|
Rapid Prototyping and Scalable Deployment

{/

Applications

with MongoDB and Backbone

O’REILLY" Mike Wilson

vww .allitebooks.cond

http://www.allitebooks.org

9

Web Programming/JavaScript

Building Node Applications with MongoDB and Backbone

Build an application from backend to browser with Node.js, and
kick open the doors to real-time event programming. With this
hands-on book, you'll learn how to create a social network applica-
tion similar to LinkedIn and Facebook, but with a real-time twist.
And you'll build it with just one programming language: JavaScript.

If you're an experienced web developer unfamiliar with JavaScript,
the book’s first section introduces you to the project’s core
technologies: Node.js, Backbone.js, and the MongoDB data store.
You'll then launch into the project—a highly responsive, highly
scalable application—guided by clear explanations and lots of
code examples.

m Learn about key modules in Node.js for building real-time apps

m Use the Backbone.js framework to write clean browser code,
and maintain better data integration with MongoDB

m Structure project files as a foundation for code that will
arrive later

m Create user accounts and learn how to secure the data

m Use Backbone.js templates to build the application’s Uls, and
integrate access control with Node.js

m Develop a contact list to help users link to and track other
accounts

m Use Socket.io to create real-time chat functionality

m Extend your Uls to give users up-to-the-minute information

Mike Wilson is an experienced software architect and web devel-
oper who has designed and built everything from government
portals and small business sites to MMO server clusters hosting
millions of players. He has worked with some of the world’s most
influential brands, including Disney, Microsoft, and McDonalds.

“This book will not only
help you learn Node.Js,
but Backbone.js and
MongoDB as well. Each
of these is great all by
itself, but this book
brings them together fo
build an incredible,
real-time social

network.”
—Jamie Munro
author of 20 Recipes for
Programming PhoneGap
(O'Reilly)

US $19.99 CAN $20.99
ISBN: 978-1-449-33739-1

TN i
7 LU

814491337

vww allitebooks.conl

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

http://www.allitebooks.org

Building Node Applications with
MongoDB and Backbone

Mike Wilson

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Sebastopol - Tokyo

vww allitebooks.cond

http://www.allitebooks.org

Building Node Applications with MongoDB and Backbone
by Mike Wilson

Copyright © 2013 Mike Wilson. All rights reserved.
Printed in the United States of America.

Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette Proofreader: Kara Ebrahim

Production Editor: Kara Ebrahim Cover Designer: Karen Montgomery
Interior Designer: David Futato
lllustrator: Rebecca Demarest

December 2012: First Edition

Revision History for the First Edition:

2012-12-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449337391 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. Building Node Applications with MongoDB and Backbone, the image of the small Indian civet,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-33739-1
[LSI]

vww allitebooks.cond

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449337391
http://www.allitebooks.org

Table of Contents

Preface. .o vii
Partl. Introducing Node.js, Backbone.js, and MongoDB
1. Introduction and OVerview.cooiiiiiiiiiiiiiiiiiiiiiiiiiiiien, 3
Building a Social Network 4
Model-View-Controller (MVC) 5
Pure JavaScript 5
R 11 L35 T3 7
Installing Node.js 8
Express 8
Templates 10
Events 13
Socket.io 15
Modules and Common]S 17
3. Backbone,js.oeni i e e e aa 19
Model 19
View 20
View Template 22
Collection 24
Sync 25
Router and History 25
4, MongoDB.ouiii it i i i e 27
Accessing Data 27
Writing 28
Querying 31

vww allitebooks.cond

http://www.allitebooks.org

Indexes 32
MapReduce 34
Working with Node.js 36
Concurrent Access 36
Partll. Building a Social Network
5. SettingUptheProject.oovuiiiniiiniiiii ittt it 43
Directory Structure 44
File Listing 44
Package Definition 45
Web Server 46
Index Template 48
Application JavaScript 49
6. Authentication................ciiiiiiiiiiiiii 53
Account 53
Routing 56
Checking for Authentication 57
Authentication Handler 59
Registration 60
Registration Template 60
Registration Handler 63
Login 63
Login Template 63
Login Handler 65
Forgot Password 66
Forgot Password Template 67
Forgot Password Handler 68
Reset Password 70
Reset Password Templates 70
Reset Password Handler 71
Putting It Together 72
Node.js 72
7. TheUserInterface.........ccovviiiiiiiiiiiiiiiiii 77
Account Details 77
Account Details Template 78
Account Details Handler 80
Contact List 80
Activity Stream 81

iv

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

10.

Activity Stream Template
Activity Stream Handler
Data Model
Putting It Together
Backbone
Node.js

Contact List
Contact List Template
Contact List Handler
Add Contact
Add Contact Template
Add Contact Handler
Remove Contact
Remove Contact Template
Remove Contact Handler
Commenting
Comment Template
Comment Handler
Putting It Together
Backbone
Node.js

Refactoring

Connecting to the Chat Server
Backbone
Node.js

Sending and Receiving Chat Messages
Backbone
Node.js

Putting It Together
Backbone
Node.js

Activities iN Real TIMe. ..o v vttt ettt ettt et eneenenennenenes

Adding Custom Events
Triggering Events
Adding Listeners

Contact Login Notification
Backbone.js

. MaKing Friends.oovniiriiiii i i i e e

81
84
86
89
89
90

95

95

95
100
100
100
102
105
105
105
107
107
110
111
111
114

125
125
126
127
130
131
132
138
138
138
142

151
151
152
152
154
154

vww allitebooks.cond

Table of Contents

| v

http://www.allitebooks.org

Node.js 157
Status Updates 158
Backbone.js 158
Node.js 161
Putting It Together 162
Backbone.js 162
Node.js 173
Static Files 185
€1 11T7: T 187
vi | Tableof Contents

vww allitebooks.cond

http://www.allitebooks.org

Preface

When Google released the first version of their V8 JavaScript engine in 2008, it felt like
a hushed wave of excitement was rippling through the developer community. For the
first time (the promise went), we would be able to program with JavaScript on both the
client and the server: one language to rule them all. Web applications were already
starting to become more desktop-like and ballooning in complexity, so the idea of re-
ducing the number of language dependencies in favor of an open and transparent tech-
nology was seen as a way to allow for even more exciting and boundary-pushing ap-
plications.

Ryan Dahl was one of the developers who saw the new opportunity and wasted no time
converting the non-blocking socket library he had written to the new V8 engine, re-
sulting in the birth of Node.js. The technology he released has turned that original ripple
of excitement into a major paradigm shift at a time when interest in responsive real-
time applications is reaching a peak. Node.js is more than just a collection of socket
functions; it provides a framework for asynchronous I/O that position it as the foun-
dation of a whole new class of event-driven programming patterns.

The online landscape has changed rapidly in the past few years and doesn’t show any
signs of slowing down. The explosion of the “social” web has meant one big thing for
us: more people are online now than ever before, and the demographic has forever
shifted away from technical users. The Internet is for all of us, and the winners in this
new space will be those companies that can figure out how to make the online experience
warm and human by truly connecting individuals to each other.

Using JavaScript to connect your systems puts you at an advantage because you can
quickly move from the front of the web stack dealing with human users to the backend

vii

vww allitebooks.cond

http://www.allitebooks.org

data storage, and all of the network plumbing in between. You will be able to think of
your systems as truly modular; each piece can be plugged in and deployed wherever the
resources are best suited to it. You will be able to create applications that grow and
breathe with your userbase unlike ever before.

Audience and Assumptions

Readers of this book should have an understanding of how websites and web applica-
tions are put together. In an effort to stay focused on the core technology, this book
brushes past “why” web applications are built in a certain way in favor of the “how”

Some knowledge of JavaScript would come in handy to fully understand the examples
in this book. The examples will be thoroughly explained, but prior knowledge will help
readers comprehend the back history for programming decisions made during the
writing process.

Many developers approach NoSQL data stores as part of a transition from relational
database systems. This book makes no assumptions about the reader’s proficiency in
database design; I will go through the details of why I chose to make various decisions
throughout the database architecting phase. MongoDB is friendly to SQL concepts,
which is a major motivation for choosing it as the datastore for this project.

In the final section of the book I will discuss a selection of supporting tools and tech-
nologies that step outside of the pure JavaScript environment built in the first two sec-
tions. Readers are not expected to have a deep understanding of any of those extra
languages (like Scala, Java, PHP, or Bash Scripting), but because deep exploration of
these concepts are outside the scope of this book, I encourage using these examples as
a launching pad for further research.

Organization

This book is broadly organized into two sections, the first providing an overview of
Node.js, MongoDB, and Backbone.js (the core technology discussed in this book), and
the second detailing how you can go about building a website styled as a social network
using these tools. If you are new to any of these I recommend starting with the Part I
section to gain a bit of background before diving into the application in the second
section. If you are already familiar with JavaScript you will probably be able to skip the
first section and find yourself comfortable enough to get through the examples in the
second section.

vii | Preface

vww allitebooks.cond

http://www.allitebooks.org

Here’s how the book is organized:

Part I: Introduction

Chapter 1, Introduction and Overview
This chapter introduces JavaScript and the core concepts that will be explored
throughout the book.

Chapter 2, Node.js
This chapter introduces Node.js and guides you through getting started with your
first standalone applications. Here you will become acquainted with the key mod-
ules you will later use to build a complete real-time application.

Chapter 3, Backbone.js
Next you will explore how Backbone.js is making programming in the web browser
with JavaScript more like building traditional applications and less like building
websites. We'll look into some of the more troubling aspects of maintaining
JavaScript-based projects, and introduce templating as a way to separate your visual
HTML layout from your functional JavaScript application code.

Chapter 4, MongoDB
I love MongoDB because it is fast and easy to set up, easy to interface with, and
speaks the same language as my Node.js applications. In this chapter we'll look at
how to do basic querying and data manipulation as well as some more complex use
cases to think about as your MongoDB usage grows.

Part II: Building a Social Network

Chapter 5, Setting Up the Project
Thelack of information about how to structure and put together files in your project
is one of the biggest problems facing texts that explain how to build websites. In this
chapter we'll set up the Node.js and Backbone project files that will form the website,
and lay the foundation for the rest of the code that will be coming.

Chapter 6, Authentication
Before you can do anything with your application, you need a way to create accounts
and sign in. This chapter explains how to get users into your database and how to
secure their data once you have it.

Chapter 7, The User Interface
Now that the barebone structure and login functionality have been built, this chap-
ter will take you through setting up the web page harness that will contain all of the
content presented to your users. This is where we will go into detail on using tem-
plates with Backbone.js and integrating access control with Node.js.

Preface | ix

Chapter 8, Making Friends
The contactlist is the social aspect behind this website. In this chapter you will learn
how to add and remove contacts from your list, denormalizing the data into Mon-
goDB as you go. This will be a departure for anyone coming from a relational da-
tabase environment; it's recommended reading!

Chapter 9, Chat
This chapter builds upon the contact list created in Chapter 8 by adding real-time
chat functionality using Socket.io. Talk to your friends and receive messages back
right away without needing to reload your page.

Chapter 10, Activities in Real Time
Finally, the user interfaces built throughout the book will be revisited in this chapter
and extended with Socket.io just like the chat list. This will add life to the site by
giving your users up-to-the- minute information about the comings and goings of
their contacts, and turn all of the shared message spaces into interactive rooms.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

A
= This icon signifies a tip, suggestion, or general note.
X
O B

oY

This icon indicates a warning or caution.

()

x | Preface

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Node Applications with MongoDB
and Backbone by Mike Wilson (O'Reilly). Copyright 2013 Mike Wilson,
978-1-449-33739-1”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand
Safa I’l digital library that delivers expert content in both book and video

BosksOntine form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Preface | xi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/mongodb-backbone.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xii | Preface

http://bit.ly/mongodb-backbone
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART |

Introducing Node.js, Backbone.js,
and MongoDB

CHAPTER1
Introduction and Overview

The Web, already one of the fastest developing areas in technology, is accelerating. This
is both good news and bad news for those of us planning to draw income from writing
software. Today, good developers have the rare opportunity to do what they love, grow
their horizons, and continually evolve and derive even greater satisfaction from their
work, as long as they’re willing to put in the hard work necessary to understand a huge
back catalog of rapidly-expanding knowledge.

Terrific careers come at a price. As a software developer, you must continually search
for the next great tool that will help you achieve more, better, faster. What you work
with 10 years from now is going to be a major departure from what you are working
with today—in essence, you will be retraining yourself multiple times to keep sharp.

In his 2008 book Outliers (Back Bay Books), Malcolm Gladwell presents evidence that
it takes 10,000 hours of effort to achieve mastery at a professional level. Even prodigies
need to putin their time to achieve success; the difference between an average performer
and a superb performer comes down to the amount of practice put in by the individual.
Picking up a book like this puts you into the latter category; right now you are putting
in the extra time to gain more exposure to the leading edge of this craft. The future is
arriving, and you will be among the first positioned to take advantage of it.

Node.js has introduced an army of programmers to event-oriented programming. Re-
gardless of what your technology background is, if you come to Node with an open mind
and drop any preconceived notions you might have about JavaScript, you will come
away with a greater appreciation of how powerful single-threaded programming can be
in a world that has gone crazy for multi-threaded applications. What’s more, you will
have a greater appreciation of event handling that will help you when you do need to
tackle multi-threaded problems in other programming languages.

JavaScript is a unique and sometimes misunderstood programming language that has
finally taken its deserved place in the development toolbox. As the toolsets for devel-
oping JavaScript applications continue to improve and mature, you can look forward to
seeing this language’s importance continue to grow in organizations worldwide.

Building a Social Network

The projectin this book examines how you would go about constructing a social network
in a similar vein to LinkedIn, MySpace, or Facebook, with a real-time networking twist.
Using Node.js, Backbone.js, and MongoDB you will learn how to create a highly re-
sponsive application that can be adapted to scale to millions of users.

By way of example many of the components described throughout the text will take
some shortcuts to use a built-in method provided by Node or MongoDB in order to
demonstrate certain functionality that wouldn’t be practical in “real” large deployments.
When one of those shortcuts is presented, I will point it out with a special note and
discuss how to begin moving to a more scalable or modifiable construct. The challenge
throughout will be trying to balance the need for clarity with the task of building a real
and useful application.

Whatis a social network? “Social network” is a simple phrase that seems to communicate
alot of meaning—and in behavioral science, it does—but let’s look more carefully at the
individual words and apply them to the Internet. A “network” is an interconnected group
of systems, which could be anything from a series of roads crisscrossing the country to
a row of computers in a school lab to a Rolodex filled with professional contacts. The
word “social” refers to the interaction of organisms—such as animals or people—and
to their existence as an entire group. So a social network in this context means an in-
terconnected, interactive group of people.

The human component is important above all else. When building any kind of software
you are remiss to develop toward a particular goal or functionality without first (and
constantly) thinking about the person who is expected to use your finished code at the
end of the day, whether it is a customer, a professor, or even yourself. Unless you can
visualize the end purpose for your work, resist the urge to continue down the program-
ming road for technology’s sake.

When we speak of building a social network, of course it’s impossible to build a social
network as defined here. What you will be creating is the forum, the raw pathways, upon
which a social network can take root and grow. Every feature of the system is intended
to deliver upon that goal by getting out of the users’ way and by providing just enough
of a feature set to promote, encourage, and facilitate communication without any extra
frills. It’s a difficult line to walk, but one that ultimately separates a mediocre product
from a great one.

4 | Chapter 1: Introduction and Overview

Model-View-Controller (MVC)

This book makes frequent reference to, and use of, the Model-View-Controller (MVC)
design pattern for both server-side and frontend programming. While MVC was argu-
ably popularized on the web by the growth of Ruby on Rails, it was first developed for
the Smalltalk platform in the 1970s.

MVC as it is practiced today promotes decoupling your system into three components:

Model
A structure containing the data that is being read or acted upon

View
An interface through which the user interacts with the model

Controller
Delegates user actions from the view to the underlying model

Models and controllers are typically paired; in this book, the controller’s job will be to
act as a contract for what a user is able to do to a model, and to pass information back
and forth. While it is possible to have a controller perform actions on more than one
model, doing so should be considered poor form: one model, one controller.

Views are a different story; just as in real life, in software there is often multiple ways to
perceive the same information. For example, a textual transcription of an audio record-
ing contains the same information as the original, but presents its contents in a way that
is more accessible to some users or convenient for others. The Internet is full of great
examples of this: many web services display data in both JSON and XML format, two
different formats that provide the same information in different ways.

Pure JavaScript

Using Node, Backbone, and MongoDB will allow you to focus on your application logic
in a single programming language, ultimately reducing the number of connections be-
tween each part of your system. As you will see, this is a compelling way to program
because the boundaries between client-facing UI, backend server logic, and database
persistence will blur into almost a living system. The picture becomes clearer as real-
time networking is gradually added; your data will dance across the application and
even across multiple users almost as if everything were happening in concert in a single
process.

There are pitfalls to watch out for. Although the connectors are strong and speak the
same dialect, under the covers your program code is still going across a wire between
web browsers, servers, and databases. Some of the JavaScript paradigms change slightly
depending on whether their primary goal is to serve UI (as in the case of Backbone in
the web browser), authentication (as in the case of Node on the web server), or

Model-View-Controller (MVC) | 5

persistence (as in the case MongoDB). You need to be ever vigilant about where your
data is going, whether or not you are blocking any of your own processes, and how to
listen for and react to incoming and outgoing events. It can be a challenge, but as with
any other system with lots of moving parts, there are a ton of interesting lessons to glean
from the experimentation.

6 | Chapter 1: Introduction and Overview

CHAPTER 2
Node.js

The Internet of today is different from the Internet of 1990 and 2000. In the “old days,”
the interaction between a user and a website was very much oriented toward consump-
tion. The web server would generate largely static pages and the user would navigate
between them. There were of course dynamic elements but the interfaction flow was
largely limited to request and reply. Years of research have gone into optimizing that
client-server flow—it’s safe to say that it's well understood at this point in time.

Around the time Internet Explorer 6 started to appear, a subtle but fundamental shift
was beginning to take hold. Internet users were becoming more comfortable and savvy
online, computers were becoming far more powerful, and broadband connections were
starting to become the norm. Instead of using the Internet primarily for information
and transactions, people were spending more time online for socializing and entertain-
ment. The Internet is now a media channel, but unlike the television, radio, and news-
papers before it.

Instead of consuming data, web users are now producing it in volumes never imagined.
The traditional notion of web servers and browsers as consumers is still present, but
understanding it provides only a glimpse into what publishers are able to accomplish.
The focus now is on putting people in control of their experience, and leveraging the
data they create to change, improve, and enhance that experience in real time. This is a
new world where the web server and programmer are no longer the sources of experi-
ence; rather, they are the facilitators.

Node.js is one of a new breed of technologies geared toward the Internet-as-experience
paradigm.

Installing Node.js

The first thing to do before you begin is install Node.js, if you haven’t done so already.
Node can be downloaded from the project home page where you will be presented with
a package installer for your operating system. Binary installers are available for Unix,
Mac, and Windows. If you're feeling really adventurous, you can follow the links to Node’s
GitHub repository and install one of the development snapshots. The stable release
version of Node at the time of writing is 0.8.12.

Node provides a JavaScript runtime environment, which you can access at any time by
going into your command prompt or terminal window and typing node. For the pur-
poses of the book you will be running JavaScript source files rather than typing code
directly into Node. To run a JavaScript file, you run the node command with a parameter
like this: node filename. js.

Node ships with a package management utility called npm, which enables you to import
third-party libraries into your workspace to use in your code. Package management is
an important aspect of working with Node; without it, you would have to program all
of your applications from the ground up, reinventing solutions to common problems
that have already been solved (and shared) by hundreds of other developers.

To install a library using npm, run the npm command with the library name as its pa-
rameter, like this: npm install async.

npm is useful for a lot more than simple installation: it helps you bundle your applica-
tions, control library versions, and even share projects with your friends. We'll get into
more detail about npm in Part II; suffice it to say for now that you and npm are going
to become close friends.

Express

The application in this book makes heavy use of the Express framework. Built upon the
Connect HTTP server framework, Express provides view rendering and a language for
describing routes.

To install Express, use npm from the directory where you will be working: npm install
express.

Example 2-1 demonstrates a simple and very practical server built using Express. To
begin, the variable app is initialized by calling the express() function from the ex
press library. The require command instructs Node to import the library express and
assign it to a local variable (also called express), thus exposing its functionality to the
current namespace.

8 | Chapter2: Node.js

http://nodejs.org

Example 2-1. A small Express application

var express = require('express');
var app = express();

app.get('/stooges/:name?', function(req, res, next) {
var name = req.params.name;

switch (name ? name.tolLowerCase() : '') {
case 'larry':
case 'curly':
case 'moe':
res.send(name + ' is my favorite stooge.');
break;

default:
next();
}
H;

app.get('/stooges/*?"', function(req, res){
res.send('no stooges listed');

s

app.get('/?', function(req, res){
res.send('hello world");

s

var port = 8080;
app.listen(port);
console.log('Listening on port ' + port);

With the app initialized, three routes are defined:

/stooges/[name]
Expecting the name of one of the stooges as input

/stooges/
A fallback from the previous route, in case the name provided was not found

A default route used to access the application’s home page

In the first route, Express is instructed to compare the name of the stooge provided and
print a message if the name is 'larry', 'curly’, or 'moe'. In the next route, Express
displays a message stating simply that no stooges are listed, and in the third route, a
default 'hello world' message is displayed.

Wait a minute—where did the parameter next come from in that first route and what
is it? In fact, next refers to a function. The next command instructs Express to try
processing the next route matching the current request. In this example, entering the

Express | 9

URL /stooges/ is intercepted by the first defined route (/stooges/:name?) rather than
the second (/stooges). Since there was no name supplied, the logic will fall through to
the default case in the switch statement at which point the next() function will be
called. The next route (/stooges) contains the expected response.

The question mark after the :name parameter indicates that the name is an optional
input—this route will load even if no name is provided.

Alot of online resources you will come across instantiate their app using
express.createServer() instead of express(). The command crea
teServer has been deprecated; although it will probably be supported
for quite some time, it is a good idea to avoid using it in order to keep
your application as future-proofed as possible.

Inside the switch statement I used a ternary operator as shorthand for an if/else state-
ment: name ? name.tolLowerCase() :: ''.This is equivalent to a much longer block
of code that checks whether the name variable exists, and if so, returns it as a lowercase
string, or otherwise sets it to an empty string for comparison:

if (null != name) {
name = name.tolLowerCase();
} else {

name = '';

}

Templates

Templates allow you to split your presentation information out from your program code,
making it easier to arrange your project files and render out web pages with complicated
structure. Although this book will focus heavily upon creating and displaying views in
pure JavaScript, there are times when you will want to use Expresss templating capa-
bilities to render out web pages or simply to make it easier to bootstrap all of your
JavaScript files into a web page container. Jade is my engine of choice because it is
conceptually similar to CSS and produces clear and succinct code.

To install the Jade templating engine, use the NPM command from your working
directory:

npm install jade

Example 2-2 repeats Example 2-1 but adds support for Jade templates. Instead of printing
text to the screen using res.send in each of the three routes, Express is instructed to
render the contents of files with a .jade extension: either the stooges.jade template for
the listing (or lack thereof) of stooge names, or a default index.jade for the root of the
site.

10 | Chapter2:Node.js

Example 2-2. Using Jade templates within an Express application

var express = require('express');
var app = express();

app.set('view engine', 'jade');
app.set('view options', { layout: true });
app.set('views', __dirname + '/views');

app.get('/stooges/:name?', function(req, res, next) {
var name = req.params.name;

switch (name ? name.toLowerCase() : '') {
case 'larry':
case 'curly':
case 'moe':
res.render('stooges', {stooge: name});
break;

default:
next();
}
H;

app.get('/stooges/*?"', function(req, res){
res.render('stooges', {stooge: null});

s

app.get('/?', function(req, res){
res.render('index');

s

var port = 8080;
app.listen(port);
console.log('Listening on port

+ port);

The other new addition is the inclusion of the third line of code: app.set

('views'...). This command is telling Express that all of its views should be drawn
from the folder named views, which is subordinate to the directory from where the code

file is being run (__dirname).

Although Jade is used to render the views, you may have noticed that there is no mention
or instantialization of Jade anywhere in the code. This is because the render command

in Express takes care of loading any of the required template modules—in this case, Jade.

Ifyoudon'thave Jade installed, your application will dump a stack trace and stop working

when it comes time to render the page.

Express

n

Example 2-3 shows the entirety of a page layout using Jade. This is the bit that will
surround the “actual” web page—that is, all header information, opening tags, and met-
adata shared between every page on the site. The body tag will contain the rendered
layout for the individual views, which will be included with this layout when Express
renders the template.

Example 2-3. The Jade layout (layout.jade)
s
html(lang='en')
head
title My Web Site

block scripts
block content

Indentation carries important meaning within Jade templates; if you
are copying and pasting these examples from a PDFE, depending on your
software the spacing may not be properly maintained.

The first line !'!'! 5 translates to the document type for HTMLS5. It could have been
written as doctype html, but who wants to type that much?

The template contained in Example 2-4 should be saved to views/index.jade. It contains
the contents of the website root: nothing more than a simple “hello world” message to
anyone who happens by. The first line of this template extends the layout.jade template
created in Example 2-3, which will cause the layout contents to render in the user’s web
browser. Because the h1 tag contents are nested under the block content element in the
template, Jade understands that it should be rendered when the block content is defined
in the layout.

Example 2-4. The new index page in Jade style (index.jade)

extends layout

block content
h1 hello world

You might notice that the layout in Example 2-3 also contained a block element called
scripts, which is not used by the index template. This will cause the script block to
remain empty when displayed in the web browser. It is possible to include or omit any
block content in your templates, allowing for a lot of flexibility in page layout.

Example 2-5 introduces conditional logic inside the Jade template. If a stooge variable
was passed into the template it will display that stooge’s name, otherwise it will display
a generic “not found” message.

12 | Chapter2: Node.js

Example 2-5. The new stooges page in Jade style (stooges.jade)

extends layout

block content
if (stooge)
p #{stooge} is my favorite stooge.
else
p no stooges listed

Events

Events are the lifeblood of Node.js and indeed of JavaScript itself. While other languages
handle workflows in multiple concurrent threads, with each thread spending most of
its time waiting for blocking I/O operations like reading from a disk, manipulating a
database, or fetching information over the network, JavaScript was always conceived of
as an event-based programming model. In the early days, an event was as simple as a
mouse click, a page load, or a form submission. More advanced usages include events
such as the completion of a database write or the contents of a file after it has been read
from a disk.

JavaScript uses callbacks to approach the problem from the opposite side; instead of
managing long-running processes, programmers hook into specific events and write
special functions called callbacks, which are executed when the event criteria is reached.
The routing examples in Example 2-1 and Example 2-2 demonstrate this: Node.js sets
a particular response to each given URL and then executes the code only when a web
browser accesses those routes.

Node.js includes a specialized events library you can use to provide your own custom
events. Imagine you have a web application that you have made available to other de-
velopers. If they want to extend your work, they have two choices: create function pro-
totypes that derive your code and reimplement any function they want to behave dif-
ferently, or modify your code directly to build the features they need. Events give a third
option: at specific points in your code you can emit an event that will let any observers
know that an action has taken place and inject their own behavior.

For example, if your application included a login feature, you might have an OnLogge
dIn event. A subsequent developer can add a listener for your event to provide extra
features, such as connecting to social networking sites to gather any news related to the
logged in user.

Example 2-6. Creating and handling application events

var events = require('events');
var eventEmitter = new events.EventEmitter();

function mainLoop() {
console.log('Starting application');

Events | 13

eventEmitter.emit('ApplicationStart');

console.log('Running applicatin');
eventEmitter.emit('ApplicationRun');

console.log('Stopping application');
eventEmitter.emit('ApplicationStop');
}

function onApplicationStart() {
console.log('Handling Application Start Event');
}

function onApplicationRun() {
console.log('Handling Application Run Event');
}

function onApplicationStop() {
console.log('Handling Application Stop Event');
}

eventEmitter.on('ApplicationStart', onApplicationStart);
eventEmitter.on('ApplicationRun', onApplicationRun);
eventEmitter.on('ApplicationStop', onApplicationStop);

mainLoop();

Example 2-6 demonstrates how three unrelated functions onApplicationStart, onAp
plicationRun, and onApplicationStop can be strung together to produce this output:

Starting application

Handling Application Start Event

Running applicatin

Handling Application Run Event

Stopping application

Handling Application Stop Event
The ApplicationStart, ApplicationRun, and ApplicationStop events are registered
using the eventEmitter’s on method before the mainLoop function is executed. This
adds an event listener for each of these events—whenever any event is raised from now
on, it will be checked against these listeners to determine if a match is available, in which
case the callback function from that match is executed.

The screen output highlights an important trait of Node.js: all of its work is done on a
single thread. When an event is raised and answered by a callback, the calling method
is paused while the callback executes. This is important because if something happens
during the callback and consumes a lot of processing time, the original function will not
continue running until all of the work is completed. So the execution in this example
follows the path:

14 | Chapter2: Node.js

Run mainLoop, trigger ApplicationStartEvent.

Run onApplicationStart callback.

Continue mainLoop execution, trigger ApplicationRun.
Run onApplicationRun callback.

Continue mainLoop execution, trigger ApplicationStop.

Run onApplicationStop callback.

N »h

Return to mainLoop execution, there’s nothing left to do; stop.

Socket.io

Socket.io is your friend—it will take the drudgery out of making real-time web appli-
cations by dealing with all of the cross-browser compatibility issues and leaving you
with a clean, simple JavaScript interface shared between your backend Node server and
frontend JavaScript client. This is an exciting library because it lets you as a programmer
focus on your program code in a single scripting language with no network barriers
between your data and end user.

To install Socket.io, use npm:
npm install socket.io

Example 2-7 adds real-time chat capability to the stooges website by creating a Socket.io
object and attaching it to the http.Server in front of Express. Upon receiving a socket
connection from the web browser, Socket.io triggers a callback function in the applica-
tion, which dispatches an arbitrary welcome message to the connecting user. The send
Chat function was created for convenience; given a title and content, it uses Socket.io’s
emit command to send a JSON payload to the connected socket. Because it lives inside
the callback function, it is available to any of the socket-level events but is invisible to
the rest of the application.

Example 2-7. Adding chat capability to the Express server

var express = require('express');

var http = require('http');

var app = express();

var server = http.createServer(app);

var 1o = require('socket.i0').listen(server);

var catchPhrases = ['Why I oughta...',
"Nyuk Nyuk Nyuk!', 'Poifect!', 'Spread out!',
'Say a few syllables!', 'Soitenly!'];

app.set('view engine', 'jade');
app.set('view options', { layout: true });
app.set('views', __dirname + '/views');

Socketio | 15

app.get('/stooges/chat', function(req, res, next) {
res.render('chat');

s

i0.sockets.on('connection', function(socket) {
var sendChat = function(title, text) {
socket.emit('chat', {
title: title,
contents: text
H;
I
setInterval(function() {
var randomIndex = Math.floor(Math.random()*catchPhrases.length)
sendChat('Stooge', catchPhrases[randomIndex]);
}, 5000);
sendChat('Welcome to Stooge Chat', 'The Stooges are on the line');
socket.on('chat', function(data){
sendChat('You', data.text);
b
b

app.get('/?', function(req, res){
res.render('index');

s

var port = 8080;
server.listen(port);
console.log('Listening on port ' + port);

The socket.on('chat') line creates an event callback that executes whenever the con-
nected user sends a message over the socket. There isn't a lot of functionality at this
point; the server will respond to these events by echoing the users’ message back to them.

To add a bit of life to this example I've included a reference to JavaScripts setInterv
al function with a callback who sends a random Three Stooges catch phrase to the
connected client every 5 seconds.

Express server is instantiated differently in Example 2-7 than it was in earlier examples.
Instead of having the Express object listen directly for incoming connections, it is first
attached to an http.Server using http.createServer(app) and the resulting server
object listens for incoming connections. Under the covers, Express's 1isten command
does the same thing without making the http. Server available; you need to expose the
http.Server in this manner in order to connect Socket.io to it.

The chat layout in Example 2-8 introduces content in the scripts block, which places
Socket.ios functionality up above your HTML content when rendered in the web
browser. Socket.io makes certain files available for download, which is why you are able

16 | Chapter2: Node.js

vww allitebooks.cond

http://www.allitebooks.org

to include a script reference to /socket.io/socket.io.js. The JavaScript file sock-
et.io.js includes all of the functionality the web browser will need to connect to your
socket server, including fallback mechanisms that will provide socket-like functionality
on web browsers that are behind the times and don’t yet have web socket support.

