
THE E XPER T ’S VOICE® I N C+ +

C++ Standard
Library Quick
Reference

—
Peter Van Weert
Marc Gregoire

www.allitebooks.com

http://www.allitebooks.org

 C++
Standard Library
Quick Reference

 Peter Van Weert
Marc Gregoire

www.allitebooks.com

http://www.allitebooks.org

C++ Standard Library Quick Reference

Peter Van Weert Marc Gregoire
Kessel-Lo, Belgium Meldert, Belgium

ISBN-13 (pbk): 978-1-4842-1875-4 ISBN-13 (electronic): 978-1-4842-1876-1
DOI 10.1007/978-1-4842-1876-1

Library of Congress Control Number: 2016941348

Copyright © 2016 by Peter Van Weert and Marc Gregoire

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Bart Vandewoestyne
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert

Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Tiffany Taylor
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484218754 . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484218754
www.apress.com/source-code/
http://www.allitebooks.org

 To my parents and my brother and his wife.
 Th eir support and patience helped me in fi nishing this book.

 —Marc Gregoire

 In loving memory of Jeroen. Your enthusiasm and courage
will forever remain an inspiration to us all.

 —Peter Van Weert

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors .. xv

About the Technical Reviewer ... xvii

Introduction .. xix

 ■Chapter 1: Numerics and Math ... 1

 ■Chapter 2: General Utilities ... 23

 ■Chapter 3: Containers ... 51

 ■Chapter 4: Algorithms .. 81

 ■Chapter 5: Stream I/O ... 101

 ■Chapter 6: Characters and Strings ... 125

 ■Chapter 7: Concurrency .. 161

 ■Chapter 8: Diagnostics ... 183

 ■Appendix A: Standard Library Headers 195

Index .. 201

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors .. xv

About the Technical Reviewer ... xvii

Introduction .. xix

 ■Chapter 1: Numerics and Math ... 1

Common Mathematical Functions .. <cmath> 1

Basic Functions .. 1

Exponential and Logarithmic Functions ... 2

Power Functions ... 2

Trigonometric and Hyperbolic Functions .. 2

Error and Gamma Functions ... 3

Integral Rounding of Floating-Point Numbers .. 3

Floating-Point Manipulation Functions ... 3

Classifi cation and Comparison Functions ... 4

Error Handling ... 5

Fixed-Width Integer Types ...<cstdint> 5

Arithmetic Type Properties .. <limits> 5

Complex Numbers ..<complex> 8

Compile-Time Rational Numbers .. <ratio> 9

Random Numbers ... <random> 10

Random Number Generators .. 10

Random Number Distributions ... 13

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Numeric Arrays ..<valarray> 17

std::slice ... 19

std::gslice ... 20

std::mask_array .. 21

std::indirect_array .. 21

 ■Chapter 2: General Utilities ... 23

Moving, Forwarding, Swapping ...<utility> 23

Moving .. 23

Forwarding ... 25

Swapping .. 26

Pairs and Tuples .. 26

Pairs.. <utility> 26

Tuples ... <tuple> 27

Relational Operators ..<utility> 28

Smart Pointers ... <memory> 28

Exclusive-Ownership Pointers .. 29

Shared-Ownership Pointers.. 31

Function Objects ... <functional> 33

Reference Wrappers ... 34

Predefi ned Functors ... 34

Generic Function Wrappers .. 35

Binding Function Arguments .. 36

Functors for Class Members ... 37

Initializer Lists ... <initializer_list> 39

Date and Time Utilities ... <chrono> 39

Durations .. 40

Time Points ... 41

Clocks ... 41

C-style Date and Time Utilities ... <ctime> 42

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

C-Style File Utilities .. <cstdio> 45

Type Utilities .. 45

Runtime Type Identifi cation <typeinfo>, <typeindex> 45

Type Traits ...<type_traits> 46

 ■Chapter 3: Containers ... 51

Iterators ...<iterator> 51

Iterator Tags .. 52

Non-Member Functions to Get Iterators ... 53

Non-Member Operations on Iterators ... 54

Sequential Containers ... 54

std::vector ... <vector> 54

std::deque ... <deque> 60

std::array ... <array> 60

std::list and std::forward_list<list>, <forward_list> 61

Sequential Containers Reference ... 63

std::bitset ... <bitset> 66

Container Adaptors .. 67

std::queue ... <queue> 68

std::priority_queue .. <queue> 68

std::stack ... <stack> 69

Example .. 69

Reference ... 70

Ordered Associative Containers .. 71

std::map and std::multimap ...<map> 71

std::set and std::multiset ...<set> 72

Searching ... 72

Order of Elements ... 73

Complexity .. 73

Reference ... 73

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

Unordered Associative Containers <unordered_map>, <unordered_set> 75

Hash Map .. 76

Template Type Parameters ... 76

Hash Functions ... 76

Complexity .. 77

Reference ... 77

Allocators .. 79

 ■Chapter 4: Algorithms .. 81

Input and Output Iterators ... 81

Algorithms ... <algorithm> 82

Terminology .. 82

General Guidelines .. 82

Applying a Function on a Range ... 83

Checking for the Presence of Elements .. 84

Finding Elements .. 84

Binary Search ... 85

Subsequence Search .. 86

Min/Max .. 87

Sequence Comparison .. 88

Copy, Move, Swap ... 88

Generating Sequences .. 89

Removing and Replacing .. 90

Reversing and Rotating .. 91

Partitioning ... 92

Sorting .. 93

Shuffl ing ... 94

Operations on Sorted Ranges ... 95

 ■ CONTENTS

xi

Permutation .. 96

Heaps .. 97

Numeric Algorithms .. <numeric> 98

Iterator Adaptors ...<iterator> 99

 ■Chapter 5: Stream I/O ... 101

Input and Output with Streams ... 101

Helper Types ..<ios> 102

std::ios_base ...<ios> 103

I/O Manipulators ..<ios>, <iomanip> 105

Example .. 106

std::ios ..<ios> 106

std::ostream... <ostream> 108

std::istream... <istream> 110

std::iostream .. <istream> 112

String Streams ..<sstream> 112

Example .. 113

File Streams ..<fstream> 113

Example .. 114

operator<< and >> for Custom Types ... 115

Stream Iterators ...<iterator> 115

std::ostream_iterator .. 115

std::istream_iterator .. 116

Stream Buffers ... <streambuf> 117

C-Style Output and Input .. <cstdio> 117

std::printf() Family ... 118

std::scanf() Family ... 122

 ■ CONTENTS

xii

 ■Chapter 6: Characters and Strings ... 125

Strings .. <string> 125

Searching in Strings ... 126

Modifying Strings ... 127

Constructing Strings ... 128

String Length .. 128

Copying (Sub)Strings .. 128

Comparing Strings .. 129

String Conversions ... 129

Character Classifi cation <cctype>, <cwctype> 130

Character-Encoding Conversion<locale>, <codecvt> 131

Localization .. <locale> 134

Locale Names ... 134

The Global Locale ... 135

Basic std::locale Members ... 136

Locale Facets .. 136

Combining and Customizing Locales .. 145

C Locales .. <clocale> 147

Regular Expressions ... <regex> 148

The ECMAScript Regular Expression Grammar .. 149

Regular Expression Objects .. 153

Matching and Searching Patterns .. 155

Match Iterators ... 158

Replacing Patterns ... 159

 ■ CONTENTS

xiii

 ■Chapter 7: Concurrency .. 161

Threads .. <thread> 161

Launching a New Thread .. 161

A Thread’s Lifetime ... 162

Thread Identifi ers ... 162

Utility Functions .. 163

Exceptions .. 163

Futures ... <future> 164

Return Objects .. 164

Providers... 165

Exceptions .. 167

Mutual Exclusion .. <mutex> 168

Mutexes and Locks ... 168

Mutex Types .. 170

Lock Types .. 171

Locking Multiple Mutexes ... 172

Exceptions .. 173

Calling a Function Once .. <mutex> 173

Condition Variables ...<condition_variable> 174

Waiting for a Condition ... 174

Notifi cation ... 175

Exceptions .. 176

Synchronization ... 176

Atomic Operations .. <atomic> 178

Atomic Variables ... 178

Atomic Flags ... 181

Nonmember Functions ... 181

Fences .. 182

 ■ CONTENTS

xiv

 ■Chapter 8: Diagnostics ... 183

Assertions ...<cassert> 183

Exceptions ...<exception>, <stdexcept> 184

Exception Pointers ... <exception> 184

Nested Exceptions ... <exception> 186

System Errors ...<system_error> 187

std::error_category .. 188

std::error_code .. 188

std::error_condition .. 189

C Error Numbers ... <cerrno> 190

Failure Handling .. <exception> 190

std::uncaught_exception() ... 190

std::terminate() .. 191

std::unexpected() .. 191

 ■Appendix A: Standard Library Headers 195

Numerics and Math (Chapter 1) .. 195

General Utilities (Chapter 2) .. 196

Containers (Chapter 3) .. 197

Algorithms (Chapter 4) .. 197

Stream I/O (Chapter 5) ... 198

Characters and Strings (Chapter 6) ... 199

Concurrency (Chapter 7) .. 199

Diagnostics (Chapter 8) ... 200

The C Standard Library .. 200

Index .. 201

xv

 About the Authors

 Peter Van Weert is a Belgian software engineer whose
main interest and expertise are programming
languages, algorithms, and data structures.

 He received his master’s of science in computer
science summa cum laude with congratulations of the
Board of Examiners from the University of Leuven. In 2010,
he completed his PhD thesis on the design and efficient
compilation of rule-based programming languages at the
research group for declarative programming languages
and artificial intelligence of the same university.
During his doctoral studies, he was a teaching assistant for
object-oriented programming (Java), software analysis and
design, and declarative programming.

 After graduating, Peter joined Nikon Metrology to work on large-scale, industrial
application software in the area of 3D laser scanning and point cloud inspection. At
Nikon, he has mastered C++ and refactoring and debugging of very large code bases
and has gained further proficiency in all aspects of the software development process,
including the analysis of functional and technical requirements, and agile and scrum-
based project and team management.

 In his spare time, he has co-authored two award-winning Windows 8 apps, and he is
a regular speaker at and board member of the Belgian C++ Users Group.

 Marc Gregoire is a software engineer from Belgium.
He graduated from the University of Leuven, Belgium,
with a degree in “Burgerlijk ingenieur in de computer
wetenschappen” (equivalent to a master’s of science in
engineering in computer science). The year after, he
received the cum laude degree of master’s in artificial
intelligence at the same university. After his studies,
Marc started working for a software consultancy
company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on
critical 2G and 3G software running on Solaris for
telecom operators. This required working in
international teams stretching from South America and
USA to EMEA and Asia. Now, Marc is working for Nikon
Metrology on industrial 3D laser scanning software.

 ■ ABOUT THE AUTHORS

xvi

 His main expertise is C/C++, specifically Microsoft VC++ and the MFC framework.
He has experience in developing C++ programs running 24/7 on Windows and Linux
platforms: for example, KNX/EIB home automation software. In addition to C/C++,
Marc also likes C# and uses PHP for creating web pages.

 Since April 2007, he has received the yearly Microsoft MVP (Most Valuable
Professional) award for his Visual C++ expertise.

 Marc is the founder of the Belgian C++ Users Group (www.becpp.org), author of
 Professional C++ , and a member on the CodeGuru forum (as Marc G). He maintains a
blog at www.nuonsoft.com/blog/ .

http://www.becpp.org/
http://www.nuonsoft.com/blog/

xvii

 About the Technical
Reviewer

 Bart Vandewoestyne is an enthusiastic, solo-parenting
software engineer living in Belgium. After obtaining his
master’s degree from the Computer Science
department at the University of Leuven, he worked as a
researcher in the numerical analysis and applied
mathematics section of that same university. He
successfully completed his PhD in 2008. Three years of
postdoctoral work later, Bart left the academic world for
industry. He now works as a senior development
software engineer for Esterline Belgium, where he
develops and maintains software for professional
flight-simulator alignment.

 Bart enjoys reading about and exploring all aspects
of C++ software development. In his spare time, and
when he’s away from his keyboard, he enjoys running,
swimming, paragliding, and spending quality time with
his now 6-year-old son Jenne. He wants the world to
know how much he cares about Jenne, and he hopes
that his child will also transform his passion into his
profession.

xix

 Introd uction

 The C++ Standard Library
 The C++ Standard Library is a collection of essential classes and functions used by
millions of C++ programmers on a daily basis. Being part of the ISO Standard of the
C++ Programming Language, an implementation is distributed with virtually every
C++ compiler. Code written with the C++ Standard Library is therefore portable across
compilers and target platforms.

 The Library is more than 20 years old. Its initial versions were heavily inspired by
a (then proprietary) C++ library called the Standard Template Library (STL) , so much
so that many still incorrectly refer to the Standard Library as “the STL.” The STL library
pioneered generic programming with templated data structures called containers and
 algorithms , glued together with the concept of iterators . Most of this work was adapted by
the C++ standardization committee, but nevertheless neither library is a true superset of
the other.

 The C++ Standard Library today is much more than the STL containers and
algorithms. For decades, it has featured STL-like string classes, extensive localization
facilities, and a stream-based I/O library, as well as all headers of the C Standard Library.
In recent years, the C++11 and C++14 editions of the ISO standard have added, among
other things, hash map containers, generic smart pointers, a versatile random-number-
generation framework, a powerful regular expression library, more expressive utilities
for function-style programming, type traits for template metaprogramming, and a
portable concurrency library featuring threads, mutexes, condition variables, and atomic
variables. Many of these libraries are based on Boost, a collection of open-source C++
libraries.

 And this is just the beginning: the C++ community has rarely been as active and alive
as in the past few years. The next version of the Standard, tentatively called C++17, is
expected to add even more essential classes and functions.

 Why This Book?
 Needless to say, it is hard to know and remember all the possibilities, details, and
intricacies of the vast and growing C++ Standard Library. This handy reference guide
offers a condensed, well-structured summary of all essential aspects of the C++ Standard
Library and is therefore indispensable to any C++ programmer.

 You could consult the Standard itself, but it is written in a very detailed, technical
style and is primarily targeted at Library implementors. Moreover, it is very long: the C++
Standard Library chapters alone are over 750 pages in length, and those on the

 ■ INTRODUCTION

xx

C Standard Library encompass another 250 pages. Other reference guides exist but are
often outdated, limited (most cover little more than the STL containers and algorithms),
or not much shorter than the Standard itself.

 This book covers all important aspects of the C++14 and C11 Standard Libraries,
some in more detail than others, and always driven by their practical usefulness. You will
not find page-long, repetitive examples; obscure, rarely used features; or bloated, lengthy
explanations that could be summarized in just a few bullets. Instead, this book strives to
be exactly that: a summary. Everything you need to know and watch out for in practice is
outlined in a compact, to-the-point style, interspersed with practical tips and short,
well-chosen, clarifying examples.

 Who Should Read This Book?
 The book is targeted at all C++ programmers, regardless of their proficiency with the
language or the Standard Library. If you are new to C++, its tutorial aspects will quickly
bring you up to speed with the C++ Standard Library. Even the most experienced C++
programmer, however, will learn a thing or two from the book and find it an indispensable
reference and memory aid. The book does not explain the C++ language or syntax itself,
but is accessible to anyone with basic C++ knowledge or programming experience.

 What You Will Learn
• How to use the powerful random-number-generation facilities

• How to work with dates and times

• What smart pointers are and how to use them to prevent memory leaks

• How to use containers to efficiently store and retrieve your data

• How to use algorithms to inspect and manipulate your data

• How lambda expressions allow for elegant use of algorithms

• What functionality the library provides for file and
stream-based I/O

• How to work with characters and strings in C++

• How to write localized applications

• How to write safe and efficient multithreaded code using the C++11
concurrency library

• How to correctly handle error conditions and exceptions

• And more!

 ■ INTRODUCTION

xxi

 General Remarks
• All types, classes, functions, and constants of the C++ Standard Library

are defined in the std namespace (short for standard).

• All C++ Standard Library headers must be included using #include
< header > (note: no .h suffix!).

• All C Standard Library headers are available to C++ programmers in a
slightly modified form by including <c header > (note the c prefix). 1 The
most notable difference between the C++ headers and their original C
counterparts is that all functionality is defined in the std namespace.
Whether it is also provided in the global namespace is up to the
implementation: portable code should therefore use the std namespace
at all times.

• This book generally only covers the C headers if there are no more
modern, C++-style alternatives provided by the C++ Standard Library.

• More advanced, rarely used topics such as custom memory allocators are
not covered.

 Code Examples
 To compile and execute the code examples given throughout the book, all you need is
a sufficiently recent C++ compiler. We leave the choice of compiler entirely up to you,
and we further assume you can compile and execute basic C++ programs. All examples
contain standard, portable C++ code only and should compile with any C++ compiler
that is compliant with the C++14 version of the Standard. We occasionaly indicate known
limitations of major compilers, but this is not a real goal of this book. In case of problems,
please consult your implementation’s documentation.

 Unless otherwise noted, code examples can be copied as is and put inside the main()
function of a basic command-line application. Generally, only two headers have to be
included to make a code snippet compile: the one being discussed in the context where
the example is given, and <iostream> for the command-line output statements (explained
shortly). If any other header is required, we try to indicate so in the text. Should we
forget, the appendix provides a brief overview of all headers of the Standard Library and
their contents. Additionally, you can download compilable source code files for all code
snippets from this book from the Apress website (www.apress.com/9781484218754).

 1 The original C headers may still be included with < header .h> , but their use is deprectated.

http://www.apress.com/9781484218754

 ■ INTRODUCTION

xxii

 Following is the obligatory first example (for once, we show the full program):

 #include <iostream>
 int main() {
 std::cout << "Hello world!" << std::endl;
 }

 Many code samples, including those in earlier chapters, write to the standard output
console using std::cout and the << stream operator, even though these facilities of the
C++ I/O library are only discussed in detail in Chapter 5 . The stream operator can be
used to output virtually all fundamental C++ types, and multiple values can be written
on a single line. The I/O manipulator std::endl outputs the newline character (\n) and
flushes the output for std::cout to the standard console. Straightforward usage of the
 std::string class defined in <string> may occur in earlier examples as well. For instance:

 More details regarding streams and strings are found in Chapters 5 and 6 ,
respectively, but this should suffice to get you through the examples in earlier chapters.

 Common Class
 The following Person class is used in code examples throughout the book to illustrate the
use of user-defined classes together with the Standard Library:

 #include <string>
 #include <ostream>

 class Person {
 public:
 Person() = default;
 explicit Person(const std::string& first,
 const std::string& last = "", bool isVIP = false)
 : m_first(first), m_last(last), m_isVIP(isVIP) {}

 const std::string& GetFirstName() const { return m_first; }
 void SetFirstName(const std::string& first) { m_first = first; }

 const std::string& GetLastName() const { return m_last; }
 void SetLastName(const std::string& last) { m_last = last; }

 bool IsVIP() const { return m_isVIP; }

http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_6

 ■ INTRODUCTION

xxiii

1© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1_1

Chapter 1

Numerics and Math

Common Mathematical Functions <cmath>
The <cmath> header defines an extensive collection of common math functions in the
std namespace. Unless otherwise specified, all functions are overloaded to accept all
standard numerical types, with the following rules for determining the return type:

•	 If all arguments are float, the return type is float as well.
Analogous for double and long double inputs.

•	 If mixed types or integers are passed, these numbers are
converted to double, and a double is returned as well. If one of the
inputs is a long double, long double is used instead.

Basic Functions

Function Description

abs(x)
fabs(x)

Returns the absolute value of x. <cstdlib> defines abs(),
labs(), and llabs() for int types; that abs() has return type
int, which is different from the abs() in <cmath> (double).

fmod(x, y)
remainder(x, y)

Returns the remainder of x y . For fmod(), the result always has

the same sign as x; for remainder(), that is not necessarily true.
E.g.: mod(1,4) = rem(1,4) = 1, but mod(3,4) = 3 and
rem(3,4) = -1.

remquo(x, y, *q) Returns the same value as remainder(). q is a pointer to an int

and receives a value with the sign of x y and at least the last

three bits of the integral quotient itself (rounded to the nearest).

(continued)

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-1876-1_1) contains supplementary material, which is
available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1876-1_1

Chapter 1 ■ NumeriCs aNd math

2

Function Description

fma(x, y, z) Computes x y z*() + in an accurate (better precision and

rounding properties than a naive implementation) and efficient
(uses a single hardware instruction if possible) manner.

fmin(x, y)
fmax(x, y)

Returns the minimum or maximum of x and y.

fdim(x, y) Returns the positive difference, i.e.
x y if x y

if x y

- >
£

ì
í
î +0

.

nan(string)
nanf(string)
nanl(string)

Returns a quiet (non-signaling) NaN (not a number) of type
double, float, respectively long double, if available (0
otherwise). The string parameter is an implementation-
dependent tag that can be used to differentiate between
different NaN values. Both "" and nullptr are valid and result
in a generic quiet NaN.

Exponential and Logarithmic Functions

Function Formula Function Formula Function Formula

exp(x) ex exp2(x) 2x expm1(x) ex -1

log(x) ln logx xe= log10(x) log
10

x log2(x) log
2
x

log1p(x) ln 1+()x

Power Functions

Function Formula Function Formula

pow(x, y) xy sqrt(x) x

hypot(x, y) x y2 2+ cbrt(x) x3

Trigonometric and Hyperbolic Functions
All basic trigonometric (sin(), cos(), tan(), asin(), acos(), atan()) and hyperbolic
functions (sinh(), cosh(), tanh(), asinh(), acosh(), atanh()) are provided. The lesser-
known trigonometric function atan2() is provided as well. It is used to compute the angle
between a vector (x,y) and the positive X axis, with atan2(y,x) similar to atan(y/x)
except that its result correctly reflects the quadrant the vector is in (and that it also works
if x is 0). Essentially, by dividing y by x in atan(y/x), you lose information regarding the
sign of x and y.

Chapter 1 ■ NumeriCs aNd math

3

Error and Gamma Functions

Function Formula Function Formula

erf(x) tgamma(x)

erfc(x) 2
1

2

p x

te dt x
¥

-ò = - ()erf lgamma(x) ln(|Γ(x)|)

Integral Rounding of Floating-Point Numbers

Function Description

ceil(x)
floor(x)

Rounds up / down to an integer. That is: returns the nearest integer
that is not less / not greater than x.

trunc(x) Returns the nearest integer not greater in absolute value than x.

round(x)
lround(x)
llround(x)

Returns the integral value nearest to x, rounding halfway cases away
from zero. The return type of round() is based as usual on the type of
x, whereas lround() returns long, and llround() returns long long.

nearbyint(x) Returns the integral value nearest to x as a floating-point type. The
current rounding mode is used: see round_style in the section on
arithmetic type properties later in this chapter.

rint(x)
lrint(x)
llrint(x)

Returns the integral value nearest to x, using the current rounding
mode. The return type of rint() is based as usual on the type of x,
whereas lrint() returns long, and llrint() returns long long.

Floating-Point Manipulation Functions

Function Description

modf(x, *p) Breaks the value of x into an integral and a fractional part. The
latter is returned and the former is stored in p, both with the
same sign as x. The return type is based on that of x as usual, and
p must point to a value of the same type as this return type.

frexp(x, *exp) Breaks the value of x into a normalized fraction with an absolute
value in the range [0.5, 1) or equal to zero (the return value), and
an integral power of 2 (stored in exp), with x fraction= * 2exp .

logb(x) Returns the floating-point exponent of x, that is: log
radix

|x|, with
radix the base used to represent floating-point values (2 for all
standard numerical types; hence the name: binary logarithm).

2

0

2

p

x
te dtò - G x t e dtx t() =

¥
- -ò

0

1

(continued)

Chapter 1 ■ NumeriCs aNd math

4

Function Description

ilogb(x) Same as logb(x), but the result is truncated to a signed int.

ldexp(x, n) Returns x * 2n (with n an int).

scalbn(x, n)
scalbln(x, n)

Returns x * radixn (with n an int for scalbn() and a long for
scalbln()). radix is the base used to represent floating-point
values (2 for all standard C++ numerical types).

nextafter(x, y)
nexttoward(x, y)

Returns the next representable value after x in the direction of y.
Returns y if x equals y. For nexttoward(), the type of y is always
long double.

copysign(x, y) Returns a value with the absolute value of x and the sign of y.

Classification and Comparison Functions

Function Description

fpclassify(x) Classifies the floating-point value x: returns an int equal to
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL, FP_ZERO, or
an implementation-specific category.

isfinite(x) Returns true if x is finite, i.e. normal, subnormal
(denormalized), or zero, but not infinite or NaN.

isinf(x) Returns true if x is positive or negative infinity.

isnan(x) Returns true if x is NaN.

isnormal(x) Returns true if x is normal, i.e. neither zero, subnormal
(denormalized), infinite, nor NaN.

signbit(x) Returns a non-zero value if x is negative.

isgreater(x, y)
isgreaterequal(x, y)
isless(x, y)
islessequal(x, y)
islessgreater(x, y)

Compares x and y. The names are self-explanatory, except
islessgreater() which returns true if x < y || x > y. Note
that this is not the same as !=, as e.g. nan("") != nan("") is
true, but not islessgreater(nan(""), nan("")).

isunordered(x, y) Returns whether x and y are unordered, i.e. whether one or
both are NaN.

Chapter 1 ■ NumeriCs aNd math

5

Error Handling
The mathematical functions from <cmath> can report errors in two ways depending on
the value of math_errhandling (defined in <cmath>, although not in the std namespace).
It has an integral type and can have one of the following values or their bitwise OR
combination:

•	 MATH_ERRNO: Use the global errno variable (see Chapter 8).

•	 MATH_ERREXCEPT: Use the floating-point environment, <cfenv>,
not further discussed in this book.

Fixed-Width Integer Types <cstdint>

The <cstdint> header contains platform-dependent typedefs for integer types with
different and more portable width requirements than the fundamental integer types:

•	 std::(u)intX_t, an (unsigned) integer of exactly X bits (X = 8, 16,
32, or 64). Present only if supported by the target platform.

•	 std::(u)int_leastX_t, the smallest (unsigned) integer type of at
least X bits (X = 8, 16, 32, or 64).

•	 std::(u)int_fastX_t, the fastest (unsigned) integer type of at
least X bits (X = 8, 16, 32, or 64).

•	 std::(u)intmax_t, the largest supported (unsigned) integer type.

•	 std::(u)intptr_t, (unsigned) integer type large enough to hold
a pointer. These typedefs are optional.

The header further defines macros for the minimum and maximum values of
these (and some other) types: for instance, INT_FAST_8_MIN and INT_FAST_8_MAX for
std::int_fast8_t. The standard C++ way of obtaining these values, though, is with the
facilities of <limits> discussed next.

Arithmetic Type Properties <limits>
The std::numeric_limits<T> template class offers a multitude of static functions and
constants to obtain properties of a numeric type T. It is specialized for all fundamental
numeric types, both integral and floating-point, and hence can be used to inspect
properties of all their aliases as well, such as size_t or those of the previous section. The
various members offered are listed next. Functions are only and always used to obtain a
T value; whereas Booleans, ints, and enum values are defined as constants.

http://dx.doi.org/10.1007/978-1-4842-1876-1_8

Chapter 1 ■ NumeriCs aNd math

6

Member Description

is_specialized Indicates whether the template is specialized for the given type.
If false, zero-initialized values are used for all other members.

min(), max() Returns the minimum/maximum finite representable number.
Rather unexpectedly, for floating-point numbers min() returns the
smallest positive number that can be represented (cf. lowest()).

lowest() Returns the lowest finite representable number. Same as min()
except for floating-point types, where lowest() returns the lowest
negative number, which for float and double equals -max().

radix The base used to represent values (2 for all C++ numerical types,
but specific platforms can support e.g. native decimal types).

digits The number of digits in base radix (i.e., generally the number of
bits) representable, excluding any sign bit for integer types. For
floating-point types, the number of digits in the mantissa.

digits10 The number of significant decimal digits that the type can
represent without loss, e.g. when converting from text and back.
Equal to digits * log

10
(radix) for integers: for char, e.g., it equals 2,

because it cannot represent all values with three decimal digits.

For floating-point numbers, it equals ë ûdigits radix-() ()1 10* log .

is_signed Identifies signed types. All standard floating-point types are signed,
Booleans are not, and for char and wchar_t it is unspecified.

is_integer Identifies integer types (includes Booleans and character types).

is_exact Identifies types with exact representations. Same as is_integer for
all standard types, but there exist e.g. third-party rational number
representations that are exact but not integer.

is_bounded Identifies types with finite representations. true for all standard
types, but libraries exist that offer types with arbitrary precision.

is_modulo Identifies modulo types, meaning if the result of a +, -, or * operation
would fall outside the range [min(), max()], the resulting value
differs from the real value by an integral multiple of max()
 - min() + 1. Usually true for integers; false for floating-point types.

traps Identifies types that have at least one value that would cause a trap
(exception) when used as an operand for an arithmetic operation.
For example, division by 0 always causes a trap. Usually true
for all standard integer types, except bool. Usually false for all
floating-point types.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ NumeriCs aNd math

7

The following members are relevant only for floating-point types. For integer types,
they always equal or return zero:

Member Description

max_digits10 The number of decimal digits needed to represent any value
of the type without loss, e.g. when converting to text and
back. Use (at least) max_digits10 precision when converting
floating-point numbers to text, and it will give the exact same
value again when parsed back (9 for float, 17 for double, 22
for long double).

min_exponent10,
min_exponent,
max_exponent10,
max_exponent

The lowest negative (for min_*) or highest positive (for max_*)
integer n such that 10n (for *10) or radixn-1 (otherwise) is a
valid normalized floating-point value.

epsilon() The difference between 1.0 and the next representable value.

round_error() The maximum rounding error as defined in ISO/IEC 10967-1.

is_iec599 Identifies types conforming to all IEC 599/IEEE 754
requirements. Usually true for all standard floating-point types.

has_infinity Identifies types that can represent positive infinity. Usually
true for all standard floating-point types.

infinity() Returns the value for positive infinity. Only meaningful if
has_infinity is true.

has_quiet_NaN,
has_signaling_NaN

Identifies types that can represent the special value for a
quiet or signaling NaN. Usually true for all standard
floating-point types. Using a signaling NaN in operations
results in an exception; using a quiet NaN does not.

quiet_NaN(),
signaling_NaN()

Returns the value for a quiet or signaling NaN. Only
meaningful if has_quiet_NaN respectively has_signaling_NaN
is true.

tinyness_before Identifies types that perform a check for underflow before
performing any rounding.

round_style Contains the rounding style as a std::float_round_style value:
round_indeterminate, round_toward_zero, round_to_nearest,
round_toward_infinity, or round_toward_neg_infinity.
All integer types are required to round toward zero. The standard
floating-point types usually round to nearest.

has_denorm Identifies types that can represent denormalized values
(special values smaller than min() that exist to deal with
underflow). Has type std::float_denorm_style, with values
denorm_absent, denorm_present (most common), and
denorm_indeterminate.

(continued)

Chapter 1 ■ NumeriCs aNd math

8

Member Description

denorm_min() Returns the smallest positive denormalized value if
has_denorm != std::denorm_absent, and min() otherwise.

has_denorm_loss Identifies types for which loss of precision is detected as
denormalization loss rather than as an inexact result (advanced
option that should be false; dropped in IEEE 754-2008).

Complex Numbers <complex>

The std::complex<T> type, defined for at least T equal to float, double, and long
double, is used to represent complex numbers as follows:

All expected operators are available: +, -, *, /, +=, -=, *=, /=, =, ==, and !=, including
overloads with a floating-point operand (which is then treated as a complex number with a zero
imaginary part), and the >> and << operators for interaction with the streams of Chapter 5.

The std::literals::complex_literals namespace defines convenient literal
operators for creating complex<T> numbers: i, if, and il, creating values with T equal
to double, float, and long double respectively. Using this, the c value in the previous
example, e.g., could have been created with: 'auto c = 1.f + 2if;'.

The header furthermore defines the complex equivalents of several of the basic
math functions seen earlier: pow(), sqrt(), exp(), log(), and log10(), as well as all
trigonometric and hyperbolic functions: sin(), cos(), tan(), asin(), acos(), atan(),
sinh(), cosh(), tanh(), asinh(), acosh(), and atanh().

Besides these, the following complex-specific non-member functions exist:

Function Description Definition

real() / imag() Non-member getters real / imag

abs() The modulus or magnitude real imag2 2+

norm() The norm real imag2 2+

arg() The phase or argument atan2(imag, real)

conj() The conjugate real imag,-()
polar() Construction from polar coordinates

(m, φ) (= magnitude and phase)
m icos sinj j+()

proj() Projection onto the Riemann sphere ¥ ±(), 0 if infinite real or

imag; else (real, imag)

http://dx.doi.org/10.1007/978-1-4842-1876-1_5

Chapter 1 ■ NumeriCs aNd math

9

Compile-Time Rational Numbers <ratio>
The std::ratio<Numerator, Denominator=1> template type from the <ratio> header
represents a rational number. What makes it peculiar is that it does so at the type level
rather than the usual value level (std::complex numbers are an example of the latter).
Although ratio values can be default-constructed, this is rarely the intention. Rather,
the ratio type is generally used as type argument for other templates. For example, the
std::chrono::duration<T, Period=std::ratio<1>> template explained in Chapter 2
may be instantiated as duration<int,ratio<1,1000>>, for instance, to represent a
duration of milliseconds, or as duration<int,ratio<60>> for a duration of minutes.

Convenience typedefs exist for all standard SI ratios: std::kilo for instance is
defined as ratio<1000> and std::centi as ratio<1,100>. The full list is atto (10 18-),

femto (10 15-), pico (10 12-), nano (10 9-), micro (10 6-), milli (10 3-), centi (10 2-), deci

(10 1-), deca (101), hecto (102), kilo (103), mega (106), giga (109), tera (1012), peta (1015),

and exa (1018); and for platforms with an integer type that is wider than 64-bit, yocto
(10 24-), zepto (10 21-), zetta (1021), and yotta (1024).

All ratio types define two static members num and den, containing the numerator
and denominator of the rational number, but after normalization. The ratio’s type
member equals the ratio type of this normalized rational number.

Arithmetic operations with ratios are possible, but they are again at the type level:
the std::ratio_add template, for instance, takes two ratio types as template arguments
and evaluates to the type that corresponds to the sum of these rational numbers. The
ratio_subtract, ratio_multiply, and ratio_divide templates are analogous. To
compare two ratio types, similar ratio_xxx templates are provided with xxx equal,
not_equal, less, less_equal, greater, or greater_equal.

The following example clarifies ratio arithmetic (<typeinfo>, discussed in Chapter 2,
must be included when using the typeid operator):

http://dx.doi.org/10.1007/978-1-4842-1876-1_2
http://dx.doi.org/10.1007/978-1-4842-1876-1_2

Chapter 1 ■ NumeriCs aNd math

10

Random Numbers <random>
The <random> library provides powerful random-number-generation facilities that
supersede the flawed C-style rand() function from <cstdlib>. Central concepts are
random number generators and distributions. A generator is a function object that
generates random numbers in a predefined range in a uniformly distributed way—that
is, each value in said range has, in principle, the same probability of being generated.
A generator is generally passed to a distribution functor to generate random values
distributed according to some chosen statistical distribution. This could for instance be
another, user-specified uniform distribution:

When multiple values are to be generated, it is more convenient to bind the
generator and distribution, for example using the facilities of <functional> (Chapter 2):

std::function<int()> roller = std::bind(distribution, generator);
for (int i = 0; i < 100; ++i) std::cout << roller() << '\n';

Random Number Generators
The library defines two types of generators: random number engines that generate
pseudorandom numbers, and one true non-deterministic random number generator,
std::random_device.

Pseudorandom Number Engines
Three families of pseudorandom number engines are provided in the form of generic
class templates with various numeric type parameters:

•	 std::linear_congruential_engine: Uses a minimal amount of
memory (one integer) and is reasonably fast, but generates low-
quality random numbers.

•	 std::mersenne_twister_engine: Produces the highest quality
pseudorandom numbers at the expense of a larger state size (the
state of the predefined mt19937 Mersenne twister, for example,
consists of 625 integers). Still, because they are also the fastest
generators, these engines should be your default choice if size is
of no concern.

•	 std::subtract_with_carry_engine: Although an improvement
over the linear congruential engines in terms of quality (but not
speed), these engines have much lower quality and performance
than a Mersenne twister. Their state size is more moderate,
though (generally 96 bytes).

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

Chapter 1 ■ NumeriCs aNd math

11

All these engines provide a constructor that accepts an optional seed to initialize
the engine. Seeding is explained later. They also have a copy constructor and support the
following operations:

Operation Description

seed(value) Reinitializes the engine by seeding it with a given value

operator() Generates and returns the next pseudorandom number

discard(n) Generates n pseudorandom numbers and discards them

min()
max()

Returns the minimum and maximum values that the engine can
possibly generate

== / != Compares the internal state of two engines (non-member operators)

<< / >> Serialization to/from streams: see Chapter 5 (non-member operators)

All three engine templates require a series of numerical template parameters.
Because choosing the appropriate parameters is best left to experts, several predefined
instantiations exist for each family. Before we discuss these, though, we first need to
introduce random number engine adaptors.

Engine Adaptors

The following function objects adapt the output of an underlying engine:

•	 std::discard_block_engine<e,p,r>: For each block of p > 0
numbers generated by the underlying engine e, it discards all but
r kept values (with p >= r > 0).

•	 std::independent_bits_engine<e,w>: Generates random
numbers of w > 0 bits even if the underlying engine e produces
numbers with a different width.

•	 std::shuffle_order_engine<e,k>: Delivers the numbers of
the underlying engine e in a different, randomized order. Keeps
a table of k > 0 numbers, each time returning and replacing a
random one of those.

All the adaptors have a similar set of constructors: a default constructor, one with a
seed that is forwarded to the wrapped engine, and constructors that accept an lvalue or
rvalue reference to an existing engine to copy or move.

Adaptors support the exact same operations as the wrapped engines, plus these:

Operation Description

seed() Reinitializes the underlying engine by seeding it with a default seed

base() Returns a const reference to the underlying engine

http://dx.doi.org/10.1007/978-1-4842-1876-1_5

Chapter 1 ■ NumeriCs aNd math

12

Predefined Engines

Based on the previous engines and adaptors, the library provides the following
predefined engines that you should use instead of using the engines and/or adaptors
directly. The mathematical parameters for these have been defined by experts:

•	 minstd_rand0 / minstd_rand are linear_congruential_engines
that generate std::uint_fast32_t numbers in [0, 231-1).

•	 knuth_b equals shuffle_order_engine<minstd_rand0,256>.

•	 mt19937 / mt19937_64 are mersenne_twister_engines generating
uint_fast32_t / uint_fast64_t numbers.

•	 ranlux24_base / ranlux48_base are rarely used standalone
(see the next bullet) but are subtract_with_carry_engines that
generate uint_fast32_t / uint_fast64_t numbers.

•	 ranlux24 / ranlux48 are ranlux24_base / ranlux48_base engines
adapted by a discard_block_engine.

 ■ Tip Because choosing between all the previous predefined engines can be daunting,
an implementation must also offer a std::default_random_engine that should be good
enough for most applications (it may be a typedef for one of the others).

Non-Deterministic Random Number Generator
A random_device, in principle, does not generate pseudorandom numbers, but truly
non-deterministic uniformly distributed random numbers. How it accomplishes this
is implementation dependent: it could for example use special hardware on your CPU
to generate numbers based on some physical phenomenon. If the random_device
implementation cannot generate true non-deterministic random numbers, it is allowed
to fall back to one of the pseudorandom number engines discussed earlier. To detect this,
use its entropy() method: it returns a measure of the quality of the generated numbers,
but zero if a pseudorandom number engine is used.

random_device is non-copyable and has but one constructor that accepts an
optional implementation-specific string to initialize it. It has member functions
operator(), min(), and max() analogous to the ones provided by the engines. Unlike with
pseudorandom number engines, though, its operator() may throw an std::exception if
it failed to generate a number (due to hardware failure, for example).

Although a random_device generates true random numbers, possibly
cryptographically secure (check your library documentation), it is typically slower than
any pseudorandom engine. It is therefore common practice to seed a pseudorandom
engine using a random_device, as explained in the next section.

Chapter 1 ■ NumeriCs aNd math

13

Seeding
All pseudorandom number engines have to be seeded with an initial value. If you set
up an engine with the same seed, then you always get the same sequence of generated
numbers. Although this could be useful for debugging or for certain simulations, most
of the time you want a different unpredictable sequence of numbers to be generated on
each run. That is why it is important to seed your engine with a different value each time
the program is executed. This has to be done once (for example, at construction time).
The recommended way of doing this is with a random_device, but as you saw earlier, this
may also just generate pseudorandom numbers. A popular alternative is to seed with the
current time (see Chapter 2). For example:

std::random_device seeder;
const auto seed = seeder.entropy() ? seeder() : std::time(nullptr);
std::default_random_engine generator(
 static_cast<std::default_random_engine::result_type>(seed));

Random Number Distributions
Up to now, we have only talked about generating random numbers that are uniformly
distributed in the full range of 32- or 64-bit unsigned integers. The library provides a large
collection of distributions you can use to fit this distribution, range, and/or value type
to your needs. Their names will sound familiar if you are fluent in statistics. Describing
all the math behind them falls outside the scope of this book, but the following sections
briefly describe the available distributions (some in more detail than others). For each
distribution, we show the supported constructors. For details on these distributions and
their parameters, we recommend that you consult a mathematical reference.

Uniform Distributions
uniform_int_distribution<Int=int>(Int a=0, Int b=numeric_limits<Int>::max())
uniform_real_distribution<Real = double>(Real a = 0.0, Real b = 1.0)

Generates uniformly distributed integer/floating-point
numbers in the range [a, b] (both inclusive).

