Enterprise Java with UML, by C. T. Arrington

■ The Unified Modeling Language User Guide, by Grady Booch, et al.

Tools

■ Rational: http://www.rational.com

■ Resource center at Rational: http://www.rational.com/uml/index.jsp

■ TogetherJ from Together Software: http://www.togethersoft.com

A.3 Antipatterns teach from the negative

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis by William J.
Brown, et al., is an outstanding book dedicated to the study of antipatterns. The
antipattern templates that follow each chapter in this book come from Brown’s
text. In it, the authors describe an antipattern as “a literary form that describes a
commonly occurring solution to a problem that generates decidedly negative
consequences.” The words that caught my attention are commonly occurring solu-
tion and decidedly negative consequences. Many others have presented some of the
negative examples in this book as the right way to do things. Some, like the Magic
Servlet, are forms of programs published in tutorials, created by wizards, or

Antipatterns teach from the negative 363
captured in frameworks. As for negative consequences, anyone who has followed
software engineering closely knows that a high percentage of software projects
fail. The AntiPatterns text cites that five of six software projects are considered
unsuccessful. Java projects are not immune. Earlier this weekend, I heard about a
canceled Java project using servlets and JSPs at a Fortune 100 company that will
be replaced with a new project using CICS and C++!

 Some of the madness in our industry is caused by outright malice. Some ven-
dors sell software that they know isn’t ready or doesn’t work. Some managers resist
change and sabotage projects. Some coworkers take shortcuts that they know they
will not have to repair. Most of the time, though, it is simple ignorance, apathy, or
laziness that gets in the way. We simply do not take the time to learn about com-
mon antipatterns. Ignorant of software engineering history or the exponentially
increasing cost of fixing a bug as the development cycle progresses, we might kid
ourselves into thinking we’ll take a shortcut now and fix it later.

A.3.1 Some well-known antipatterns

As programmers, we will run across many antipatterns completely unrelated to
Java. For the most part, we will not go into too many of them, but here are a few
examples to whet your appetite:

■ Cute shortcuts. We’ve all seen code that optimizes white space. Some pro-
grammers think that the winner is the one who can fit the most on a line.
My question is, “Who is the loser?”

■ Optimization at the expense of readability. This one is for the crack program-
mers who want you to know it. In most cases, readability in general is far
more important than optimization. For the other cases, aggressive com-
ments keep things clear.

■ Cut-and-paste programming. This practice is probably responsible for
spreading more bugs than any other. While it is easy to move working code
with cut and paste, it is difficult to copy the entire context. In addition, cop-
ies of code are rarely tested as strenuously as the originals. In practice, cut-
and-paste programs must be tested more strenuously than the originals.

■ Using the wrong algorithm for the job. Just about every programmer has written
a bubble sort and even applied it inappropriately. We can all find a shell sort if
pressed, and if we understand algorithm analysis theory, we know that a bub-
ble sort is processed in O(n2) time, and a simple shell sort is processed in
O(nlog(n)) time, which is much shorter for longer lists.

364 APPENDIX A

Bitter tales
■ Using the wrong class for the job. In object-oriented languages, we’ve got to
choose between classes like tables and arrays that have similar function but
different characteristics. If our algorithm calls for random access of a collec-
tion, using a b-tree or hash table will be much faster than an array. If we’re
going to frequently index or enumerate the collection, an array is faster.

A.3.2 Antipatterns in practice

The study and application of antipatterns is one of the next frontiers of program-
ming. Antipatterns attempt to determine what mistakes are frequently made, why
they are made, and what fixes to the process can prevent them. The practice is
straightforward, if tedious. The benefits are tremendous. The trick to the study of
antipatterns is to:

1 Find a problem. This might be a bug, a poor-performing algorithm, or
unreadable method.

2 Establish a pattern of failure. Quality control is a highly specialized and val-
ued profession in manufacturing circles. A good quality engineer can take
a process and find systemic failures that can cost millions. Software pro-
cess can create systemic failure, too. The Y2K bug was a systemic failure of
a very simple bug that was created and copied across enterprises hun-
dreds of millions of times. Sometimes, the pattern will be related to a
technology. Most often, process problems involve people, including com-
munications and personalities.

3 Refactor the errant code. We must of course refactor the code that is bro-
ken. Where possible, we should use established design patterns.

4 Publish the solution. The refactoring step is obvious but should be taken a
bit further than most are willing to go. We should also teach others how to
recognize and refactor the antipattern. Publishing the antipattern is as impor-
tant as publishing the related solution. Together, they form a refactoring
guide that identifies the problem and solves it.

5 Identify process weaknesses. Sometimes, frameworks or tools encourage
misuse. Other times, external pressures such as deadlines may encourage
shortcuts. We must remember that a process must ultimately be workable
by imperfect humans. In many cases, education may be the solution.

6 Fix the process. This is the most difficult, and most rewarding, step. We
effectively build a barrier between our healthy enterprise and the dis-
ease. Here, we take a hard look at what’s broken. In simple cases, we fix

Antipatterns teach from the negative 365
the problem. In more extreme cases, we might need to establish a risk/
reward analysis and win sponsorship to fix the problem.

Figure 1.1 illustrates the antipattern process.

A.3.3 Antipattern resources

The antipattern community is gathering momentum, looking for things that
break in a methodical way and capturing those experiences. Some engines use
pattern recognition to find bugs from software source code. Many programmers are

Isolated
problem

Process
weakness

Protective Barrier

B

C

D

E

F

G

The same
problem

Antipattern

Refactored
solution

Refactoring
guide

Healthy

enterprise

The same
problem

The same
problem

Figure 1.1 The antipattern process involves finding a problem B, establishing a pattern and
publishing an antipattern C, refactoring the solution D, building a guide so that the problem can
be resolved and fixed en masse E, identifying process weaknesses F, and building a barrier
between the healthy enterprise and the antipattern G.

366 APPENDIX A

Bitter tales
starting to publish bug patterns for common programming mistakes. The http://
www.bitterjava.com site has some links to Eric Allen’s series “Bug Patterns.”

 The design pattern community also has a counterpart: the antipattern commu-
nity. This group is interested in learning from common experience and capturing
that knowledge in a uniform, methodical way.

 AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis brings these
concepts together better than any other source I have seen. With Brady Flowers,
who contributed the Enterprise JavaBeans (EJB) examples for this book, I had
started to do bitter Java sessions at conferences before we found AntiPatterns.
When we found it, we immediately fell in love with the ideas expressed in this
book. Most of the book’s antipatterns went beyond theory and explained the cul-
tural conditions prompting a problem. The book is extraordinarily useful to pro-
grammers who strive for excellence. We hope to take these concepts into the Java
community to continue the momentum that AntiPatterns has created. We will go
beyond generic antipatterns and dive into those that are most prevalent to the
Java community. These are some online resources for antipatterns:

■ The authors have an online source for Java antipatterns. You can find it at
http://www.bitterjava.com. On the site, we will attempt to provide you with
articles, discussion boards, and useful links.

■ The http://www.antipatterns.com site has articles, events, and message
boards.

A.4 Antipattern ideas are not new

Should developers spend more time on the study of antipatterns or design pat-
terns? I will answer this with another true adventure story. Throughout the better
part of this past century, mountain climbers across the world had an ultimate goal:
to scale Mt. Everest, the highest summit in the world. Over time, mountaineers
tried many different approaches that would allow political passage to the moun-
tain, solid expedition logistics, and the best chances for success. Two routes go
through Tibet. George Mallory was an early British mountain climber, famous for
saying he climbed Everest “Because it is there.” He made his attempts on the north
face, over terrain called the North Col. The other northern route was considered
much too dangerous for early mountaineers. Edmund Hillary, who became the
first to climb Everest, eventually succeeded on the southern face, through Nepal.
That route is called the South Col route. After the first ascent, expeditions climbed
this dangerous mountain with greater regularity and greater margins of safety.

Antipattern ideas are not new 367
They began to unlock the secrets of operating at high altitude and to find where
the inevitable danger spots were likely to be. They began to understand when the
summer monsoons directed the jet stream away from Everest to provide a window
of acceptable weather. They learned to leave their tents at midnight so that they
would not be trapped on the summit in the afternoon, when the weather fre-
quently deteriorated. They were using design patterns.

 Inevitably, people started to guide trips up the mountain with increasing suc-
cess. Many debated that some of the paid clients did not have the appropriate
skills to be on the mountain and would not be able to handle themselves in the
event of an emergency. These criticisms turned out to be prophetic. Two expedi-
tions led by the strongest guides in the world got trapped at the top of Everest
through a series of poor decisions and bad luck. An afternoon storm killed many
of them, including three of the six guides and several of the clients. Jon Krakauer
made this incident famous in the book Into Thin Air. The design patterns were
able to get them to the top but were unable to get them safely back down. Good
application of climbing antipatterns, like avoiding the top of the mountain at dan-
gerous times and holding fast to a prescribed turnaround time, could have made
the difference.

A.4.1 Learning from the industry

In many real-world situations, the principles of design patterns and antipatterns
are combined. In heath care, aggressive preventive care (design patterns) is com-
bined with systematic diagnostics of health-related issues (antipatterns). In manu-
facturing, quality certification programs like ISO 9000 (design patterns) are
combined with aggressive process analysis, problem identification, and continuous
improvement (antipatterns). Road signs are combined to point out good driving
behaviors like “Pass on left” and hazards like “Watch for falling rock.” In many
other fields, the two practices go hand in hand. Software engineers should try to
combine these two approaches.

 A powerful movement in the quality industry, from the late ’70s through the
’80s, sought to involve front-line assembly workers in the quality process. These
teams were tightly integrated with quality professionals. The teams, sometimes
with light-handed management direction, would identify problems and contrib-
ute a block of time weekly toward solutions to those problems. My father, Robert
G. Tate, Jr., became so attached to this process that he left a high-level position at
Dover Elevators to pursue a consulting career installing “quality circles” around
the world. He found that something magical happened with the involvement of
the actual blue-collar plant floor. The relationships changed. Management,

368 APPENDIX A

Bitter tales
quality control, and the product builders began to work together. The process was
remarkably simple:

■ Quality circles would form for the purpose of solving quality problems.

■ Participants would become involved in the identification and solution of
quality problems.

■ Management would empower them to deal with quality problems directly.

■ Participants were educated to perform these tasks.

Many of the quality groups showed staggering returns. Other programs, such as
Zero Defects, also thrived. Awards and accreditations, like Malcolm Baldrige and
ISO 9000, gathered steam. The United States again discovered the value of quality.

 In a very real sense, this book represents the same ideas that we see in other
areas and places them in the context of Java application development. We are tak-
ing responsibility for bringing quality code to the desk of the common program-
mer. We want to identify places where our assembly line is broken. We want to spot
holes in process and procedure that can cripple our customers or even ourselves
down the road. We want to know when major systematic problems, like the rou-
tinely late turnaround times on Everest, occur. We then want to systematically
solve them and save others from repeating our mistakes. Most of this book deals
with antipatterns that are already well entrenched in Java programs, processes,
and programmers. We should now talk briefly about the discovery process.

A.4.2 Detective work

Experienced, conscientious programmers find most antipatterns. While teaching
the instincts of a detective may be difficult, I can provide some rules of thumb from
my consulting experience. These tips represent the places and methods that I use
to find antipatterns hiding in a customer’s process, or my own.

Bug databases contain a bounty of wealth
Most organizations already track quality metrics in the form of bug databases. We
can look to establish patterns based on keyword searches and spot checks. Are we
seeing a pattern of memory leaks? If so, misconceptions or frameworks could be
a source of bad behavior. Are the change lists for view-related maintenance
particularly long? If so, this could point to tight coupling. Are certain objects or
methods particularly vulnerable to bugs? If so, they might be refactoring targets.