Example 2-8. The chat page’s Jade template (chat.jade)

extends layout

block scripts
script(type="'text/javascript', src='/socket.io/socket.10.js")
script(type="'text/javascript')
var socket = io.connect('http://localhost:8080"');
socket.on('chat', function(data) {
document.getElementById('chat').innerHTML =
'<p>' + data.title + ': ' + data.contents + '</p>';
H;
var submitChat = function(form) {
socket.emit('chat', {text: form.chat.value});
return false;

};

block content
divi#tchat

form(onsubmit="'return submitChat(this);")
input#chat(name='chat', type='text')
input(type='submit', value='Send Chat')

Whenever the submit button is activated, Socket.io will emit the contents of the chat
textbox. Upon receiving chat events from the web server, Socket.io will replace the con-
tents of the chat display window (div#chat) with the incoming message. It's important
to note that the socket events and functions used on the client are the exact same as
those used on the web server. This allows you to provide a clean communications contact
across the entire application without worrying about converting data for transmission
or reception.

Modules and CommonJ$

Node has sparked huge interest in server-side JavaScript programming, not to mention
JavaScript in general. But it is not the first tool that has made JavaScript available outside
of the browser; in fact, Netscape released a web server that incorporated the language
shortly after it made its debut in their web browser software. Less than a year later
Microsofts Internet Information Services (IIS) server software also supported server-
side JavaScript (calling their dialect JScript). Around the same time, Netscape planned
to rewrite their flagship web browser using the Java programming language—a project
that ultimately spun off Mozilla’s Rhino JavaScript engine.

Modules and CommonJS | 17

If this sounds like a quickly-fragmenting market, imagine trying to write JavaScript code
for one of the incumbent server products and then using that same code elsewhere. If
your application was small enough, you could probably get by with some modifications.
Any decently-sized application quickly finds itself needing to call in external libraries
and modularize its components, otherwise you end up with an unmaintainable mess
with thousands of lines of script in a single file. Each of the servers had ways of breaking
apart application code, but there was no standard—once you picked one, you were
locked in.

The situation isn’t a whole lot better today although major strides have been made
toward standards for things like code development, namespace protection, object cre-
ation, and modules. Common]S is a movement that aims to provide a standard set of
specifications for JavaScript outside of the web browser, many of which have been
adopted by Node. If you're just starting out developing with Node and your application
has grown beyond what can reasonably exist in a single file, what you need to know is
variables declared in external files are not available to your application unless you ex-
plicitly make them visible using the exports keyword.

Example 2-9 demonstrates a simple Node.js module that exposes a function getFlag
Width used for calculating the regulation fly (width) of an American flag. The fly should
be 1.9 times the length of the hoist (height) of the flag; this ratio is stored in the variable
FLAG_WIDTH. The function getFlagWidth takes the hoist height and multiplies it by the
width ratio, yielding the width of the flag appropriate for any given height.

Example 2-9. Module for calculating the wdth of government flags

var FLAG_WIDTH = 1.9;

exports.getFlagWidth = function(h) {
return h * FLAG_WIDTH;
b

When you include this file in your application, you will be able to access the getFlag
Width function, which is exposed using the exports keyword, but not the FLAG_WIDTH
variable. FLAG_WIDTH can be considered a “private” variable accessible only within the
context of the module, and not outside in the greater application.

18 | Chapter2: Node.js

CHAPTER 3
Backbone.js

Backbone.js is a Model-View-Controller (MVC) framework for client-facing JavaScript.
Anyone who has spent time working with JavaScript projects larger than trivial in size
has seen how quickly the language spirals into a web of callbacks and pyramid code.
When writing code for the web browser, it is almost inevitable to find display-specific
code leaking its way into your application logic. Over time, the code mix becomes
heavier and harder to maintain. Changes to the domain logic affect the view and vice
versa.

Backbone aims to solve the code coupling problem by providing a model-view frame-
work with templates that separate programming concerns in a way that should feel
familiar to developers coming from either a desktop application or server side pro-
gramming background.

Itisn’t possible to talk about Backbone without also discussing Underscore.js, Backbone’s
prerequisite helper library. Underscore provides functional programming support in
the form of utility functions like map/reduce, array iteration and filtering, and advanced
object binding and chaining. jQuery or Zepto, although not strictly required, are sup-
ported by Backbone. jQuery in particular will play a role in the application developed
over the course of this book.

Model

Models form the nucleus of your Backbone application. Although models may be tran-
sient app-only creations, in most cases the model will represent an object stored in a
database.

Backbone’s philosophy has models responsible for storing, retrieving, and transforming
data. Some frameworks have distorted this intention of MVC and made the controller

19

responsible for data transformation. In reality the controller’s only business is in inter-
preting requests made by the user through the view and accessing the correct parts of
the model. The model itself needs to understand how to handle the data it receives, and
how to fetch itself from the data store.

Example 3-1 illustrates how a model type is declared and later initialized using Back-
bone. The extend function sets up a prototype chain for the Stooge class, so you can
access all of the properties of Model whenever you work with a Stooge; all of the subclass-
specific functionality is declared inside extend’s properties object. This is an important
concept in Backbone—although other libraries include their own extend methods,
which typically copy content from one class to another, the one used in Backbone also
creates a constructor function so you can instantiate your class, and copies itself into
the new class so you can extend many levels.

Example 3-1. Initializing a Backbone model

Stooge = Backbone.Model.extend({
defaults: {
'name': 'Guy Incognito',
'power': 'Classified',

'friends': [],

1

initialize: function() {
// Do initialization
}
H;

var account = new Stooge({ name: 'Larry', power: 'Baldness',
friends: ['Curly', 'Moe'l});

View

Views represent a display of data within a model, usually providing different information
depending upon the context needed. For example, in Canada citizens have the option
of ordering either a short form or long form version of their birth certificate. Both
documents (views) represent the same vital information (model) but with different lev-
els of detail. Views in Backbone provide a window into a model’s data and give you as a
developer the ability to listen for user interaction or changes in the underlying model
to trigger an update to what is displayed in the web browser.

Example 3-2 contains a web page that can be run directly in a web browser. Before any
coding can begin, the jQuery, Underscore, and Backbone libraries are included within
the page’s head; when you run this page the web browser will stop here and wait until
all of the JavaScript has been downloaded and loaded into memory before continuing.

20 | Chapter3:Backbone.js

Example 3-2. Initializing a Backbone view

<html>

<head>

<script type="text/javascript"
src="http://cdnjs.cloudflare.com/ajax/1libs/jquery/1.7.2/jquery.min.js"></script>

<script type="text/javascript"
src="http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js">

</script>

<script type="text/javascript"
src="http://cdnjs.cloudflare.com/ajax/libs/backbone. js/0.9.2/backbone-min. js">

</script>

</head>

<body>
<div id="certificate"></div>

<script type="text/javascript"s>
CertificateView = Backbone.View.extend({
initialize: function() {
this.render();

I3

render: function() {
$(this.el).html("<h1>Guy Incognito</h1><p>DOB: March 2, 1967</p>");
}
b

var certificate_view = new CertificateView({ el: $("#certificate")});
</script>
</body>
</html>

A
o)

You should try to avoid placing your script tags in the head of a web
. Page intended for use by the public. The web browser will pause to
¢i%" download these scripts before continuing on to render the page, so you
should only include scripts in the head if they contain functionality that
is required by the rendering process.

A CertificateView class, which is a placeholder for a birth certificate, uses Backbone’s
extend method to create a prototype chain for this custom view the same way Backbone’s
Model prototype was extended in Example 3-1. The view will have two custom func-
tions:
initialize
Executed when a new instance of the view is created; in this case, the desire is for
the view to render its contents immediately

View | 21

render
Draws the contents of the view to the target element as described next

Finally, every view in backbone is associated with an element in the HTML DOM tree.
In Example 3-2, you specifically instruct the view to render itself inside the div whose
ID is certificate, but in the absence of an explicitly declared element, Backbone will
use a generic div. So when we reach the new Certificateview({ ... }) instruction,
the view will first initialize and then render its contents into the div with ID
certificate.

View Template

Templating is a critically important part of working with Backbone, so much so that it
is better to discuss it early on than introduce it later because templates will fill a major
role throughout this book.

Example 3-2 carries a potent antipattern: it is an HTML script containing JavaScript
code whose role is to generate objectified HTML.

In Example 3-3, the HTML needed to generate the page has been moved out of the view’s
render function and placed into a script tag by itself. The template’s script is given a
type of text/template in order to prevent the web browser from trying to render the
code to the screen as JavaScript, which would fail because the template is not executable
JavaScript.

Example 3-3. Rendering a template in a Backbone view

<html>

<head>

<script type="text/javascript"
src="http://cdnjs.cloudflare.com/ajax/libs/jquery/1.7.2/jquery.min.js"></script>

<script type="text/javascript"
src="http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js">

</script>

<script type="text/javascript"
src="http://cdnjs.cloudflare.com/ajax/1libs/backbone.js/0.9.2/backbone-min.js">

</script>

</head>

<body>
<div id="certificate"></div>

<script type="text/template" id="tpl-certificate"s>
<h1><%= name %></h1>

<p>DOB: <%= dob %></p>
</script>

<script type="text/javascript"s
CertificateView = Backbone.View.extend({

22 | Chapter3:Backbone.js

template:_.template($('#tpl-certificate').html()),

initialize: function() {
this.render();

1

render: function() {
var templateArgs = {
name: "Guy Incognito",
dob: "March 2, 1967"
IH
S(this.el).html(this.template(templateArgs));
}
b

var certificate_view = new CertificateView({ el: $("#certificate")});
</script>
</body>
</html>

I made the decision to treat the certificate owner’s name and date of birth as variable
inputs, so when it comes time to display them in the HTML they get specified as the
variable names name and dob, respectively. Placing the variables inside the script tags <%
and %> causes the JavaScript engine to act upon their contents; rather than printing out
“name” and “dob”, the values they contain will be acted upon instead. Placing an equality
operator (=) next to the opening tag acts as shorthand to display the contents of the
variable on screen. So if name contained the value “Steve Smith’, that is what would
appear inside the <h1> tags.

Two steps are required to use the template inside the view: first, the view must know
which template it will be using, and second, the template must be given a set of param-
eters to render. Using a bit of jQuery goodness, the contents of the template—remember,
they’re stored in the script tag with the ID of tpl-certificate—are extracted using
the .html() function, which returns the raw HTML content inside a tag. Under-
score’s . template() function accepts the HTML contents and creates a compiled func-
tion that can be used later on.

»

In JavaScript, functions are considered “first-class citizens,” meaning
. they can be assigned to variables just like numbers or strings, then re-
"4k assigned or passed between functions. This is an important trait because
it enables the functional-style programming that Underscore provides
helpers for.

To render the template now, all you have to do is call the newly-created template
function along with a list of expected variables, and the resulting HTML can be printed

View | 23

to the screen just like the hard-coded HTML in Example 3-2. The data is still static at
this point; the templateArgs object contains a dictionary of names and values corre-
sponding to the 'name’ and 'dob' variables expected in the template. In typical usage you
would use a separate data model instead of a stricly-defined object as done here.

Collection

In Backbone, collections provide statefulness to your models by brokering reads and
writes of data to and from the backend server, and notifying any listeners when models
are read or changed. Collections are responsible for storing, retrieving, and updating
families of models; because most applications use some type of list or menu, collections
are perfect for storing this kind of data.

Why would you want to take on the overhead of a collection rather than using a more
basic and straightforward JavaScript array? For one, writing objects that extend collec-
tions helps document your code; in Example 3-4, the Team collection defines Stooge as
its model type, giving you the context that Backbone will be looking for models of type
Stooge when it iterates or changes an instance of Team. Of course, the more compelling
reason to use collections is because they expose a suite of powerful commands that
enable you to manipulate their contents and even retrieval methods much more easily
than performing the same tasks in your own custom code.

Example 3-4. Building a collection in Backbone.js

var Stooge = Backbone.Model.extend({
defaults: {
'name': '',
'power': '!
}
s

var Team = BackBone.Collection.extend({
model: Stooge
s

var larry = new Stooge({ name: 'Larry', power: 'Baldness' });
var moe = new Stooge({ name: 'Moe', power: 'All Powers' });
var curly = new Stooge({ name: 'Curly', power: 'Hair' });

var threeStooges = new Team([larry, curly, moe]);

The collection raises events when any of the models it contains are updated, which can
be useful in launching display updates in other areas of your application.

24 | Chapter3:Backbone.js

Sync

The Sync class is used every time Backbone needs to read or save a model from the
server. By default, this uses jQuery’s .ajax method to send and receive JSON data, but
depending on your needs you may want to override this to use a different storage
mechanism.

Later in this book you will use the Backbone.ioBind project as a drop-in replacement
for Backbone’s default sync command. This will move all of your models’ CRUD (Create,
Read, Update, and Delete) operations to Socket.io, enabling full real-time socket oper-
ations over JavaScript without requiring new web connections.

Router and History

The router allows Backbone to respond to hash tag (#) changes by displaying a new
resource. This provides deep linking capability to your application by creating links that
can be bookmarked and shared by visitors. Combined with the history component,
routes can hook into the web browser’s history buttons and support back and forward
navigation.

It may seem odd that Backbone lacks a base Controller type. In fact, what we now
know as the router originated as a controller, with each route declared when the Con
troller object was extended. That setup is problematic because it tightly couples the
concept of a controller, which is intended to control a model based upon input from a
view, with routing, which is intended to navigate the end user between views. By moving
Router to its own prototype, the makers of Backbone have elegantly separated the in-
terface mechanics from the manipulation and display of models.

So why no dedicated controller prototype? A controller is the purest implementation of
your application’s logic. Because all of the application’s maintenance details have been
moved away from the controller, you are free to write a controller in plain JavaScript
that deals exclusively with the input and output from your model. At this level there is
ideally very little repeatable logic in your code that would warrant the need for a base
controller type.

This example shows how to wire up a router that listens for certificate requests such as
#/certificates/123 and #/certificates/mycertificatename, then creates a view
for the given certificate using the CertificateView object created in Example 3-5. In
this simplified example, CertificateView doesn’t actually accept any parameters, but
if it did, id would contain 123 or mycertificatename if the sample URLs were used.

Routerand History | 25

https://github.com/logicalparadox/backbone.iobind

Example 3-5. Demonstration of Backbone routing

var MyRouter = Backbone.Router.extend({
routes: {
"/certificates/:1d": "getCertificate",
}’
getCertificate: function(id) {
new CertificateView({ el: $("#certificate")});
}
b

var router = new MyRouter;

Backbone.history.start();

26 | Chapter3:Backbone.js

CHAPTER 4

MongoDB

When it comes to NoSQL databases, it is hard to beat the ease of use offered by Mon-
goDB. Not only is it well documented and supported by a large and helpful community,
but it is friendly to developers coming from an SQL background—many queries and a
great deal of relational thinking can be directly applied from SQL to MongoDB—making
it an especially attractive system for newcomers to the NoSQL world.

In relational databases, a single entity is stored in a row with a series of columns. Because
entities are defined in a strict schema, every row will have the same columns. Working
with entities involves comparing columns with very little overhead: all of the data is the
same by design. In MongoDB there is no strictly defined schema and there are no rows
containing columns—instead, every entity is stored in a document with any number of
fields.

Documents provide a lot of power; you can store much more related information about
each entity inside the document, even puttinglists of documents inside other documents.
Instead of making multiple queries to the database to get a complete set of information
(as you would have to do with an SQL database), you can load entire datasets in a single
operation.

Accessing Data

Not only is MongoDB friendly to developers coming from an SQL background, but its
website goes out of its way to show how many SQL statements can be converted to
MongoDB queries. In any database system, the end goal is always writing data—usually,
persisting it to a disk—and reading it back out again.

27

Example 4-1 demonstrates a simple session in MongoDB. No special setup is required
at any step of the way—all that was needed here was to install MongoDB and run it,
then connect using the mongo client. Once connected to MongoDB, I immediately start-
ed using a database that I called newdb, but I didn’t have to do anything to set it up: all
I needed to do was to start writing data.

Example 4-1. Basic MongoDB usage

> use newdb;

switched to db newdb

> book = { author: 'Jamie Munro', title: '20 Recipes for Programming PhoneGap',
published: new Date('04/03/2012"') };

{
"author" : "Jamie Munro",
"title" : "20 Recipes for Programming PhoneGap",
"published" : ISODate('"2012-04-03T07:00:00Z")
}
> db.books.insert(book);
> db.books.find();
{ "_1d" : ObjectId("5063d1d89e302eaf24b259a0"), "author" : "Jamie Munro",
"title" : "20 Recipes for Programming PhoneGap",

"published" : ISODate("2012-04-03T07:00:00Z") }

I created a variable named book to store information about a programming book I've
been reading, including the author, title, and publication date. Then I created a books
collection and inserted it using the db.books.insert command. Along the way I didn’t
stop once to define a schema; at no point do I tell MongoDB what a book is, what data
it should contain, or even what a collection of books is. MongoDB takes care of creating
documents, maintaining lists, and even—as we will discuss later in this chapter—in-
dexing and constraints.

Writing

As you've seen, writing data to MongoDB is extremely free form. You have a lot of
flexibility because each record stored in the database is basically a JSON document and
therefore parsable and usable in both a free and structured manner. You are not bound
to a rigid set of columns per table as you would be in a traditional RDBMS. Building
upon Example 4-1, you can add an additional book to the database without being bound
to follow the structure that came before.

When I added a book in Example 4-2, I included a new field called keywords that was
not present in the book added in Example 4-1. That doesn’t matter because when I later
queried the list of books, both books were returned even though they didn’t have iden-
tical field names. MongoDB happily fetches “20 Recipes for Programming PhoneGap”
along with “50 Tips and Tricks for MongoDB Developers” even though they aren’t
structured exactly the same.

28 | Chapter4: MongoDB

Example 4-2. Inserting a document

> book = { title: '50 Tips and Tricks for MongoDB Developers',
author: 'Kristina Chodorow',
published: new Date('05/06/2011'),
keywords: ['design', 'implementation',
'optimization'] };
{
"title" : "50 Tips and Tricks for MongoDB Developers",
"author" : "Kristina Chodorow",
"published" : ISODate("2011-05-06T07:00:00Z"),
"keywords" : [
"design",
"implementation",
"optimization"

]

db.books.insert(book);

db.books.find();

"_1d" : ObjectId("5063d1d89e302eaf24b259a0"), "author" : "Jamie Munro",
"title" : "20 Recipes for Programming PhoneGap",

"published" : ISODate('"2012-04-03T07:00:00Z") }

{ "_id" : ObjectId("5063d6909e302eaf24b259a1"),

~ VvV V <2

"title" : "50 Tips and Tricks for MongoDB Developers",
"author" : "Kristina Chodorow",

"published" : ISODate("2011-05-06T07:00:00Z"),

"keywords" : ["design", "implementation", "optimization"] }

As you can well imagine, there is a lot of power in being able to insert records in such a
free form manner. When you are building an application against MongoDB, your pro-
gram code is in control of the structure of the data you will be using. Any time you need
to add a new field, record type, or even database, you will be able to do so by doing
nothing more than declaring it and using it. But this flexibility and power comes with
a management underside: your application will need to be able to handle old data for-
mats as well as new ones after your application has grown for a period of time. That
means you must either be very guarded about making changes at all or your application
must be crafted to be resilient to data changes.

The simple scenario demonstrated in Example 4-2 is a perfect example of this. You've
just added a keywords field to your book documents—every new book entered into the
system from here on out will contain a keywords field that is exposed to alibrary terminal
somewhere down the line. What happens when that terminal tries to read a book that
is missing the keywords field? Hopefully the developer who built the interface thought
of that and is able to display an empty list—or a special message—when no keywords
are found.

AccessingData | 29

You should always build your application logic to check for the presence
of database fields before using them, otherwise you could end up with
a broken application even though your database is behaving exactly as
expected.

If you want to make sure all your documents have a field called keywords, you could
trigger an update across the entire collection, as shown in Example 4-3.

Example 4-3. Adding a feld to all documents in a collection
> db.books.update({},{$set:{"keywords":[]1}},false,true);

Example 4-3 demonstrates the use of MongoDB’s update command with all four of its
parameters:

Search criteria
This parameter contains all of the search criteria that MongoDB should use to de-
termine which records need to be modified. In this case, no criteria is given, mean-
ing any record is a fair match for this function.

Update object
During normal operation, this parameter will contain an entire record just like the
insert command in Examples 4-1 and 4-2. When presented with an object, Mon-
goDB will save its contents over any document it found matching the search criteria
from the first parameter. MongoDB also supports a number of special functions
including the $set function shown here, which allows manipulation of part of a
document, leaving the rest of the data intact.

Upsert
In most cases you would want to update an existing document using the update
command, but there are many times when you will want to update a piece of in-
formation or create a new document if that information does not already exist in
the database. The upsert pattern means “update if possible, insert otherwise” In
Example 4-3, the goal is to set a keyword field for all of the documents but not create
any new records; therefore, upsert is set to false.

Multiple update
MongoDB expects you to update one record at a time, so when you need to update
more than one you need to set this variable to true; otherwise, the database will
stop updating after it operates on the first match. This is a useful safety valve to
prevent you from accidentally trashing an entire collection because of a poorly
thought out wildcard search pattern.

30 | Chapter4:MongoDB

Example 4-4 demonstrates another useful operator: the $push command. This com-
mand allows you to add a new item to the end of an array without modifying anything
else in your document. As shown here, the keyword developer is added to the “50 Tips
and Tricks for MongoDB Developers” book.

Example 4-4. Updating part of a document

> db.books.update({ author: "Kristina Chodorow" },

{ "$push": { "keywords": "developer" } });

> db.books.find();

{ "_id" : ObjectId("5063d1d89e302eaf24b259a0"), "author" : "Jamie Munro",
"title" : "20 Recipes for Programming PhoneGap",

"published" : ISODate("2012-04-03T07:00:00Z") }

{ "_1d" : ObjectId("5063d6909e302eaf24b259a1"), "author" : "Kristina Chodorow",
"keywords" : ["design", "implementation", "optimization", "developer"],
"published" : ISODate("2011-05-06T07:00:00Z"),

"title" : "50 Tips and Tricks for MongoDB Developers" }

Querying

Querying in MongoDB is analogous to SELECT in SQL. You can not only query across
fields in collections of documents, you can also use custom JavaScript functions to per-
form more complicated filtration on your result sets.

The earliest example in this chapter, Example 4-1, contains an extremely basic query:

db.books.find();

The find command with no parameters instructs MongoDB to find documents in the
books collection without applying conditions to the search. When there are no condi-
tions to apply to the search, MongoDB responds by returning all of the documents in
the collection. In this sense, the find command with no parameters is the same as saying
“find all” to the database.

If we were to express this in SQL, the query would look like this:
SELECT * FROM books;

Example 4-5. A simple field search in MongoDB

> db.books.find({author: "Jamie Munro"});
{ "_1d" : ObjectId("5063d1d89e302eaf24b259a0"),

"author" : "Jamie Munro", "keywords" : [],
"published" : ISODate("2012-04-03T07:00:00Z"),
"title" : "20 Recipes for Programming PhoneGap" }

Example 4-5 uses the find command again, but this time a specific author is specified
in the criteria. This time MongoDB will search through the books collection and return
all of the records whose author field matches the author field in the find command. If
we were to express this in SQL, the query would look like this:

AccessingData | 31

SELECT * FROM books WHERE author = ‘Jamie Munro’;

Imagine for a moment that the average document in your collection contained dozens,
or even hundreds, of rows. During regular use you would not always want to get every
field from the database, especially if you're interested in only one or two bits of infor-
mation at a time.

The find command in Example 4-6 has two parameters: the search criteria (empty in
this case) and a desired field map. Because no arguments are supplied in the search
criteria, MongoDB will once again return all of the documents in the books collection.
The desired field map includes the title field, and will cause MongoDB to return only
the title field.

Example 4-6. Finding specific fields from a collection

> db.books.find({}, {title:1});
{ "_id" : ObjectId("5063d6909e302eaf24b259a1"),

"title" : "50 Tips and Tricks for MongoDB Developers" }
{ "_id" : ObjectId("5063d1d89e302eaf24b259a0"),
"title" : "20 Recipes for Programming PhoneGap" }

Wait a minute! Why is the _id field being returned? MongoDB assumes you will need
the record’s ID field in most cases, else you would not be able to uniquely name a docu-
ment from your application code. If you wanted to show only the titles without the _id
field, you could explicitly hide the _id field like this, using 0 to mean false:

db.books.find({}, {title:1, _id:0});
The find function as shown in Example 4-6 is analogous to this SQL query:

SELECT _id, title FROM books;

Indexes

It’s easy to be fooled into thinking your code is fast when you’re working on small datasets
and querying against databases running on your own computer. Performance can suffer
tremendously once your code hits a production workload and needs to serve a growing
dataset to a large number of users. Although MongoDB is smart about where it looks
for data, unless you set up indexes to keep search fields in memory, your database will
be doing a lot more work than it needs to.

While going deeply into detail on the explain command would (and does!) fill an entire
book, the first piece of information you should be looking for is in the cursor field.
MongoDB uses either a BasicCursor or BtreeCursor when scanning collections of docu-
ments; for a heavily-used query, you want to avoid using a BasicCursor because it scans
through every document in the collection to find a result.

32 | Chapter4:MongoDB

Thebooks collection queries in Example 4-7 is tiny, having only two records. But because
a BasicCursor is used to perform the search, MongoDB has to examine both records
before it can return a result set. You can see the number of scanned objects in the
nscannedObjects field from the explain function’s output.

Example 4-7. Diagnosing slow queries

> db.books.find({author: "Jamie Munro"}).explain();

{
"cursor" : "BasicCursor",
"nscanned" : 2,
"nscannedObjects" : 2,
"n" i1,
"millis" : 0,
"nYields" : 0,
"nChunkSkips" : 0,
"{sMultiKey" : false,
"{ndexOnly" : false,
"{ndexBounds" : {
}

}

You use the ensureIndex function to add an index to your collection. Indexed fields are
tracked in memory and can be retrieved much more rapidly by MongoDB. More im-
portantly, they act as a filter on queried data; the database only needs to look at records
that it knows match your search criteria based upon its knowledge of the table as held
in the indexes.

Notice how nscannedObjects dropped to just 1in Example 4-8 after an index was added
to the author field of the books collection. Because the author is now stored in memory
and known to the database, MongoDB knows it only needs to look more closely at a
single document. If you try to search for an author who doesn’t exist, MongoDB will
not have to check any records at all.

Example 4-8. Adding an index to a collection

> db.books.ensureIndex({author:1});
> db.books.find({author: "Jamie Munro"}).explain();

{
"cursor" : "BtreeCursor author_1",
"nscanned" : 1,
"nscannedObjects" : 1,
"n" i1,
"millis" : 0,

"nYields" : 0,
"nChunkSkips" : 0,
"{sMultiKey" : false,
"{ndexOnly" : false,
"{ndexBounds" : {
"author" : [

AccessingData | 33

[
"Jamie Munro",
"Jamie Munro"
1
1
}
}

It can take some time to make sure you have all of the right indexes set up in your
database. If done properly, it can mean the difference between queries that take minutes
versus queries that take seconds or less.

MapReduce

MapReduce is used to batch process huge amounts of data often across clusters of da-
tabase servers. If you were to compare MongoDB to a traditional SQL-based server,
MapReduce would fit in the space where you would normally use GROUP BY to collect
aggregate results.

A MapReduce operation involves two phases: the map phase, which plucks out the
relevant data into key/value pairs for aggregation, and the reduce phase, which collects
all of the keys and performs math on their values. Take a counting operation for example:
if you wanted to know how many books each author in the books collection has written,
you would need to go through each document and count the number of times each
author appeared in the collection.

Since there have been only two records in the books collection so far, the first thing that
needs to happen in Example 4-9 is the creation of more data, so that’s what happens.

Example 4-9. Performing a MapReduce query on the books collection

> db.books.insert({"author": "Kristina Chodorow", "title": "Scaling MongoDB",

. "published": new Date("03/02/2011")});

db.books.insert({"author": "Stoyan Stefanov", "title": "JavaScript Patterns",
. "published": new Date("09/28/2010")});

db.books.insert({"author": "Stoyan Stefanov",

. "title": "JavaScript for PHP Developers",

. "published": new Date("10/22/2012")});

db.books.insert({"author": "Stoyan Stefanov", "title": "Web Performance Daybook",
. "published": new Date("06/27/2012")});

db.books.insert({"author": "Jamie Munro",

. "title": "20 Recipes for Programming MVC 3",

. "published": new Date("10/11/2011")});

Vo V <« V

Vo

> map = function() { emit(this.author, 1); };
function () {
emit(this.author, 1);

}

> reduce = function(key, values) {

34 | Chapter4:MongoDB

var total = 0;
values.forEach(function(value) {
total+=value;
s
. return total;
oo }
function (key, values) {
var total = 0;
values.forEach(function (value) {total += value;});
return total;

\

db.books.mapReduce(map,reduce, { out: "bookoutput"});

"result" : "bookoutput",
"timeMillis" : 3,
"counts" : {

"{nput" : 7,

"emit" : 7,

"reduce" : 3,

"output" : 3
}’
"ok" : 1,

db.bookoutput.find();

"_id" : "Jamie Munro", "value" : 2 }

" 1d" : "Kristina Chodorow", "value" : 2 }
"_id" : "Stoyan Stefanov", "value" : 3}

AAm sV

With some data in the collection, create a map function that will emit an author name
and the number 1 when given a document. emit is a MongoDB helper function that
groups objects by keys; in this case, the key is the author name found in each document.
I used the value 1 for convenience: each time MongoDB reads a book object, it will count
as 1 book credit toward that author. This could be simplified to emit an empty value,
but it’s being left this way for convenience because most of the MapReduce functions
you create will start with this format and become more complex.

Once all of the keys have been emitted, MongoDB collects the results and reduces them;
so while any particular key may have been found multiple times if any author wrote
more than one book, the final result should contain only one value—the sum of written
books—per author. The reduce function in Example 4-9 adds all of the values found
for each author and returns a total count of each books.

When the mapReduce function is performed on the books collection, it is given three
parameters: the user-defined map function, the user-defined reduce function, and the
name of a new collection to contain the results. After the mapReduce function executes,
it will save the author book counts into a new collection called bookoutput, which can
then be queried just like any other collection. Example 4-9 concludes by querying it to
reveal the number of books next to each author’s name.

AccessingData | 35

Working with Node.js

The primary MongoDB driver supported for Node.js is the Node MongoDB Native
Project, a pure-JavaScript driver that provides asynchronous I/O to MongoDB from
Node. Because the driver can save your JavaScript objects directly into MongoDB, by
all rights you could build out the full application with it.

The Mongoose project extends the native drivers by providing a means to define the
database schema. If this seems to go against the NoSQL “schema-less” philosophy, don’t
worry. Changes to the JavaScript schema definitions do not require special processing
by MongoDB—the schema only exists to make your life easier as a developer trying to
make a consistent application.

Mongoose also provides a powerful set of middleware designed to ease the process of
working with serial and parallel requests in Node’s asynchronous environment:

npm install mongoose

Concurrent Access

Picture this: Adam and Greg access the same document and begin making changes.
Since they are each working on their own computers, their changes are not being saved
directly back to the database and refreshed in each other’s work—they can be said to be
editing in “offline” mode. Adam finishes his work first and saves his complete changes
back to the database. At some later point, Greg finishes his own edits and saves those
into the database. Because Greg started working on the document before Adam’s
changes went into effect, his edits do not include Adam’s; so when he saves his work
back into the database, Adam’s work is effectively erased, as demonstrated in Figure 4-1.

What to do? While most of the examples in this book involve write-only transactions
(meaning we will write but never modify certain data), there will inevitably be occasions
where you will need to work on a shared document at the same time as someone else
and want to prevent your users from losing their changes if they were unfortunate
enough to post first.

36 | Chapter4:MongoDB

vww allitebooks.cond

http://www.allitebooks.org

Adam

I

Doc with Doc with
Doc Adam’s Greg's
changes changes

l A

Greg

Figure 4-1. What happens when two users change the same document

One way to accomplish this is by assigning a signature to every record and updating
that signature every time you write to the database. If updating an existing document,
only update the document whose ID and signature both match the values observed
when the document was first read. This way, when two users try to save the same data,
the first user’s update will cause the signature to change and the second user’s update
will fail because the signature does not match.

In Figure 4-2, users Greg and Adam both begin editing the same document, but when
Adam saves his changes he updates the document’s version number from a5 to b7. Now,
when Greg saves his changes, he specifies that he is updating version a5, which no longer
exists in the database; instead of writing his changes, the update fails. From here, Greg
can update his copy of the document using the changes submitted by Adam, or the
software he is using can do it intelligently in the background and resubmit on his behalf.

Concurrent Access | 37

Adam
Update a5

Doc Doc
v:a5 v:b7
l A

Update a5

Greg

Figure 4-2. Updating documents using find AndModify

MongoDB includes a function called findAndMod1ify, which handles searching and up-
dating in a single function. This adds an extra layer of security because it ensures the
update happens immediately when a record is found, rather than adding round-trip
time to process the record on the client side and save it back to the database, during
which time someone else might change the record and cause the concurrent access
problem described earlier.