Real generate_canonical<Real, size_t bits, Generator>(Generator&)

This is the only distribution that is defined as a function
instead of a functor. It generates numbers in the range
[0.0, 1.0) using the given Generator as the source of the
randomness. The bits parameter determines the number of
bits of randomness in the mantisse.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

Chapter 1 ■ NumeriCs aNd math

14

Bernoulli Distributions
bernoulli_distribution(double p = 0.5)

Generates random Boolean values with p equal to the
probably of generating true.

binomial_distribution<Int = int>(Int t = 1, double p = 0.5)
negative_binomial_distribution<Int = int>(Int k = 1, double p = 0.5)
geometric_distribution<Int = int>(double p = 0.5)

Generate random non-negative integral values according to a
certain probability density function.

Normal Distributions
normal_distribution<Real = double>(Real mean = 0.0, Real stddev = 1.0)

Generates random numbers according to a normal, also
called Gaussian, distribution. The parameters specify the
expected mean and standard deviation stddev. In Figure 1-1,
μ represents the mean and σ the standard deviation.

lognormal_distribution<Real = double>(Real mean = 0.0, Real stddev = 1.0)
chi_squared_distribution<Real = double>(Real degrees_of_freedom = 1.0)
cauchy_distribution<Real = double>(Real peak_location = 0., Real scale = 1.)
fisher_f_distribution<Real = double>(Real dof_num = 1., Real dof_denom = 1.)
student_t_distribution<Real = double>(Real degrees_of_freedom = 1.0)

Some more advanced normal-like distributions.

Figure 1-1. Probability distributions for some example normal and Poisson distributions,
plotting the probability (between 0 and 1) that a value is generated

Chapter 1 ■ NumeriCs aNd math

15

Poisson Distributions
poisson_distribution<Int = int>(double mean = 1.0)
exponential_distribution<Real = double>(Real lambda = 1.0)
gamma_distribution<Real = double>(Real alpha = 1.0, Real beta = 1.0)
weibull_distribution<Real = double>(Real a = 1.0, Real b = 1.0)
extreme_value_distribution<Real = double>(Real a = 0.0, Real b = 1.0)

Various distributions related to the classical Poisson
distribution. The latter is illustrated in Figure 1-1, where λ is
the mean (which for this distribution equals the variance). The
Poisson distribution generates integers, so the connecting
lines are there for illustration purposes only.

Sampling Distributions
Discrete Distribution

A discrete distribution requires a set of count weights and generates random numbers
in the range [0, count). The probability of a value depends on its weight. The following
constructors are provided:

discrete_distribution<Int = int>()
discrete_distribution<Int = int>(InputIt first, InputIt last)
discrete_distribution<Int = int>(initializer_list<double> weights)
discrete_distribution<Int = int>(size_t count, double xmin, double xmax,
 UnaryOperation op)

The default constructor initializes the distribution with a single weight of 1.0. The
second and third constructors initialize it with a set of weights given as an iterator range,
discussed in Chapter 3, or as an initializer_list, discussed in Chapter 2. And the last
one initializes it with count weights generated by calling the given unary operation. The
following formula is used:

weight op xmin ii = + +æ
è
ç

ö
ø
÷*d

d
2

 with d =
-xmax xmin

count

Piecewise Constant Distribution

A piecewise constant distribution requires a set of intervals and a weight for each interval.
It generates random numbers that are uniformly distributed in each of the intervals. The
following constructors are provided:

piecewise_constant_distribution<Real = double>()

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_2

Chapter 1 ■ NumeriCs aNd math

16

The default constructor initializes the distribution with a
single interval with boundaries 0.0 and 1.0 and weight 1.0.

piecewise_constant_distribution<Real = double>(
 InputIt1 firstBound, InputIt1 lastBound, InputIt2 firstWeight)

Initializes the distribution with intervals whose bounds
are taken from the firstBound, lastBound iterator range
and whose weights are taken from the range starting at
firstWeight.

piecewise_constant_distribution<Real = double>(
 initializer_list<Real> bounds, UnaryOperation weightOperation)

Initializes the distribution with intervals whose bounds
are given as an initializer_list and whose weights are
generated by the given unary operation.

piecewise_constant_distribution<Real = double>(size_t count,
 Real xmin, Real xmax, UnaryOperation weightOperation)

Initializes the distribution with count uniform intervals over
the range [xmin, xmax] and weights generated by the given
unary operation.

The piecewise_constant_distribution has methods intervals() and
densities() returning the interval boundaries and the probability densities for the
values in each interval.

Piecewise Linear Distribution

A piecewise linear distribution, as implemented by piecewise_linear_distribution,
is similar to a piecewise constant one but has a linear probability distribution in each
interval instead of a uniform one. It requires a set of intervals and a set of weights for each
interval boundary. It also provides intervals() and densities() methods. The set of
constructors is analogous to those discussed in the previous section, but one extra weight
is required because each boundary needs a weight instead of each interval.

Example

Chapter 1 ■ NumeriCs aNd math

17

The graph on the left in Figure 1-2 shows the number of times a specific value has
been generated when generating a million values using the previous code. In the graph,
you clearly see the piecewise_constant_distribution with intervals (1,20), (20,40),
(40,60), and (60,80) with interval weights 1, 3, 1, and 3.

Figure 1-2. Difference between a piecewise constant and piecewise linear distribution

The graph on the right shows a piecewise_linear_distribution with the same
intervals and boundary weights 1, 3, 1, 3, and 1. Notice that you require one extra weight
compared to the piecewise_constant_distribution because you specify the weights for
the boundaries instead of for the intervals.

If you use a piecewise_linear_distribution with intervals of different sizes, the
graph is not continuous. That is because the weights are given for the boundaries of an
interval, so if the beginning has a weight of 3 and the end has a weight of 1, the value at
the beginning of the interval is three times more likely to be generated than the value at
the end. Therefore, if the interval is for example twice as long, all probabilities are twice as
small as well, including those of the bounds.

Numeric Arrays <valarray>
std::valarray is a container-like class for storing and efficiently manipulating dynamic
arrays of numeric values. A valarray has built-in support for multidimensional arrays and
for efficiently applying most mathematical operations defined in <cmath> to each element.
Types stored in a valarray must essentially be an arithmetic or pointer type or a class that
behaves similarly, such as std::complex. Thanks to these restrictions, some compilers are
able to optimize valarray calculations more than when working with other containers.

Chapter 1 ■ NumeriCs aNd math

18

std::valarray provides the following constructors:

Constructor Description

valarray()
valarray(count)

Constructs an empty valarray or one with count
zero-initialized / default-constructed elements.

valarray(const T& val, n)
valarray(const T* vals, n)

Constructs a valarray with n copies of val or n
copies from the vals array.

valarray(initializer_list) Constructs a valarray and initializes it with the
values from the initializer list.

valarray(const x_array<T>&) Constructor that converts between x_array<T> and
valarray<T>, where x can be slice, gslice, mask,
or indirect. All four types are discussed later.

valarray(const valarray&)
valarray(valarray&&)

Copy and move constructors.

Here is an example:

A valarray supports the following operations:

Operation Description

operator[] Retrieves a single element or a part, i.e. a slice_array,
gslice_array, mask_array, or indirect_array, discussed later.

operator= Copy, move, and initializer list assignment operators. You can
also assign an instance of the element type: all elements in the
valarray will be replaced with a copy of it.

operator+, -, ~, ! Applies unary operations to each element. Returns a new
valarray with the result (operator! returns valarray<bool>).

operator+=, -=, *=, /=,
%=, &=, |=, ^=, <<=, >>=

Applies these operations to each element. Input is either
‘const T&’ or an equally long ‘const valarray<T>&’. In the
latter case, the operator is piecewise applied.

swap() Swaps two valarrays.

size()
resize(n,val=T())

Returns or changes the number of elements. When resizing,
you can specify the value to assign to new elements; they are
zero-initialized by default.

sum(), min(), max() Returns the sum, minimum, and maximum of all elements.

(continued)

Chapter 1 ■ NumeriCs aNd math

19

Operation Description

shift(int n)
cshift(int n)

Returns a new valarray of the same size, in which elements
are shifted by n positions. If n < 0, elements are shifted to
the left. Elements shifted out are zero-initialized for shift(),
whereas cshift() performs a circular shift.

apply(func) Returns a new valarray where each element is calculated by
applying the given unary function to the current elements.

The following non-member functions are supported as well:

Operation Description

swap() Swaps two valarrays

begin(), end() Returns begin and end iterators (cf. Chapters 3 and 4)

abs() Returns a valarray with the absolute values

operator+, -, *, /, %,
&, |, ^, <<, >>, &&, ||

Applies these binary operators to a valarray and a value, or to
each element of two equally long valarrays

operator==, !=,
<, <=, >, >=

Returns a valarray<bool> where each element is the result of
comparing elements of two valarrays, or the elements of one
valarray with a value

There is also support for applying exponential (exp(), log(), and log10()), power
(pow() and sqrt()), trigonometric (sin(), cos(), …), and hyperbolic (sinh(), cosh(),
and tanh()) functions to all elements at once. These non-member functions return a new
valarray with the results.

std::slice
This represents a slice of a valarray. A std::slice itself does not contain or refer to any
elements; it simply defines a sequence of indexes. These indexes are not necessarily
contiguous. It has three constructors: slice(start, size, stride), a default constructor
equivalent to slice(0,0,0), and a copy constructor. Three getters are provided: start(),
size(), and stride(). To use slice, create one and pass it to operator[] of a valarray.
This selects size() elements from the valarray starting at position start(), with a given
stride() (step size). If called on a const valarray, the result is a valarray with copies of
the elements. Otherwise, it is a slice_array with references to the elements.

slice_array supports fewer operations than a valarray but can be converted to a
valarray using the valarray<const slice_array<T>&) constructor. slice_array has
the following three assignment operators:

void operator=(const T& value) const
void operator=(const valarray<T>& arr) const
const slice_array& operator=(const slice_array& arr) const

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_4

Chapter 1 ■ NumeriCs aNd math

20

Operators +=, -=, *=, /=, %=, &=, |=, ^=, <<=, and >>= are provided as well. These
operators require a right-hand-side operand of the same type as the valarray to which
the slice_array refers, and they apply the operator to the elements referred to by the
slice_array. For example:

One use case for slices is to select rows or columns from valarrays that represent
matrices. They can also be used to implement matrix algorithms such as matrix multiplication.

std::gslice
gslice stands for generalized slice. Instead of having a single value for the size and stride,
a gslice has a valarray<size_t> for sizes and one for strides. The default constructor
is equivalent to gslice(0, valarray<size_t>(), valarray<size_t>()), and a copy
constructor is provided as well. Just as with std::slice, getters start(), size(), and
stride() are available. Analogous to slice, a gslice is used by passing it to operator[]
of valarray, returning either a valarray with copies or a gslice_array with references.
A gslice_array supports a set of operations similar to those of a slice_array. How the
different sizes and strides are used is best explained with an example:

This example has two values for size and stride, so the gslice creates two slices. The
first slice has the following parameters:

•	 Start index = 1 (the first argument to the gslice constructor)

•	 Size = 2 and stride = 5 (the first values in sizes and strides)

This slice therefore represents the indices {1, 6}. With this, two second-level slices
are created, one for each of these indices. The indices from the first-level slice are used as
starting indices for the two second-level slices. The first second-level slice therefore has
these parameters

•	 Start index = 1 (the first index of the first slice {1, 6})

•	 Size = 3 and stride = 2 (second values from sizes and strides)

Chapter 1 ■ NumeriCs aNd math

21

and the second has these parameters (note that both have the same size and stride
parameters):

•	 Start index = 6 (the second index of the first slice {1, 6})

•	 Size = 3 and stride = 2 (second values from sizes and strides)

Concatenated, the second-level slices therefore represent these indices: {1,3,5,
6,8,10}. If there were a third level (that is, third values in sizes and strides), these
indices would serve as starting indices for six third-level slices (all using those third
values of sizes and strides). Because there is no third level, though, the corresponding
values are simply selected from the valarray: {11,33,55, 66,88,111}.

std::mask_array
The operator[] on a valarray also accepts a valarray<bool>, similarly returning either
a valarray with copies or a std::mask_array with references. This operator selects all
elements from a valarray that have a true value in the corresponding position in the
valarray<bool>. A mask_array supports a set of operations analogous to those of a
slice_array. Here is an example:

std::indirect_array
Finally, the operator[] on valarray accepts a valarray<size_t> as well, returning
either a valarray with copies or a std::indirect_array with references. The
valarray<size_t> specifies which indices should be selected. An indirect_array again
supports a set of operations analogous to those of a slice_array. For example:

23© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1_2

 CHAPTER 2

 General Utilities

 Moving, Forwarding, Swapping <utility>

 This section explains move() , move_if_noexcept() , forward() , swap() , and exchange() .
In passing, it also introduces the concepts of move semantics and perfect forwarding .

 Moving
 An object can be moved elsewhere (rather than copied) if its previous user no longer
needs it. Moving the resources from one object to another can often be implemented far
more efficiently than (deep) copying them. For a string object, for instance, moving is
typically as simple as copying a char* pointer and a length (constant time); there is no
need to copy the entire char array (linear time).

 Unless otherwise specified, the source object that was moved from is left in an
undefined but valid state and should not be used anymore unless reinitialized. A valid
implementation for moving a std::string (see Chapter 6), for instance, could set
the source’s char* pointer to nullptr to prevent the array from being deleted twice,
but this is not required by the Standard. Likewise, it is unspecified what length() will
return after being moved from. Certain operations, assignments in particular, remain
allowed, as demonstrated in the following example:

http://dx.doi.org/10.1007/978-1-4842-1876-1_6

CHAPTER 2 ■ GENERAL UTILITIES

24

 Despite its name, the std::move() function technically does not move anything:
instead, it simply marks that a given T , T& , or T&& value may be moved, effectively by
statically casting it to an rvalue reference T&& . Because of the type cast, other functions
may get selected by overload resolution, and/or value parameter objects may become
initialized using their move constructors (of form T(T&& t)), if available, rather than their
copy constructors. This initialization occurs at the callee side, not the caller side. An
 rvalue parameter T&& forces the caller to always move.

 Similarly, an object can also be moved to another using a move assignment operator
(of form operator=(T&&)):

 If no move member is defined, either explicitly or implicitly, overload resolution for
 T&& falls back to T& or T , and in the latter case still creates a copy. Conditions for implicit
move members to be generated include that there may not be any user-defined copy,
move, or destructor members, nor any non-static member variable or base class that
cannot be moved.

 The move_if_noexcept() function is similar to move() , except that it only casts to
 T&& if the move constructor of T is known not to throw from its exceptions specification
(noexcept , or the deprecated throw()); otherwise, it casts to const T& .

 All classes defined by the Standard have move members if appropriate. Many
containers from Chapter 3 , for example, can be moved in constant time (not std::array ,
although it will move individual elements if possible to avoid deep copies).

 ■ Tip For optimal performance with nontrivial custom types, it is not only crucial to define
move members, but also equally important to always do so with a noexcept specifier . The
container classes from Chapter 3 extensively use moving to speed up operations such as
adding a new element, or when relocating arrays of elements (for example, with sequential
containers). Similarly, many algorithms from Chapter 4 benefit if efficient move members are
provided (and/or nonmember swap() operations, discussed later). However, and especially
when moving arrays of elements, these optimizations often take effect only if the values’
move members are known not to throw.

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 2 ■ GENERAL UTILITIES

25

 Forwarding
 The std::forward() helper function is intended to be used in templated functions
to efficiently pass its arguments along to other functions while preserving any move
semantics. If the argument to forward<T>() was an lvalue reference T& , this reference
is returned unchanged. Otherwise, the argument is cast to an rvalue reference T&& . An
example will clarify its intended use:

 The idiom used by good_fwd() is called perfect forwarding . It optimally preserves
rvalue references (such as those of std::move() d or temporary objects). The idiom’s
first ingredient is a so-called forwarding or universal reference : a T&& parameter, with
 T a template type parameter. Without it, template argument deduction removes all
references: for ugly_fwd() ; both A& and A&& become A . With a forwarding reference, A&
and A&& are deduced, respectively: that is, even though the forwarding reference looks
like T&& , if passed A& , A& is deduced and not A&& . Still, using a forwarding reference alone
is not enough, as shown with bad_fwd() . When using the named variable t as is, it binds
with an lvalue function parameter (all named variables do), even if its type is deduced as
 A&& . This is where std::forward<T>() comes in. Similar to std::move() , it casts to T&& ,
but only if given a value with an rvalue type (including named variables of type A&&).

 All this is quite subtle and is more about the C++ language (type deduction in
particular) than the Standard Library. The main takeaway here is that to correctly forward
arguments of a function template to a function, you should consider using perfect
forwarding—that is, a forwarding reference combined with std::forward() .

CHAPTER 2 ■ GENERAL UTILITIES

26

 Swapping
 The std::swap() template function swaps two objects as if implemented as:

 template<typename T> void swap(T& one, T& other)
 { T temp(std::move(one)); one = std::move(other); other = std::move(temp); }

 A similar swap() function template to piecewise swap all elements of equally long
 T[N] arrays is defined as well.

 Although already quite efficient if proper move members are available, for truly
optimal performance you should consider specializing these template functions: for
instance, to eliminate the need to move to a temporary. Many algorithms from Chapter 4 ,
for example, call this non-member swap() function. For Standard types, swap()
specializations are already defined where appropriate.

 A function similar to swap() is std::exchange() , which assigns a new value to
something while returning its old value. A valid implementation is

 template<typename T, typename U=T> T exchange(T& x, U&& new_val)
 { T old_val(std::move(x)); x = std::forward<U>(new_val); return old_val; }

 ■ Tip Although swap() and exchange() may be specialized in the std namespace, most
recommend specializing them in the same namespace as their template argument type. The
advantage then is that so-called argument-dependent lookup (ADL) works. In other words,
that for instance swap(x,y) works without using directives or declarations and without
specifying the namespace of swap() . The ADL rules basically stipulate that a non-member
function should be looked up first in the namespace of its arguments. Generic code should
then use the following idiom to fall back to std::swap() if need be: using std::swap;
swap(x,y); . Simply writing std::swap(x,y) will not use user-defined swap() functions
outside the std namespace, whereas swap(x,y) alone will not work unless there is such a
user-defined function.

 Pairs and Tuples
 Pairs <utility>
 The std::pair<T1,T2> template struct is a copyable, moveable, swappable,
(lexicographically) comparable struct that stores a pair of T1 and T2 values in its public
 first and second member variables. A default-constructed pair zero-initializes its values,
but initial values may be provided as well:

 std::pair<unsigned int, Person> p(42u, Person("Douglas", "Adams"));

http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 2 ■ GENERAL UTILITIES

27

 The two template type parameters can be deduced automatically using auxiliary
function std::make_pair() :

 auto p = std::make_pair(42u, Person("Douglas", "Adams"));

 ■ Tip Not all types can be moved efficiently, and would have to be copied when
constructing a pair. For bigger objects (e.g. those that contain fixed-size arrays), this could
be a performance issue. Other types may even not be copyable at all. For such cases,
 std::pair has a special 'piecewise' constructor to perform in-place construction of its
two members. It is called with a special constant, followed by two tuples (see next section)
containing the arguments to forward to the constructors of both members.

 For instance (forward_as_tuple() is used to not copy the strings to a temporary tuple):

 std::pair<unsigned, Person> p(std::piecewise_construct,

 std::make_tuple(42u), std::forward_as_tuple("Douglas", "Adams"));

 Piecewise construction can also be used with the emplace() functions of the containers
in Chapter 3 (these functions are similarly defined to avoid unwanted copying), and in
particular with those of std::map and std::unordered_map .

 Tuples <tuple>
 std:: tuple is a generalization of pair that allows any number of values to be stored (that
is, zero or more, not just two): std::tuple<Type...> . It is mostly analogous to pair ,
including the make_tuple() auxiliary function. The main difference is that the individual
values are not stored in public member variables. Instead, you can access them using one
of the get() template functions:

 An alternative way to obtain values of a tuple is by unpacking it using the tie()
function. The special std::ignore constant may be used to exclude any value:

 int one, two; double three;
 std::tie(one, two, three, std::ignore) = t;

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://www.allitebooks.org

CHAPTER 2 ■ GENERAL UTILITIES

28

 ■ Tip The std::tie() function may be used to compactly implement lexicographical
comparisons based on multiple values. For instance, the body of operator< for the Person
class in the Introduction could be written as

 return std::tie(lhs.m_isVIP, lhs.m_lastName, lhs.m_firstName)
 < std::tie(rhs.m_isVIP, rhs.m_lastName, rhs.m_firstName);

 Two helper struct s exist to obtain the size and element types of a given tuple as
well, which is mainly useful when writing generic code:

 Note that get() , tuple_size , and tuple_element are also defined for pair and
 std::array (see Chapter 3) in their respective headers, but not tie() .

 A final helper function for tuple s is std::forward_as_tuple() , which creates
a tuple of references to its arguments. These are lvalue references generally, but
rvalue references are maintained, as with std::forward() explained earlier. It is
designed to forward arguments (that is, while avoiding copies) to the constructor
of a tuple , in particular in the context of functions that accept a tuple by value. A
function f(tuple<std::string, int>) , for instance, can then be called as follows:
 f(std::forward_as_tuple("test", 123)); .

 Tuples offer facilities for custom allocators as well, but this is an advanced topic that
falls outside the scope of this book.

 Relational Operators <utility>
 A nice set of relational operators is provided in the std::rel_ops namespace: != , <= , > ,
and >= . The first one is implemented in terms of operator== , and the remaining forward
to operator< . So, your class only needs to implement operator== and < , and the others
are generated automatically when you add a using namespace std::rel_ops;

 Smart Pointers <memory>
 A smart pointer is an RAII-style object that (typically) decorates and mimics a pointer
to heap-allocated memory, while guaranteeing this memory is deallocated at all times
once appropriate. As a rule, modern C++ programs should never use raw pointers to
manage (co-)owned dynamic memory: all memory allocated by new or new[] should be

http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 2 ■ GENERAL UTILITIES

29

managed by a smart pointer, or, for the latter, a container such as vector (see Chapter 3).
Consequently, C++ programs should rarely directly call delete or delete[] anymore.
Doing so will go a long way toward preventing memory leaks.

 Exclusive-Ownership Pointers
 std::unique_ ptr
 A unique_ptr has exclusive ownership of a pointer to heap memory and therefore cannot
be copied, only moved or swapped. Other than that, it mostly behaves like a regular
pointer. The following illustrates its basic usage on the stack:

 The -> and * operators ensure that a unique_ptr can generally be used like a raw
pointer. Comparison operators == , != , < , > , <= , and >= are provided to compare two
 unique_ptrs or a unique_ptr with nullptr (in either order), but not for comparing a
 unique_ptr<T> with a T value. To do the latter, get() must be called to access the raw
pointer. A unique_ptr also conveniently casts to a Boolean to check for nullptr .

 Construction is facilitated using the helper function make_unique() . For example:

 { auto jeff = std::make_unique<Person>("Jeffrey");
 ...

 ■ Tip Using make_unique() not only may shorten your code, but also prevents certain
types of memory leaks. Consider f(unique_ptr<X>(new X), g()) . If g() throws after the
 X was constructed, but before it was assigned to its unique_ptr , the X pointer leaks. Writing
 f(make_unique<X>(), g()) instead guarantees such leaks do not occur.

 Other uses of unique_ptr s that make them a truly essential utility include these:

• They are the safest and recommended way to transfer exclusive
ownership, either by returning a unique_ptr from a function that
creates a heap object or by passing one as an argument to a function
that accepts further ownership. This has three major advantages:

 a. In both cases, std::move() generally has to be used,
making the ownership transfer explicit.

 b. The intended ownership transfer also becomes apparent
from the functions’ signatures.

 c. It prevents memory leaks (such bugs can be subtle
sometimes: see the next Tip).

http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 2 ■ GENERAL UTILITIES

30

• They can be stored safely inside the containers from Chapter 3 .

• When used as member variables of another class, they eliminate
the need for explicit delete s in their destructor. Moreover, they
prevent the compiler from generating error-prone copy members
for objects that are supposed to exclusively own dynamic
memory.

 A unique_ptr can also manage memory allocated with new[] :

 For this template specialization, the dereferencing operators * and -> are replaced
with an indexed array access operator [] . A more powerful and convenient class to
manage dynamic arrays, std::vector , is explained in Chapter 3 .

 A unique_ptr<T> has two similar members that are often confused: release() and
 reset(T*=nullptr) . The former replaces the old stored pointer (if any) with nullptr ,
whereas the latter replaces it with the given T* . The key difference is that release() does
not delete the old pointer. Instead, release() is intended to release ownership of the
stored pointer: it simply sets the stored pointer to nullptr and returns its old value. This
is useful to pass ownership to, for example, a legacy API. reset() , on the other hand, is
intended to replace the stored pointer with a new value, not necessarily nullptr . Before
overwriting the old pointer, it is deleted. It therefore also does not return any value:

 ■ Tip Take care for memory leaks when transferring ownership using release() .
Suppose the previous example ended with TakeOwnership(niles.release(), f()) . If the
call to f() throws after the unique_ptr has release d ownership, Niles leaks. Therefore,
always make sure expressions containing release() subexpressions do not contain any
throwing subexpressions as well. In the example, the solution would be to evaluate f() on
an earlier line, storing its result in a named variable. Transferring using std::move(niles) ,
as recommended earlier, would never leak either, by the way. For legacy APIs, though, this is
not always an option.

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 2 ■ GENERAL UTILITIES

31

 ■ Caution A fairly common mistake is to use release() where reset() was intended,
the latter with the default nullptr argument, ignoring the value returned by release() . The
object formerly owned by the unique_ptr then leaks, which often goes unnoticed.

 An advanced feature of unique_ptr s is that they can use a custom deleter . The
deleter is the functor that is executed when destroying the owned pointer. This is useful
for non-default memory allocation, to do additional cleanup, or, for example, to manage a
file pointer as returned by the C function fopen() (defined in <cstdio>):

 This example uses a deleter of type std::function (defined in the <functional>
header, discussed later in this chapter) initialized with a function pointer, but any functor
type may be used.

 std::auto_ ptr
 At the time of writing, the <memory> header still defines a second smart pointer type for
exclusive ownership, namely std::auto_ptr . This has been deprecated, however, in favor
of unique_ptr in C++11, and is set to be removed in C++17. We therefore do not discuss
it in detail. Essentially, an auto_ptr is a flawed unique_ptr that is implicitly moved when
copied: this makes them not only error-prone but also dangerous (and in fact illegal) to
use with the standard containers and algorithms from Chapter 3 and 4 .

 Shared-Ownership Pointers
 std::shared_ ptr
 When multiple entities share the same heap-allocated object, it is not always obvious
or possible to assign a single owner to it. For such cases, shared_ptr s exist, defined in
 <memory> . These smart pointers maintain a thread-safe reference count for a shared
memory resource, which is deleted once its reference count reaches zero: that is, once
the last shared_ptr that co-owned it is destructed. The use_count() member returns the
reference count, and unique() checks whether the count equals one.

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 2 ■ GENERAL UTILITIES

32

 Like a unique_ptr , it has -> , * , cast-to-Boolean, and comparison operators to
mimic a raw pointer. Equivalent get() and reset() members are provided as well, but
no release() . A shared_ptr cannot manage dynamic arrays, though. What really sets it
apart is that shared_ptr s can and are intended to be copied:

 A shared_ptr can be constructed by moving a unique_ptr into it, but not the other
way around. To construct a new shared_ptr , it is again recommended to use make_
shared() : for the same reasons as with make_unique() (shorter code and memory leak
prevention), but in this case also because it is more efficient.

 Custom deleters are again supported. Unlike with unique_ptr , though, the deleter’s
type is not a type argument of the shared_ptr template. The declaration analogous to the
one in the earlier example thus becomes:

 std::shared_ptr<FILE> smartFilePtr(fopen("test.txt", "r"), fclose);

 To obtain a shared_ptr to a related type, use std::static_pointer_cast() ,
 dynamic_pointer_cast() , or const_pointer_cast() . If the result is non- null , the
reference count is safely incremented with one. An example will clarify:

 A lesser- known feature of shared_ptr s is called aliasing and is used for sharing parts
of an already shared object. It is best introduced with an example:

 A shared_ptr has both an owned pointer and a stored pointer. The former
determines the reference counting, and the latter is returned by get() , * , and -> .
Generally both are the same, but not if constructed with the aliasing constructor. Almost
all operations use the stored pointer, including the comparison operators < , >= , and so on.
To compare based on the owned rather than the stored pointer, use the owner_before()
member or std::owner_less<> functor class (functors are explained shortly). This is
useful, for example, when storing shared_ptr s in a std::set (see Chapter 3).

http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 2 ■ GENERAL UTILITIES

33

 std::weak_ ptr
 There are times, particularly when building caches of shared objects, when you want to
keep a reference to a shared object should you need it, but you do not want your reference
to necessarily prevent the deletion of the object. This concept is commonly called a weak
reference and is offered by <memory> in the form of a std::weak_ptr .

 A non-empty weak_ptr is constructed with a shared_ptr or results from assigning
a shared_ptr to it afterward. These pointers can again be freely copied, moved, or
swapped. Although a weak_ptr does not co-own the resource, it can access its use_
count() . To check whether the shared resource still exists, expired() can be used as
well (it is equivalent to use_count()==0). The weak_ptr , however, does not have direct
access to the shared raw pointer, because nothing would then prevent the last co-owner
from concurrently deleting it. To access the resource, a weak_ptr therefore first has to be
promoted to a co-owning shared_ptr using its lock() member:

 Function Objects <functional>
 A function object or functor is an object with an operator()(T1,...,Tn) (n may be zero),
allowing it to be invoked just like a function or operator:

 Functors not only can be passed to many standard algorithms (Chapter 4) and
concurrency constructs (Chapter 7), but are also very useful for creating your own generic
algorithms or, for example, storing or providing callback functions.

 This section outlines the functors defined in <functional> , as well as its facilities for
creating and working with functors. 1 We also briefly introduce lambda expressions, the
powerful C++11 language construct for creating functors.

 1 <functional> contains many deprecated facilities we do not discuss: ptr_fun() , mem_fun() ,
 mem_fun_ref() , bind1st() , and bind2nd() , plus their return types, as well as the base classes
 unary_function and binary_function . All of these have already been removed from the C++17
version of the standard and should not be used.

http://dx.doi.org/10.1007/978-1-4842-1876-1_4
http://dx.doi.org/10.1007/978-1-4842-1876-1_7

CHAPTER 2 ■ GENERAL UTILITIES

34

 Before we delve into functors, though, a short word on the reference wrapper utilities
that are defined in the <functional> header.

 Reference Wrappers
 The functions std::ref() and cref() return std::reference_wrapper<T> instances that
simply wrap a (const) T& reference to their input argument. This reference can then be
extracted explicitly with get() or implicitly by casting to T& .

 Because these wrappers can safely be copied, they can be used, for example, to pass
references to template functions that take their arguments by value, badly forward their
arguments (forwarding is discussed earlier in this chapter), or copy their arguments for
other reasons. Standard template functions that do not accept references as arguments,
but do work with ref() / cref() , include std::thread() and async() (see Chapter 7),
and the std::bind() function discussed shortly.

 These wrappers can be assigned to as well, thus enabling storing references into the
containers from Chapter 3 . In the following example, for instance, you could not declare a
 vector<int&> , because int& values cannot be assigned to:

 Predefined Functors
 The <functional> header provides an entire series of functor struct s similar to the
 my_plus example used earlier in this section’s introduction:

• plus , minus , multiplies , divides , modulus , and negate

• equal_to , not_equal_to , greater , less , greater_equal , and
 less_equal

• logical_and , logical_or , and logical_not

• bit_and , bit_or , bit_xor , and bit_not

 These functors often result in short, readable code, even more so than with lambda
expressions. The following example sorts an array in descending order (with the default
being ascending) using the sort() algorithm explained in Chapter 4 :

 int array[] = { 7, 9, 7, 2, 0, 4 };
 std::sort(begin(array), end(array), std::greater<int>());

 As of C++14, all of these functor classes have a special specialization for T equal to
 void , and void has also become the default template type argument. These are called
 transparent operator functors , because their function call operator conveniently deduces

http://dx.doi.org/10.1007/978-1-4842-1876-1_7
http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 2 ■ GENERAL UTILITIES

35

the parameter type. In the previous sort() example, for instance, you could simply use
 std::greater<> . The same functor can even be used for different types:

 As Chapter 3 explains, the transparent std::less<> and greater<> functors are also
the preferred comparison functors for ordered associative containers.

 Passing a unary/binary functor, predicate , to std::not1()/not2() creates a new
functor (of type unary_negate / binary_negate) that negates predicate ’s result (that is,
evaluates to !predicate()). For this to work, the type of predicate must define a public
member type argument_type . All functor types in <functional> have this.

 Generic Function Wrappers
 The std::function template class is designed for wrapping a copy of any kind of callable
entity: that is, any kind of function object or pointer. This includes the results of, for
example, bind or lambda expressions (both explained in more detail shortly):

 If a default-constructed function object is called, a std::bad_function_call
 exception is thrown. To verify whether a function may be called, it conveniently casts to
a Boolean. Alternatively, you may compare a function to a nullptr using == or != , just as
you would with a function pointer.

 Other members include target<Type>() to obtain a pointer to the wrapped
entity (the correct Type must be specified; otherwise the member returns nullptr),
and target_type() which returns the type_info for this wrapped entity (type_info is
explained under “Type Utilities” later in this chapter).

http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 2 ■ GENERAL UTILITIES

36

 ■ Tip A lesser-known feature of std::ref() , cref() , and their return type
 reference_wrapper , seen earlier, is that they can also be used to wrap callables. Unlike a
 std::function , though, which stores a copy of the callable, a reference_wrapper stores
a reference to it. This is useful when passing a functor you do not want to be copied—for
example, because it is too large (performance), stateful, or simply uncopyable—to an
algorithm that accepts it or may pass it around by value. For example:

 function_that_copies_its_callable_argument(std::ref(my_functor));

 Note that for the standard algorithms from Chapter 4 , it is generally unspecified how often
they copy their arguments. So to guarantee no copies are made, you must use (c)ref() .

 Binding Function Arguments
 The std::bind() function may be used to wrap a copy of any callable while changing
its signature: parameters may be reordered, assigned fixed values, and so on. To specify
which arguments to forward to the wrapped callable, a sequence of either values or so-
called placeholders (_1 , _2 , and so forth) is passed to bind() . The first argument passed to
the bound functor is forwarded to all occurrences of placeholder _1 , the second to those
of _2 , and so on. The maximum number of placeholders is implementation specific; and
the type of the returned functors is unspecified. Some examples will clarify:

http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 2 ■ GENERAL UTILITIES

37

 Functors for Class Members
 Both std::function and bind() , introduced earlier, may be used to create functors that
evaluate to a given object’s member variable or that call a member function on a given
object. A third option is to use std::mem_fn() , which is intended specifically for this
purpose:

 struct my_struct { int val; bool fun(int i) { return val == i; } };
 int main() {
 my_struct s{234};

 std::function<int(my_struct&)> f_get_val = &my_struct::val;
 std::function<bool(my_struct&,int)> f_call_fun = &my_struct::fun;
 std::cout << f_get_val(s) << ' ' << f_call_fun(s, 123) << std::endl;

 using std::placeholders::_1;
 auto b_get_val = std::bind(&my_struct::val, _1);
 auto b_call_fun_on_s = std::bind(&my_struct::fun, std::ref(s), _1);
 std::cout << b_get_val(s) << ' ' << b_call_fun_on_s(234) << std::endl;

 auto m_get_val = std::mem_fn(&my_struct::val);
 auto m_call_fun = std::mem_fn(&my_struct::fun);
 std::cout << m_get_val(s) << ' ' << m_call_fun(s, 456) << std::endl;
 }

 The member functors created by bind() and mem_fn() , but not std::function s,
may also be called with a pointer or one of the standard smart pointers (see the previous
section) as the first argument (that is, without dereferencing). Interesting also about the
 bind() option is that it can bind the target object itself (see b_call_fun_on_s). If that is
not required, std::mem_fn() generally results in the shortest code because it deduces
the entire type. A more realistic example is this (vector , count_if() , and string are
explained in Chapters 3 , 4 , and 6 , respectively):

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_4
http://dx.doi.org/10.1007/978-1-4842-1876-1_6

CHAPTER 2 ■ GENERAL UTILITIES

38

 LAMBDA EXPRESSIONS

 Although not part of the Standard Library, lambda expressions are such a powerful
tool for creating functors that they are well worth a short introduction. In particular,
when combined with the algorithms from Chapter 4 , the concurrency constructs
from Chapter 7 , and so on, they often form the basis of very expressive, elegant
code. Several examples of lambda expressions can be found throughout this book,
especially in Chapter 4 .

 A lambda expression is often said to create an anonymous function , but actually it
creates a functor of unspecified type, also called a closure . A lambda expression
does not have to start from an existing function like the <functional> constructs:
the body of its closure’s function call operator may contain arbitrary code.

 The basic syntax of a lambda expression is as follows:

 [CaptureBlock](Parameters) mutable -> ReturnType {Body}

 Capture block : Specifies which variables from the enclosing scope to capture.
Essentially, the created functor has, for each captured variable, a member with the
same name containing a copy of this captured variable if it is captured by value , or
a reference to it if captured by reference . As such, these variables become available
for use in the body. The basic syntax of a capture block:

• [] captures no variables (cannot be omitted).

• [x, &y] captures x by value and y by reference.

• [=, &x] captures all variables from the enclosing scope by value
except x , which is captured by reference.

• [&, x,y] captures all variables by reference except x and y , which
are captured by value.

• [this] captures the this pointer, granting the body access to all
members of the surrounding object.

 Parameters : Parameters to be passed when calling the functor. Omitting is
equivalent to specifying an empty list () . The type of parameters may be auto .

 mutable : By default, the function call operator of a lambda functor is always marked
as const , implying that variables captured by value—that is, copied in member
variables—cannot be modified (assigned to, non- const members called, and so on).
Specifying mutable makes the function call operator non- const .

 Return type : The type of the returned value. May be omitted as long as all return
statements of the body return the exact same type.

http://dx.doi.org/10.1007/978-1-4842-1876-1_4
http://dx.doi.org/10.1007/978-1-4842-1876-1_7
http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 2 ■ GENERAL UTILITIES

39

 Body : The code to execute when the lambda functor is called (non-optional).

 It is also possible to specify noexcept and/or attributes (after the optional mutable),
but these are rarely used.

 Initializer Lists <initializer_list>
 The initializer_list<T> type is used by the C++ compiler to represent the result of
initializer-list declarations:

 This curly-braces syntax is the only way to create non-empty initializer lists. Once
created, initializer_list s are immutable. Their few operations, size() , begin() ,
and end() , are analogous to those of containers (Chapter 3). When constructing an
 initializer_list from a list of initialization values, the list stores a copy of those values.
However, copying an initializer_list does not copy the elements: the new copy
simply refers to the same array of values.

 The single most common use case for initializer_list s is probably initializer-
list constructors , which are special in the sense that they take precedence over any other
constructors when curly braces are used:

 All container classes from Chapter 3 , for instance, have initializer-list constructors to
initialize them with a list of values.

 Date and Time Utilities <chrono>
 The <chrono> library introduces utilities mainly for tracking time and durations at varying
degrees of precision, determined by the type of clock used. To work with dates, you have
to use the C-style date and time types and functions defined in <ctime> . The system_
clock from <chrono> allows for interoperability with <ctime> .

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 2 ■ GENERAL UTILITIES

40

 For convenience, several typedef s analogous to those in the previous example are
predefined in the std::chrono namespace: hours , minutes , seconds , milliseconds ,
 microseconds , and nanoseconds . Each uses an unspecified signed integral Rep type,
at least big enough to represent a duration of about 1,000 years (Rep has at least 23,
29, 35, 45, 55, and 64 bits, respectively). For further convenience, the namespace
 std::literals::chrono_literals contains literal operators to easily create instances of
such duration types: h , min , s , ms , us , and ns , respectively. They are also made available
with a using namespace std::chrono declaration. When applied on a floating-point
literal, the result has an unspecified floating point type as Rep :

 Durations
 A std::chrono::duration<Rep, Period=std::ratio<1>> expresses a time span as a tick
count , represented as a Rep value which is obtainable through count() (Rep is or emulates
an arithmetic type). The time between two consecutive ticks, or period , is statically
determined by Period , a std::ratio type denoting a number (or fraction) of seconds
(std::ratio is explained in Chapter 1). The default Period is one second:

 The duration constructor can convert between duration s of a different Period
and/or count Rep resentation, as long as no truncation is required. The duration_cast()
function can be used for truncating conversions as well:

 All arithmetic and comparison operators that you would intuitively expect for working
with duration s are supported: + , - , * , / , % , += , -= , *= , /= , %= , ++ , -- , == , != , < , > , <= , and >= .
The following expression, for example, evaluates to a duration with count() == 22 :

 duration_cast<minutes>((12min + .5h) / 2 + (100ns >= 1ms? -3h : ++59s))

http://dx.doi.org/10.1007/978-1-4842-1876-1_1

CHAPTER 2 ■ GENERAL UTILITIES

41

 Time Points
 A std::chrono::time_point<Clock, Duration=Clock::duration> represents a point
in time, expressed as a Duration since a Clock ’s epoch . This Duration may be obtained
from its time_since_epoch() member. The epoch is defined as the instant in time chosen
as the origin for a particular clock, the reference point from which time is measured. The
available standard Clock s are introduced in the next section.

 A time_point is generally originally obtained from a member of its Clock ’s class.
It may be constructed from a given Duration as well, though. If default-constructed, it
represents the Clock ’s epoch. Several arithmetic (+ , - , += , -=) and comparison (== , != ,
 < , > , <= , >=) are again available. Subtracting two time_point s results in a Duration , and
 Duration s may be added to and subtracted from a time_point . Adding time_point s
together is not allowed, nor is subtracting one from a Duration :

 Conversion between time_point s with different Duration types works analogously
to the conversion of duration s: implicit conversions is allowed as long as no truncation is
required; otherwise, time_point_cast() can be used:

 auto one_hour = time_point_cast<hours>(sixty_minutes);

 Clocks
 The std::chrono namespace offers three clock types: steady_clock , system_clock , and
 high_resolution_clock . All clocks define the following static members:

• now() : A function returning the current point in time.