Antipattern ideas are not new 369
Early performance checks can point out design flaws
Sanity checks for performance early in a process can point to design flaws. Some of
these might be isolated incidents. Some, even at an early stage, are likely to be
common enough to warrant special attention. Internet applications are particu-
larly vulnerable to communication overhead. Several of the antipatterns in this
book deal with round-tripping, or making many communications do a relatively
isolated task. Sloppy programming, including many of the issues in chapter 9, can
also cause performance problems, especially in tight loops.

Frequent code inspections and mentors help
Beginners and early intermediates can be a common source of antipatterns. Pair-
ing them with more experienced programmers and architects for code reviews
and mentoring can head off many bad practices before they start. At allmystuff,
the engineering department did a nice job of mentoring the solutions develop-
ment staff, which typically consisted of weaker developers with better customer
skills. Even a five-minute code inspection can reveal a surprising amount of infor-
mation. Are the methods too long? Is the style readable and coherent? Are the
variable names appropriately used? Does the programmer value her intelligence
above readability?

End users are unusually perceptive
Later in my career, I began to appreciate the impact of end-user involvement at all
stages of development. I found that end users can be brutally honest, when we
allow them to be. When I began to truly listen to feedback, I could tell very early if
my team would need to bear down or change direction. Too often, we ask for the
questions and listen only if we hear what we want or expect.

Outsiders can use interviews
The most powerful tool for someone outside a development organization is the
interview. People are put off when we try to propose answers without asking ques-
tions. Getting them to open up in an interview is usually not difficult but may
occasionally be troublesome. When we are digging for trouble, people are much
more perceptive if they perceive that we are helping to solve problems and not
looking for someone to blame. Interviews are most useful if we can script at least a
set of high-level questions, as well as anticipate some low-level questions.

370 APPENDIX A

Bitter tales
Establishing a pattern
By itself, a problem is only a bug. We should already have processes and procedures
for identifying and fixing bugs. Indeed, many of my father’s customers had adequate
measures for detecting and removing bad products from the line. The problems
with these reactive approaches are twofold. First, we will never find all of the bugs.
Second, if we do not fix the machinery or the process, we will create more bugs!
After we have established a pattern, we need to elevate it from bug to antipattern.

A.4.3 Refactoring antipatterns

After we find a problem and establish a pattern, our strategy calls for refactoring it
to form a better solution and process. Here, we are overlapping the realms of
design patterns and antipattern. My intuition is that this combination is part of
what is missing in the software quality industry. The combination of design pat-
terns and antipatterns is practical and powerful. Poor solutions can be identified
through antipatterns and redesigned into more proven and practical alternatives
using design patterns. The process of continually improving code through
restructuring for clarity or flexibility and the elimination of redundant or unused
code is called refactoring.

 Many experts advocate the rule “If it isn’t broke, don’t fix it.” In the realm of
software development, following this rule can be very expensive, especially at the
beginning of a program’s life cycle. The average line of code will be changed,
modified, converted, and read many times over its lifetime. It is folly to view a
refactoring exercise as time wasted without considering the tremendous savings
over time. Instead, refactoring should be viewed as an investment that will pay
whenever code is maintained, converted, read, enhanced, or otherwise modified.
Therefore, refactoring is a cornerstone of this book.

A.5 Why Bitter Java?

In the Java community, the study and promotion of design patterns, or blueprints
for proven solutions, has become well established and robust. The same is not true
of the antipattern. As an architect and consultant, I have seen an amazing same-
ness to the mistakes that our customers tend to make. While the problem of the
month may change slightly in a different domain or setting, the patterns of poor
design, culture, and even technology stay remarkably consistent from one engage-
ment to the next. I strongly believe that the study of antipatterns inherently
changes the way we look at the software process. It keeps us observant. It makes us

Why Bitter Java? 371
communicate. It helps us to step beyond our daily grind to make the fundamental
process changes that are required to be successful.

 Most of the antipatterns in Bitter Java have a relatively limited focus compared to
the more general antipatterns in the AntiPatterns text. Each is applied to the server-
side programming domain, which is popular right now and young enough to have
a whole new set of common mistakes. Our hope is that this book will continue the
evolution of the study of antipatterns and bring it into the Java community.

A.5.1 The Bitter Java approach

Bitter Java will take a set of examples, all related to a simple Internet message
board, and redesign them over many chapters. Each iteration will point out a
common antipattern and present a refactored, or redesigned, solution that solves
the problem. In many cases, there may still be problems in the refactored solu-
tion. In most cases, these problems are addressed in later chapters. The others are
left as an exercise for the reader. Regardless, the focus of the antipattern is to
refactor a single problematic element.

 The focus of Bitter Java is on server-side programming. The base architecture
uses common server-side standards of servlets, JSPs, Java connectors, and EJBs.
Where possible, the solutions are not limited to any vendor, though EJB imple-
mentations are currently platform specific.

A.5.2 Bitter Java tools

Based on my experience, I have chosen VisualAge for Java, WebSphere, and DB2
because the software and support are readily available to the authors. All of the
implementations stress open Java designs and software architectures. Free, open
alternatives to our software include:

■ The home page for Java, with pages for base toolkits and specifications for
J2EE extensions, can all be found at http://java.sun.com.

■ A free servlet container, for the execution of servlets and JSPs either in a
stand-alone mode or with a web server, can be found at http://
jakarta.apache.org/tomcat/.

■ A free web server can be found at http://apache.org.

BEA Systems’ WebLogic also supports all of the classes and constructs used in this
book, though they have been tested only on the original toolset. We do use the
IBM database drivers (and I feel that the native database driver is almost always the

372 APPENDIX A

Bitter tales
best option), but we do not use the IBM-specific framework for databeans or serv-
let extensions, opting for the open counterparts instead.

A.5.3 The Bitter Java organization

Bitter Java presents some background information in chapters 1 and 2, and subse-
quent chapters present a series of antipatterns. The patterns are collected into
themes. Chapters 3 and 4 focus on a design pattern called Model-View-Controller,
and an associated Java design pattern called the Triangle. Chapters 5 and 6 concen-
trate on optimizing memory and caching. Chapters 7 and 8 concentrate on EJBs
and connections. Chapters 9 and 10 address programming hygiene and good per-
formance through scalability. The chapters are organized in the following manner:

■ Background material for the chapter.

■ A basic description of the antipattern, including some of the root causes
and problems.

■ Sample code illustrating the use of an antipattern.

■ One or more refactored solutions.

■ Sample code illustrating the refactored solution.

■ A summary containing the highlights of the chapter.

■ A list of all antipatterns covered in the chapter.

Antipatterns and templates
Each antipattern is presented twice: once in the main text, and once in template
form at the end of each chapter. The templates that we have chosen, both within
the chapters and at the end of most chapters, are based on the templates suggested
in the AntiPatterns book. Those in the chapter text choose a minimalist organiza-
tion with the keyword antipattern followed by its name in a heading, followed by
some background material. Finally, we present a refactored solution following the
solution keyword. At the end of each chapter is a more formal template, following
the conventions in AntiPatterns. In this way, we make this initial contribution to the
initial collection of Java antipatterns.

 If you are looking for particular technologies or techniques, this is where to
find them:

Why Bitter Java? 373
For the programming examples, http://www.manning.com/tate/ has the com-
plete code for all of the examples, as well as forums for discussing the topics of the
book. The code in the book will be in the Courier style:

code = new Style("courier");

Where possible, long programs will have embedded text to describe the code. In
other places, there may be in-line code that looks like this. Most of the pro-
gramming samples are based on VisualAge for Java, version 4, and WebSphere
Studio version 4. Most Java examples are based on JSP 1.1 and on Java 1.2. We’ll
tell you if the version is different. Some of the code examples for the antipatterns
are for instructional purposes only and are not running programs. We have com-
piled and tried all of the good programming examples. They work.

A.5.4 The Bitter Java audience

Bitter Java is not written like a traditional technical manual or textbook. To keep
things lively, we will mix in real-life adventure stories at the beginning of each
chapter, with a programming moral later in the chapter. We hope that the style will

Table A.1 The technologies and techniques in Bitter Java are presented in an order that suits the ongo-
ing refactoring of a set of examples. This table can help you navigate to particular concepts that might
interest you.

Technologies Chapter

JSP design and composition 3, 4

Servlet design and composition 3, 4

JDBC, database programming 3, 4, 5, 6, 7

Connections framework 7

XML antipatterns 7

Web services 7

EJBs 8

Caching 5

Model-view-controller 3, 4

Performance antipatterns, tuning, and analysis 10

Antipatterns and the development process 1, 2, 11

Connection pooling 6

Coding standards and programming hygiene 9

374 APPENDIX A

Bitter tales
engage many, and it might put off a few. If you are a reader who likes to cut to the
chase, you will probably want to skip to chapter 3, and you may even want to skip
the story at the front of each chapter. If you are looking for a dry reference with lit-
tle extraneous content, this book is probably not for you.

 The skill level for bitter Java is intermediate. If you have all of the latest Java
design pattern books and have bookmarks for all of the key design pattern com-
munities, this book is probably not for you. If you do not yet know Java, then you
will want to try some introductory books and then come back to this one. If, like
most Java programmers, you are an intermediate who could use some advice about
some common Java pitfalls, then this book is for you. Those who have converted to
Java from a simpler language, a scripting language, or a procedural language like
C may find this book especially compelling.

 Finally, Bitter Java is intended to be at a slightly lower level of abstraction than
project management books, or the first AntiPatterns text. We intend to introduce
code and designs that do not work and to refactor them. From these, we will show
the low-level impact of process flaws, a failure to educate, and shortcuts. From this
standpoint, architects and programmers will find appropriate messages, but they
may find following the examples challenging. Project managers may also find
some compelling thoughts, though the programming content may be slightly
advanced. For both of these communities, antipattern summaries are listed at the
end of each chapter in a concise template based on those in the original AntiPat-
terns text.

A.6 Looking ahead

Bitter Java is about programming war stories. Books like The Mythical Man Month,
by Fredrick P. Brooks, have left an indelible impression in the minds of a whole
generation of programmers. We aim to do for Java programmers what Brooks did
for project managers. Bitter Java is about the quest for imperfection. We are not
looking for isolated examples. We are looking for problems in process and cul-
ture, demonstrated by technically flawed designs. We are setting out to find the
repeated mistakes that have bite. We are recording some of the useful mythology
of the Java programmer.

Looking ahead 375
 In the next chapter, we will focus on the current landscape of the industry and
why it is so ripe for antipatterns. Next, we will look at basic server-side designs and
some antipatterns that plague them. Then, we will focus on common problems with
resources and communication. Finally, we will look at advanced antipatterns related
to enterprise Java deployments. So, settle down with this cup of bitter Java. We hope
that when you’re done, your next cup will be a smoother, more satisfying brew.

BBitter basics
This appendix contains
■ An introduction to Enterprise JavaBeans
376

377
Only a few short years ago, development teams sweated and toiled to build custom
system-level architectures—often inescapably riddled with bugs—to support their
business applications. Although proprietary offerings speckled the middleware
market, the portability and interoperability of these products left a lot to be
desired. Developers wasted time rewriting logic to work with each different appli-
cation server vendor’s implementations; debugging code that had little to do with
the actual business problems at hand; and retooling when requirements outgrew
initial expectations. The problems cried out for another level of abstraction, one
that would allow developers to concentrate on their own specific requirements.
Enter EJB.

 A number of proprietary offerings allowed developers to explicitly access sys-
tem-level services through standard APIs. However, an explicit model has a signifi-
cant downside: it comingles the system APIs with the business logic. EJB, on the
other hand, abstract out the business logic by allowing the application server to
intercept bean calls and implicitly invoke system-level services. In the EJB model,
only business logic is placed in the bean implementations, and the container
invokes system-level services based on separate declarative configuration informa-
tion. This approach also allows the system-level aspects of your application to be
configured at deployment time without modifying or recompiling source code.