Example 4-10 demonstrates how an article can be created and updated using the fin
dAndModify method. Notice how the first time findAndModify is executed, it returns
the contents of the article without the updated revision number—that is, it indicates the
revision is a5 instead of the new value b7 provided in the command. If you wanted to
display the new, updated version of the article, you would include the keyword new in
the findAndModify command. In either case, when the find command is later issued,
the new revision value is shown. Next, when the findAndModify command is rerun,
Mongo is unable to find the record because the revision version is no longer a5, therefore
it returns null.

Example 4-10. Using find AndModify from the console

> db.articles.save({
.. title: "Jolly Roger",
. published: "September 12, 2007",
. description: "A riveting tale of suspense and drama.",
. revision: "a5"

”-});

> db.articles.find();

38 | Chapter4: MongoDB

"_1d" : ObjectId("505a9b4fd5f42989fe6d8015"),

"title" : "Jolly Roger",

"published" : "September 12, 2007",

"description" : "A riveting tale of suspense and drama.",
"revision" : "a5"

> db.articles.findAndModify({

. query: {"_i1d": ObjectId("505a9b4fd5f42989fe6d8015"), revision: "a5"},
... update: {$set: {revision: "b7"} }

<1

"_1d" : ObjectId("505a9b4fd5f42989fe6d8015"),

"title" : "Jolly Roger",

"published" : "September 12, 2007",

"description" : "A riveting tale of suspense and drama.",
"revision" : "a5"

> db.articles.find();

" id" : ObjectId("505a9b4fd5f42989fe6d8015"),
"title" : "Jolly Roger",

"published" : "September 12, 2007",
"description" :

"A riveting tale of suspense and drama.",
"revision" : "b7"

> db.articles.findAndModify({
. query: {"_1d": ObjectId("505a9b4fd5f42989fe6d8015"), revision: "a5"},
. update: {$set: {revision: "90jasv"} }

N O K

null

> db.articles.find();
{
" id" : ObjectId("505a9b4afd5f42989fe6d8015"),
"title" : "Jolly Roger",
"published" : "September 12, 2007",
"description" : "A riveting tale of suspense and drama.",
"revision" : "b7"

Concurrent Access

39

PART I

Building a Social Network

CHAPTER 5
Setting Up the Project

Opver the course of this section the Node, Backbone, and MongoDB concepts from Part I
will be combined to demonstrate how you can build a communication application in
the style of a social network. This basic but functional site will enable its users to au-
thenticate securely, manage a list of contacts (or “friends”), chat, and view updates in
real time.

Before starting any project it is a good idea to take some time to understand what your
goals are and decide how to organize your work. It is far easier to make changes at this
early stage than later once many files have been added to the application.

Chapter 1 introduced the social network application that will be built over the course
of this book. As you build out the functionality you will find yourself ending up with
two complementing MVC systems: one for the frontend that appears in the web browser,
and the other for the backend Node services running on the web server. The directory
structure will be set up in a way that makes it easy for you to come back and understand
(not to mention makes it simple for newcomers to come onboard), and facilitate code
reuse.

Additionally, a package definition file will be created to document the dependencies
needed by the application. All of the third-party libraries and supporting software will
be controlled by the package file, and later on this will define the entry point for sub-
modules you will add to the application. The package file can later be used to deploy
your code to a web server or share with another developer without needing to bundle
it with all its modules.

83

Directory Structure

The directory structure for this project will boil down to two broad categories:

1. Node.js program files that reside and operate on the server; hese will not be visible
to anyone using the application

2. Backbone.js models, collections view templates, and controllers that are downloa-
ded by the end user and run inside the web browser

Making a clear separation between the Node.js files and the Backbone.js may seem like
a subtle distinction, but it is an enormously important decision that will affect perfor-
mance at the end of the development cycle. It isn't possible to put enough emphasis on
how profoundly developers can be affected by early design choices long after the initial
programming has been done. As the application is built out throughout the coming
chapters, decisions designed to improve maintainability and scalability of the applica-
tion in production will frequently be addressed.

File Listing

With the directory structure’s philosophy well in hand, it’s time to create actual files that
will contain the basic application framework. This is the bare minimum needed to pro-
vide a foundation upon which the entire application will be built:
app.js
The entry point for the Node.js application; you will be able to execute the server
by running this in the command line: node app. js

public/
The root folder for all client-downloadable files pertaining to the Backbone.js por-
tion of the application

public/js/
The root folder for all of the JavaScript files that will be rendered in the web browser

public/js/SocialNet.js
The main application class for the social network; this class handles the messaging
between views, controllers, and models

public/js/boot.js
The bootstrapper object instantiates the global configuration and establishes mod-
ule dependencies. This is instantiated by Require]S when the page is initially loaded.

public/js/libs
This folder contains third-party libraries used by the application.

44 | Chapter 5:Setting Up the Project

public/js/lib/backbone.js
Backbone.js available here.

public/js/lib/jquery.js
The jQuery library is available here.

public/js/lib/require.js
The Require]JS library is available here.

public/js/lib/text.js
The Require]S text plug-in; you will use it to load textual content from the templates
folder for the view rendering

public/js/views
This folder contains the view objects used by the Backbone application.

public/js/views/index.js
The default template shown to users when they arrive at the application; this view
renders the contents of the file located at public/templates/index.html

public/styles/styles.css
The stylesheet used to control how HTML elements are laid out in your user’s web
browser

public/templates
This folder contains the HTML templates, which will be rendered by the views into
web pages displayed in the browser.

public/templates/index.html
The default template shown to users when theyarrive at the application; the contents
of this file are rendered by public/js/views/index.js

views/
This folder contains the Jade templates, which are rendered by the Express server
and sent to the client.

views/index.jade
This file is displayed to the user when they load the ropot (/) of the website http://
localhost:8080/. Its purpose is to trigger the browser into bootstrapping the appli-
cation.

Package Definition

When building a Node application, you should always create a package file to provide
details about the operating conditions and configuration expected by your code. Doing
this helps prevent future changes to third-party modules from breaking your logic and
can define the runtime environment in the case of multi-platform development.

Package Definition | 45

http://backbonejs.org/
http://jquery.com/
http://requirejs.org/

The file in Example 5-1, saved to disk as package.json, is used to synchronize your ap-
plication with its dependencies. This is important to lock your code to a specific version
—in this case, Express version 3.0.0—or define a minimum version, such as Mongoose
version 2.6.5 or later. Later in this book we will discuss strategies for working in teams,
and when we do, we'll see how the package.json file helps your friends get up and running
in a single command.

Example 5-1. The application’s package file
{

"name": "my-social-network",

"version": "0.0.1",

"private": true,

"dependencies": {
"express": "~3.0.0",
"jade": ">= 0.0.1",
"mongoose": ">= 2.6.5"

}
}

Once the package.json file has been set up, use npm to install any needed dependencies:
npm install

When you run npm install without supplying a package name, npm attempts to parse
the package.json file in the current directory. Since you have a package file, npm will
determine which dependencies you have specified and will download the necessary
versions.

Web Server

Many developers who come from a “traditional” server-based background are familiar
with setting up web server software—whether it's Apache, nginx, or IIS—to act as a
communication channel between the web browser and the backend code. Newer tech-
nologies such as Ruby on Rails, Play! Framework, and PHP 5.4 have mechanisms for
booting a local “development” server so you can begin programming without being
bogged down by implementation details. (Play! Framework’s built-in Netty HTTP server
isintended to be used in production as well as development. It’s listed here as an example
of a framework that is designed to get developers up and running in as little time as
possible.)

Node is interesting because the program code you write for it is also the server imple-
mentation. You have a greater expectation that the application will perform and behave
similar in production as in development because there aren’t any additional libraries,

46 | Chapter5:Setting Up the Project

brokers, or daemons getting in the way (apart from proxy servers, which will be dis-
cussed later on). Because Node exposes the nuts and bolts of the network to the pro-
grammer, it is very straightforward to create a fairly feature-rich application in very few
lines of code.

Example 5-2 creates a functional and capable application in a short amount of code.
Despite its small size, this program handles routing for incoming HT TP requests, pro-
vides a view engine to render server-side views into browser-friendly HTML5 markup,
and provides downloadable access to static file resources on the local filesystem. All of
this functionality is provided by the connect middleware, which utilizes Node’s base
network libraries, all exposed by the Express routes defined in the program code.

Example 5-2. app.js, the web server entry point

var express = require('express');
var app = express();

app.configure(function(){
app.set('view engine', 'jade');
app.use(express.static(__dirname + '/public'));

b
app.get('/', function(req, res){
res.render("index. jade", {layout:false});

s

app.listen(8080);

The first two lines initialize the Express library, first by require-ing the Express library,
and then by calling express() to build a new instance of Express and assigning it to the
variable app. From here on, we will use app as a shortcut to refer to our application.

A
o)

The variable express was used as a function in Example 5-2. This works
. because functions are first-class objects in JavaScript, meaning you can
% treat variables as functions and call them with parameters anywhere in
your code.

Expresss configure command is useful for controlling settings that change between
environments (for example, paths to static files, cache settings, and render optimiza-
tions). The expected behavior is for configure to read the contents of the NODE_ENV
environment variable, which should be set to production when your application is
deployed. When no parameter string is provided to configure, as is the case in
Example 5-2, the configuration settings in the provided function are applied to all run-
time environments. This can be combined with environment-specific settings as de-
scribed during the later chapters of this book.

Web Server | 47

Inside the configure command, the view engine is set to jade. Behind the scenes, this
command causes Express to attempt to load the Jade library so it is able to handle Jade-
based views when rendering responses to browser requests.

After the view engine has been installed, express static is invoked with a path of
__dirname + '/public'). __dirname is one of several global objects available to all
modules within Node; it contains the name of the directory that the currently executing
script resides in. Because app.js will always live at the root of the project structure along
with package.json, __dirname is a safe choice as a base path. Later on, you may want to
pass __dirname from this file’s context to a downstream module whose program code
may not be in the same directory.

The last line in the file, app.listen(8080), causes the configured Express application
to begin listening for HT'TP requests on port 8080. Using a large port number such as
8080 is useful during development because the standard ports including port 80 (the
default web server port) are restricted to super users on many Unix-based systems.
While you very likely have those privileges when developing locally, it is generally a poor
idea to constantly switch privileges between your regular user permissions and super
user permissions. For one, if you were to make a mistake affecting the filesystem, your
runaway code could do alot more damage when it has root-level access to the hard drive
in your computer.

Index Template

Because Backbone.js will be the presenter for the majority of the action that will happen
in the web browser, the Node application will not play a major role in the visual arena
for this project.

The first line in Example 5-3 defines the document type, which is needed by the web
browser to understand how the rest of the document should be formatted. If this line is
missing, the browser is forced to make a guess about how best to display content: this
state is called Quirks Mode, and has consequences on the way your visual styles will be
rendered. It is best practice to always include a doctype in all of your pages.

Example 5-3. index.jade: the default view

1"rs
html(lang="en")
head
title Social Network
script(data-main="js/boot', type='text/javascript',src='/js/libs/require.js")
body
div#content

48 | Chapter5:Setting Up the Project

http://nodejs.org/docs/latest/api/globals.html

The second line opens the <html> container for the document and defines its language
as English. Defining a language in the HTML is not strictly necessary but it is a recom-
mended practice because it helps search engines index your site and provides context
for spell checkers and speech synthesizers. This line will be rendered in the web browser
as <html lang="en">.

After the html tag is opened, notice the spacing before the head tag is entered. Jade uses
indentation to control which tags are inside each other. Looking at this example you can
see that there are two tags, title and script, residing within head. The next tag,
body, is indented to the same level as head, which Jade understands to mean “close the
head tag and open the body tag”

Notice the data-matin property inside the script tag. This is not typical in script tags
but serves an important purpose for the bootstrapping of your application. The HTML5
data attribute (you can use data- * to create any custom property) is used to define non-
visual application data in the context of web page tags. Require.js uses data-main to
trigger loading of the first dependencies; for your application, this will be the boot-
strapper that will load the views, router, and models for presentation to the end user.

Bear with me if it seems a bit wasteful that Express is using the Jade-rendering engine
to generate the HTML output for this template. This is the only web page in the project
and there are no dynamic variables being passed from the application to the page; it
does little more than bootstrap the Backbone JavaScript files. Later in this book the Jade
templates will be expanded to provide in-browser support for the real-time event pro-
gramming you will be adding.

Application JavaScript

While Express serves as the centerpiece of the server-side architecture, its client-side
counterpart will be a centralized application JavaScript structure called SocialNet. So-
cialNet will handle bootstrapping the display templates for the application and will serve
as the main point of access between the web browser and the rest of the application.

The bootstrapper in Example 5-4 is performing two jobs. First, it is defining the paths
to all of the dependencies used by the application, and second, it is initializing and
launching the user interface. Although Require.js will load dependencies from the same
(or relative) path as the application files, I like to explicitly define all of the libraries used
by the application in this central location. Doing this makes it easier to change paths
later on (we'll discuss this in more detail when we talk about scaling out) and keeps an
easy-to-track record of which external libraries I am using, for easier upgrades and
refactoring later in the project’s lifespan.

Web Server | 49

Example 5-4. boot.js: the SocialNet bootstrapper
require.config({
paths: {
jQuery: '/js/libs/jquery',
Underscore: '/js/libs/underscore',
Backbone: '/js/libs/backbone',
text: '/js/libs/text',
templates: '../templates'
}’

shim: {
'Backbone': ['Underscore', 'jQuery'],
'SocialNet': ['Backbone']
}
b

require(['SocialNet'], function(SocialNet) {
SocialNet.initialize();

s

The shim section configures dependencies that use traditional browser globals rather
than the module export style of JavaScript used by Require]JS. This section ensures that
the required dependencies (jQuery and Underscore) are loaded before Backbone initi-
alizes, in order to prevent conflicts from parallel loading.

Because the application will contain a lot of user-facing views, it is impractical to embed
HTML code into your JavaScript or even Express view pages. Require]S’s text plugin
allows you to read text content into your application, provided they reside (due to
browser security restrictions) on the same domain as your JavaScript files.

Application class

After Require]S has loaded all of the dependencies, it calls SocialNets initialize
method. Since you're just setting up the project at this stage, the initialization will consist
of rendering the view so the web page renders in the web browser.

Example 5-5 packs a lot of punch. First, let’s strip out all of the actual code and review
the structure of a RequireJS module, seen in Example 5-6.

Example 5-5. SocialNet.js: the application object

define(['views/index'], function(indexView) {
var initialize = function() {
indexView.render();

3

return {
initialize: initialize
1
s

50 | Chapter5:Setting Up the Project

http://requirejs.org/docs/download.html#text

Example 5-6. A minimal Require]S module template

define([dependencyl, dependency2, ...], function(dependencyl, dependency2, ...) {
// Internal program code

return {
// Expose externally accessible functions
}
b

Soyou can see how the SocialNet module fits this pattern perfectly. The only dependency
in this module is the index view, which is loaded by Require]S and passed into the
SocialNet module as the variable named indexView. The initialize function called
by the bootstrapper is returned at the end of the module; the function itself would
otherwise be accessible only inside the scope of the define function.

Index view object

The index view extends a plain Backbone view and renders text into the HTML element
tagged with the content identifier. This will be wrapped up in the Require]S define
properties in order to expose the view class but not any of its internal content.

In Example 5-7, the index view is instantiated after index.html is loaded. The text!
prefix instructs Require]S to load the contents of templates/index.html as a string of text
and make it available to the module as the variable called indexTemplate. Instead of
returning a reference to the indexView or to a function, the module returns an instan-
tiated objected; that's why you were able to immediately render the index view in the
application (in Example 5-5) without having to use the new keyword.

Example 5-7. index.js: the JavaScript index view

define(['text!templates/index.html'], function(indexTemplate) {
var indexView = Backbone.View.extend({
el: $('#content'),

render: function() {
this.Sel.html(indexTemplate);
}
b

return new indexView;

B

Web Server | 51

CHAPTER 6
Authentication

Because this application will be fully multi-user, the first gateway to build involves reg-
istration and identity authentication. Before users can access any other functionality,
they must first identify themselves and prove they have authority to perform certain
functions.

In this chapter you will create an account model to represent a user who has registered
with your system, with the email address being the primary means of accessing the
system. The user will also be expected to supply a password, which will be verified against
the account with the matching email.

With a working account model, the next task will be creating login and registration views
to bring users into and grant them access to the system.

Account

The account model is the main point of contact between Node.js and the MongoDB
database.

The account model in Example 6-1 includes database fields for an email address, pass-
word, name, photo, description, and biography. This is a Common]S module, which
exports the account and register, forgotPassword, changePassword, and login
functions.

Example 6-1. The user account: models/Account.js

module.exports = function(config, mongoose, nodemailer) {
var crypto = require('crypto');

var AccountSchema = new mongoose.Schema({

email: { type: String, unique: true },
password: { type: String },
name: {

53

first: { type: String },

last: { type: String }

1,

birthday: {
day: { type: Number, min: 1, max: 31, required: false },
month: { type: Number, min: 1, max: 12, required: false },
year: { type: Number }

1,

photourl: { type: String },
biography: { type: String }
b;

var Account = mongoose.model('Account', AccountSchema);

var registerCallback = function(err) {
if (err) {
return console.log(err);
b
return console.log('Account was created');

};

var changePassword = function(accountId, newpassword) {
var shaSum = crypto.createHash('sha256");
shaSum.update(newpassword);
var hashedPassword = shaSum.digest('hex');
Account.update({_id:accountId}, {S$Sset: {password:hashedPassword}},{upsert:false},
function changePasswordCallback(err) {
console.log('Change password done for account ' + accountId);
H;
b

var forgotPassword = function(email, resetPasswordUrl, callback) {
var user = Account.findOne({email: email}, function findAccount(err, doc){
if (err) {
// Email address is not a valid user
callback(false);
} else {
var smtpTransport = nodemailer.createTransport('SMTP', config.mail);
resetPasswordUrl += '?account="' + doc._id;
smtpTransport.sendMail({
from: 'thisapp@example.com',
to: doc.email,
subject: 'SocialNet Password Request',
text: 'Click here to reset your password:
}, function forgotPasswordResult(err) {
if (err) {
callback(false);
} else {
callback(true);
}
b
}

+ resetPasswordurl

54 | Chapter6: Authentication

s
};

var login = function(email, password, callback) {
var shaSum = crypto.createHash('sha256");
shaSum.update(password);
Account.findOne({email:email,password:shaSum.digest('hex')},function(err,doc){
callback(null!=doc);
b
b

var register = function(email, password, firstName, lastName) {
var shaSum = crypto.createHash('sha256");
shaSum.update(password);

console.log('Registering ' + email);
var user = new Account({
email: email,
name: {
first: firstName,
last: lastName
1,
password: shaSum.digest('hex')
b
user.save(registerCallback);
console.log('Save command was sent');

}

return {
register: register,
forgotPassword: forgotPassword,
changePassword: changePassword,
login: login,
Account: Account

}

}

The login and register functions make use of Node’s crypto library to convert the
plain text password supplied into an encrypted hash using the SHA1 algorithm. This
performs a one-way scramble on the text in order to prevent anyone who accesses your
database from easily reverse-engineering your users’ passwords.

Account | 55

Directly hashing a password as shown in Example 6-1 provides a layer
of protection from casual attackers, but does not stop dictionary-based

% attacks where passwords are compared against a dictionary of pregen-
erated SHA1 hashes. If you were to “salt” the hash by adding a secret
key in front of the password before encrypting it, anyone hoping to
perform a dictionary-based attack against your database would need to
generate a new list of encrypted passwords using your secret key before
they could get at your passwords; they would need a copy of your da-
tabase and your source code to perform this attack.

aqs
[N
N

The login function queries MongoDB and returns a truth flag indicating whether or not
it was able to find a user whose email address and encrypted password match the login
credentials supplied by Node.js. If no accounts were found in the database, the doc
variable will be null; otherwise, it will be populated from MongoDB.

The forgotPassword function sends an email to the account owner, instructing him on
how to reset the password. This function will be described in more detail in
Example 6-14.

The changePassword function supports the forgotPassword functionality by updating
the account’s password with a newly encrypted password, using MongoDB’s $set com-
mand to change a single value in the account record rather than the entire document.
Setting upsert to false means the query will only work on a document that exists in
the database: it will not create a new account.

Routing

In Chapter 5, a basic website was set up without much consideration for multiple views
and navigation between those views. Backbone.js provides a Router class that handles
movement between the main views of your application the same way you move between
views in a common web application such as Gmail. When faced with a URL like http://
localhost:8080/#register, the router understands it should display content based upon
the content after the hash (#) character—“register;” in this case.

The router in Example 6-2 describes how to display four of the five screens that will be
built over the course of this chapter. The routes object contains a list of patterns being
watched by the router, and which function to execute when a match is made. In this
case, the router is watching for #index, #login, #register, and #forgotpassword, and in
each case executing a function with the same name.

Example 6-2. The Backbone.js router: public/js/router.js

define(['views/index', 'views/register', 'views/login', 'views/forgotpassword'],
function(IndexView, RegisterView, LoginView, ForgotPasswordView) {
var SocialRouter = Backbone.Router.extend({

56 | Chapter6: Authentication

currentView: null,

routes: {
"index": "index",
"login": "login",
"register": "register",
"forgotpassword": "forgotpassword"
1,

changeView: function(view) {
if (null != this.currentView) {
this.currentView.undelegateEvents();

}
this.currentView = view;
this.currentView.render();

1

index: function() {
this.changeView(new IndexView());

1

login: function() {
this.changeView(new LoginView());

1

forgotpassword: function() {
this.changeView(new ForgotPasswordView());

1

register: function() {
this.changeView(new RegisterView());
}
b;

return new SocialRouter();

s

The changeView function is important because it does the actual work of displaying
each view by calling its render function. When a view is changed, the old view (cur
rentView) is told to stop listening to web page events through the undelegateEvents.
If you don’t unhook the listeners when changing views, your old view will remain in
memory and continue to react to user events, becoming so-called zombie functions.

Checking for Authentication

Users may be in one of two states when they come to the application: authenticated and
able to access more content, or non-authenticated and in need of registration. To

Routing | 57

determine which category the current user falls into, the first thing the application needs
to do is to make an AJAX request to the Node backend server. Node will verify that the
current session—identified by a session ID in the request header—is linked with a valid
access token.

One thing that happens when you start to really play with Node.js is you think of Java-
Script in terms of I/O interactions. The initialize function is a shining example of the
callback flow; it’s easy to try to read the file as a whole and get lost in layers of callbacks
and functions, but when we write our code like in Example 6-3, it makes the program-
mer’s intent clear.

Example 6-3. SocialNet.js enhanced with a login check

define(['router'], function(router) {
var initialize = function() {
checkLogin(runApplication);

};

var checkLogin = function(callback) {
$.ajax("/account/authenticated", {
method: "GET",
success: function() {
return callback(true);
}s
error: function(data) {
return callback(false);
}
H;
b

var runApplication = function(authenticated) {
if (!authenticated) {
window.location.hash = 'login';
} else {
window.location.hash = 'index';

}
Backbone.history.start();

1

return {
initialize: initialize

Naming is important: because of the load order in the boot.js file, the
router class needsto be saved as/public/js/router.js. If the router is saved
to a different filename, your web browser will report a “Not Found”
error such as “Failed to load resource: the server responded with a status
of 404 (Not Found)”

58 | Chapter6: Authentication

The instruction given in the initialize function is, very literally, “Check Login, then
Run Application”.

The checkLogin function makes an AJAX request to the Express server running on
Node.js and uses the response to determine if the user is allowed to access the deeper
content within the application. checkLogin expects to execute the callback function
with a single parameter indicating whether the user has been authenticated (true or
false). If the AJAX callback returns success (HTTP code 200) the callback is returned
with a true status, otherwise it is executed with a false flag.

The runApplication command is responsible for booting up the router, which will
control what appears in the web browser. Based on the results of the checkLogin call,
the active page will be set to either #index (for users who have logged in) or #login (for
users who have not logged in).

The process isn't bulletproof at this point. For one, it’s very easy to click on your address
bar and change the path to the index view. This will get revisited later in the project, but
right now the focus will be on creating and logging into new accounts. After all, there
is nothing to break into at this point. Just be ready to come back and plug this security
hole.

Authentication Handler

Server-side code is needed to kick off the Backbone views. The authenticated function
checks the session data associated with the user request and returns a status code de-
pending on whether or not that user has been signed in. If the user has not been logged
in, the function will return status 401, which is a standard HT TP response code that has
a standard meaning of “Unauthorized” Using well-defined standards makes the pro-
gram code easier to understand; anyone versed in response codes will immediately
understand 401 to mean the server responded properly but user authorization was either
not provided or failed its security tests.

There’s a lot happening in Example 6-4, even though its such a short function.
app.get('/account/authenticated') is Express’s trigger to run the response callback
when someone directs the web browser to http://localhost:8080/account/authenticated.
When Backbone.js executes jQuery’s $.ajax function, Express considers it the same as
a human going to that URL in the web browser. In both cases, the get verb is sent to the
Express server via HTTP.

Example 6-4. Authenticating the current user in Express

app.get('/account/authenticated', function(req, res) {
if (req.session.loggedIn) {
res.send(200);

Routing | 59

} else {
res.send(401);

}
s

Notice that the session variable is attached to the request (req) object. We usually think
of a request as a message sent from the web browser to the web server, and the response
as the message from the server back to the browser. By the time the request comes
through to your callback method, it contains more than just the web browser’s message
—it contains everything the server knows about that message. Express’s session mid-
dleware is part of the server’s understanding of the request; the web browser sends an
identifier, which the server uses to read the user’s session data from the memory store
(described later in this chapter). The nice part about this is it’s done under the covers
so you can just access the results of that read through the session variable attached to
the request object.

If the loggedIn property is set on the session object, the server will respond with HT TP
status code 200 (OK). Otherwise, it will send HTTP status code 401 (Unauthorized).
The Backbone router will interpret the response code to decide which view should be
shown to the user, depending on whether or not the user is seen as logged in.

Registration

The registration page accepts the user’s name, email address, and password. Some of
this information will also be used to prepopulate some of the account details later on,
but this is the bare minimum required to get the user past the front door and into the
system.

Registration Template

The registration template’s job is to collect accurate login information from users so
they can authenticate with the system later on. Since the two most critical pieces of
information are the email address and password, the user will be asked to enter each
piece twice to guard against small mistakes like typos.

Example 6-5 shows a common basic form that demonstrates many principals of good
web design. First and foremost, each logical section of the form is grouped together
inside field sets. So many sites still use tables and artificial spaces to break up the content
on the page but grouping items together using a field set and descriptive legend is a
simple way to provide context to the user, visually separate content, and present it in a
way that is often similar to controls they will be accustomed to using elsewhere in their
operating system.

60 | Chapter6: Authentication

Example 6-5. The registration template
<h1>Register</h1>

<form>
<fieldset>
<legend>Your Name</legend>
<label>
First:
<input type="text" name="firstName" />
</label>

<label>
Last:
<input type="text" name="lastName" />
</1label>
</fieldset>

<fieldset>
<legend>Email Address</legend>

<label>

Email:

<input type="text" name="email" />
</label>

<label>
Email (confirm):
<input type="text" name="cemail" [>
</1label>
</fieldset>

<fieldset>
<legend>Password</legend>

<labels>
Password:

<input type="password" name="password" />
</label>

<label>
Password (confirm):
<input type="password" name="cpassword" />
</1label>
</fieldset>

Registration

61

<p>
<input type="submit" value="Register Now"/>

</p>

</form>

The view class in Example 6-6 takes the data submitted by the user and posts it to the
Express backend server. The register function returns false in order to disable the
default form functionality, which would trigger a page reload. You don’t need to reload
the page because you have negotiated the server communication behind the scenes using
the post command.

Example 6-6. The registration view class

define(['text!templates/register.html'], function(registerTemplate) {
var registerView = Backbone.View.extend({
el: $('#content'),

events: {
"submit form": "register"

1

register: function() {

$S.post('/register', {
firstName: $('input[name=firstName]').val(),
lastName: $('input[name=lastName]').val(),
email: $('input[name=email]').val(),
password: $('input[name=password]').val(),

}, function(data) {
console.log(data);

s

return false;

1

render: function() {
this.Sel.html(registerTemplate);
}
H;

return registerView;

s

This process could be improved by implementing support for the “confirm email” and
“confirm password” input areas. Right now there is no checking done, so if those fields
don’t match, the user will still be able to register and proceed.

The form could also be improved by providing user feedback when the post command
fails. Since the command can fail for many reasons (bad email address, bad password,
a user has already registered with the same email class, etc.), this is really not doing your
user any favors at the moment.

62 | Chapter6: Authentication

Registration Handler

Once a working client view has been created for the registration process, you can hook
it up to the web server and make interesting things start to happen.

The register command in Example 6-7 goes inside the app.js file after Express has been
configured, and is responsible for setting up the route to handle registration requests.
As long as a valid email and password are provided, the registration process is allowed
to proceed. Otherwise, error code 400 (Bad Request) is returned.

Example 6-7. Express’s registration endpoint

app.post('/register', function(req, res) {
var firstName = req.param('firstName', '');
var lastName = req.param('lastName', '');
var email = reqg.param('email', null);
var password = req.param('password', null);

if (null == email || null == password) {
res.send(400);
return;

3

Account.register(email, password, firstName, lastName);
res.send(200);
s

Watch out! The Account. register functionis called followed by res.send(200). There
is no callback in this case, which means the actual registration is going to get fired off
and handled even after the user receives an “OK” response from the server. If there is a
problem with the registration (for example, the email has already been used in an ac-
count), the user will not be notified during his submission.

Login

Returning users can resume their experience by providing their email address and pass-
word. The login screen also exposes the “Forgot Password” functionality, so users who
don’t remember their password can reset them.

Login Template

The login template is the first view users will be presented with when they come to the
site if they are not already logged into a valid account. Its purpose is to grant access to
the site or lead to the registration template.

Like the register template, the login template in Example 6-8 groups the input controls
together with a field set. Since this template is the entry page for our application when
users are not authenticated, links to the Forgot Password and Sign Up pages are provided.

Login | 63

Look at the link structure: traditionally hashes (#) are used to denote bookmarks on the
same page. The Backbone router handles those bookmarks and uses them to control
which view is shown to the user. Clicking either of those links will cause the router to
display a new view (Forgot Password or Sign Up) to the user.

Example 6-8. The login template
<h1>Login</h1>

<form>
<fieldset>
<legend>Credentials</legend>

<p class="error" id="error'"s></p>

<label>

Email:

<input type="text" name="email"s
</1label>

<label>

Password:

<input type="password" name="password"s
</label>

<input type="submit" value="Login Now"s
</fieldset>
</form>

Forgot Password?</1li>
<lis><a href="#register"sSign Up</1i>

As the application is built out more, navigational elements like Forgot Password and
Sign Up will be moved to the overall site template instead of handled within individual
views. Otherwise, you would have to edit every template whenever a navigational change
needs to be made—not very practical.

Finally, the login view in Example 6-9 handles the login form very similarly to the
registration form.

Example 6-9. The login view class

define(['text!templates/login.html'], function(loginTemplate) {
var loginView = Backbone.View.extend({
el: $('#content'),

64 | Chapter6: Authentication

events: {
"submit form": "login"

1

login: function() {

S.post('/login', {
email: $('input[name=email]').val(),
password: $('input[name=password]').val()

}, function(data) {
console.log(data);

}).error(function(){
$("#error").text('Unable to login.');
$("#error").slideDown();

s

return false;

1

render: function() {
this.Sel.html(loginTemplate);
S("#terror").hide();
}
b

return loginView;

s

When the user submits the form, the view collects the login details and generates a form
post to the Express server backend. If the login is a failure (username and password don't
authenticate against any accounts), some error text will slide into view, informing the
user about a problem trying to connect. This is intentionally vague: security best prac-
tices discourage telling the user much about why the login failed. It's generally a bad
ideato even confirm the existence of an account. Otherwise, attackers would know when
they hit upon a “real” user and can bombard that account with password requests.

We are only concerned about presenting the registration and login functionality to the
user in this chapter, so when the login is a success there is no action performed by the
web browser. This will be expanded upon and built out in Chapter 7.

Login Handler

The login form needs a server-side component to actually work. Example 6-10 is the
Express function for handling user login requests.

Example 6-10. Express’s login endpoint

app.post('/login', function(req, res) {
console.log('login request');
var email = reqg.param('email’, null);
var password = req.param('password', null);

Login | 65

if (null == email || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

}

Account.login(email, password, function(success) {
if (!success) {
res.send(401);
return;

}

console.log('login was successful');
res.send(200);

19K
s

The login function makes certain to check whether the email and password are null
(not supplied at all) or empty. If so, Express returns error code 400 (Bad Request) to the
sender rather than wasting time and resources checking a guaranteed fail against the
data store. If the inputs are correct, Express will pass control to the login function from
the account model.