• rep , period , duration , time_point : Implementation-specific
types. time_point is the type returned by now() : an instantiation
of std::chrono::time_point with Duration type argument equal
to duration , which in turn equals std::chrono::duration<rep,
period> .

• is_steady : A Boolean constant that is true if the time between
clock ticks is constant and two consecutive calls to now() always
return time_point s t1 and t2 for which t1 <= t2 .

 The only clock that is guaranteed to be steady is steady_clock . That is, this
clock cannot be adjusted. The system_clock , on the other hand, corresponds to the
system-wide real-time clock, which can generally be set at will by the user. The high_
resolution_clock , finally, is the clock with the shortest period supported by the library
implementation (it may be an alias for steady_clock or system_clock).

CHAPTER 2 ■ GENERAL UTILITIES

42

 To measure the time an operation took, a steady_clock should therefore be used,
unless the high_resolution_clock of your implementation is steady:

 The system_clock should be reserved for working with calendar time. Because
the facilities of <chrono> in that respect are somewhat limited, this clock offers static
functions to convert its time_point s to time_t objects and vice versa (to_time_t() and
 from_time_t() respectively), which can then be used with the C-style date and time
utilities discussed in the next subsection:

 C-style Date and Time Utilities <ctime>
 The <ctime> header defines two interchangeable types to represent a date and time:
 time_t , an alias for an arithmetic type (generally a 64-bit signed integer), represents time
in a platform-specific manner; and tm , a portable struct with these fields: tm_sec (range
[0 , 60], where 60 is used for leap seconds), tm_min , tm_hour , tm_mday (day of the month,
range [1 , 31]), tm_mon (range [0 , 11]), tm_year (year since 1900), tm_wday (range [0 , 6], with
 0 being Sunday), tm_yday (range [0 , 365]), and tm_isdst (positive if Daylight Saving Time
is in effect, zero if not, and negative if unknown).

 The following functions are available with <ctime> . The local time zone is
determined by the currently active C locale (locales are explained in Chapter 6):

 Function Returns

 clock() A clock_t (an arithmetic type) with the approximate processor
time consumed by the process in clock ticks; or -1 upon failure.
The clock’s period is stored in the CLOCKS_PER_SEC constant.
Although this clock is steady, it may run at a different pace than wall
clock time (slowed down due to context switches, sped up due to
multithreading, and so on).

 time() Current point in time as a time_t , or null on failure. A time_t*
argument must be passed: if not null , value is written there as well.

 difftime() The difference between two time_t s as a double value denoting a
time in seconds (result may be negative).

(continued)

http://dx.doi.org/10.1007/978-1-4842-1876-1_6

CHAPTER 2 ■ GENERAL UTILITIES

43

 Function Returns

 mktime() A time_t , converted from a tm* for the local time zone, or -1 on
failure.

 localtime()
 gmtime()

 A pointer to a statically allocated tm to which the conversion for the
local / GMT time zone from a given time_t* has been written, or
 null on failure. These functions are not thread-safe : this global tm is
possibly shared among localtime() , gmtime() , and ctime() .

 asctime()
 ctime()

 A char* pointer into a global buffer in which the (null -terminated)
textual representation of a given tm* or, respectively, time_t* is
written, using a fixed , locale-independent format. They are thus both
limited and not thread-safe , so they have been deprecated in favor of,
for example, strftime() .

 strftime() Explained next.

 Consult your implementation’s documentation for safer alternatives for localtime()
and gmtime() (such as localtime_s() for Windows or localtime_r() for Linux). For
converting dates and times to strings, the preferred C-style function is strftime() (at the
end of this section, we point out C++-style alternatives):

 size_t strftime(char* result, size_t n, const char* format, const tm*);

 An equivalent for converting to wide strings (wchar_t sequences), wcsftime() , is
defined in <cwchar> . These functions write a null -terminated character sequence into
 result , which must point to a preallocated buffer of size n . If this buffer is too small, zero
is returned. Otherwise, the return value equals the number of characters written, not
including the terminating null character.

 The grammar for specifying the desired textual representation is defined as follows:
any character in the format string is copied to the result , except certain special specifiers
that are replaced as shown in the following table:

 Specifier Output Range or Example

 %M / %S Minutes / seconds. [00,59] / [00,60]

 %H / %I Hours using 24h / 12h clock. [00,23] / [01,12]

 %R / %T Equivalent to "%H:%M" / "%H:%M:%S" . 04:29 / 04:29:00

 %p / %r A.m. or p.m. / full 12h clock time. pm / 04:29:00 pm

 %A / %a Full / abbreviated weekday name. Wednesday / Wed

 %u / %w Weekday number, where the first number
in the range stands for Monday / Sunday.

 [1-7] / [0-6]

 %d / %e Day of the month. [01-31] / [1-31]

 %j Day of the year. [001-366]

(continued)

CHAPTER 2 ■ GENERAL UTILITIES

44

 Specifier Output Range or Example

 %U / %V / %W Week of the year, with weeks starting
at Sunday (%U) or Monday (%V , %W); %V
determines the first week of the year
according to ISO 8601.

 [00,53] (%U,%W)
 / [01,53] (%V)

 %B / %b, %h Full / abbreviated month name (%h is an
alias for %b) .

 October / Oct

 %m Month number. [01-12]

 %Y / %G Year / year current week belongs to,
per ISO 8601.

 2015

 %C / %y / %g First (%C) / last (%y , %g) two digits of the
year. %g uses the year the current week
belongs to, per ISO 8601.

 20 / 15 / 15

 %D / %F Equivalent to "%m/%d/%y" / "%Y-%m-%d" . 10/21/15 /
 2015-10-21

 %c / %x / %X Preferred date + time / date / time
representation.

 (see below)

 %Z / %z If available (empty if not): time zone
name or abbreviation / offset from UTC as
 "±hhmm" .

 PDT / -0700

 %% / %t / %n Escaping / special characters. % / \t / \n

 The result of many specifiers, including those that expand to names or preferred
formats, depends on the active locale (see Chapter 6). When executed with a French
locale, for example, the output for the previous example could be “ Today is mer.
21/11" and "10/21/15 16:29:00--10/21/15 16:29:00” . To use a locale-dependent
alternative representation (if one is defined by the current locale), C , c , X , x , Y , and y may
be preceded by an E (%EC , %Ec , and so on); to use alternative numeric symbols, d , e , H , I , M ,
 m , S , u , U , V , W , w , and y may be modified with the letter O .

 As covered in Chapter 5 , the C++ libraries offer facilities for reading/writing a tm
from/to a stream as well, namely get_time() and put_time() . The only C-style function
from <ctime> you generally need to output calendar dates and time in C++-style is
therefore localtime() (to convert a system_clock ’s time_t to tm) .

http://dx.doi.org/10.1007/978-1-4842-1876-1_6
http://dx.doi.org/10.1007/978-1-4842-1876-1_5

CHAPTER 2 ■ GENERAL UTILITIES

45

 C-Style File Utilities <cstdio>
 The next version of the C++ Standard Library is expected to include a more powerful
C++-style file system library. For now, this limited set of C-style functions in the <cstdio>
header are the only portable file utilities available in the Standard:

 Function Description

 int remove(filename) Deletes the file with the given filename. Returns 0 on success.
It is implementation dependent whether errno (see
Chapter 8) is set when there is an error.

 int rename(old, new) The file named old is renamed to new . If supported, files may
be moved to a different path as well. Returns 0 on success. It
is implementation dependent whether errno (see Chapter 8)
is set when there is an error.

 FILE* tmpfile() Opens a newly created file with a generated unique name
for binary output. The returned FILE* pointer can be used
with the C-style I/O functions briefly discussed in Chapter 5 .
The temporary file is automatically deleted when it is closed.
Returns nullptr when the file could not be created.

 char* tmpnam(char*) Creates a unique, non-existing filename. If a char* argument
is provided, the result is stored in this pointer and the pointer
is returned as well. The provided char* buffer must be at least
 L_tmpnam bytes long. If the argument is nullptr , a pointer to
an internal static buffer is returned in which the filename is
put. Returns nullptr if no filename could be generated.

 Type Utilities
 Runtime Type Identification <typeinfo>, <typeindex>
 The C++ typeid() operator is used to obtain information about the runtime type of a
value. It returns a reference to a global instance of the std::type_info class defined in
 <typeinfo> . These instances cannot be copied, but it is safe to use references or pointers
to them. Comparison is possible using their ==, != , and before() members, and a
 hash_code() can be computed for them. Of particular interest is name() , which returns an
implementation-specific textual representation of the value’s type:

 The name() printed may be something like “ std::basic_string<char, std::char_
traits<char>, std::allocator<char>>” (see Chapter 6), but for other implementations
it might just as well be “ Ss” .

http://dx.doi.org/10.1007/978-1-4842-1876-1_8
http://dx.doi.org/10.1007/978-1-4842-1876-1_8
http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_6

CHAPTER 2 ■ GENERAL UTILITIES

46

 When used on a B* pointer to an instance of a derived class D , typeid() only gives
the dynamic type D* rather than the static type B* if B is polymorphic—that is, has at least
one virtual member.

 Because type_info s cannot be copied, they cannot be used as keys for the
associative arrays from Chapter 3 directly. For precisely this purpose, the <typeindex>
header defines the std::type_index decorator class: it mimics the interface of a wrapped
 type_info& , but it is copyable; has < , <= , > , and >= operators; and has a specialization of
 std::hash defined for it.

 Type Traits <type_traits>
 A type trait is a construct used to obtain compile-time information on a given type or to
transform a given type or types to a related one. Type traits are generally used to inspect
and manipulate template type arguments when writing generic code.

 The <type_traits> header defines a multitude of traits. Due to page constraints,
and because template metaprogramming is an advanced topic, this book cannot go into
details on all of them. We provide a brief reference on the different type traits, though,
which should be sufficient for basic usage.

 Type Classification
 Each type in C++ belongs to exactly one of 14 primary type categories . In addition to
those, the Standard also defines several composite type categories to easily refer to all
types belonging to two or more related primary categories. For each of these, a type trait
 struct exists to check whether a given type belongs to that category. Their names are of
the form is_ category , with category equal to one of the names shown in Figure 2-1 .
A trait’s static Boolean named value contains whether its type argument belongs to the
corresponding category. Traits are functors that both return and cast to this value . Some
examples follow (the code refers to int main()):

http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 2 ■ GENERAL UTILITIES

47

 Figure 2-1. Overview of the type classification traits. The second column lists the 14
primary categories; the other names are those of the composite categories.

 Type Properties
 A second series of type traits is there to statically query properties of types. They are
mostly used in exactly the same manner as those of the previous subsection, and all
except one, has_virtual_destructor , again have names of the form is_ property .

 The following values for property check the indicated type properties:

• The presence of type quantifiers : const and volatile

• Polymorphism properties of classes : polymorphic (has virtual
member(s)), abstract (pure virtual member(s)), and final

• Signedness of arithmetic types : signed (includes floating-point
numbers) and unsigned (includes Booleans)

CHAPTER 2 ■ GENERAL UTILITIES

48

 And then there is a large family of traits where the property is the validity of a
construction or assignment statement with specified argument types, or the validity of a
destruction statement (omitting as always the is_):

• The basic ones are constructible<T,Args...> , assignable<T, Arg> ,
and destructible<T> . All scalar types are destructible, and
the former two properties may hold for non-class types as well
(because constructions like int i(0); , for example, are valid).

• Auxiliary traits exist for checking the validity of default
constructions (default_constructible) and copy/move
constructions and assignments (copy_constructible<T> ==
constructible<T, const T&> , and so on).

• All the previous property names may further be prefixed
with either trivially or nothrow . For instance: trivially_
destructible , nothrow_constructible , or nothrow_move_
assignable .

 The nothrow properties hold if the construction, assignment, or destruction is
statically known to never throw. The trivial ones hold if the type is either scalar or a
non-polymorphic class for which this operation is the default one (that is, not specified
by the user), and the trivial property holds as well for all its base classes and non-static
member variables. For the trivially constructible properties, the class is also not allowed
to have any non-static data members with in-class initializers.

 The final list of property values essentially hold under the following conditions.
Arrays of types satisfying these also have the same property:

• trivially_copyable , if trivially_destructible and
 trivially_(copy|move)_(constructible | assignable) all hold.
Bitwise copy functions such as std::memcpy() are defined to be
safe for trivially_copyable types.

• trivial , if trivially_default_constructible and trivially_
copyable , and no non-default constructors exist.

• standard_layout , if scalar or a class for which a pointer to that
class may safely be casted to a pointer to the type of its first non-static
member (that is, no polymorphism, limited multiple-inheritance,
and so on). This is for compatibility with C, because such casts
(with C struct s then) are common practice in C code.

• pod (plain old data), if trivial and standard_layout .

• literal_type , if values may be used in constexpr expressions
(that is, can be evaluated statically without side effects).

• empty , for non-polymorphic classes without non-static member
variables.

CHAPTER 2 ■ GENERAL UTILITIES

49

 Type Property Queries
 The value of a type trait is not always a Boolean. For the following traits, it contains the
specified size_t type properties:

• std::alignment_of<T> : value of the alignof(T) operator

• std::rank<T> : array dimensions, such as rank<int>() == 0 ,
 rank<int[]>() == 1 , rank<int[][5][6]>() == 3 , and so on

• std::extent<T,N=0> : number of elements of the N th
array dimension, or 0 if unknown or invalid; for instance,
 extent<int[]>() == 0 and extent<int[][5][6], 1>() == 5 .

 Type Comparisons
 These three type traits compare types: is_same<T1, T2> , i s_base_of<Base, Derived> ,
and is_convertible<From, To> (using implicit conversions).

 Type Transformations
 Most type transformation traits are again fairly similar, except that they have no value ,
but instead a nested typedef named type :

• std::add_x with x one of const , volatile , cv (const and
 volatile), pointer , lvalue_reference , rvalue_reference .

• std::remove_x with x one of const , volatile , cv , pointer ,
 reference (lvalue or rvalue), extent , all_extents . In all except
the last case, only the top-level/first type modifier is removed. For
instance: remove_extent<int[][5]>::type == int[5] .

• std::decay<T> : converts T to a related type that can be stored
by value, mimicking by-value argument passing. An array type
 int[5] , for example, becomes a pointer type int* , a function a
function pointer, const and volatile are stripped, and so on.
A possible implementation is shown shortly as an example.

• std::make_y with y either signed or unsigned . If applied on an
integral type T , type is a signed or, respectively, unsigned integer
type with sizeof(type) == sizeof(T) .

• std::result_of , defined only for functional types, gives the
return type of the function.

• std::underlying_type , defined only for enum types, gives the
(integral) type underlying this enum .

• std::common_type<T...> has a type all types T can implicitly be
converted to.

CHAPTER 2 ■ GENERAL UTILITIES

50

 The header also contains two utility traits to help with type metaprogramming. Their
basic use is illustrated by means of a few examples.

• std::conditional<B,T1,T2> has type T1 if the constexpr B
evaluates to true and type T2 otherwise.

• std::enable_if<B,T=void> has type T , but only if the
 constexpr B evaluates to true . Otherwise, type is not defined.

 For all traits of this subsection, a convenience type with name std:: trait _t<T>
exists defined as std:: trait <T>::type . The upcoming example, for instance, shows how
convenient enable_if_t<> is compared to the full expression.

 This first example shows how to use the C++ SFINAE idiom to conditionally add
or remove functions from overload resolution. SFINAE is an acronym for Substitution
Failure Is Not An Error and exploits the fact that failure to specialize a template does not
constitute a compile error. In this case, it is the absence of the type typedef that causes
substitution to fail:

 A second example shows a possible implementation of the std::decay
transformation trait in terms of the std::conditional metafunction. The latter is used to
essentially form an if - else if - else construction at the level of types:

 using namespace std;
 template<typename T> struct my_decay {
 private:
 typedef remove_reference_t<T> U;
 public:
 typedef conditional_t<is_array<U>::value, remove_extent_t<U>*,
 conditional_t<is_function<U>::value, add_pointer_t<U>,
 remove_cv_t<U>>> type;
 };

51© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1_3

 CHAPTER 3

 Containers

 The C++ Standard Library provides a selection of different data structures called
 containers that you can use to store data. Containers work in tandem with algorithms ,
described in Chapter 4 . Containers and algorithms are designed in such a way that they
do not need to know about each other. The interaction between them is accomplished
with iterators . All containers provide iterators, and algorithms only need iterators to be
able to perform their work.

 This chapter starts by explaining the concept of iterators followed by a description
of all containers. Because this book is a quick reference, it is impossible to discuss all
containers in depth. The std::vector container is explained in more detail compared
to the others. Once you know how to work with one container, you know how to work
with others.

 Iterators <iterator>
 Iterators are the glue between containers and algorithms. They provide a way to
enumerate all elements of a container in a uniform way without having to know any
details about the container. The following list briefly mentions the most important
iterator categories provided by the Standard, and the subsequent table explains all the
operations possible on them:

• Forward (F): An input iterator that supports forward iteration

• Bidirectional (B): A forward iterator that can move forward and
backward

• Random (R): A bidirectional iterator that support jumping to
elements at arbitrary indexes

http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 3 ■ CONTAINERS

52

 In the following table, T is an iterator type , a and b are instances of T , t is an instance
of the type to which T points to, and n is an integer.

 Operation Description F B R

 T a , ~ T() , T b(a) , b = a Default constructor, destructor, copy
constructor, copy assignment.

 ■ ■ ■

 a == b , a != b Equality and inequality operators. ■ ■ ■

 *a , a->m, *a = t ,
 *a++ = t

 Dereferencing. ■ ■ ■

 ++a , a++ , *a++ Incrementing operators. ■ ■ ■

 --a , a-- , *a-- Decrementing operators. ■ ■

 a[n] Random access. ■

 a + n , n + a , a - n ,
 a += n , a -= n

 Arithmetic operators. Advance an
iterator forward or backward.

 ■

 a - b Calculate the distance between
iterators.

 ■

 a < b , a > b ,
 a <= b , a >= b

 Inequality operators. ■

 From this, it is obvious that random iterators are very similar to C++ pointers. In fact,
pointers into a regular C-style array satisfy all requirements for a random iterator and can
therefore be used with the algorithms from Chapter 4 as well. Also, certain containers,
sequential containers in particular, likely define their iterators as typedef s for regular
pointers. For more complex data structures, though, this is not possible, and iterators are
implemented as small classes.

 All Standard Library compliant containers must provide an iterator and
 const_iterator member type. Additionally, containers that support reverse
iteration must provide the reverse_iterator and const_reverse_iterator
member types. For example, the reverse iterator type for a vector of integers is
 std::vector<int>::reverse_iterator .

 Iterator Tags
 An iterator tag is an empty type used to differentiate between the different iterator
categories seen earlier. The Standard defines std:: category _iterator_tag types for the
following values of category : forward , bidirectional , and random_access . The type
trait expression std::iterator_traits<Iter>::iterator_category evaluates to the
iterator tag type of the given iterator type Iter . This can be used by generic algorithms
to optimize their implementation based on the category of its iterator arguments. For
example, the std::distance() method explained in an upcoming section uses the
iterator tag to choose between an implementation that linearly calculates the distance
between two iterators and a more efficient one that simply subtracts two iterators.

http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 3 ■ CONTAINERS

53

 If you implement your own iterators, you should therefore specify its tag. You can do
this either by adding a typedef Tag iterator_category to your implementation, where
 Tag is one of the iterator tags, or by specializing std::iterator_traits for your type to
provide the correct tag type.

 Non-Member Functions to Get Iterators
 All containers support member functions that return various iterators. However, the
Standard also provides non-member functions that can be used to get such iterators. In
addition, these non-member functions work the same way on containers, C-style arrays,
and initializer_lists . The provided non-member functions are as follows:

 Non-Member Function Description

 begin() / end() Returns an iterator to the first, or, respectively, one past
the last element

 cbegin() / cend() const versions of begin() and end()

 rbegin() / rend() Returns a reverse iterator to the last, or, respectively, one
before the first element

 crbegin() / crend() const versions or rbegin() and rend()

 Dereferencing the iterators returned by the const versions, also called const iterators ,
results in const references and therefore cannot be used to modify the elements in the
container or array. A reverse iterator allows you to traverse a container’s elements in
reverse order: starting with the last element and going toward the first element. When you
increment a reverse iterator, it actually moves to the previous element in the underlying
container.

 Here is an example of how to use such non-member functions on a C-style array:

 int myArray[] = { 1,2,3,4 };
 auto beginIter = std::cbegin(myArray);
 auto endIter = std::cend(myArray);
 for (auto iter = beginIter; iter != endIter; ++iter) {
 std::cout << *iter << std::endl;
 }

 However, instead of this, it is recommended that you use a range-based for loop
to iterate over all elements of a C-style array or Standard Library container. It is much
shorter and clearer. For example:

 int myArray[] = { 1,2,3,4 };
 for (const auto& element : myArray) {
 std::cout << element << std::endl;
 }

CHAPTER 3 ■ CONTAINERS

54

 You cannot always use the range-based for loop version, though. If you want to
loop over the elements and remove some of them, for instance, then you need the
iterator version.

 Non-Member Operations on Iterators
 The following non-member operations exist to perform random-access operations on all
types of iterators. When called on iterators that are not known to support random access
(see also earlier), the implementation automatically falls back to a method that works for
that iterator (for example, a linear traversal):

• std::distance(iter1, iter2) : Returns the distance between
two iterators.

• std::advance(iter, dist) : Advances an iterator by a given
distance and returns nothing. The distance can be negative if the
iterator is bidirectional or random access.

• std::next(iter, dist) : Equivalent to advance(iter, dist)
and returns iter .

• std::prev(iter, dist) : Equivalent to advance(iter, -dist)
and returns iter . Only works for bidirectional and random-
access iterators.

 Sequential Containers
 The following sections describe the five sequential containers: vector , deque , array ,
 list , and forward_list . At the end is a reference with all available methods supported
by these containers.

 std::vector <vector>
 A vector stores its elements contiguously in memory. It is comparable to a heap-allocated
C-style array, except that it is safer and easier to use because vector automatically releases
its memory and grows to accommodate new elements.

 Construction
 Like all Standard Library containers, vector is templated on the type of object stored in it.
The following piece of code shows how to define a vector of integers:

 std::vector<int> myVector;

CHAPTER 3 ■ CONTAINERS

55

 Initial elements can be specified using a braced initializer:

 std::vector<int> myVector1 = { 1,2,3,4 };
 std::vector<int> myVector2{ 1,2,3,4 };

 You can also construct a vector with a certain size. For example:

 std::vector<int> myVector(100, 12);

 This creates myVector containing 100 elements with value 12 . The second parameter is
optional. If you omit it, new elements are zero-initialized, which is 0 for the case of integers.

 Iterators
 vector supports random-access iterators . You use the begin() or cbegin() member to
get a non- const or const iterator to the first element in the vector . The end() and cend()
methods are used to get an iterator to one past the last element. rbegin() and crbegin()
return a reverse iterator to the last element, and rend() and crend() return a reverse
iterator to one before the first element.

 As always, you can also use the equivalent non-member functions explained earlier,
such as std::begin() , std::cbegin() , and so on.

 Accessing Elements
 Elements in a vector can be accessed using operator[] , which returns a reference to an
element at a specific zero-based index, making it behave exactly as with C-style arrays.
For example:

 No bounds-checking is performed when using operator[] . If you need bounds-
checking, use the at() method, which throws an std::out_of_range exception if the
given index is out of bounds.

 front() can be used to get a reference to the first element, and back() returns a
reference to the last element.

 Adding Elements
 One way to add elements to a vector is to use push_back() . For example, adding two
integers to myVector can be done as follows:

 std::vector<int> myVector;
 myVector.push_back(11);
 myVector.push_back(2);

CHAPTER 3 ■ CONTAINERS

56

 Another option is to use the insert() method, which requires an iterator to the
position before which the new element should be inserted. For example:

 Just like any modifying operation, insertion generally invalidates existing iterators.
So when inserting in a loop, the following idiom should be used:

 This works because insert() returns a valid iterator pointing to the inserted element
(more generally, to the first inserted element, discussed shortly). If you do use a loop,
make sure you do not cache the end iterator, because insert() might invalidate it.

 insert() can also be used to insert a range of elements anywhere in the vector or to
concatenate (append) two vectors. When using insert() , you do not have to resize the
 vector yourself. For example:

 Two additional overloads of insert() provide insertion of initializer lists or a given
number of copies of a certain element. Using the same v1 as before:

 Instead of constructing a new element and then passing it to insert() or
 push_back() , elements can also be constructed in place using an emplacement method,
such as emplace() or emplace_back() . The former, emplace() , is the counterpart of a
single-element insert() , the latter of push_back() . Suppose you have a vector of Person
objects. You can add a new person at the back in these two similar ways:

 persons.push_back(Person("Sheldon", "Cooper"));
 persons.emplace_back("Leonard", "Hofstadter");

CHAPTER 3 ■ CONTAINERS

57

 The arguments to emplacement functions are perfectly forwarded to the element’s
constructors. Emplacement is generally more efficient if it avoids the creation of a
temporary object, as in the previous example. This is particularly interesting if copying is
expensive or may even be the only way to add elements if they cannot be copied.

 On a related note, addition and insertion members of containers generally have full
support for moving elements into containers, again to avoid the creation of unnecessary
copies (move semantics is explained in Chapter 2). For example:

 Person person("Howard", "Wolowitz");
 persons.push_back(std::move(person));

 Size and Capacity
 A vector has a size, returned by size() , which is the number of elements contained in
the vector . Use empty() to check whether a vector is empty or not. Take care, though,
not to confuse empty() with clear() : the former returns a Boolean, and the latter
removes all elements.

 A vector can be resized with resize() . For example:

 std::vector<int> myVector;
 myVector.resize(100, 12);

 This sets the size of the vector to 100 elements. If new elements have to be created,
they are initialized with 12. The second parameter is again optional; when omitted, new
elements are zero-initialized.

 In addition to a size, a vector also has a capacity, returned by capacity() . The
capacity is the total number of elements it can store (including the elements already in
the vector) without having to allocate more memory. If more elements are added than
allowed by the capacity, the vector must perform a reallocation because it needs to store
all elements contiguously in memory. Reallocation means that a new, bigger block of
memory is allocated and that all current elements in the vector are transferred to the
new location (they are moved if moving is supported and known not to throw; otherwise
they are copied; see Chapter 2).

 If you know how many elements you are going to add, it is crucial for performance
to preallocate sufficient capacity to avoid reallocation. Failure to do so will cause a
significant performance hit. This can be done using reserve() :

 myVector.reserve(100);

 Note that this does not reserve capacity for 100 extra elements; it simply ensures that
the total capacity of myVector is at least 100. Reserving capacity for a non-empty vector
to store 100 extra elements should be done as follows:

 myVector.reserve(myVector.size() + 100);

http://dx.doi.org/10.1007/978-1-4842-1876-1_2
http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 3 ■ CONTAINERS

58

 Removing Elements
 The last element in a vector can be removed using pop_back() , and erase() is used to
remove other elements. There are two overloads of erase() :

• erase(iter) : Removes the element to which the given iterator points

• erase(first, last) : Removes the range of elements given by the
two iterators, so [first , last)

 When you remove elements, the size of the vector changes, but its capacity does
not. If you want to reclaim unused memory, you can use shrink_to_fit() . This is just a
hint, though, which may be ignored by an implementation: for example, for performance
reasons.

 To remove all elements, use clear() . This again does not affect capacity. A classic
idiom to clear a container while guaranteeing its memory is reclaimed is to swap with an
empty one:

 The formerly empty container is then destroyed, containing all elements, leaving the
original one empty. This idiom is often also written more briefly as follows:

 Remove-Erase Idiom
 If you need to remove a number of elements from a vector , you can write your own loop
to iterate over all the elements. The following example removes all elements equal to 2
from a vector:

 If you do use a loop as shown here, make sure you do not cache the end iterator
because erase() will invalidate it. To avoid this and other mistakes, it is always
recommended that you use standard algorithms instead of hand-written loops. When you
want to remove multiple elements, you can use the remove-erase idiom. This pattern first
uses the std::remove() or std::remove_if() algorithm. As Chapter 4 explains, these
algorithms do not actually remove elements. Instead, they move all elements that need to
be kept toward the beginning, maintaining the relative order of these elements. The
algorithms return an iterator to one past the last element to be kept. The next step usually

http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 3 ■ CONTAINERS

59

is to call erase() on the container to really erase the elements starting from the iterator
returned by remove() or remove_if() to the end. For example:

 The call to remove() in the second line moves all elements to keep toward the
beginning of the vector . The contents of the other elements (that is, those to remove) can
be different depending on your compiler.

 The previous remove() and erase() calls can also be combined into one line:

 vec.erase(std::remove(begin(vec), end(vec), 2), end(vec));

 ■ Caution In the remove-erase idiom, do not forget to specify the end iterator as second
parameter to erase() , as marked in bold in the previous examples. Otherwise you will only
delete one element!

 std::vector<bool>
 vector<bool> is a specialization of vector<T> for Boolean elements. It allows C++
Standard Library implementations to store the Boolean values in a space-efficient way,
but this is not a requirement. It has the same interface as vector<T> , with the addition of
a flip() method to flip all the bits in the vector<bool> .

 This specialization is similar to the std::bitset discussed later. The difference is
that a bitset has a fixed size, whereas a vector<bool> can dynamically grow and shrink
as needed.

 Both vector<bool> and bitset are recommended only to save memory; otherwise,
use a vector<std::uint_fast8_t> : this generally has superior performance when it
comes to, for example, accessing, traversing, or assigning values.

 Complexity
 The complexity of common operations on a vector is as follows:

• Insertion : Amortized constant O(1) at the end; otherwise
linear in the distance from the insertion point to the end of the
vector, O(N)

• Deletion : O(1) at the end, otherwise linear in the distance to the
end of the vector O(N)

• Access : O(1)

CHAPTER 3 ■ CONTAINERS

60

 Even though list and forward_list , discussed later, have better theoretical
insertion and deletion complexities, vector is typically faster in practice and should
therefore be your default sequential container. When in doubt, always use a profiler to
compare their performance for your application.

 std::deque <deque>
 A deque is a double-ended queue , a container similar to a vector that supports efficient
insertion and deletion both at the beginning and at the end. The Standard does not
require deque elements to be stored contiguously in memory, so reallocation done by a
 deque may be cheaper than for a vector . Nevertheless, deque supports random access
and random-access iterators.

 The operations on a deque are almost the same as for a vector , with a few minor
differences. A deque does not have the concept of capacity because it does not have to
store its elements contiguously, so none of the methods related to capacity are available.
Moreover, a deque provides a push_front() and pop_front() in addition to push_back()
and pop_back() .

 Here is an example of using a deque :

 Complexity
 The complexity of common operations on a deque is as follows:

• Insertion : Amortized constant O(1) at the beginning and end;
otherwise linear in the distance from the insertion point to the
beginning or end O(N)

• Deletion : O(1) at the beginning or end; otherwise linear in the
distance to the beginning or end O(N)

• Access : O(1)

 std::array <array>
 An array is a container with a fixed size specified at compile time as a template argument,
supporting random-access iterators . For an array , both size() and max_size() return
the same.

 The following defines an array of three integers :

 std::array<int, 3> myArray;

CHAPTER 3 ■ CONTAINERS

61

 These integers are uninitialized . This is different from all other containers, which
zero-initialize their elements by default. This is because a std::array is designed to be as
close as possible to a C array. Of course, you can also initialize elements when defining an
 array . The number of initialization values must equal the size of the array or less. If you
specify more values, you get a compilation error. Elements for which no value is specified
are zero initialized. For example:

 This also implies that the following zero-initializes all elements:

 There is one special method, fill() , which fills the array with a certain value.
For example:

 For arrays, this may be more efficient than the generic std::fill() algorithm
explained in Chapter 4 .

 Complexity
• Insertion : Not possible

• Deletion : Not possible

• Access : O(1)

 std::list and std::forward_ list <list>, <forward_list>
 A list stores its elements as a doubly linked list, whereas a forward_list stores them as
a singly linked list. Both therefore store elements non-contiguously in memory.

 A first downside is that random access therefore is not possible in constant time.
Because of this, operator[] is not supported. To access a specific element, you always
have to perform a linear search using iterators. list supports bidirectional iterators, so
you can start at the beginning or the end; forward_list only supports forward iterators,
so you always need to start at the beginning. Once you are at the correct place in the
container, though, insertion and deletion at that place are efficient because they only
need to modify a couple of links.

 A second downside is that elements may become scattered in memory, which is bad
for locality and hurts performance due to an increased number of cache misses.

 ■ Tip Because of the aforementioned downsides, only use a list or forward_list
instead of a vector if a profiler shows that it is more efficient for your use case.

http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 3 ■ CONTAINERS

62

 The operations supported by list and forward_list are similar to those of a
 vector , with some minor differences. A list or forward_list does not have a capacity,
so none of the capacity-related methods are supported. Both support front() , which
returns a reference to the first element. A list also supports back() returning a reference
to the last element.

 Complexity
 Both list and forward_list have similar complexities:

• Insertion : O(1) once you are at the correct position

• Deletion : O(1) once you are at the correct position

• Access : O(1) to access the first (for list and forward_list) or last
(only for list) element; otherwise O(N)

 List-Specific Algorithms
 Due to the nature of how list and forward_list store their elements, they provide a
couple of member functions that implement specific algorithms . The following table lists
the provided algorithms for list (L) and forward_list (F):

 Operation L F Description

 merge() ■ ■ Merges two sorted lists. The list that is merged in is
emptied.

 remove() ■ ■ Removes elements from the list that match a given value.

 remove_if() ■ ■ Removes elements from the list that satisfy a given
predicate.

 reverse() ■ ■ Reverses the contents of the list.

 sort() ■ ■ Sorts the elements.

 splice() ■ Moves elements from another list before a given position.

 splice_after() ■ Moves elements from another list after a given position.

 unique() ■ ■ Replaces consecutive duplicates with a single element.

 For all of these algorithms except splice() and splice_after() , generic versions
are available that are explained in Chapter 4 . These generic versions work on all types
of containers, but the list containers provide special implementations that are more
efficient.

http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 3 ■ CONTAINERS

63

 Here is an example of using some of these list algorithms:

 Sequential Containers Reference
 The following subsections give an overview of all the operations supported by vector (V),
 deque (D), array (A), list (L), and forward_list (F), divided into categories.

 Iterators

 Operation V D A L F Description

 begin()
 end()

 ■ ■ ■ ■ ■ Returns an iterator to the first or one past
the last element

 cbegin()
 cend()

 ■ ■ ■ ■ ■ const versions of begin() and end()

 rbegin()
 rend()

 ■ ■ ■ ■ Returns a reverse iterator to the last
element or one before the first element

 crbegin()
 crend()

 ■ ■ ■ ■ const versions of rbegin() and rend()

 before_begin() ■ Returns an iterator to the element right
before the element returned by begin()

 cbefore_begin() ■ const version of before_begin()

CHAPTER 3 ■ CONTAINERS

64

 Size and Capacity

 Operation V D A L F Description

 size() ■ ■ ■ ■ Returns the number of elements

 max_size() ■ ■ ■ ■ ■ Returns the maximum number of elements
that can be stored in the container

 resize() ■ ■ ■ ■ Resizes the container

 empty() ■ ■ ■ ■ ■ Returns true if the container is empty, false
otherwise

 capacity() ■ Returns the current capacity of the container

 reserve() ■ Reserves capacity

 shrink_to_fit() ■ ■ Hint to reduce the capacity of the container
to match its size

 Access

 Operation V D A L F Description

 operator[] ■ ■ ■ Returns a reference to an element at a given
index position. No bounds-checking is
performed on the index.

 at() ■ ■ ■ Returns a reference to an element at a given
index position. If the given index position is out
of bounds, an std::out_of_range exception is
thrown.

 data() ■ ■ Returns a pointer to the data of the vector or
 array . This is useful to pass the data to legacy
C-style array APIs. In older code, you often see
the equivalent &myContainer[0] .

 front() ■ ■ ■ ■ ■ Returns a reference to the first element.
Undefined behavior on an empty container.

 back() ■ ■ ■ ■ Returns a reference to the last element.
Undefined behavior on an empty container.

CHAPTER 3 ■ CONTAINERS

65

 Modifiers

 Operation V D A L F Description

 assign() ■ ■ ■ ■ ■ Replaces the contents of the
container with
 • N copies of a given value, or
 • Copies of elements from a given
range, or
 • Elements from a given
initializer_list

 clear() ■ ■ ■ ■ Deletes all elements; size becomes zero.

 emplace() ■ ■ ■ Constructs a single new element in
place before the element pointed to by
a given iterator. The iterator argument
is followed by zero or more arguments
that are just forwarded to the element’s
constructor.

 emplace_back() ■ ■ ■ Constructs a single new element in
place at the end.

 emplace_after() ■ Constructs a single new element in
place after an existing element.

 emplace_front() ■ ■ ■ Constructs a single new element in
place at the beginning.

 erase() ■ ■ ■ Erases elements.

 erase_after() ■ Erases an element after an existing
iterator position.

 fill() ■ Fills the container with a given element.

 insert() ■ ■ ■ Inserts one or more elements before the
element pointed to by a given iterator.

 insert_after() ■ Inserts one or more elements after the
element pointed to by a given iterator.

 push_back()
 pop_back()

 ■ ■ ■ Adds an element at the end, or,
respectively, removes the last element.

 push_front()
 pop_front()

 ■ ■ ■ Adds an element at the beginning, or,
respectively, removes the first element.

 swap() ■ ■ ■ ■ ■ Swaps the contents of two containers in
constant time, except for array s, where
it needs linear time.

CHAPTER 3 ■ CONTAINERS

66

 Non-Member Functions
 All sequential containers support the following non-member functions :

 Operation Description

 == , != , < , <= , > , >= Compares values in two containers (lexicographically)

 std::swap() Swaps the contents of two containers

 The <array> header defines one additional non-member function,
 std::get<Index>() , and helper types std::tuple_size and std::tuple_element , which
are equivalent to the same function and types defined for tuples and pairs explained in
Chapter 2 .

 std::bitset <bitset>
 A bitset is a container storing a fixed number of bits. The number of bits is specified
as a template parameter. For example, the following creates a bitset with 10 bits, all
initialized to 0:

 std::bitset<10> myBitset;

 The values for the individual bits can be initialized by passing an integer to the
constructor or by passing in a string representation of the bits. For example:

 std::bitset<4> myBitset("1001");

 A bitset can be converted to an integer or a string with to_ulong() , to_ullong() ,
and to_string() .

 Complexity
• Insertion : Not possible

• Deletion : Not possible

• Access : O(1)

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 3 ■ CONTAINERS

67

 Reference
 Access

 Operation Description

 all()
 any()
 none()

 Returns true if all, at least one, or, respectively, none of the bits are set.

 count() Returns the number of bits that are set.

 operator[] Accesses a bit at a given index. No bounds-checking is performed.

 test() Accesses a bit at a given index. Throws std::out_of_range if the given
index is out of bounds.

 ==, != Returns true if two bitset s are equal, or, respectively, not equal.

 size() Returns the number of bits the bitset can hold.

 to_string()
 to_ulong()
 to_ullong()

 Converts a bitset to a string , unsigned long , or, respectively,
 unsigned long long .

 Operations

 Operation Description

 flip() Flips the values of all the bits

 reset() Sets all bits or a bit at a specific position to false

 set() Sets all bits to true or a bit at a specific position to a specific value

 In addition, bitset supports all bitwise operators: ~ , & , &= , ̂ , ̂ = , | , |= , << , <<= , >> ,
and >>= .

 Container Adaptors
 Container adaptors are built on top of other containers to provide a different interface.
They prevent you from directly accessing the underlying container and force you to use
their special interface. The following three sections give an overview of the available
container adaptors— queue , priority_queue , and stack —followed by a section that gives
an example and a reference section.

CHAPTER 3 ■ CONTAINERS

68

 std::queue <queue>
 A queue represents a container that has first-in first-out (FIFO) semantics. You can
compare it to a queue at a night club. A person who arrived before you will be allowed to
enter before you.

 A queue needs access to the front and the back, so the underlying container must
support back() , front() , push_back() , and pop_front() . The standard list and deque
support these methods and can be used as underlying containers. The default container
is the deque . Here is the template definition of queue :

 template<class T, class Container = std::deque<T>>
 class queue ;

 The complexity for a queue is as follows:

• Insertion : O(1) for list as underlying container; amortized O(1)
for deque

• Deletion : O(1) for list and deque as underlying container

• Access : Not possible

 std::priority_queue <queue>
 A priority_queue is similar to a queue but stores the elements according to a priority.
The element with highest priority is at the front of the queue. In the case of a night club,
VIP members get higher priority and are allowed to enter before non-VIPs.

 A priority_queue needs random access on the underlying container and only needs
to be able to modify the container at the back, not the front. Therefore, the underlying
container must support random access, front() , push_back() , and pop_back() . The
 vector and deque are available options, with the vector being the default underlying
container. Here is the template definition of priority_queue :

 template<class T,
 class Container = std::vector<T>,
 class Compare = std::less<typename Container::value_type>>
 class priority_queue ;

 To determine the priority, elements are compared using a functor object of the type
specified as the Compare template type parameter. By default, this is std::less , explained
in Chapter 2 , which, unless specialized, forwards to operator< of the element type T . A
 Compare instance can optionally be provided to the priority_queue constructor; if not,
one is default-constructed.

 The complexity for a priority_queue is as follows:

• Insertion : Amortized O(log(N)) for vector or deque as underlying
container

• Deletion : O(log(N)) for vector and deque as underlying container

• Access : Not possible

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 3 ■ CONTAINERS

69

 std::stack <stack>
 A stack represents a container that has last-in first-out (LIFO) semantics. You can
compare it to a stack of plates in a self-service restaurant. Plates are added at the top,
pushing down other plates. A customer takes a plate from the top, which is the last added
plate on the stack.