 Physically, the EJB architecture consists of a relatively concise specification and a
small set of Java interfaces; both may be downloaded for free at Sun’s EJB website
(http://java.sun.com/ejb). The specification defines developer roles in the EJB
architecture and contracts that actors in these roles are required to follow. The Java
interfaces represent the physical code contract between the application server pro-
vider and the bean developer.

 The spirit behind EJB is that bean developers can compose business logic leav-
ing the system-level details to the container vendors who, in turn, make their
money selling runtime environments in which the beans can live. The container
implements a number of system-level services. Many of these services remain
almost completely out of sight and out of mind for bean developers. The EJB
architecture lays a foundation for bean providers to develop business logic with-
out worrying about synchronization, transactions, resource management, state
management, persistence, security, or other system-level details. If any of these
services fall under your project’s requirements, EJB may be for you.

378 APPENDIX B

Bitter basics
B.1 Developing in the EJB architecture

The specification defines EJB as a distributed-component architecture. An EJB, a
special Java component, lives in an EJB container. Third-party vendors customarily
provide an EJB container as part of an Application server. An EJB encapsulates
business logic—that is, code directly related to the purpose of your application.
For example, if your application books kayaking trips, the business logic might
include scheduling a trip for a user and sending out a confirmation email. Moni-
toring the transaction, ensuring that all steps complete successfully, qualifies as
system logic. As an EJB developer, you can implement your business logic and let
the container transparently manage system-level services for you.

 Unlike many other Java technologies and APIs that we’ve come across, the EJB
architecture does not begin and end on the Java interfaces. In fact, the interfaces’
sheer flexibility often tends to obscure the interfaces’ purposes. You may some-
times be required to declare methods or implement behaviors not detailed in the
EJB interfaces themselves. Other times, implementing a certain method or behav-
ior may be erroneous. A thorough understanding of the rules surrounding the EJB
architecture—the contracts and rules between the bean provider, the container
provider, and the bean client—is key to successfully developing for the platform.

B.1.1 Getting acquainted with the cast, the bean triad

The EJB specification defines three distinct types of beans: session, entity, and mes-
sage-driven. Each bean type has a contract (or a rule set) and a specific purpose.
You can use combinations of this bean triad to address almost any middleware
requirement. Let’s look first at an overview of each bean type, then we’ll focus on
the EJB architecture as a whole, describing bean type-specific caveats as necessary.

Modeling services with session beans
Session beans model services. They perform tasks on behalf of the client and are
often closely related to your project’s use cases—those specific tasks that the
actors or clients in your application set out to perform. For example, if one of
your use cases calls for scheduling a trip with an extreme sports company, your
session bean would model a booking agent that contains methods to inquire
about availability and schedule trips.

 Session beans come in two flavors: stateless and stateful. These types refer to
the beans’ ability to remember information from one request to the next. The ses-
sion bean type you choose depends on factors such as the service your bean is
modeling, the type of client accessing the bean, and the characteristics of the

Developing in the EJB architecture 379
environment in which the bean lives. (For example, you will need to know
whether the bean and the client are running on the same machine or communi-
cating over a network.)

 When we first started developing with session beans, we found the stateful vari-
ety to be more intuitive as their development correlates closely with that of nor-
mal Java objects. Essentially, a stateful session bean provides a means for clients to
lease memory on the server. The client can create the object and operate on it
much as it would on a local object. The stateful session bean instance lives on the
server until the creating client explicitly removes it or the Application server
causes it to expire after a pre-set length of idle time.

 Stateless session beans are less intuitive than their stateful siblings. Imagine a
Java object that cannot retain client-specific information from one method call to
the next. Why on earth would you want to use this? The answer is simple—scal-
ability. A stateful session bean instance can be used for only one client for the
entire session. The application server is obligated to maintain this instance until
the client removes it and possibly until the idle timeout. If you have a lot of cli-
ents, stateful beans can consume resources—memory to hold the instance and
CPU cycles to retrieve the specific instance when needed—quickly. In the stateless
model, however, the application server can redirect the client’s request to any
arbitrary bean instance, even on another machine. The Application server can
grow and shrink a pool of stateless session bean instances as needed, using mem-
ory only when necessary and transparently failing over when exceptional condi-
tions arise.

Persisting data with entity beans
Entity beans provide a framework for mapping data from a persistent store to Java
interfaces. They allow middleware developers to decouple their application logic
from their persistence APIs. This means you can swap relational database vendors
easily or even migrate from a relational database to an object-oriented database
without modifying your business logic. Where session beans are transient, entity
beans are durable and persist across server restarts and even crashes. In the same
way that session beans correlate well with use cases, you can compare entity beans
with the objects that your application logic manipulates—your application’s
domain objects.

 Continuing the extreme sports trip booking example, you would use entity
beans to model either the user that booked the trip or the trip reservation. If your
application data was persisted in a relational database, you may have one table to
hold user information and another table to hold information on scheduled trips.

380 APPENDIX B

Bitter basics
You could map an entity bean to each table. The individual entity bean instances
map one-to-one to the table rows. The entity bean logic maps the fields in the per-
sistent store with methods in a Java interface.

 Entity beans come in two flavors, those using BMP and those using CMP. The
developer is responsible for the persistence logic in a BMP entity bean. For
example, if a relational database backs a BMP entity bean, the bean developer
implements the SQL for creating objects, accessing an object’s fields and query-
ing for objects.

 The EJB container automatically manages the persistence logic for CMP entity
beans. Although CMP has its limitations, it is a rapidly maturing technology. If pos-
sible, CMP is definitely the advisable road to take. First, CMP abstracts the persis-
tence details from the entity bean. A CMP entity bean user can reconfigure a bean
backed by a relational database to use an object-oriented database without modify-
ing even the entity bean logic—not to mention the business logic that uses the
entity bean. CMP also gives the container more control over the persistence
details, increasing its ability to optimize updates and cache data. Many application
server vendors even provide functionality to automatically set up the database
tables based on CMP entity beans.

Processing asynchronous messages with message-driven beans
JMS provides a framework for asynchronous message passing. Whereas a normal
method call blocks until the processing finishes, JMS enables you to fire off a mes-
sage and immediately go about your business without waiting for a return value.

 A JMS-based system consists of two types of actors: producers and consumers.
Producers send messages to JMS destinations where a consumer pulls and pro-
cesses the message. JMS supports two production-consumption models: point-to-
point and publish-subscribe.

 In the point-to-point model, each message is processed only once. The JMS
destination type is referred to as a queue. Producers put messages on a queue in
the same location used by a consumer to pull and process the messages. The pub-
lish-subscribe model supports multiple consumers or subscribers that can sub-
scribe to a JMS destination called a topic. The JMS server removes a message from
the topic once all subscribers have had a chance to process it.

 Message-driven beans provide a convenient means to implement JMS consum-
ers. A message driven bean operates as and plays by similar rules as a stateless ses-
sion bean. However, a bean client directly invokes methods on a session bean
while a message-driven bean only implements the method that the container fires
in response to messages on a JMS destination. One goal of the JMS architecture is

Developing in the EJB architecture 381
to keep developers from worrying about multithreaded programming; message-
driven beans help to further alleviate synchronization concerns.

B.1.2 Know your host, the EJB container

EJB live in a runtime environment provided by the EJB container. The container
bridges the bean client interface and the actual bean implementation, both of
which are defined by the bean provider. The container uses this bridge to inter-
cept bean method invocations, allowing the application server to hook system-
level tasks at the beginning and end of method invocations. The EJB specification
makes services such as transaction management mandatory, while others such as
hot deployment are left to vendors’ devices.

Container services
■ Remote Method Invocation (RMI) Because EJB is fundamentally a distrib-

uted architecture, EJB are typically meant to be remotely accessible. The EJB
container abstracts these details. Clients can access EJB components
remotely using Java RMI, a pure Java to Java network protocol, or CORBA-
IIOP, a platform- and language-independent protocol that slightly predates
RMI. In the EJB 2.0 specification, container support for IIOP is mandatory.
This exposes your bean’s functionality to other CORBA-compliant applica-
tions including the Microsoft COM architecture among others. The con-
tainer also ensures that the values you pass back and forth across the remote
interface abide by the rules of the underlying transport mechanism. For
example, parameters and return values must be serializable.

■ Java Naming and Directory Interface (JNDI) The EJB container provides
a JNDI service. JNDI is a flexible API used to bind and retrieve objects and
other data using URL-like keys. The EJB container makes beans and system
resources such as database and JMS connection factories available through
a special implementation of the JNDI class called InitialContext. Depend-
ing on the vendor’s implementation, the information in the InitialContext
can be accessed locally or remotely or shared across a cluster. Containers
typically bind EJB references under the “java:comp/env” context. However,
as of the EJB 2.0 specification, this is not required.

■ Object life cycle management The EJB container manages the life cycles
of EJB components. The container creates, caches, pools, and disposes of
EJB instances, optimally servicing client needs. The container also reads and

382 APPENDIX B

Bitter basics
persists data at appropriate times. This is a key reason to use entity beans
over custom JDBC.

■ Transactions EJB containers automatically manage transactions. A transac-
tion is a programming concept used to simplify application reliability.
Among other capabilities, EJB containers can ensure that your process’s
view of the application’s state stays consistent for the transaction’s duration;
that the processes in your application do not interfere with each other; and
that your entire unit of work either executes successfully or not at all.

■ Hot deployment Guaranteed uptime and reliability in enterprise applica-
tions is a must. Consequently, many application servers allow for hot deploy-
ment of EJB components. In other words, you can add, remove, and reload
beans while the application server is running. Combined with transactions,
hot deployment allows you to modify a bean’s implementation without
adversely affecting a client’s request midstream.

■ Server management/monitoring, logging Application servers provide
robust sets of tools to monitor and manage the state of your server and bean
instances. Vendors provide tools to easily configure beans and system
resources, to monitor system performance and resource usage, and to audit
application events such as client access, transaction failures, system excep-
tions, and outages, etc.

■ Concurrency A key and powerful concept within the EJB architecture is
thread management. The container simplifies bean development by guar-
anteeing that all access to a bean instance will be single-threaded. This guar-
antee completely alleviates any need to use synchronization primitives
inside bean implementations. Application servers manage concurrent
access to EJB components in a number of ways including synchronizing
access to bean instances or creating multiple bean instances to which client
requests can be delegated. The exact synchronization strategy used
depends on the type of bean and the application server’s implementation.

■ Clustering Many EJB application servers support clustering. You can run
duplicate application instances on the same or different machines. This will
make your application more scalable and able to process a larger number
of client requests via load balancing. Your application will also be more reli-
able, because you can fail over to other server instances if a server instance
goes down. Application servers support many different heterogeneous and
homogeneous, multitiered configurations. Typically, homogeneous

Developing in the EJB architecture 383
configurations are the most easily managed and scalable, as every server will
share the same configuration. Consequently, the need for expensive invoca-
tions over the network is eliminated.

■ Resource management The container makes system resources such as data-
base connection, JMS queues and topics, and JCA adapters available to your
application via JNDI bindings. The container creates, manages, and pools
such resources and ensures that access correlates with transaction contexts.

■ Security In addition to the default security mechanisms provided by the
Java platform, the EJB architecture allows you to limit access to EJB types
and individual methods based on declarative user roles. The container also
makes a user’s authentication information available to your business logic
automatically to facilitate programmatic security.

Remote method invocation (RMI)
RMI is fundamental to the EJB architecture. Remote EJB invocations in a pure Java
environment depend on a core Java technology, RMI. In RMI, remotely accessible
objects implement the java.rmi.Remote interface. An RMI compiler generates a
stub and skeleton for the object. The client invokes methods on the stub; the RMI
subsystem marshals the call across the network to the skeleton running on the
server. The skeleton delegates the method call to your actual implementation and
marshals the return value back across the network to the client (figure B.1). From
the client’s perspective, the invocation works similarly to that of a local call. One
exception is that the remote interface throws a RemoteException, signaling poten-
tial failure points due to network or I/O exceptions and enabling the client to
react politely to such conditions.