The login function triggers a callback with a success parameter indicating whether
the login was successful. The important point to stress here is the parameters sent to the
login function: the email and password parameters, not the request and response
objects. It’s tempting to send everything to Account.login and let it handle responding
to the user and closing the connection, but if you were to do that you would be tightly
coupling the account model with the server response logic. This is a bad thing because
every time you want to modify this function, you would need to jump back and forth
between this file and the account model’s source file, and you would not be able to access
the login function outside the context of a web request (for example, if you wanted to
login from a socket instead of from a form post).

Using a callback makes it very clear that you expect to do something with the result of
the login request, and puts the server response inline with the original request. When-
ever possible, keep your variable list as small as possible by calling functions with as few
parameters as you can.

Forgot Password

The Forgot Password feature is needed to provide access to accounts when users are
unable to provide their password because they lost or forgot it. Sometimes web appli-
cations are launched that do not include this feature at first, but I argue it is a necessary
part of a minimum viable product (MVP). People forget passwords; it’s better to ac-
knowledge this and not let it become a barrier to using the software.

66 | Chapter6: Authentication

Forgot Password Template

The HTML for the Forgot Password form will be minimal, as shown in Example 6-11.

Example 6-11. The Forgot Password template

<form>
<label>
Email Address:
<input type="text" name="email" />
</label>

<p>
<input type="submit" value="Reset my Password" />

</p>
</form>

The only information you need in order to reset a user’s password is his email address.
Thereisno placeholder for error text: the user will receive no error message if the account
does not exist. Just like the login form, you do not want to encourage attackers to probe
the system for valid accounts they can attempt to brute-force their way into.

The workflow presented here makes the assumption that the user who
registered the account is still in control of his email address; if someone
0 f else has captured the email account, that attacker would easily be able
to take control of your user’s SocialNet account, unless the security is
tightened.

By now, the view class follows a predictable development pattern, as shown in
Example 6-12.

Example 6-12. The Forgot Password view class

define(['text!templates/forgotpassword.html'], function(forgotpasswordTemplate) {
var forgotpasswordView = Backbone.View.extend({
el: $('#content'),

events: {
"submit form": "password"

}J

password: function() {
$.post('/forgotpassword', {
email: $('input[name=email]"').val()
}, function(data) {
console.log(data);
s
return false;

1

Forgot Password | 67

render: function() {
this.Sel.html(forgotpasswordTemplate);
}
b;

return forgotpasswordView;

s

The view classes in this application are built similarly on purpose. Later on when you
need to maintain the application, having the classes as similar as possible makes de-
bugging and creating new features simpler. All of the functionality is arranged similarly
between views, making it easy to understand where changes should go and even how
new elements should be named.

When the user submits the Forgot Password form, Backbone makes a jQuery post to
the server with the user’s email address and logs the result to the debug console. If the
function were to fail, it would do so silently; later on you will come back to this and add
some additional user experience improvements such as acknowledging the user’s post
when the server call has completed and providing an option to return to the login screen.

Forgot Password Handler

The Express route for the Forgot Password handler, like the login handler, passes data
to the account model and responds to the user upon callback. This route is a bit more
interesting because users will receive an email redirecting them back to the application
in order to change their password. The link is generated based upon the request infor-
mation, as in Example 6-13.

Example 6-13. Express’s Forgot Password handler

app.post('/forgotpassword', function(req, res) {
var hostname = req.headers.host;
var resetPasswordUrl = 'http://' + hostname + '/resetPassword';
var email = reqg.param('email', null);
if (null == email || email.length < 1) {
res.send(400);
return;

}

Account.forgotPassword(email, resetPasswordUrl, function(success){
if (success) {
res.send(200);
} else {
// Username or password not found
res.send(404);
}
b
H;

68 | Chapter6: Authentication

I try to avoid having environment-specific functionality wherever practical. So when it
comes time to generate a URL, instead of going the obvious route and using a develop-
ment, staging, or production URL, the hostname is retrieved from the request param-
eters used to activate the route. This is really useful in situations where multiple people
are developing the same application because every developer has a preference for their
host setup, port usage, and depending on their proxy settings, may not even hit a pre-
dictable URL. Pulling the hostname out of the request gives you a universal way to bring
users back to the correct instance of your application regardless of your hosting setup.

But why generate the URL atall? The account model’s forgotPassword function requires
this in order to send a reset password link to the user, as shown in Example 6-14.

Example 6-14. Handling forgotten passwords in the account model

var forgotPassword = function(email, resetPasswordUrl, callback) {
var user = Account.findOne({email: email}, function findAccount(err, doc){
if (err) {
// Email address is not a valid user
callback(false);
} else {
var smtpTransport = nodemailer.createTransport('SMTP', config.mail);
resetPasswordUrl += '?Zaccount=' + doc._1id;
smtpTransport.sendMail({
from: 'thisapp@example.com',
to: doc.email,
subject: 'SocialNet Password Request',
text: 'Click here to reset your password:
}, function forgotPasswordResult(err) {

+ resetPasswordurl

if (err) {
callback(false);
} else {
callback(true);
}
s
}

s
1

Example 6-14 demonstrates the use of nodemailer, an email library for Node included
in this chapter’s package.json configuration file. After loading the account data from the
database based upon the supplied email address, the user is sent an email prompting
him to click on the Reset Password link generated by the calling route in app.js.

Three events can trigger the callback:
1. The account cannot be found (findOne fails).

2. The email could not be sent.

3. The email was successfully sent.

Forgot Password | 69

Reset Password

After users create a Forgot Password request, they must reset their password in order to
regain control of their account. You may have seen some websites that send a copy of
your password to you, but this is bad for a number of reasons. In the event of a security
breach, we do not want our users” passwords to be decryptable by attackers, so passwords
should not be stored in the database. As shown, the hashed version of the password—
a one-way encryption that cannot be decrypted to the original value—is stored instead.
Intruders can still retrieve the original password by creating their own hashes of a dic-
tionary of passwords and comparing against the data they stole, but doing so is more
time-intensive. By the time they’re able to compromise your users accounts, you should
already be aware that your system was corrupted and send notification to your users to
change their passwords, reducing their exposure to harmful activities.

Reset Password Templates

The goal of the Reset Password view is to restore access of the account to the user, who
presumably also has control of his email. The password is not reset when the Forgot
Password form is used; rather the data is changed after the user completes the transaction
by coming to the form in Example 6-15 from his email prompt and supplying a new
password.

Example 6-15. The Reset Password form: views/resetPassword.jade

extends layout

block content
form(action="'/resetPassword’',method="'post"')
input(type='hidden',name="'accountId',value='#{locals.accountId}"')
p
label(for="'password') New Password:
input#password(type="'password',name='password')

p
input(type="'submit')

The email contains a token identifying the user account to change, so the only infor-
mation the user needs to supply at this stage is a new password. Upon clicking Submit,
the form is posted back to the Express server where the account is updated and the user
is brought back to the success screen, as shown in Example 6-16.

Example 6-16. The Reset Password success screen: views/resetPasswordSuccess.jade

extends layout

block content

70 | Chapter6: Authentication

p Your password has been reset.

p
a(href='/"') Login

Both of these views use Express’s Jade template engine rather than Backbone templates.
It would have been straightforward enough to parse in the account token and handle a
route in Backbone for the password reset, but because this flow is such an important
departure from the rest of the application’s logic it makes sense to handle it directly from
Express. Once the Reset Password transaction has completed, the user can click on the
Login link to return to the SocialNet application.

Reset Password Handler

The Express server-side reset password handler is interesting because it handles both
the initial GET view as well as the user’s POST request.

The first route listens for a GET request at http://localhost:8080/resetPassword and re-
sponds with the Jade template described in Example 6-17.

Example 6-17. The Express handler for resetting passwords

app.get('/resetPassword', function(req, res) {
var accountId = req.param('account', null);
res.render('resetPassword.jade', {locals:{accountId:accountId}});

s

app.post('/resetPassword', function(req, res) {
var accountId = req.param('accountId', null);
var password = req.param('password', null);
if (null !'= accountId && null != password) {
Account.changePassword(accountId, password);

}

res.render('resetPasswordSuccess. jade');

B

The second route listens for a POST request at the same address, indicating the user has
supplied a new password. The account model’s changePassword function is fired asyn-
chronously and the “success” template is displayed to the user. Behind the scenes, the
account’s password is changed. The user doesn’t need to wait for that to finish before
receiving a response from the server, but the operation will have completed by the time
he is able to get through to the login page and attempt to enter the site using the new
password.

Reset Password | 71

Putting It Together

While the snippets presented in this chapter are useful for understanding how Node
and Backbone talk to each other, it isn't always clear how those bits fit into the bigger
picture. This section attempts to bring those examples into context with the code written
up to this point.

Node.js

In this chapter, Node got a workout as you implemented a custom signup and authen-
tication system. Between sending password reminder emails to collecting and storing
user passwords, this chapter laid the foundation for Node’s role as a data provider for
the entire application.

The nodemailer and connectlibraries were added to the packages list during this chapter,
as shown in Example 6-18. nodemailer is a library that handles sending email through
SMTP. In this chapter it was used to send the password reminder through Sendgrid.
connect is a set of middleware used by Express that also provides a series of handy
functions you can utilize from your own work, such as the MemoryStore session storage
object.

Example 6-18. The updated package.json
{

"name": "my-social-network",

"version": "0.0.1",

"private": true,

"dependencies": {
"express": "~3.0.0",
"jade": ">= 0.0.1",
"mongoose": ">= 2.6.5",
"nodemailer": "0.3.20",
"connect": ">= 1.9.1"

}
}

In Example 6-19, there are three new lines inside the app.configure section.

Example 6-19. The updated app.js

var express = require("express");

var app = express();

var nodemailer = require('nodemailer');

var MemoryStore = require('connect').session.MemoryStore;

// Import the data layer
var mongoose = require('mongoose');
var config = {

mail: require('./config/mail')

};

72 | Chapter6: Authentication

// Import the accounts
var Account = require('./models/Account')(config, mongoose, nodemailer);

app.configure(function(){
app.set('view engine', 'jade');
app.use(express.static(__dirname + '/public'));
app.use(express.limit('imb'));
app.use(express.bodyParser());
app.use(express.cookieParser());
app.use(express.session(
{secret: "SocialNet secret key", store: new MemoryStore()}));
mongoose.connect('mongodb://localhost/nodebackbone');

s

app.get('/', function(req, res){
res.render('index.jade');

s

app.post('/login', function(req, res) {
console.log('login request');
var email = req.param('email', null);
var password = req.param('password', null);

if (null == email || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

}

Account.login(email, password, function(success) {
if (!success) {
res.send(401);
return;
}
console.log('login was successful');
req.session.loggedIn = true; res.send(200);
b
b

app.post('/register', function(req, res) {
var firstName = req.param('firstName', '');
var lastName = req.param('lastName', '');
var email = req.param('email', null);
var password = req.param('password', null);

if (null == email || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

}

Putting It Together

73

Account.register(email, password, firstName, lastName);
res.send(200);

s

app.get('/account/authenticated', function(req, res) {
if (req.session.loggedIn) {
res.send(200);
} else {
res.send(401);
}
b

app.post('/forgotpassword', function(req, res) {
var hostname = req.headers.host;
var resetPasswordUrl = 'http://' + hostname + '/resetPassword';
var email = req.param('email', null);
if (null == email || email.length < 1) {
res.send(400);
return;

3

Account.forgotPassword(email, resetPasswordUrl, function(success){
if (success) {
res.send(200);
} else {
// Username or password not found
res.send(404);
}
b
s

app.get('/resetPassword', function(req, res) {
var accountId = req.param('account', null);
res.render('resetPassword.jade', {locals:{accountId:accountId}});

s

app.post('/resetPassword', function(req, res) {
var accountId = req.param('accountId', null);
var password = req.param('password', null);
if (null != accountId && null != password) {
Account.changePassword(accountId, password);

3

res.render('resetPasswordSuccess. jade');

s

app.listen(8080);

The 1imit and bodyParser middleware provide parsing service for the form posts.
Unlike regular GET requests performed over HTTP that are easily parsed and often
limited in size by web browsers, POST requests can contain huge bodies of data that
require special processing to yield usable parameters. Using limit causes Express to cut

74 | Chapter6: Authentication

off incoming requests after a certain amount of data—in this case, one megabyte. This
will help protect our application from distributed denial of service (DDOS) attacks,
which would arise if sessions were allowed to post large requests that would otherwise
bog down Express attempting to parse.

Putting It Together | 75

CHAPTER 7
The User Interface

User registration and login is important, but if you have spent any amount of time
building websites you have probably already built that kind of functionality in several
different languages. As the main source of user identification and as the first line of
defense security-wise, authentication is always an important piece of the puzzle not to
be overlooked.

The real experience begins once your user has successfully created his account and
logged into the application. This is the user interface: the boundary between the user
and your system where all of the interaction will take place.

The user interface for our social network will consist of three parts:

1. Account details
2. A contact list

3. An activity stream

As you will see, despite having multiple things happening on the page, each component
is quite distinct. When the application code is kept cleanly separated it becomes possible
to think of each piece of interaction separately from all of the others; this makes it easy
to build, change, and share code even between radically different parts of the application.

Account Details

The account details page contains all of the information our user has entered about
himself including his name, date of birth, email address, photograph, and biographical
information.

77

You may edit any of the visible contents when you view your own account details page.
Those edits will be immediately published and viewable by others next time they visit
your profile. Later in the book this will be enhanced so your updated information reflects
on your profile page immediately without viewers needing to refresh.

Anyone who views your account details page will have an option to add you to their
contact list if you aren’t already a contact.

Account Details Template

Let’s go! First thing’s first, the Backbone project needs to understand what an account
is and how to fetch one, as shown in Example 7-1.
Example 7-1. The Backbone.js /models/Account.js

define(['models/StatusCollection'], function(StatusCollection) {
var Account = Backbone.Model.extend({
urlRoot: '/accounts',

initialize: function() {

this.status = new StatusCollection();
this.status.url = '/accounts/' + this.id + '/status';
this.activity = new StatusCollection();
this.activity.url = '/accounts/' + this.id + '/activity';
}
b

return Account;

s

Since all of the account data is actually defined server-side by Express and MongoDB,
there isn’t much left for Backbone to do except read and display the stored information.
When you define a model in Backbone, you are really just defining the route to pull the
account down from the server by providing a urlRoot.

The profile view class will be responsible for displaying a single profile on screen, as
shown in Example 7-2. This view will listen for changes to the underlying account model;
the first change will happen when the model is first loaded.

Example 7-2. Backbone profile view: views/profile.js

define(['SocialNetView', 'text!templates/profile.html',
'text!templates/status.html', 'models/Status',
'views/Status'],

function(SocialNetView, profileTemplate,
statusTemplate, Status, StatusView)

{

var profileView = SocialNetView.extend({
el: $('#content'),

initialize: function () {

78 | Chapter7: The User Interface

this.model.bind('change', this.render, this);

1

render: function() {
this.Sel.html(
_.template(profileTemplate,this.model.toJSON())
)s

var statusCollection = this.model.get('status');
if (null != statusCollection) {
_.each(statusCollection, function (statusJson) {
var statusModel = new Status(statusJson);
var statusHtml = (new StatusView({ model: statusModel })).render().el;
S(statusHtml).prependTo('.status_list').hide().fadeIn('slow"');
b;
}
}
b

return profileView;

s

When the view is initialized, call the bind() function on the model (in this case, we will
be expecting an account model). The first parameter, change, means the action is to
occur whenever any changes occur to the class model. The second parameter, this.ren
der, refers to the function that will be executed every time the model changes. The third
parameter, this, is a reference to the object (the profile view, in this case), which should
execute this.render. Remember that JavaScript is not a class-based language, so the
this keyword won't always refer to the object from which it is called. Explicitly binding
the view to the model event allows you to reliably reference it using this in your callback.

The render function in this view is slightly different from the others that have been
presented so far. Until now templates have been plain HTML text directly rendered to
the browser using jQuery’s html() function. This time the model is converted to a JSON
object using toJSON and passed along with the view’s HTML template to Under-
score’s ._template function.

Example 7-3 is the first view in this book that actually uses a model as the source data
for aview. Inside the template, you can access the properties of the model by surrounding
your desired property with <%= and %>. This causes the property value to render in the
HTML as if it were coded into the original page.

Example 7-3. Backbone profile view template

<hi><%=name.first %> <%= name.last %></hl>
<h2>Status Updates</h2>

<ul class="status_list" />

Account Details | 79

Account Details Handler

The backend component for the account details is fairly minimal, as shown in
Example 7-4. When prompted for an account’s information, Express queries MongoDB
for the correct account and outputs its data in JSON format that can be used directly by
Backbone.

Example 7-4. Expresss account data listing

app.get('/accounts/:id', function(req, res) {
var accountId = req.params.id == 'me’
? req.session.accountIld
: req.params.id;
Account.findOne({_1id:accountId}, function(account) {
res.send(account);
b;
b

The account request isn't difficult on the server side. If the client requests “me”, Node
will get the account’s ID from the current session object, otherwise it will retrieve the
account from the provided ID.

Do you see the security problem with this handler? Because there is no
processing done on the account, the JSON output will include the ac-
count’s encrypted password. It would be very easy for an attacker to use
this information to reverse-engineer your secret key and build a pass-
word generator offline without even hitting your site—this type of in-
trusion would be difficult or impossible to detect.

Thisis why it'simportant to be aware of how the code in your application
interacts between modules and always think about the security impli-
cations of any data passed to and from your application.

Contact List

The contacts view will contain a list of users you have added to your contact list, as
shown in Example 7-5. Each line item will display the contact’s name, profile photo-
graph, and a link to his account details page.

Example 7-5. contacts.html: the contacts template
<div id="contactlist">

</div>

<p>
Add a Contact
</p>

80 | Chapter7: The User Interface

The contacts page template displays a user’s contacts and provides a means to add new
contacts (if viewing your own contact list). Notice the template contains a placeholder
for something called contactlist; this will contain a list of contacts belonging to the
profile whose contacts are to be displayed.

The list also contains a link to add a contact; this will be covered in more detail in
Chapter 8.

The single contact view is essentially a stripped down profile, as shown in
Example 7-6. The contact list provides a quick way to navigate between profiles, and is
intended to be lightweight.

Example 7-6. contact.html: a single contact

<hi><%=name.first %> <%= name.last %></hl>

Activity Stream

The activity stream functions as your home page. Its purpose is to highlight changes
made to your contacts’ account details.

Activity Stream Template

As you can probably tell by the names of the functions in the updated index view in
Example 7-7, this view now fulfills two purposes:

1. Allows users to update their status with updateStatus

2. Displays existing and new statuses to the user with render and onStatusAdded,
respectively

Example 7-7. index.js: the new landing page after login

define(['SocialNetView', 'text!templates/index.html',
'views/status', 'models/Status'],
function(SocialNetView, indexTemplate, StatusView, Status) {
var indexView = SocialNetView.extend({
el: $('#content'),

events: {
"submit form": "updateStatus"

1

initialize: function() {
this.collection.on('add', this.onStatusAdded, this);
this.collection.on('reset', this.onStatusCollectionReset, this);

1

onStatusCollectionReset: function(collection) {
var that = this;

Activity Stream | 81

collection.each(function (model) {
that.onStatusAdded(model);

s
1},

onStatusAdded: function(status) {
var statusHtml = (new StatusView({ model: status })).render().el;
S(statusHtml).prependTo('.status_list').hide().fadeIn('slow"');

1,

updateStatus: function() {
var statusText = $('input[name=status]').val();
var statusCollection = this.collection;
S.post('/accounts/me/status’', {
status: statusText
}, function(data) {
statusCollection.add(new Status({status:statusText}));
s

return false;

1

render: function() {
this.Sel.html(indexTemplate);
}
b;

return indexView;

s

Like the login and register templates, this view will accept form input from the user. The
updateStatus function collects the information supplied by the user, posts it to the
Express backend, generates a new status object, and adds it to the view’s collection
object.

The collection object is an instance of StatusCollection that extends the Back
bone.Collection object. During the index view’ initialization, the collections add
event is bound to the onStatusAdded function whose job is to create an HTML repre-
sentation of the status and prepend it to the list of statuses, which have already been
rendered.

Since the page loads with all statuses already in place, why not just create the status
HTML and add it right to the page when the user adds a new status, rather than bothering
to go through the collection object. The onStatusAdded function also looks forward
into the future: when the web browser receives asynchronous updates from the server
about friend status changes, onStatusAdded will cause those updates to animate onto
the screen immediately.

Have alook at the HTML markup for the index page and for each status in Example 7-8.

82 | Chapter7: The User Interface

Example 7-8. index.html: the new template container for the landing page
<h1>My Social Network</hi>

<h2>Activity Stream</h2>

<form>
<fieldset>
<legend>Update My Status</legend>

<input type="text" name="status" [>
<input type="submit" value="Add" />
</fieldset>
</form>

<ul class="status_list" />
<p>See My Profile</p>

This is the HTML markup for the new status page. The form with a textfield for status
update is new, as is the list element () placeholder for the status list. At the bottom
of the page is a link to the currently logged-in user’s profile, which will eventually be
phased out as the overall site layout is built and polished.

It would be pretty difficult to create a more minimal template than for the status update
in Example 7-9. Because the StatusView class defines the list item (<11>) as the place-
holder, all you need to include in the template is the contents of the list item, which for
now will be the status text, not even a profile image, date, or time. As the application is
built out you will definitely return to this template and build it out with more function-
ality, but for now this is a good example of how little it takes to produce a result using
Backbone.

Example 7-9. status.html: a single status

<%= status %>

Just like the model class, the status in Example 7-10 comes equipped with a urlRoot so
Backbone knows where to look for status information. All of the data properties (status
text, username, profile picture) will be filled in dynamically when the application runs,
so there is no need to explicitly define them here.

Example 7-10. status.js: a status model

define(function(require) {
var Status = Backbone.Model.extend({
urlRoot: '/accounts/' + this.accountId + '/status'

s

return Status;

s

Activity Stream | 83

In Backbone collections, the model variable is used to specify the class type contained
in the collection. So the collection as defined in Example 7-11 will include a range of
objects of the Status type.

Example 7-11. StatusCollection.js: a collection of status models

define(['models/Status'], function(Status) {
var StatusCollection = Backbone.Collection.extend({
model: Status
b

return StatusCollection;

s

Collections do not include a ur lRoot. When Backbone needs to load a list of collections,
it does so based upon the urlRoot of the underlying model object.

You might be wondering how Backbone can tell the server which accounts’ status list it
needs. When you instantiate the collection, you can also set its urlRoot, as shown in
Example 7-12.

Example 7-12. Instantiating a StatusCollection with a custom urlRoot

var statusCollection = new StatusCollection();
statusCollection.url = '/accounts/me/activity';
statusCollection.fetch();

In this example, a status collection was created to store all activity status updates for the
account with ID of “me”. When the fetch command is called, Backbone connects to /
accounts/me/activity and uses the results to fill the status collection.

Activity Stream Handler

The activity stream is a hugely important part of the application because it is the first
experience users will have when they log into the site and will be the recurrent central
hub of interaction between the user and all of their contacts. The backend goal for this
section is to make those interactions as fast as possible, generally staying out of the way
as much as possible.

Getting the statuslist for an account is fairly straightforward: load the account and return
its status list property, as shown in Example 7-13. Can you spot the bug here? If the
account doesn’t exist, Node will report an error, although it doesn’t crash the application.

Example 7-13. Getting and setting the status list

app.get('/accounts/:id/status', function(req, res) {
var accountId = req.params.id == 'me’
? req.session.accountld
: req.params.id;
models.Account.findById(accountId, function(account) {

84 | Chapter7: The User Interface

res.send(account.status);
b
b

app.post('/accounts/:1d/status', function(req, res) {
var accountId = req.params.id == 'me’
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
status = {
name: account.name,
status: req.param('status', '")
b

account.status.push(status);

// Push the status to all friends
account.activity.push(status);
account.save(function (err) {
if (err) {
console.log('Error saving account:
}
b
b
res.send(200);
b

+ err);

There is no authentication for the status handlers, meaning anyone who
can guess the ID for an account can post to it willy nilly. In the coming
chapters we will discuss how to close security holes like this by taking
advantage of connect’s middleware.

Posting a status is more interesting. First, the request returns right away, regardless of
what happens to the status. This returns control of the frontend experience to Backbone
so the status can instantly appear on the user’s screen. The backend processing can take
longer and longer as the dataset grows, but the end user won't be aware of the lag time
and should receive feedback right away that the application has received the status. If
the status fails to save for some reason, the user’s experience can be reconciled later; the
assumption is that the rare case of losing a single status will not have a breaking conse-
quence on the user’s interactive experience.

After Mongoose hasloaded the account in question, the status is posted to that account’s
status feed and activity feed. Later on after contact list functionality has been added, the
status will push out of each of the accounts’ contacts’ activity lists.

Activity Stream | 85

In Example 7-14, the activity list call duplicates the status call. In both cases, these
handlers exist for the sole purpose of filling StatusCollection objects in Backbone—
the same data is present in the account model and can be pulled from there without
making direct requests for each list. We would only want to make these calls when the
underlying account object is unknown or not needed for a particular view.

Example 7-14. Getting the activity list

app.get('/accounts/:id/activity', function(req, res) {
var accountId = req.params.id == 'me
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.activity);
b;
b

Data Model

Now that you know all of the data requirements for the account’s functionality, it’s time
to define the schema for the account. This will be the base from which all of the system
will be built, so it’s important to have as versatile a model as possible.

Example 7-15 demonstrates this project’s first serious schema definition using Mon-
goose, on a file that should be located at models/Account.js in relation to the root of the
project. The first line pulls the Mongoose library into the namespace, making the sche
ma object available for use.

Example 7-15. The account model

module.exports = function(config, mongoose, Status, nodemailer) {
var crypto = require('crypto');

var Status = new mongoose.Schema({

name: {
first: { type: String },
last: { type: String }
1,
status: { type: String }
s
var AccountSchema = new mongoose.Schema({
email: { type: String, unique: true },
password: { type: String },
name: {
first: { type: String },
last: { type: String }
1,
birthday: {
day: { type: Number, min: 1, max: 31, required: false },

86 | Chapter7: The User Interface

vww allitebooks.cond

http://www.allitebooks.org

month: { type: Number, min: 1, max: 12, required: false },
year: { type: Number }

1,

photourl: { type: String },

biography: { type: String },

status: [Status], // My own status updates only

activity: [Status] // All status updates including friends

b

var Account = mongoose.model('Account', AccountSchema);

var registerCallback = function(err) {
if (err) {
return console.log(err);
b
return console.log('Account was created');

1

var changePassword = function(accountId, newpassword) {
var shaSum = crypto.createHash('sha256"');
shaSum.update(newpassword);
var hashedPassword = shaSum.digest('hex');
Account.update({_id:accountId}, {Sset: {password:hashedPassword}},{upsert:false},
function changePasswordCallback(err) {
console.log('Change password done for account

+ accountId);
b
IH

var forgotPassword = function(email, resetPasswordUrl, callback) {
var user = Account.findOne({email: email}, function findAccount(err, doc){
if (err) {
// Email address is not a valid user
callback(false);
} else {
var smtpTransport = nodemailer.createTransport('SMTP', config.mail);
resetPasswordUrl += '?account=' + doc._id;
smtpTransport.sendMail({
from: 'thisapp@example.com',
to: doc.email,
subject: 'SocialNet Password Request',
text: 'Click here to reset your password:
}, function forgotPasswordResult(err) {

+ resetPasswordurl

if (err) {
callback(false);
} else {
callback(true);
}
s
}
s

3

DataModel | 87

var login = function(email, password, callback) {
var shaSum = crypto.createHash('sha256"');
shaSum.update(password);
Account.findOne({email:email,password:shaSum.digest('hex')},function(err,doc){
callback(doc);
b
1

var findById = function(accountId, callback) {
Account.findOne({_1id:accountId}, function(err,doc) {
callback(doc);
b
}

var register = function(email, password, firstName, lastName) {
var shaSum = crypto.createHash('sha256"');
shaSum.update(password);

console.log('Registering ' + email);
var user = new Account({
email: email,
name: {
first: firstName,
last: lastName
}s
password: shaSum.digest('hex"')
b

user.save(registerCallback);
console.log('Save command was sent');

3

return {
findById: findById,
register: register,
forgotPassword: forgotPassword,
changePassword: changePassword,
login: login,
Account: Account

}

}

Next, AccountSchema is defined—take special notice of the email field that has its index
property set to true. When a field is indexed, MongoDB creates a special data structure
that is used by Mongo to greatly enhance query performance.

The email field also uses the unique index property. This will prevent two accounts from
sharing the same email address: a second register request for a particular email will fail.

88 | Chapter7: The User Interface

The unique field will also prevent multiple empty email fields, so it won't
be possible to accidentally create a bunch of accounts with missing email
%" addresses. This is clearly a good thing for this application, but in some
apps you won’t want to do this because having null values would be
desirable. In that case, adding the sparse index property will hide empty

columns from the unique index.

aqs
[N
N

Putting It Together

Hopefully it has been easy to follow along up to this point. With all the small changes
happening throughout the application’s code base, it’s time to take a look at the big
picture and make sure all of the pieces are coming together in a stable and extendable
way.

Backbone

While talking about the new views and models, I skipped over the important glue that
ties everything together: the router. Since the views and models are largely unaware of
each other, it is the router’s job to kick off the data population tasks, authenticate the
user, and move between the new views.

In Example 7-16, the new routes are index and profile. index is responsible for han-
dling the activity list, so a StatusCollection is created and passed into the new Index
View object. The status list shown in the profile view isn’t handled as a true StatusCol
lection (the statuses are pulled from the model class during rendering), so only an
account model is passed into the new ProfileView. In both views, the fetch function
is called here in the router—it might make sense to fetch the data during the initialization
step in the views themselves, but doing it here keeps control of the data transfer in the
same spot where the data container is created. Performing this function in the views
would force you as a programmer to constantly remember where the data for your
models is initialized—it’s far better to simply handle the event when the data load is
complete and not worry about how or why the load was done.

Example 7-16. The updated /public/js/router.js

define(['views/index', 'views/register', 'views/login',
'views/forgotpassword', 'views/profile', 'models/Account’,
'models/StatusCollection'],
function(IndexView, RegisterView, LoginView, ForgotPasswordView, ProfileView,
Account, StatusCollection) {
var SocialRouter = Backbone.Router.extend({
currentView: null,

routes: {
"index": "index",
"login": "login",

Putting It Together | 89

"register": "register",
"forgotpassword": "forgotpassword",
"profile/:1d": "profile"

1,

changeView: function(view) {
if (null != this.currentView) {
this.currentView.undelegateEvents();
}
this.currentView = view;
this.currentView.render();

1

index: function() {
var statusCollection = new StatusCollection();
statusCollection.url = '/accounts/me/activity';
this.changeView(new IndexView({
collection: statusCollection
130N
statusCollection.fetch();
1,

login: function() {
this.changeView(new LoginView());

1

forgotpassword: function() {
this.changeView(new ForgotPasswordView());

1

register: function() {
this.changeView(new RegisterView());

1

profile: function(id) {
var model = new Account({id:id});
this.changeView(new ProfileView({model:model}));
model.fetch();
}
b;

return new SocialRouter();

s

Node.js

The Express methods have expanded slightly during this chapter, supporting the new
data thatis sent to and from the account model. Because all of the display and processing
is handled on the frontend by Backbone.js, Node’s involvement for this stretch has been
relegated to the simple getting and setting of account data.

90 | Chapter7: The User Interface

Aside from the GET route for the application data in Example 7-17, there are three new
status-related routes in the updated application class. Both activity and status have
GET operations that Backbone uses to populate its collection objects, but only sta
tus has a POST operation. This is because the application’s users are only able to post
status updates; even when they create a status from the activity view, they are really
performing the same action as if they added a status from their profile-only status list.
When a status is saved to the database, it is Express’s job to ensure it is pushed out to all
of the corresponding activity feeds.