 For implementing LIFO semantics, a stack requires the underlying container to
support back() , push_back() , and pop_back() . The vector , deque , and list are available
options for the underlying container, with deque being the default one. Here is the
template definition of stack :

 template<class T, class Container = std::deque<T>>
 class stack ;

 The complexity for a stack is as follows:

• Insertion : O(1) for list as underlying container, amortized O(1)
for vector and deque

• Deletion : O(1) for list , vector and deque as underlying container

• Access : Not possible

 Example
 The following example demonstrates how to use the container adaptors. The table after
the code shows the output of the program when the container, cont , is defined as a queue ,
 priority_queue , or, respectively, stack :

CHAPTER 3 ■ CONTAINERS

70

 queue<Person> priority_queue<Person> stack<Person>

 Doug B
 Phil W
 Stu P
 Alan G

 Stu P 1
 Doug B
 Phil W
 Alan G

 Alan G
 Stu P
 Phil W
 Doug B

 Reference

 Operation Description

 emplace() Queue : Constructs a new element in place at the back.
 Priority queue : Constructs a new element in place.
 Stack : Constructs a new element in place at the top.

 empty() Returns true if empty, false otherwise.

 front()
 back()

 Queue : Returns a reference to the first or last element.
 Priority queue : n/a
 Stack : n/a

 pop() Queue : Removes the first element from the queue.
 Priority queue : Removes the highest-priority element.
 Stack : Removes the top element.

 push() Queue : Inserts a new element at the back of the queue.
 Priority queue : Inserts a new element.
 Stack : Inserts a new element at the top.

 size() Returns the number of elements.

 swap() Swaps the contents of two queues or stacks.

 top() Queue : n/a
 Priority queue : Returns a reference to the element with the highest
priority.
 Stack : Returns a reference to the element at the top.

 queue and stack support the same set of non-member functions as the sequential
containers: == , != , < , <= , > , >= , and std::swap(). priority_queue only supports the
 std::swap() non-member function.

 1 The way operator< is defined for Person in the Introduction chapter causes the VIP and non-VIP
persons in the priority_queue to be in reverse alphabetical order: people with an alphabetically
higher name get a higher priority.

CHAPTER 3 ■ CONTAINERS

71

 Ordered Associative Containers
 std::map and std::multimap <map>
 A map is a data structure that stores key-value pair s, using the pair utility class explained in
Chapter 2 . The elements are ordered according to the key. That is, when iterating over all
elements contained in an ordered associative container, they are enumerated in an order
with increasing key values , not in the order these elements were inserted. For a map there can
be no duplicate keys, whereas a multimap supports duplicate keys.

 When defining a map , you need to specify both the key type and the value type. You
can immediately initialize a map with a braced initializer:

 std::map<Person, int> myMap{ {Person("Jenne"), 1}, {Person("Bart"), 2} };

 Iterators for a map<Key,Value> or multimap<Key,Value> are bidirectional and point
to a pair<Key,Value> . For example:

 operator[] can be used to access elements in a map . If a requested element does not
exist, it is default constructed, so it can also be used to insert elements:

 myMap[Person("Peter")] = 3;

 You can add more elements to the map with insert() :

 myMap.insert(std::make_pair(Person("Marc"), 4));

 There are several versions of the insert() method :

 std::pair<iterator, bool> insert(pair)

 Inserts the given key-value pair . A pair is returned with an iterator
pointing to either the inserted element (a key-value pair) or the
already-existing element, and a Boolean that is true if a new element
was inserted or false otherwise.

 iterator insert(iterHint, pair)

 Inserts the given key-value pair. An implementation may use the
given hint to start searching for an insertion position. An iterator is
returned that points to the inserted element or to the element that
prevented the insertion.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 3 ■ CONTAINERS

72

 void insert(iterFirst, iterLast)

 Inserts the key-value pairs from the range [iterFirst , iterLast).

 void insert(initializerList)

 Inserts the key-value pairs from the given initializer_list .

 There is also an emplace() method that allows you to construct a new key-value pair
in place. It returns a pair<iterator, bool> similar to the first insert() method in the
previous list. For example:

 myMap.emplace(Person("Anna"), 4);

 To avoid the creation of all temporary objects, though, you must use so-called
 piecewise construction , as explained in the section on pair s in Chapter 2 :

 myMap.emplace(std::piecewise_construct,
 std::forward_as_tuple("Anna"), std::forward_as_tuple(4));

 std::set and std::multiset <set>
 A set is similar to a map , but it does not store pairs, only unique keys without values
(this is how the Standard defines it, and we will as well: some may prefer to think of it as
values without keys though). A multiset supports duplicate keys.

 There is only one template type parameter: the key type. The insert() method takes
a single key instead of a pair . For example:

 There are overloads of insert() similar to those for map and multimap .
 An iterator for a set or multiset is bidirectional and points to the actual key, not to a

 pair , as is the case for map and multimap . Keys are always sorted.

 Searching
 If you want to find out whether a certain key is in an associative container, you can
use these:

• find() : Returns an iterator to the found element (a key-value pair
for maps) or the end iterator if the given key is not found.

• count() : Returns the number of keys matching the given key.
For map or set , this can only be 0 or 1, whereas for multimap or
 multiset , this can be larger than 1.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 3 ■ CONTAINERS

73

 Order of Elements
 The ordered associative containers store their elements in an ordered fashion. By
default, std::less<Key> is used for this ordering, which, unless specialized, relies on
 operator< of the Key type. You can change the comparison functor type by specifying a
 Compare template type parameter. Unless a concrete Compare functor instance is passed
to the container’s constructors, one is default-constructed. Here are the more complete
template definitions of all ordered associative containers:

 template<class Key, class Value, class Compare = std::less<Key>>
 class map ;
 template<class Key, class Value, class Compare = std::less<Key>>
 class multimap ;

 template<class Key, class Compare = std::less<Key>>
 class set ;
 template<class Key, class Compare = std::less<Key>>
 class multiset ;

 ■ Tip The preferred functors for use with ordered associative containers are the
so-called transparent operator functors (see Chapter 2)—for example, std::less<> (short
for std::less<void>)—because this improves performance for heterogeneous lookups.
A classic example is lookups with string literals for std::string keys: std::less<> then
avoids the creation of temporary std::string objects. A set with string keys and a
transparent operator functor, for instance, is declared as follows: std::set<std::string,
std::less<>> mySet; .

 Complexity
 The complexity for all four ordered associative containers is the same:

• Insertion : O(log(N))

• Deletion : O(log(N))

• Access : O(log(N))

 Reference
 The following subsections give an overview of all the operations supported by map (M),
 multimap (MM), set (S), and multiset (MS), divided into categories.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 3 ■ CONTAINERS

74

 Iterators
 All ordered associative containers support the same set of iterator-related methods as
supported by the vector container: begin() , end() , cbegin() , cend() , rbegin() , rend() ,
 crbegin() , and crend() .

 Size
 All associative containers support the following methods :

 Operation Description

 empty() Returns true if the container is empty, false otherwise

 max_size() Returns the maximum number of elements that can be stored

 size() Returns the number of elements

 Access and Lookup

 Operation M MM S MS Description

 at() ■ Returns a reference to an element with
the given key. If the given key does not
exist, an std::out_of_range exception is
thrown.

 operator[] ■ Returns a reference to an element with the
given key. It default constructs an element
with the given key if one does not exist
already.

 count() ■ ■ ■ ■ Returns the number of elements that
match a given key.

 find() ■ ■ ■ ■ Finds an element matching a given key.

 lower_bound() ■ ■ ■ ■ Returns an iterator to the first element
with a key not less than a given key.

 upper_bound() ■ ■ ■ ■ Returns an iterator to the first element
with a key greater than a given key.

 equal_range() ■ ■ ■ ■ Returns a range of elements that match a
given key as a pair of iterators. The range
is equivalent to calling lower_bound() and
 upper_bound() . For map or set , this range
can only contain 0 or 1 elements.

CHAPTER 3 ■ CONTAINERS

75

 Modifiers
 All associative containers support the following methods:

 Operation Description

 clear() Clears the container.

 emplace() Constructs a new element in place.

 emplace_hint() Constructs a new element in place. An implementation may use
the given hint to start searching for the insertion position.

 erase() Removes an element at a specific position, a range of elements,
or all elements matching a given key.

 insert() Inserts new elements.

 swap() Swaps the contents of two containers.

 Observers
 All ordered associative containers support the following observers :

 Operation Description

 key_comp() Returns the key compare functor

 value_comp() Returns the functor used to compare key-value pairs based on
their keys

 Non-Member Functions
 All ordered associative containers support the same set of non-member functions as the
sequential containers: operator== , != , < , <= , > , >= , and std::swap() .

 Unordered Associative Containers
 <unordered_map>, <unordered_set>

 There are four unordered associative containers: unordered_map , unordered_multimap ,
 unordered_set , and unordered_multiset . They are similar to the ordered associative
containers (map , multimap , set , and multiset), except that they do not order the
elements but instead store them in buckets in a hash map. The interfaces are similar to
the corresponding ordered associative containers, except that they expose hash-specific
interfaces related to the hash policy and buckets.

CHAPTER 3 ■ CONTAINERS

76

 Hash Map
 A hash map or hash table is an efficient data structure storing its elements in buckets. 2
Conceptually, the map contains an array of pointers to buckets, which are in turn
arrays or linked lists of elements. Through a mathematical formula called hashing , a
hash integer number is calculated, which is then transformed into a bucket index. Two
elements resulting in the same bucket index are stored inside the same bucket.

 A hash map allows for very fast retrieval of elements. To retrieve an element,
calculate its hash value, which results in the bucket number. If there are multiple
elements in that bucket, a quick (generally linear) search is performed in that single
bucket to find the right element.

 Template Type Parameters
 The unordered associative containers allow you to specify your own hasher and your own
definition of how to decide whether two keys are equal by specifying extra template type
parameters . Here are the template definitions for all unordered associative containers:

 template<class Key, class Value, class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>> class unordered_map ;
 template<class Key, class Value, class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>> class unordered_multimap ;

 template<class Key, class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>> class unordered_set ;
 template<class Key, class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>> class unordered_multiset ;

 Hash Functions
 If too many keys result in the same hash (bucket index), the performance of a hash map
deteriorates. In the worst case, all elements end up in the same bucket and all lookup and
insertion operations become linear. Details of writing proper hash functions fall outside
the scope of this book.

 The Standard provides the following std::hash template (the base template is
defined in <functional> but is included also in the <unordered_xxx> headers):

 template<class T> struct hash ;

 Specializations are provided for several types, such as bool , char , int , long , double ,
and std::string . If you want to calculate a hash of your own object types, you can
implement your own hashing functor class. However, we recommend that you implement
a specialization of std::hash instead.

 2 Technically, you could easily implement a hash map without buckets: for example, using so-called
 open addressing . The way the standard unordered containers are defined, though, strongly
suggests the use of a separate chaining method , which is therefore what we describe here.

CHAPTER 3 ■ CONTAINERS

77

 The following is an example of how you could implement a std::hash specialization
for the Person class defined in the introduction chapter. It uses the standard std::hash
specialization for string objects to calculate the hash of the first and last name. Both
hashes are then combined by a XOR operation. Simply XORing values generally does not
give sufficiently randomly distributed integers, but if both operands are already hashes, it
can be considered acceptable:

 ■ Note Although adding types or functions to the std namespace is generally disallowed,
adding specializations is perfectly legal. Note also that the recommendation we made in
Chapter 2 to specialize std::swap() in the type’s own namespace does not extend to
 std::hash : because std::hash is a class rather than a function (like swap()), ADL does not
apply (see the discussion in Chapter 2).

 Complexity
 The complexity for all four unordered associative containers is the same:

• Insertion : O(1) on average, O(N) worst case

• Deletion : O(1) on average, O(N) worst case

• Access : O(1) on average, O(N) worst case

 Reference
 All unordered associative containers support the same methods as the ordered
associative containers, except reverse iterators, lower_bound() , and upper_bound() .
The following subsections give an overview of all additional operations supported
by unordered_map (UM) , unordered_multimap (UMM), unordered_set (US), and
 unordered_multiset (UMS), divided into categories.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1876-1_2
http://dx.doi.org/10.1007/978-1-4842-1876-1_2
http://www.allitebooks.org

CHAPTER 3 ■ CONTAINERS

78

 Observers
 All unordered associative containers support the following observers:

 Operation Description

 hash_function() Returns the hash function used for hashing keys

 key_eq() Returns the function used to perform an equality test on keys

 Bucket Interface
 All unordered associative containers support the following bucket interface :

 Operation Description

 begin(int)
 end(int)

 Returns an iterator to the first or one past the last element in
the bucket with given index

 bucket() Returns the index of the bucket for a given key

 bucket_count() Returns the number of buckets

 bucket_size() Returns the number of elements in the bucket with a given
index

 cbegin(int)
 cend(int)

 const versions of begin(int) and end(int)

 max_bucket_count() Returns the maximum number of buckets that can be created

 Hash Policy
 All unordered associative containers support the following hash policy methods :

 Operation Description

 load_factor() Returns the average number of elements in a bucket.

 max_load_factor() Returns or sets the maximum load factor. If the load factor
exceeds this maximum, more buckets are created.

 rehash() Sets the number of buckets to a specific value and rehashes all
current elements.

 reserve() Reserves a number of buckets to accommodate a given
number of elements without exceeding the maximum load
factor.

CHAPTER 3 ■ CONTAINERS

79

 Non-Member Functions
 All unordered associative containers only support operator== , operator!= , and
 std::swap() as non-member functions .

 Allocators
 All containers except array and bitset support another template type parameter we
have not shown yet—one that allows you to specify an allocator type. This always has
a default value, though, and you should normally simply ignore it. It is there in cases
when you want to have more control over how memory for the container is allocated.
So, in theory, you could write your own allocator and pass it to the container. This is an
advanced topic that falls outside the scope of this book.

 For example, the complete definition of the vector template is as follows:

 template<class T, class Allocator = allocator<T>>
 class vector ;

81© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1_4

 CHAPTER 4

 Algorithms

 The previous chapter discusses the containers provided by the Standard Library to store
data. Orthogonally to these, the library offers numerous algorithms to process this or
other data. Algorithms are independent of containers: they do their work solely based
on iterators and can therefore be executed on any range of elements as long as suitable
iterators are provided.

 This chapter starts with a brief definition of input/output iterators, followed by a
detailed overview of all available algorithms organized by functionality. The chapter ends
with a discussion of iterator adaptors.

 Input and Output Iterators
 The previous chapter briefly explains the different categories of iterators offered by
containers: forward, bidirectional, and random access. Two more iterator categories are
used in the context of algorithms, which have fewer requirements compared to the other
three. Essentially:

• Input iterator: Must be dereferenceable to read elements. Other
than that, only the ++ , == , and != operators are required.

• Output iterator: Only ++ operators are required, but you must be
able to write elements to them after dereferencing.

 For both, it also suffices that they provide single-pass access. That is, once
incremented, they may in principle invalidate all previous copies of them. Two
corresponding iterator tags, as discussed in Chapter 3 , are provided for these categories
as well: std::input_iterator_tag and output_iterator_tag .

 All iterators returned by the standard containers, as well as pointers into C-style
arrays, are valid input iterators. They are valid output iterators as well, as long as they do
not point to const elements.

http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 4 ■ ALGORITHMS

82

 Algorithms <algorithm>
 This section gives an overview of all available algorithms, organized into subsections
according to functionality. All algorithms are defined in the <algorithm> header file
unless otherwise noted.

 Terminology
 The following terms and abbreviations are used for types in the definitions of algorithms:

• Function : Callable—that is, lambda expression, function object, or
function pointer.

• InIt, OutIt, FwIt, BidIt, RanIt : Input, output, forward, bidirectional,
or random-access iterator.

• UnaOp, BinOp : Unary or binary operation—that is, a callable
accepting one resp. two arguments.

• UnaPred, BinPred : Unary or binary predicate, with a predicate
being an operation that returns a Boolean.

• Size : A type representing a size—for example, a number of
elements.

• DiffType : A type representing a distance between two iterators.

• T : An element type.

• Compare : A function object to be used to compare elements. If
not specified, operator< is used. The function object accepts two
parameters and returns true if the first argument is less than the
second, false otherwise. The ordering imposed must be a strict
weak ordering, just as with the default operator< .

 Algorithms often accept a callable as one of their parameters: for example, a unary
or binary operation or predicate. This callable can be a lambda expression, a function
object, or a function pointer. Lambda expressions and function objects are discussed in
Chapter 2 .

 General Guidelines
 First, whenever possible, use standard algorithms instead of self-written loops, because
they are often more efficient and are far less error-prone. Also, and especially after the
introduction of lambda expressions , the use of algorithms mostly results in far shorter,
readable, self-explanatory code.

 Second, for several algorithms, certain containers offer equivalent specialized
member functions (see Chapter 3). These are more efficient and should therefore be
preferred over the generic algorithms. In the algorithm descriptions that follow, we
always list these alternatives.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2
http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 4 ■ ALGORITHMS

83

 Finally, many of the algorithms move or swap elements. If no implicit or explicit
move and/or swap functions are available, these algorithms fall back to copying
elements. For optimal performance, you should therefore always consider implementing
specialized move and/or swap functions for nontrivial custom data types. Types offered
by the Standard Library always provide these where appropriate. We refer to Chapter 2 for
more information regarding move semantics and swap functions.

 Applying a Function on a Range
 Function for_each(InIt first, InIt last, Function function)

 Calls the given function for each element in the range
 [first, last) , and returns std::move(function) . Note
that when iterating over an entire container or C-style array,
a range-based for loop is more convenient.

 OutIt transform(InIt first1, InIt last1, OutIt target, UnaOp operation)
 OutIt transform(InIt1 first1, InIt1 last1, InIt2 first2,
 OutIt target, BinOp operation)

 Transforms all elements in a range [first1, last1) and
stores the results in a range starting at target , which is
allowed to be equal to first1 or first2 to perform an in-
place transformation. For the first version, a unary operation
is performed on each transformed element. For the second, a
binary operation is performed on each transformed element
with the corresponding element from the second range.
Let length = (last1 - first1) , then the binary operation is
executed on pairs (*(first1 + n), *(first2 + n)) with
0 ≤ n < length . Returns the end iterator of the target range,
so (target + length) .

 Example
 The following example uses transform() to double all the elements in a vector using
a lambda expression, then uses transform() to negate the elements using a standard
function object, and finally outputs all the elements to the console using for_each() .
This code snippet additionally needs <functional> :

 std::vector<int> vec{ 1,2,3,4,5,6 };

 std::transform(cbegin(vec), cend(vec), begin(vec),
 [](auto& element) { return element * 2; });

 std::transform(cbegin(vec), cend(vec), begin(vec), std::negate<>());

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 4 ■ ALGORITHMS

84

 std::for_each(cbegin(vec), cend(vec),
 [](auto& element) { std::cout << element << " "; });

 The output is as follows:

 -2 -4 -6 -8 -10 -12

 Checking for the Presence of Elements

 bool all_of(InIt first, InIt last, UnaPred predicate)
 bool none_of(InIt first, InIt last, UnaPred predicate)
 bool any_of(InIt first, InIt last, UnaPred predicate)

 Returns true if all, none, or respectively at least one of
the elements in the range [first, last) satisfies a unary
 predicate . If the range is empty, all_of() and none_of()
return true , and any_of() returns false .

 DiffType count(InIt first, InIt last, const T& value)
 DiffType count_if(InIt first, InIt last, UnaPred predicate)

 Returns the number of elements in [first, last) that are
equal to a given value , or that satisfy a unary predicate .
 [Alternatives: all ordered and unordered associative containers
have a count() member.]

 Example
 The following example demonstrates the use of all_of() to check whether all elements
are even:

 Finding Elements

 InIt find(InIt first, InIt last, const T& value)
 InIt find_if(InIt first, InIt last, UnaPred predicate)
 InIt find_if_not(InIt first, InIt last, UnaPred predicate)

 Searches all elements in the range [first, last) for the first
element that is equal to a value , satisfies a unary predicate ,
or does not satisfy a predicate . Returns an iterator to the
element found, or last if none is found.
 [Alternatives: all ordered and unordered associative containers
have a find() member.]

CHAPTER 4 ■ ALGORITHMS

85

 InIt find_first_of(InIt first1, InIt last1,
 FwIt first2, FwIt last2[, BinPred predicate])

 Returns an iterator to the first element in [first1, last1)
that is equal to an element in [first2, last2) . Returns
 last1 if no such element is found or if [first2, last2) is
empty. If a binary predicate is given, it is used to decide about
equality of elements between the two ranges.

 FwIt adjacent_find(FwIt first, FwIt last[, BinPred predicate])

 Returns an iterator to the first element of the first pair of
adjacent elements in the range [first, last) that are equal
to each other or match a binary predicate . Returns last if no
suited adjacent elements are found.

 Example
 The following code snippet uses the find_if() algorithm to find a person called Waldo in
a list of people:

 auto people = { Person("Wally"), Person("Wilma"), Person("Wenda"),
 Person("Odlaw"), Person("Waldo"), Person("Woof") };
 auto iter = std::find_if(begin(people), end(people),
 [](const Person& p) { return p.GetFirstName() == "Waldo"; });

 Binary Search
 All of the following algorithms require that the given range [first , last) is sorted or at
least partitioned on value (partitioning is explained later). If this precondition is not met,
the algorithms’ behavior is undefined.

 bool binary_search(FwIt first, FwIt last, const T& value[, Compare comp])

 Returns true if there is an element equal to value in the range
 [first, last) .

 FwIt lower_bound(FwIt first, FwIt last, const T& value[, Compare comp])
 FwIt upper_bound(FwIt first, FwIt last, const T& value[, Compare comp])

 Returns an iterator to the first element in [first, last) that
does not compare less than value for lower_bound() and to
the first that compares greater than value for upper_bound() .
When inserting in a sorted range, both are suitable positions
to insert value , provided insertion happens before the iterator
(as with the insert() method of sequential containers; see
the next “Example” subsection).
 [Alternatives: all ordered associative containers have
lower_bound() and upper_bound() members.]

CHAPTER 4 ■ ALGORITHMS

86

 pair<FwIt, FwIt> equal_range(FwIt first, FwIt last,
 const T& value[, Compare comp])

 Returns a pair containing the lower and upper bounds.
 [Alternatives: all ordered and unordered associative containers
have an equal_range() member.]

 Example
 The following code snippet demonstrates how to insert a new value into a vector at the
correct place to keep the elements sorted:

 The next example uses equal_range() to find the range of values equal to 2.
It returns a pair of iterators. The first one points to the first element equal to 2, and the
second points to the element after the last 2:

 Subsequence Search
 All the subsequence search algorithms accept an optional binary predicate that is used to
decide about equality of elements.

 FwIt1 search(FwIt1 first1, FwIt1 last1,
 FwIt2 first2, FwIt2 last2[, BinPred predicate])
 FwIt1 find_end(FwIt1 first1, FwIt1 last1,
 FwIt2 first2, FwIt2 last2[, BinPred predicate])

 For search() / find_end() , respectively, returns an iterator
to the beginning of the first/last subsequence in [first1,
last1) that is equal to the range [first2, last2) . Returns
 first1 / last1 if the second range is empty, or last1 if no
equal subsequence is found.

 FwIt search_n(FwIt first, FwIt last, Size count,
 const T& value[, BinPred predicate])

 Returns an iterator to the first subsequence in [first, last)
that consists of value repeated count times. Returns first if
 count is zero, or last if no suitable subsequence is found.

CHAPTER 4 ■ ALGORITHMS

87

 Min/Max
 constexpr const T& min(const T& a, const T& b[, Compare comp])
 constexpr const T& max(const T& a, const T& b[, Compare comp])

 Returns a reference to the minimum or maximum of two
values, or the first value if they are equal.

 constexpr T min(initializer_list<T> t[, Compare comp])
 constexpr T max(initializer_list<T> t[, Compare comp])

 Returns a copy of the minimum or maximum value in a given
 initializer_list , or a copy of the leftmost element if there
are several elements equal to this extreme.

 constexpr pair<const T&, const T&> minmax(
 const T& a, const T& b[, Compare comp])

 Returns a pair containing references to the minimum and
maximum of two values, in that order. If both values are equal,
the pair(a, b) is returned.

 constexpr pair<T, T> minmax(initializer_list<T> t[, Compare comp])

 Returns a pair containing a copy of the minimum and
maximum values in an initializer_list , in that order. If
several elements are equal to the minimum, then a copy of the
leftmost one is returned; if several elements are equal to the
maximum, then a copy of the rightmost is returned.

 FwIt min_element(FwIt first, FwIt last[, Compare comp])
 FwIt max_element(FwIt first, FwIt last[, Compare comp])
 pair<FwIt, FwIt> minmax_element(FwIt first, FwIt last[, Compare comp])

 Returns an iterator to the minimum, an iterator to the
maximum, or, respectively, a pair containing an iterator
to both the minimum and maximum element in a range
 [first, last) . Returns last or pair(first, first) if the
range is empty.

CHAPTER 4 ■ ALGORITHMS

88

 Sequence Comparison
 All the sequence comparison algorithms accept an optional binary predicate that is used
to decide about equality of elements.

 bool equal(InIt1 first1, InIt1 last1, InIt2 first2[, BinPred predicate])

 Let n = (last1 - first1) , then returns true if all elements in
the ranges [first1, last1) and [first2, first2 + n) pair-
wise match. The second range must have at least n elements.
The four-argument version discussed later is therefore
preferred to avoid out-of-bounds accesses.

 pair<InIt1, InIt2> mismatch(InIt1 first1, InIt1 last1,
 InIt2 first2[, BinPred predicate])

 Let n = (last1 - first1) , then returns a pair of iterators
pointing to the first elements in the ranges [first1, last1)
and [first2, first2 + n) that do not pair-wise match. The
second range must have at least n elements. The following
four-argument version is therefore preferred to avoid out-of-
bounds accesses.

 bool equal(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2[, BinPred predicate])
 pair<InIt1, InIt2> mismatch(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2[, BinPred predicate])

 Safer versions of the earlier three-argument versions that
also know the length of the second range. For equal() to be
 true , both ranges have to be equally long. For mismatch() , if
no mismatching pair is found before reaching either last1 or
 last2 , a pair (first1 + m, first2 + m) is returned with
 m = min(last1 - first1, last2 - first2) .

 Copy, Move, Swap
 OutIt copy(InIt first, InIt last, OutIt targetFirst)
 OutIt copy_if(InIt first, InIt last, OutIt targetFirst, UnaPred predicate)

 Copies either all the elements (copy()), or only those that
satisfy a unary predicate (copy_if()), from the range
 [first, last) to a range starting at targetFirst . For copy() ,
 targetFirst is not allowed to be in [first, last) : if this is
the case, copy_backward() may be an option. For copy_if() ,
the ranges are not allowed to overlap. For both algorithms, the
target range must be big enough to accommodate the copied
elements. Returns the end iterator of the resulting range.

CHAPTER 4 ■ ALGORITHMS

89

 BidIt2 copy_backward(BidIt1 first, BidIt1 last, BidIt2 targetLast)

 Copies all the elements in the range [first, last) to a range
ending at targetLast , which is not in the range [first, last) .
The target range must be big enough to accommodate the
copied elements. Copying is done backward, starting with
copying element (last-1) to (targetLast-1) and going back
to first . Returns an iterator to the beginning of the target
range, so (targetLast - (last - first)) .

 OutIt copy_n(InIt start, Size count, OutIt target)

 Copies count elements starting at start to a range starting
at target . The target range must be big enough to
accommodate the elements. Returns the target end iterator,
so (target + count) .

 OutIt move(InIt first, InIt last, OutIt targetFirst)
 BidIt2 move_backward(BidIt1 first, BidIt1 last, BidIt2 targetLast)

 Similar to copy() and copy_backward() but moves the
elements instead of copying them.

 FwIt2 swap_ranges(FwIt1 first1, FwIt1 last1, FwIt2 first2)

 Swaps the elements in the range [first1, last1) with the
elements in the range [first2, first2 + (last1 - first1)) .
Both ranges are not allowed to overlap, and the second range
must be at least as big as the first. Returns an iterator one past
the last swapped element in the second range.

 void iter_swap(FwIt1 x, FwIt2 y)

 Swaps the element pointed to by x with the element pointed
to by y , so swap(*x, *y) .

 Generating Sequences
 void fill(FwIt first, FwIt last, const T& value)
 OutIt fill_n(OutIt first, Size count, const T& value)

 Assigns value to all the elements in the range [first, last) or
 [first, first + count) . Nothing happens if count is negative.
The range for fill_n() must be big enough to accommodate
 count elements. fill_n() returns (first + count) , or first if
 count is negative. [Alternatives: array::fill() .]

CHAPTER 4 ■ ALGORITHMS

90

 void generate(FwIt first, FwIt last, Generator gen)
 OutIt generate_n(OutIt first, Size count, Generator gen)

 The generator is a function without any arguments returning
a value. It is called to calculate a value for each element in the
range [first, last) or [first, first + count) . Nothing
happens if count is negative. The range for generate_n() must
be big enough to accommodate count elements. generate_n()
returns (first + count) , or first if count is negative.

 void iota(FwIt first, FwIt last, T value)

 This algorithm is defined in the <numeric> header. Each
element in the range [first, last) is set to value , after
which value is incremented, so:

 *first = value++
 *(first + 1) = value++
 *(first + 2) = value++
 ...

 Example
 The following example demonstrates generate() and iota() :

 Removing and Replacing
 FwIt remove(FwIt first, FwIt last, const T& value)
 FwIt remove_if(FwIt first, FwIt last, UnaPred predicate)

 Moves all elements in the range [first, last) that are not
equal to value , or do not satisfy a unary predicate , toward the
beginning of the range, after which [first, result) contains all
the elements to keep. The result iterator, pointing to one passed
the last element to keep, is returned. The algorithms are stable,
which means the retained elements maintain their relative order.
The elements in [result, last) should not be used because
they could be in an unspecified state due to moves. Usually these
algorithms are followed by a call to erase() . This is known as the
 remove-erase idiom and is discussed in Chapter 3 .
 [Alternatives: list and forward_list have remove() and
 remove_if() members.]

http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 4 ■ ALGORITHMS

91

 FwIt unique(FwIt first, FwIt last[, BinPred predicate])

 Removes all but one element from consecutive equal
elements in the range [first, last) . If a binary predicate
is given, it is used to decide about equality of elements.
Otherwise equivalent to remove() , including the fact that it
should normally be followed by an erase() . A typical use
of unique() is shown in the next “Example” subsection.
 [Alternatives: list::unique() , forward_list::unique() .]

 void replace(FwIt first, FwIt last, const T& oldVal, const T& newVal)
 void replace_if(FwIt first, FwIt last, UnaPred predicate, const T& newVal)

 Replaces with newVal all elements in the range [first, last)
equal to oldVal , or satisfying a unary predicate .

 OutIt remove_copy(InIt first, InIt last, OutIt target, const T& value)
 OutIt remove_copy_if(InIt first, InIt last, OutIt target, UnaPred predicate)
 OutIt unique_copy(InIt first, InIt last, OutIt target [, BinPred predicate])
 OutIt replace_copy(InIt first, InIt last, OutIt target,
 const T& oldVal, const T& newVal)
 OutIt replace_copy_if(InIt first, InIt last, OutIt target,
 UnaPred predicate, const T& newVal)

 Similar to the previous algorithms, but copies the results to a
range starting at target . The target range must be big enough
to accommodate the copied elements. The input and target
ranges are not allowed to overlap. Returns the end iterator of
the target range.

 Example
 The following example demonstrates the use of unique() and the remove-erase idiom to
filter out all consecutive equal elements from a vector :

 Reversing and Rotating
 void reverse(BidIt first, BidIt last)

 Reverses the elements in the range [first, last) .
[Alternatives: list::reverse() , forward_list::reverse() .]

CHAPTER 4 ■ ALGORITHMS

92

 FwIt rotate(FwIt first, FwIt middle, FwIt last)

 Rotates the elements in the range [first, last) to the left in
such a way that the element pointed to by middle becomes the
first element in the range and the element pointed to by
 (middle - 1) becomes the last element in the range (see the next
“Example” subsection). Returns (first + (last - middle)) .

 OutIt reverse_copy(BidIt first, BidIt last, OutIt target)
 OutIt rotate_copy(FwIt first, FwIt middle, FwIt last, OutIt target)

 Similar to reverse() and rotate() , but copies the results to a
range starting at target . The target range must be big enough
to accommodate the copied elements. The input and target
ranges are not allowed to overlap. Returns the end iterator of
the target range.

 Example
 The next code snippet rotates the elements in the vector . The result is 5,6,1,2,3,4 :

 std::vector<int> vec{ 1,2,3,4,5,6 };
 std::rotate(begin(vec), begin(vec) + 4, end(vec));

 Partitioning
 bool is_partitioned(InIt first, InIt last, UnaPred predicate)

 Returns true if the elements in the range [first, last) are
partitioned such that all elements satisfying a unary predicate
are before all elements that do not satisfy the predicate. Also
returns true if the range is empty.

 FwIt partition(FwIt first, FwIt last, UnaPred predicate)
 BidIt stable_partition(BidIt first, BidIt last, UnaPred predicate)

 Partitions the range [first, last) such that all elements
satisfying a unary predicate are before all elements that do not
satisfy the predicate. Returns an iterator to the first element
that does not satisfy the predicate. stable_partition()
maintains the relative order of elements in both partitions.

 pair<OutIt1, OutIt2> partition_copy(InIt first, InIt last,
 OutIt1 outTrue, OutIt2 outFalse, UnaPred predicate)

CHAPTER 4 ■ ALGORITHMS

93

 Partitions the range [first, last) by copying all elements
that satisfy or do not satisfy a unary predicate to an output
range starting at outTrue or, respectively, outFalse . Both
output ranges must be big enough to accommodate the
copied elements. The input and output ranges are not allowed
to overlap. Returns a pair containing the end iterator of the
two output ranges.

 FwIt partition_point(FwIt first, FwIt last, UnaPred predicate)

 Requires the range [first, last) to be partitioned based
on a unary predicate . Returns an iterator to the first element
of the second partition: that is, the first element that does not
satisfy the predicate.

 Sorting
 void sort(RanIt first, RanIt last[, Compare comp])
 void stable_sort(RanIt first, RanIt last[, Compare comp])

 Sorts the elements in the range [first, last) . The stable
version maintains the order of equal elements.
 [Alternatives: list::sort() , forward_list::sort() .]

 void partial_sort(RanIt first, RanIt middle, RanIt last[, Compare comp])

 The (middle - first) smallest elements from the range
 [first, last) are sorted and moved to the range [first,
middle) . The unsorted elements are moved to the range
 [middle, last) in an unspecified order.

 RanIt partial_sort_copy(InIt first, InIt last,
 RanIt targetFirst, RanIt targetLast[, Compare comp])

 min(last - first, targetLast - targetFirst) elements
from the range [first, last) are sorted and copied to the
target range. Returns min(targetLast, targetFirst +
(last - first)) .

 void nth_element(RanIt first, RanIt nth, RanIt last[, Compare comp])

 The elements in the range [first, last) are moved in such
a way that the given iterator nth , after rearranging, points to
the element that would be in that position if the whole range
were sorted. The entire range does not actually get sorted,
though. It is, however, (non-stably) partitioned on the element
 nth points to.

CHAPTER 4 ■ ALGORITHMS

94

 bool is_sorted(FwIt first, FwIt last[, Compare comp])

 Returns true if the range [first, last) is a sorted sequence.

 FwIt is_sorted_until(FwIt first, FwIt last[, Compare comp])

 Returns the last iterator, iter , such that [first, iter) is a
sorted sequence.

 bool lexicographical_compare(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2[, Compare comp])

 Returns whether the elements in the range [first1, last1)
are lexicographically less than the elements in the range
 [first2, last2) .

 Example
 The partial_sort() and partial_sort_copy() algorithms can be used to find the n
biggest, smallest, worst, best, ... elements in a sequence. This is faster than sorting the
entire sequence. For example:

 std::vector<int> vec{ 9,2,4,7,3,6,1 };
 std::vector<int> threeSmallestElements(3);
 std::partial_sort_copy(begin(vec), end(vec),
 begin(threeSmallestElements), end(threeSmallestElements));

 nth_element() is a so-called selection algorithm to find the nth smallest number in a
sequence and has on average a linear complexity. It can, for example, be used to calculate
the median value of a sequence with an odd number of elements:

 Shuffling
 void shuffle(RanIt first, RanIt last, UniformRanGen generator)

 Shuffles the elements in the range [first, last) using
randomness generated by a uniform random-number
generator. The random-number-generation library is
explained in Chapter 1 .

 void random_shuffle(RanIt first, RanIt last[, RNG&& rng])

http://dx.doi.org/10.1007/978-1-4842-1876-1_1

CHAPTER 4 ■ ALGORITHMS

95

 Deprecated in favor of shuffle() , but mentioned for
completeness. It shuffles the elements in the range
 [first, last) . The random number generator, rng , is a
functor whose function call operator accepts an integral
parameter n and returns an integral random number in the
range [0, n) with n > 0. If no random-number generator
is provided, the implementation is free to decide how it
generates random numbers.

 Example
 The following example shuffles the elements in a vector . See Chapter 1 for more
information on the random-number-generation library. The code snippet additionally
needs <random> and <ctime> :

 Operations on Sorted Ranges
 All the following operations require that the input ranges are sorted. If this precondition
is not met, the algorithms’ behavior is undefined.

 OutIt merge(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])

 Merges all the elements from the sorted ranges [first1,
last1) and [first2, last2) to a range starting at target in
such a way that the target range is sorted as well. The target
range must be big enough to accommodate all elements. The
input ranges are not allowed to overlap with the target range.
Returns the end iterator of the target range. The algorithm
is stable; that is, the order of equal elements is maintained.
 [Alternatives: list::merge() , forward_list::merge() .]

 void inplace_merge(BidIt first, BidIt middle, BidIt last[, Compare comp])

 Merges the sorted ranges [first, middle) and [middle, last)
into one sorted sequence stored in the range [first, last) . The
algorithm is stable, so the order of equal elements is maintained.

 bool includes(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2[, Compare comp])

http://dx.doi.org/10.1007/978-1-4842-1876-1_1

CHAPTER 4 ■ ALGORITHMS

96

 Returns true if all elements in the sorted range [first2,
last2) are in the sorted range [first1, last1) or if the
former is empty, or false otherwise.

 OutIt set_union(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])
 OutIt set_intersection(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])
 OutIt set_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])
 OutIt set_symmetric_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])

 Performs set operations (see the following list) on two sorted
ranges [first1, last1) and [first2, last2) and stores
the results in a range starting at target . The elements in the
target range are sorted. The target range must be big enough
to accommodate the elements of the set operation. The input
and output ranges are not allowed to overlap. Returns the end
iterator of the constructed target range.

• Union : All elements of both input ranges. If an element is in
both input ranges, it appears only once in the output range.

• Intersection : All elements that are in both input ranges.

• Difference : All elements that are in [first1, last1) and that
are not in [first2, last2) .

• Symmetric difference : All elements that are in [first1,
last1) and that are not in [first2, last2) , and all
elements that are in [first2, last2) and that are not in
 [first1, last1) .

 Permutation
 bool is_permutation(FwIt1 first1, FwIt1 last1,
 FwIt2 first2[, BinPred predicate])
 bool is_permutation(FwIt1 first1, FwIt1 last1,
 FwIt2 first2, FwIt2 last2[, BinPred predicate])

 Returns true if the second range is a permutation of the first
one. For the three-argument versions, the second range is
defined as [first2, first2 + (last1 - first1)) , and this
range must be at least as large as the first. The four-argument

CHAPTER 4 ■ ALGORITHMS

97

versions are therefore preferred to safeguard against
out-of-bounds accesses (they return false if the ranges have
different lengths). If a binary predicate is given, it is used to
decide about equality of elements between the two ranges.

 bool next_permutation(BidIt first, BidIt last[, Compare comp])
 bool prev_permutation(BidIt first, BidIt last[, Compare comp])

 Transforms the elements in the range [first, last) into the
lexicographically next/previous permutation. Returns true if
such a next/previous permutation exists, otherwise returns
 false and transforms the elements in the lexicographically
smallest/largest permutation possible.

 Heaps
 In this context, the term heap does not refer to the dynamic memory pool of the C++
runtime. In computer science, heaps are also a family of fundamental tree-based data
structures (well-known variants include binary, binomial, and Fibonacci heaps). These
data structures are key building blocks in the efficient implementation of various graph
and sorting algorithms (classic examples include Prim’s algorithm, Dijkstra’s algorithm,
and heapsort). It is also a common implementation strategy for a priority queue: in
fact, the C++ priority_queue container adapter discussed in the previous chapter is
implemented using the heap algorithms defined next.

 For the following C++ algorithms, the heap’s tree is flattened into a contiguous
sequence of elements that is ordered in a particular way. Although the exact ordering
is implementation-specific, it must satisfy the following key properties: no element is
greater than its first element, and both removing this greatest element and adding any
new element can be done in logarithmic time.

 void make_heap(RanIt first, RanIt last[, Compare comp])

 Turns the range [first, last) into a heap (in linear time).

 void push_heap(RanIt first, RanIt last[, Compare comp])

 The last element of the range [first, last) is moved to
the correct position such that it becomes a heap. The range
 [first, last - 1) is required to be a heap prior to calling
 push_heap() .

 void pop_heap(RanIt first, RanIt last[, Compare comp])

 Removes the greatest element from the heap [first, last)
by swapping *first with *(last - 1) and making sure the
new range [first, last - 1) remains a heap.

CHAPTER 4 ■ ALGORITHMS

98

 void sort_heap(RanIt first, RanIt last[, Compare comp])

 Sorts all the elements in the range [first, last) . The range
is required to be a heap prior to calling sort_heap() .

 bool is_heap(RanIt first, RanIt last[, Compare comp])

 Returns true if the range [first, last) represents a heap.