 While values passed within the same virtual machine are passed by reference—
for example, a pointer to your instance—parameters and return values passed
across a remote interface are serialized. As a result these are passed by value; mod-
ifications to an instance on one end will not be reflected on the other. Any objects
that pass through a remote interface must implement the Serializable interface.
When an object is serialized, the entire object map—every object that the object
references—is serialized and passed as well. For this reason, you should try to min-
imize coupling between objects that will be passed across a remote interface or
serialized in general. This approach will help manage the amount of data passed
across the network and will reduce the transfer of duplicate information across a
set of invocations.

384 APPENDIX B

Bitter basics
CORBA is a platform and language independent predecessor to RMI. An explicit
goal of the EJB specification is to support integration by existing architectures. In
this spirit, the 2.0 specification mandates that containers support CORBA inter-
faces to EJB as well as the RMI counterparts.

 IIOP is the underlying communication protocol used by CORBA. RMI-IIOP com-
bines the compatibility of CORBA with RMI’s ease of use. Applications can also use
RMI-IIOP for intervendor communications. RMI-IIOP sacrifices some functionality
for the sake of interoperability. For example, in RMI you can upcast remote
objects directly. In contrast, objects retrieved via RMI-IIOP—possibly from a JNDI
registry—must be upcast using the java.rmi.PortableRemoteObject.narrow()
method. This method adds the necessary Java class definition information lost
during the IIOP transmission. Client code in a J2EE environment should always
favor the narrow method over the direct upcast to ensure interoperability.

B.2 Crafting enterprise beans

Let’s briefly review: The three types of EJB can be used to model your middleware
application’s parts. Session beans are used for your application’s logic. Entity

Stub

Skeleton Implementation

Network

look up

doSomething()

doSomething()
marshal invocation

created by developer

generated by RMI complier

Client

Figure B.1 Remote method invocation sequence

Crafting enterprise beans 385
beans represent your application’s data. Message-driven beans process asynchro-
nous events.

 As we mentioned earlier, session beans come in two flavors: stateful and state-
less. To access and implement either type of session bean, you must follow that
type’s unique set of rules. In addition, entity beans have two implementation types
relating to the persistence delegation models. A developer must explicitly imple-
ment the persistence logic for an entity bean using BMP, while the container auto-
matically handles persistence logic for entity beans using CMP.

B.2.1 Defining the client interfaces

The EJB client (possibly another EJB) invokes bean methods and abstractly con-
trols the bean instance’s life cycle via a well-defined set of interfaces. Session and
entity beans use a home and client Java interface combination while message-
driven bean clients communicate using JMS.

 Session and entity bean clients look up the bean’s home interface using JNDI.
The home interface provides bean clients with a starting point, offering a way to
loosely control a bean’s life cycle. For example, when a client calls the remove()
method for a session bean, the container may actually pool the bean instance for
use in a later request, rather than actually making it available for garbage collection.

 Entity bean clients create, query, and remove instances through the home inter-
face. When a client creates an entity bean, the entity is created in the persistent
store. When the client calls the remove() method on an entity bean, the container

Figure B.2 EJB client interface class diagram

386 APPENDIX B

Bitter basics
deletes the entity’s data from the persistent store. The entity bean’s home interface
also declares a set of finder methods that clients use to query for entity bean
instances. The operation of the finder methods compares to that of a SELECT in
SQL. The finder method signature follows the findXXX() pattern. Let’s return to
our trip-scheduling example. Here findByUser() on the booking entity home inter-
face would return the collection of booking entities associated with a given user. At
a minimum, the bean provider must declare a findByPrimaryKey() method.

 Both session and entity beans also have what’s often referred to as a client or
remote interface—your bean client’s interface to the actual instance and func-
tionality (figure B.2). Session bean interfaces tend to have service-oriented meth-
ods—for example, “book a trip” or “post a message.” Methods in entity bean
interfaces correspond to the elements of the entity bean models. In our booking
example, this might be “get the trip date” or “set the booking agent” on the book-
ing entity bean. See listings B.1 and B.2 for source code examples of the session
and entity bean interfaces, respectively.

 Message-driven beans do not define a standalone Java interface. Clients invoke
message-driven beans indirectly using JMS messages. This, in turn, means that the
container keeps complete control over the message-driven bean life cycle.

import java.rmi.RemoteException;
import java.util.*;
import javax.ejb.*;

/**
 * Stateless session bean client interface example.
 */
public interface BookingAgent extends EJBObject {

 /**
 * Get bookings for a user ID.
 * @param userId User's ID.
 * @return Collection of Date instances.
 */
 public Collection getBookingDates(String userId)
 throws RemoteException;

 /**
 * Book a trip.
 * @param userId ID of the user booking the trip.
 * @param date Trip date.
 * @param attendees Number of attendees.
 */
 public void book(String userId, Date date, int attendees)
 throws BookingException, RemoteException;

Listing B.1 Stateless session bean client interface example

Crafting enterprise beans 387
}

import java.rmi.RemoteException;
import java.util.*;
import javax.ejb.*;

/**
 * Stateless session bean home interface example.
 */
public interface BookingAgentHome extends EJBHome {

 /**
 * Mandatory no-parameter create() method.
 */
 public BookingAgent create() throws RemoteException,
 CreateException;

}

Identifying persistent objects with primary keys
Like records in a relational database table, primary keys uniquely identify entity
bean instances. The primary key for an entity bean may be a primitive type or a
complex object. A primary key class must implement Serializable and follow the
rules of serialization. Primary key objects are used between the client and con-
tainer as well as between the container and bean implementation to identity
entity bean instances.

Choosing local vs. remote interfaces
One of the most difficult elements of building an EJB model is controlling the
high communications costs. Often, you must choose the right mechanism and
timing to communicate between major objects. To a beginner, the need to make
rapid decisions can seem overwhelming. Fortunately, EJB 2.0 offers a few addi-
tional tools to guide you through the maze. In EJB versions 1.0 and 1.1, all beans
had explicitly remote interfaces. In other words, all invocations were supposed to
use RMI, whether or not the client and the bean were running in the same virtual
machine. All bean home and client interfaces extended the EJBHome and EJBOb-
ject Java interfaces, respectively. This proved to be a significant performance
bottleneck and many vendors implemented localized performance optimizations,
often fudging the contract between the container and bean client.

 EJB 2.0 introduced the idea of explicitly local interfaces. Beans providing local
interfaces extended the EJBLocalHome and EJBLocalObject Java interfaces rather
than their remote counterparts. Beans and clients running in the same virtual
machine could now communicate efficiently and still reap the benefits of the

388 APPENDIX B

Bitter basics
other system-level services provided by the container. Why two interfaces? A few
subtle, but crucial, differences exist between the implementations of remote and
local interfaces. First and foremost, remote interfaces communicate using RMI or
RMI-IIOP. Parameters and return values are passed-by-value. In other words, the
method and the caller have completely separate copies of the objects. Local inter-
faces, on the other hand, pass-by-reference; the method and the caller have refer-
ences or pointers to the same object in memory (which is why the bean and client
must be running in the same virtual machine). Secondly, remote invocations are
vulnerable to a host of errors and issues you don’t see in local invocations. The
remote bean client should be aware of and able to politely respond to unexpected
conditions such as network outages and I/O errors. Conversely, local bean clients
are much simpler; they typically only need to account for application exceptions.
Lastly, when designing the interface, the bean provider must balance perfor-
mance and functionality. Providing a finer grained interface gives the client more
flexibility but increases the overhead of remote calls. A coarser interface consoli-
dates much of the overhead in remote invocations, but can limit the bean client’s
deployment options.

 For the most part, we use local interfaces for entity beans and remote inter-
faces for session beans. Entity bean interfaces inherently provide convenient, fine-
grained access to entity fields and are not well suited to remote invocations. Ses-
sion bean interfaces, on the other hand, tend toward the coarse-grained, service-
oriented end and are therefore conducive to remote invocation. Even if your ses-
sion bean and client will initially run within the same virtual machine, the over-
head of a remote interface is minimal in most situations. You will save in
development and testing time and effort when scaling to a clustered environment.
Entity beans with local interfaces can be used internally in your session bean
implementations.

import java.util.*;
import javax.ejb.*;

/**
 * CMP entity bean client interface example.
 */
public interface Booking extends EJBLocalObject {

 /** Scheduled date for the booked trip. */
 public Date getDate();

 /** User that booked the trip. */

Listing B.2 CMP entity bean client interface example

Crafting enterprise beans 389
 public String getUserId();

 /** Number of attendees. */
 public int getAttendeeCount();

 /** Number of shuttles needed. */
 public int getShuttleCount();

}

import java.util.*;
import javax.ejb.*;

/**
 * CMP entity bean home interface example.
 */
public interface BookingHome extends EJBLocalHome {

 /** Used to create a booking. */
 public Booking create(Date date, String userId,
 int attendees);

 /** Locate Booking instances by primary key. */
 public Booking findByPrimaryKey(String id)
 throws FinderException;

 /** Locate Booking instances by user ID. */
 public Collection findByUserId(String userId)
 throws FinderException;

}

Comparing remote instances
When comparing two objects for equality in a local environment, you typically use
either the equality operator, ==, which compares two primitive values or object ref-
erences for equality, or the equals() method, which typically compares two in-
memory objects for equivalency. This model does not necessarily work in a distrib-
uted setting as two different client stubs may reference the same or equivalent
objects in another virtual machine and memory space. EJB clients can use the
isIdentical() method on a bean’s client interface to compare remote instances.

 For example, given two EJBObject stubs foo and bar that refer to the same EJB
instance on the server, (foo == bar) may return false whereas (foo.isIdenti-
cal(bar)) could return true.

 Note that, unlike stateful session beans and entity beans, stateless session beans
have no identity. A call to isIdentical() for two EJBObject’s referring to the same
stateless session bean type will always return true.

390 APPENDIX B

Bitter basics
B.2.2 Implementing the business logic

The EJB implementation class implements one of three bean type-specific inter-
faces and contains the actual implementation logic. Unlike conventional Java
classes and interfaces, the EJB implementation does not implement the client
interface directly. This model decouples the class interfaces and allows the con-
tainer to safely hook all access to your bean instance, starting and stopping
transactions, verifying security credentials, and implicitly performing other sys-
tem-level services. Your bean implementation should never directly implement
the client interface. Subtle bugs could surface if a request undermined the con-
tainer’s control and invoked your bean directly, a possibility if your bean inadvert-
ently passed a reference to itself as a method parameter or return value. See
figure B.3 for a class diagram of our example bean implementations.

Figure B.3 EJB implementation class diagram

Crafting enterprise beans 391
Listening to the container
The three bean types implement a given set of callback methods used by the con-
tainer to notify the bean instance of life cycle events. The container invokes these
methods at specific points in the EJB’s life.

Implementing session beans
All session beans implement a variant or variants of an ejbCre-
ate() method. The container invokes one of these methods
when it creates the bean instance. Stateless session beans always
have one, no-parameter ejbCreate() method. Stateful session
beans can implement ejbCreate() methods with or without
parameters so long as they correspond with the create() meth-
ods in the session bean’s home interface. The bean implemen-
tation class uses the parameters to initialize the bean’s state. See
listing B.3 for the source code example for our booking agent
session bean implementation.

 The container calls the ejbRemove() before the end of a bean
instance’s life. The session bean implementation releases any
resources at this time. Note that, in the event of significant bean
or server error, the container may never invoke ejbRemove();
bean implementations should account for this condition.