Example 7-17. The updated app.js

var express = require("express");

var app = express();

var nodemailer = require('nodemailer');

var MemoryStore = require('connect').session.MemoryStore;
var dbPath = 'mongodb://localhost/nodebackbone";

// Import the data layer
var mongoose = require('mongoose');
var config = {

mail: require('./config/mail'")

}

// Import the models
var models = {
Account: require('./models/Account')(config, mongoose, nodemailer)

};

app.configure(function(){
app.set('view engine', 'jade');
app.use(express.static(__dirname + '/public'));
app.use(express.limit('imb'));
app.use(express.bodyParser());
app.use(express.cookieParser());
app.use(express.session({
secret: "SocilalNet secret key",
store: new MemoryStore()
s
mongoose.connect(dbPath, function onMongooseError(err) {
if (err) throw err;
b
b

app.get('/', function(req, res){
res.render('index.jade');

s

app.post('/login', function(reqg, res) {
console.log('login request');
var email = req.param('email', null);
var password = req.param('password', null);

Putting It Together | 91

if (null == email || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

3

models.Account.login(email, password, function(account) {
if (laccount) {
res.send(401);
return;
}
console.log('login was successful');
req.session.loggedIn = true;
req.session.accountId = account._id;
res.send(200);
b
s

app.post('/register', function(req, res) {
var firstName = req.param('firstName', '');
var lastName = req.param('lastName', '");
var email = reg.param('email', null);
var password = req.param('password', null);

if (null == email || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

3

models.Account.register(email, password, firstName, lastName);
res.send(200);

s

app.get('/account/authenticated', function(req, res) {
if (req.session.loggedIn) {
res.send(200);

} else {
res.send(401);
}
s

app.get('/accounts/:id/activity', function(req, res) {
var accountId = reqg.params.id == 'me’
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.activity);
bs
b

92 | Chapter7: The User Interface

app.get('/accounts/:id/status', function(req, res) {
var accountId = req.params.id == 'me’
? req.session.accountIld
. req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.status);
b;
b

app.post('/accounts/:1d/status', function(req, res) {
var accountId = reqg.params.id == 'me'
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
status = {
name: account.name,
status: req.param('status', ''")
b

account.status.push(status);

// Push the status to all friends
account.activity.push(status);
account.save(function (err) {
if (err) {
console.log('Error saving account:
}
b
b
res.send(200);
b

+ err);

app.get('/accounts/:id"', function(req, res) {
var accountId = reqg.params.id == 'me’
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account);
b
b

app.post('/forgotpassword', function(req, res) {
var hostname = req.headers.host;
var resetPasswordUrl = 'http://' + hostname + '/resetPassword';
var email = req.param('email', null);
if (null == email || email.length < 1) {
res.send(400);
return;

3

models.Account.forgotPassword(email, resetPasswordUrl, function(success){
if (success) {
res.send(200);

Putting It Together

93

} else {
// Username or password not found
res.send(404);
}
b
s

app.get('/resetPassword', function(req, res) {
var accountId = req.param('account', null);
res.render('resetPassword.jade', {locals:{accountId:accountId}});

s

app.post('/resetPassword', function(req, res) {
var accountId = req.param('accountId', null);
var password = req.param('password', null);
if (null != accountId && null != password) {
models.Account.changePassword(accountId, password);
}
res.render('resetPasswordSuccess. jade');

s

app.listen(8080);
console.log('Listening on port 8080');

94 | Chapter7: The User Interface

CHAPTER 8
Making Friends

Now that users are able to log into the application, retrieve their lost passwords, and
create new accounts, they need a way to connect to one another; in other words, it’s time
to put the social aspect into this social network.

In Chapter 7 the contact list was described and scaffolded into the user interface; in this
chapter you will add functionality to allow accounts to link to each other, publicize those
relationships, and track each other’s progress.

Contact List

The contact list’s purpose is to aggregate all of an account’s contacts into a single view,
displaying only the most recent and top-level information about each relationship. The
list will also expose a means to search for new contacts.

Contact List Template

The template controlling the contacts view is not very different from the templates you
created for status and activity updates. Like the status update controller, the contact list
is responsible for generating an overall “container” page as well as each of the “child”
elements containing contacts belonging to the account. Unlike the status page in Chap-
ter 7, the contact page will not need to load and display a model class; this makes a
collection object a perfect choice to store the models.

Unlike the status views, when the contact list is found or updated, the new entry will
not be animated to the screen. Instead, the entire contact list will refresh. To accomplish
this, bind the render function on the collection’s reset event during the contact list’s
initialize routine, as shown in Example 8-1. The render function wipes out any ex-
isting HTML and replaces it with a fresh copy of the list template, then proceeds to add
a single contact view for each contact in the attached collection.

95

Example 8-1. contacts.js: the contacts list

define(['SocialNetView', 'views/contact', 'text!templates/contacts.html'],
function(SocialNetView, ContactView, contactsTemplate) {
var contactsView = SocialNetView.extend({
el: $('#content'),

initialize: function() {
this.collection.on('reset', this.renderCollection, this);

1

render: function() {
this.Sel.html(contactsTemplate);
1

renderCollection: function(collection) {
collection.each(function(contact) {
var statusHtml = (new ContactView(
{ removeButton: true, model: contact }
)).render().el;
$(statusHtml).appendTo('.contacts_list');
s
}
s

return contactsView;

s

The contact list shown in Example 8-2 contains enough information to generate the
page view that will contain all of the contacts belonging to your account. As with the
status messages screen built in Chapter 7, the contact list view is a placeholder for the
eventual page content. All of the action—like actually filling up and displaying the con-
tact list—will happen after the page is rendered by the web browser.

Example 8-2. contacts.html: the contacts view template

<div class="contacts_list" />

<p>
Add a Contact
</p>

The Add a Content link directs the browser to the hash-based URL #addcontact. When
your user clicks this link, the web browser will attempt to load the same-page bookmark
for #addcontact, which is what will trigger the router to load and render the add contact
view.

Example 8-3 builds the contact model, which Backbone will eventually use to populate
the contact list created in Examples 8-1 and 8-2. Looking back at the database model
introduced in Chapter 6, you will notice there is no such thing as a distinct Contact

96 | Chapter8: Making Friends

entity—each user’s contact list is embedded inside his account recorded. This is very
useful for querying because you can read the account information and get a list of his
contacts in the same request, but it can be difficult to work with; extracting small pieces
of a large response and manipulating them requires a lot of thought and precision.

Example 8-3. models/Contact.js: the contact model

define(function(require) {
var Contact = Backbone.Model.extend({

s

return Contact;

s

The solution here is to use a logical model (Contact) to house all of the information
contained in the account’s contact list. This lets you manipulate all of the contacts as if
they were in fact real database objects, while Backbone takes care of the actual reading,
writing, and updating work.

The ContactCollection model shown in Example 8-4 provides a Backbone collection
based on a group of contacts. Remember: the model property is a keyword extended
from the collection prototype that has special meaning (that is, which model type is
contained in a ContactCollection). Because Contact has been specified as the model
type, Backbone understands how individual elements in the collection should behave
and how they should be read from and written to the database.

Example 8-4. models/ContactCollection.js

define(['models/Contact'], function(Contact) {
var ContactCollection = Backbone.Collection.extend({
model: Contact

s

return ContactCollection;

s

Wherever possible, I have tried not to include any class dependencies between Backbone
models in order to preserve as much separation between their concerns as possible. In
this case the ContactCollection absolutely cannot function unless it has knowledge of
the Contact model; this is why models/Contact is included as a dependency for the
define function.

Because the ContactCollection lives within the context of Require]S’s define method,
you make the class available to the outside world by exporting it via the def ine function’s
return. If you skip that step, code you write in other files will not be able to “see” the
ContactCollection, and will not be able to instantiate or use it.

The controller in Example 8-5 implements the ContactView object referenced from the
controller in Example 8-1. Depending on the context in which the contact is shown,

ContactList | 97

there may be no particular interactions available to end users, or they may have a chance
to add or remove a contact from their list. The contact view delegates all of these inter-
actions from the web browser to the backend server and updates the view inline. This
is a great way to show off Backbone’s power as a stateful client-side technology.

Example 8-5. views/contact.js: a single contact view controller

define(['SocialNetView', 'text!templates/contact.html'],
function(SocialNetView, contactTemplate) {
var contactView = SocialNetView.extend({
addButton: false,

removeButton: false,

tagName: 'li',

events: {
"click .addbutton": "addContact",
"click .removebutton": "removeContact"
1,

addContact: function() {
var SresponseArea = this.$('.actionArea');
$.post('/accounts/me/contact’,
{contactId: this.model.get('_id')},
function onSuccess() {
SresponseArea.text('Contact Added');
}, function onError() {
SresponseArea.text('Could not add contact');
}
);
1,

removeContact: function() {
var SresponseArea = this.$('.actionarea');
SresponseArea.text('Removing contact...');
S.ajax({
url: '/accounts/me/contact',
type: 'DELETE',
data: {
contactId: this.model.get('accountId')
1}) .done(function onSuccess() {
$responseArea.text('Contact Removed');
1) .fail(function onError() {
$responseArea.text('Could not remove contact');
b;
1,

initialize: function() {
// Set the addButton variable in case it has been added in the constructor
if (this.options.addButton) {
this.addButton = this.options.addButton;

98 | Chapter8: Making Friends

}

if (this.options.removeButton) {
this.removeButton = this.options.removeButton;
}
1,

render: function() {
S(this.el).html(_.template(contactTemplate, {
model: this.model.toJSON(),
addButton: this.addButton,
removeButton: this.removeButton
130N
return this;
}
b

return contactView;

s

Looking back at the Contact List view in Example 8-2, the contacts will live inside an
unordered list () HTML tag. Therefore, each model will be contained inside a list
item (<11>) tag; by setting this as the tagName you are instructing Backbone to wrap the

contents of your contact model inside a list item when rendering its HTML.

Finally, Example 8-6 contains the completed contact template. Whenever a contact ap-
pears on screen, the user has the option of clicking through to that contact’s full profile
page or removing the contact from his contact list. In both cases, the application router
will pick up on the content of the hash tag (#) and direct the user to a new view template.

Example 8-6. contact.html: a single contact view template

<h1><%=model.name.first %> <%= model.name.last %></h1>

<% if (!addButton) { %>
<p><a href="#profile/<%=model.accountId%>">View</p>
<% }%>

<div class="actionarea"s>
<% if (addButton) { %>
<p><button class="addbutton">Add Contact</p>
<% } %>

<% i1f (removeButton) { %>
<p><button class="removebutton">Remove Contact</p>
<% } %>
</div>

Contact List

99

Contact List Handler

All of the heavy lifting is done by Backbone when it comes to displaying the contact list.
Fetching the account model and returning its list of contacts will be the backend server’s
role in enabling this functionality.

Be careful when working with callbacks in Express (and Node.js in general): the single
most common cause of difficult-to-track errors is the inadvertent closing of the response
before the request has had a chance to complete. In Example 8-7, the account’s contacts
are sent to the response object within the callback function of the account model’s
findById method. Ifa response were to be made outside of the callback, the web browser
would always receive an empty contact list even when the account has one or more
contacts.

Example 8-7. Express’s account contact endpoint

app.get('/accounts/:id/contacts', function(req, res) {

var accountId = req.params.id == 'me
? req.session.accountId
: req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.contacts);
b;
s

Add Contact

The Add Friend feature has two major use cases:

1. You want to add a contact who is a mutual acquaintance of both yourself and some-
one else who you already have in your contact list.

2. You want to add a contact for whom you have either a partial or complete set of
identifying information.

Focusing on the second case first, if you know your contact’s name or email address,
you can search the database for her profile and add her to your list. In cases where the
person has a common name, your search will probably turn up multiple people, so the
results should support more than one.

Add Contact Template

The Add Contact template controller renders both the initial view as well as the search
results. Control is passed away from the Add Contact template when the user navigates.

The Add Contact view’s primary role is for handling search queries. The first important
part of this object is the events list; in Example 8-8, Backbone is being instructed to call
the Add Contact view’s search method whenever it observes a form submission.

100 | Chapter8: Making Friends

Example 8-8. views/addcontact.js: the add friend form controller

define(['SocialNetView', 'models/Contact', 'views/Contact',
'text!templates/addcontact.html'],
function(SocialNetView, Contact, ContactView, addcontactTemplate)
{
var addcontactView = SocialNetView.extend({
el: $('#content'),

events: {
"submit form": "search"

1

search: function() {

var view = this;

$S.post('/contacts/find',
this.$('form').serialize(), function(data) {
view.render(data);

}).error(function(){
$("#tresults").text('No contacts found.');
$("#results").slideDown();

s

return false;

1

render: function(resultList) {
var view = this;
this.Sel.html(_.template(addcontactTemplate));
if (null != resultList) {

_.each(resultList, function (contactJson) {
var contactModel = new Contact(contactJson);
var contactHtml = (new ContactView(

{ addButton: true, model: contactModel }
)).render().el;
$('#results').append(contactHtml);

H;

}
}
b;

return addcontactView;

K

The search function traps a closure for the current Add Contact view and performs a
find command against the Node.js backend. The serialize() function turns the form
fields supplied by the user into a JSON array sent to the server. If Backbone receives a
successful response, it will re-render the view along with the search results; otherwise
it will display a No Contacts Found error on screen.

Add Contact | 101

The search function contains a variable called view, which is assigned
the value of this. Doing this ensures that a reference to the Add Contact

%' form is carried through to the POST callback; otherwise you would not
be able to call the view’s render function.

aqs
[N
N

The HTML for this view contains a simple form with a single text input area, a submit
button, and a placeholder for the results, as seen in Example 8-9.

Example 8-9. templates/addcontact.html: the add friend form template

<form>
<p>
<label>
Name or Email:
<input type="text" name="searchStr" />
</label>

</p>

<p>

<input type="submit" value="Search Now" />
</p>
</form>

<div id="results"></div>

All the frontend pieces are now in place for adding contacts to your account. Now it is
time to start building out the backend functionality and using MongoDB to perform a
more advanced search based on the single text input from the Add Contact form.

Add Contact Handler

Throughout the search and add contact process, the backend server fills two roles: au-
thentication and data retrieval. Authentication means two things: first, it checks if the
user is logged in and allowed to search the contacts list, and second, it checks if the user
is allowed to add a particular contact to the list. While most sites will have some kind
of filtering system that requires friends to validate each other, or may show reduced
amounts of information about contacts depending on their sharing settings, this social
network is wide open. In order to add a contact to your list, the contact must be new
(not already on the list) and a different individual (someone other than yourself).

The first thing to do when receiving a search request is to make sure it is valid. If the
search string was not provided by the client, respond with error status 400 (Invalid
Request Arguments), as shown in Example 8-10. Sending a specific response code lets
the client handle the error in whatever way is best for the context in which the request
was sent—either through a general error message or through more specific error mes-
saging where the user is told which fields he failed to provide.

102 | Chapter 8: Making Friends

Example 8-10. The Express route for find contact

app.post('/contacts/find', function(req, res) {
var searchStr = req.param('searchStr', null);
if (null == searchStr) {
res.send(400);
return;

}

models.Account.findByString(searchStr, function onSearchDone(err,accounts) {
if (err || accounts.length == 0) {
res.send(404);
} else {
res.send(accounts);
}
b
H;

The goal for the search tool is to provide an exceedingly simple user interface, accom-
plished through the use of a single text input box on the search form. What could be
simpler and more minimal than that? It is up to Node.js, Express, and Mongo to make
sense of the user’s query and find contacts from what was typed. One way to accomplish
this is to use regular expressions to perform case-insensitive searches against the name
and email fields in each account.

Example 8-11 demonstrates how to build a regular expression in Node. The RegExp
constructor is used to generate a regular expression dynamically from a string; here it
is using the contents of searchStr with the option 1 meaning the regular expression
should look anywhere in a string for the contents of searchStr and match against both
lowercase and uppercase versions.

Example 8-11. The account model’s findByString method

var findByString = function(searchStr, callback) {
var searchRegex = new RegExp(searchStr, 'i');
Account.find({

Sor: [
{ "name.full': { $regex: searchRegex } },
{ email: { $regex: searchRegex } }
1
}, callback);

1

There is a lot of meaning in the function descriptor in Express’s Add Contact route, as
shown in Example 8-12. By having the route listen for the POST HTTP verb, you are
communicating that submitting a form (using POST) signifies that a contact should be
added. Just like any written language, the order of the words is important: you are saying
“Post [a] Contact [belonging to] Account [whose ID is] :id”

Add Contact | 103

Example 8-12. The Express route for addContact

app.post('/accounts/:1d/contact', function(req,res) {
var accountId = reqg.params.id == 'me’
? req.session.accountId
: req.params.id;
var contactId = req.param('contactId', null);

// Missing contactId, don't bother going any further
if (null == contactld) {

res.send(400);

return;

3

models.Account.findById(accountId, function(account) {
if (account) {
models.Account.findById(contactId, function(contact) {
models.Account.addContact(account, contact);

// Make the reverse link
models.Account.addContact(contact, account);
account.save();
s
}
H;

// Note: Not in callback - this endpoint returns immediately and
// processes in the background
res.send(200);

b

The addcontact function in Example 8-13 creates a contact and pushes it to the account’s
contact list.

Example 8-13. The account model’s addContact method

var addContact = function(account, addcontact) {
contact = {
name: addcontact.name,
accountId: addcontact._id,
added: new Date(),
updated: new Date()
b

account.contacts.push(contact);

account.save(function (err) {

if (err) {
console.log('Error saving account: ' + err);
}
b;

};

104 | Chapter8: Making Friends

Remove Contact

Sometimes the relationship just doesn’t work out and you will need to remove a contact
from your list, as well as any permissions that contact had for interacting with your
account.

Remove Contact Template

Earlier in this chapter you added a Remove button to the Contact view. Let’s revisit the
click handler for that button in Example 8-14.

Example 8-14. The contact.js view’s remove contact event listener

removeContact: function() {
var $responseArea = this.$('.actionarea');
SresponseArea.text('Removing contact...');
$.ajax({
url: '/accounts/me/contact',
type: 'DELETE',
data: {
contactId: this.model.get('accountId")
1}) .done(function onSuccess() {
SresponseArea.text('Contact Removed');
1) .fail(function onError() {
$responseArea.text('Could not remove contact');
b
}

Unlike all of the other asynchronous requests sent to the server so far, this event uses
jQuery’s .ajax method directly rather than .get or .post. Because this function is
removing a contact from an account’s contact list, we want to communicate this intent
to the server using HT'TP’s DELETE verb. Notice how the URL (/accounts/me/contact)
is exactly the same as the URL for the addContact function—using a different HTTP
verb communicates a different meaning, while the actual URL allows you to refer to the
same object.

Remove Contact Handler

For the backend server, removing a contact from your account is a process that involves
loading your account data, finding the offending contact in your list of contacts, re-
moving the contact from your contact list, and saving your account data back into the
database. Although it is a fairly linear workflow, it involves two database scans and two
input validations: first, to verify that you are who you say you are and your account
exists, and second to find your removal target in your account list.

Remove Contact | 105

Like other routes, the verb in Example 8-15 used to set up the contact removal is im-
portant; the contact with a matching contactId will be removed from your account
only if you submit your request using the HTTP DELETE verb. If no contactId is
provided, the request is immediately rejected with error code 400 (Bad Request).

Example 8-15. Express’s remove contact route

app.delete('/accounts/:id/contact', function(req,res) {
var accountId = req.params.id == 'me’
? req.session.accountId
. req.params.id;
var contactId = req.param('contactId', null);

// Missing contactId, don't bother going any further
if (null == contactId) {

res.send(400);

return;

}

models.Account.findById(accountId, function(account) {
if (!account) return;
models.Account.findById(contactId, function(contact,err) {
if (!contact) return;

models.Account.removeContact(account, contactId);
// Kill the reverse link
models.Account.removeContact(contact, accountlId);

s
3N

// Note: Not in callback - this endpoint returns immediately and
// processes in the background
res.send(200);

b

Assuming it is happy with the request, Express will then try to load your account from
MongoDB. If found, Express will load your contact’s account from MongoDB. As long
as both accounts are found in the database, you will be removed from your contact’s list
and he will be removed from yours.

Take note of the response at the end of the function: all of the contact deletion occurs
inside the account function callbacks, but the response is outside, within the scope of
the route callback. This means the response will not wait for the contact removal to
complete before sending a success indicator back to the client. As you have seen several
times throughout this chapter, this programming pattern results in extremely fast re-
sponses to the client browser, but trades off reliability—if the removal is not successful,
the contact will remain in your list next time you refresh your web page. If we can assume
the majority of requests will be successful, we are accepting the small but rare incon-
venience in order to serve the majority of requests at an accelerated speed.

106 | Chapter 8: Making Friends

Actually removing the contact from the account is a fairly straightforward process, as
shown in Example 8-16. If the account has no contacts, it is safe to return right away.
Otherwise, loop through each element in the contact list using the forEach function
and compare its ID with the contactId provided by the user. If the IDs match, remove
the contact from the list of contacts. Once this is all done, save the account back into
MongoDB.

Example 8-16. The Mongoose remove contact function

var removeContact = function(account, contactId) {
if (null == account.contacts) return;

account.contacts.forEach(function(contact) {
if (contact.accountId == contactId) {
account.contacts.remove(contact);
}
bs

account.save();

};

One optimization to this function would be to save the account and return immediately
when a match is found; this would prevent Node from having to check every element
in a large list when a match is found early in the search. One reason I did not do this
was because if you've been building this application along with the book and testing as
you go, you probably have multiples of the same contact on your friend list by now.
Looping through everyone on your list effectively removes doubles of the same contact.

Commenting

Atlastyou are able to view, add, and remove contacts. You can already add status updates
to your own account. The only thing missing at this stage is the ability to add comments
to your contacts’ profiles. As you will see, this functionality is little more than an ex-
tension of the existing status update with some security and authentication thrown into
the mix.

Comment Template

Because the profile page is so similar to the index template you reach immediately after
login, adding similar comment functionality won’t be too difficult. The major difference
between the two templates is that the index page contains the comments and status
updates in its own dedicated collection, which can auto-update, whereas the profile page
receives comments as a list object nested inside your contact’s account data. Your task
in this section will be to convert that list into a usable collection, and update it in a way
that saves to the database as well as remains responsive to the end user.

Commenting | 107

The input form in Example 8-17 is lifted right from the index.html template. The web
browser will display a text box with a single submission button, and the user is expected
to enter their comment or message in the space provided.

Example 8-17. The new public/templates/profile.html

<hi><%=name.first %> <%= name.last %></hl>

<form>
<fieldset>
<legend>Add Status</legend>

<input type="text" name="status" />
<input type="submit" value="Add" />
</fieldset>
</form>

<h2>Status Updates</h2>

<ul class="status_list" [>

The profile page still contains the unordered list named status_list: this already con-
tains all of the account’s status updates, but you are about to give it real-time update
capabilities.

In the last chapter, the profile page listed an account’s activity stream updates and didn’t
do anything else. Now you can add status updates to your own account or to your
contacts’ accounts from this view. In Example 8-18 be aware of three new items: the
events object, the postStatus function, and the prependStatus function.

Example 8-18. The new profile Backbone.js view: public/js/views/profile.js

define(['SocialNetView', 'text!templates/profile.html’,
'text!templates/status.html', 'models/Status',
'views/Status'],

function(SocialNetView, profileTemplate,
statusTemplate, Status, StatusView)

{

var profileView = SocialNetView.extend({
el: $('#content'),

events: {
"submit form": "postStatus"

1

initialize: function () {
this.model.bind('change', this.render, this);

1

postStatus: function() {
var that = this;
var statusText = $('input[name=status]').val();

108 | Chapter 8: Making Friends

var statusCollection = this.collection;
S.post('/accounts/' + this.model.get('_id') + '/status', {
status: statusText
}, function(data) {
that.prependStatus(new Status({status:statusText}));
s

return false;

1

prependStatus: function(statusModel) {
var statusHtml = (new StatusView({ model: statusModel })).render().el;
S(statusHtml).prependTo('.status_list').hide().fadeIn('slow"');

1,

render: function() {
var that = this;
this.Sel.html(
_.template(profileTemplate,this.model.toJSON())
)s

var statusCollection = this.model.get('status');
if (null != statusCollection) {
_.each(statusCollection, function (statusJson) {
var statusModel = new Status(statusJson);
that.prependStatus(statusModel);
b;
}
}
b;

return profileView;

s

The events object contains all of the web browser events Backbone should be listening
to. At this point in time the view needs to be interested in the form submit action when
the user adds a status to the account profile. Notice the underlying data model has a
change event still being defined in the view’s initialize function rather than in the
events object; this is because the events object refers to document object model (DOM)
events in the web browser, whereas the model.bind function works on the model object
stored within JavaScripts memory—in other words, it isn't a “real” event in a web
browser sense, although it is important to the behavior of your application.

The postStatus function does the work of sending the user’s status updates to the
backend server. The function returns false in order to prevent the form from per-
forming its default POST behavior, which would otherwise cause the page to refresh.
This is not desirable since the app should update the web page in place. Once the status
is acknowledged successfully by the web server with an HTTP status code of 200 (Suc-
cess), the submitted status is added to the top of the account’s contact list. As patterned
elsewhere, the first thing you want to do when entering the function is to make a

Commenting | 109

reference to the view object (this), in this case using a variable named that. Doing this
is important because when the form post success callback is reached, the variable named
this will reference the form rather than the view. Defining a variable named that gives
you access to the view object and its prependStatus function after posting the status to
the backend server.

Finally, the prependStatus function takes a Status model, creates a StatusView to
contain it, and renders it to the front of the status_list described in the template
example. The same work was being done directly in the render function previously, but
moving the code to its own function allows you to access it from both render and the
postStatus callback.

Comment Handler

The backend server portion of the comment handling has, for the most part, already
been done. You can already post a comment to your own stream, and you can already
view your friends’ comments. The only thing left to do is validate whether or not you
are allowed to post comments on other people’s streams. Doing this involves loading
your contacts’ account details and checking their relationship to you when it comes time
to add something to their account on your behalf.

Because all of the objects in JavaScript are dynamic, you can very easily add new at-
tributes, as shown in Example 8-19. Although the account model does not define a
property called isFriend, it will appear in the JSON output from Express when anyone
requests an account’s details.

Example 8-19. Checking if an account has friend permissions in Express

app.get('/accounts/:id', function(req, res) {
var accountId = req.params.id == 'me
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
if (accountId == 'me
|| models.Account.hasContact(account, req.session.accountId)) {
account.isFriend = true;
}
res.send(account);
b;
b

110 | Chapter 8: Making Friends

The hasContact function’s purpose is to determine whether a given contactId exists
in an account’s contactlist. Given that the account has a contact list, Node loops through
it using the forEach statement and compares each contact’s accountId with the con
tactId given to the function, as shown in Example 8-20. If a match is found, hasAc
count returns positive immediately, otherwise it continues to iterate over the contact
list. If the full contact list is searched without a match, hasContact returns negative,
indicating that the contactId is not found within the account’s contacts.

Example 8-20. The Mongoose model’s check contact functionality

var hasContact = function(account, contactId) {
if (null == account.contacts) return false;

account.contacts.forEach(function(contact) {
if (contact.accountId == contactId) {
return true;
}
b

return false;

}

Putting It Together

Over the course of this chapter you learned how to connect two entities in a MongoDB
collection, search entire collections for freeform text, loop through database results, and
compare groups of objects to each other. Much of this functionality was built upon the
code you built in the previous chapters, but some of the objects—particularly some of
the views—were totally new.

To help put the preceding code into context with what came before, this section contains
the unabridged models, views, templates, and controllers that were modified throughout
the discussion.

Backbone

The majority of the Backbone changes in this chapter involved creating new views and
templates. Since those new files were already described in detail they won’t be repeated
here. The two major touchpoints that were affected through all these changes were the
router class, which controls the back-and-forth navigation through the application, and
the index template, which is—at least for now—the main entry point to all of the ap-
plication’s functionality.

Router

The router now has knowledge of the contacts view and is charged with populating the
list of contacts shown for your account.

Putting It Together | 111

The profile pages are likewise populated from the router, with the model being read
from the backend server at the same time as the profile view for that model is being
loaded, as shown in Example 8-21. If you happen to have a very slow connection to the
backend server, you might end up with a default profile page—temporarily missing the
account information—while the account data is in transit.

Example 8-21. The updated router.js

define(['views/index', 'views/register', 'views/login',
'views/forgotpassword', 'views/profile', 'views/contacts',
'views/addcontact', 'models/Account', 'models/StatusCollection',
'models/ContactCollection'],

function(IndexView, RegisterView, LoginView, ForgotPasswordView, ProfileView,
ContactsView, AddContactView, Account, StatusCollection,
ContactCollection) {

var SocialRouter = Backbone.Router.extend({
currentView: null,

routes: {
'addcontact': 'addcontact',
'index': 'index',
"login': 'login',
'register': 'register',
'forgotpassword': 'forgotpassword',
'profile/:1d': 'profile’,
'contacts/:1d': 'contacts'

1

changeView: function(view) {
if (null != this.currentView) {
this.currentView.undelegateEvents();
}
this.currentView = view;
this.currentView.render();

1

index: function() {
var statusCollection = new StatusCollection();
statusCollection.url = '/accounts/me/activity';
this.changeView(new IndexView({
collection: statusCollection
s
statusCollection.fetch();
1,

addcontact: function() {
this.changeView(new AddContactView());
1

login: function() {
this.changeView(new LoginView());

1

112 | Chapter8: Making Friends

forgotpassword: function() {
this.changeView(new ForgotPasswordView());

1

register: function() {
this.changeView(new RegisterView());

1

profile: function(id) {
var model = new Account({id:id});
this.changeView(new ProfileView({model:model}));
model.fetch();

1,

contacts: function(id) {
var contactId = id ? id : 'me';
var contactsCollection = new ContactCollection();
contactsCollection.url = '/accounts/' + contactId + '/contacts';

this.changeView(new ContactsView({
collection: contactsCollection

D)

contactsCollection.fetch();
}
b;

return new SocialRouter();
b
Index

The index page, which previously just contained the list of your status updates, now also
provides links to your profile and contact pages, as shown in Example 8-22.

Example 8-22. The updated /public/templates/index.html

<h1>My Social Network</hi>

<h2>Activity Stream</h2>

<form>
<fieldset>
<legend>Update My Status</legend>

<input type="text" name="status" />
<input type="submit" value="Add" />
</fleldset>
</form>

<ul class="status_list" />

Putting It Together | 113

<p>See My Profile</p>

<p>See My Contacts</p>

Node.js

While Backbone is now fronting the brunt of the work for this application, Node is still
running behind the scenes and serving the role as the glue holding everything together.

As a general rule of thumb, you should never trust the client to control any data. So
while Backbone is a beautiful stateful architecture and can update and change the in-
formation it displays inside the confines of a web browser, it should never be trusted to
tell the database which user can post to a particular account’s status list. The backend
server is responsible for data integrity; that means it always validates whether a user is
allowed to do what he is trying to do, and cutting him off if he doesn’t have permission.

If someone were to come along and manipulate the JavaScript portion of your applica-
tion into posting to a non-contact’s account (this would be a fairly trivial task using built-
in script inspectors with most web browsers), the server would recognize the forgery
and refuse to service the update. The result would be that the new status update would
appear (maybe) in the attacker’s browser, but would be gone the next time he refreshed
the page, and would not be shown to any other users.

Main Express application

The Express application is starting to get long; very soon it will need to be refactored
into route-specific container files or else the application will become more difficult to
extend and improve upon.

At this stage your application has GET, POST, and DELETE methods for most of the
resources used by the social network application (accounts, contacts, and statuses, re-
spectively). In this chapter you added security checks to some of the functions to prevent
users from making changes to accounts they do not have relationships with, as shown
in Example 8-23.