 RanIt is_heap_until(RanIt first, RanIt last[, Compare comp])

 Returns the last iterator, iter , such that [first, iter)
represents a heap.

 Numeric Algorithms <numeric>
 The following algorithms are defined in the <numeric> header:

 T accumulate(InIt first, InIt last, T startValue[, BinOp op])

 Returns result , which is calculated by starting with result
equal to startValue and then executing result += element
or result = op(result, element) for each element in the
range [first, last) .

 T inner_product(InIt1 first1, InIt1 last1, InIt2 first2,
 T startValue[, BinOp1 op1, BinOp2 op2])

 Returns result , which is calculated by starting with result
equal to startValue and then executing result += (el1 * el2)
or result = op1(result, op2(el1, el2)) for each el1 from
the range [first1, last1) and each el2 from the range
 [first2, first2 + (last1 - first1)) in order. The second
range must be at least as big as the first.

 OutIt partial_sum(InIt first, InIt last, OutIt target[, BinOp op])

 Calculates partial sums of increasing subranges from [first,
last) , and writes the results to a range starting at target .
With the default operator, + , the result is as if calculated as
follows:

 *(target) = *first
 *(target + 1) = *first + *(first + 1)
 *(target + 2) = *first + *(first + 1) + *(first + 2)
 ...

 Returns the end iterator of the target range, so (target +
(last - first)) . The target range must be big enough to
accommodate the results. The calculations can be done in
place by specifying target equal to first .

CHAPTER 4 ■ ALGORITHMS

99

 OutIt adjacent_difference(InIt first, InIt last, OutIt target[, BinOp op])

 Calculates differences of adjacent elements in the range
 [first, last) , and writes the results to a range starting at
 target . For the default operator, - , the result is calculated as
follows:

 *(target) = *first
 *(target + 1) = *(first + 1) - *first
 *(target + 2) = *(first + 2) - *(first + 1)
 ...

 Returns the end iterator of the target range, so (target +
(last - first)) . The target range must be big enough to
accommodate the results. The calculations can be done in
place by specifying target equal to first .

 Example
 The following code snippet uses the accumulate() algorithm to calculate the sum of all
elements in a sequence:

 The inner_product() algorithm can be used to calculate the so-called dot product of
two mathematical vectors:

 Iterator Adaptors <iterator>
 The Standard Library provides the following iterator adaptors:

• reverse_iterator : Reverses the order of the iterator being
adapted. Use make_reverse_iterator(Iterator iter) to
construct one.

• move_iterator : Dereferences the iterator being adapted
as an rvalue. Use make_move_iterator(Iterator iter) to
construct one.

• back_insert_iterator : An iterator adaptor that inserts new
elements at the back of a container using push_back() .
Use back_inserter(Container& cont) to construct one.

CHAPTER 4 ■ ALGORITHMS

100

• front_insert_iterator : An iterator adaptor that inserts new
elements at the front of a container using push_front() . Use
 front_inserter(Container& cont) to construct one.

• insert_iterator : An iterator adaptor that inserts new
elements in a container using insert() . To construct one, use
 inserter(Container& cont, Iterator iter) , where iter is the
insertion position.

 The following example copies all elements from a vector to a deque in reverse
order by using a front_insert_iterator adaptor on the deque . Next, it concatenates
all string s in the vector using accumulate() (whose default combining operator, + ,
performs concatenation for string s). Because move_iterator adaptors are used here,
the string s are moved rather than copied from the vector :

101© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1_5

 CHAPTER 5

 Stream I/O

 The C++ stream-based I/O library allows you to perform I/O operations without having to
know details about the target to or source from which you are streaming. A stream’s target
or source could be a string, a file, a memory buffer, and so on.

 Input and Output with Streams
 The stream classes provided by the Standard Library are organized in a hierarchy and a
set of headers, as shown in Figure 5-1 .

 Figure 5-1. The hierarchy of stream-related classes

 More accurately, the library defines templates called basic_ios , basic_ostream ,
 basic_istringstream , and so on, all templated on a character type. All classes in the
hierarchy, except ios_base , are typedef s for these templated classes with char as
template type. For example, std::ostream is a typedef for std::basic_ostream<char> .
There are equivalent typedef s for the wchar_t character type called wios , wostream ,
 wofstream , and so on. The remainder of this chapter only uses the char typedef s shown
in Figure 5-1 .

CHAPTER 5 ■ STREAM I/O

102

 In addition to the headers in the figure, there is also <iostream> . Somewhat
confusingly, this does not really define std::iostream itself, because this is done by
 <istream> . Instead, <iostream> includes <ios> , <streambuf> , <istream> , <ostream> ,
and <iosfwd> , while itself adding the standard input and output streams (w) cin , (w) cout ,
(w) cerr , and (w) clog . The latter two are intended for output of errors and logging
information, respectively. Their destinations are implementation specific.

 The library also provides the std::basic_streambuf , basic_filebuf , and
 basic_stringbuf templates and their various typedef s, plus istreambuf_iterator and
 ostreambuf_iterator . These are, or work on, stream buffers and are the basis for the
implementation of other stream classes, such as ostream , ifstream , and so on. They are
briefly discussed toward the end of this chapter.

 The header <iosfwd> contains forward declarations of all the standard I/O library
types. It is useful to include it in other header files without having to include the complete
template definitions of all the types you require.

 Helper Types <ios>
 The following helper types are defined in <ios> :

 Type Description

 std::streamsize A typedef for a signed integral type used to represent the number
of characters transferred during an I/O operation, or to represent
the size of an I/O buffer.

 std::streamoff A typedef for a signed integral type used to represent an offset
into a stream.

 std::fpos A class template containing an absolute position in a stream and
a conversion operator to convert it into a streamoff . Certain
arithmetic operations are supported: a streamoff can be added
to or subtracted from an fpos , resulting in an fpos (using + , - , += ,
or -=), and two fpos objects can be compared (using == or !=) or
subtracted, resulting in a streamoff (using -). Predefined typedef s
are provided: std::streampos and wstreampos for the character
types char and wchar_t .

CHAPTER 5 ■ STREAM I/O

103

 std::ios_base <ios>
 The ios_base class , defined in <ios> , is the base class for all input and output stream
classes. It keeps track of formatting options and flags to manipulate how data is read and
written. The following methods are provided:

 Method Description

 precision()
 precision(streamsize)

 Returns the precision for floating-point I/O, or changes it
while returning the old one. The semantics of the precision
depend on which floatfield formatting flag is set (see
Table 5-1 and Table 5-2). If either fixed or scientific
is set, the precision specifies exactly how many digits to
show after the decimal separator, even if this means adding
trailing zeros. If neither is set, then it denotes the maximum
number of digits to show, counting both the digits before
and after the decimal separator (no zeros are added in this
case). And if both are set, the precision is ignored.

 width()
 width(streamsize)

 Returns the width of the next field, or changes it while
returning the old one. This width specifies the minimum
number of characters to output with certain I/O operations.
To reach this minimum, fill characters (explained later) are
added. Only has an effect on the next I/O operation.

 getloc()
 imbue(locale)

 Returns the locale used during I/O, or changes it while
returning the old one. See Chapter 6 for details on locales.

 flags()
 flags(fmtflags)

 Returns the currently set formatting flags, or replaces the
current flags while returning the old ones. Table 5-1 lists all
available fmtflags flags, which can be combined bitwise.

 setf(fmtflags)
 unsetf(fmtflags)

 Sets or unsets individual flags without touching others. The
flags prior to the update are returned.

 setf(fmtflags flags,
 fmtflags mask)

 Sets flags while unsetting others in a group, specified as
a mask . Table 5-2 lists the predefined masks. For example,
 setf(right | fixed, adjustfield | floatfield)
sets the right and fixed flags while unsetting the left ,
 internal , and scientific flags.

 It is also possible to modify flags by streaming I/O manipulators, discussed in the
next section.

http://dx.doi.org/10.1007/978-1-4842-1876-1_6

CHAPTER 5 ■ STREAM I/O

104

 Table 5-1. std::ios_base::fmtflags Formatting Flags Defined in <ios>

 Flag Description

 boolalpha Use true and false instead of 1 and 0 for Boolean I/O.

 left ,
 right ,
 internal

 Output is left aligned with fill characters added to the right, or
 right aligned with padding on the left, or adjusted by padding
in the middle. The third flag, internal , works for numerical
and monetary values, with the designated padding point being
between the value and any of its prefixes: a sign, numerical base,
and/or currency symbol. Otherwise, internal is equivalent to
 right . The results of the different alignment options are shown in
the example section.

 scientific ,
 fixed

 If neither of these flags is set, use default notation for floating-
point I/O (for instance: 0.0314). Otherwise, use scientific
(3.140000e-02) or fixed notation (0.031400). If both are
combined, scientific | fixed , use hexadecimal floating-point
notation (0x1.013a92p-5).

 dec , oct , hex Use a decimal, octal, or hexadecimal base for integer I/O.

 showbase For integer I/O, write or expect the base prefix as specified with
 dec , oct , or hex . When performing monetary I/O, std::put_
money() prefixes values with the locale-dependent currency
symbol, and std::get_money() requires a currency symbol
prefix.

 showpoint Always use a locale-dependent decimal separator character for
floating-point I/O, even if the decimal part is zero.

 showpos Use a + character for non-negative numeric I/O.

 skipws Instructs all formatted input operations (explained later) to skip
leading whitespace.

 unitbuf Forces the output to be flushed after each output operation.

 uppercase Instructs floating-point and hexadecimal integer output
operations to use uppercase letters instead of lowercase ones.

 Table 5-2. std::ios_base::fmtflags Masks Defined in <ios>

 Flag Description

 basefield dec | oct | hex

 adjustfield left | right | internal

 floatfield scientific | fixed

CHAPTER 5 ■ STREAM I/O

105

 I/O Manipulators <ios>, <iomanip>
 Manipulators allow you to change flags using operator<< and operator>> instead of
 flags(fmtflags) or setf() .

 The <ios> header defines I/O manipulators in the global std scope for all the flags
defined in Table 5-1 : std::scientific , std::left , and so on. For flags that are part of a
mask defined in Table 5-2 , the I/O manipulator uses that mask. For example, std::dec
actually calls ios_base::setf(dec, basefield) .

 For boolalpha , showbase , showpoint , showpos , skipws , uppercase , and unitbuf ,
negative manipulators are available as well, which have the same name but are prefixed
with no : for example, std::noboolalpha .

 In addition to std::fixed and scientific , there are also std::hexfloat
(scientific | fixed) and std::defaultfloat (no floatfield flags set) manipulators.

 Additionally, the <iomanip> header defines the following manipulators:

 Manipulator Description

 setiosflags(fmtflags)
 resetiosflags(fmtflags)

 Sets/unsets the given fmtflags .

 setbase(int) Changes the base used for integer I/O. A value other
than 16 (hex), 8 (oct), or 10 (dec) sets the base to 10 .

 setfill(char) Changes the fill character. See the example later.

 setprecision(int) Changes the number of decimal places for floating-
point output as if set with ios_base::precision() .

 setw(int) Sets the width of the next field. See the example.

 get_money(m&, bool=false)
 put_money(m&, bool=false)

 Reads or writes a monetary value. If the Boolean is
 true , use international currency strings (e.g. "USD ");
otherwise use currency symbols (e.g. "$"). The type
of m can be either std::string or long double. See
Chapter 6 for more details on monetary formatting.

 get_time(tm*, char*)
 put_time(tm*, char*)

 Reads or writes a date/time. The formatting is the same
as for std::strftime() , discussed in Chapter 2 .

 quoted() Reads or writes quoted strings and properly handles
embedded quotes. An example of this manipulator is
given in the section on how to implement your own
 operator<< and operator>> later in this chapter.

http://dx.doi.org/10.1007/978-1-4842-1876-1_6
http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 5 ■ STREAM I/O

106

 Example
 This code snippet additionally needs <locale> :

 Table 5-3. std::ios_base::iostate State Constants Defined in <ios>

 iostate Description

 goodbit The stream is not in any error state. No bits are set: i.e. the state is 0.

 badbit The stream is in an unrecoverable error state.

 failbit An input or output operation failed. For example, reading a numerical value
into an integer could cause the failbit to be set if the numerical value
overflows the integer.

 eofbit The stream is at its end.

 On an American system, the output is as follows:

 Left: $1.23__
 Right: __$1.23
 Internal: 0x___7b

 std::ios <ios>
 The ios class defined in <ios> inherits from ios_base and provides a number of methods
to inspect and modify the state of a stream, which is a bitwise combination of the state
flags listed in Table 5-3 .

CHAPTER 5 ■ STREAM I/O

107

 T he following state-related methods are provided:

 Method Description

 good()
 eof()
 bad()
 fail()

 Returns true if, respectively, the badbit , failbit , and eofbit are
not set,
 the eofbit is set,
 the badbit is set, or
 either the failbit or badbit is set.

 operator! Equivalent to fail() .

 operator bool Equivalent to !fail() .

 rdstate() Returns the current ios_base::iostate state.

 clear(state) Changes the state of the stream to the given one if a valid stream
buffer is attached (see later); otherwise sets it to state | badbit .

 setstate(state) Calls clear(state | rdstate()) .

 Besides these state-related methods, the following additional ones are defined by ios :

 Method Description

 fill()
 fill(char)

 Returns the current fill character, or changes it while returning the old
one. To change it, you can also use the setfill() manipulator.

 copyfmt() Copies everything from another ios instance except its state.

 tie() Ties any output stream to the this stream, which means the tied output
stream is flushed each time an input or output operation is performed
on the this stream.

 narrow()
 widen()

 Converts a wide character to its narrow equivalent or vice versa in a
locale-specific manner. See Chapter 6 for details on locales.

 The default initialization of std::ios has the following effect:

• Flags are set to skipws | dec .

• Precision is set to 6.

• The field width is set to 0.

• The fill character is set to widen(' ') .

• The state is set to goodbit if there is a valid stream buffer attached
(see later), or badbit otherwise.

http://dx.doi.org/10.1007/978-1-4842-1876-1_6

CHAPTER 5 ■ STREAM I/O

108

 Error Handling
 By default, stream operations report errors by setting the state bits (good , bad , fail , and
 eof) of the stream, but they do not throw exceptions. Exceptions can be enabled, though,
with the exceptions() method. It either returns the current exceptions mask or accepts
one. This mask is a bitwise combination of std::ios_base::iostate state flags (see
Table 5-3). For each state flag in the mask that is set to 1, the stream throws an exception
when that state bit is set for the stream.

 For example, the following code tries to open a nonexistent file using a file stream
(explained in detail later in this chapter). No exceptions are thrown; only the fail bit of the
stream is set to 1:

 If you want to use exceptions instead, the code can be rewritten as follows:

 A possible output could be

 ios_base::failbit set: iostream stream error

 std::ostream <ostream>
 The ostream class supports formatted and unformatted output to char -based streams .
Formatted output means the format of what is written can be influenced by formatting
options, such as the width of a field, the number of decimal digits for floating-point
numbers, and so on. Formatted output is generally also influenced by the stream’s
 locale , as explained in Chapter 6 . Unformatted output entails simply writing characters
or character buffers as is.

http://dx.doi.org/10.1007/978-1-4842-1876-1_6

CHAPTER 5 ■ STREAM I/O

109

 ostream provides a swap() method and the following high-level output operations.
If no return type is mentioned, the operation returns an ostream& , allowing operations to
be chained:

 Operation Description

 operator<< Writes formatted data to the stream.

 put(char)
 write(const char*, n)

 Writes a single character or n characters unformatted to the
stream.

 fpos tellp()
 seekp(pos)
 seekp(off, dir)

 Returns or changes the current position in the stream. The
 p is shorthand for put and denotes that these methods are
working on an output stream. seekp() accepts either an
absolute position (fpos) or an offset (streamoff) and a
direction (seekdir : see Table 5-4) in which to start the offset.

 flush() Forcefully flushes the buffer to the target.

 Table 5-4. std::ios_base::seekdir Constants Defined in <ios>

 seekdir Description

 beg The beginning of the stream

 end The end of the stream

 cur The current position in the stream

 <ostream> also defines the following extra I/O manipulators :

 Manipulator Description

 ends Writes \0 (null character) to the stream.

 flush Flushes the stream. Same as calling flush() on the ostream .

 endl Writes widen('\n') to the stream and flushes it.

 The <iostream> header provides the following global ostream instances :

• cout/wcout : Outputs to the standard C output stream, stdout

• cerr/wcerr : Outputs to the standard C error stream, stderr

• clog/wclog : Outputs to the standard C error stream, stderr

 (w)cout is automatically tied to (w)cin . This means an input operation on (w)cin
causes (w)cout to flush its buffers. (w)cout is also automatically tied to (w)cerr , so any
output operation on (w)cerr causes (w)cout to flush.

CHAPTER 5 ■ STREAM I/O

110

 std::ios_base provides a static method called sync_with_stdio() to synchronize
these global ostream s with the underlying C streams after each output operation. This
ensures that they both use the same buffers, allowing you to safely mix C++ and C-style
output. It also guarantees that the standard streams are thread-safe: that is, there are no
data races. Character interleaving remains possible, though.

 ■ Note When working with the standard streams cout , cerr , clog , and cin (discussed
later), you do not have to take care of platform-dependent end-of-line characters. For
example, on Windows, a line usually ends with \r\n , whereas on Linux it ends with \n .
However, the translation happens automatically for you, so you can just always use \n .

 Example
 The following example demonstrates the three different methods of output:

 std::cout << "PI = " << 3.1415 << std::endl;
 std::cout.put('\t');
 std::cout.write("C++", 3);

 std::istream <istream>
 The istream class supports formatted and unformatted input from char -based streams .
It provides swap() and the following high-level input operations. Unless otherwise
specified, the operation returns an istream& , which facilitates chaining:

 Operation Description

 operator>> Reads formatted data from the stream. All other input
operations work with unformatted data.

 get(char*, count
 [, delim])
 getline(char*, count
 [, delim])
 read(char*, count)

 Reads count characters from the stream and stores them
in a char* buffer. A terminating null character ('\0') is
automatically added by get() and getline() , but not by
 read() . For the first two, input stops when encountering
the delimiter, by default '\n' . get() does not extract the
delimiter from the stream, but getline() does. The delimiter
is never stored in the char* buffer.

 streamsize readsome(
 char*, count)

 Reads at most count characters that are immediately
available into a given char* buffer. These are the characters
the underlying stream buffer (discussed later) can return
without having to wait for them, used for instance to read
data from asynchronous sources without blocking. Returns
the number of extracted characters.

(continued)

CHAPTER 5 ■ STREAM I/O

111

 Operation Description

 get(char&)
 int get()
 int peek()

 Reads a single character from the stream. The first version
stores the read character in a char reference. The last two
return an integer that is either a valid read character or EOF
if no characters are available. peek() does not remove the
character from the stream.

 unget()
 putback(char)

 Puts the last read character or a given one on the stream so it
is available for the next read operation.

 ignore([count
 [,delim]])

 Reads count characters (1 by default) from the stream or
until a given delimiting character is encountered (eof by
default) and discards them. The delimiter is removed as well.

 streamsize gcount() Returns the number of characters that were extracted by the
last unformatted input operation: get() , getline() , read() ,
 readsome() , peek() , unget() , putback() , or ignore() .

 fpos tellg()
 seekg(pos)
 seekg(off, dir)

 Returns or changes the current position in the stream. The
 g is shorthand for get and denotes that these methods
are working on an input stream. seekg() accepts either an
absolute position (fpos) or an offset (streamoff) and a
direction (seekdir : see Table 5-4) in which to start the offset.

 int sync() Synchronizes the input stream with the underlying stream
buffer (discussed later). This is an advanced, rarely used
method.

 <istream> also defines the following extra I/O manipulator :

 Manipulator Description

 ws Discards any whitespace currently in the stream.

 The <iostream> header provides the following global istream instances :

• cin/wcin : Reads from the standard C input stream, stdin

 The ios_base::sync_with_stdio() function affects (w)cin as well. See the
explanation given for cout , cerr , and clog earlier.

 As explained earlier, istream provides a getline() method to extract characters.
Unfortunately, you have to pass it a char* buffer of proper size. The <string> header
defines a std::getline() method that is easier to use and that accepts a std::string as
target buffer. The following example illustrates its use.

CHAPTER 5 ■ STREAM I/O

112

 Example
 int anInt;
 double aDouble;
 std::cout << "Enter an integer followed by some whitespace\n"
 << "and a double, and press enter: ";
 std::cin >> anInt >> aDouble;
 std::cout << "You entered: ";
 std::cout << "Integer = " << anInt << ", Double = " << aDouble << std::endl;

 std::string message;
 std::cout << "Enter a string. End input with a * and enter: ";
 std::getline(std::cin >> std::ws, message, '*');
 std::cout << "You entered: '" << message << "'" << std::endl;

 Here is a possible output of this program:

 Enter an integer followed by some whitespace
 and a double, and press enter: 1 3.2
 You entered: Integer = 1, Double = 3.2
 Enter a string. End input with a * and enter: This is
 a multiline test*
 You entered: 'This is
 a multiline test'

 std::iostream <istream>
 The iostream class , defined in <istream> (not in <iostream> !), inherits from both
 ostream and istream and provides high-level input and output operations. It keeps track
of two independent positions in the stream: an input and an output position. This is the
reason ostream has tellp() and seekp() methods, whereas istream has tellg() and
 seekg() : iostream contains all four, so they need a different name. It does not provide
additional functionality beyond what is inherited.

 String Streams <sstream>
 String streams allow you to use stream I/O on strings. The library provides istringstream
(input, inherits from istream), ostringstream (output, inherits from ostream), and
 stringstream (input and output, inherits from iostream). See Figure 5-1 for the
inheritance chart. All three classes have a similar set of constructors :

• [i|o]stringstream(ios_base::openmode) : Constructs a new
string stream with the given openmode , a bitwise combination of
the flags defined in Table 5-5

• [i|o]stringstream(string&, ios_base::openmode) :
Constructs a new string stream with a copy of the given string as
initial stream contents and with the given openmode

• [i|o]stringstream([i|o]stringstream&&) : Move constructor

CHAPTER 5 ■ STREAM I/O

113

 The openmode in the first two constructors has a default: out for ostringstream ,
 in for istringstream , and out|in for stringstream . For ostringstream and
 istringstream , the given openmode is always combined with the default one; for example,
for ostringstream , the actual openmode is given_openmode |ios_base::out .

 All three classes add only two methods:

• string str() : Returns a copy of the underlying string object

• void str(string&) : Sets the underlying string object to a copy of
the given one

 Example
 std::ostringstream oss;
 oss << 123 << " " << 3.1415;
 std::string myString = oss.str();
 std::cout << "ostringstream contains: '" << myString << "'" << std::endl;

 std::istringstream iss(myString);
 int myInt; double myDouble;
 iss >> myInt >> myDouble;
 std::cout << "int = " << myInt << ", double = " << myDouble << std::endl;

 File Streams <fstream>

 File streams allow you to use stream I/O on files. The library provides an ifstream (input,
inherits from istream), ofstream (output, inherits from ostream), and fstream (input
and output, inherits from iostream). See Figure 5-1 for the inheritance chart. All three
 classes have a similar set of constructors:

• [i|o]fstream(filename, ios_base::openmode) : Constructs a
file stream and opens the given file with the given openmode . The
file can be specified as a const char* or a std::string& .

• [i|o]fstream([i|o]fstream&&) : Move constructor.

 Table 5-5. std::ios_base::openmode Constants Defined in <ios>

 openmode Description

 app Short for append. Seeks to the end of the stream before each write.

 binary A stream opened in binary mode. If not specified, the stream is opened
in text mode. See the File Streams section for the difference.

 in / out A stream opened for reading / writing respectively.

 trunc Removes the contents of the stream after opening it.

 ate Seeks to the end of the stream after opening it.

CHAPTER 5 ■ STREAM I/O

114

 All three classes add the following methods:

• open(filename, ios_base::openmode) : Opens a file similar to
the first constructor

• is_open() : Returns true if a file is opened for input and/or output

• close() : Closes the currently opened file

 The openmode (see Table 5-5) in the constructors and in the open() method has a
default: out for ofstream , in for ifstream , and out|in for fstream . For ofstream and
 ifstream , the given openmode is always combined with the default one; for example: for
 ofstream , the actual openmode is given_openmode |ios_base::out .

 If the ios_base::in flag is specified, whether or not in combination with ios_
base::out , the file you are trying to open must already exist. The following code opens a
file for input and output and creates the file if it does not exist yet:

 If a file is opened in text mode, as opposed to binary mode, the library is allowed to
translate certain special characters to match how the platform uses those. For example,
on Windows, lines usually end with \r\n , whereas on Linux they usually end with \n .
When a file is opened in text mode, you do not read/write the \r on Windows yourself;
the library handles this translation for you.

 The fstream class , supporting both input and output, handles the current position
differently compared to other combined input and output streams, such as stringstream .
A file stream has only one position, so the output and input positions are always the same.

 ■ Tip The destructor of a file stream automatically closes the file.

 Example
 The following example is similar to the example given earlier for string streams but uses
a file instead. In this example, the ofstream is explicitly closed using close() , and the
 ifstream is implicitly closed by the destructor of ifs :

 const std::string filename = "output.txt";
 std::ofstream ofs(filename);
 ofs << 123 << " " << 3.1415;
 ofs.close();

CHAPTER 5 ■ STREAM I/O

115

 std::ifstream ifs(filename);
 int myInt; double myDouble;
 ifs >> myInt >> myDouble;
 std::cout << "int = " << myInt << ", double = " << myDouble << std::endl;

 operator<< and >> for Custom Types
 You can write your own versions of the stream output and extraction operators
 operator<< and operator>> . Here is an example of both operators for the Person class,
using the std::quoted() manipulator to handle spaces in names:

 std::ostream& operator<<(std::ostream& os, const Person& person) {
 os << std::quoted(person.GetFirstName()) << ' '
 << std::quoted(person.GetLastName());
 return os;
 }

 std::istream& operator>>(std::istream& is, Person& person) {
 std::string firstName, lastName;
 is >> std::quoted(firstName) >> std::quoted(lastName);
 person.SetFirstName(firstName); person.SetLastName(lastName);
 return is;
 }

 These operators can be used as follows (<sstream> is also required):

 Stream Iterators <iterator>
 The <iterator> header defines two stream iterators, std::istream_iterator and
 std::ostream_iterator , in addition to the other iterators discussed in Chapters 3 and 4 .

 std::ostream_iterator
 The ostream_iterator is an output iterator capable of outputting a sequence of objects of
a certain type to an ostream using operator<< . The type of the objects to output is specified
as a template type parameter. There is one constructor that accepts a reference to the
 ostream to use and an optional delimiter that is written to the stream after each output.

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 5 ■ STREAM I/O

116

 Stream iterators are very powerful in combination with the algorithms discussed
in Chapter 4 . As an example, the following code snippet writes a vector of double s to
the console using the std::copy() algorithm, where each double is followed by a tab
character (additionally requires <vector> and <algorithm>):

 std::vector<double> vec{ 1.11, 2.22, 3.33, 4.44 };
 std::copy(cbegin(vec), cend(vec),
 std::ostream_iterator<double>(std::cout, "\t"));

 std::istream_iterator
 The istream_iterator is an input iterator capable of iterating over objects of a certain
type in an istream by extracting them one by one using operator>> . The type of the
objects to extract from the stream is specified as a template type parameter. There are
three constructors:

• istream_iterator() : The default constructor, which results in an
iterator pointing to the end of the stream

• istream_iterator(istream&) : Constructs an iterator that
extracts objects from the given istream

• istream_iterator(istream_iterator&) : Copy constructor

 Just like an ostream_iterator , istream_iterator s are very powerful in
combination with algorithms. The following example uses the for_each() algorithm in
combination with an istream_iterator to read an unspecified number of double values
from the standard input stream and sum them to calculate the average (additionally
needs <algorithm>):

 std::istream_iterator<double> begin(std::cin), end;
 double sum = 0.0; int count = 0;
 std::for_each(begin, end, [&](double value){ sum += value; ++count;});
 std::cout << sum / count << std::endl;

 Input is terminated by pressing Ctrl+Z on Windows or Ctrl+D on Linux, followed
by Enter.

 This second example uses both an istream_iterator to read an unspecified
number of double s from the console and an ostream_iterator to write the read double s
to a stringstream separated by tabs (additionally needs <sstream> and <algorithm>):

 std::ostringstream oss;
 std::istream_iterator<double> begin(std::cin), end;
 std::copy(begin, end, std::ostream_iterator<double>(oss, "\t"));
 std::cout << oss.str() << std::endl;

http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 5 ■ STREAM I/O

117

 Stream Buffers <streambuf>
 Stream classes do not work directly with a target such as a string in memory, a
file on disk, and so on. Instead, they use the concept of stream buffers , defined by
 std::basic_streambuf<CharType> . Two typedef s are provided, std::streambuf and
 std::wstreambuf , where the template type is, respectively, char or wchar_t . File streams
use std::(w)filebuf , and string streams use std::(w)stringbuf , both inheriting from
 (w)streambuf .

 Each stream has a stream buffer associated with it to which you can get a pointer
with rdbuf() . A call to rdbuf(streambuf*) returns the current associated stream buffer
and changes it to the given one.

 Stream buffers can be used to write a stream-redirector class that redirects one
stream to another stream. As a basic example, the following code snippet redirects all
 std::cout output to a file (additionally needs <fstream>):

 ■ Caution When changing the buffer for one of the standard streams, do not forget to
restore the old buffer before terminating the application, as is done in the previous example.
Otherwise your code may crash with certain library implementations.

 It can also be used to implement a tee class that redirects output to two or more
target streams. Another use is to easily read an entire file:

 std::ifstream ifs("test.txt");
 std::stringstream buffer;
 buffer << ifs.rdbuf();

 The exact behavior of stream buffers is implementation dependent. Working directly
with stream buffers is an advanced topic that we cannot discuss further in detail due to
page constraints.

 C-Style Output and Input <cstdio>
 In addition to the file utilities explained in Chapter 2 , the <cstdio> header also defines
the C-style I/O library, including functions for character-based I/O (getc() , putc() , ...)
and formatted I/O (printf() , scanf() , ...). All the C-style I/O functionality is
subsumed by the type-safe C++ streams, which also have better-defined, portable error

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 5 ■ STREAM I/O

118

handling. 1 This section does discuss the std::printf() and std::scanf() families
of functions, and only these, because they remain more convenient at times than C++
streams due to their compact formatting syntax.

 std::printf() Family
 The following printf() family of functions is defined in <cstdio> :

 std::printf(const char* format, ...)
 std::fprintf(FILE* file, const char* format, ...)
 std::snprintf(char* buffer, size_t bufferSize, const char* format, ...)
 std::sprintf(char* buffer, const char* format, ...)

 They write formatted output to, respectively, standard output, a file, a buffer of given
size, or a buffer, and return the number of characters written out. The last one, sprintf() ,
is less safe than snprintf() . They all have a variable number of arguments following
the format string. There are also versions prefixed with a v that accept a va_list for the
arguments: for example, vprintf(const char* format, va_list) . For the first three,
wide-character versions are provided as well: (v)wprintf() , (v)fwprintf() , and (v)
swprintf() .

 How the output is formatted is controlled by the given format string. All of its
characters are written out as is, except sequences that start with a % . The basic syntax
for a formatting option is % followed by a conversion specifier . This tells printf() how to
interpret the next value in the variable-length list of arguments. The arguments passed to
 printf() must be in the same order as the % directives in format . Table 5-6 explains the
available conversion specifiers. The expected argument types listed are for the case where
no length modifier is used (discussed later).

 Table 5-6. Available Conversion Specifiers for printf() -Like Functions

 Specifier Description

 d , i A signed int argument converted to decimal representation [-] ddd .

 o , u , x , X An unsigned int argument converted to an octal (o), decimal (u), or
hexadecimal representation, the latter with either lowercase (x) or
uppercase digits (X).

 f , F A double argument converted to a decimal notation in the style [-] ddd.
dd (with lowercase or, respectively, uppercase letters used for infinity and
NaN values).

 e , E A double argument converted to scientific notation: i.e. [-] d.dde±dd or
[-] d.ddE±dd (again with lowercase/uppercase letters for special values).

(continued)

 1 Some library implementations use errno (see Chapter 8) to report errors for C-style I/O functions,
including the printf() and scanf() functions: consult your library documentation to confirm.

http://dx.doi.org/10.1007/978-1-4842-1876-1_8

CHAPTER 5 ■ STREAM I/O

119

 Specifier Description

 g , G A double argument converted as if with f / F or e / E , whichever is more
compact for the given value and precision. e / E is only used if the
exponent is greater than or equal to the precision, or less than -4.

 a , A A double argument converted to hexadecimal format: [-] 0xh.hhhp±d or
[-] 0Xh.hhhP±d (infinity and NaN values are printed as with f , F).

 c An int argument converted to a single unsigned char .

 s The argument is a pointer to a char array. The precision specifies the
maximum number of bytes to output. If no precision is given, writes
everything until the null terminator. Note: do not pass a std::string
object as is as argument for a %s modifier!

 p The argument is interpreted as a void pointer, and the pointer is
converted to an implementation-dependent format.

 n The argument is a pointer to a signed int that receives the number of
characters written out so far by this call to printf() .

 % Outputs a % character. No corresponding argument must be passed.

Table 5-6. (continued)

 ■ Caution The C-style I/O functions are not type safe. If your conversion specifier says to
interpret an argument value as a double , then that argument must be a true double (and
not, for instance, a float or an integer). It will compile and run if a wrong type is passed,
but this rarely ends well. This also means you should never pass a C++ std::string as-is
as an argument for a string conversion specifier: instead, use c_str() as shown in the
following example.

 The following example prints the lyrics of the traditional American folk song “99
Bottles of Beer” (it assumes a using namespace std):

 string bottles = "bottles of beer";
 char on_wall[99];
 for (int i = 99; i > 0; --i) {
 snprintf(on_wall, sizeof(on_wall), "%s on the wall", bottles.c_str());
 printf("%d %s, %d %s.\n", i, on_wall, i, bottles.c_str());
 printf("Take one down, pass it around, %d %s.\n", i-1, on_wall);
 }

CHAPTER 5 ■ STREAM I/O

120

 The formatting options are much more powerful than the basic conversions
discussed so far. The full syntax of the % directive is as follows:

 %<flags><width><precision><length_modifier><conversion>

 with

• <flags> : Zero or more flags that change the meaning of the
conversion specifier. See Table 5-7 .

• <width> : Optional minimum field width (truncation is never
done: only padding). Padding is applied if the converted value has
fewer characters than the specified width. By default, spaces are
used for padding. <width> can be either a non-negative integer
or * , which means to take the width from an integer argument
from the argument list. This width has to precede the value to be
formatted.

• <precision> : A dot followed by an optional non-negative integer
(0 is assumed if not specified), or a * , which again means to take
the precision from an integer argument from the argument list.
The precision is optional, and determines the following:

• The maximum number of bytes for s. By default, a zero-
terminated character array is expected.

• The minimum number of digits to output for all integer
conversion specifiers (d, i, o, u, x, and X). Default: 1.

• The number of digits to output after the decimal point for
most floating-point conversion specifiers (a, A, e, E, f, and F).
If not specified, the default precision is 6.

• The maximum number of significant digits for g and G. The
default is again 6.

• <length_modifier> : An optional modifier that alters the type
of the argument to be passed. Table 5-8 gives an overview of all
supported modifiers for numeric conversions. For character and
strings (c and s conversion specifiers, respectively), the l length
modifier (note: this is the letter l) changes the expected input
type from int and char* to wint_t and wchar_t* , respectively. 2

• <conversion> : The only required component, which specifies the
conversion to apply to the argument. (See Table 5-6 .)

 2 wint_t is defined in <cwchar> and is a typedef for an integral type large enough to hold any wide
character (wchar_t value) and at least one value that is not a valid wide character (WEOF).

CHAPTER 5 ■ STREAM I/O

121

 Table 5-7. Available Flags

 Flag Description

 - Left-justify the output. By default, output is right justified.

 + Always output the sign of a number, even for positive numbers.

 space -character Prefix the output with a space if the number to output is non-
negative or results in no characters. Ignored if + is also specified.

 # Output a so-called alternative form .
 For x and X , the result is prefixed with 0x or 0X if the number is not
zero.
 For all floating-point specifiers (a , A , e , E , f , F , g , and G), the output
always contains a decimal point character.
 For g and G , trailing zeros are not removed.
 For o, precision is increased such that the first digit to output
is a zero.

 0 For all integer and floating-point conversion specifiers (d , i , o , u ,
 x , X , a , A , e , E , f , F , g , and G), padding is done with zeros instead of
spaces. Ignored if - is specified as well, or for all integer specifiers in
combination with a precision.

 Table 5-8. Length Modifiers for All Numeric Conversion Specifiers

 Modifier d , i o , u , x , X n a , A , e , E , f , F , g , G

 (none) int unsigned int int* double

 hh char unsigned char char*

 h short unsigned short short*

 l long unsigned long long*

 ll long long unsigned long long long long*

 j intmax_t uintmax_t intmax_t*

 z size_t size_t size_t*

 t ptrdiff_t ptrdiff_t ptrdiff_t*

 L long double

 The modifiers in Table 5-8 determine the type of the inputs that must be passed as
indicated. std::intmax_t and uintmax_ t are defined in <cstdint> (see Chapter 1), and
 size_t and ptrdiff_t are defined in <cstddef> . Note also that the long and l ong long
modifiers use the letter l , and not the number 1 .

http://dx.doi.org/10.1007/978-1-4842-1876-1_1

CHAPTER 5 ■ STREAM I/O

122

 Example

 std::scanf() Family
 The following scanf() family of functions is defined in <cstdio> :

 std::scanf(const char* format, ...)
 std::fscanf(FILE* file, const char* format, ...)
 std::sscanf(const char* buffer, const char* format, ...)

 They read, respectively, from standard input, a file, or a buffer. In addition to these
functions, which have a variable number of arguments following the format string,
there are also versions whose names are prefixed with v and that accept a va_list for
the arguments: for example, vscanf(const char* format, va_list) . Wide-character
versions are provided as well: (v)wscanf() , (v)fwscanf() , and (v)swscanf() .

 They all read formatted data based on a given format string. The scanf() formatting
grammar used is similar to that of printf() , seen earlier. All characters in the format
string are simply used to compare with the input, except sequences that start with a % .
These % directives result in values being parsed and stored in the location pointed to by
the function’s arguments, in order. The basic syntax is a % sign followed by one of the
 conversion specifiers from Table 5-9 . The last column shows the argument type in case no
length modifiers are specified (see Table 5-10).

 Table 5-9. Available Conversion Specifiers for scanf() -Like Functions

 Specifier Matches... Argument

 d Optionally signed decimal integer. int*

 i Optionally signed integer whose base is determined
from the integer’s prefix: decimal by default, but octal
if it starts with 0 and hexadecimal if it starts with 0x or 0X .

 int*

 o / u / x , X Optionally signed octal / decimal / hexadecimal integer. unsigned
int*

 a , A , e , E ,
 f , F , g , G

 Optionally signed floating-point number, infinity,
or NaN. All eight specifiers are completely equivalent:
e.g., they all parse scientific notation as well.

 float*

(continued)

CHAPTER 5 ■ STREAM I/O

123

 Specifier Matches... Argument

 c A character sequence whose length is specified by the
field width, or of length one if no width is specified.

 char**

 s A sequence of non-whitespace characters. char**

 [...] A non-empty character sequence from a set of expected
characters. The set is specified between square brackets,
e.g. [abc] . To match all characters except those in a set,
use [^abc] .

 char**

 p An implementation-dependent sequence of characters as
produced by %p with printf() .

 void**

 n Does not extract/parse any input. The argument receives
the number of characters read from the input stream so far.

 int*

 % A % character. /

Table 5-9. (continued)

 For all directives except those with conversion specifier c , s , or [...] , any
whitespace characters are skipped until the first non-whitespace one. Parsing stops
when the end of the input string is reached, when a stream input error occurs, or when a
parsing error occurs. The return value equals the number of assigned values or EOF if an
input failure occurred before starting the first conversion. The number of assigned values
will be less than the number of directives if the end of the stream is reached or a parsing
error occurs: for example, zero if this occurs during the first conversion.

 The full syntax of the % directive is as follows:

 %<*><width><length_modifier><conversion>

 with:

• <*> : An optional * sign that causes scanf() to parse the data from
the input without storing it in any of the arguments.

• <width> : Optional maximum field width in characters.

• <length_modifier> : Optional length modifier: see Table 5-10 .
When applied to a c , s , or [...] specifier, the l (letter l) modifies
the required input type from char** to wchar_t** .

• <conversion> : Required. Specifies the conversion to apply;
see Table 5-9 .

CHAPTER 5 ■ STREAM I/O

124

 The only non-obvious difference between Table 5-10 and Table 5-8 is that by default,
floating-point arguments must point to a float and not a double .

 Example
 std::string s = "int: +123; double: -2.34E-3; chars: abcdef";
 int i = 0; double d = 0.0; char chars[4] = { 0 };
 std::sscanf(s.data(), "int: %i; double: %lE; chars: %[abc]", &i, &d, chars);
 std::printf("int: %+i; double: %.2lE; chars: %s", i, d, chars);

 Table 5-10. Available Length Modifiers for the Numeric Conversion Specifiers of scanf() -
Like Functions

 Modifier d, i o, u, x, X n a , A , e , E , f , F , g , G

 (none) int* unsigned int* int* float*

 hh char* unsigned char* char*

 h short* unsigned short* short*

 l long* unsigned long* long* double*

 ll long long* unsigned long long* long long*

 j intmax_t* uintmax_t* intmax_t*

 z size_t* size_t* size_t*

 t ptrdiff_t* ptrdiff_t* ptrdiff_t*

 L long double*

125© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1_6

 CHAPTER 6

 Characters and Strings

 Strings <string>
 The Standard defines four different string types , each for a different char -like type:

 String Type Characters Typical Character Size

 Narrow strings std::string char 8 bit

 Wide strings std::wstring wchar_t 16 or 32 bit

 UTF-16 strings std::u16string char16_t 16 bit

 UTF-32 strings std::u32string char32_t 32 bit

 The names in the first column are purely indicative, because strings are completely
agnostic about the character encoding used for the char -like items—or code units, as they
are technically called—they contain. Narrow strings, for example, may be used to store
ASCII strings, as well as strings encoded using UTF-8 or DBCS.