 The container may create and destroy stateless session bean
instances at will (figure B.4). However, with stateful session beans, the container
may serialize and deserialize instances to conserve resources—more specifically,
to conserve memory. The specification refers to this practice as passivation, and
the converse function as activation. The container calls ejbPassivate() before
passivation or serialization and ejbActivate() after activation or deserialization.
The stateful session bean implementation should release transient resources such
as database connections or open sockets upon passivation and restore these same
resources upon activation.

 Stateful session beans can also optionally implement the SessionSynchroniza-
tion interface. This provides the implementation with another set of callback
methods used to send transaction life cycle notifications. For example, a stateful
session bean can restore its state in the event that a transaction aborts (figure B.5).

Pooled

Does Not
Exist

Create Remove

On
message

Figure B.4
Stateless
session bean life
cycle diagram

392 APPENDIX B

Bitter basics
import java.util.*;
import javax.ejb.*;

/**
 * Stateless session bean implementation class example.
 * Note: Does not explicitly implement bean client interface.
 */
public class BookingAgentBean implements SessionBean {

 /** Session context instance. */
 private SessionContext sessionContext;

 /** Called by container before invocation. */
 public void setSessionContext(SessionContext sessionContext) {
 this.sessionContext = sessionContext;
 }

 /** Called by container after creation. */
 public void ejbCreate() throws CreateException {}

 /** Possibly called by container before removal. */
 public void ejbRemove() {}

 /** Not actually used in stateless session beans. */
 public void ejbActivate() {}

 /** Not actually used in stateless session beans. */
 public void ejbPassivate() {}

 public Collection getBookingDates(String userId) {
 // Query database for list of booking dates
 // and return a Collection of Date instances.
 // ...

Listing B.3 Stateless session bean implementation example

Method
Ready

Passive

Method
Ready

within TX

Does Not
Exist

Create Remove

Passivate

Activate

Method (not Tx)

Commit

Rollback Transaction
method

Transaction
method

Timeout
Figure B.5
Stateful session bean life
cycle diagram

Crafting enterprise beans 393
 return null;
 }

 public void book(String userId, Date date, int attendees)
 throws BookingException
 {
 // Add a booking to the database.
 // Throw a BookingException if there is a
 // scheduling conflict.
 // ...
 }

}

Implementing entity beans
The purpose of the ejbCreate() and ejbRemove() methods in the entity bean
implementation differs from that of the session bean counterparts. Entity bean
ejbCreate() methods may accept parameters as well. The entity bean ejbCreate()
method creates an object in the persistent data store and returns the object’s pri-
mary key. The container calls the ejbRemove() method to remove the object from
the persistent store. The bean implementation must implement one ejbCreate()
method for each create() method in the client interface. Entity beans are not
required to implement any create() methods. The bean implementation must
also implement one ejbPostCreate() method for each ejbCreate() method; both
methods must have the same parameters. The container invokes ejbPostCreate()
after calling the ejbCreate() method and associating your instance with an
EJBObject—in other words, after your bean is client-accessible.

 While entity beans using BMP return a primary key object from the ejb-
Create() method, entity beans using CMP should return null. The container will
create the object in the persistent store and generate the primary key.

 Entity beans using BMP must implement two additional container callback
methods, ejbLoad() and ejbStore(). These methods allow the container to syn-
chronize an entity bean instance’s data with a data store. The container uses ejb-
Load() to tell the entity bean instance to load its data from the store, possibly for
the first time, or to synchronize the beans data at the beginning of a transaction.
The container uses ejbStore() to tell the bean instance to persist its data to the
store. The container invokes each of these two callback methods at a time that
depends on several factors, including your vendor’s implementation, your bean’s
transaction configuration, and your caching settings, if any.

 The container uses the ejbActivate() and ejbPassivate() methods to pre-
pare an in-memory entity bean instance for creation and removal. For a new

394 APPENDIX B

Bitter basics
object, the container will invoke the ejbActivate() method before calling ejb-
Load() for the first time. This allows the bean implementation to set up any tran-
sient resources needed for the ejbLoad() implementa-
tion. When a container removes an instance from mem-
ory (without removing the object from the persistent
store), it will call ejbStore() to ensure that all data has
been persisted and then call ejbPassivate() to release
resources (figure B.6).

 The bean provider is responsible for implementing the
finder methods for BMP entity beans. Though the finder
methods declared in the home interface and the actual
bean implementation have a one-to-one correspondence,
the method names and return values are slightly different.
Specifically, finder method names in the bean implemen-
tation are prefixed with an ejb. In addition, while the
finder method in the client interface returns a collection
of EJBObject instances or remote stubs, the finder
method in your implementation class returns a Collec-
tion of primary keys. Using the minimally required
findByPrimaryKey() method as an example, the corre-
sponding finder method implementation would be called
ejbFindByPrimaryKey().

 Entity bean implementations using CMP depart significantly from other EJB
bean implementations (listing B.4). First, the implementation class for a CMP
entity bean is declared abstract. Each persistent field also has a set of abstract get-
ters and setters. For example, for the user ID field in our booking entity, we would
have an abstract getUserId() and setUserId() method pair. The container sub-
classes your bean’s implementation class, implementing the field accessors as well
as the finder methods. You declare finder method functionality for CMP beans
separately from your business logic, using EJB QL. EJB QL is syntactically compara-
ble to a limited version of SQL. However, EJB QL is not tied to relational databases.

 EJB 2.0 also introduced the notion of CMR. If you use local interfaces and CMP,
you can configure relationships between your entity beans. For example, you could
have a one-to-many relationship constraint between two entity bean types, much as
you would between two tables in a relational database. This feature allows you to
model complex data maps using entity beans and abstracts out this relationship
management logic from the data store, further decoupling your application logic
from the underlying persistence mechanism (listing B.4).

Find

H
om

e

Store

Lo
ad

Pooled

Does Not
Exist

Set context Unset context

Remove Create

Ready

Business
method

A
ct

iv
at

e

P
assivate

Figure B.6
Entity bean life cycle
diagram

Crafting enterprise beans 395
import java.util.*;
import javax.ejb.*;

/**
 * CMP entity bean implementation example.
 */
public abstract class BookingBean implements EntityBean {

 /** Create implementation. */
 public String ejbCreate(Date date, String userId,
 int attendees)
 {
 setDate(date);
 setUserId(userId);
 setAttendeeCount(attendees);

 // return null because this bean uses CMP.
 return null;
 }

 /** Scheduled date for the booked trip. */
 public abstract Date getDate();
 public abstract void setDate(Date date);

 /** ID of user that booked trip. */
 public abstract String getUserId();
 public abstract void setUserId(String userId);

 /** Number of attendees. */
 public abstract int getAttendeeCount();
 public abstract void setAttendeeCount(int attendees);

 /** Number of shuttles needed. */
 public int getShuttleCount() {
 // Calculate the number of shuttles needed based
 // on the number of attendees.
 return -1;
 }

}

Implementing message-driven beans
When it comes to container callback methods, message-driven beans are most
closely comparable to stateless session beans. Message driven bean implementa-
tions have a no-parameter ejbCreate() method called when the instance is cre-
ated and an ejbRemove() method called when the instance gets destroyed
(figure B.7).

Listing B.4 CMP entity bean implementation example

396 APPENDIX B

Bitter basics
 Message-driven bean implementation classes implement
the JMS MessageListener interface in addition to the Mes-
sageDrivenBean interface. The MessageListener interface con-
tains a single onMessage() method that accepts a JMS Message
as a parameter. The container fires the onMessage() method in
response to messages on the JMS destination to which the mes-
sage-driven bean is bound.

Controlling the runtime with the bean context
One aspect common to all three bean type implementations is
their method of container runtime communication. Each bean
implementation declares a callback method that the container
uses to associate a context with the instance, specifically setSes-
sionContext(), setEntityContext(), and setMessageDriven-
Context() for session, entity, and message-driven beans,
respectively. Bean implementations use the context object to
get authentication information on the client or to access the transaction manager.

 Session and entity beans can use the context object to obtain their correspond-
ing EJBObject or client interface or their EJBHome object. Additionally, entity
beans get the primary key object through the context object.

Throwing the right exception
The EJB architecture breaks exceptions into two different classes—system and
application exceptions. The container handles each class in a different fashion.
Understanding exceptions and how the container reacts to them is an often-
underrated key to effectively developing EJB components.

 System exceptions signify fatal, unexpected system-level errors. These include
RemoteException, EJBException, RuntimeException, and subclasses therein. An I/O
error that occurs while transferring data over the network qualifies as a system
exception, as does an unchecked null pointer. When a system exception occurs,
the EJB specification requires that the container dispose of the bean instance that
threw the exception and rollback the currently running transaction. However, the
specification does award the container a lot of flexibility in recovering from sys-
tem exceptions. For example, if a network I/O error occurs, the container may
transparently reattempt the request; the client may be none the wiser.

 Application exceptions signify application-specific events, such as field valida-
tion errors or, in the case of our trip scheduling application, a scheduling conflict.
When an application level exception occurs, both the bean instance and the

Pooled

Does Not
Exist

Create Remove

On
message

Figure B.7
Message-driven
bean life cycle
diagram

Crafting enterprise beans 397
running transaction stay intact. The specification requires that the container
throw application exceptions back to the client. The specification also declares
default application exceptions. CreateException are thrown when an error occurs
in the ejbCreate() method. Finder methods in entity beans throw FinderExcep-
tion if an error occurs during an entity bean query.

B.2.3 Playing it safe with transactions

Transactions, a key benefit of the EJB architecture, allow a developer to reliably
and atomically execute a task. For example, in our extreme sport trip scheduling
application we could ensure that a trip was scheduled and that the client’s credit
card was charged. If we ran into a scheduling conflict, the credit card would not
get charged. If the credit card were declined, the trip would not get scheduled. A
powerful feature of the EJB architecture is the container’s ability to automatically
handle transactions, even across multiple systems.

 The EJB specification allows for two transaction situations, BMTs and CMTs.
Beans with BMTs have the code to start and commit transactions explicitly
embedded in the business logic, whereas the container automatically starts and
commits CMTs.

 Using CMTs, you can configure transaction attributes separate from your appli-
cation logic down to a method-level granularity. You can configure bean methods
to start a new transaction, run in an existing transaction, suspend an existing
transaction, or even throw an exception if the client tries to invoke the method
while running a transaction. CMTs award you a lot of flexibility and should be used
whenever possible.

 BMTs should be used only in the rare case where you have to run multiple indi-
vidual transactions in a single method or, as with stateful session beans, when you
need the transaction to span multiple method invocations. More often than not
you can implement both cases in a different, but equally clear, manner using the
more powerful and flexible CMTs.

 Transactions naturally come with a bit of overhead and tend to consume
resources easily. As a general rule, transactional tasks should be surgically fine to
avoid robbing other clients of resources unnecessarily. A transaction’s completion
should almost never depend upon a human user’s interaction.

B.2.4 Configuring the bean

EJB descriptors are XML files that tell the application server which classes com-
prise your bean. They also tell the application server how to configure your bean.
A single descriptor can hold configuration information for multiple beans

398 APPENDIX B

Bitter basics
(listing B.5). The XML document type definition for the standard descriptor ejb-
jar.xml can be downloaded at http://java.sun.com/dtd/ejb-jar_2_0.dtd.

 Most application servers also require vendor-specific descriptors. For example,
you may have a weblogic-ejb-jar.xml file containing the WebLogic-specific con-
figuration information. The definitions for these proprietary descriptors vary
from server to server.

 You can edit descriptors by hand. However, most application servers and EJB
development tools include tools to produce and modify the descriptors for you.
Using such tools ensures validity in your descriptors, preventing potential issues
and possibly even streamlining the development process.