Example 8-23. The updated app.js

var express = require("express");

var app = express();

var nodemailer = require('nodemailer');

var MemoryStore = require('connect').session.MemoryStore;
var dbPath = 'mongodb://localhost/nodebackbone’;

// Import the data layer
var mongoose = require('mongoose');
var config = {

mail: require('./config/mail')

}

114 | Chapter 8: Making Friends

// Import the models
var models = {
Account: require('./models/Account')(config, mongoose, nodemailer)

}

app.configure(function(){
app.set('view engine', 'jade');
app.use(express.static(__dirname + '/public'));
app.use(express.limit('imb'));
app.use(express.bodyParser());
app.use(express.cookieParser());
app.use(express.session({
secret: "SocialNet secret key",
store: new MemoryStore()
H);
mongoose.connect(dbPath, function onMongooseError(err) {
if (err) throw err;
b;
s

app.get('/"', function(req, res){
res.render('index.jade');

s

app.post('/login', function(reqg, res) {
console.log('login request');
var email = req.param('email', null);
var password = req.param('password', null);

if (null == email || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

}

models.Account.login(email, password, function(account) {
if ('account) {
res.send(401);
return;
}
console.log('login was successful');
req.session.loggedIn = true;
req.session.accountId = account._id;
res.send(200);
b
b

app.post('/register', function(req, res) {
var firstName = req.param('firstName', '');
var lastName = req.param('lastName', '');
var email = reqg.param('email', null);

Putting It Together

115

var password = req.param('password', null);

if (null == email || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

}

models.Account.register(email, password, firstName, lastName);
res.send(200);
b

app.get('/account/authenticated', function(req, res) {
if (req.session.loggedIn) {
res.send(200);

} else {
res.send(401);
}
b

app.get('/accounts/:id/contacts', function(req, res) {
var accountId = req.params.id == 'me'
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.contacts);
b;
b

app.get('/accounts/:id/activity', function(req, res) {
var accountId = reqg.params.id == 'me’
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.activity);
s
b

app.get('/accounts/:id/status', function(req, res) {
var accountId = req.params.id == 'me’
? req.session.accountId
: req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.status);
b;
b

app.post('/accounts/:1d/status', function(req, res) {
var accountId = reqg.params.id == 'me'
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {

116 | Chapter 8: Making Friends

status = {

name: account.name,

status: req.param('status', ''")
b

account.status.push(status);

// Push the status to all friends
account.activity.push(status);
account.save(function (err) {
if (err) {
console.log('Error saving account: ' + err);
}
b
b
res.send(200);
b

app.delete('/accounts/:id/contact', function(req,res) {
var accountId = reqg.params.id == 'me’
? req.session.accountId
: req.params.id;
var contactId = req.param('contactId', null);

// Missing contactId, don't bother going any further
if (null == contactld) {

res.send(400);

return;

3

models.Account.findById(accountId, function(account) {
if ('account) return;
models.Account.findById(contactId, function(contact,err) {
if (!contact) return;

models.Account.removeContact(account, contactId);
// Kill the reverse link
models.Account.removeContact(contact, accountlId);
b;
b;

// Note: Not in callback - this endpoint returns immediately and
// processes in the background
res.send(200);

s

app.post('/accounts/:1d/contact', function(req,res) {
var accountId = reqg.params.id == 'me'
? req.session.accountId
: req.params.id;
var contactId = req.param('contactId', null);

// Missing contactId, don't bother going any further

Putting It Together

117

if (null == contactld) {
res.send(400);
return;

3

models.Account.findById(accountId, function(account) {
if (account) {
models.Account.findById(contactId, function(contact) {
models.Account.addContact(account, contact);

// Make the reverse link
models.Account.addContact(contact, account);
account.save();
s
}
b

// Note: Not in callback - this endpoint returns immediately and
// processes in the background
res.send(200);

b

app.get('/accounts/:id', function(req, res) {
var accountId = req.params.id == 'me’
? req.session.accountIld
: req.params.id;
models.Account.findById(accountId, function(account) {
if (accountId == 'me'
| | models.Account.hasContact(account, req.session.accountId)) {
account.isFriend = true;
}
res.send(account);
b;
b

app.post('/forgotpassword', function(req, res) {
var hostname = req.headers.host;
var resetPasswordUrl = 'http://' + hostname + '/resetPassword';
var email = reg.param('email', null);
if (null == email || email.length < 1) {
res.send(400);
return;

}

models.Account.forgotPassword(email, resetPassworduUrl, function(success){
if (success) {
res.send(200);
} else {
// Username or password not found
res.send(404);
}
b

118 | Chapter 8: Making Friends

s

app.post('/contacts/find', function(req, res) {
var searchStr = req.param('searchStr', null);
if (null == searchStr) {
res.send(400);
return;

3

models.Account.findByString(searchStr, function onSearchDone(err,accounts) {
if (err || accounts.length == 0) {
res.send(404);
} else {
res.send(accounts);

}
19H
s

app.get('/resetPassword', function(reqg, res) {
var accountId = req.param('account', null);
res.render('resetPassword.jade', {locals:{accountId:accountId}});

s

app.post('/resetPassword', function(req, res) {
var accountId = req.param('accountId', null);
var password = req.param('password', null);
if (null != accountId && null != password) {
models.Account.changePassword(accountId, password);

}

res.render('resetPasswordSuccess.jade');

s

app.listen(8080);
console.log('Listening on port 8080');

Account model

The new account model contains methods for adding and removing contacts, validating
permissions from one account to another, and searching the entire collection for ac-
counts based on partial matches of the name or email fields. Asbefore, all of the functions
are private and internal to the account JavaScript file unless included within the ex
ports list, as shown in Example 8-24.

Example 8-24. The updated account.js model

module.exports = function(config, mongoose, Status, nodemailer) {
var crypto = require('crypto');

var Status = new mongoose.Schema({

name: {
first: { type: String },
last: { type: String }

Putting It Together | 119

1

status: { type: String }
b
var Contact = new mongoose.Schema({
name: {
first: { type: String },
last: { type: String }
1,
accountId: { type: mongoose.Schema.ObjectId },
added: { type: Date }, // When the contact was added
updated: { type: Date } // When the contact last updated
b
var AccountSchema = new mongoose.Schema({
email: { type: String, unique: true },
password: { type: String },
name: {
first: { type: String },
last: { type: String },
full: { type: String }
1,
birthday: {
day: { type: Number, min: 1, max: 31, required: false },
month: { type: Number, min: 1, max: 12, required: false },
year: { type: Number }
1,

photourl: { type: String },

biography: { type: String },

contacts: [Contact],

status: [Status], // My own status updates only

activity: [Status] // All status updates including friends
b

var Account = mongoose.model('Account', AccountSchema);

var registerCallback = function(err) {
if (err) {
return console.log(err);
b
return console.log('Account was created');

};

var changePassword = function(accountId, newpassword) {
var shaSum = crypto.createHash('sha256");
shaSum.update(newpassword);
var hashedPassword = shaSum.digest('hex');
Account.update({_id:accountId}, {S$set: {password:hashedPassword}},{upsert:false},
function changePasswordCallback(err) {
console.log('Change password done for account ' + accountId);
b;
b

120 | Chapter 8: Making Friends

var forgotPassword = function(email, resetPasswordUrl, callback) {
var user = Account.findOne({email: email}, function findAccount(err, doc){
if (err) {
// Email address is not a valid user
callback(false);
} else {
var smtpTransport = nodemailer.createTransport('SMTP', config.mail);
resetPasswordUrl += '?account=' + doc._id;
smtpTransport.sendMail({
from: 'thisapp@example.com',
to: doc.email,
subject: 'SocialNet Password Request',
text: 'Click here to reset your password:
}, function forgotPasswordResult(err) {

+ resetPasswordurl

if (err) {
callback(false);
} else {
callback(true);
}
b;
}
H;

};

var login = function(email, password, callback) {
var shaSum = crypto.createHash('sha256");
shaSum.update(password);
Account.findOne({email:email,password:shaSum.digest('hex')},function(err,doc){
callback(doc);
b
b

var findByString = function(searchStr, callback) {
var searchRegex = new RegExp(searchStr, 'i');
Account.find({

Sor: [
{ '"name.full': { Sregex: searchRegex } },
{ email: { $regex: searchRegex } }
]
}, callback);

};

var findById = function(accountld, callback) {
Account.findOne({_id:accountId}, function(err,doc) {
callback(doc);
b
b

var addContact = function(account, addcontact) {
contact = {
name: addcontact.name,

Putting It Together | 121

accountId: addcontact._id,
added: new Date(),
updated: new Date()

};

account.contacts.push(contact);

account.save(function (err) {

if (err) {
console.log('Error saving account: ' + err);
}
H;

};

var removeContact = function(account, contactId) {
if (null == account.contacts) return;

account.contacts.forEach(function(contact) {
if (contact.accountId == contactIld) {
account.contacts.remove(contact);
}
b
account.save();

1

var hasContact = function(account, contactId) {
if (null == account.contacts) return false;

account.contacts.forEach(function(contact) {
if (contact.accountId == contactId) {
return true;
}
b
return false;

};

var register = function(email, password, firstName, lastName) {
var shaSum = crypto.createHash('sha256");
shaSum.update(password);

console.log('Registering ' + email);
var user = new Account({
email: email,
name: {
first: firstName,
last: lastName,

full: firstName + ' ' + lastName
}s
password: shaSum.digest('hex')
b

user.save(registerCallback);
console.log('Save command was sent');

};

122 | Chapter 8: Making Friends

return {
findById: findById,
register: register,
hasContact: hasContact,
forgotPassword: forgotPassword,
changePassword: changePassword,
findByString: findByString,
addContact: addContact,
removeContact: removeContact,
login: login,
Account: Account

Putting It Together

123

CHAPTER 9
Chat

The social networking application is off to a good start. It's possible to share your updates,
add and find contacts, and interact with each other all from piecing together some of
the useful libraries that are already available for Node.js and Backbone. But if you were
to try to use this application in real life, you might find that it feels cold and sterile—it’s
certainly a networking site, but it isn’t very social.

It’s time to brighten up the environment by enhancing your features with real-time
capabilities. First up: chat!

Online chat presents your users with a means to communicate with one another almost
as quickly as if they were having a real conversation. During a chat, the goal of your
application should be to deliver messages from one party to the other as quickly as
possible, without letting other processes like logging or database retrieval get in the way.
A good chat system is really little more than a conduit between two communicators.

Refactoring

On the Node.js side of things, the application is starting to get too large to reasonably
handle in a single script, so youre going to pull all the authentication- and account-
related routes out of app.js and move them into their own files. Then you’re going to
loop through all of the routes during startup and add them to your application, as shown
in Example 9-1.

Example 9-1. Moving routes to their own files

fs.readdirSync('routes').forEach(function(file) {
var routeName = file.substr(0, file.indexOf('.'));
require('./routes/' + routeName)(app);

K

125

This is a great way to handle external files because now you can add unlimited routes
to your application without having to do anything special. Since every route is loaded
the same way—that is, by passing the application object to the route during import—
you are forced to structure your application in a way that keeps shared information, like
models, available at the application level.

In order to share the session across different parts of the application, key item is added
to the session store created during the application configuration stage, as shown in
Example 9-2. This is the cookie key that will be shared between the frontend client and
the backend server behind the scenes. It contains a unique ID (separate from the account
ID that you use to reference a user in-app) that can be compared against the session
store to get the user’s stored session data.

Example 9-2. Improving the session store

app.use(express.session({
secret: "SocialNet secret key",
key: 'express.sid',
store: app.sessionStore

M

Connecting to the Chat Server

Your user needs to connect to the server before any messages can be passed around.
Going online involves two steps: authorization and connecting. So far you have done
the authorization step many times (every time any action is performed by Express), so
Node.js needs to authorize the incoming request. When connecting to a web socket, the
same principle applies; however, once you have successfully authenticated you do not
need to verify your users any more. All of their communications can be considered “safe”
from that point on. The authentication feature of sockets makes for much lighter-weight
applications because you do not need to spend as much energy reading and writing to
the database; once your user has logged on, you can persist his information and use it
over and over again.

The real-time chat capabilities introduce new library requirements, so socket. 1o and
cookie is added to the project’s package.json file, as shown in Example 9-3. Run npm
install to download these new dependencies before you continue. Socket.io, intro-
duced in Chapter 2, will provide the real-time communication channel you will use to
build out your chat. The cookie library exposes helper functions that will allow you to
access the cookie generated by Express from within the context of a Socket.io connec-
tion. Although Socket.io and Express will be sharing the same project space, Express is
not built upon the connect middleware so you are required to take extra steps in order
to share data between the two stacks.

126 | Chapter9: Chat

Example 9-3. Adding dependencies to package.json

{
"name": "my-social-network",
"version": "0.0.1",
"private": true,
"dependencies": {
"express": "~3.0.0",
"jade": ">= 0.0.1",
"mongoose": ">= 2.6.5",
"nodemailer": "0.3.20",
"connect": ">= 1.9.1",
"socket.io": "~0.9",
"cookie": "0.0.4"
}
}
Backbone

The first step in adding chat capability to the Backbone.js part of your application in-
volves identifying where in the workflow a user can go from being an anonymous
stranger to an authenticated, logged-on user. Once the user has logged on, he should be
connected to the chat server and able to begin participating.

Fortunately, the application was designed to have as few touch points as possible. Your
users can only be considered to be logging in when they have a successful login form
completion and when they refresh their browser after a previously successful login.

I have chosen to implement a global event dispatcher in the router snippet in
Example 9-4. First create a socketEvents property owned by the router, and have it
extend the Backbone.Events object. This will create a standalone event object (as in,
not attached to a particular model or view), which can be used independently of views.
Although the event object could be totally generic, it is going to be strictly defined as
events related to socket communications to make it easier to understand and work with
in these examples.

Example 9-4. Adding an event dispatcher to the router

define(['views/index', 'views/register', 'views/login',
'views/forgotpassword', 'views/profile', 'views/contacts',
'views/addcontact', 'models/Account', 'models/StatusCollection',
'models/ContactCollection'],

function(IndexView, RegisterView, LoginView, ForgotPasswordView, ProfileView,
ContactsView, AddContactView, Account, StatusCollection,
ContactCollection) {

var SocialRouter = Backbone.Router.extend({
currentView: null,

socketEvents: _.extend({}, Backbone.Events),

Connecting to the Chat Server | 127

login: function() {
this.changeView(new LoginView({socketEvents:this.socketEvents}));

1

s

return new SocialRouter();

s

After creating the socketEvents object, it is passed into the login view when the login
route is activated. This will cause the socketEvents object to appear in the view’s ini-
tialization objects, which you will now trap inside the view.

Example 9-5 shows how the new socketEvents object is consumed within the login
view. When the view is first created, socketEvents is presented as a key in the initi
alize function’s options parameter and assigned to the view’s own socketEvents
property. Later, when the user has a successful login attempt, the view will trigger an
app:loggedin event with socketEvent. This will send the text “app:loggedin” to any
object that has registered a listener against the app:loggedin event using bind.

Example 9-5. Dispatching a login event

initialize: function(options) {
this.socketEvents = options.socketEvents;

1

login: function() {
var socketEvents = this.socketEvents;
$.post('/login',
this.$('form').serialize(), function(data) {
socketEvents.trigger('app:loggedin');
window.location.hash = 'index';
}).error(function(){
$("#error").text('Unable to login.');
$("#error").slideDown();
b
return false;

}

Remember as before when performing a POST callback, the socketEvents was stuffed
into a local variable because the callback will not have access to the view using the
keyword this. So the socketEvents property is referenced in a variable inside the login
function so it is available in the callback.

128 | Chapter9: Chat

The socket class makes use of the Socket.io JavaScript library. Just like in the Socket.io
examples in Chapter 2, the web browser will be loading the required JavaScript files
from the express server. When the Socket.io library is enabled, it makes that JavaScript
file available. For simplicity’s sake, you can add the path to the Socket.io script to the
paths list in your application’s boot.js file:

Sockets: '/socket.io/socket.io'

Events are only useful when they are consumed and used by reactive functions. Because
the sockets/chat functionality will be so involved, it will be contained within its own
class (I'm calling it SocialNetSockets.js), as shown in Example 9-6. The class is intended
to be initialized after the application’s router, and takes the router’s socketEvents object
asthe initialization parameter. When the classisinitialized, the socketEvents object
—called eventDispatcher here—is told to bind the app:loggedin event to the con
nectSocket function.

Example 9-6. A socket mediator class for Backbone

define(['Sockets'], function(sio) {
var socket = null;

var initialize = function(eventDispatcher) {
eventDispatcher.bind('app:loggedin', connectSocket);

};

var connectSocket = function() {
socket = 1o.connect().socket;

socket

.on('connect_failed', function(reason) {
console.error('unable to connect', reason);

D)

.on('connect', function() {
console.info('successfully established a connection');

s

I

return {
initialize: initialize
I
s

From now on when users connect to your application, they will trigger the app: logge
din event, which in turn causes the connectSocket function to make a connection to
Node.js’s Socket.io listener. If the connection is successful, an info message will be logged
to the console. If the connection fails for some reason an error message will be triggered
instead.

Connecting to the Chat Server | 129

Node.js

As always the Node.js Express server will be responsible for authentication and data
delivery.

Example 9-7 sets up the authorization portion of the Socket.io handshake. Before the
socket is allowed to connect it goes through an authorization process to ensure the user
is allowed to access the server. Because you set up a shared key for the Express cookie
in Example 9-2, Socket.io is able to access the memory store for the connecting user to
determine if the session ID matches one that is known to Node.js. If it is, the connection
will be allowed to proceed.

Example 9-7. Setting up routes/chat.js

module.exports = function(app, models) {
var 10 = require('socket.10');
var utils = require('connect').utils;
var cookie = require('cookie');
var Session = require('connect').middleware.session.Session;

var sio = io.listen(app.server);

sio.configure(function() {
sio.set('authorization', function(data, accept) {
var signedCookies = cookie.parse(data.headers.cookie);
var cookies = utils.parseSignedCookies(signedCookies,app.sessionSecret);
data.sessionID = cookies['express.sid'];
data.sessionStore = app.sessionStore;
data.sessionStore.get(data.sessionID, function(err, session) {

if (err || !session) {
return accept('Invalid session', false);
} else {

data.session = new Session(data, session);
accept(null, true);
}
s
b
b
}

The authorization method takes two parameters; the first (data) is the handshake data
received by the server. This includes the session cookie where you will search for the
user’s login information. The second parameter (accept) is the callback function that
should be triggered at the end of an authorization cycle. The callback requires two
arguments: error and success. If there was a problem with the handshake, error will
contain information about the problem; in Example 9-7 the handshake failure generates
an error message stating “Invalid session,” while the success parameter will contain
false indicating that the authorization was a failure.

130 | Chapter9: Chat

When the authorization is successful, the callback is executed with nothing in the
error parameter and the success parameter set to true.

Example 9-8 contains the connection function, which will be executed after a successful
handshake. Since the session was added to the handshake data in Example 9-7, you can
access it in the handshake property of the socket object to find information about the
connected account. In this case, the accountIdisretrieved from the session—remember,
this is the Mongo 0ObjectID you stored for the connected user. Once this information
has been retrieved, the socket is instructed to join a room with the same name as the
accountId. What this does is provide a filter on the socket communications that will
allow your application to communicate with specified users without sending unneces-
sary network traffic at anyone else.

Example 9-8. Connecting to the chat server

sio.sockets.on('connection', function(socket) {
var session = socket.handshake.session;
var accountId = session.accountId;
socket.join(accountId);

s

Sending and Receiving Chat Messages

The join command issued to Socket.io when a user connects is critically important to
the chat system we will be building. Now that every user is effectively boxed into his
own channel, you have a mechanism by which to address them all. Remember, if that
filter were not set up then every message emitted through Socket.io would be received
by everyone connected to the network. That would take an enormous amount of com-
puting resource, and most of those messages would get discarded by people who aren’t
the intended recipient.

Example 9-9 adds more sophistication to the Sockets mediator. When the Socket.io
server sends a chat event using the chatserver event name (indicating that the chat
originated from the server), the SoctalNetSockets class will trigger two of its own
events in the socketEvents dispatcher: socket:char:start and socket:chat:in.
Whenever a chat message is received, all interested observers will know they need to
start a session and process an incoming message.

Example 9-9. The updated SocialNetSockets.js

define(['Sockets', 'models/contactcollection', 'views/chat'],
function(sio, ContactCollection, ChatView) {
var SocialNetSockets = function(eventDispatcher) {
var socket = null;

var connectSocket = function() {
socket = io.connect();

Sending and Receiving Chat Messages | 131

socket
.on('connect_failed', function(reason) {
console.error('unable to connect', reason);
b
.on('connect', function() {
eventDispatcher.bind('socket:chat', sendChat);
socket.on('chatserver', function(data) {
eventDispatcher.trigger('socket:chat:start:' + data.from);
eventDispatcher.trigger('socket:chat:in:' + data.from, data);

s
var contactsCollection = new ContactCollection();
contactsCollection.url = '/accounts/me/contacts';

new ChatView({collection: contactsCollection,
socketEvents: eventDispatcher}).render();
contactsCollection.fetch();
b;
b

var sendChat = function(payload) {
if (null != socket) {
socket.emit('chatclient', payload);
}
b

eventDispatcher.bind('app:loggedin', connectSocket);

3

return {
initialize: function(eventDispatcher) {
SocialNetSockets(eventDispatcher);

}
I
s
Immediately upon connecting, the eventDispatcher will bind to an event called sock
et:chat. This will be triggered whenever the user sends a chat message to any of his
contacts, as shown later in Example 9-14. When a chat is sent, the socket emits a chat
client event to the Socket.io server, indicating that the chat originated from the client.

Backbone

The Backbone.js chat user interface (UI) will have two main components: the list of
contacts available for chatting, and a chat session window for each contact that will
contain the running chat history. The desired goal for this phase is to have a list of
contacts always available—clicking on any of the contacts initiates a chat session that
you can use to send a message to your contact. If someone were to send you a message
while you were online, a chat session with that person would automatically open on
your screen.

132 | Chapter9: Chat

The chat view in Example 9-10 will manage all of the Ul relevant to the chat functionality.
This view will contain alist of all of the connected user’s contacts and keep him on screen
at all times. During the renderCollection function, the list is redrawn, and for each
contact the chat view binds the startChatSession callback on the chat:start event
to handle cases when the user clicks on a particular contact’s name.

Example 9-10. public/js/views/chat.js

define(['SocialNetView', 'views/chatsession', 'views/chatitem',
'text!templates/chat.html'],
function(SocialNetView, ChatSessionView, ChatItemView, chatItemTemplate) {
var chatView = SocialNetView.extend({
el: $('#chat'),

chatSessions: {},

initialize: function(options) {
this.socketEvents = options.socketEvents;
this.collection.on('reset', this.renderCollection, this);

}J

render: function() {
this.Sel.html(chatItemTemplate);
}J

startChatSession: function(model) {
var accountId = model.get('accountId');
if (!this.chatSessions[accountId]) {
var chatSessionView = new ChatSessionView({
model:model,
socketEvents: this.socketEvents
s
this.$el.prepend(chatSessionView.render().el);
this.chatSessions[accountId] = chatSessionView;
}
}J

renderCollection: function(collection) {
var that = this;
S('.chat_list').empty();
collection.each(function(contact) {
var chatItemView = new ChatItemView({ socketEvents: that.socketEvents,
model: contact });
chatItemView.bind('chat:start', that.startChatSession, that);
var statusHtml = (chatItemView).render().el;
$(statusHtml).appendTo('.chat_list');
s
}
bs

return chatView;

s

Sending and Receiving Chat Messages | 133

The startChatSession function checks to see whether a chat session already exists
between the user and the given contact. If a session does not already exist, it will create
one and add it to the chatSessions object (see Figure 9-1). The chatSessions object
is a dictionary—because the accountId is used as the key for each session, it is kept
easily accessible in memory, so checking for the existence of a particular account in this
object is a fast operation.

Chat Sessions _|—> Ezﬂ:;"c’{tk
Contact A

Chat View »| ContactB > Eg;m'ttg
Contact C

L Chat with

Contact C

Figure 9-1. The chatSessions object

The chatSessions object contains a list of contact IDs. Each contact ID entry contains
a reference to the memory location for the chat session with that contact. Using a dic-
tionary like this ensures that only one chat session is open at a time for any given contact.

The entire chat view is shown in Example 9-11. Since the individual contacts will be
housed in their own templates (as we'll see in Example 9-13), the chat window only
needs to consist of the list item that will contain the list of contacts.

Example 9-11. public/templates/chat.html

<ul class="chat_list"s

The chat contact view shown in full in Example 9-12 is responsible for determining
when a chat session should be created by detecting when the user clicks on one of his
contacts or when one of the contacts sends a message to the logged-in user. The only
event in the events list is 'click': 'startChatSession', meaning the function
startChatSession is to be run whenever the user clicks anywhere within the view.

Example 9-12. public/js/views/chatitem.js

define(['SocialNetView', 'text!templates/chatitem.html'],
function(SocialNetView, chatItemTemplate) {
var chatItemView = SocialNetView.extend({
tagName: 'l1',

sel: $(this.el),

events: {
'click': 'startChatSession',

134 | Chapter9: Chat

1

initialize: function(options) {
options.socketEvents.bind(
'socket:chat:start:' + this.model.get('accountId'),
this.startChatSession,
this
)5
1,

startChatSession: function() {
this.trigger('chat:start', this.model);
1,

render: function() {
this.Sel.html(_.template(chatItemTemplate, {
model: this.model.toJSON()
s

return this;
}
b

return chatItemView;

s

When the view is initialized, it binds to the socket’s start event. This instructs Backbone
to go through the motions of starting a chat session whenever a chat is initiated from
Socket.io. So whether the user clicks on a contact or the contact initiates a discussion
with the user, the same process for starting the chat on screen is put into motion.

Starting a chat session from the chat item view means using Backbone’s event trig
ger functionality. As shown in Example 9-10, the chat view spawns off actual chat ses-
sions when triggered by the chat item view. So whenever someone clicks on the chat
item or whenever a chat message comes through Socket.io, the chat item is responsible
for notifying the chat controller about the appropriate time to bring a chat window on
screen.

Because each item of a chat item view is contained in a list item (<11i>), the template in
Example 9-13 for this view needs to contain the template parameters to show the con-
tact’s name on screen. For each contact, Backbone will show the first name in a list.

Example 9-13. public/templates/chatitem.html
<%= model.name.first %>
The chat session view in Example 9-14 provides real-time interactivity between two

users. Assuming both the sender and receiver are online at the same time, any messages
sent by either party will be immediately visible on the screen of the other.

Sending and Receiving Chat Messages | 135

Example 9-14. public/js/views/chatsession.js

define(['SocialNetView', 'text!templates/chatsession.html'],
function(SocialNetView, chatItemTemplate) {
var chatItemView = SocialNetView.extend({
tagName: 'div',

className: 'chat_session',
sel: $(this.el),

events: {
'submit form': 'sendChat'

I3

initialize: function(options) {
this.socketEvents = options.socketEvents;
this.socketEvents.on(
'socket:chat:in:' + this.model.get('accountId'),
this.receiveChat,
this
)5
1,

receiveChat: function(data) {
var chatLine = this.model.get('name').first + ' + data.text;
this.$el.find('.chat_log').append($('' + chatLine + '</1i>'));
1

sendChat: function() {
var chatText = this.$el.find('input[name=chat]').val();
if (chatText && /[*\s]+/.test(chatText)) {
var chatLine = 'Me: ' + chatText;
this.$el.find('.chat_log').append($('' + chatLine + '</1i>"));
this.socketEvents.trigger('socket:chat', {
to: this.model.get('accountId'),
text: chatText
b
}
return false;

1

render: function() {
this.Sel.html(_.template(chatItemTemplate, {
model: this.model.toJSON()
)
return this;
}
b;

return chatItemView;

s

136 | Chapter9: Chat

The events list contains a single entry: submit form. Whenever thelogged-in user clicks
the Send button, this event puts the sendChat function into action. In order to send a
message to your contact, you first use jQuery to get the value of the chat message form

field:
var chatText = this.$el.find('input[name=chat]').val();

The jQuery express input[name=chat] instructs jQuery to look for input fields that
contain a property called name with a value of chat. The val() function returns the
value that is currently stored in the field. The message could be empty—for example, if
the user entered a bunch of spaces or activated the Submit button without entering any
test—so to avoid wasting Nodes time processing an empty message, you can perform a
regular expression to check not only whether or not the string was empty, but whether
it was filled with empty space:

if (chatText && /[*\s]+/.test(chatText)) {

The regular expression /[~\s]+/ translates to “one or more characters that are not white
space.” The brackets ([]) cause the regular expression engine to check for a single char-
acter. The code \s is a character class that matches white space characters. Putting a
caret () in the first position negates the expression. So [*\s] would mean “a character
that is NOT a white space” Placing a plus sign (+) at the end will cause the regular
expression to search for one or more instances of “not a white space”

Now that the message is known to contain text, Backbone proceeds to add the message
to the chat session’s message list, and emit a socket event socket:chat to the contact’s
accountId with the chat message text. The chat message will get processed by the
SocialNetChat dispatcher and emitted to the server, as shown in Example 9-9.

The HTML for building the chat session view is shown in Example 9-15. The chat session
will consist of the contact’s full name (so the user knows who she is talking to), a chat
log containing all of the chat messages that have been sent or received, and a small form
containing a text box and button to send a message to the contact.

Example 9-15. public/templates/chatsession.js

<%= model.name.full %>

<ul class="chat_log">

<form>
<input type="text" name="chat" />
<input type="submit" value="Chat">
</form>

Sending and Receiving Chat Messages | 137

Node.js

The chat box will be ever-present in the HTML now, so it should be added to the Jade
layout in /views/layout.jade:

div#chat

The pattern for dealing with Node.js so far has been to have it handle authentication
and the passing of data. Because the chat server is already set up to authorize users—in
Examples 9-7 and 9-8—all thatisleft to do is route chats sent from users to their intended
recipients.

Example 9-16 contains the entirety of Node.js logic needed to pass chat messages be-
tween contacts. As shown in Example 9-14, a chat message consists of a “to” field con-
taining the accountID of the chat recipient, and a “text” field containing the contents of
the chat message. Since each user is joined to his own channel when he connects to the
server (shown in Example 9-8), sending a message targeted to specific users involves
emitting an event inside that channel.

Example 9-16. Routing chat messages in Node.js

socket.on('chatclient', function(data) {
sio.sockets.in(data.to).emit('chatserver', {
from: accountId,
text: data.text

s
s

Putting It Together

Although the chat functionality is fairly straightforward, it involves coordinating a lot
of small bits. This part of the chapter is intended to help organize the project and discuss
what changes were made to the existing code files.

Backbone

In this chapter you added a brand new user interface for chatting with your contacts.
This is significant because the new interface is a global view—it doesn’t get controlled
by the router that displays all of the other views, and so its event handlers aren’t handled
in the same way. Whereas other views are added and removed, all of the chat views stay
in sight at all times. This kind of functionality is what makes Backbone.js compelling;
unlike traditional web applications, you as a developer can create persistent experiences
on top of the regular flow of information through your application.

138 | Chapter9: Chat

The file boot.js contains the paths to the global JavaScript libraries required by various
parts of the application. In Example 9-17, a new library named Sockets is added to the
list. This will be used by the SocialNetSocket.js class discussed throughout the

chapter.
Example 9-17. public/js/boot.js

require.config({
paths: {
jQuery: '/js/libs/jquery',

Underscore: '/js/libs/underscore’,

Backbone: '/js/libs/backbone',

Sockets: '/socket.io/socket.io',

models: 'models',
text: '/js/libs/text',
templates: '../templates',

SocialNetView: '/js/SocialNetView

}’
shim: {
'Backbone': ['Underscore', 'jQuery'],
'SocialNet': ['Backbone']
}
H;

require(['SocialNet'], function(SocialNet) {

SocialNet.initialize();

s

Example 9-18 brings back the trusted router class, which controls the client-facing
display pages. In Chapter 9 you added socketEvents, an object that extends Backbone’s
Event prototype. The socketEvents object will be passed to the login so the socket
server can be informed when the user successfully logs onto the site.

Example 9-18. public/js/router.js

define(['views/index', 'views/register', 'views/login',

'views/forgotpassword', 'views/profile', 'views/contacts',
'views/addcontact', 'models/Account', 'models/StatusCollection',

'models/ContactCollection'],

function(IndexView, RegisterView, LoginView, ForgotPasswordView, ProfileView,
ContactsView, AddContactView, Account, StatusCollection,

ContactCollection) {

var SocialRouter = Backbone.Router.extend({

currentView: null,

socketEvents: _.extend({}, Backbone.Events),
routes: {

'addcontact': 'addcontact',

"index': 'index',

Putting It Together

139

"login': 'login',

'register': 'register',
'forgotpassword': 'forgotpassword',
'profile/:id': 'profile',
'contacts/:1d': 'contacts'

1

changeView: function(view) {
if (null != this.currentView) {
this.currentView.undelegateEvents();
}
this.currentView = view;
this.currentView.render();

¥

index: function() {
var statusCollection = new StatusCollection();
statusCollection.url = '/accounts/me/activity';
this.changeView(new IndexView({
collection: statusCollection
130N
statusCollection.fetch();
1,

addcontact: function() {
this.changeView(new AddContactView());
1,

login: function() {
this.changeView(new LoginView({socketEvents:this.socketEvents}));

1

forgotpassword: function() {
this.changeView(new ForgotPasswordView());

1

register: function() {
this.changeView(new RegisterView());

1

profile: function(id) {
var model = new Account({id:id});
this.changeView(new ProfileView({model:model}));
model.fetch();

1,

contacts: function(id) {
var contactId = id ? id : 'me';
var contactsCollection = new ContactCollection();
contactsCollection.url = '/accounts/' + contactId + '/contacts';

this.changeView(new ContactsView({
collection: contactsCollection

140 | Chapter9: Chat

130N
contactsCollection.fetch();

}
s

return new SocialRouter();

s

In addition, the application will reach into the router to get the socketEvents object to
use for the overall socket mediator (SocialNetSockets. js).

Example 9-19 shows how the login view changes to support the new socket functionality.
When a login view is initialized, it is given a reference to the router’s socketEvents
property. When the user successfully logs into the site, socketEvents trigger method
is called with the event name app: loggedin. This will trigger the sockets mediator to
connect to the Socket.io server and begin listening for chat events.