 To illustrate, we will mostly use std::string . Everything in this section, though,
applies equally well to all types. The locale and regular expression functionalities
discussed thereafter are, unless otherwise noted, only required to be implemented for
narrow and wide strings.

 All four string types are instantiations of the same class template, std::basic_
string<CharT> . A basic_string<CharT> is essentially a vector<CharT> with extra
functions and overloads either to facilitate common string operations or for compatibility
with C-style strings (const CharT*). All members of vector are provided for strings as
well, except for the emplacement functions (which are of little use for characters).

CHAPTER 6 ■ CHARACTERS AND STRINGS

126

 The remainder of this section focuses on the functionality that strings add compared
to vector s. For the functions that strings have in common with vector , we refer to
Chapter 3 . One thing to note is that string-specific functions and overloads are mostly
index-based rather than iterator-based. The last three lines in the previous example, for
instance, may be written more conveniently as

This implies that, unlike in other mainstream languages such as .NET, Python, and Java,
strings in C++ are mutable. It also means, for example, that strings can readily be used
with all algorithms seen in Chapter 4 :

 or

 The equivalent of the end() iterator when working with string indices is
 basic_string::npos . This constant is consistently used to represent half open-ended
ranges (that is, to denote “until the end of the string”), and, as you see next, as the
“not found” return value for find() -like functions.

 Searching in Strings
 Strings offer six member functions to search for substrings or characters: find() and
 rfind() , find_first_of() and find_last_of() , and find_first_not_of() and
 find_last_not_of() . These always come in pairs: one to search from front to back, and one
to search from back to front. All also have the same four overloads of the following form:

 The pattern to search for is either a single character or a string, with the latter
represented as a C++ string, a null-terminated C-string, or a character buffer of which
the first n values are used. The (r)find() functions search for an occurrence of the full
pattern, and the find_xxx_of() / find_xxx_not_of() family of functions search for any

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 6 ■ CHARACTERS AND STRINGS

127

single character that occurs / does not occur in the pattern. The result is the index of
the (start of the) first occurrence starting from either the beginning or end, or npos if no
match is found.

 The mostly optional pos parameter is the index at which the search should start. For
the functions searching backward, the default value for pos is npos .

 Modifying Strings
 To modify a string, you can use all members known already from vector , including
 erase() , clear() , push_back() , and so on (see Chapter 3). Additional functions
or functions with string-specific overloads are assign() , insert() , append() , += ,
and replace() . Their behavior should be obvious; only replace() may need some
explanation. First though, let’s introduce the multitude of useful overloads these five
functions have. These are generally of this form:

 For moving a string, assign(string&&) is defined as well. Because the += operator
inherently only has a single parameter, naturally only the C++ string , C-style string, and
initializer-list overloads are possible.

 Analogous to its vector counterpart, for insert() the overloads marked with (*)
return an iterator rather than a string . Likely for the same reason, the insert()
function has these two additional overloads:

 Only insert() and replace() need a Position . For insert() , this is usually an
index (a size_t), except for the last two overloads, where it is an iterator (analogous again
to vector::insert()). For replace() , the Position is a range, specified either using two
 const_iterator s (not available for the substring overload) or using a start index and a
length (not for the last two overloads).

 In other words, replace() does not, as you may expect, replace occurrences of a
given character or string with another. Instead, it replaces a specified subrange with a
new sequence—a string, substring, fill pattern, and so on—possibly of different length.
You saw an example of its use earlier (2 is the length of the replaced range):

 s.replace(s.find("be"), 2, "are");

http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 6 ■ CHARACTERS AND STRINGS

128

 To replace all occurrences of substrings or given patterns, you can use regular
expressions and the std::regex_replace() function explained later in this chapter. To
replace individual characters, the generic std::replace() and replace_if() algorithms
from Chapter 4 are an option as well.

 A final modifying function with a noteworthy difference from its vector counterpart
is erase() : in addition to the two iterator-based overloads, it has one that works with
indices. Use it to erase the tail or a subrange or, if you like, to clear() it:

 string& erase(size_t pos = 0, size_t len = npos);

 Constructing Strings
 In addition to the default constructor, which creates an empty string, the constructor has
the same seven overloads as the functions in the previous subsection, plus of course one
for string&& . (Like other containers, all string constructors have an optional argument for
custom allocators as well, but this is for advanced use only.)

 As of C++14, basic_string objects of various character types can also be
constructed from corresponding string literals by appending the suffix s . This literal
operator is defined in the std::literals::string_literals namespace:

 String Length
 To get a string ’s length, you can use either the typical container member size() or its
string-specific alias length() . Both return the number of char -like elements the string
contains. Take care, though: C++ strings are agnostic on the character encoding used,
so their length equals what is technically called the number of code units , which may
be larger than the number of code points or characters . Well-known encodings where
not all characters are represented as a single code unit are the variable-length Unicode
encodings UTF-8 and UTF-16:

 One way to get the number of code points is to convert to a UTF-32 encoded string
first, using the character-encoding conversion facilities introduced later in this chapter.

 Copying (Sub)Strings
 Another vector function (next to size()) that has a string-specific alias is data() , with its
equivalent c_str() . Both return a const pointer to the internal character array (without
copying). To copy the string to a C-style string instead, use copy() :

 size_t copy(char* out, size_t len, size_type pos = 0) const;

http://dx.doi.org/10.1007/978-1-4842-1876-1_4

CHAPTER 6 ■ CHARACTERS AND STRINGS

129

 This copies len char values starting at pos to out . That is, it may be used to copy a
substring as well. To create a substring as a C++ string, use substr() :

 string substr(size_t pos = 0, size_t len = npos) const;

 Comparing Strings
 Strings may be compared lexicographically with other C++ strings or C-style strings using
either the non-member comparison operators (== , < , >= , and so on), or their compare()
member. The latter has the following overloads:

 int compare(const string& str) const noexcept;
 int compare(size_type pos1, size_type n1, const string& str
 [, size_type pos2, size_type n2 = npos]) const;
 int compare(const char* s) const;
 int compare(size_type pos1, size_type n1, const char* s
 [, size_type n2]) const;

 pos1 / pos2 is the position in the first/second string where the comparison should
start, and n1 / n2 is the number of characters to compare from the first/second string.
The return value is zero if both strings are equal or a negative/positive number if the first
string is less/greater than the second.

 String Conversions
 To parse various types of integral numbers from a string, a series of non-member
functions of the following form has been defined:

 int stoi(const (w)string&, size_t* index = nullptr, int base = 10);

 The following variants exist: stoi() , stol() , stoll() , stoul() , and stoull() ,
where i stands for int , l for long , and u for unsigned . These functions skip all leading
whitespace characters, after which as many characters are parsed as allowed by the
syntax determined by the base . If an index pointer is provided, it receives the index of the
first character that is not converted.

 Similarly, to parse floating-point numbers, a set of functions exists of the
following form:

 float stof(const (w)string&, size_t* index = nullptr);

 stof() , stod() , and stold() are provided to convert to float , double , and long
double , respectively.

CHAPTER 6 ■ CHARACTERS AND STRINGS

130

 To perform the opposite conversion and convert from numerical types to a (w)
string , functions to_(w)string(X) are provided, where X can be int , unsigned , long ,
 unsigned long , long long , unsigned long long , float , double , or long double . The
returned value is a std::(w)string .

 Character Classification <cctype>, <cwctype>
 The <cctype> and <cwctype> headers offer a series of functions to classify, respectively,
 char and wchar_t characters. These functions are std::is class (int) (defined only for
 int s that represent char s) and std::isw class (wint_t) (analogous; wint_t is an integral
 typedef), where class equals one of the values in Table 6-1 . All functions return a
non-zero int if the given character belongs to the class, or zero otherwise.

 Table 6-1. The 12 Standard Character Classes

 Class Description

 cntrl Control characters: all non- print characters. Includes: '\0' , '\t' , '\n' ,
 '\r' , and so on.

 print Printable characters: digits, letters, space, punctuation marks, and so on.

 graph Characters with graphical representation: all print characters except ' '.

 blank White space characters that separate words on a line. At least ' ' and '\t' .

 space Whitespace characters: at least all blank characters, '\n' , '\r' , '\v' , and
 '\f' . Never alpha characters.

 digit Decimal digits (0 – 9).

 xdigit Hexadecimal digits (0 – 9 , A – F , a – f).

 alpha Letter characters. At least all lowercase and uppercase characters, and never
any of the cntrl , digit , punct , and space characters.

 lower Lowercase alpha letters (a – z for the default locale).

 upper Uppercase alpha letters (A – Z for the default locale).

 alnum Alphanumeric characters: union of all alpha and digit characters.

 punct Punctuation marks (! " # $ % & ' () * + , - . / : ; < = > ? @ [\]
^ _ ` { | } ~ for the default locale). Never a space or alnum character.

 The same headers also offer the tolower() / toupper() and towlower() /
 towupper() functions for converting between lowercase and uppercase characters.
Characters are again represented using the integral int and wint_t types. If the
conversion is not defined or possible, these functions simply return their input value.

 The exact behavior of all character classifications and transformations depends on
the active C locale . Locales are explained in detail later in this chapter, but essentially this
means the active language and regional settings may result in different sets of characters

CHAPTER 6 ■ CHARACTERS AND STRINGS

131

to be considered letters, lowercase or uppercase, digits, whitespace, and so on. Table 6-1
lists all general properties of and relations between the different character classes and
gives some examples for the default C locale.

 ■ Note In the “Localization” section, you also see that the C++ <locale> header offers
a list of overloads for std::is class () and std::tolower() / toupper() (all templated on
the character type) that use a given locale rather than the active C locale.

 Character-Encoding Conversion <locale>, <codecvt>
 A character encoding determines how code points (many but not all code points are
characters) are represented as binary code units . Examples include ASCII (classical
encoding with 7-bit code units), the fixed-length UCS-2 and UCS-4 encodings (16-bit and
32-bit code units, respectively), and the three main Unicode encodings: the fixed-length
UTF-32 (using a single 32-bit code unit for each code point) and variable-length UTF-8
and UTF-16 encodings (representing each code point as one or more 8- or 16-bit code
units, respectively; up to 4 units for UTF-8, and 2 for UTF-16). The details of Unicode and
the various character encodings and conversions could fill a book; we explain here what
you need to know in practice to convert between encodings.

 The class template for objects that contain the low-level encoding-conversion logic
is std::codecvt<CharType1, CharType2, State> (cvt is likely short for converter).
It is defined in <locale> (as you see in the next section, this is actually a locale facet).
The first two parameters are the C++ character types used to represent the code units of
both encodings. For all standard instantiations, CharType2 is char. State is an advanced
parameter we do not explain further (all standard specializations use std::mbstate_t
from <cwchar>).

 The four codecvt specializations listed in Table 6-2 are defined in <locale> .
Additionally, the <codecvt> header defines the three std::codecvt subclasses listed in
Table 6-3 . 1 For these, CharT corresponds to the CharType1 parameter of the codecvt base
class; as stated earlier, CharType2 is always char .

 1 These classes have two more optional template parameters: a number specifying the largest code
point to output without error, and a codecvt_mode bitmask value (default 0) with possible values
 little_endian (output encoding) and consume_header / generate_header (read/write initial
BOM header to determine endianness).

CHAPTER 6 ■ CHARACTERS AND STRINGS

132

 Although codecvt instances could in theory be used directly, it is far easier to use
the std::wstring_convert<CodecvtT, WCharT=wchar_t> class from <locale> . This
helper class facilitates conversions between char strings and strings of a (generally
wider) character type WCharT in both directions. Despite its misleading (outdated) name,
 wstring_convert can also convert from and to, for example, u16string s or u32string s,
not just wstring s. These members are provided:

 Method Description

 (constructor) Constructors exist that take a pointer to an existing CodecvtT
(of which wstring_convert takes ownership) and an initial state
(not discussed further). Both are optional. A final constructor accepts
two error strings: one to be returned by to_bytes() upon failure, and
one by from_bytes() (the latter is optional).

 from_bytes() Converts either a single char or a string of char s (a C-style char*
string, a std::string , or a sequence bounded by two char* pointers)
to a std::basic_string<WCharT> , and returns the result. Throws
 std::range_error upon failure, unless an error string was provided
upon construction: in that case, this error string is returned.

 to_bytes() Opposite conversion from WCharT to char , with analogous overloads.

 converted() Returns the number of input characters processed by the last
 from_bytes() or to_bytes() conversion.

 state() Returns the current state (mostly mbstate_t : not discussed further).

 Table 6-3. Character- Encoding Conversion Classes Defined in <codecvt>

 codecvt_utf8<CharT>
 codecvt_utf16<CharT>

 Conversion between UCS-2 (for 16-bit CharT s) or
UCS-4 (for 32-bit CharT s) and UTF-8 / UTF-16. The
UTF-16 string is represented using 8-bit char s as well,
so this is intended for binary UTF-16 encodings.

 codecvt_utf8_utf16<CharT> Conversion between UTF-16 and UTF-8 (CharT must
be at least 16-bit).

 Table 6-2. Character-Encoding Conversion Classes Defined in <locale>

 codecvt<char,char,mbstate_t> Identity conversion

 codecvt<char16_t,char,mbstate_t> Conversion between UTF-16 and UTF-8

 codecvt<char32_t,char,mbstate_t> Conversion between UTF-32 and UTF-8

 codecvt<wchar_t,char,mbstate_t> Conversion between native wide and narrow
character encodings (implementation specific)

CHAPTER 6 ■ CHARACTERS AND STRINGS

133

 Recall the following example from the section on std::string lengths:

 To convert this string to UTF-32, you would hope the following is possible:

 Unfortunately, this does not compile. For the converter subclasses defined in
 <codecvt> , this would compile. But the destructor of the codecvt base class is protected
(like all standard locale facets: discussed later), and the wstring_convert destructor calls
it to delete the converter instance it owns. This design defect can be circumvented using a
helper wrapper such as the following (similar tricks can be applied to make any protected
function publically accessible, not just a destructor):

 To make the code compile, you then replace the first line with the following 2 :

 typedef deletable<std::codecvt<char32_t,char,std::mbstate_t>> cvt;

 To use the potentially locale-specific variants of these converters (see the next section),
use the following (other locale name besides "" may be used as well):

 typedef deletable<std::codecvt_byname<char32_t,char,std::mbstate_t>> cvt;
 std::wstring_convert<cvt, char32_t> convertor(new cvt(""));

 A related class is wbuffer_convert<CodecvtT, WCharT=wchar_t> , which wraps a
 basic_streambuf<char> and makes it act as a basic_streambuf<WCharT> (stream buffers
are very briefly explained in Chapter 5). A wbuffer_convert instance is constructed with
an optional basic_streambuf<char>* , CodecvtT* , and state. Both the getter and setter for

 2 This example does not work in Visual Studio 2015. It compiles after replacing char32_t with
 __int32 and u32string with basic_string<__int32> , but the result is wrong.

http://dx.doi.org/10.1007/978-1-4842-1876-1_5

CHAPTER 6 ■ CHARACTERS AND STRINGS

134

the wrapped buffer are called rdbuf() , and the current conversion state may be obtained
using state() . The following constructs a stream that accepts wide character strings, but
writes it to an UTF-8 encoded file (needs <fstream>):

 Localization <locale>
 Textual representations of dates, monetary values, and numbers are governed by regional
and cultural conventions. To illustrate, the following three sentences are analogous but
written using local currencies, numeric, and date formats:

 In the U.S., John Doe has won $100,000.00 on the lottery on 3/14/2015.
 In India, Ashok Kumar has won ₹1,00,000.00 on the lottery on 14-03-2015.
 En France, Monsieur Brun a gagné 100.000,00 € à la loterie sur 14/3/2015.

 In C++, all parameters and functionality related to processing text in a locale-specific
manner—that is, adapted to local conditions—are contained in a std::locale object.
These include not only formatting of numeric values and dates as just illustrated, but also
locale-specific sorting and conversions of strings.

 Locale Names
 Standard locale objects are constructed from a locale name :

 std::locale(const char* locale_name);
 std::locale(const std::string& locale_name);

 These names commonly consist of a two-letter ISO-639 language code followed by
a two-letter ISO-3166 country code . The precise format, however, is platform-specific: on
Windows, for instance, the name for the English-American locale is "en-US" , whereas
on POSIX-based systems it is "en_US" . Most platforms support, or sometimes require,
additional specifications such as region codes, character encodings, and so on. Consult
your platform’s documentation for a full list of supported locale names and options.

 There are only two portable locale names, "" and "C" :

• With "" , you construct a std::locale with the user’s preferred
regional and language settings, taken from the program’s
execution environment (that is, the operating system).

• The "C" locale denotes the classic or neutral locale, which is the
standardized, portable locale that all C and C++ programs use by
default.

CHAPTER 6 ■ CHARACTERS AND STRINGS

135

 Using the "C" locale, the earlier example sentence becomes

 Anywhere, a C/C++ programmer may win 100000 on the lottary on 3/14/2015.

 ■ Tip When writing to a file intended to be read by computer programs (configuration
files, numeric data output, and so on), it is highly recommended that you use the neutral
 "C" locale, to avoid problems during parsing. When displaying values to the user, you should
consider using a locale based on the user’s preferences ("").

 The Global Locale
 The active global locale affects various Standard C++ functions that format or parse text,
most directly the regular expression algorithms discussed later in this chapter and the
I/O streams seen in Chapter 5 . It is implementation dependent whether there is one
program-wide global locale instance or one per thread of execution.

 The global locale always starts out as the classic "C" locale. To set the global locale,
you use the static std::locale::global() function . To get a copy of the currently active
global locale, simply default-construct a std::locale . For example:

 ■ Note To avoid race conditions, Standard C++ objects (such as newly created stream or
 regex objects) always copy the global locale upon construction. Calling global() therefore
does not affect existing objects, including std::cout and the other standard streams of
 <iostream> . To change their locale, you must call their imbue() member.

http://dx.doi.org/10.1007/978-1-4842-1876-1_5

CHAPTER 6 ■ CHARACTERS AND STRINGS

136

 Basic std::locale Members
 The following table lists most basic functions offered by a std::locale , not including the
copy members. More advanced members to combine or customize locales are discussed
near the end of the section:

 Member Description

 global() Static function to set the active global locale (discussed earlier).

 classic() Static function returning a constant reference to a classic "C" locale .

 locale() Default constructor: creates a copy of the global locale.

 locale(name) Construction from locale name, as discussed earlier. Throws a
 std::runtime_exception if a nonexistent name is passed.

 name() Returns the locale name, if any. If the locale represents a customized
or combined locale (discussed later), "*" is returned.

 == / != Compares two locale objects. Customized or combined locales are
equal only if they are the same object or one is a copy of the other.

 Locale Facets
 As obvious from the previous subsection, the std::locale public interface does not offer
much functionality. All localization facilities are instead offered in the form of facets .
Each locale object encapsulates a number of such facets, a reference to which may be
obtained via the std::use_facet<FacetType>() function . The following example, for
instance, uses the classic locale’s numeric punctuation facet to print out the locale’s
decimal mark for formatting floating-point numbers:

 For all standard facets, the instance referred to by the result of use_facet() cannot
be copied, moved, swapped, or deleted. This facet is (co-)owned by the given locale and
is deleted together with the (last) locale that owns it. When requesting a FacetType the
given locale does not own, a bad_cast exception is raised. To verify the presence of a
facet, you can use std::has_facet<FacetType>() .

 ■ Caution Never do something like auto& f = use_facet<...>(std::locale("...")); :
the facet f was owned by the temporary locale object, so using it will likely crash.

CHAPTER 6 ■ CHARACTERS AND STRINGS

137

 By default, locale s contain specializations of all the facets introduced in the
remainder of this section, each in turn specialized for at least the char and wchar_t
character types (additional minimal requirements are discussed throughout the section).
Implementations may include more facets, and programs can even add custom facets
themselves, as explained later.

 We now discuss the 12 standard facet classes listed in Table 6-4 in order, grouped in
sections by category. Afterwards, we show how to combine facets of different locales and
create customized facets. Although this is perhaps not something most programmers will
use regularly, occasionally the need does arise to customize facets. Regardless, it is worth
knowing the scope and various effects of localization and to keep them in mind when
developing programs that show or process user text (that is, most programs).

 Table 6-4. Overview of the 12 Basic Facet Classes , Grouped by Category

 Category Facets

 numeric numpunct<C> , num_put<C> , num_get<C>

 monetary moneypunct<C, International> , money_put<C> , money_get<C>

 time time_put<C> , time_get<C>

 ctype ctype<C> , codecvt<C1, C2, State>

 collate collate<C>

 messages messages<C>

 Numeric Formatting
 The facets of the numeric and monetary category follow the same pattern: there is one
 punct facet (short for punctuation) with the locale-specific formatting parameters,
plus both a put and a get facet responsible for the actual formatting and parsing of
values, respectively. The latter two facets are mostly intended to be used by the stream
objects introduced in Chapter 5 . The concrete format they use to read or write values
is determined by a combination of the parameters set in the punct facet and others set
using the stream’s members or stream manipulators.

 Numeric Punctuation

 The std::numpunct<CharT> facet offers functions to retrieve the following information
related to the formatting of numeric and Boolean values:

• decimal_point() : Returns the decimal separator

• thousands_sep() : Returns the thousands separator character

• grouping() : Returns a std::string encoding the digit grouping

• truename() and falsename() : Return basic_string<CharT> s
with textual representations for Boolean values

http://dx.doi.org/10.1007/978-1-4842-1876-1_5

CHAPTER 6 ■ CHARACTERS AND STRINGS

138

 In the lottery example at the beginning of the section, a numeric value of 100000.00
was formatted using three different locales: "100,000.00" , "1,00,000.00" , and
 "100.000,00" . The first two locales use a comma (,) and dot (.) as thousands and
decimal separator, respectively, whereas for the third it is the other way around.

 The digit grouping() is encoded as a sequence of char values indicating the number
of digits in each group, starting with the number in the rightmost group. The last char
in the sequence is used for all subsequent groups as well. Most locales group digits in
threes, for example, which is encoded as "\3" . (Note: do not use "3" , because the '3'
ASCII character results in a char with value 51; that is: '3' == '\51' .) For Indian locales,
however, as seen in "1,00,000.00" , only the rightmost group contains three digits; all
other groups contain only two. This is encoded as "\3\2" . To indicate an infinite group,
a std::numeric_limits<char>::max() value may be used in the last position. An empty
 grouping() string denotes that no grouping should be used at all, which is the case, for
instance, for the classic "C" locale.

 Formatting and Parsing of Numeric Values

 The std::num_put and num_get facets constitute the implementation of the << and
 >> stream operators described in Chapter 5 and provide two sets of methods with the
following signature:

 Iter put(Iter target, ios_base& stream, char fill, X value)
 Iter get(Iter begin, Iter end, ios_base& stream, iostate& error, X& result)

 Here X can be bool , long , long long , unsigned int , unsigned long , unsigned long
long , double , long double , or a void pointer. For get() , unsigned short and float
are also possible. These methods either format a given numeric value or try to parse
the characters in the range [begin, end) . In both cases, the ios_base parameter is a
reference to a stream from which locale and formatting information is taken (including,
for example, the stream’s formatting flags and precision: see Chapter 5).

 All put() functions simply return target after writing the formatted character
sequence there. The fill character is used for padding if the formatted length is less than
 stream.width() (see Chapter 5 for the padding rules).

 If parsing succeeds, get() stores the numeric value in result . If the input did not
match the format, result is set to zero and the failbit is set in the iostate parameter
(see Chapter 5). If the parsed value is too large/small for type X , the failbit is set as well,
and result is set to std::numeric_limits<X>::max() / lowest() (see Chapter 1). If the
end of the input was reached (can be a success or a failure), the eofbit is set. An iterator
to the first character after the parsed sequence is returned.

 We do not show example code here, but these facets are analogous to the monetary
formatting facets introduced next, for which we do include a full example.

http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_1

CHAPTER 6 ■ CHARACTERS AND STRINGS

139

 Monetary Formatting
 Monetary Punctuation

 The std::moneypunct<CharType, International=false> facet offers functions to
retrieve the following information related to formatting monetary values:

• decimal_point() , thousands_sep() , and grouping() : Analogous
to the numeric punctuation members seen earlier.

• frac_digits() : Returns the number of digits after the decimal
separator. A typical value is 2 .

• curr_symbol() : Returns the currency symbol, such as '€' ,
if the International template parameter is false , and the
international currency code (usually three letters) followed by a
space, such as "EUR" , if International is true .

• pos_format() and neg_format() return a money_base::pattern
structure (discussed later) describing how positive and negative
monetary values are to be formatted.

• positive_sign() and negative_sign() : Return a formatting
 string for positive and negative monetary values.

 The latter four members need more explanation. They use types defined in
 std::money_base , a base class of moneypunct . The money_base::pattern structure,
defined as struct pattern{ char field[4]; } , is an array containing four values of the
 money_base::part enumeration, with these supported values:

 part Description

 none Optional whitespace characters, except when none appears last.

 space At least one whitespace character.

 symbol The currency symbol, curr_symbol() .

 sign The first character returned by positive_sign() or negative_sign() .
Additional characters appear at the end of the formatted monetary value.

 value The monetary value.

 For example, assume that the neg_format() pattern is {none, symbol, sign,
value} , that the currency symbol is '$' , that negative_sign() returns "()" , and that
 frac_digits() returns 2 . Then the value -123456 is formatted as "$(1,234.56)" .

CHAPTER 6 ■ CHARACTERS AND STRINGS

140

 ■ Note For American and many European locales, frac_digits() equals 2 , meaning
unformatted values are to be expressed in, for example, cents rather than dollars or euros.
This is not always the case, though: for the Japanese locale, for example, frac_digits() is 0 .

 Formatting and Parsing of Monetary Values

 The facets std::money_put and money_get handle formatting and parsing of monetary
values and are mainly intended to be used by the put_money() and get_money() I/O
manipulators discussed in Chapter 5 . The facets offer methods of this form:

 Iter put(Iter target, bool intl, ios_base& stream, char fill, X value)
 Iter get(Iter begin, Iter end, bool intl, ios_base& stream,
 iostate& error, X& result)

 Here X is either std::string or long double . The behavior and meaning of the
parameters is similar to that discussed for num_put and num_get earlier. If intl is false ,
currency symbols like $ are used; otherwise, strings like USD are used.

 The following illustrates how these facets can be used, although you normally simply
use std::put_ / get_money() (uses <cassert> and <sstream>):

http://dx.doi.org/10.1007/978-1-4842-1876-1_5

CHAPTER 6 ■ CHARACTERS AND STRINGS

141

 Time and Date Formatting
 The two facets std::time_get and time_put handle parsing and formatting of time and
dates and power the get_time() and put_time() manipulators seen in Chapter 5 . They
provide methods with the following signatures:

 Iter put(Iter target, ios_base& stream, char fill, tm* value, <format>)
 Iter get(Iter begin, Iter end, ios_base& stream, iostate& error, tm* result,
 <format>)

 The <format> is either 'const char* from, const char* to' , pointing to a
time-formatting pattern expressed using the same syntax as explained for strftime()
in Chapter 2 , or a single time format specifier of the same grammar with optional
modifier 'char format, char modifier' . The behavior and meaning of the parameters
is analogous to those for the numeric and monetary formatting facets. The std::tm
structure is explained in Chapter 2 as well. Only those members of the passed tm are
used / written that are mentioned in the formatting pattern.

 In addition to the generic get() functions, the time_get facet has a series of more
restricted parsing functions, all with the following signature:

 Iter get_ x (Iter begin, Iter end, ios_base& stream, iostate& error, tm*)

 Member Description

 get_time() Tries to parse a time as %H:%M:%S .

 get_date() Tries to parse a date using a format that depends on the value of
the facet’s date_order() member: either no_order : %m%d%y , dmy :
 %d%m%y , mdy : %m%d%y , ymd : %y%m%d , or ydm : %y%d%m . This date_order()
enumeration value reflects the locale’s %X date format.

 get_weekday()
 get_monthname()

 Tries to parse a name for a weekday or month, possibly
abbreviated.

 get_year() Tries to parse a year. Whether two-digit year numbers are
supported depends on your implementation.

 Character Classification, Transformation, and Conversion
 Character Classification and Transformation

 The ctype<CharType> facets offer a series of locale-dependent character-classification
and -transformation functions, including equivalents for those of the <cctype> and
 <cwctype> headers seen earlier.

 For use in the character-classification functions listed next, 12 member constants of
a bitmask type ctype_base::mask are defined (ctype_base is a base class of ctype), one
for each character class. Their names equal the class names given in Table 6-1 . Although

http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_2
http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 6 ■ CHARACTERS AND STRINGS

142

their values are unspecified, alnum == alpha|digit and graph == alnum|punct . The
following table lists all classification functions (input character ranges are represented
using two CharType* pointers b and e):

 Member Description

 is(mask,c) Checks whether a given character c belongs to any of the
character classes specified by mask .

 is(b,e,mask*) Identifies for each character in the range [b , e) the complete
 mask value that encodes all classes it belongs to, and stores
the result in the output range pointed to by the last argument.
Returns e .

 scan_is(mask,b,e)
 scan_not(mask,b,e)

 Scans the character range [b , e), and returns a pointer to the
first character that belongs / does not belong to any of the
classes specified by mask . If none is found, the result is e .

 The same facets also offer these transformation functions:

 Member Description

 tolower(c)
 toupper(c)
 tolower(b,e)
 toupper(b,e)

 Performs upper-to-lower transformation or vice versa on a
single character (result is returned) or a character range [b , e)
(transformed in-place; e is returned). Characters that cannot be
transformed are left unchanged.

 widen(c)
 widen(b,e,o)

 Transforms char values to the facet’s character type on a
single character (result is returned) or a character range [b , e)
(transformed characters are put in the output range starting at
 *o ; e is returned). Transformed characters never belong to a
class their source characters did not belong to.

 narrow(c,d)
 narrow(b,e,d,o)

 Transformation to char ; opposite of widen() . However, only for
the 96 basic source characters (all space and print able ASCII
characters except $, ̀ , and @) the relation widen(narrow(c,0))
== c is guaranteed to hold. If no transformed character is readily
available, the given default char d is used.

 The <locale> header defines a series of convenience functions for those functions of
the ctype facets that also exist in <cctype> and <cwctype> : std::is class (c, locale&) ,
with class a name from Table 6-1 , and tolower(c, locale&) / toupper(c, locale&) .
Their implementations all have the following form (the return type is either bool or CharT):

 template <typename CharT> ... function (CharT c, const std::locale& l) {
 return std::use_facet<std::ctype<CharT>>(l). function (c);
 }

CHAPTER 6 ■ CHARACTERS AND STRINGS

143

 Character-Encoding Conversions

 A std::codecvt facet converts character sequences between two character encodings .
This is explained earlier in “Character-Encoding Conversion,” because these facets are
useful also outside the context of locales. Each std::locale contains at least instances
of the four codecvt specializations listed in Table 6-2 , which implement potentially
locale-specific converters. These are used implicitly by the streams of Chapter 5 when
converting, for example, between wide and narrow strings. Because directly using these
low-level facets is not recommended, we do not explain their members here. Always
use the helper classes discussed in the “Character-Encoding Conversion” section
instead.

 String Ordering and Hashing
 The std::collate<CharType> facet implements the following locale-dependent
string-ordering comparisons and hashing functions. All character sequences are
specified using begin (inclusive) and end (exclusive) CharType* pointers:

 Member Description

 compare() Locale-dependent three-way comparison of two character sequences,
returning - 1 if the first precedes the second, 0 if both are equivalent,
and +1 otherwise. Not necessarily the same as naïve lexicographical
sequence comparison.

 transform() Transforms a given character sequence to a specific normalized form,
which is returned as a basic_string<CharType> . Applying naïve
lexicographical ordering on two transformed strings (as with their
 operator<) returns the same result as applying the facet’s compare()
function on the untransformed sequences.

 hash() Returns a long hash value for the given sequence (see Chapter 3 for
hashing) that is the same for all sequences that transform() to the
same normalized form.

 A std::locale itself is a std::less<std::basic_string<CharT>> -like functor
(see Chapter 2) that compares two basic_string<CharT> s using its collate<CharT>
facet’s compare() function. The following example sorts French strings lexicographically,

http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 6 ■ CHARACTERS AND STRINGS

144

using the classic locale, and using a French locale (the locale name to use is platform
specific). In addition to <locale> , it needs <vector> , <string> , and <algorithm> :

 Message Retrieval
 The std::messages<CharT> facet facilitates retrieval of textual messages from message
catalogs . These catalogs are essentially associative arrays that map a series of integers
to a localized string. This could in principle be used, for instance, to retrieve translated
error messages based on, for example, their error category and code (see Chapter 8).
Which catalogs are available, and how they are structured, is entirely platform specific.
For some, standardized message catalog APIs are used (such as POSIX’s catgets() or
GNU’s gettext()), whereas others may not offer any catalogs (this is typically the case for
Windows). The facet offers these functions:

 Member Description

 open(n,l) Opens a catalog based on a given platform-specific string n
(a basic_string<CharT>), and for the given std::locale
l . Returns a unique identifier of some signed integer type
 catalog .

 get(c,set,id,def) Retrieves from the catalog with given catalog identifier c ,
the message identified by set and id (two int values whose
interpretation is catalog specific), and returns it as a basic_
string<CharT> . Returns def if no such message is found.

 close(c) Closes the catalog with the given catalog identifier c .

http://dx.doi.org/10.1007/978-1-4842-1876-1_8

CHAPTER 6 ■ CHARACTERS AND STRINGS

145

 Combining and Customizing Locales
 The constructs of the <locale> library are designed to be very flexible when it comes to
combining or customizing locale facets.

 Combining Facets
 std::locale provides combine<FacetType>(const locale& c) , which returns a copy of
the locale on which combine() is called, except for the FacetType facet, which is copied
from the given argument. Here is an example (using namespace std is assumed):

 Alternatively, std::locale has a constructor accepting a base locale and an
overriding facet that does the same as combine() . For example, the creation of combined
in the previous example can be expressed as follows:

 locale combined(locale::classic(), &use_facet<moneypunct<char>>(chinese));

 std::locale moreover has a number of constructors to override all facets of one or
more categories at once (String is either a std::string or a C-style string representing
the name of a specific locale):

 locale(const locale& base, String name, category cat)
 locale(const locale& base, const locale& overrides, category cat)

 For each of the six categories listed in Table 6-4 , std::locale defines a constant
with that name. The std::locale::category type is a bitmask type, meaning categories
can be combined using bitwise operators. The all constant, for example, is defined as
 collate | ctype | monetary | numeric | time | messages . These constructors can
be used to create a combined facet similar to the one earlier:

 locale combined(locale::classic(), chinese, locale::monetary);

CHAPTER 6 ■ CHARACTERS AND STRINGS

146

 Custom Facets
 All public functions func () of the facets simply call a protected virtual method on the
facet called do_ func () . 3 You can implement custom facets by inheriting from existing
ones and overriding these do -methods.

 This first simple example changes the behavior of the numpunct facet to use the
strings "yes" and "no" instead of "true" and "false" for Boolean input and output:

 class yes_no_numpunct : public std::numpunct<char> {
 protected:
 virtual string_type do_truename() const override { return "yes"; }
 virtual string_type do_falsename() const override { return "no"; }
 };

 You can use this custom facet, for instance, by imbuing it on a stream. The following
prints "yes / no" to the console:

 std::cout.imbue(std::locale(std::cout.getloc(), new yes_no_numpunct));
 std::cout << std::boolalpha << true << " / " << false << std::endl;

 Recall that facets are reference counted and that the destructor of the std::locale
hence properly cleans up your custom facet.

 The disadvantage of deriving from facets such as numpunct and moneypunct is that
those generic base classes implement locale-independent behavior. To start from a
locale-specific facet instead, facet classes such as numpunct_byname are available. For all
facets seen so far, except the numeric and monetary put and get facets, a facet subclass
exists with the same name but appended with _byname . They are constructed passing
a locale name (const char* or std::string) and then behave as if taken from the
corresponding locale . You can override from these facets to modify only specific aspects
of a facet for a given locale.

 The next example modifies the monetary punctuation facet to facilitate output using
a format standard in accounting: negative numbers are put between parentheses, and
padding is done in a particular way. You do so without overriding a locale’s currency
symbol or most other settings by starting from std::moneypunct_byname (string_type is
defined in std::moneypunct):

 3 Nearly all functions: for performance, is() , scan_is() , and scan_not() of the ctype<char>
specialization do not call a virtual function, but perform lookups in a mask* array
(ctype::classic_table() for the "C" locale). A custom instance may be created by passing a
custom lookup array to the facet’s constructor.

CHAPTER 6 ■ CHARACTERS AND STRINGS

147

 This facet may then be used as follows (see Chapter 5 for details on the stream I/O
manipulators of <iomanip>):

 The output of this program should be

 $ 1,000.00
 $ (5.00)

 You can in theory create a new facet class by directly inheriting from std::facet
and add it to a locale using the same constructor to use it in your own library code later.
The only additional requirement is that you define a default-constructed static constant
named id of type std::locale::id .

 C Locales <clocale>
 Locale-sensitive functions from the C Standard Library (including most functions in
 <cctype> and the I/O operations of <cstdio> and <ctime>) are not directly affected by
the global C++ locale . Instead, they are governed by a corresponding C locale. This C
locale is changed by one of two functions:

• std::locale::global() is guaranteed to modify the C locale
to match the given C++ locale , as long as the latter has a name.
Otherwise, its effect on the C locale, if any, is implementation-
defined.

• Using the std::setlocale() function of <clocale> . This does not
affect the C++ global locale in any way.

http://dx.doi.org/10.1007/978-1-4842-1876-1_5

CHAPTER 6 ■ CHARACTERS AND STRINGS

148

 In other words, when using standard locales, a C++ program should simply
call std::locale::global() . To write portable code when combining multiple
locales, however, you have to call both the C++ and the C function because not all
implementations set the C locale as expected when changing the global() C++ locale to
a combined locale . This is done as follows:

 The setlocale() function takes a single category number (not a bitmask type;
supported values include at least LC_ALL, LC_COLLATE , LC_CTYPE , LC_MONETARY , LC_NUMERIC ,
and LC_TIME) and a locale name, all analogous to their C++ equivalents. It returns the name
of the active C locale upon success as a char* pointer into a reused, global buffer, or nullptr
upon failure. If nullptr is passed for the locale name, the C locale is not modified.

 Unfortunately, the C locale functionality is far less powerful than the C++ one:
customized facets or selecting individual facets for combining is not possible, making the
use of such advanced locales impossible with portable code in general.

 The <clocale> header has one more function: std::localeconv() . It returns a
pointer to a global std::lconv struct with public members equivalent to the functions
of the std::numpunct (decimal_point , thousands_sep , grouping) and std::moneypunct
facets (mon_decimal_point , mon_thousands_sep , mon_grouping , positive_sign ,
 negative_sign , currency_symbol , frac_digits , and so on). These values should be
treated as read-only: writing to them results in undefined behavior.

 Regular Expressions <regex>
 A regular expression is a textual representation of a pattern or patterns to be matched
against a target sequence of characters. The regular expression ab*a , for instance, matches
any target sequence starting with the character a , followed by zero or more b s, and ending
again with an a . Regular expressions can be used to search for or replace particular
patterns in the target, or to verify that it matches a desired pattern. You see how to
perform these operations using the <regex> library later; first we introduce how to form
and create regular expressions.

CHAPTER 6 ■ CHARACTERS AND STRINGS

149

 The ECMAScript Regular Expression Grammar
 The syntax used to express patterns in textual form is defined by a grammar . By default,
 <regex> uses a modified version of the grammar used by the ECMAScript scripting
language (best known for its widely used dialects JavaScript, JScript, and ActionScript).
What follows is a concise, comprehensive reference for this grammar.

 A regular expression pattern is a disjunction of sequences of terms , with each term
either an atom , an assertion , or a quantified atom . Supported atoms and assertions are
listed in Table 6-5 and Table 6-6 , and Table 6-7 shows how atoms are quantified to express
repetitive patterns. These terms are concatenated without separators and then optionally
combined into disjunctions using the | operator. Empty disjuncts are allowed, with pattern |
matching either the given pattern or the empty sequence. Some examples should clarify:

• \r\n?|\n matches line-break sequences for all major platforms
(that is, \r , \r\n , or \n).

• <(.+)>(.*)</\1> matches a XML-like sequences of the form
 < TAG > anything </ TAG > using a back reference for matching the
closing tag, and extra grouping in the middle to allow retrieval of
the second submatch (discussed later).

• (?:\d{1,3}\.){3}\d{1,3} matches IPv4 addresses. This
naïve version also matches illegal addresses, though, such as
 999.0.0.1 , and the poor grouping prohibits the four matched
numbers from being retrieved afterward. Note that without the
 ?: , \1 still would only refer to the third matched number.

 ■ Tip When entering regular expressions as string literals in a C++ program, all
backslashes have to be escaped. The first example becomes "\\r\\n?|\\n" . Because this
is both tedious and obscuring, we recommend using raw string literals instead: for instance,
 R"(\r\n?|\n)" . Remember that the surrounding parentheses are part of the raw string
literal notation and do not constitute a regular expression group.

 The difference between an atom and an assertion is that the former consumes
characters from the target sequence (typically one), whereas the latter does not. The
(quantified) atoms in a pattern consume target characters one by one, simultaneously
progressing left to right through both the pattern and target sequences. For an assertion
to match, a specific condition must hold on the current position in the target (think of it
as the caret position when typing text).