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
 '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>BookingAgent</ejb-name>
 <home>BookingAgentHome</home>
 <remote>BookingAgent</remote>
 <ejb-class>BookingAgentBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 <entity>
 <ejb-name>Booking</ejb-name>
 <local-home>BookingHome</local-home>
 <local>Booking</local>
 <ejb-class>BookingBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Booking</abstract-schema-name>
 <cmp-field>
 <field-name>userId</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>date</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>attendees</field-name>
 </cmp-field>

Listing B.5 Deployment descriptor example

Crafting enterprise beans 399
 <query>
 <query-method>
 <method-name>findByUserId</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 <![CDATA[
 SELECT OBJECT(a) FROM Booking AS a WHERE userId = ?1
]]>
 </ejb-ql>
 </query>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>BookingAgent</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>Booking</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

B.2.5 Packaging it

All EJB are packaged in an ejb-jar file. An ejb-jar is essentially a JAR file contain-
ing all classes for the bean’s interfaces and implementation, all the bean’s depen-
dent classes, and the bean’s XML descriptors. A JAR file is simply a zip file with a
META-INF directory and a manifest file. A single ejb-jar file may contain one or
multiple EJB components.

 You can also distribute a separate client ejb-jar file, though the specification
does not require it. When you package the server and client components

400 APPENDIX B

Bitter basics
separately, you can reference the client JAR file in a Class-Path entry in your ejb-
jar’s manifest file:

/META-INF/*.xml descriptors
/mypackage/*.class bean classes

B.2.6 Invoking your beans from a client

Invoking an EJB may be a bit daunting at first (it was for us) but is fundamentally
a cut-and-paste task. With session and entity beans, the client follows the follow-
ing steps:

1 Create an InitialContext instance.

2 Look up the EJB’s home object in the context.

3 Cast the home object using the narrow() method.

4 For session beans, call a create() method. For entity beans, call a cre-
ate() method or lookup an EJBObject instance using a finder method.

5 Invoke methods on the EJBObject.

6 If you are using stateful session beans, remember to call the remove()
method and help the container conserve resources.

Listing B.6 provides source code for looking up and invoking our BookingAgent
example session bean.

// get a client stub.
InitialContext context = new InitialContext();
Object homeObject = context.lookup(“BookingAgent”);
BookingAgentHome agentHome = PortableRemoteObject.narrow(
 homeObject,
 BookingAgentHome.class
);
BookingAgent agent = agentHome.create();

// book a trip.
Date date = ...;
agent.book(“bitterejb”, date, 20);

To invoke a message-driven bean, simply send a JMS message to the proper
destination.

Listing B.6 EJB client code example

bibliography
Ambler, Scott. “The Design of a Robust Persistence Paper for Relational Databases.” Newmar-

ket, Ontario: Ambysoft, 1997–2003.
Beck, Kent; Fowler, Martin, Planning Extreme Programming. Reading, Mass:

Addison-Wesley, 2000.
Brooks, Fredrick P, Mythical Man Month. Reading, Mass: Addison-Wesley, 1995.
DeMichiel, Linda G., specification lead, Enterprise JavaBeansTM Specification Version 2.0. Palo

Alto, Ca: Sun Microsystems, 2001.
Eckstein, Robert, Editor, Java Enterprise Best Practices. Cambridge, MA: O’Reilly & Associates,

Inc., 2002.
Fowler, Martin, Refactoring: Improving the Design of Existing Code. Reading, Mass.: Addison-

Wesley, 1999.
Fowler, Martin; Rice, David; Foemmel, Matthew; Hieatt, Edward; Mee, Robert; Stafford,

Randy, Patterns of Enterprise Application Architecture. Reading, Mass.: Addison-Wesley, 2002.
Hunter, Jason, Java Servlet Programming. Cambridge, MA: O’Reilly & Associates, Inc., 2001.
Laddad, Ramnivas, AspectJ In Action. Greenwich, CT: Manning Publications, 2003.
Matena, Vlada; Hapner, Mark, Enterprise JavaBeansTM Specification Version 1.0. Palo Alto, Ca:

Sun Microsystems, 1998.
Matena, Vlada; Hapner, Mark, Enterprise JavaBeansTM Specification Version 1.1. Palo Alto, Ca:

Sun Microsystems, 1999.
Monson-Haefel, Richard, Enterprise Java Beans. Cambridge, MA: O’Reilly & Associates, Inc., 2000.
401

402 BIBLIOGRAPHY
Monson-Haefel, Richard; Chappell, David, Java Message Service. Cambridge, MA: O’Reilly &
Associates, Inc., 2002.

Moore, Geoffrey A.; McKenna, Regis, Crossing the Chasm. New York, NY: HarperBusiness, 2002.
Roman, Edward; Ambler, Scott; Jewell, Tyler, Mastering Enterprise JavaBeans. New York, NY:

John Wiley & Sons; 2nd edition, 2001.
Shankland, Stephen, Java Jigsaw. San Francisco, CA: c/net news.com, March 25, 2002.
Tate, Bruce, Bitter Java. Greenwich, CT: Manning Publications, 2002.
Terry, Shaun, Enterprise JMS Programming. New York, NY: John Wiley & Sons, 2002.
Sullins, Benjamin; Whipple, Mark, EJB Cookbook. Greenwich, CT: Manning Publications, 2003.
Yourdon, Edward. Death March: The Complete Software Developer’s Guide to Surviving Mission

Impossible Projects. Englewood Cliffs, NJ: Prentice Hall, 1999.

index
A

abstract
persistence layer 69

administration 38
Adobe PDF 108
allmystuff 369
alternative technologies

and EJB 350
alternatives

to EJB 29
to entity beans 246

Amazon 5, 361
Ambler

Scott 268
Ant 5, 17, 335, 338

target 338
antipattern 5, 124, 369

See also mini-antipattern
Application Filters 230, 243
Application Joins 228, 242
books 362
Build Guru 337, 345
cache 359
community 365
Conversational Baggage 157
Custom DTO 73, 79
Customers in the Kitchen

66, 79
Database Connection

Hog 101
and design patterns 359–360,

366
detective work 368
Eager Iterator 103, 124
Eavesdropping 195, 209

EJB Code Duplication 332,
344

and EJB future 355
entity beans 214
Face Off 215, 217, 240
Fat Messages 165
Golden Hammer 12, 20
Golden Hammers of Session

State 143, 158
Ham Sandwich 222, 241
Hot Potato 191, 207
in industry 367
Integration Hell 341, 347
Killer System Exceptions 97,

123
Local and Remote Interfaces

Simultaneously 60, 78
Magic Servlet 358, 362
Narrow Servlet Bridges 113,

125
on line 361, 366
Packrat 179, 205
Performance

Afterthoughts 199, 210,
296, 320

Persistent Problems 275, 284
Premature Optimization 291,

319
Revolving Doors 235
Round-Tripping 369
Running with Scissors 339,

346
Rusty Keys 233, 244
seasoned developers and 12
Session Hodgepodge 152,

160

Sledgehammer for a Fly 30,
51

Slow Eater 194, 208
Swallowing Exceptions 94,

122
System Loaded Application

Classes 332
System Loaded Applicaton

Classes 343
Tangled Threads 86, 121
Thrash-tuning 303, 321
well-known 363
XML as the Silver Bullet 177,

204
antipattern Monolithic

Consumer 188, 206
AntiPatterns text 363, 366,

371–372, 374
Apache 33, 371
application design 16

and EJB 18
application exceptions 92, 97
application filters 230, 232, 243

types 230
Application Filters

antipattern 230, 243
application joins 228, 233, 242

examples 229
Application Joins

antipattern 228, 242
Application servers

overspending 5
pooling threads 86

application tier
designing 57

application.xml 336
403

404 INDEX
application-defined relation 229
architects 369, 374
arrays 364
AspectJ 352
Aspect-Oriented Programming

(AOP) 93, 352
and crosscutting

concerns 352
process 352

asynchronous
APIs 25
communication 350
messages 380

asynchronous messaging 163
excessive coupling and 182
layering and 190

attributes
persistent 250–251

authentication 42, 84
autogenerate

EAR 336
EJB class 333
EJB code 325
manifest 334

automated tests 17

B

B2B 178
Baldrige, Malcolm 368
BEA 5, 371
bean-managed persistence

See BMP
behavior

and session beans 85
benchmarking 10
best practices

and EJB 1.0 7
and PetStore 11

Bitter Java 5
BLOB

SQL 235
blocked I/O 88
BMP 11, 222, 239, 259, 385

defined 380
drawbacks 223
evaluation 259
and relationships 224
vs. CMP 223

BMP relation 229
BMT 99

bottleneck 217, 291
example 312
horror story 296

bubble sort 363
bug patterns 366
bugs 363, 365, 368
build 324

case study 337
build environment 17
Build Guru

antipattern 337, 345
bulk accessors 70
Business Delegate 71
business logic 377
by reference

passing 54

C

C 374
C++ 357, 363
caching 11, 14, 39, 67, 359

component level 33
and iterators 107

calls between JVM
and parameters 56

Castor 105
JDO 269

central directory 8
checked exception 97
choice

of persistence framework 275
choosing

a persistence architecture 282
CICS 363
class diagrams 362
class loader 325, 330

and EAR files 331
and WAR files 331

ClassCastException 331
ClassNotFoundExceptions 96
Class-Path 329
client interfaces 385
client JAR

EJB 330
client stub factory 116
cluster

and EJB 85
clustering 16, 382

CMP 222, 246, 254, 267, 349,
385

advantages 225
and EJB 43
and EJB QL 280
complexity 275
defined 380
dynamic query

limitations 231
evaluation 250
example 250
history 223
in EJB 2.0 43
and performance 226
vs. BMP 223, 259

CMP vs. BMP
decision matrix 226

CMR 8, 45, 227–228
coarse-grained

remote interfaces 64
services and persistence 47

CocoBase 269
code inspection 369
code profiler 295

aided by well-factored
code 295

example output 302
code reviews 369
collisions 67
combining

local and remote
interfaces 62

comments 363
Commons Logging 33
communication overhead 369
comparing

remote instances 389
complex

entity beans 247
complexity 16, 27, 32, 38–39

and EJB inheritance 277
and entity beans 253
for JDBC 34

complexity graph 15
component

architecture 378
inheritance 29
interface 327

component-oriented
architectures 351
and persistence 60

INDEX 405
concurrency 382
Concurrent Programming

books 361
configuration 30, 38, 40

files 31
configuring

EJB 397
connection

overhead 40, 108
connection pooling 39–40
connections 359
consulting 359, 367
container

and CMR 46
EJB 381, 391
EJB and services 377

container-managed relation-
ships See CMR

context 396
controller 69
controversy

and EJB 5
Conversational Baggage

antipattern 157
conversational state 128
CORBA 13, 23, 113, 350, 384
CORBA IIOP 84
Core J2EE 269
cost

of complexity 252
of EJB 22
of EJB software vs.