Example 9-19. public/js/views/login.js

define(['SocialNetView', 'text!templates/login.html'],
function(SocialNetView, loginTemplate) {
var loginView = SocialNetView.extend({
requireLogin: false,

el: $('#content'),

events: {
"submit form": "login"

1

initialize: function(options) {
this.socketEvents = options.socketEvents;

1

login: function() {
var socketEvents = this.socketEvents;
$.post('/login',
this.$('form').serialize(), function(data) {
socketEvents.trigger('app:loggedin');
window.location.hash = 'index';
}).error(function(){
$("#error").text('Unable to login.');
$("#error").slideDown();
s
return false;

1

render: function() {
this.Sel.html(loginTemplate);
S("#error").hide();
S("input[name=email]").focus();

}

Putting It Together | 141

s

return loginView;

s

Node.js

Throughout this book I have tried to communicate the importance of Node.js as a
gatekeeper to information. When you connect to a server, the goal should be to get in
as quickly as possible and then get out, so any authentication has to be fast and trans-
parent. Adding Socket.io to the mix helps with this because it opens up the possibility
of performing many requests in a single connection while enduring the overhead of
authentication only once. This can open up a lot of bandwidth to the rest of the appli-
cation because you can pre-load all of your user’s information once instead of hitting
the database multiple times with more connections.

More advanced usage of sockets will be explored in Chapter 10. Because the application
is more or less complete at this point, you can start adding interesting real-time activities
without incurring a lot of extra overhead. Even though the website will be more inter-
active and alive-feeling, the enhanced experience won't cause a huge drain on your
server’s resources.

When I first refactored the class in Example 9-20, I grouped the route imports with the
model imports, and got all kinds of wacky errors. It's important to configure the ex
press.bodyParser () middleware before defining your application routes, or else your
POST requests will arrive with empty parameter lists since Express will not have eval-
uated the page request body containing the form fields until after the page request has
already responded to the user.

Example 9-20. app.js

var express = require('express');

var http = require('http');

var nodemailer = require('nodemailer');

var MemoryStore = require('connect').session.MemoryStore;
var app = express();

var dbPath = 'mongodb://localhost/nodebackbone’;

var fs = require('fs');

// Create an http server
app.server = http.createServer(app);

// Create a session store to share between methods
app.sessionStore = new MemoryStore();

// Import the data layer
var mongoose = require('mongoose');
var config = {

mail: require('./config/mail')

142 | Chapter9: Chat

}

// Import the models
var models = {
Account: require('./models/Account')(config, mongoose, nodemailer)

};

app.configure(function(){
app.sessionSecret = 'SocialNet secret key';
app.set('view engine', 'jade');
app.use(express.static(__dirname + '/public'));
app.use(express.limit('imb'));
app.use(express.bodyParser());
app.use(express.cookieParser());
app.use(express.session({
secret: app.sessionSecret,
key: 'express.sid',
store: app.sessionStore
s
mongoose.connect(dbPath, function onMongooseError(err) {
if (err) throw err;
b
b

// Import the routes
fs.readdirSync('routes"').forEach(function(file) {
if (file[0] == '."') return;
var routeName = file.substr(0, file.indexOf('.'));
require('./routes/' + routeName)(app, models);

s

app.get('/', function(req, res){
res.render('index.jade');

s

app.post('/contacts/find', function(req, res) {
var searchStr = req.param('searchStr', null);
if (null == searchStr) {
res.send(400);
return;

}

models.Account.findByString(searchStr, function onSearchDone(err,accounts) {
if (err || accounts.length == 0) {
res.send(404);
} else {
res.send(accounts);
}
s
b

Putting It Together | 143

// New in Chapter 9 - the server listens, instead of the app
app.server.listen(8080);
console.log('Listening on port 8080');

The application’s usability depends on a well-formatted user interface. In order to keep
the chat system as unobtrusive as possible, I've docked the chat window to the lower
righthand quadrant of the screen, as shown in Example 9-21. Each chat session has a
fixed width and height and is set to float left—as new chat sessions are created, they will
automatically appear next to the existing sessions moving left across the screen.

Example 9-21. public/styles/styles.css

form {
width: 400px;
}

#chat form {
width: auto;

}

#chat {
position: absolute;
right: 0;
bottom: 0;

}

.chat_list {
float: right;
border: 1px solid black;
list-style-type: none;
overflow: auto;
width: 120px;
height: 300px;
margin: 0;
padding: 0;
}

.chat_list 11 {
width: 100%;
padding: 10px 0;
background-color: #0099ff;
}

.chat_list 11 (odd) {
background-color: #80ccff;

}

.chat_list span {
margin: 10px;

}

144 | Chapter9: Chat

.chat_session {
float: left;
width: 250px;
height: 300px;

}

This is the first time styles have been introduced to this otherwise rather ugly website.
Showing off some mind-bending CSS3 skills, let’s add a bit of visual flare to the list of
contacts shown in the chat window. Every line will have a blue background behind the
contact’s name, but because of the : nth-child(odd) pseudo selector, every other contact
will have a brighter blue background.

Example 9-22 shows the final version of accounts.js. This is the new routes file that was
created to handle all of the account-related endpoints in the Express application. Storing
them in a grouped file like this makes managing and changing the application simpler
—it’s easier to remember where in the file structure you need to look to make updates
and add functionality, and it provides a cleaner, self-documenting directory structure.

Example 9-22. routes/accounts.js

module.exports = function(app, models) {
app.get('/accounts/:1d/contacts', function(req, res) {
var accountId = req.params.id == 'me'’
? req.session.accountId
: req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.contacts);
H;
b

app.get('/accounts/:id/activity', function(req, res) {
var accountld = req.params.id == 'me'
? req.session.accountId
: req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.activity);
b
s

app.get('/accounts/:1d/status', function(req, res) {
var accountId = req.params.id == 'me'’
? req.session.accountId
: req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.status);
H;
b
app.post('/accounts/:1d/status', function(req, res) {

var accountld = req.params.id == 'me'
? req.session.accountId

Putting It Together | 145

. req.params.id;
models.Account.findById(accountId, function(account) {
status = {
name: account.name,
status: req.param('status', '")
IH

account.status.push(status);

// Push the status to all friends
account.activity.push(status);
account.save(function (err) {
if (err) {
console.log('Error saving account:
}
s
b
res.send(200);
b

+ err);

app.delete('/accounts/:id/contact', function(req,res) {
var accountId = req.params.id == 'me'
? req.session.accountId
: req.params.id;
var contactId = req.param('contactId', null);

// Missing contactId, don't bother going any further
if (null == contactId) {

res.send(400);

return;

}

models.Account.findById(accountId, function(account) {
if ('account) return;
models.Account.findById(contactId, function(contact,err) {
if (!contact) return;

models.Account.removeContact(account, contactId);
// Kill the reverse link
models.Account.removeContact(contact, accountId);
b
b

// Note: Not in callback - this endpoint returns immediately and
// processes in the background
res.send(200);

s

app.post('/accounts/:1d/contact', function(reg,res) {
var accountId = req.params.id == 'me'’
? req.session.accountId
. req.params.id;
var contactld = req.param('contactId', null);

146 | Chapter9: Chat

// Missing contactId, don't bother going any further
if (null == contactId) {

res.send(400);

return;

}

models.Account.findById(accountId, function(account) {
if (account) {
models.Account.findById(contactId, function(contact) {
models.Account.addContact(account, contact);

// Make the reverse link
models.Account.addContact(contact, account);
account.save();
b
}
b

// Note: Not in callback - this endpoint returns immediately and
// processes in the background
res.send(200);

b;

app.get('/accounts/:id', function(req, res) {

var accountld = req.params.id == 'me'
? req.session.accountId
: req.params.id;

models.Account.findById(accountId, function(account) {

if (accountId == 'me'
|| models.Account.hasContact(account, req.session.accountId)) {
account.isFriend = true;

}

res.send(account);
b
b
}

As with every other route, the accounts route is set up in a Common]JS module format:
all of the functionality is contained within this file and the rest of the application is
unable to access any of its functions directly because they are not exported. Instead, the
export statement acts as a setup function—the application loads this file, providing a
reference to itself and the list of models, and the routes are set up and added to Express
using Express’s own post and get functions to register each route.

Example 9-23 shows how the authentication-related routes were refactored into a stand-
alone routing file, instead of continuing to load directly from the application’s app.js
JavaScript file. Like the accounts route in Example 9-22, the authentication file provides
an exported function that handles registration of all of the authentication-related routes
during Express’s setup.

Putting It Together | 147

Example 9-23. routes/authentication.js

module.exports = function(app, models) {
app.post('/login', function(reqg, res) {
var email = req.param('email', null);

var password = req.param('password', null);

if (null == email || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

}

models.Account.login(email, password, function(account) {
if ('account) {
res.send(401);
return;
}
req.session.loggedIn = true;
req.session.accountId = account._id;
res.send(200);
H;
b

app.post('/register', function(reqg, res) {
var firstName = req.param('firstName', '");
var lastName = req.param('lastName', '');
var emaill = req.param('email', null);
var password = req.param('password', null);

if (null == emaill || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

}

models.Account.register(email, password, firstName, lastName);
res.send(200);
b

app.get('/account/authenticated', function(req, res) {
if (req.session && req.session.loggedIn) {
res.send(200);
} else {
res.send(401);
}
b

app.post('/forgotpassword', function(reqg, res) {
var hostname = req.headers.host;
var resetPasswordUrl = 'http://' + hostname + '/resetPassword';
var emaill = req.param('email', null);

148 | Chapter9: Chat

if (null == email || email.length < 1) {
res.send(400);
return;

}

models.Account.forgotPassword(email, resetPasswordUrl, function(success){
if (success) {
res.send(200);
} else {
// Username or password not found
res.send(404);
}
H;
b

app.get('/resetPassword', function(req, res) {
var accountId = req.param('account', null);
res.render('resetPassword.jade', {locals:{accountId:accountId}});

s

app.post('/resetPassword', function(req, res) {
var accountlId = req.param('accountId', null);
var password = req.param('password', null);
if (null != accountId && null != password) {

models.Account.changePassword(accountId, password);

}
res.render('resetPasswordSuccess.jade');

b;

}

None of these functions can be directly accessed from outside this file because they are
not included in the export list; however, since all the functions are Express setup com-
mands, there will be no need to come back to this code in other modules. All interaction
will happen against the model objects, which are shared between every route in Express.

Finally, Example 9-24 contains the unabridged chat.js functionality: this is the Socket.io
server that will provide access to the chat functionality created throughout Chapter 9.

Example 9-24. routes/chat.js

module.exports = function(app, models) {
var 1o = require('socket.i0');
var utils = require('connect').utils;
var cookie = require('cookie');
var Session = require('connect').middleware.session.Session;

var sio = io.listen(app.server);

sio.configure(function() {
sio.set('authorization', function(data, accept) {
var signedCookies = cookie.parse(data.headers.cookie);
var cookies = utils.parseSignedCookies(signedCookies,app.sessionSecret);

Putting It Together | 149

data.sessionID = cookies['express.sid'];
data.sessionStore = app.sessionStore;
data.sessionStore.get(data.sessionID, function(err, session) {

if (err || !session) {
return accept('Invalid session', false);
} else {

data.session = new Session(data, session);
accept(null, true);
}
b
b

sio.sockets.on('connection', function(socket) {
var session = socket.handshake.session;
var accountId = session.accountId;
socket.join(accountId);

socket.on('chatclient', function(data) {
sio.sockets.in(data.to).emit('chatserver', {
from: accountlId,
text: data.text
b;
s
b
b
}

Pay close attention to the order of embedding for the events and functions inside the
Socket.io calls. When a chat is sent from the client to the server, the server responds by
emitting an ever thorough sio. sockets, not through the socket object that was created
upon connection. This is an important fact: although you should think of every chat as
being between two people, in a purely technical sense the chat is performed from one
person (the sender) to one or more people (the receivers).

There is no single sign-on concept built into the functionality of this application. If you
have two web browsers, if you have a phone, or if you have shared your password, it is
entirely possible that your account can be accessed from multiple locations at the same
time. If that is the case, any chat sent to your account will be instantly received by
everyone logged into your account. So while the communication is from one account
to one other account, the actual chat will be sent from one web browser to an unknown
number of other web browsers.

150 | Chapter9: Chat

CHAPTER 10
Activities in Real Time

We are going to be using Node.js’s events library to listen for friend changes from within
our Socket.io channel. This gets us around having to subscribe to multiple channels
(which isn't possible) and opens an avenue for scaling out the chat function using some-
thing like Redis or RabbitMQ.

This command tells you how many sockets are in a room:

var clients = io.sockets.clients(nick.room)

Adding Custom Events

In Chapter 2 you learned about the events library that ships with Node.js. Events are at
the core of JavaScript’s power and Node.js makes it easy to create, trigger, and consume
everything from I/O progress to user input to custom actions you define yourself in your
functions.

Why are custom events so important for real-time notification in the social networking
application? After all, you could very easily trigger an event every time someone logs
in, updates his status, or comments on someone else’s profile, and let the event handler
decide which connected sockets should see the event.

Because Node.js is single-threaded, any logic you do in your event handler will effec-
tively block your running code. So while it might be fast to process a login event if you
have only two connections open from your development computer, if you have a real
running site your server will be spending a lot of time going through all of the connec-
tions to figure out who a particular message should be sent to. That would be a lot of
wasted time when it is just as easy to filter the message to only those listeners who would
be interested in it.

151

Triggering Events

Every message triggered by a user event will be named event: [userid] and contain at
least two properties: from and action. So if user 539 logs into the system, this could
trigger an event called event:539 with an action value of login and a from value of
539. Since the event will contain a JavaScript object, you can include as many extra
parameters you want, but the unofficial contract between Backbone.js and Node.js will
be an AccountID in the event name and at least an action property so Backbone will
know how to react to the event.

In Example 10-1, an EventEmitter object is created at the same time as the overall
Express app instance. Rather than just adding the new dispatcher to the app object so
it can be used by the routes, I've added three functions to expose the eventDispatch
er to the rest of the application. You can access triggerEvent from anywhere in the
application to raise an event to all the listeners attached to the eventDispatcher. Use
addEventListener to add a function as a listener, and if youre adding a listener that
will be going away—such as a connected user who logs off the system and no longer
needs notifications—use removeEventListener with the same parameters as the cor-
responding addEventListener call.

Example 10-1. Adding an event dispatcher

var events = require('events');

// Create an event dispatcher

var eventDispatcher = new events.EventEmitter();

app.addEventListener = function (eventName, callback) {
eventDispatcher.on(eventName, callback);

b

app.removeEventListener = function(eventName, callback) {
eventDispatcher.removelListener(eventName, callback);

}s

app.triggerEvent = function(eventName, eventOptions) {
eventDispatcher.emit(eventName, eventOptions);

}

Adding Listeners

After logging into the application and initiating a Socket.io connection, you need a way
to be informed of changes to your contacts’ data. To get notified of these changes, Node.js
will subscribe to the events sent by each of your friends when you log in.

Example 10-2 shows how to sort through the connected user’s contact list and add an
event listener for each contact. This work happens immediately after connecting to the
socket and has the additional benefit that loading the user’s account and storing it in a
local variable keeps it primed in memory and means you never have to go back to the
database.

152 | Chapter 10: Activities in Real Time

Example 10-2. event_login.js

var handleContactEvent = function(eventMessage) {
socket.emit(eventName, eventMessage);

}

var subscribeToAccount = function(accountId) {
var eventName = 'event:' + accountld;
app.addEventListener(eventName, handleContactEvent);
console.log('Subscribing to ' + eventName);

};

models.Account.findById(accountId, function subscribeToFriendFeeds(account) {
var subscribedAccounts = {};
sAccount = account;
account.contacts.forEach(function(contact) {
if (!subscribedAccounts[contact.accountId]) {
subscribeToAccount(contact.accountId);
subscribedAccounts[contact.accountId] = true;

}
s

if (!subscribedAccounts[accountId]) {
// Subscribe to my own updates
subscribeToAccount(accountId);

}
s

The subscribedAccounts variable is a dictionary object that provides a map of which
accounts the socket has created listeners for. This serves a similar function to the dic-
tionary used to make the chat sessions in Chapter 9: by creating a key for the accoun
tId every time an event listener is added and checking for that ID in the next iteration
of the forEach loop, you avoid problems that would arise if your account listed the same
contact more than once. After checking all the accounts, the subscribedAccounts list
is checked for your current accountId, and if you have not yet subscribed to your own
events, subscribeToAccount is triggered so you will receive updates from your own
account.

The handleContactEvent function funnels incoming events down to the socket. From
that point on it will be up to the Backbone.js UT on the client to figure out what needs
to be displayed to the subscribed user.

When the socket is disconnected, loop through the user’s contact list again but this time
remove the event listeners corresponding to each accountID, as shown in
Example 10-3. Removing the event listeners lets the callback function get picked up by
the garbage collector, and prevents the unnecessary processing that would otherwise
continue to happen when those events were raised.

Adding Custom Events | 153

Example 10-3. event_logout.js

socket.on('disconnect', function() {
sAccount.contacts.forEach(function(contact) {
var eventName = 'event:' + contact.accountId;
app.removeEventListener(eventName, handleContactEvent);
console.log('Unsubscribing from ' + eventName);
b
H;

Contact Login Notification

In Chapter 9 you added a persistent contact list that stays onscreen as long as your user
is connected to the website. Although it’s possible to send messages to your contacts in
real time, you can never be sure if they are online and able to receive your communi-
cation.

Backbone.js

The user interface for contact login notifications will be minimal but clear; when a
contact is offline, he will have a red “stop light” circle icon next to his name, and when
the contact is online, the circle’s color will change to green (see Figure 10-1).

Figure 10-1. Online/offline traffic light indicators

The icon should be small enough to fit comfortably on a line of text—when I created
mine, I gave it a maximum height of 15 pixels. Each circle will have a diameter of 15
pixels, so when both are saved side-by-side in one image, the final image size became
30 pixels wide by 15 pixels high.

The online indicator will be a fixed-size HTML element with the traffic light indicator
as a background image with CSS, as shown in Example 10-4. Because the image is larger
than the HTML element it is contained in, the visual effect will be a red light. When the
classonlineisadded to the element, the CSS engine will switch the background-position
property so the top left of the visible image will start with a 15-pixel offset. The HTML
element does not change sizes, so the visual effect will be that of the light changing from

154 | Chapter 10: Activities in Real Time

red (offline) to green (online). This effect is known as a CSS sprite. Sprites combine
multiple images into a single file so they can be retrieved by web browsers in a single
request. So when your contact comes online, his indicator circle will switch to green
without needing to download a special “green light” icon.

Example 10-4. Online indicator CSS

.online_indicator {

float: left;

width: 15px;

height: 16px;

background-image: url('/images/trafficlight.png');
}

.online_indicator.online {
background-position: -15px 0;

}

The handleContactEvent function in Example 10-5 will accept contact events from
Node.js and dispatch to them the custom event emitter that was added to Backbone in
Chapter 9. When the socket is connected, bind to the contactEvent message and point
to the handleContactEvent function. Remember from earlier in the chapter that each
even contains at least an action and a from property, so you can build a unique event
string and emit that to your application. Each view can listen for events from specific
contacts and react to changes from them, such as changes to the contact’s login status
that you are about to implement.

Example 10-5. Adding contact events to the socket mediator

socket.on('contactEvent', handleContactEvent);

var handleContactEvent = function(eventObj) {
var eventName = eventObj.action + ':' + eventObj.from;
eventDispatcher.trigger(eventName, eventObj);

}

Example 10-6 contains the new event bindings for chatitem.js and chatsession.js. When
these classes are initialized they will now listen for events named “login” and “logout”
associated with their underlying model. When a contact comes online, the handleCon
tactLogin function springs into action and adds the online class to the online indicator.
This will cause the CSS to switch the red status indicator circle to green onscreen. When
a contact goes offline, the handleContactLogout function reverses the effect: it removes
the online class from the indicator icon, which will cause the graphic to switch back to
the red offline visual circle.

Contact Login Notification | 155

Example 10-6. Reacting to online status

initialize: function(options) {
var accountId = this.model.get('accountId');
options.socketEvents.bind(
'"login:' + accountId,
this.handleContactLogin,
this
)5
options.socketEvents.bind(
"logout:"' + accountld,
this.handleContactLogout,
this
)5
options.socketEvents.bind(
'socket:chat:start:' + accountld,
this.startChatSession,
this
)5
1

handleContactLogin: function() {
this.model.set('online', true);
this.$el.find('.online_indicator').addClass('online');

1

handleContactLogout: function() {
this.model.set('online', false);
SonlineIndicator = this.$el.find('.online_indicator');
while ($onlineIndicator.hasClass('online')) {
$onlineIndicator.removeClass('online');
}
}

render: function() {
this.Sel.html(_.template(chatItemTemplate, {
model: this.model.toJSON()

s
if (this.model.get('online')) this.handleContactLogin();

return this;

}

Also new in this example is the model’s online property. In most cases, the contact list
will have been downloaded before the Socket.io connect process completes. When that
happens, Backbone will use the new online property from the connect list to determine
whether or not the contact’s visual indicator should show him as online or offline.

156 | Chapter 10: Activities in Real Time

Node.js

When someone connects to the Socket.io server, two event types need to be triggered.
First, the user’s presence is announced to all of his contacts. Second, all of the user’s
contacts who have already logged in need to be communicated back to the user.

When a user connects to the Socket.io server, he will now trigger an event against his
own accountId, as shown in Example 10-7. This will notify all of his contacts that he
logged in by changing his online indicator icon in his contacts’ Backbone.js Ul

Example 10-7. Emitting login events: snippets/login_connect.js

app.triggerEvent('event:' + accountId, {
from: accountld,
action: 'login'

s

Upon the Socket.io disconnection, Node.js will now trigger an account logout event, as
shown in Example 10-8. This will be received by everyone who is subscribed to the
current user and cause their indicator icons to show the user as offline.

Example 10-8. Emitting logout events: snippets/login_disconnect.js

socket.on('disconnect', function() {
app.triggerEvent('event:' + accountId, {
from: accountld,
action: 'logout'
b
H;

Example 10-9 introduces a virtual property called online to the contact schema in the
account model’s Mongoose schema definition. A virtual property is temporary, never
stored to the database, and by default is not shown in JSON results. The online property
is given a get function, which triggers the application to check the connected sockets
to see whether or not the given contact is currently online.

Example 10-9. Adding a virtual property to the account model

var schemaOptions = {

toJSON: {
virtuals: true
}’
toObject: {
virtuals: true
}
b
var Contact = new mongoose.Schema({
name: {
first: { type: String },
last: { type: String }

Contact Login Notification | 157

}’

accountId: { type: mongoose.Schema.ObjectId },

added: { type: Date }, // When the contact was added

updated: { type: Date } // When the contact last updated
}, schemaOptions);

Contact.virtual('online').get(function(){
return app.isAccountOnline(this.get('accountId'));

s

The isAccountOnline function in Example 10-10 counts the number of sockets con-
nected to the room whose name matches the supplied accountId. By adding this func-
tion to the application, it makes this functionality available to the rest of the application
—you can check whether or not a user is currently logged into the specific account from
anywhere else in your application code.

Example 10-10. Determining if an account is online

app.isAccountOnline = function(accountId) {
var clients = sio.sockets.clients(accountId);
return (clients.length > 0);

b

Status Updates

There are a few points of contact where you can see a contact’s activity stream. The
activity stream so far has been a cold thing that required manually updating the page
in order to get new updates. Even if you add a status update yourself, your own update
will appear on screen but you will not see updates added by other people since you came
to the activity list.

Using the lessons and framework built for the chat notifications, it's time to enhance the
activity stream with real-time updates.

Backbone.js

Back in Example 10-5 you added a generic handler to listen for all events coming from
the server, which can be consumed on a per-contact basis by individual views. Now it
will be straightforward to bring that same logic into other parts of the application,
starting with the index page you come to when you first log into the site.

First, add a reference to the socketEvents object to the router when the index view is
instantiated, as shown in Example 10-11.

Example 10-11. Adding the socketEvents object to the index view

index: function() {
var statusCollection = new StatusCollection();
statusCollection.url = '/accounts/me/activity';

158 | Chapter 10: Activities in Real Time

this.changeView(new IndexView({
collection: statusCollection,
socketEvents:this.socketEvents

)
statusCollection.fetch();

1

The collection object was already being passed to the new IndexView when it was
instantiated, but now the socketEvents object is also sent. This will get picked up in
the custom initialization function and used by the view when it is rendered by the
web browser.

The IndexViews initialize function in Example 10-12 has been modified to include
options as a function parameter. The options parameter is always available to initi-
alization methods in Backbone.js but most of the classes you have used so far haven’t
needed them. JavaScript does not match function calls to the expected parameter counts
like many other languages, so if you include an extra, or too few, parameters in your
function declaration, the unused variables will contain null values.

Example 10-12. Listening for socket events on the index view

initialize: function(options) {
options.socketEvents.bind('status:me', this.onSocketStatusAdded, this);
this.collection.on('add', this.onStatusAdded, this);
this.collection.on('reset', this.onStatusCollectionReset, this);

}J

When the view is initialized it adds a listener to the event named status:me. Whenever
events with the status type originating from the currently logged-in account come
through the dispatcher, the function onSocketStatusAdded will take effect and add the
new status to the current index view.

The onSocketStatusAdded function’s purpose in Example 10-13 is to take the incoming
data payload coming in from Socket.io and convert it to a Status model, then add it to
the view’s collection object. Remember that the index view has an event onStatusAd
ded that handles the work of rendering the new status and displaying it onscreen, so
onSocketstatusAdded needs to create a Status, throw it at the collection, and not worry
about the work of displaying the status to your user.

Example 10-13. Handling socket events on the index view

onSocketStatusAdded: function(data) {
var newStatus = data.data;
this.collection.add(new Status({status:newStatus.status,name:newStatus.name}))

1

Status Updates | 159

The actual contents of the status message will come in the data property of the Socket.io
payload. To make the status a bit easier to work with, I referenced the data property
into the newStatus variable. That way I can access its contents through newStatus rather
than having to type the full path (data.data).

Just like the index view, the socketEvents object is added to the profile view in
Example 10-14. The creation of the account model object is unaffected, nor is the meth-
od by which the account is loaded asynchronously to the activation of the profile View.
This is a bit different from the index view, because you will need to consider the lifecycle
of the account model in order to properly handle socket events for that account.

Example 10-14. Adding the socketEvents object to the profile view

profile: function(id) {
var model = new Account({id:id});
this.changeView(new ProfileView({model:model,
socketEvents:this.socketEvents}));
model.fetch();

1

The initialization method in Example 10-15 now includes an options parameter and
creates alocal variable for the socketEvents, saving it to the profile’s instance properties
so it can be used later on. You can’t listen directly for changes to the account at this stage
because nine times out of ten your account object will not have loaded over the network
yet, so you won't have an account ID to bind against. You could always pass this in from
the router, but in this case, it’s going to be more effective to pull the ID from the account
after it finally arrives.

Example 10-15. Getting ready to listen for socket events on the profile view

initialize: function (options) {
this.socketEvents = options.socketEvents;
this.model.bind('change', this.render, this);

}J

Example 10-16 demonstrates how you can add a listener for socket events from the
account you are viewing when the profile page is rendered. Because changes to the
account model trigger the render process, you need to check to see whether the model
has a valid _1id field yet. In most cases, the render function will run twice: first, when
the view is created and render is called by the router, and second, when the account
model finishes loading the profile will render again, at which point you will finally have
an accountld to listen for.

160 | Chapter 10: Activities in Real Time

Example 10-16. Listening for socket events on the profile view

render: function() {
if (this.model.get('_id')) {
this.socketEvents.bind('status:' + this.model.get('_id"),
this.onSocketStatusAdded, this);
}

Finally, when a new status arrives through Socket.io, add it to the profile list by calling
the pre-existing prependStatus function that was created earlier, as shown in
Example 10-17. This function was previously used in the render function as well as on
the form postback when you added a status to the profile. Now take it out of the form
postback and only include it during the onSocketStatusAdded. Whenever you or any-
one else adds a status to the profile, the update will appear onscreen for everyone who
might be currently looking at this user’s profile.

Example 10-17. Handling socket events on the profile view

onSocketStatusAdded: function(data) {
var newStatus = data.data;
this.prependStatus(new Status({
status:newStatus.status,name:newStatus.name
m
1,

Node.js

When you first added the status update endpoint to the Express server, the “success”
response was sent to the client right away while the server went offand actually processed
the status. This allowed your user to see the update appear almost right away—the only
prerequisite was acknowledgement from the server that the payload was received. It is
safe to assume that the status will eventually end up in the target account, but there is
no need for your user to waste time waiting on database I/O.

That doesn’t happen anymore; Backbone will now display status updates as they happen
regardless of where they originate. Updates will no long appear on screen as a direct
result of hitting the Submit button in your web browser.

Even though Express’s quick response-then-process flow isn't used to trigger an imme-
diate onscreen update, it is still valuable from the server’s point of view. By ending the
response immediately, your computer is able to take on more connections even while
Node.js is processing the previous requests in the background.

Example 10-18 adds a triggerEvent call when the status is successfully saved into the
target account. This works out for the best of all worlds because the request finishes
right away rather than blocking, everyone connected to the server receives the status

Status Updates | 161

update as soon as it is applied, and the update is sent out only after a successful database
insert. This is better than before: when the status was displayed to the sending user, there
was a chance that if the status was in fact not saved, his view of the account would be
out of sync with what the rest of the world sees.

Example 10-18. snippets/express_status.js

app.post('/accounts/:1d/status', function(req, res) {
var accountId = reqg.params.id == 'me'
? req.session.accountId
: req.params.id;
models.Account.findById(accountId, function(account) {
status = {
name: account.name,
status: req.param('status', '')
b

account.status.push(status);

// Push the status to all friends
account.activity.push(status);
account.save(function (err) {
if (err) {
console.log('Error saving account: ' + err);
} else {
app.triggerEvent('event:' + accountId, {
from: accountld,
data: status,
action: 'status'

s
}
b
s
res.send(200);
s

Putting It Together

Although this chapter didn't introduce any new classes or components, it enhanced
much of the existing functionality that you have built so far. The full versions of the
changed source files will be presented in this section along with explanations of what
changed and why certain functionality was added to specific areas of code instead of
others.

Backbone.js

In this chapter Backbone took on a major role, ensuring that messages are passed to and
from the backend server and displayed in real time. At last, the frontend JavaScript is
closely married to the backend JavaScript thanks to help from the Socket.io library.

162 | Chapter 10: Activities in Real Time

The socketEvents object added to the router in Chapter 9 is shared among more of the
views in Example 10-19. The index and profile views now require the socketEvent,
so it is included in the constructor for those routes.

Example 10-19. public/js/router.js

define(['views/index', 'views/register', 'views/login',
'views/forgotpassword', 'views/profile', 'views/contacts',
'views/addcontact', 'models/Account', 'models/StatusCollection',
'models/ContactCollection'],

function(IndexView, RegisterView, LoginView, ForgotPasswordView, ProfileView,
ContactsView, AddContactView, Account, StatusCollection,
ContactCollection) {

var SocialRouter = Backbone.Router.extend({
currentView: null,

socketEvents: _.extend({}, Backbone.Events),

routes: {
'addcontact': 'addcontact',
'"index': 'index',
"login': 'login',
'register': 'register',
'forgotpassword': 'forgotpassword',
'profile/:id': 'profile',
'contacts/:1d': 'contacts'

1

changeView: function(view) {
if (null != this.currentView) {
this.currentView.undelegateEvents();
}
this.currentView = view;
this.currentView.render();

1

index: function() {
var statusCollection = new StatusCollection();
statusCollection.url = '/accounts/me/activity';
this.changeView(new IndexView({
collection: statusCollection,
socketEvents:this.socketEvents
130N
statusCollection.fetch();

1

addcontact: function() {
this.changeView(new AddContactView());

1

login: function() {
this.changeView(new LoginView({socketEvents:this.socketEvents}));

Putting It Together | 163

1

forgotpassword: function() {
this.changeView(new ForgotPasswordView());

1

register: function() {
this.changeView(new RegisterView());

1

profile: function(id) {
var model = new Account({id:id});
this.changeView(new ProfileView({model:model, socketEvents:this.socketEvents}));
model.fetch();

1,

contacts: function(id) {
var contactId = id ? id : 'me';
var contactsCollection = new ContactCollection();
contactsCollection.url = '/accounts/' + contactId + '/contacts';

this.changeView(new ContactsView({
collection: contactsCollection
130N
contactsCollection.fetch();
}
b

return new SocialRouter();

s

The only change to the SocialNet class in Example 10-20 is the addition of the login
results contained in the data property send to the app: loggedin event. This will contain
the logged-in user’s accountId, which the Socket.io event handler needs to figure out
when events are coming in that are related to the current user versus an outside contact.

Example 10-20. public/js/SocialNet.js

define(['router', 'SocialNetSockets'], function(router, socket) {
var initialize = function() {
socket.initialize(router.socketEvents);
checkLogin(runApplication);

1

var checkLogin = function(callback) {
$.ajax("/account/authenticated", {
method: "GET",
success: function(data) {
router.socketEvents.trigger('app:loggedin', data);
return callback(true);
}s
error: function(data) {
return callback(false);

164 | Chapter 10: Activities in Real Time

}
s
};

var runApplication = function(authenticated) {
if (authenticated) {
window.location.hash = 'index';
} else {
window.location.hash = 'login';

}
Backbone.history.start();

};

return {

initialize: initialize
IH
s
Before this, the accountId was never explicitly shared with Backbone: all user-related
functionality was handled by Node.js. Now Backbone is more aware of the account
belonging to the user who is logged in.