CHAPTER 6 ■ CHARACTERS AND STRINGS

150

 Table 6-5. All Atoms with a Special Meaning in the ECMAScript Grammar

 Atom Matches

 . Any single character except line terminators4.

 \0 , \f , \n , \r ,
 \t , \v

 One of the common control characters: null, form feed (FF), line feed
(LF), carriage return (CR), horizontal tab (HT), and vertical tab (VT).

 \c letter The control character whose code unit equals that of the given ASCII
lowercase or uppercase letter modulo 32. E.g. \cj == \cJ == \n (LF) as
 (code unit of j or J) % 32 = (106 or 74) % 32 = 10 = code unit of LF.

 \x hh The ASCII character with hexadecimal code unit hh (exactly two
hexadecimal digitis). E.g. \x0A == \n (LF), and \x6A == J .

 \u hhhh The Unicode character with hexadecimal code unit hhhh (exactly four
hexadecimal digits). E.g. \u006A == J , and \u03c0 == π (Greek letter pi).

 [class] A character of a given class (see main text): [abc] , [a-z] , [[:alpha:]] ,
and so on.

 [^ class] A character not of a given class (see main text). E.g.: [^0-9] , [^[:s:]] ,
and so on.

 \d A decimal digit character (short for [[:d:]] or [[:digit:]]).

 \s A whitespace character (short for [[:s:]] or [[:space:]]).

 \w A word character, that is: an alphanumeric or underscore character
(short for [[:w:]] or [_[:alnum:]]).

 \D , \S , \W Complement of \d , \s , \w . In other words, any character that is not a
decimal digit, whitespace, or word character, respectively (short for
 [^[:d:]] and so on).

 \ character The given character , as is. Required only for \ . * + ? ^ $ () []
{ } | because without escaping, these have special meaning; but any
 character may be used as long as \ character has no special meaning.

 (pattern) Matches pattern and creates a marked sub-expression , turning it into an
atom that can be quantified, for one. The sequence it matches (called a
 submatch) can be retrieved from a match_results or referred to using
a back reference (discussed later), either further in the surrounding
pattern or in the replacement pattern when using regex_replace() .

 (?: pattern) Same as previous, but the sub-expression is unmarked , meaning the
sub-match is not stored in a match_results , nor can it be referred to.

 \ integer A back reference : matches the exact same sequence as the marked sub-
expression with index integer did earlier. Sub-expressions are counted
left to right in the order their opening parentheses appear in the full
pattern, starting from one (recall: \0 matches the null character).

CHAPTER 6 ■ CHARACTERS AND STRINGS

151

 Table 6-6. Assertions Supported by the ECMAScript Grammar

 Assertion Matches If the Current Position Is ...

 ̂ The beginning of the target (unless match_not_bol is specified), or a
position that immediately follows a line-terminator character. 4

 $ The end of the target (unless match_not_eol is specified), or the
position of a line-terminator character.

 \b A word boundary: the next character is a word character 5 whereas the
previous is not, or vice versa. The beginning and end of the target are
also word boundaries if the target begins/ends with a word character
(and match_not_bow / match_not_eow is not specified, respectively).

 \B Not a word boundary: both the previous and next character are either
word or non-word characters. See \b for when the beginning and end of
the target are word boundaries.

 (?= pattern) A position at which the given pattern could be matched next. This is
called a positive lookahead .

 (?! pattern) A position at which the given pattern would not be matched next. This
is called a negative lookahead .

 Table 6-7. Quantifiers That Can Be Used for Repeated Matches of Atoms

 Quantifier Meaning

 atom * Greedily matches atom zero or more times.

 atom + Greedily matches atom one or more times.

 atom ? Greedily matches atom zero or one time.

 atom {i} Greedily matches atom exactly i times.

 atom {i,} Greedily matches atom i or more times.

 atom {i,j} Greedily matches atom between i and j times.

 Most of the atoms in Table 6-5 match a single character; only subexpressions and
back references may match a sequence. Any other single character is also an atom that
matches simply that character. The match_ xxx flags mentioned in Table 6-6 are optionally
passed to the matching functions or iterators discussed later.

 4 A line terminator is one of four characters: line feed (\n), carriage return (\r), line separator
(\u2028), or paragraph separator (\u2029).
 5 A word character is any character in the [[:w:]] or [_[:alnum:]] class: that is, an underscore or
any alphabetic or numerical digit character.

CHAPTER 6 ■ CHARACTERS AND STRINGS

152

 Character Classes
 A character class is a [d] or [^ d] atom that defines a set of characters it may (for [d]) or
may not ([^ d]) match. The class definition d is a sequence of class atoms , each one either

• An individual character.

• A character range of the form from - to (bounds are inclusive).

• Starting with a backslash (\): the equivalent of any atom from
Table 6-5 except back references, with the obvious meaning.
Note that characters such as * + . $ do not need escaping in
this context, but characters - [] : ^ may. Also, inside class
definitions, \b denotes the backspace character (\u0008).

• One of three types of special character class atoms enclosed
between nested square brackets (described shortly).

 The descriptors are concatenated without separators. For example: [_a-zA-Z]
matches either an underscore or a single character in the range a–z or A–Z, whereas [^\d]
matches any single character that is not a decimal digit.

 The first special class atom has form [: name :] . At least the following names are
supported: equivalents of all 12 character classes explained in the section on character
classification— alnum , alpha , blank , cntrl , digit , graph , lower , print , punct , space ,
 upper , and xdigit —and d , s , and w . Of the latter, d and s are short for digit and space ,
and w is the class of word characters with [:w:] equivalent to _[:alnum:] (mind the
underscore!). That is, for the classic "C" locale, [[:w:]] == [_a-zA-Z] . As another
example, [\D] == [^\d] == [^[:d:]] == [^[:digit:]] == [^0-9] .

 The second type of special class atoms looks like [. name .] , where name is a locale-
and implementation-specific collating element name. This name can be a single character
 c , in which case [[. c .]] is equivalent to [c] . Similarly, [[.comma.]] may equal [,] . Some
names refer to multicharacter collating elements: that is, multiple characters that are
considered a single character in a specific alphabet and its sorting order. Possible names
for the latter include those of digraphs: ae , ch , dz , ll , lj , nj , ss , and so on. For instance,
 [[.ae.]] matches two characters, whereas [ae] matches one.

 Class atoms of the form [= name =] , finally, are similar to [. name .] , except that they
match all characters that are part of the same primary equivalence class as the named
collating element. Essentially, this means [=e=] in French should match not only e , but
also é , è , ê , E , É , and so on. Similarly, [=ss=] in German should match the digraph ss , but
also the Eszett character (ß).

CHAPTER 6 ■ CHARACTERS AND STRINGS

153

 Greedy vs. Non-Greedy Quantification
 By default, quantified atoms as defined in Table 6-7 are greedy : they first match sequences
that are as long as possible and only try shorter sequences if that does not lead to a
successful match. To make them non-greedy —that is, to make them try the shortest
possible sequences first—add a question mark (?) after the quantifier.

 Recall, for example, the earlier example "<(.+)>(.*)</\1>" . When searching for or
replacing its first match in "Bold, not bold, bold again" , this pattern
matches the full sequence. The non-greedy version, "<(.+)>(.*?)</\1>" , instead
matches only the desired "Bold" .

 As an alternative to a non-greedy quantifier, a negative character class may be
considered as well (it may be more efficient), such as "<(.+)>([^<]*)</\1>" .

 Regular Expression Objects
 The <regex> library models regular expressions as std::basic_regex<CharT> objects.
Of this, at least two specializations are available for use with narrow strings
(char sequences) and wide strings (wchar_t sequences): std::regex and std::wregex .
The examples use regex , but wregex is completely analogous.

 Construction and Syntax Options
 A default-constructed regex does not match any sequence. More useful regular
expressions are created using the constructors of the following form:

 regex(Pattern , regex::flag_type flags = regex::ECMAScript);

 The desired regular expression Pattern may be represented as either a std::string ,
a null-terminated char* array, a char* buffer with a size_t length (the number of
 char s to be read from the buffer), an initializer_list<char> , or a range formed by a
beginning and end iterator.

 When the given pattern is invalid (mismatched parentheses, a bad back reference,
and so on), a std::regex_error is thrown. This is a std::runtime_exception with
an additional code() member returning one of 11 error codes of type std::regex_
constants::error_type (error_paren , error_backref , and so on).

CHAPTER 6 ■ CHARACTERS AND STRINGS

154

 The last argument determines which grammar is used and may be used to toggle
certain syntax options. The flag_type values are aliases for those of std::regex_
constants::syntax_option_type . Because it is a bitmask type, its values may be
combined using the | operator. The following syntax options are supported:

 Option Effect

 collate Character ranges of form [a-z] become locale sensitive. For a French
locale, for instance, [a-z] should then match é , è , and so on.

 icase Character matches are done in a case-insensitive manner.

 nosubs No submatches against sub-expressions are stored in match_results
(discussed later). Back references will likely fail as well.

 optimize Hints the implementation to prefer improved matching speed over
performance during construction of regular expression objects.

 ECMAScript Uses the ECMAScript-based regular expression grammar (default).

 basic Uses the POSIX basic regular expression grammar (BRE).

 extended Uses the POSIX extended regular expression grammar (ERE).

 grep Uses the grammar of the POSIX utility grep (a BRE variant).

 egrep Uses the grammar of the POSIX utility grep –E (an ERE variant).

 awk Uses the grammar of the POSIX utility awk (another ERE variant).

 Of the last six options, only one is allowed to be specified; if none is specified,
 ECMAScript is used by default. All POSIX grammars are older and less powerful than
the ECMAScript grammar. The only reason to use them would therefore be that you are
already familiar with them, or have preexisting regular expressions. Either way, there is no
reason to detail these grammars here.

 Basic Member Functions
 A regex object is primarily intended to be passed to one of the global functions or iterator
adapters explained later, so not many member functions operate on it:

• A regex can be copied, moved, and swapped.

• It can be (re)initialized with a new regular expression and
optional syntax options using assign() , which has the exact same
set of signatures as its nondefault constructors.

• The flags() member returns the syntax options flag it was
initialized with, and mark_count() returns the number of marked
sub-expressions in its regular expression (see Table 6-5).

• The regex std::locale is returned by getloc() . This affects
matching behavior in several ways and is initialized with the
active global C++ locale upon construction. After construction,
it may be changed using the imbue() function.

CHAPTER 6 ■ CHARACTERS AND STRINGS

155

 Matching and Searching Patterns
 The std::regex_match() function verifies that the full target sequence matches a given
pattern, whereas the similar std::regex_search() searches for a first occurrence of a
pattern in the target. Both return false if no successful match is found. These function
templates have an analogous set of overloads, all with signatures of this form:

 bool regex_match (Target [, Results &], const Regex &, match_flag_type = 0);
 bool regex_search(Target [, Results &], const Regex &, match_flag_type = 0);

 All but the last argument is templated on the same character type CharT , with
implementations available for at least char and wchar_t . As for the arguments:

• A typical combination for the first three arguments is (w)string ,
 (w)smatch , (w)regex .

• Instead of a basic_string<CharT> , the Target sequence may
also be represented as a null-terminated CharT * array (used also
for string literals) or a pair of bidirectional iterators that mark
the bounds of a CharT sequence. In both these cases, the normal
 Results type becomes std::(w)cmatch .

• The w?[sc]match types used for the optional match Results
output argument are discussed in the next subsection.

• The Regex object passed is not copied, so these functions must
not (ideally cannot) be called using a temporary object.

• To control matching behavior, a value of the bitmask type
 std::regex_constants::match_flag_type may be passed.
Supported values are shown in the following table:

 Match Flag Effect

 match_default Use default matching behavior (this constant has value zero).

 match_not_bol
 match_not_eol
 match_not_bow
 match_not_eow

 The first or last position in the target sequence is no longer
considered the b eginning/ e nd o f a l ine/ w ord. Affects the ̂ , $,
 \b , and \B annotations as explained in Table 6-6 .

 match_any If multiple disjuncts of a disjunction match, it is not required
to find the longest match among them: any match will do (for
example, the first one found, if that speeds things up). Not relevant
for the ECMAScript grammar, because this already prescribes the
use of the leftmost successful match for disjunctions.

 match_not_null The pattern will not match the empty sequence.

(continued)

CHAPTER 6 ■ CHARACTERS AND STRINGS

156

 Match Flag Effect

 match_continuous The pattern only matches sequences that start at the beginning
of the target sequence (implied for regex_match()).

 match_prev_avail When deciding on line and word boundaries for ̂ , $, \b , and
 \B annotations, matching algorithms look at the character at
 --first , with first pointing to the start of the target sequence.
When set, match_not_bol and match_not_bow are ignored.
Useful when repeatedly calling regex_search() on consecutive
target subsequences. The iterators explained later do this
correctly and are the recommended way to enumerate matches.

 If either algorithm fails, a std::regex_error is raised. Because the regular
expression’s syntax is already verified upon construction of the regex object (see earlier),
this only rarely occurs for very complex expressions if the algorithm runs out of resources.

 Match Results
 A std::match_results<CharIter> is effectively a sequential container (see Chapter 3)
of sub_match<CharIter> elements, which are std::pair s of bidirectional CharIter s
pointing into the target sequence marking the bounds of the submatch sequences.
At index 0, there is a sub_match for the full match, followed by one sub_match per marked
sub-expression in the order their opening parentheses appear in the regular expression
(see Table 6-5). The following template specializations are provided:

 Target match_results sub_match CharIter

 std::string
 std::wstring

 std::smatch
 std::wsmatch

 std::ssub_match
 std::wssub_match

 std::string::const_iterator
 std::wstring::const_iterator

 const char*
 const wchar_t*

 std::cmatch
 std::wcmatch

 std::csub_match
 std::wcsub_ match

 const char*
 const wchar_t*

 std::sub_ match

 In addition to the first and second members inherited from std::pair , sub_match es
have a third member variable called matched . This Boolean is false if the match failed or
if the corresponding sub-expression did not participate in the match. The latter occurs,
for example, if the sub-expression was part of a nonmatched disjunct, or of a nonmatched
atom quantified with, for example, ? , * , or {0, n } . When matching "(a)?b|(c)" against
 "b" , for instance, the match succeeds with a match_result that contains two empty
 sub_match es with matched == false .

http://dx.doi.org/10.1007/978-1-4842-1876-1_3

CHAPTER 6 ■ CHARACTERS AND STRINGS

157

 The operations available for sub_match es are summarized in this table:

 Operation Description

 length() The length of the match sequence (0 if not matched)

 str() /
 cast operator

 Returns the match sequence as a std::basic_string

 compare() Returns 0 if the sub_match compares equal to, and a positive / negative
number if it compares greater / smaller than, a given sub_match ,
 basic_string or null-terminated character array

 ==, !=,
 <, <=, >, >=

 Non-member operators for compare() ing between a sub_match and
a sub_match , basic_string or character array, or vice versa

 << Nonmember operator for streaming to an output stream

 std::match_ results

 A match_results can be copied, moved, swapped, and compared for equality using ==
and != . In addition to those operations, the following member functions are available
(functions related to custom allocators are omitted). Note that, unlike for strings, size()
and length() are not equivalent here:

 Operation Description

 ready() A default-constructed match_results is not ready and becomes
ready after execution of a match algorithm.

 empty() Returns size()==0 (true if not ready() or after a failed match).

 size() Returns the number of sub_match es contained (one plus the
number of marked sub-expressions) if ready() and the match
was successful, or zero otherwise.

 max_size() The theoretical maximum size() due to implementation or
memory limitations.

 operator[] Returns the sub_match with specified index n (see earlier) or
an empty sub_match sub with sub.matched == false if n >=
size() .

 length(size_t=0) results.length(n) is equivalent to results[n].length() .

 str(size_t=0) results.str(n) is equivalent to results[n].str() .

 position(size_t=0) The distance between the start of the target sequence and
 results[n].first .

 prefix() Returns a sub_match ranging from the start of the target
sequence (inclusive) until that of the match (non-inclusive).
Always empty for regex_match() . Undefined if not ready() .

(continued)

CHAPTER 6 ■ CHARACTERS AND STRINGS

158

 Operation Description

 suffix() Returns a sub_match ranging from the end of the full match
(non-inclusive) until the end of the target sequence (inclusive).
Always empty for regex_match() . Undefined if not ready() .

 begin() , cbegin() ,
 end() , cend()

 Return iterators pointing to the first or one-past-the-last
 sub_match contained in the match_results .

 format() Formats the matched sequence according to a specified format.
The different overloads (either string- or iterator-based) have
output, pattern, and format flag arguments analogous to those
of the std::regex_replace() function explained later. Any
 match_xxx flags are ignored; only format_yyy flags are used.

 Example
 The following example illustrates the use of regex_match() , regex_search() , and
 match_results (smatch):

 But the preferred way of enumerating all matches is to use the iterators discussed in
the next subsection.

 Match Iterators
 The std::regex_iterator and regex_token_iterator classes facilitate traversing all
matches of a pattern in a target sequence. Like match_results , both are templated with
a type of character iterator (CharIter). Four analogous typedef s also exist for the most
common cases: the iterator type prefixed with s , ws , c , or wc . The while loop from the
example at the end of the previous subsection, for instance, may be rewritten as follows:

CHAPTER 6 ■ CHARACTERS AND STRINGS

159

 In other words, a regex_iterator is a forward iterator that enumerates all
 sub_match es of a pattern as if found by repeatedly calling regex_search() . The previous
 for_each() loop is not only shorter and clearer though, it is also more correct in general
than our naïve while loop: the iterator, for one, sets the match_prev_avail flag after the first
iteration. Only one non-trivial constructor is available, creating a regex_iterator<CharIter>
pointing to the first sub_match (if any) of a given Regex in the target sequence bounded by
two bidirectional CharIters :

 regex_iterator(CharIter, CharIter, const Regex &, match_flag_type = 0);

 Analogous to a regex_iterator , which enumerates match_results , a regex_token_
iterator enumerates all or specific sub_match es contained in these match_results . The
same example, for instance, may be written as

 The constructors of regex_token_iterator are analogous to the constructor of
 regex_iterator but have an extra argument indicating which sub_match es to enumerate.
Overloads are defined for a single int (as in the example), vector<int> , int[N] , and
 initializer_list<int> . Replacing the 2 in the example with {0,1} , for example, outputs
 "Bold" , "b" , "bold again" , and then "b" . When omitted, this argument
defaults to 0 , indicating only full pattern sub_match es are to be enumerated (the example
then prints "Bold" and "bold again").

 The last parameter of a regex_token_iterator can also be -1 which turns it into a field
splitter or tokenizer . This is a safe alternative to the C function strtok() from <cstring> .
In this mode, a regex_token_iterator iterates over all subsequences that do not match
the regular expression pattern. It can for example be used to split a comma-separated string
into its different fields (or tokens). The regular expression used in that case is simply "," .

 Replacing Patterns
 The final regular expression algorithm, std::regex_replace() , replaces all matches of a
given pattern with another. The signatures are as follows:

 String regex_replace(Target , Regex &, Format , match_flag_type = 0);
 Out regex_replace(Out , Begin , End , Regex &, Format, match_flag_type = 0);

 As before, argument types are templated in the same character type CharT , with
support for at least char and wchar_t . The replacement Format is represented as either a
 (w)string or a null-terminated C-style string. For the target sequence, there are two groups
of overloads. Those in the first represent the Target as a (w)string or a C-style string and
return the result as a (w)string . Those in the second denote the target using bidirectional
 Begin and End character iterators and copy the result into an output iterator Out . The return
value for the latter is an iterator pointing to one past the last character that was outputted.

CHAPTER 6 ■ CHARACTERS AND STRINGS

160

 All matches of the given Regex are replaced with the Format sequence, which by
default may contain the following special character sequences:

 Format Replacement

 $ n A copy of the n th marked sub-expression of the match, where n > 0 is
counted as with back references: see Table 6-5 .

 $& A copy of the entire match.

 $` A copy of the prefix, the part of the target that precedes the match.

 $´ A copy of the suffix, the part of the target that follows the match.

 $$ A $ character (this is the only escaping required).

 Analogously to earlier, only if the algorithm has insufficient resources to evaluate the
match, a std::regex_ error is thrown.

 The following code, for example, prints "d*v*w*l*d" and "debolded" :

 std::regex vowels("[aeiou]");
 std::cout << std::regex_replace("devoweled", vowels, "*") << '\n';

 std::regex bolds("(.*?)");
 std::string target = "debolded";
 std::ostream_iterator<char> out(std::cout);
 std::regex_replace(out, target.cbegin(), target.cend(), bolds, "$1");

 The final argument is again a std::regex_constants::match_flag_ type , which
for regex_replace() can be used to tweak both the matching behavior of the regular
expression—using the same match_xxx values as listed earlier—and the formatting of the
replacement. For the latter, the following values are supported:

 Format Flag Effect

 format_default Use default formatting (this constant has value zero).

 format_sed Use the same syntax as the POSIX utility sed for the Format .

 format_no_copy Parts of the Target sequence that are not matches of the regular
expression pattern are not copied to the output.

 format_first_only Only the first occurrence of the pattern is replaced.

161© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1_7

 CHAPTER 7

 Concurrency

 Threads <thread>
 Threads are the basic building blocks to be able to write code that runs in parallel.

 Launching a New Thread
 To run any function pointer, functor, or lambda expression in a new thread of execution,
pass it to the constructor of std::thread , along with any number of arguments. For
example, these two lines are equivalent:

 std::thread worker1(function, "arg", anotherArg);
 std::thread worker2([=] { function("arg", anotherArg); });

 The function with its arguments is called in a newly launched thread of execution
prior to returning from the thread ’s constructor .

 Both the function and its arguments must first be copied or moved (for example, for
temporary objects or if std::move() is used) to memory accessible to this new thread.
Therefore, to pass a reference as an argument, you first have to make it copyable: for
example, by wrapping it using std::ref() / std::cref() . Of course, you can also simply
use a lambda expression with capture-by-reference. Functors, reference wrappers, and
lambda expressions are all discussed in detail in Chapter 2 .

 The thread class does not offer any facilities to retrieve the function’s result. On
the contrary, its return value is ignored, and std::terminate() is called if it raises an
uncaught exception (which by default terminates the process: see Chapter 8). Retrieving
function results is made easier though using the constructs defined in the <future>
header, as detailed later in this chapter.

 ■ Tip To asynchronously execute a function and retrieve its result later, std::async()
(defined in <future>) is recommended over thread . It typically is both easier and more
efficient (implementations of async() likely use a thread pool). Reserve the use of threads
for longer-running concurrent tasks that do not necessarily return a result.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2
http://dx.doi.org/10.1007/978-1-4842-1876-1_8

CHAPTER 7 ■ CONCURRENCY

162

 A Thread’s Lifetime
 A std::thread is said to be joinable if it is associated with a thread of execution. This
property is queried using joinable(). thread s initialized with a function start out
joinable, whereas default-constructed ones start out non-joinable. After that, thread
instances can be moved and swapped as expected. Copying thread objects, however, is
not possible. This ensures that at all times, at most one thread instance represents a given
thread of execution. A handle to the underlying native thread representation may be
obtained through the optional native_handle() member.

 The two most important facts to remember about std::thread s are as follows:

• A thread remains joinable even after the thread function has
finished executing.

• If a thread object is still joinable when it is destructed,
 std::terminate() is called from its destructor.

 So, to make sure the latter does not happen, always make sure to eventually call one
of the following functions on each joinable thread :

• join() : Blocks until the thread function has finished executing

• detach() : Disassociates the thread object from the possibly
continuing thread of execution

 Note that detaching a thread is the only standard way to asynchronously execute a
function in a fire-and-forget manner.

 A std::thread offers no means to terminate, interrupt, or resume the underlying
thread of execution. Stopping the thread function or otherwise synchronizing with it must
therefore be accomplished using other means, such as mutexes or condition variables,
both discussed later in this chapter.

 Thread Identifiers
 Each active thread has a unique thread::id , which offers all operations you typically
need for thread identifiers:

• They can be outputted to string streams (for example, for logging
purposes).

• They can be compared using == (for example, for testing /
asserting a function is executed on some specific thread).

• They can be used as keys in both ordered and unordered
associative containers: all comparison operators (< , >= , and so on)
are defined, as is a specialization of std::hash() .

CHAPTER 7 ■ CONCURRENCY

163

 If a std::thread object is joinable, you can call get_id() on it to obtain the identifier
of the associated thread. All non-joinable thread s have an identifier that equals the
default-constructed thread::id . To get the identifier for the currently active thread, you
can also call the global std::this_thread::get_id() function.

 Utility Functions
 The static std::thread::hardware_concurrency() function returns the number of
concurrent threads (or an approximation thereof) supported by the current hardware,
or zero if this cannot be determined. This number may be larger than the number of
physical cores: if the hardware, for instance, supports simultaneous multithreading
(branded by Intel as Hyper-Threading), this will be an even multiple of (typically twice)
the number of cores.

 In addition to get_id() , the std::this_thread namespace contains three additional
functions to manipulate the current thread of execution:

• yield() hints the implementation to reschedule, allowing other
active threads to continue their execution.

• sleep_for(duration) and sleep_until(time_point) suspend
the current thread for or until a given time; the timeouts are
specified using types from <chrono> described in Chapter 2 .

 Exceptions
 Unless noted here, all functions in <thread> are declared noexcept . Several std::thread
members call native system functions to manipulate native threads. If those fail, a
 std:: system_error is thrown with one of the following error codes (see Chapter 8 for
more information on system_error s and error codes):

• resource_unavailable_try_again if a new native thread cannot
be created in the constructor

• invalid_argument if join() or detach() is called on a non-
joinable thread

• no_such_process if join() or detach() is called and the thread is
not valid

• resource_deadlock_would_occur if join() is called on a joinable
thread from the corresponding thread of execution

 Failure to allocate storage in the constructor may also be reported by throwing an
instance of std::bad_ alloc or a class that derives from bad_alloc .

http://dx.doi.org/10.1007/978-1-4842-1876-1_2
http://dx.doi.org/10.1007/978-1-4842-1876-1_8

CHAPTER 7 ■ CONCURRENCY

164

 Futures <future>
 The <future> header provides facilities to retrieve the result (value or exception)
from a function that is being, will be, or has executed, typically in a different thread.
Conceptually, a thread-safe communications channel is set up between a single provider
and one or more return objects (T may be void or a reference type):

 The shared state is an internal reference-counted object, shared between a single
provider and one or more return objects. The provider asynchronously stores a result
into its shared state, which is then said to be ready . The only way to acquire this result is
through one of the corresponding return objects.

 Return Objects
 All return objects have a synchronous get() function that blocks until the associated
shared state is ready and then either returns the provided value (may be void) or rethrows
the provided exception in the calling thread.

 To wait until the result is ready without actually retrieving it, use one of the wait
functions: wait() , wait_until(time_point) , or wait_for(duration) . The former waits
indefinitely, and the latter two wait no longer than a timeout specified using one of the
types defined in <chrono> (Chapter 2).

 A return object that is associated with a shared state is said to be valid . Validity may
be checked using valid() . A valid future cannot be constructed directly but must always
be obtained from the shared state’s single provider.

 There are two important limitations with std::futures :

• There can be only one valid future per shared state, just as
there can only be one provider. That is, each provider allows the
creation of only one future , and future s can never be copied,
only moved (future s cannot be swapped, either).

• get() can only be called once; that is, calling get() releases the
 future ’s reference to the shared state, making the future non-
valid. Calling get() again after this throws an exception. Which
exceptions are raised and when is summarized at the end of the
section.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 7 ■ CONCURRENCY

165

 A shared_future is completely equivalent to a future , but without these two
limitations: that is, they can be copied, and get() may be called more than once. A
 shared_future is obtained by calling share() on a future . This can again be done only
once, because it invalidates the future . But once you have a shared_future , more can be
created by copying it. Here is an overview:

 Providers
 The <future> library offers three different providers: std::async() , packaged_task s, and
 promise s. This section discusses each in turn. As example workload for asynchronous
computations, we use the following greatest-common-divisor function:

 Async
 Calling std::async() schedules the asynchronous execution of a given function before
returning a std::future object that can be used to retrieve the result:

 As with the std::thread constructor, virtually any type of function or function
object can be used, and both the function and its arguments are moved or copied to their
asynchronous execution context.

 The result of the function call is put into the shared state as soon as the function is
finished executing. If the function throws an exception, the exception is caught and put
into the shared state; and if it succeeds, the return value is moved there.

CHAPTER 7 ■ CONCURRENCY

166

 The standard defines additional overrides of std::async() that take an instance of
 std::launch as a first argument. Supported values include at least the following enum
values (implementations are allowed to define more):

• With std::launch::async , the function is executed as if in a new
thread of execution, although implementations may employ, for
example, a thread pool to improve performance.

• With std::launch::deferred , the function is not executed until
 get() is called on one of the return objects for this call of async() .
The function is executed in the first thread that calls get() .

 These options can be combined using the | operator. For instance, the combination
 async | deferred encourages the implementation to exploit any available concurrency
but allows to defer until get() is called if there is insufficient concurrency available. This
combination is also the default policy used when no explicit launch policy is specified.

 There is one important caveat when using a launch policy that includes async (that
is, also with the default policy). Conceptually, the thread that executes the asynchronous
function is owned by the shared state, and the destructor of the shared state joins with it.
As a consequence, the following becomes a synchronous execution of f() :

 This is because the destruction of the temporary future returned by async() blocks
until f() is finished executing (the destruction of the internal shared state joins with the
 thread in which f() runs).

 ■ Tip To launch a function without waiting for its result, a.k.a. fire-and-forget, create a
 std::thread object and detach() it.

 Packaged Tasks
 A packaged_task is a functor that executes a given function when its operator() is called
and then stores the result (that is, a value or an exception) into a shared state. This can,
for instance, be used to acquire the result of a function executed by a std::thread (recall
that the return value of a thread ’s function is ignored and that std::terminate() is
called should the function throw an exception):

CHAPTER 7 ■ CONCURRENCY

167

 A packaged_task constructed with any function, functor, or lambda expression has
an associated shared state and is therefore said to be valid() ; a default-constructed
task is not valid() . A single future to get() the function’s result can be obtained using
 get_future() .

 Like all providers, a packaged_task cannot be copied, only moved or swapped. This
is why, in the previous example, we had to move the task functor to the thread (after first
obtaining its future). It is, however, the only provider that can be used more than once:
 reset() on a valid packaged_task releases its old shared state and associates it with a
freshly created one. Resetting a non-valid task throws an exception.

 There is one additional member function, make_ready_at_thread_exit() , which
executes the task’s function just like operator() would, except that it does not make the
shared state ready until the calling thread exits. This is done after, and used to avoid race
conditions with, the destruction of all thread-local objects:

 Promises
 A promise is similar to a future but represents the input side of the communication
channel rather than the output side. Where a future has a blocking get() function, a
promise offers nonblocking set_value() and set_exception() functions.

 A new promise is default constructed and cannot be copied, only moved or swapped.
From each promise , a single future can be obtained using get_future() . If a second is
requested, an exception is thrown. Here is an example:

 There is also a second set of member functions to fill in the result: set_value_at_
thread_exit() and set_exception_at_thread_exit() . These again postpone making
the shared state ready until the calling thread exits, thus ensuring that this occurs after the
destruction of any thread-local objects.

 Exceptions
 Most functions in the <future> header throw an exception if misused. Because the
behavior is consistent across all provider and return objects, this single section provides
the overview. The following discussion refers to standard exception classes as well as the
concepts of error codes and categories , all of which are explained in detail in Chapter 8 .

http://dx.doi.org/10.1007/978-1-4842-1876-1_8

CHAPTER 7 ■ CONCURRENCY

168

 As usual, default and move constructors, move-assignment operators, and swap()
functions are declared noexcept , and of course destructors never throw exceptions either.
Apart from these, only the valid() functions are noexcept .

 Most other member functions of provider and return objects throw a std::future_
error in case of an error, a subclass of std::logic_error . More similar to a std::system_
error , though, a future_error also has a code() member that returns an std::error_
code , in this case one for which the category() equals std::future_category() (whose
 name() equals "future"). For future_error s, the value() of the error_code always
equals one of the four values of the error code enum class std::future_ errc :

• broken_promise , if get() is called on a return object for a shared
state that was released by its provider—because its destructor,
move-assignment, or reset() function was called—without first
making the shared state ready.

• future_already_retrieved , if get_future() is called twice on
the same provider (without a reset() for a packaged_task).

• promise_already_satisfied , if the shared state is made ready
multiple times, either by a set function or by re-executing a
 packaged_task .

• no_state , if any member except the nonthrowing ones listed
earlier is called on a provider without an associated state. For
non- valid() return objects, implementations are encouraged to
do the same.

 When using an async launch policy, async() may throw a system_error with error
code resource_unavailable_try_again if it fails to create a new thread.

 Mutual Exclusion <mutex>
 Mutexes (short for mutual exclusion) are synchronization objects used to prevent or
restrict concurrent accesses to shared memory and other resources, such as peripheral
devices, network connections, and files.

 Asides from a large selection of mutex and lock types, the <mutex> header also
defines std::call_once() , which is used to ensure that a given function is called only
once. The call_once() utility is introduced at the end of this section.

 Mutexes and Locks
 Basic usage of a std::mutex object m is as follows:

CHAPTER 7 ■ CONCURRENCY

169

 The lock() function blocks until the thread has acquired ownership of a mutex.
For a basic std::mutex object, only a single thread is granted exclusive ownership at
any given time. The intention is that only threads that own a given mutex are allowed
to access the resources guarded by it, thus preventing data races. A thread retains this
ownership until it releases it by calling unlock() . Upon unlocking, another thread that
is blocked on the mutex , if any, is woken up and granted ownership. The order in which
threads are woken up is undefined.

 It is critical that any and all successful calls to a lock function are paired with a call to
 unlock() . To ensure this is done in a consistent and exception-safe manner, you should
avoid calling these lock and unlock functions directly and use the Resource Acquisition
Is Initialization (RAII) idiom instead. For this, the Standard Library offers several lock
classes. The simplest, leanest lock is lock_guard , which simply calls lock() in its
constructor and unlock() in its destructor:

 Example

 The result is 2,000. Removing the lock_guard almost certainly results in a value less
than 2,000, unless of course your system cannot execute threads concurrently.

CHAPTER 7 ■ CONCURRENCY

170

 Mutex Types
 The Standard Library offers several flavors of mutexes, each with additional capabilities
compared to the basic std::mutex . More restricted mutex types can typically be
implemented more efficiently.

 Mutex Type Recursive Timeouts Sharing Header

 mutex No No No <mutex>

 recursive_mutex Yes No No <mutex>

 timed_mutex No Yes No <mutex>

 recursive_timed_mutex Yes Yes No <mutex>

 shared_timed_mutex No Yes Yes <shared_mutex>

 shared_mutex 1 No No Yes <shared_mutex>

 Common Functionality
 In addition to the lock() and unlock() functions explained earlier, all mutex types also
support try_lock() , a nonblocking version of lock() . It returns true if ownership can be
acquired instantly; otherwise, it returns false . 2

 Implementations may also offer a native_handle() member , returning a handle to
the underlying native object.

 None of the mutex types allow copying, moving, or swapping.

 Recursion
 Recursive mutexes (a.k.a. reentrant mutexes) allow lock functions to be called by threads
that already own the mutex. When doing so, locking immediately succeeds. Take care,
though: to release ownership, unlock() has to be called once per successful invocation of
a lock function. As always, it is therefore best to use RAII lock objects.

 For non-recursive mutex types, the behavior of locking an already-owned mutex is
undefined as per the standard, but it may very well lead to a deadlock.

 Timeouts
 Timed mutexes add two extra lock functions that block until a given timeout: try_lock_
for(duration) and try_lock_until(time_point) . As usual, the timeouts are specified
using types defined in <chrono> , explained in Chapter 2 . Both functions return a Boolean:
 true if ownership of the mutex was acquired successfully, or false if the specified
timeout occurred first.

 1 Scheduled to be added by the C++17 version of the Standard Library.
 2 Although normally uncommon, try_lock() is allowed to spuriously fail: that is, return false
even though the mutex is not owned by any other thread. Take that into account when designing
more advanced synchronization scenarios.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 7 ■ CONCURRENCY

171

 Sharing Ownership <shared_mutex>
 Many types of shared resources can safely be accessed concurrently as long as they are
not modified. For shared memory, for instance, multiple threads can safely read from
a given location, as long as there is no thread writing to it at the same time. Restricting
read access to a single thread in such scenarios is overly conservative and may harm
performance.

 The <shared_mutex> header therefore defines mutexes that support shared locking,
on top of the exclusive locking scheme they have in common with all other mutex types.
Such mutexes are also commonly known as readers-writers mutexes or multiple-readers/
single-writers mutexes .

 A thread that intends to modify / write to a resource must acquire exclusive
ownership of the mutex. This is done using the exact same set of functions or lock objects
as used for all mutex types. Threads that only want to inspect / read from a resource,
however, can acquire shared ownership . The members for acquiring shared ownership
are completely analogous to their counterparts for exclusive ownership, except that in
their names lock is replaced with lock_shared ; that is, they are named lock_shared() ,
 try_lock_shared_for() , and so on. Shared ownership is released using unlock_shared() .

 No exclusive ownership is granted while one or more threads have acquired shared
ownership, and vice versa. The Standard does not define the order in which ownership is
granted or in which threads are unblocked in any way.

 The shared locks defined by the Standard currently do not support upgrading
ownership from shared to exclusive, or downgrading from exclusive to shared, without
unlocking first.

 Lock Types
 There are three lock types provided by the standard: std::lock_guard , unique_lock ,
and shared_lock .

 std::lock_guard
 lock_guard is a trivial, textbook RAII-style template class: by default, it locks a mutex
in its constructor and unlocks it in its destructor. The only additional member is a
constructor intended to be used with a mutex already owned by the calling thread.
This constructor is called by passing the global std::adopt_lock constant:

 std::lock_guard<std::mutex> lock(m, std::adopt_lock);

 std::unique_lock
 Although lock_guard is easy and optimally efficient, it is limited in functionality. To
facilitate more advanced scenarios, the standard defines unique_lock .

 The basic usage is the same:

 std::unique_lock<std::mutex> lock(m);

CHAPTER 7 ■ CONCURRENCY

172

 However, unique_lock has several additional features compared to a lock_guard ,
including these:

• A unique_lock can be moved and swapped (but of course not copied).

• It has a release() function to disassociate it from the underlying
mutex without unlocking it.

• The mutex() member returns a pointer to the underlying mutex.

 What really sets unique_lock apart, though, is that it offers functions to release and
(re)acquire ownership of the mutex. Specifically, it supports the exact same set of locking
functions as the underlying mutex type: lock() , try_lock() , and unlock() , plus the
timed locking functions for timed mutex types. The locking functions of unique_lock
may be called only once, even if the underlying mutex is recursive, or an exception
will be thrown. To check whether the unique_lock will unlock upon destruction,
call owns_lock() (unique_lock also casts to a Boolean with this value).

 In addition to the obvious constructor with a given mutex, the unique_lock class
supports three alternative constructors where you pass an additional constant:

• adopt_lock : Used when the mutex is already owned by the
current thread (analogous to the equivalent lock_guard
constructor).

• defer_lock : Signals not to lock during construction; one of the
locking functions may be used to lock the mutex later.

• try_to_lock : Tries to lock during construction, but does so
without blocking should it fail. owns_lock() can be used to check
whether it succeeded.

 std:: shared_lock <shared_mutex>
 Both lock_guard and unique_lock manage exclusive ownership of mutexes. To reliably
manage shared ownership, <shared_mutex> defines std::shared_lock , which is
completely equivalent to unique_lock , except that it acquires / releases shared ownership.
Even though they acquire shared ownership, the names of its locking and unlocking
members do not contain shared . This is done to ensure that a shared_lock satisfies the
requirements for other utilities such as std::lock() and std::condition_variable_any ,
both discussed later.

 Locking Multiple Mutexes
 As soon as threads need to acquire ownership of multiple mutexes at the same time,
the risk of deadlocks becomes imminent. Different techniques may be employed to
prevent such deadlocks: for example, locking the mutexes in all threads in the same
order (error-prone), or so-called try-and-back-off schemes. The Standard Library offers
templated helper functions instead to facilitate this:

 std::lock(lockable1, lockable2, ..., lockableN);

CHAPTER 7 ■ CONCURRENCY

173

 This function blocks until ownership is acquired for all lockable objects passed to it.
These can be mutexes (which, after locking, you should transfer to RAII locks using their
 adopt_lock constructors), but also unique_ or shared_lock s (for example, constructed
with defer_lock). Although the standard does not specify how this should be achieved, if
all threads use std::lock() , there are no deadlocks.

 Of course, a nonblocking std::try_lock() equivalent of std::lock() exists as well.
It calls try_lock() on all objects in the order they are passed and returns the 0-based
index of the first try_lock() that fails, or -1 if they all succeed. If it fails to lock an object,
any objects that were locked already are unlocked again first.

 Exceptions
 Using a mutex before it is fully constructed or after it has been destructed results in
undefined behavior. If used properly, only the functions mentioned next may throw an
exception.

 For mutexes, all lock() and lock_shared() functions (not the try_ variants) may
throw a system_error with one of these error codes (see Chapter 8):

• operation_not_permitted , if the calling thread has insufficient
privileges.

• resource_deadlock_would_occur if the implementation detects
that a deadlock would occur. Deadlock detection is only optional,
though: never rely on this!

• device_or_resource_busy if it failed to lock because the
underlying handle is already locked. For nonrecursive mutexes
only of course, but again: detection is only optional.

 Any locking functions with timeouts, including the try_ variants, may also throw
timeout-related exceptions.

 By extension, both std::lock() and the constructors and locking functions of RAII
locks may throw the same exceptions as well. Any of the RAII locking functions (including
the try_ variants) are guaranteed to throw a system_error with resource_deadlock_
would_occur if owns_lock() == true (even if the underlying mutex is recursive), and
their unlock() members will throw one with operation_not_permitted if owns_lock()
== false .

 If any locking function throws an exception, it is guaranteed that no mutex was
locked.