development 14
COUNT

SQL 109
coupling 368

and JDBC 265
criteria

for EJB 23
CRM 227
cross-data-store relation 229
Crossing the Chasm 13
CruiseControl 341
custom DTO 73, 79

and guesswork 74
problems 74
solution 75
solution and traps 76

Custom DTO antipattern 73, 79
custom persistence

framework 69

Customers in the Kitchen
antipattern 66, 79

cycle time 357

D

Data Access Object (DAO)
pattern 269, 282

data access service 76
data persistence 27

EJB1.0 43
data store

interfaces 268
persistence 268

data transfer
class 220

Data Transfer Object See DTO
Database Connection Hog

antipattern 101, 124
database connection pool

effect on response time 289
effect on throughput 290

database design
and antipatterns 215

database synchronization 67
databases

and distribution 65
datasource 264
DB2 371
DCE 13, 350
Dead Message Queue

(DMQ) 193
deadlock 88
Death March 23
declarative transactions 28, 32
decoupling

EJB services 48
defensive copies 62
delete

JDBC 266
dependent objects 59
deployment 40, 350

EAR-based 338
of entities 257
and persistence 249

deployment descriptor 273,
325–327, 398

and EJB 1.1 7
and JDO 274
in logging example 36
and remote interfaces 60

deployment strategy
of EJB 354

deprecated methods 91
design patterns

and antipatterns 359–360,
366, 370

defined 360
in industry 367
refactoring 364

designing
bean interfaces 53

developing
for EJB 378

directory structure 328
disabling re-entrancy 238
distributed 17

applications 24
component architecture 33
domain 59
domain model 64
exceptions 62
synchronization 88
transactions 25, 27, 32, 84

distribution 256
avoid 65
and interfaces 63
and logical tiers 65
and transparency 54

domain objects
and DTO 73

domain-driven
design 57–58

domain-oriented design
and entity beans 59

Dover Elevators 367
DriverManager 90
DTO 100, 104, 219, 253–254,

256, 281
and duplication 74
with JDBC 281
with many clients 73
multiple variations 73
with persistence

frameworks 281
and reuse 74
sample 72

duplication
EJB code 332

durable subscriptions 181
cost of 181
message expiration and 181

406 INDEX
dynamic filter
example 232

dynamic proxies 116
dynamic queries 231
dynamic query 231
dynamic relations 230–231

E

Eager Iterator antipattern 103,
124

EAI 178
EAR loader 332
Eavesdropping antipattern 195,

209
EJB

and alternatives 350
antipatterns 6
basics 376
in Bitter Java 371
and economy 5
evolution 6
examples 366
future enhancements 238
history 23, 377
next steps 351
optional services 351
overkill 30
and re-entrancy 236
release 6
vs. JDO 273

EJB 1.0 7, 42
persistence 12

EJB 1.1 7
EJB 2.0 8–9, 43, 387

and CMP 223
and CMR 45
and local interfaces 59

EJB client 57
EJB Code Duplication

antipattern 332, 344
EJB components

fine-grained 60
EJB container 136, 378

cache sizing 155
and entity beans 260
and interfaces 53
managing stateful session

beans 136
memory thrashing 155
and re-entrancy 238

and requests to session
beans 84

and transactional integrity 28
EJB inheritance

example 278
EJB interfaces

optimizing remote 62
EJB invocations

local vs. remote 55
EJB local interfaces

problems with 59
EJB QL 8, 228, 231, 279

bind time 279
EJBException 97
ejb-jar 326, 336, 339

file 399
ejbLoad 67
ejbStore 67
EMACS 17
embedding transaction logic 68
enterprise application 24
enterprise development 14
Enterprise Java Beans. See EJB
entity bean

antipatterns 214
defined 379
history 42
implementing 393
and location transparency 59
problems 41
transparency 41
weaknesses 276

example
bridge servlet mapping 114
CMP 250
deployment descriptor 328
EJB inheritance 278
JDO 270
non-transactional update 217
re-entrancy 236
round- tripping 216
servlet bridge 116, 118
shuffled list 110
stateless session bean 326

exception 94
and remote interfaces 61
throwing 396
and transaction roll back 93
wrapping 96

exception handling 95

exception type
matrix 99

exclusive access
and databases 68

exclusive caching 68
exporting results

from iterators 108

F

façade See Session Façade
Face Off antipattern 215, 217,

240
failover 30, 42

and stateless applications 71
Fast Lane Reader 282
Fat Messages antipattern 165
field granularity 67
findByPrimaryKey 227
finder method 386
fine-grained object models

and persistence 45
Forrester 29

G

Gang of Four See GoF
Gartner 5, 22, 29
generated

EJB code 252
generic interface

vs. local and remote
interfaces 60

generic servlet bridge 113
getConnection 90
Giga Information Group 22, 29
global unique identifier 235
GoF Singleton pattern 86, 331
golden hammer

EJB 13
Golden Hammer

antipattern 12, 20
Golden Hammers of Session

State antipattern 143, 158
grouping

by subclass 277
guaranteed messaging 179
GUI design 69
guidelines

for primary key length 235

INDEX 407
H

Ham Sandwich antipattern 222,
241

handling
exceptions within sessions 92
remote interfaces 62

hanging
transactions 68

hash table 364
heterogeneous

distribution 65
Hibernate 269
hierarchy

class loader 330
home interface 327
hot deployment 382
Hot Potato antipattern 191, 207
hot potato game 191
HSQL 340
HTTP 129, 140
HttpSession 140

clients 140
contents of 140
hodgepodge 153
invalidating 156
local cache example 150
memory requirements of 153
passivation/activation 142
scalability of 142
storing stateful EJB

references 147
volatility of 146, 150–151

hung threads 88
case study 89

hygiene
programming 369

I

IBM 6, 355, 362, 371
idempotent

methods 63
identity

and persistence 257
and session beans 85

IIOP 112, 384, 388
Immediate Reply Requested

mini-antipattern 182, 205
implementation class 326

IN keyword
SQL 225

index buffers 234
inheritance 278

and EJB 276
and exceptions 61
and JDO 279

insert
via JDBC 263

integrated development envi-
ronment (IDE) 17, 337

integration 325
continuous 341

Integration Hell
antipattern 341, 347

interface
client 385
component 327
and consistency after

failure 63
designing 53
distributed 64
home 327
local vs. remote 387
and Session Façade 66

intermediate
programmers 369

Internet applications 369
interviews 369
InvocationHandler 116
invocations

local vs. remote and
performance 59

invoking
EJB from client 400

ISO 9000 367–368
iterating 99

shuffled data 110
iteration

major interface
boundaries 359

iterator
vendor-specific SQL 106

J

J2EE 371
and controversy 6
books 361
development skills 16

J2EE Connector Architecture

(JCA) 187, 248
J2EE guidelines

for loading 332
Jakarta Struts 69
JAR 332, 399

EJB 329
Java

passing parameters 55
Java Archive See JAR
Java Community Process 269
Java language

and EJB 1.1 7
and persistence 248

Java Message Service See JMS
Java Naming and Directory

Interface See JDNI
Java ServerPages See JSP
Java Specification Request 354
Java Virtual Machine 358
java.lang.Exception 92
Javadoc 325
JavaMail 187
JBoss 5
JDBC 28, 39, 101, 109, 246, 260

and criteria 267
evaluation 261
example 38
model 261
for object persistence 266
and persistence 260
and simplicity 274
suitability 261
vs. JDO 273

JDBCLogger 36
JDK 1.4 96
JDO 28, 69, 269, 280, 350

basics 269
example 270

JMeter 306
JMS 24, 91, 380

client 164
as compared to RPC 164
defined 163
loosely coupled communica-

tion and 164
provider 164
server 164

JMS and XML
advantages of 177
overused 177

408 INDEX
JMS application
defined 164
example 171

JMS consumer 165
access by synchronous

clients 190
delegating to modular

components 189
monolithic 188

JMS message models
API 173
point-to-point 173
publish/subscribe 173

JMS messages
designing 168
fat 167
headers and properties 165
payload 165
problems using

references 170
redelivery delay 194
sizing 168
skinny 170
throttling delivery of 195
use of references in 168
use of state in 170

JMS performance 199
factors 200
testing 199

JMS producer 165
JMS queue 173
JMS topic 173

wildcard topic names 198
JMX 87, 201
JNDI 35, 340, 381, 385
join

buffers 234
database 228
and primary key length 234

JSP 10, 66
versions 373

JTA 68, 248
JUnit 299, 307, 340
JUnitPerf 307

as related to HttpUnit and
Cactus 307

as related to JUnit 307
defined 307
limitations of 309

justify
EJB 50

K

Killer System Exceptions
antipattern 97, 123

L

large datasets
iterating 99

lazy loading 76
life cycle 38, 370

entity bean 394
management 381
stateful session bean 392
stateless sesson bean 391

litmus test
for EJB 25

load
JDBC 266

loader
class 330

local and remote interfaces
separating 61

Local and Remote Interfaces
Simultaneously
antipattern 60, 78

local interface 8, 44, 56, 220,
252

and EJB 1.1 7
local method invocations 54
location transparency

and persistence 44
logging 30, 382

example 31
exceptions 94

Logic in Exception Implementa-
tions mini-antipattern 92

loop filters 232
loose coupling

components 25
and performance 10

M

Magic Servlet antipattern 358,
362

managed resources
as performance throttles 289

management
server 382

managing connections
database 103

managing files
cost 36

MANIFEST.MF 330, 335
Manual Performance Testing

mini-antipattern 305, 322
marshal

method invocation 54
maximum effective

throughput 290, 315
MDB 8, 26, 236, 380

application exceptions 193
bean-managed

transactions 193
as compared to standalone

consumers 186
container-managed

transactions 192
defined 184
deployment descriptor 187
onMessage() 185
pool sizing 187
pooling 185
re-entrancy and 194
system exceptions 193

memory
leaks 368

mentoring 369
message driven beans 26
message eavesdropping 195
message selectors

content-based routing 198
defined 196
example 196
with MDBs 198
performance of 197
using XPath 198
wildcard topic names and 198

message-driven beans See MDB
MessageDrivenContext.setRollb

ackOnly() 193
MessageListener interface 185
message-oriented

middleware 65, 164
method granularity 63
method invocations

fine vs. coarse 55
methodology 358
Microsoft 6, 9, 11
Middleware Company 9–11

INDEX 409
Mini 63
mini-antipattern

Immediate Reply
Requested 182, 205

Logic in Exception
Implementations 92

Manual Performance
Testing 305, 322

Paging with a Scrollable
ResultSet 106

Passing DOM Objects 111
Rotting Session Garbage 155,

161
Session Thrashing 155, 161
Skinny Messages 169
Stage Fright 317, 323
Stateful Session Beans as

Shared Data Caches 151
Transparent Distribution 63
Ubiquitous Distribution 63

mistakes
EJB 349

modeling
with entity beans 247

Model-View-Controller 69, 360
monitoring

server 382
Monolithic Consumer

antipattern 188, 206
multitier applications 17
Mythical Man Month 23

N

naming conventions 329
Narrow Servlet Bridges

antipattern 113, 125
narrowing 112
.NET 6, 29
network

latency 62
network traffic 65
non-persistent messages 180
nonrelational back-end 38
NotSupported

and rollback 93

O

object persistence 43, 280
object relational mapping 223

Object type
pass-by-reference vs. pass-by-

value 56
Object.wait method 91
onMessage() 185

optimizing 195
OODBMS 268
Open Source

success 5
optimization 363
OR mapping 223, 268
Oracle 5–6, 268
OSS Java Initiative 26
OutOfMemoryError 108
overhead 217

of coarse services and persis-
tence frameworks 48

of entity beans 46

P

Packages
antipatterns 326

packaging 399
Packrat antipattern 179, 205
Page-by-Page Iterator 100, 102–

103, 110
Paging with Scrollable ResultSet

mini-antipattern 106
parameter passing

and remote invocation 55
parameterize

relations 231
pass-by-reference 56, 331
pass-by-referencer

vs. pass-by-value 55
pass-by-value 54, 56

and remote method
invocation 57

Passing DOM Objects mini-
antipattern 111

performance 28, 38
application 369
case study 66
database 233, 358
and EJB 1.0 7
of entity beans 44
JDBC vs EJB 39
and local interfaces 222
model 315
and primary key length 234

process 358, 369
round-tripping 216
vs. transparency 59

Performance Afterthoughts
antipattern 199, 210,
296, 320

performance optimization
and EJB 2.0 10
local interfaces 62
and PetStore 10

performance planning 297
performance tests 297

advantages of 306
as practice for

production 317
iterators 105
methodology 304

performance tuning 294
as related to Thrash-

Tuning 303
methodology 304
well-factored code and 294

persistence 377
coarse-grained 247
container-bound 282
with EJB 249
EJB 1.0 7
fixing EJB problems 353
frameworks 246, 267, 275
history 349
landscape 267