The SocialNetSockets class in Example 10-21 adds awareness of events originating
from contacts who are using the system in real time via the contactEvent binding inside
the socket’s connect callback. The new handleContactEvent function translated events
from your contacts into triggers for consumption by the rest of the client UL Each event
coming from Node.js will contain an accountIdand anaction—event names are derived
by concatenating these values. This allows you to precisely control the filters for events
coming into your application so individual views can focus on specific user events and
not spend time filtering through messages that do not apply to them.

Example 10-21. public/js/SocialNetSockets.js

define(['Sockets', 'models/contactcollection', 'views/chat'],
function(sio, ContactCollection, ChatView) {
var SocialNetSockets = function(eventDispatcher) {
var accountId = null;

var socket = null;

var connectSocket = function(socketAccountId) {
accountId = socketAccountId;
socket = io.connect();

socket
.on('connect_failed', function(reason) {
console.error('unable to connect', reason);
b
.on('connect', function() {
eventDispatcher.bind('socket:chat', sendChat);
socket.on('chatserver', function(data) {

Putting It Together | 165

eventDispatcher.trigger('socket:chat:start:' + data.from);
eventDispatcher.trigger('socket:chat:in:' + data.from, data);

s
socket.on('contactEvent', handleContactEvent);

var contactsCollection = new ContactCollection();
contactsCollection.url = '/accounts/me/contacts';
new ChatView({collection: contactsCollection,
socketEvents: eventDispatcher}).render();
contactsCollection.fetch();
b;
b

var handleContactEvent = function(eventObj) {
var eventName = eventObj.action + ':' + eventObj.from;
eventDispatcher.trigger(eventName, eventObj);

if (eventObj.from == accountId) {
eventName = eventObj.action + ':me';
eventDispatcher.trigger(eventName, eventObj);
}
b

var sendChat = function(payload) {
if (null != socket) {
socket.emit('chatclient', payload);
}
b

eventDispatcher.bind('app:loggedin', connectSocket);

3

return {
initialize: function(eventDispatcher) {
SocialNetSockets(eventDispatcher);

}
IH
s
The ChatItem class in Example 10-22 is now aware of logins and logouts by all of the
connected contacts. When it initializes, the view attached to the login and logout events
compares against the model’s accountId. When the contact logs in, handleContactLo
ginaddstheonline CSS class to the online_indicator graphic, causing the traffic light
graphic to switch to green. When the contact logs out, handleContactLogout removes
all of the online class entries from online_indicator, which causes the CSS engine to
reset the background-position property of the graphic back to the default red position,
indicating that the contact is offline.

166 | Chapter 10: Activities in Real Time

Example 10-22. public/js/views/chatitem.js

define(['SocialNetView', 'text!templates/chatitem.html'],
function(SocialNetView, chatItemTemplate) {
var chatItemView = SocialNetView.extend({
tagName: 'li',

Sel: $(this.el),

events: {
'click': 'startChatSession',

IS

initialize: function(options) {
var accountId = this.model.get('accountId');
options.socketEvents.bind(
'login:' + accountld,
this.handleContactLogin,
this
)5
options.socketEvents.bind(
'logout:"' + accountld,
this.handleContactLogout,
this
)5
options.socketEvents.bind(
'socket:chat:start:' + accountld,
this.startChatSession,
this
)5
1,

handleContactLogin: function() {
this.model.set('online', true);
this.$el.find('.online_indicator').addClass('online');

I3

handleContactLogout: function() {
this.model.set('online', false);
SonlineIndicator = this.$el.find('.online_indicator');
while (S$onlineIndicator.hasClass('online')) {
SonlineIndicator.removeClass('online');
}
1

startChatSession: function() {
this.trigger('chat:start', this.model);
1

render: function() {
this.Sel.html(_.template(chatItemTemplate, {
model: this.model.toJSON()
130N

Putting It Together

167

if (this.model.get('online')) this.handleContactLogin();
return this;
}
b

return chatItemView;

s

The chat item in Example 10-23 has been outfitted with handleContactLogin and
handleContactLogout to deal with contactslogging in and out while a user is connected.
When the contact’s login or logout event is raised, his status indicator will change colors
to indicate the new connected state. The actual work of changing the color of the image
is handled in CSS, but the jQuery functions addClass and removeClass called from
Backbone.js cause the CSS settings to change dynamically in the web browser.

Example 10-23. public/js/views/chatsession.js

define(['SocialNetView', 'text!templates/chatsession.html'],
function(SocialNetView, chatItemTemplate) {
var chatItemView = SocialNetView.extend({
tagName: 'div',

className: 'chat_session',
sel: $(this.el),

events: {
'submit form': 'sendChat'

1

initialize: function(options) {
this.socketEvents = options.socketEvents;
var accountId = this.model.get('accountId');
this.socketEvents.on('socket:chat:in:' + accountld, this.receiveChat, this);
this.socketEvents.bind(
'login:' + accountld,
this.handleContactLogin,
this
)5
this.socketEvents.bind(
'logout:"' + accountld,
this.handleContactLogout,
this
)5
1,

handleContactLogin: function() {
this.Sel.find('.online_1indicator').addClass('online');
this.model.set('online', true);

1

handleContactLogout: function() {

168 | Chapter 10: Activities in Real Time

this.model.set('online', false);
SonlineIndicator = this.$el.find('.online_indicator');
while ($onlineIndicator.hasClass('online')) {
$onlineIndicator.removeClass('online');
}
1,

receiveChat: function(data) {
var chatLine = this.model.get('name').first + ': ' + data.text;
this.Sel.find('.chat_log').append(S('' + chatLine + '</1i>'));
1,

sendChat: function() {
var chatText = this.$el.find('input[name=chat]').val();
if (chatText && /[*\s]+/.test(chatText)) {
var chatLine = 'Me: ' + chatText;
this.$Sel.find('.chat_log').append($('' + chatLine + '</1i>"));
this.socketEvents.trigger('socket:chat', {
to: this.model.get('accountId'),
text: chatText
b
}
return false;

1

render: function() {
this.Sel.html(_.template(chatItemTemplate, {
model: this.model.toJSON()

130N
if (this.model.get('online')) this.handleContactLogin();
return this;
}
b

return chatItemView;

s

The full index view shown in Example 10-24 displays status updates when they come
through the Socket.io event listener, rather than immediately when you press the post
button to submit a status update to your profile. Now, whenever anyone adds a status
to your profile, it will trigger the status:me event, which is handled by the onSocket
StatusAdded function in this view.

Example 10-24. public/js/views/index.js

define(['SocialNetView', 'text!templates/index.html',
'views/status', 'models/Status'],
function(SocialNetView, indexTemplate, StatusView, Status) {
var indexView = SocialNetView.extend({
el: $('#content'),

events: {

Putting It Together | 169

"submit form": "updateStatus"

¥

initialize: function(options) {
options.socketEvents.bind('status:me', this.onSocketStatusAdded, this);
this.collection.on('add', this.onStatusAdded, this);
this.collection.on('reset', this.onStatusCollectionReset, this);

¥

onStatusCollectionReset: function(collection) {
var that = this;
collection.each(function (model) {
that.onStatusAdded(model);
s
1,

onSocketStatusAdded: function(data) {
var newStatus = data.data;
var found = false;
this.collection.forEach(function(status) {
var name = status.get('name');
if (name && name.full == newStatus.name.full &&
status.get('status') == newStatus.status) {
found = true;
}
s
if (!found) {
this.collection.add(new Status({status:newStatus.status,name:newStatus.name}))
}
1,

onStatusAdded: function(status) {
var statusHtml = (new StatusView({ model: status })).render().el;
S(statusHtml).prependTo('.status_list').hide().fadeIn('slow");

1,

updateStatus: function() {
var statusText = $('input[name=status]').val();
var statusCollection = this.collection;
S.post('/accounts/me/status’', {
status: statusText
Y); // New: no longer adding to screen
return false;

1

render: function() {
this.Sel.html(indexTemplate);
}
b;

return indexView;

s

170 | Chapter 10: Activities in Real Time

The login view shown in Example 10-25 now triggers the app:loggedin event after a
successful login, much like the application loader did in Example 10-20. This will pass
your user credentials to the application listener so it can react properly to Socket.io
events directed at your account.

Example 10-25. public/js/views/login.js

define(['SocialNetView', 'text!templates/login.html'],
function(SocialNetView, loginTemplate) {
var loginView = SocialNetView.extend({
requireLogin: false,

el: $('#content'),

events: {
"submit form": "login"

1

initialize: function(options) {
this.socketEvents = options.socketEvents;

1

login: function() {
var socketEvents = this.socketEvents;
$.post('/login',
this.$('form').serialize(), function(data) {
socketEvents.trigger('app:loggedin', data);
window.location.hash = 'index';
}).error(function(){
$("#error").text('Unable to login.');
$("#error").slideDown();
b
return false;

}J

render: function() {
this.Sel.html(loginTemplate);
S("#error").hide();
S("input[name=email]").focus();
}
b;

return loginView;

s

The profile view shown Example 10-26 adds support for real-time status changes orig-
inating from Node.js. When the status event is triggered, onSocketStatusAdded takes
care of adding the incoming text to the top of the status list.

Putting It Together | 171

Example 10-26. public/js/views/profile.js

define(['SocialNetView', 'text!templates/profile.html’,
'text!templates/status.html', 'models/Status',
'views/Status'],

function(SocialNetView, profileTemplate,
statusTemplate, Status, StatusView)

{

var profileView = SocialNetView.extend({
el: $('#content'),

events: {
"submit form": "postStatus"

I3

initialize: function (options) {
this.socketEvents = options.socketEvents;
this.model.bind('change', this.render, this);

1

postStatus: function() {
var that = this;
var statusText = $('input[name=status]').val();
var statusCollection = this.collection;
$.post('/accounts/' + this.model.get('_id') + '/status', {
status: statusText
s
return false;

1

onSocketStatusAdded: function(data) {
var newStatus = data.data;
this.prependStatus(new Status({status:newStatus.status,name:newStatus.name}))

I3

prependStatus: function(statusModel) {
var statusHtml = (new StatusView({ model: statusModel })).render().el;
S(statusHtml).prependTo('.status_list').hide().fadeIn('slow');

1,

render: function() {

if (this.model.get('_id')) {

this.socketEvents.bind('status:' + this.model.get('_id'"),
this.onSocketStatusAdded, this);

}

var that = this;

this.Sel.html(
_.template(profileTemplate,this.model.toJSON())

)5

var statusCollection = this.model.get('status');
if (null !'= statusCollection) {
_.each(statusCollection, function (statusJson) {

172 | Chapter 10: Activities in Real Time

var statusModel = new Status(statusJson);
that.prependStatus(statusModel);
b;
}
}
b

return profileView;

s

Node.js

In this chapter you added extra events to Node.js to support the Backbone real-time
updates. Let’s examine the small changes within the context of the rest of the code they

modify to see how the real-time events affect the way the application is written.

The full application in Example 10-27 now contains an event dispatcher and exposes
functions to add and remove event listeners from the dispatcher. Because the dispatcher
is declared at this level, it is treated as a private variable and is not directly accessible to
any other functions outside of the app.js source file. This prevents routes and models
from accessing the events dispatcher directly, giving you full control over how it is used.

Example 10-27. app.js

var express = require('express');

var http = require('http');

var nodemailer = require('nodemailer');

var MemoryStore = require('connect').session.MemoryStore;
var app = express();

var dbPath = 'mongodb://localhost/nodebackbone’;

var fs = require('fs');

var events = require('events');

// Create an http server
app.server = http.createServer(app);

// Create an event dispatcher

var eventDispatcher = new events.EventEmitter();

app.addEventListener = function (eventName, callback) {
eventDispatcher.on(eventName, callback);

b

app.removeEventListener = function(eventName, callback) {
eventDispatcher.removelListener(eventName, callback);

}

app.triggerEvent = function(eventName, eventOptions) {
eventDispatcher.emit(eventName, eventOptions);

};

// Create a session store to share between methods
app.sessionStore = new MemoryStore();

Putting It Together

173

// Import the data layer
var mongoose = require('mongoose');
var config = {

mail: require('./config/mail')

}

// Import the models
var models = {
Account: require('./models/Account')(app, config, mongoose, nodemailer)

};

app.configure(function(){
app.sessionSecret = 'SocialNet secret key';
app.set('view engine', 'jade');
app.use(express.static(__dirname + '/public'));
app.use(express.limit('imb'));
app.use(express.bodyParser());
app.use(express.cookieParser());
app.use(express.session({
secret: app.sessionSecret,
key: 'express.sid',
store: app.sessionStore
s
mongoose.connect(dbPath, function onMongooseError(err) {
if (err) throw err;
b
b

// Import the routes
fs.readdirSync('routes"').forEach(function(file) {
if (file[0] == '."') return;
var routeName = file.substr(0, file.indexOf('.'));
require('./routes/' + routeName)(app, models);

s

app.get('/', function(req, res){
res.render('index.jade');

s

app.post('/contacts/find', function(req, res) {
var searchStr = req.param('searchStr', null);
if (null == searchStr) {
res.send(400);
return;

}

models.Account.findByString(searchStr, function onSearchDone(err,accounts) {
if (err || accounts.length == 0) {
res.send(404);
} else {
res.send(accounts);

}

174 | Chapter 10: Activities in Real Time

s
s

// New in Chapter 9 - the server listens, instead of the app
app.server.listen(8080);
console.log('Listening on port 8080');

A virtual property online is added to the account model’s schema in Example 10-28.
This is used in the contact list to get the initial online state for each of your contacts, but
it is a virtual property because it should not be saved into MongoDB. To determine
whether an account is online, check whether or not someone is subscribed to the Sock-
et.io channel. Since you subscribe to your own channel when you log in, and no one else
ever subscribes to your channel, having one or more listeners on your channel means
your account is logged onto the system.

Example 10-28. models/Account.js

module.exports = function(app, config, mongoose, Status, nodemailer) {
var crypto = require('crypto');

var Status = new mongoose.Schema({

name: {
first: { type: String },
last: { type: String }
1,
status: { type: String }
b

var schemaOptions = {
toJSON: {
virtuals: true

1
toObject: {
virtuals: true
}
b
var Contact = new mongoose.Schema({
name: {
first: { type: String },
last: { type: String }
1
accountId: { type: mongoose.Schema.ObjectId },
added: { type: Date }, // When the contact was added
updated: { type: Date } // When the contact last updated

}, schemaOptions);

Contact.virtual('online').get(function(){
return app.isAccountOnline(this.get('accountId'));

s

Putting It Together | 175

var AccountSchema = new mongoose.Schema({

email: { type: String, unique: true },

password: { type: String },

name: {
first: { type: String },
last: { type: String },
full: { type: String }

1,

birthday: {
day: { type: Number, min: 1, max: 31, required: false },
month: { type: Number, min: 1, max: 12, required: false },
year: { type: Number }

1,

photourl: { type: String },

bilography: { type: String },

contacts: [Contact],

status: [Status], // My own status updates only

activity: [Status] // All status updates including friends
b

var Account = mongoose.model('Account', AccountSchema);

var registerCallback = function(err) {
if (err) {
return console.log(err);
b
return console.log('Account was created');

};

var changePassword = function(accountId, newpassword) {
var shaSum = crypto.createHash('sha256");
shaSum.update(newpassword);
var hashedPassword = shaSum.digest('hex');
Account.update({_id:accountId}, {S$Sset: {password:hashedPassword}},{upsert:false},
function changePasswordCallback(err) {
console.log('Change password done for account ' + accountId);
b
b

var forgotPassword = function(email, resetPasswordUrl, callback) {
var user = Account.findOne({email: email}, function findAccount(err, doc){
if (err) {
// Email address is not a valid user
callback(false);
} else {
var smtpTransport = nodemailer.createTransport('SMTP', config.mail);
resetPasswordUrl += '?account=' + doc._1id;
smtpTransport.sendMail({
from: 'thisapp@example.com',
to: doc.email,
subject: 'SocialNet Password Request',
text: 'Click here to reset your password:

+ resetPasswordurl

176 | Chapter 10: Activities in Real Time

}, function forgotPasswordResult(err) {

if (err) {
callback(false);
} else {
callback(true);
}
H;
}
H;

};

var login = function(email, password, callback) {
var shaSum = crypto.createHash('sha256");
shaSum.update(password);
Account.findOne({email:email,password:shaSum.digest('hex')},function(err,doc){
callback(doc);
b
b

var findByString = function(searchStr, callback) {
var searchRegex = new RegExp(searchStr, 'i');
Account.find({

Sor: [
{ '"name.full': { Sregex: searchRegex } },
{ email: { $regex: searchRegex } }
]

}, callback);
b

var findById = function(accountId, callback) {
Account.findOne({_id:accountId}, function(err,doc) {
callback(doc);
b
b

var addContact = function(account, addcontact) {
contact = {
name: addcontact.name,
accountId: addcontact._id,
added: new Date(),
updated: new Date()
b

account.contacts.push(contact);

account.save(function (err) {

if (err) {
console.log('Error saving account: ' + err);
}
b

};

var removeContact = function(account, contactId) {

Putting It Together | 177

if (null == account.contacts) return;

account.contacts.forEach(function(contact) {
if (contact.accountId == contactIld) {
account.contacts.remove(contact);
}
b
account.save();

1

var hasContact = function(account, contactId) {
if (null == account.contacts) return false;

account.contacts.forEach(function(contact) {
if (contact.accountId == contactId) {
return true;
}
s
return false;

};

var register = function(email, password, firstName, lastName) {
var shaSum = crypto.createHash('sha256");
shaSum.update(password);

console.log('Registering ' + email);
var user = new Account({
email: email,
name: {
first: firstName,
last: lastName,
full: firstName + ' ' + lastName
}s
password: shaSum.digest('hex"')
b
user.save(registerCallback);
console.log('Save command was sent');

};

return {
findById: findById,
register: register,
hasContact: hasContact,
forgotPassword: forgotPassword,
changePassword: changePassword,
findByString: findByString,
addContact: addContact,
removeContact: removeContact,
login: login,
Account: Account

178 | Chapter 10: Activities in Real Time

The account status route has been updated in Example 10-29 so it willnow send a status
event whenever an activity status is added to any account. This event will filter down to
all of the account’s contacts and cause the status to instantly display onscreen for anyone
who happens to be looking at the account’s profile view.

Example 10-29. routes/accounts.js

module.exports = function(app, models) {
app.get('/accounts/:id/contacts', function(req, res) {
var accountld = req.params.id == 'me'
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.contacts);
H;
b

app.get('/accounts/:id/activity', function(req, res) {
var accountId = req.params.id == 'me’
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.activity);
b
b

app.get('/accounts/:id/status', function(req, res) {
var accountld = req.params.id == 'me'
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
res.send(account.status);
b
b

app.post('/accounts/:id/status', function(req, res) {
var accountId = req.params.id == 'me’
? req.session.accountId
. req.params.id;
models.Account.findById(accountId, function(account) {
status = {
name: account.name,
status: req.param('status', '")
b

account.status.push(status);

// Push the status to all friends
account.activity.push(status);
account.save(function (err) {
if (err) {
console.log('Error saving account:
} else {

+ err);

Putting It Together | 179

app.triggerEvent('event:' + accountId, {
from: accountld,
data: status,
action: 'status'
s
}
s
b
res.send(200);
b

app.delete('/accounts/:id/contact', function(req,res) {
var accountId = req.params.id == 'me'
? req.session.accountId
: req.params.id;
var contactId = req.param('contactId', null);

// Missing contactId, don't bother going any further
if (null == contactId) {

res.send(400);

return;

}

models.Account.findById(accountId, function(account) {
if ('account) return;
models.Account.findById(contactId, function(contact,err) {
if (!contact) return;

models.Account.removeContact(account, contactId);
// Kill the reverse link
models.Account.removeContact(contact, accountId);
b
b

// Note: Not in callback - this endpoint returns immediately and
// processes in the background
res.send(200);

b

app.post('/accounts/:1d/contact', function(reg,res) {
var accountId = req.params.id == 'me'
? req.session.accountId
. req.params.id;
var contactId = req.param('contactId', null);

// Missing contactId, don't bother going any further
if (null == contactId) {

res.send(400);

return;

}

models.Account.findById(accountId, function(account) {

180 | Chapter 10: Activities in Real Time

if (account) {
models.Account.findById(contactId, function(contact) {
models.Account.addContact(account, contact);

// Make the reverse link
models.Account.addContact(contact, account);
account.save();
b
}
b

// Note: Not in callback - this endpoint returns immediately and
// processes in the background
res.send(200);

b;

app.get('/accounts/:id', function(req, res) {
var accountld = req.params.id == 'me'
? req.session.accountId
: req.params.id;
models.Account.findById(accountId, function(account) {
if (accountId == 'me'
|| models.Account.hasContact(account, req.session.accountId)) {
account.isFriend = true;
}
res.send(account);
b
b
}

The authentication routes in Example 10-30 add the account ID data to the login and
authenticated responses so the Backbone application can compare incoming events
to figure out if they are applicable to the currently logged-in user.

Example 10-30. routes/authentication.js

module.exports = function(app, models) {
app.post('/login', function(req, res) {
var emaill = req.param('email', null);

var password = req.param('password', null);

if (null == emaill || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

}

models.Account.login(email, password, function(account) {
if ('account) {
res.send(401);
return;

}

Putting It Together | 181

req.session.loggedIn = true;
req.session.accountId = account._id;
res.send(account._1id);

b

b;

app.post('/register', function(reg, res) {
var firstName = req.param('firstName', '');
var lastName = req.param('lastName', '');
var emaill = req.param('email', null);
var password = req.param('password', null);

if (null == email || email.length < 1
|| null == password || password.length < 1) {
res.send(400);
return;

}

models.Account.register(email, password, firstName, lastName);
res.send(200);
b;

app.get('/account/authenticated', function(req, res) {
if (reqg.session && req.session.loggedIn) {
res.send(req.session.accountId);

} else {
res.send(401);
}
b;

app.post('/forgotpassword', function(reqg, res) {
var hostname = req.headers.host;
var resetPasswordUrl = 'http://' + hostname + '/resetPassword';
var email = req.param('email', null);
if (null == email || email.length < 1) {
res.send(400);
return;

}

models.Account.forgotPassword(email, resetPasswordUrl, function(success){
if (success) {
res.send(200);
} else {
// Username or password not found
res.send(404);
}
b;
b;
app.get('/resetPassword', function(req, res) {

var accountId = req.param('account', null);
res.render('resetPassword.jade', {locals:{accountId:accountId}});

182 | Chapter 10: Activities in Real Time

s

app.post('/resetPassword', function(req, res) {
var accountId = req.param('accountId', null);
var password = req.param('password', null);
if (null != accountId && null != password) {

models.Account.changePassword(accountId, password);

}
res.render('resetPasswordSuccess.jade');

b

}

Example 10-31 shows the finalized chat.js route. Now when your user logs in, he will
loop through each of his contacts and listen to events originated from them. When your
user logs out or is disconnected, he will loop through each of his contacts and remove
those listeners to prevent hanging processes. This is similar to the changeView function
in the Backbone.js router: the goal is to prevent “zombie” listeners from consuming
resources by reacting to events for users and views that no longer exist. With the listener
callback removed from the eventlist, Node.js is free to garbage-collect the socket because
there will be no forgotten references to it hanging around.

Example 10-31. routes/chat.js

module.exports = function(app, models) {
var 1o = require('socket.i0');
var utils = require('connect').utils;
var cookie = require('cookie');
var Session = require('connect').middleware.session.Session;

var sio = io.listen(app.server)

sio.configure(function() {
app.isAccountOnline = function(accountld) {
var clients = sio.sockets.clients(accountId);
return (clients.length > 0);

1

sio.set('authorization', function(data, accept) {
var signedCookies = cookie.parse(data.headers.cookie);
var cookies = utils.parseSignedCookies(signedCookies,app.sessionSecret);
data.sessionID = cookies['express.sid'];
data.sessionStore = app.sessionStore;
data.sessionStore.get(data.sessionID, function(err, session) {

if (err || !session) {
return accept('Invalid session', false);
} else {

data.session = new Session(data, session);
accept(null, true);
}
s
H;

Putting It Together | 183

sio.sockets.on('connection', function(socket) {
var session = socket.handshake.session;
var accountId = session.accountId;
var sAccount = null;
socket.join(accountId);

app.triggerEvent('event:' + accountld, {
from: accountlId,
action: 'login'

s

var handleContactEvent = function(eventMessage) {
socket.emit('contactEvent', eventMessage);

};

var subscribeToAccount = function(accountId) {
var eventName = 'event:' + accountld;
app.addEventListener(eventName, handleContactEvent);
console.log('Subscribing to ' + eventName);

};

models.Account.findById(accountId, function subscribeToFriendFeeds(account) {
var subscribedAccounts = {};
sAccount = account;
account.contacts.forEach(function(contact) {
if (!subscribedAccounts[contact.accountId]) {
subscribeToAccount(contact.accountlId);
subscribedAccounts[contact.accountId] = true;
}
b

if (!subscribedAccounts[accountId]) {
// Subscribe to my own updates
subscribeToAccount(accountId);
}
s

socket.on('disconnect', function() {
sAccount.contacts.forEach(function(contact) {
var eventName = 'event:' + contact.accountld;
app.removeEventListener(eventName, handleContactEvent);
console.log('Unsubscribing from ' + eventName);
b;
app.triggerEvent('event:' + accountId, {
from: accountld,
action: 'logout'
b
s

socket.on('chatclient', function(data) {
sio.sockets.in(data.to).emit('chatserver', {

184 | Chapter 10: Activities in Real Time

from: accountld,
text: data.text
H;
s
H;
b
}

Static Files

Static files are supporting files that do not contain executable code but are needed by
the user interface.

Example 10-32 contains the new stylesheet for this project. The online_indicator class
will contain the traffic light status indicator for the updated chatlist. This willbea 15x16
pixel container with a background image, which will be indistinguishable from a real
image element in the web browser. The importance of this is that the online_indica
tor container element is smaller than the size of the traffic light background image.
When the online CSS class is added to the indicator container, the background position
shifts 15 px, giving the visual effect of the traffic light changing color.

Example 10-32. public/styles/styles.css

form {
width: 400px;
}

#chat form {
width: auto;

}

#chat {
position: absolute;
right: 0;
bottom: 0;

}

.chat_list {
float: right;
border: 1px solid black;
list-style-type: none;
overflow: auto;
width: 120px;
height: 300px;
margin: 0;
padding: 0;
}

.chat_list 11 {
width: 100%;
padding: 10px 0;

Putting It Together | 185

background-color: #0099ff;
}

.chat_list 1i:nth-child(odd) {
background-color: #80ccff;
}

.chat_list span {
margin: 10px;

}

.chat_session {
float: left;
width: 250px;
height: 300px;

}

.online_indicator {

float: left;

width: 15px;

height: 16px;

background-image: url('/images/trafficlight.png');
}

.online_indicator.online {
background-position: -15px 0;

}

186 | Chapter 10: Activities in Real Time

bootstrap

In software development a bootstrap is a
simple computer program whose purpose
is to launch a more complicated program.
When applied to Backbone.js, a bootstrap
is a small class that takes a minimum
amount of parameters and is capable of ini-
tializing the entire application.

denial of service (DOS)

A denial of service attack is an attempt to
render a web server inoperable for its in-
tended users, often by saturating its de-
signed capacity with unnecessary requests.

An action that happens outside of an appli-
cation’s regular flow, and handled by dedi-
cated code inside the application. Events
can be triggered by user input (keyboard
events, mouse events) or from computer in-
put (disk events, operating system events,
application events).

Internet Information Services (IIS)

A web server created by Microsoft used to
serve, among many types of content, web-
sites and applications.

middleware

Makes input and output easier by interfac-
ing between high level applications and low

Glossary

level system. Connect is an example of mid-
dleware that abstracts HTTP server func-
tionality and eases the work of dealing with
sessions, cookies, and data transport.

namespace
Contains a set of variables and functions
grouped by similar functionality. In
Node.js, each source file contains a set of
code that is not directly available to code
from other source files unless they are ex-
plicitly exported.

payload
A set of information delivered to an end
user. This could refer to raw bits, a JSON
response, or HTML data.

prototype
Unlike class-based programming languag-
es, JavaScript only has a single instance type:
object. Prototypes are JavaScript’s way of
sharing functions and variables across ob-
jects of the same type, similarly to classes.

prototype chain
Prototype chaining provides class inheri-
tance by linking the constructor for one
prototype to another to achieve a class who
contains all of the properties of both the
parent and child classes.

187

render

render
Rendering is the process of generating for-
matted content from source data. In
Node.js, a template engine such as Jade is

responsible for converting source models
into HTML for consumption by web brows-
ers. In Backbone.js, Underscore’s template
engine provides the same functionality.

188 | Glossary

About the Author

Mike Wilson has had the privilege of working with some of the largest and most influ-
ential brands in the world, including Disney, Microsoft, and McDonalds. He has years
of web development experience, designing and building everything from small business
sites to large MMO server clusters hosting millions of players. In his free time, Mike
maintains his personal blog and contributes to forums and experiments with emerging
frameworks and software. Mike lives in Vancouver with his wife and their three children.

Colophon

The animal on the cover of Building Node Applications with MongoDB and Backbone is
the small Indian civet (Viverricula indica), which is found across south and southeast
Asiaas well asin the Indonesian archipelago. The animal is named for the thick yellowish
musky-odored substance it produces in self defense.

The small Indian civet is slender, agile in climbing trees, has no erectile mane, and lives
in holes in rocky and brushy locations. It is nocturnal, solitary, and usually arboreal;
that is to say, it climbs trees and stays there. However, when hunting, it opts for ground
level. The civet is basically omnivorous—its diet consists of lizards, rodents, birds, in-
sects, and even eggs. In captivity, it is easily tamed and feeds on small animals, which it
catches with cat-like dexterity.

The small Indian civet is gray or tawny in color with rows of black spots on the body
and stripes on the tail. Its legs, ears, and muzzle are also black.

The civet produces a musk (also called civet), which is highly valued as a fragrance and
stabilizing agent for perfume. Both male and female civets produce the strong-smelling
secretion, which is produced by the civet’s perineal glands. Humans have been known
to hunt the civet for its meat, and purify its skin into medicine.

The cover image is from Shaw’s Zoology. The cover font is Adobe ITC Garamond. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

http://www.alwaysgetbetter.com

	Copyright
	Table of Contents
	Preface
	Audience and Assumptions
	Organization
	Part I: Introduction
	Part II: Building a Social Network

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Part I. Introducing Node.js, Backbone.js, and MongoDB
	Chapter 1. Introduction and Overview
	Building a Social Network
	Model-View-Controller (MVC)
	Pure JavaScript

	Chapter 2. Node.js
	Installing Node.js
	Express
	Templates

	Events
	Socket.io
	Modules and CommonJS

	Chapter 3. Backbone.js
	Model
	View
	View Template

	Collection
	Sync

	Router and History

	Chapter 4. MongoDB
	Accessing Data
	Writing
	Querying
	Indexes
	MapReduce

	Working with Node.js
	Concurrent Access

	Part II. Building a Social Network
	Chapter 5. Setting Up the Project
	Directory Structure
	File Listing

	Package Definition
	Web Server
	Index Template
	Application JavaScript

	Chapter 6. Authentication
	Account
	Routing
	Checking for Authentication
	Authentication Handler

	Registration
	Registration Template
	Registration Handler

	Login
	Login Template
	Login Handler

	Forgot Password
	Forgot Password Template
	Forgot Password Handler

	Reset Password
	Reset Password Templates
	Reset Password Handler

	Putting It Together
	Node.js

	Chapter 7. The User Interface
	Account Details
	Account Details Template
	Account Details Handler

	Contact List
	Activity Stream
	Activity Stream Template
	Activity Stream Handler

	Data Model
	Putting It Together
	Backbone
	Node.js

	Chapter 8. Making Friends
	Contact List
	Contact List Template
	Contact List Handler

	Add Contact
	Add Contact Template
	Add Contact Handler

	Remove Contact
	Remove Contact Template
	Remove Contact Handler

	Commenting
	Comment Template
	Comment Handler

	Putting It Together
	Backbone
	Node.js

	Chapter 9. Chat
	Refactoring
	Connecting to the Chat Server
	Backbone
	Node.js

	Sending and Receiving Chat Messages
	Backbone
	Node.js

	Putting It Together
	Backbone
	Node.js

	Chapter 10. Activities in Real Time
	Adding Custom Events
	Triggering Events
	Adding Listeners

	Contact Login Notification
	Backbone.js
	Node.js

	Status Updates
	Backbone.js
	Node.js

	Putting It Together
	Backbone.js
	Node.js
	Static Files

	Glossary
	About the Author