persistence framework
defined 267
lightweight 60

persistence solutions
comparing 274

persistent messages 179
cost of 180
with point-to-point

messaging 181
persistent object model

with EJB 233
Persistent Problems

antipattern 275, 284
persistent state

EJB vs. stateful session
beans 41

persistent store
and fine-grained access 59
mapping 65

410 INDEX
PetStore 9–11
backlash 11

Poet 268
POJO 251, 260, 351
polymorphism 278

and EJB 276
pooling

session beans 87
portability 14

and EJB 1.0 7
precise 9
preloading

and DTOs 76
premature optimization 291

with EJB applications 292
Premature Optimization

antipattern 291, 319
primary key 233, 387

defined 233
length 233

procedural language 374
profiler 295
Progress 268
Publish 364

Q

Quality Circles 367
quality metrics 368
query

language flexibility 279
query language

object 280
queue specialization 196
QueueRequestor class 184

R

random access 364
randomized list

with shuffled data 110
Rational 5
RDBMS 268
readability 363
recovery

from hung threads 89
re-entrancy 29, 235

checking 238
reentrant

container configuration 238

Refactor
custom DTO 75

refactor 374
antipatterns process 364

refactoring
and antipattern process 365
exception logic 93
re-entrant code 236–237
targets 368

relation
vs. filter 231

relational database 8
relationship

database 7
is null 76
and JDBC 265

remote
calls and performance 67
interfaces 44
invocation 54
invocation performance 54
invocations and session

façades 70
and local interfaces 60
prefix 329

RemoteException 62, 97
Replication

and state 64
Required

transaction attribute 67
research consulting firms 29
resource

management 31
resource competition

and threads 86
resource loading 29
resources

and iterators 103
response time

defined 289
example requirement 302

restrictions
on threading 85

result set
determining size 109
iterating 99

ResultSet 101
SQL 109

retry
failed request 63

return trip 358

return value
passing 54

Revolving Doors
antipattern 235

RMI 381, 383
over http 113
sequence 384

roles 377
Rotting Session Garbage mini-

antipattern 155, 161
round-tripping 216, 369

and method invocation 55
Round-Tripping antipattern 369
ROWNUM

keyword 104
Running with Scissors

antipattern 339, 346
RuntimeExceptions 92, 97
Rusty Keys antipattern 233, 244

S

sample applications 12
scalability 23, 28, 42, 84

defined 290
example requirement 310

schema
for logger 34

security 8, 17, 42, 84, 349, 383
sequence diagrams 362
server logs 94
server-side

Java 361
programming 371

service granularity 42
service methods 65
service request queuing 289
service-driven

design 57
service-oriented

design 58
services

EJB 23
servlet 24, 140

bridge 119
on line 361

session beans 236
defined 84, 378
example 391
in logger example 36
stateful 378

INDEX 411
stateful and stateless 84
stateless 378

Session Façade 31, 46, 65, 215,
219, 253

core services 247
and domain logic 71
with entity beans 247
example with JDBC 265
interface issues 70
interfaces 70
for JDO 272
in logging example 38
too many 70
for transactional integrity 220

Session Hodgepodge
antipattern 152, 160

session state 128
best uses of 151
defined 128
locations for storing 143
price of 130
storing in database 148
storing in HttpSession 145
storing in stateful EJB 147
storing on client 144
tools for managing 134

Session Thrashing mini-
antipattern 155, 161

session timeouts
and iterators 102

session tracking 140
SessionSynchronization

interface 151
setRollbackOnly 93, 99
shell sort 363
Single threaded transactions 16
skills 14, 16

and EJB 2.0 9
Skinny Messages mini-

antipattern 169
Sledgehammer for a Fly

antipattern 30, 51
Slow Eater antipattern 194, 208
SOAP 25
Sonic 9
source files

EJB 328
spawning

new threads 86
specification

EJB 377

SQL 39, 228, 260, 380
and portability 280
boolean qualifiers 231
down side 265
in iterators 104

Stage Fright mini-
antipattern 317, 323

state 64
and unchecked exceptions 98
session 85

state diagrams 362
state management 377
stateful session bean 130

activation/passivation 138–
139

and EJB 1.1 8
clients 130
defined 134
life cycle 137
memory requirements of 130
removing 156

Stateful Session Beans as Shared
Data Caches mini-
antipattern 151

stateless
applications and resources 71

stateless service 131
advantages of 131

stateless session bean 132
and session façades 71
figure 132
pooling 132
scalability of 133

subclasses
and EJB 277

Sun 6, 377
economic woes 354

surrogate key 234
Swallowing Exceptions

antipattern 94, 122
swing 24
synchronization 85

and session beans 87
session state 64

synchronization monitor 90
synchronization primitives 87

and EJB 85
synchronized keyword 87
synchronous communication 84
synchronous request

via JMS 91

synchronous request/reply
messaging 183

system exceptions 97
System Loaded Application

Classes antipattern 332,
343

T

talent 28
Tangled Threads antipattern 86,

121
telecommunications 26
test

automated 339
TheServerSide.com 9, 350
thrash-tuning 303

invoking the curse of 303
Thrash-tuning antipattern 303,

321
thread dump 89
thread pool 92

and databases 90
thread pools 91
Thread.stop 91
Threading 85
threads 29
throughput

defined 290
TIMESTAMP 235
Tomcat 5, 371
tool vendors 28
tools

for builds 326
modeling 362

TopicRequestor class 184
TopicSubscriber.receive() 183
TopLink 5, 269
training

costs 40
training requirements 357
transaction 378

and database access 67
granularity 68
management 39
timeouts 90

transactional
awareness 256
boundaries 28
integrity 27, 217

with a session façade 220

412 INDEX
TransactionRolledBack-
Exceptions 94

transactions 377, 382
and consistency 88
and JDBC 265
and performance 67
and threads 29
defined 397

transparency
and persistence 268

Transparent Distribution mini-
antipattern 63

U

Ubiquitous Distribution mini-
antipattern 63

UML
books 361–362
defined 362

unchecked exceptions 97
Unified Modeling Language. See

UML
unique ID

generator 86
unit testing 340

and JSP 68
update

JDBC 266
use case 362

model design 58
UserTransaction 99, 220

V

value
and EJB 14, 17

Value List Handler 100
Value List Iterator 100
Value Objects 100
VARCHAR 235
variable names 369
Versant 268
virtual machines

multiple 87
VisualAge 5

W

WAR
file 330

weaver
and AOP 352

Web services
and performance 55

WebGain 5
WebLogic 31, 36, 371
WebSphere 371, 373
WHERE clause

SQL 230
WORA 23
wrapping exceptions 96
www.bitterjava.com 361, 366,

373

X

XDoclet 17, 39, 333–334, 339
XML 26

and EJB 1.1 7
descriptors 399
on line 361

XML as the Silver Bullet
antipattern 177, 204

XML messages 175
as compared to

MapMessage 177
misuse of 177
refactoring to

MapMessage 178
XML parser 332
XPath 198

Y

Y2K bug 364

Z

Zero Defects 368

	Bitter EJB
	contents
	preface
	acknowledgments
	about this book
	The basics
	Bitter choices
	1.1 A storm of controversy
	1.2 A history of EJB antipatterns
	1.3 A case study: Benchmarking PetStore
	1.4 Antipattern: The Golden Hammer
	1.5 Summary: Looking ahead
	1.6 Antipatterns in this chapter

	The bitter cost
	2.1 Sparking controversy
	2.2 Antipattern: A Sledgehammer for a Fly
	2.3 Entity beans are a horse of a different color
	2.4 Entity beans: Take two
	2.5 Entity beans—a closer look
	2.6 Summary
	2.7 Antipatterns in this chapter

	Bitter interfaces
	3.1 Building a good interface
	3.2 Designing the application tier
	3.3 Antipattern: Local & Remote Interfaces Simultaneously
	3.4 Antipattern: Customers in the Kitchen
	3.5 Antipattern: Custom DTOs
	3.6 Summary
	3.7 Antipatterns in this chapter

	Sessions and messages
	Bitter sessions
	4.1 Threading and synchronization
	4.2 Handling exceptions
	4.3 Iterating large datasets
	4.4 Interoperating efficiently
	4.5 Summary
	4.6 Antipatterns in this chapter

	Bitter session states
	5.1 Making a case for session state
	5.2 A pivotal antipattern: Conversational Baggage
	5.3 Managing sessions with stateful session beans
	5.4 Managing sessions with servlets
	5.5 Antipattern: Golden Hammers of Session State
	5.6 Mini-antipattern: Stateful Session Beans as Shared Data Caches
	5.7 Antipattern: Session Hodgepodge
	5.8 Mini-antipattern: Session Thrashing
	5.9 Mini-antipattern: Rotting Session Garbage
	5.10 Summary: Taming the beast
	5.11 Antipatterns in this chapter

	Bitter messages
	6.1 A brief overview of JMS
	6.2 An early antipattern: Fat Messages
	6.3 Mini-antipattern: Skinny Messages
	6.4 Seeds of an order processing system
	6.5 Antipattern: XML as the Silver Bullet
	6.6 Antipattern: Packrat
	6.7 Mini-antipattern: Immediate Reply Requested
	6.8 Using message-driven beans (MDBs)
	6.9 Antipattern: Monolithic Consumer
	6.10 Antipattern: Hot Potato
	6.11 Antipattern: Slow Eater
	6.12 Antipattern: Eavesdropping
	6.13 Antipattern: Performance Afterthoughts
	6.14 Summary: Getting the message
	6.15 Antipatterns in this chapter

	EJB persistence
	Bitter entities
	7.1 Understanding entity bean antipatterns
	7.2 Antipattern: Face Off
	7.3 Antipattern: Ham Sandwich; Hold the Ham
	7.4 Antipattern: Application Joins
	7.5 Antipattern: Application Filters
	7.6 Antipattern: Rusty Keys
	7.7 Antipattern: Revolving Doors
	7.8 Summary
	7.9 Antipatterns in this chapter

	Bitter alternatives
	8.1 Understanding entity bean alternatives
	8.2 Using EJB persistence
	8.3 Simplify with JDBC
	8.4 Using object persistence frameworks
	8.5 Antipattern: Persistent Problems
	8.6 Solution: Do not “inherit” a persistence architecture—choose it
	8.7 Summary
	8.8 Antipatterns in this chapter

	Broader topics
	Bitter tunes
	9.1 Measures of success
	9.2 Antipattern: Premature Optimization
	9.3 Antipattern: Performance Afterthoughts
	9.4 Grist for the tuning mill
	9.5 Antipattern: Thrash-tuning
	9.6 Mini-antipattern: Manual Performance Testing
	9.7 Automated performance testing with JUnitPerf
	9.8 Modeling performance
	9.9 Mini-antipattern: Stage Fright
	9.10 Summary: Tuning with confidence
	9.11 Antipatterns in this chapter

	Bitter builds
	10.1 Wrapping big packages without bows
	10.2 Antipattern: System Loaded Application Classes
	10.3 Antipattern: EJB Code Duplication
	10.4 Antipattern: Build Guru
	10.5 Antipattern: Running with Scissors
	10.6 Antipattern: Integration Hell
	10.7 Summary
	10.8 Antipatterns in this chapter

	A bittersweet future
	11.1 Marking our place in history
	11.2 Plotting the next moves
	11.3 Antipatterns and next moves

	Bitter tales
	A.1 A Java development free fall
	A.2 Using design patterns accentuates the positive
	A.3 Antipatterns teach from the negative
	A.4 Antipattern ideas are not new
	A.5 Why Bitter Java?
	A.6 Looking ahead

	Bitter basics
	B.1 Developing in the EJB architecture
	B.2 Crafting enterprise beans

	bibliography
	index