 Calling a Function Once <mutex>
 std::call_once() is a thread-safe utility function to ensure other functions are called at
most once. This is useful, for example, for implementing the lazy initialization idiom:

 std::once_flag flag;
 ...
 std::call_once(flag, initialise, "a string argument");

http://dx.doi.org/10.1007/978-1-4842-1876-1_8

CHAPTER 7 ■ CONCURRENCY

174

 Only a single thread that calls call_once() with a given instance of std::once_
flag —a default-constructible, non-copyable, non-moveable helper class—effectively
executes the function passed alongside it. Any subsequent calls have no effect. If multiple
threads concurrently call call_once() with the same flag, all but one is suspended until
the one executing the function has finished doing so. Recursively calling call_once()
with the same flag results in undefined behavior.

 Any return value of the function is ignored. If running the function throws an
exception, this is thrown in the calling thread, and another thread is allowed to execute
with the flag again. If there are threads blocked, one of them is woken up.

 Note that call_once() is typically more efficient than, and should be preferred at all
times over, the error-prone, double-checked locking (anti-)pattern.

 ■ Tip Function-local statics (a.k.a. magic statics) have exactly the same semantics as
 call_once() but may be implemented even more efficiently. So although call_once() can
readily be used for a thread-safe implementation of the singleton design pattern (left as an
exercise for you), the use of function-local statics is advised instead:

 Singleton& GetInstance() {
 static Singleton instance;

 return instance;

 }

 Condition Variables <condition_variable>
 A condition variable is a synchronization primitive that allows threads to wait until some
user-specified condition becomes true . A condition variable always works in tandem
with a mutex. This mutex is also intended to prevent races between checking and setting
the condition, which is inherently done by different threads.

 Waiting for a Condition
 Suppose the following variables are somehow shared between threads:

 std::mutex m;
 std::condition_variable cv;
 bool ready = false;

 Then the archetypal pattern for waiting until ready becomes true is

CHAPTER 7 ■ CONCURRENCY

175

 To wait using a condition_variable , a thread must first lock the corresponding
mutex using a std::unique_lock<std::mutex> . 3 As wait() blocks the thread, it also
unlocks the mutex: this allows other threads to lock the mutex in order to satisfy the
shared condition. When a waiting thread is woken up, before returning from wait() , it
always first locks the mutex again using the unique_lock , making it safe to recheck the
condition.

 ■ Caution Although threads waiting on a condition variable normally remain blocked until
a notification is done on that variable (discussed later), it is also possible (albeit unlikely) for
them to wake up spontaneously at any time without notification. These are called spurious
wakeups . This phenomenon makes it critical to always check the condition in a loop as in
the example.

 Alternatively, all wait functions have an overload that takes a predicate function
as an argument: any function or functor that returns a value that can be evaluated as a
Boolean may be used. The loop in the example, for instance, is equivalent to

 cv.wait(lock, [&]{ return ready; });

 There are two sets of additional wait functions that never block longer than a given
timeout: wait_until(time_point) and wait_for(duration) . The timeouts are, as
always, expressed using types defined in the <chrono> header. The return value of
wait_until() and wait_for() is as follows:

• The versions of the functions without a predicate return a value from
the enum class std::cv_status : either timeout or no_timeout .

• The overloads that do take a predicate function return a Boolean: true
if the predicate returns true after a notification, a spurious wakeup,
or when the timeout is reached; otherwise, they return false .

 Notification
 Two notification functions are provided: notify_all() , which unblocks all threads
waiting on a condition variable, and notify_one() , which unblocks only a single thread.
The order in which multiple waiting threads are woken up is unspecified.

 3 With condition_variable , this exact lock and mutex type must be used. To use other
standard types, or any object with public lock() and unlock() functions, the more general
 std::condition_variable_any class is declared, which is otherwise analogous to
 condition_variable .

CHAPTER 7 ■ CONCURRENCY

176

 Notification normally occurs because the condition has changed:

 { std::lock_guard<std::mutex> lock(m);
 ready = true;
 }
 cv.notify_all();

 Note that the notifying thread is not required to own the mutex when calling a
notification function. In fact, the first thing any unblocked thread does is attempt to lock the
mutex, so releasing ownership prior to notification may actually improve performance. 4

 There is one more notification function, but it is a nonmember function and has the
following signature:

 void std::notify_all_at_thread_exit(condition_variable& cv,
 unique_lock<mutex> lock);

 It is to be called while the mutex is already owned by the calling thread through the
given unique_lock , and while no thread is waiting on the condition variable using a different
mutex; otherwise, the behavior is undefined. When called, it schedules the following
sequence of operations upon thread exit, after all thread-local objects have been deleted:

 lock.unlock();
 cv.notify_all();

 Exceptions
 The constructor of a condition variable may throw a std::bad_alloc if insufficient
memory is available, or a std::system_error with resource_unavailable_try_again as
an error code if the condition variable cannot be created due to a non-memory-related
resource limitation.

 Destructing a condition variable upon which a thread is still waiting results in
undefined behavior.

 Synchronization
 Informally, for a single-threaded program, an optimizing implementation (the
combination of a compiler, the memory caches, and the processor) is bound by the as-if
rule. Essentially, in a well-formed program, instructions may be reordered, omitted,
invented, and so on, at will, as long as the observable behavior (I/O operations and such)
of the program is as if the instructions were executed as written.

 4 Some care must be taken: it introduces a window for race conditions between setting the condition
and the notification of waiting threads. In certain cases, notifying while holding the lock may
actually lead to more predictable results and avoid subtle races. When in doubt, it is best to not
unlock the mutex when notifying, because the performance impact is likely to be minimal.

CHAPTER 7 ■ CONCURRENCY

177

 In a multithreaded program, however, this does not suffice. Without proper
synchronization, concurrently accessing shared resources inevitably causes data and
other races, even if each individual thread adheres to the as-if rule.

 Although a full, formal description of the memory model is out of the scope
of this Quick Reference, this chapter provides a brief informal introduction to the
synchronization constraints imposed by the different constructs, focusing on the
practical implications when writing multithreaded programs. We introduce all essential
synchronization principles first using mutexes. Recall the following:

 First, synchronization constructs introduce constraints on the code reorderings
that are allowed within a single thread of execution . Locking and unlocking a mutex,
for example, injects special instructions, respectively called acquire and release fences .
These instructions tell the implementation (not just the compiler, but also all hardware
executing the code!) to respect these rules: no code may move up an acquire fence or
 down a release fence. Together, this ensures that no code is executed outside the critical
section , the section between lock() and unlock() .

 Second, fences impose constraints between different threads of execution . This can be
reasoned about as restrictions on the allowed interleavings of instructions of concurrent
threads into a hypothetical single instruction sequence. Releasing ownership of a mutex in
one thread, for example, is said to synchronize with acquiring it in another: essentially, in
any interleaving, the former must occur before the latter. Combined with the intra-thread
constraints explained earlier, this implies that the entire critical section of the former
thread is guaranteed to be fully executed before the latter thread enters its critical section.

 For condition variables, the synchronization properties are implied by the operations
on the corresponding mutexes.

 For std::thread s, the following applies:

• When launching a thread , its constructor injects a release
fence, which synchronizes with the beginning of the execution
of the thread function. This implies that you can write to
shared memory (for example, to initialize it or to pass input)
before launching a thread and then safely (without extra
synchronization) access it from within the thread function.

• Conversely, the end of a thread ’s function execution synchronizes
with the acquire fence inside its join() function. This ensures
that the joining thread can safely read all shared data written by
the thread function.

 Finally, for the constructs in the <future> header, making the shared state ready
through a provider contains a release fence, which synchronizes with the acquire fence
inside the get() of a return object of the same shared state. So not only can the thread
that calls get() safely read the result (luckily), but it can also safely read any other values
written by the provider. So a future<void> , for example, can be used to wait until a thread
has finished asynchronously writing to shared memory. Or a future<T*> may point to an
entire data structure created by the provider function.

CHAPTER 7 ■ CONCURRENCY

178

 ■ Note All this may be summarized as follows: the behavior of unsynchronized data
races (threads concurrently accessing memory with at least one writing) is undefined.
However, as long as you consistently use the synchronization constructs provided by the
Standard Library, your program will generally behave exactly as expected.

 Atomic Operations <atomic>
 First and foremost, the <atomic> header defines two types of atomic variables ,
special variables whose operations are atomic or data-race free : std::atomic<T> and
 std::atomic_flag . In addition, it provides some low-level functions to explicitly
introduce fences, as explained at the end of this section.

 Atomic Variables
 Variables of the std::atomic<T> type mostly behave like regular T variables—thanks to
the obvious constructors and assignment and cast operators—offering a restricted set
of fine-grained atomic operations with specific memory-consistency properties. More
details follow shortly, but first we introduce the template specializations of atomic<T> .

 Template Specializations and Typedefs
 The atomic<T> template may be used at least with any trivially copyable 5 type T , and
specializations are defined for Booleans as well as all other integral types and pointer
types T* . The latter two offer additional operations, as described later.

 For the Boolean and integral specializations, convenience typedef s are defined.
For std::atomic<xxx> , these mostly equal std::atomic_xxx . Specifically, this is true for
 xxx equal to bool , char , char16_t , char32_t , wchar_t , short , int , long , or any integral
type defined in <cstdint> (see Chapter 1). For the remaining integral types, the typedef
abbreviates the first words of the xxx type:

 typedef xxx typedef xxx

 std::atomic_schar

 std::atomic_uchar

 std::atomic_ushort

 std::atomic_uint

 signed char

 unsigned char

 unsigned short

 unsigned int

 std::atomic_ulong

 std::atomic_llong

 std::atomic_ullong

 unsigned long

 long long

 unsigned long long

 5 A trivially copyable type has no nontrivial copy/move constructor/assignment, no virtual functions
or bases, and a trivial destructor. Essentially, these are the types that can safely be bit-wise copied
(for example, using memcpy()).

http://dx.doi.org/10.1007/978-1-4842-1876-1_1

CHAPTER 7 ■ CONCURRENCY

179

 Common Atomic Operations
 The default constructor of an atomic<T> variable behaves exactly like the declaration of
a regular T variable: that is, it generally does not initialize the value; only static or thread-
local atomic variables are zero-initialized. A constructor to initialize with a given T
value is present as well. This initialization is not atomic, though: concurrent access from
another thread, even through atomic operations, is a data race. Atomic variables cannot
be copied, moved, or swapped.

 All atomic<T> types have both an assignment operator accepting a T value and a cast
operator to convert to T , and can therefore be used as regular T variables:

 Equivalent to these operators are the store() and load() members . The last two
lines of the previous code snippet, for example, can also be written as

 Either way, these operations are atomic or, in other words, data-race free . That is, if one
thread concurrently stores a value into an atomic variable while another is loading from
it, the latter sees either the old value from prior to the store or the newly stored value, but
nothing in between (no half-written values). Or, in technical speak, there are no torn reads .
Similarly, when two threads concurrently each store a value, one of these values is fully
stored; there are never torn writes . With regular variables, such scenarios are data races and
therefore result in undefined behavior, including the possibility of torn reads and writes.

 All atomic variables also offer a few less obvious atomic operations, exchange() and
 compare_exchange s . These member functions behave as if implemented as follows:

 T exchange(T newVal) {

 T oldVal = load();

 store(newVal);

 return oldVal;

 }

 bool compare_exchange(T& oldVal, T newVal) {

 if (load() == oldVal) {

 store(newVal); return true;

 } else {

 oldVal = load(); return false;

 }}

 Naturally, though, both operations are again atomic. That is, they (conditionally)
exchange the value in such a way that no thread may concurrently store another value
during the exchange or experience a torn read.

 There is no actual member named compare_exchange . Instead, there are two
different variants: compare_exchange_weak() and compare_exchange_strong() . The
only (subtle) difference is that the former is allowed to spuriously fail: that is, sporadically
return false even when a valid exchange could be done. This “weak” variant may be
slightly faster than the “strong” variant but is intended to be used only in a loop. The latter
is intended to be used as a stand-alone statement.

CHAPTER 7 ■ CONCURRENCY

180

 The exchange() and compare_exchange operations are key building blocks in the
implementation of lock-free data structures : thread-safe data structures that do not use
blocking mutexes. This is an advanced topic, best left to experts. Still, a classical example
is adding a new node in the beginning of a singly linked list:

 All operations introduced in this section are atomic for any base type T . For
types such as Booleans, integers, and pointers, most compilers simply generate a few
special instructions that guarantee atomicity (most current CPUs support this). If so,
 lock_free() returns true . For other types, atomic variables mostly resort to mutex-like
constructs to accomplish atomicity. For such types, lock_free() returns false .

 Take care: although atomic variables ensure that loads and stores are atomic, this
does not make the operations on the underlying object atomic. In the following example,
if another thread concurrently calls GetLastName() on the person object, then there is a
data race with SetLastName() :

 Atomic Operations for Integral and Pointer Types
 Certain template specializations offer additional operators that atomically update the
variable. The selection is based on which atomic instructions current hardware generally
supports (no multiplication, for example):

• Atomic integral variables: ++ , -- , += , -= , &= , |= , ̂ =

• Atomic pointer variables: ++ , -- , += , -=

 Both pre- and postfix versions of ++ and -- are supported. For the other operators,
equivalent non-operator members are again available as well: respectively, fetch_add() ,
 fetch_sub() , fetch_and() , fetch_or() , and fetch_xor() .

 Synchronization
 In addition to atomicity, a lesser-known property of atomic variables is that they offer
the same kind of synchronization guarantees as, for example, mutexes or threads.
Specifically, all operations that write to a variable (store() , exchange s, fetch_xxx (), and
so on) contain release fences that synchronize with the acquire fences in operations that

CHAPTER 7 ■ CONCURRENCY

181

read from the same variable (load() , exchange s, fetch_xxx() , and so forth). This enables
the following idiom, which initializes a potentially complex object or data structure
before storing it in a shared atomic variable:

 Any thread that loads the pointer to the new object (a Person in this example) can
safely read all other memory it points to as well (the name strings for example), as long as
this was completely written prior to the release fence.

 All atomic operations (except the operators, of course) accept an extra, optional
 std::memory_order parameter (or parameters), allowing the caller to fine-tune the
memory order constraints. Possible values are memory_order_relaxed, memory_order_
consume , memory_order_acquire , memory_order_release, memory_order_acq_rel ,
and memory_order_seq_cst (the default). The first option, memory_order_relaxed , for
instance, denotes that the operation simply has to be atomic and that no further memory-
order constraints are required. The often subtle differences between the other options fall
outside the scope of this book. Unless you are an expert, our recommendation is that you
stick with the default values at all times. Otherwise, you risk introducing subtle bugs.

 Atomic Flags
 The std::atomic_ flag is a simple, guaranteed lock-free, atomic, Boolean-like type.
It can only be default constructed and cannot be copied, moved, or swapped. It is not
specified whether the default constructor initializes the flag. The only initialization that is
guaranteed to work is this exact expression:

 An atomic_flag offers only two other members:

• void clear() : Atomically sets the flag to false

• bool test_and_set() : Atomically sets the flag to true while
returning its previous value

 Both functions have synchronization properties similar to atomic_bool s and again
accept an optional std::memory_order parameter as well.

 Nonmember Functions
 For compatibility with C, <atomic> defines nonmember counterparts for all member
functions of std::atomic<T> and std::atomic_flag : atomic_init() , atomic_load() ,
 atomic_fetch_add() , atomic_flag_test_and_set() , and so on. As a C++ programmer,
you normally never need any of these: simply use the classes’ member functions.

CHAPTER 7 ■ CONCURRENCY

182

 Fences
 The <atomic> header also provides two functions to explicitly create acquire and/or
release fences: std::atomic_thread_fence() and std::atomic_signal_fence() . The
concept of fences is as explained earlier this chapter. Both take a std::memory_order
argument to specify the desired fence type: memory_order_release for a release fence,
either memory_order_acquire or memory_order_consume for an acquire fence, and
 memory_order_acq_rel and memory_order_seq_cst for fences that are both acquire
and release fences, with the latter option denoting the fence has to be the sequentially
consistent variant (the difference in their semantics falls outside the scope of this book).
A fence with memory_order_relaxed has no effect.

 The difference between the two functions is that the latter only restrict reorderings
between a thread and a signal handler executed in the same thread. The latter only
constrains the compiler but does not inject any instructions to constrain the hardware
(memory caches and CPU).

 ■ Caution Using explicit fences is discouraged: atomic variables or other synchronization
constructs have more interesting synchronization properties and should generally be
preferred instead.

183© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1_8

 CHAPTER 8

 Diagnostics

 Assertions <cassert>
 Assertions are Boolean expressions that are expected to be true at a given point in the
code. The assert macro of <cassert> is defined similar to this:

 #ifdef NDEBUG
 #define assert(_)
 #else
 #define assert(CONDITION) if (!CONDITION) { print_msg(...); std::abort(); }
 #endif

 If an assertion fails, a diagnostic message is written to the standard error output,
and std::abort() is called, which terminates the application without performing any
cleanup. While debugging an application, certain IDEs give you the option to continue
the execution if an assertion fails. Common practice is to use assertions as a debugging
aid and to define NDEBUG when building a release build of your application, turning
 assert s into no-operations.

 Assertions are generally used to check invariants, such as loop invariants, or function
pre- and postconditions. One example is parameter validation:

 A possible output of this program is

 Assertion failed: msg != nullptr, file d:\Test\Test.cpp, line 13

 ■ Caution Make sure the condition you provide to assert() does not have any side
effects that are required for the proper execution of your program, because this expression
is not evaluated if NDEBUG is defined (for example, for a release build).

CHAPTER 8 ■ DIAGNOSTICS

184

 Exceptions <exception>, <stdexcept>
 std::exception , defined in <exception> , is not intended to be thrown itself but instead
serves as a base class for all exceptions defined by the Standard Library and can serve as a
base class for your own. Figure 8-1 outlines all standard exceptions.

 Figure 8-1. The C++ Standard Library exception hierarchy

 An exception can be copied and offers a what() method that returns a string
representation of the error. This function is virtual and should be overridden. The
return type is const char* , but the character encoding is not specified (Unicode strings
encoded as UTF-8 could be used, for instance; see Chapter 6).

 The exceptions defined in <stdexcept> are the only standard exceptions that are
intended to be thrown by application code. As a rule, logic_error s represent avoidable
errors in the program’s logic, whereas runtime_error s are caused by less predictable
events beyond the scope of the program. logic_error , runtime_error , and most of
their subclasses (except system_error s and future_error , which require an error
code, as discussed later) must be passed a std::string or const char* pointer upon
construction, which is returned by what() afterward. There is thus no need to further
override what() .

 Exception Pointers <exception>
 The <exception> header provides std::exception_ptr , an unspecified pointer-
like type, used to store and transfer caught exceptions even without knowing the
concrete exception type. An exception_ptr can point to a value of any type, not just an
 std::exception . It can point to a custom exception class, an integer, a string, and so on.
Any pointed-to value stays valid while there is at least one exception_ptr still referring to
it (that is, a reference-counted smart pointer may be used to implement exception_ptr).

http://dx.doi.org/10.1007/978-1-4842-1876-1_6

CHAPTER 8 ■ DIAGNOSTICS

185

 A couple of functions are defined in <exception> to work with exception pointers:

 exception_ptr std::current_exception() noexcept

 Creates and returns an exception_ptr that refers to the exception
(remember, this can have any type) currently in flight when called
from inside a catch() block, either directly or indirectly
(a catch() block may call, for example, a helper function to
handle an exception). The returned exception_ptr refers to a
null value if called when no exception is being handled.

 template<typename T>
 exception_ptr std::make_exception_ptr(T t) noexcept

 Creates and returns an exception_ptr that points to t .

 [[noreturn]] void std::rethrow_exception(exception_ptr)

 Rethrows the exception to which the given exception_ptr
points. This is the only way to obtain the object pointed
to by an exception_ptr . An exception_ptr cannot be
dereferenced, nor is there a getter function.

 Once created, exception_ptr s can be copied, compared, and in particular assigned
and compared with nullptr . This makes them useful to store and move exceptions
around and to test later whether an exception has occurred. For this, an exception_ptr is
also convertible to a Boolean: true if it points to an exception, false if it is a null pointer.
Default constructed instances are equivalent to nullptr .

 Exception pointers can be used, for example, to transfer exceptions from a worker
thread to the main thread (note that this is essentially what the utilities of <future>
discussed in the previous chapter implicitly do for you, as well):

CHAPTER 8 ■ DIAGNOSTICS

186

 Nested Exceptions <exception>
 The <exception> header also offers facilities to work with nested exceptions . They allow
you to wrap a caught exception in another one: for instance, to augment it with extra
context information or to convert it to a more suitable exception for your application.
 std::nested_exception is a copyable mixin 1 class whose default constructor captures
 current_exception() and stores it. This nested exception can be retrieved as an
 exception_ptr with nested_ptr() , or by using rethrow_nested() , which rethrows it.
Take care, though: std::terminate() is called when rethrow_nested() is called
without any stored exception. It is therefore generally recommended that you not use
 nested_exception directly, but use these helper methods instead:

 [[noreturn]] template<typename T> void std::throw_with_nested(T&& t)

 Throws an undefined type deriving from both std::nested_
exception and T (with reference qualifiers stripped), which
can be handled using a regular catch (const T&) expression,
ignoring the nested exception. Being a std::nested_
exception as well, it also contains the result of std::current_
exception() , which may optionally be retrieved and handled.

 template <typename T> void std::rethrow_if_nested(const T& t)

 If t derives from nested_exception , calls rethrow_nested()
on it; otherwise does nothing.

 The following example demonstrates nested exceptions:

 void execute_helper() {
 throw std::range_error("Out-of-range error in execute_helper()");
 }
 void execute() {
 try { execute_helper(); }
 catch (...) {
 std::throw_with_nested(std::runtime_error("Caught in execute()"));
 }
 }
 void print(const std::exception& exc) {
 std::cout << "Exception: " << exc.what() << std::endl;
 try { std::rethrow_if_nested(exc); }
 catch (const std::exception& e) {
 std::cout << " Nested ";
 print(e);
 }
 }

 1 A mixin is a class that provides some functionality to add to other classes (in this case, the
capability of storing a pointer to a nested exception and some related functions). In C++, mixins are
generally implemented through multiple inheritance.

CHAPTER 8 ■ DIAGNOSTICS

187

 int main() {
 try { execute(); }
 catch (const std::exception& e) { print(e); }
 }

 The output of this piece of code is as follows:

 Exception: Caught in execute()
 Nested Exception: Out-of-range error in execute_helper()

 System Errors <system_error>
 Errors from the operating system or other low-level APIs are called system errors . These
are handled by classes and functions defined in the <system_error> header:

• error_code : Generally wraps a platform-specific error code
(an int), although for some categories the error codes are defined
by the standard (see Table 8-1).

• error_condition : Wraps a portable, platform-independent error
condition (an int). The enum class std::errc lists the built-in
conditions. They correspond to the standard POSIX error codes,
defined also as macros in <cerrno> . See Table 8-2 at the end of
this chapter.

• error_category : Error codes and conditions belong to a category.
The category singleton objects are responsible for converting
between both numberings.

• system_error : An exception class (see Figure 8-1) with an extra
 code() member returning an error_code .

 Table 8-1. Available Error Category Functions and Corresponding Error Condition and
Error Code Enum Classes

 Singleton Function Error Conditions Error Codes Header

 generic_category() std::errc <system_error>

 system_category() <system_error>

 iostream_category() std::io_errc <ios>

 future_category() std::future_errc <future>

CHAPTER 8 ■ DIAGNOSTICS

188

 In addition to a numeric value, both error_code and error_condition objects hold
a reference to their error_category . Within one category, a number is unique, but the
same number may be used by different categories.

 All this may seem fairly complicated, but the main uses of these errors remain
straightforward. To compare a given error code, such as that from a caught system_error
exception, with either an error condition or a code, the == and != operators can be used.
For instance:

 if (systemError.code() == std::errc::argument_out_of_domain)
 ...

 ■ Note Working with std::ios_base::failure (Chapter 5) and future_error (Chapter 7)
is analogous. They also have a code() member returning an error_code that can be compared
with known code values (see Table 8-1) using == and != .

 std::error_ category
 The different std::error_category instances are implemented as singletons: that is,
there is only one global, non-copyable instance per category. A number of predefined
categories exist, obtainable from the global functions listed in Table 8-1 .

 An std::error_category has the following methods:

 Member Description

 name() Returns the category’s name (as a const char*).

 message() Returns an explanatory std::string for a given error
condition value (an int).

 default_error_condition() Converts a given error code value (an int) to a portable
 error_condition .

 equivalent() Compares error codes with portable conditions. It is
easier to use the == and != operators shown earlier,
instead.

 std::error_ code
 std::error_code encapsulates an error-code value and an error_category . There are
three constructors:

• A default one that sets the error code to 0 (this conventionally
represents “no error”) and associates it with system_category .

• One accepting an error code int and an error_category .

http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_7

CHAPTER 8 ■ DIAGNOSTICS

189

• One constructing an error_code from an error-code enumeration
value e by calling std::make_error_code(e) . The parameter type
must be an error-code enumeration type , an enumeration type
for which the std::is_error_code_enum type trait has a value
of true (see Chapter 2 for type traits). This automatically sets
the correct category as well. The enum classes for the standard
categories are shown in Table 8-1 .

 To raise your own std::system_error , you have to provide an error_code , which
can be created with one of its constructors or with make_error_code() . For example:

 std::error_code provides the following methods:

 Method Description

 assign(int, error_category&) Assigns the given error code and category
to this error_code

 operator= Uses std::make_error_code() to assign a
given error-code enumeration value to this
 error_code

 clear() Sets the error code to 0 and the category to
 system_category to represent no error

 int value()
 error_category& category()

 Returns the error value / associated category

 error_condition default_error_condition() Calls category().default_error_
condition(value()) , returning the
corresponding portable error condition

 string message() Calls category().message(value())

 operator bool Returns true if the error code is not 0

 std::error_ condition
 The std::error_condition class encapsulates a portable condition code and the
associated error category. This class has a set of constructors and methods similar to
 error_code , except

• It does not have a default_error_condition() method or
equivalent function to go from error condition to error code.

• Error condition enumerations are used instead of error code
enumerations: those enum types for which the is_error_
condition_enum type trait has a value of true .

• Members that use std::make_error_code() use std::make_
error_condition() instead.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2

CHAPTER 8 ■ DIAGNOSTICS

190

 C Error Numbers <cerrno>
 The <cerrno> header defines errno , a macro that expands to a value equivalent to int& .
Functions can set the value of errno to a specific error value to signal an error. A separate
 errno is provided per thread of execution. Setting errno is very common for functions
from the C headers. The C++ libraries mostly throw exceptions upon failure, although
some set errno as well (std::string -to-numeric conversions, for example). Table 8-2
lists the macros with default POSIX error numbers defined by <cerrno> .

 If you want to use errno to detect errors in functions that use errno to report errors,
then you have to make sure to set errno to 0 before calling the function, as is done in
this example (needs <cmath>) 2 :

 2 std::exp() only sets errno for implementations where math_errhandling defined in <cmath>
contains MATH_ERRNO : see Chapter 1 . This appears to be mostly the case, though.

 The output depends on your platform, but it can be something like the following:

 Error: result out of range

 For completeness, we show two alternative ways of reporting an error string for the
current errno . They use, respectively, strerror() from <cstring> (take care: this
function is not thread-safe!) and std::perror() from <cstdio> . The following two lines
print a message similar to the earlier code:

 Failure Handling <exception>
 std::uncaught_exception()
 If, anywhere in your code, you want to know whether an exception is currently in flight
that has not been caught yet—in other words, detect that stack unwinding is in progress—
use uncaught_exception() , which returns true if that is the case.

http://dx.doi.org/10.1007/978-1-4842-1876-1_1

CHAPTER 8 ■ DIAGNOSTICS

191

 ■ Note There usually is no reason or safe way to use uncaught_exception() , so we
advise against using it. It is just mentioned here for completeness.

 std::terminate()
 If exception handling fails for any reason—for example, an exception is thrown but never
caught—then the runtime calls std::terminate() , which calls the terminate handler .
The default handler calls std::abort() , which in turn aborts the application without
performing any further cleanup. The active terminate handler is managed using the
following functions from <exception> , where std::terminate_handler is a function
pointer type and must point to a void function without arguments:

 std::terminate_handler std::set_terminate(std::terminate_handler) noexcept
 std::terminate_handler std::get_terminate() noexcept

 One use case for a custom terminate handler is to automatically generate a
process dump when std::terminate() is called. Having a dump file to analyze aids
tremendously in tracking down the bug that triggered the process to terminate() .
You should consider setting this up for any professional application.

 std::unexpected()
 The runtime calls std::unexpected() if a dynamic exception specification 3 is
disregarded: that is, if a function throws something it is not allowed to. Analogous to
 terminate() , this function calls an std::unexpected_handler function that can be
managed using std::set_unexpected() / get_unexpected() . The default handler calls
 std::terminate() .

 ■ Note Both dynamic exception specifications and std::unexpected() have been
deprecated and are only mentioned here for completeness.

 3 A dynamic exception specification is part of the function declaration and specifies, with a
comma-separated list, which exceptions that function is allowed to throw. For example: ReturnType
Func(...) throw(exception1, exception2, ...); .

CHAPTER 8 ■ DIAGNOSTICS

192

 Table 8-2. std::errc Error Condition Values and Corresponding <cerrno> Macros

 std::errc enum Value <cerrno> Macro

 address_family_not_supported EAFNOSUPPORT

 address_in_use EADDRINUSE

 address_not_available EADDRNOTAVAIL

 already_connected EISCONN

 argument_list_too_long E2BIG

 argument_out_of_domain EDOM

 bad_address EFAULT

 bad_file_descriptor EBADF

 bad_message EBADMSG

 broken_pipe EPIPE

 connection_aborted ECONNABORTED

 connection_already_in_progress EALREADY

 connection_refused ECONNREFUSED

 connection_reset ECONNRESET

 cross_device_link EXDEV

 destination_address_required EDESTADDRREQ

 device_or_resource_busy EBUSY

 directory_not_empty ENOTEMPTY

 executable_format_error ENOEXEC

 file_exists EEXIST

 file_too_large EFBIG

 filename_too_long ENAMETOOLONG

 function_not_supported ENOSYS

 host_unreachable EHOSTUNREACH

 identifier_removed EIDRM

 illegal_byte_sequence EILSEQ

 inappropriate_io_control_operation ENOTTY

 interrupted EINTR

 invalid_argument EINVAL

 invalid_seek ESPIPE

 io_error EIO

 is_a_directory EISDIR

(continued)

CHAPTER 8 ■ DIAGNOSTICS

193

 std::errc enum Value <cerrno> Macro

 message_size EMSGSIZE

 network_down ENETDOWN

 network_reset ENETRESET

 network_unreachable ENETUNREACH

 no_buffer_space ENOBUFS

 no_child_process ECHILD

 no_link ENOLINK

 no_lock_available ENOLOCK

 no_message ENOMSG

 no_message_available ENODATA

 no_protocol_option ENOPROTOOPT

 no_space_on_device ENOSPC

 no_stream_resources ENOSR

 no_such_device ENODEV

 no_such_device_or_address ENXIO

 no_such_file_or_directory ENOENT

 no_such_process ESRCH

 not_a_directory ENOTDIR

 not_a_socket ENOTSOCK

 not_a_stream ENOSTR

 not_connected ENOTCONN

 not_enough_memory ENOMEM

 not_supported ENOTSUP

 operation_canceled ECANCELED

 operation_in_progress EINPROGRESS

 operation_not_permitted EPERM

 operation_not_supported EOPNOTSUPP

 operation_would_block EWOULDBLOCK

 owner_dead EOWNERDEAD

 permission_denied EACCES

 protocol_error EPROTO

 protocol_not_supported EPROTONOSUPPORT

Table 8-2. (continued)

(continued)

CHAPTER 8 ■ DIAGNOSTICS

194

 std::errc enum Value <cerrno> Macro

 read_only_file_system EROFS

 resource_deadlock_would_occur EDEADLK

 resource_unavailable_try_again EAGAIN

 result_out_of_range ERANGE

 state_not_recoverable ENOTRECOVERABLE

 stream_timeout ETIME

 text_file_busy ETXTBSY

 timed_out ETIMEDOUT

 too_many_files_open EMFILE

 too_many_files_open_in_system ENFILE

 too_many_links EMLINK

 too_many_symbolic_link_levels ELOOP

 value_too_large EOVERFLOW

 wrong_protocol_type EPROTOTYPE

Table 8-2. (continued)

195© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1

 APPENDIX A

 Standard Library Headers

 The C++ Standard Library consists of 79 header files, of which 26 are adapted from the
C Standard Library. This appendix gives a brief description of each.

 For each < name .h> header from the C Standard Library, there is a corresponding
 <c name > C++ Standard Library header (note the c prefix). These C++ headers put all
functionality provided by the C library in the std namespace. It is implementation-
defined whether the types and functions still appear in the global namespace. The use of
the original <name.h> headers is deprecated.

 Headers are shown in the order in which they are presented in each chapter.
Functionality not discussed in this book is shown in italic.

 Numerics and Math (Chapter 1)
 Header Contents

 <cmath> Math functions, such as exp() , sqrt() , log() , abs() , all trigonometric
functions, and more.

 <cstdint> A set of typedef s for integral types with certain width requirements: for
example, int32_t and int_fast64_t .

 <limits> numeric_limits , offering properties—such as min() , max() , lowest() ,
 infinity() , quiet_NaN() , and so on—for all built-in arithmetic types.

 <climits> Macros for C-style limits of integral types, such as INT_MAX . Subsumed by
 <limits> .

 <cfloat> Macros to describe details of the floating-point types of your
environment, e.g. FLT_EPSILON , FLT_MAX , and so on. Subsumed by
 <limits> .

 <cfenv> Advanced access to the floating-point environment to configure floating-
point exceptions, rounding, and other environment settings.

 <complex> The complex class for working with complex numbers.

 <ccomplex> Simply includes <complex> .

 <ctgmath> Includes <cmath> and <ccomplex> .

(continued)

http://dx.doi.org/10.1007/978-1-4842-1876-1_1

APPENDIX A ■ STANDARD LIBRARY HEADERS

196

 Header Contents

 <ratio> The ratio template, helper templates for performing arithmetic
operations and comparisons on them, and a set of predefined ratio s.

 <random> Pseudo-random number generators, random_device , and various
random number distributions.

 <valarray> valarray functionality for working with arrays of numeric values.

 General Utilities (Chapter 2)
 Header Contents

 <utility> pair and piecewise_construct . Functions make_pair() ,
 swap() , forward() , move() , move_if_noexcept() , and
 declval() .

 <tuple> tuple , helper classes tuple_size and tuple_element , and
functions make_tuple() , forward_as_tuple() , tie() , tuple_
cat() , and get() .

 <memory> Smart pointers: unique_ptr , shared_ptr , and weak_ptr .
 Default allocators.

 <new> Functions for managing dynamic storage: operators new ,
 new[] , delete , and delete[] , get_ and set_new_handler() ,
and exceptions bad_alloc and bad_array_new_length .

 <functional> Reference wrappers (created with ref() / cref()), predefined
functors (function objects), functor negators, std::function ,
 bind() , and mem_fn() .

 <initializer_list> The definition of initializer_list .

 <chrono> Time utilities: duration s, time_point s, and clocks (steady_
clock , system_clock , and high_resolution_clock).

 <ctime> C-style time and date utilities such as the tm struct , time() ,
 localtime() , and strftime() .

 <cstdio> C-style file utilities: remove() , rename() , tmpfile() , and
 tmpnam() . Also provides C-style stream I/O functionality:
see Chapter 5 .

 <typeinfo> type_info , and the exceptions bad_cast and bad_typeid .

 <typeindex> type_index , a wrapper for type_info to be able to use it as a
key in associative containers.

 <type_traits> Template-based type traits for compile-time manipulation
and inspection of properties of types.

http://dx.doi.org/10.1007/978-1-4842-1876-1_2
http://dx.doi.org/10.1007/978-1-4842-1876-1_5

APPENDIX A ■ STANDARD LIBRARY HEADERS

197

 Containers (Chapter 3)
 Header Contents

 <iterator> Functions to perform operations on iterators: advance() ,
 distance() , begin() , end() , prev() , and next() , and the
iterator tags. Chapter 4 discusses input/output iterators and
the predefined iterator adaptors: reverse_iterator , move_
iterator , and insert iterators. Stream iterators are discussed in
Chapter 5 .

 <vector> The vector class template and the vector<bool> specialization.

 <deque> The deque class template.

 <array> The array class template.

 <list> The list class template.

 <forward_list> The forward_list class template.

 <bitset> The bitset class template.

 <queue> The queue and priority_queue class templates.

 <stack> The stack class template.

 <map> The map and multimap class templates.

 <set> The set and multiset class templates.

 <unordered_map> The unordered_map and unordered_multimap class templates.

 <unordered_set> The unordered_set and unordered_multiset class templates.

 Algorithms (Chapter 4)
 Header Contents

 <algorithm> All available algorithms, except those that are in <numeric> .

 <numeric> Numerical algorithms: accumulate() , adjacent_difference() ,
 inner_product() , partial_sum() , and iota() .

http://dx.doi.org/10.1007/978-1-4842-1876-1_3
http://dx.doi.org/10.1007/978-1-4842-1876-1_4
http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_4

APPENDIX A ■ STANDARD LIBRARY HEADERS

198

 Stream I/O (Chapter 5)
 Header Contents

 <ios> ios_base , basic_ios , and fpos , typedef s ios and wios , and
types streamoff , streampos , wstreampos , and streamsize . Non-
parametric I/O manipulators such as boolalpha , dec , scientific ,
and so on.

 <iomanip> Parametric I/O manipulators such as setbase() , setfill() ,
 get_money() , put_time() , and more.

 <ostream> basic_ostream , and typedef s ostream and wostream . The endl , ends ,
and flush output manipulators.

 <istream> basic_istream and basic_iostream , and typedef s istream ,
 wistream , iostream , and wiostream . The ws input manipulator.

 <iostream> cin / wcin , cout / wcout , cerr / wcerr , and clog / wclog . Includes <ios> ,
 <streambuf> , <istream> , <ostream> , and <iosfwd> .

 <sstream> String streams: basic_istringstream , basic_ostringstream ,
 basic_stringstream , basic_stringbuf , and related typedef s.

 <fstream> File streams: basic_ifstream , basic_ofstream , basic_fstream , and
 basic_filebuf , and related typedef s.

 <streambuf> basic_streambuf , and typedef s streambuf and wstreambuf .

 <iosfwd> Forward declarations for all stream I/O types.

 <cstdio> The C-style I/O library. Basic file utilities (see Chapter 2) , plus
 fopen() , fclose() , and so on. Functions for formatted (printf() ,
 scanf() , and so on) and character-based I/O (getc() , putc() , and so
on). It is generally recommended that you use C++ I/O streams.

 <cinttypes> Macros to use with printf() and scanf() to handle the fixed-width
integer types of <cstdint> . Subsumed by C++ I/O streams.

 <strstream> Deprecated.

http://dx.doi.org/10.1007/978-1-4842-1876-1_5
http://dx.doi.org/10.1007/978-1-4842-1876-1_2

APPENDIX A ■ STANDARD LIBRARY HEADERS

199

 Characters and Strings (Chapter 6)
 Header Contents

 <string> basic_string , and typedef s string , wstring , u16string , and
 u32string . Conversion functions such as stoi() , stof() , to_string() ,
and so on.

 <cstring> Low-level memory functions: memcpy() , memmove() , memcmp() , memchr() ,
and memset() . A collection of C-style string functions, e.g. strcpy() and
 strcat() , and a definition for NULL and size_t .

 <cwchar> Functions to work with C-style wide character strings, such as fputws() ,
 wprintf() , wcstof() , wcscat() , wmemset() , and so on.

 <cctype> Functions to classify and transform characters: isdigit() , isspace() ,
 tolower() , toupper() , and so on.

 <cwctype> Wide character versions of functions from <cctype> : iswdigit() ,
 iswspace() , towlower() , towupper() , and so on.

 <codecvt> Unicode character encoding conversion facets: codecvt_utf8 ,
codecvt_utf16 , and codecvt_utf8_utf16 .

 <cuchar> Functions to convert between 16 or 32-bit character and multibyte
sequences: c16rtomb() , c32rtomb() , mbrtoc16() , and mbrtoc32() .

 <locale> The locale class, overloads of <cctype> functions accepting a given
 locale , facet functions use_facet() and has_facet() , and standard
facet classes num_get , collate , money_put , codecvt , and so on.

 <clocale> lconv and the setlocale() and localeconv() functions. setlocale()
 only changes the C locale.

 <regex> Everything related to regular expressions.

 Concurrency (Chapter 7)
 Header Contents

 <thread> The thread class and the this_thread namespace.

 <future> future and shared_future , future_error , and providers
 promise , packaged_task , and async() .

 <mutex> mutex , recursive_mutex , timed_mutex , recursive_timed_
mutex , lock_guard , unique_lock , and related types.
Functions try_lock() , lock() , and call_once() .

 <shared_mutex> shared_mutex , shared_timed_mutex , and shared_lock .

 <condition_variable> condition_variable and condition_variable_any , and the
function notify_all_at_thread_exit() .

 <atomic> Atomic types and fences.

http://dx.doi.org/10.1007/978-1-4842-1876-1_6
http://dx.doi.org/10.1007/978-1-4842-1876-1_7

APPENDIX A ■ STANDARD LIBRARY HEADERS

200

 Diagnostics (Chapter 8)
 Header Contents

 <cassert> The assert() macro.

 <exception> exception and bad_exception , exception pointers, nested
exceptions, terminate, and unexpected handlers.

 <stdexcept> Exception classes for reporting common errors: logic_error ,
 runtime_error , and their generic subclasses.

 <system_error> The std::system_error exception used to report low-level errors,
and the concepts of error codes, conditions, and categories.

 <cerrno> The errno expression and default error-condition values.

 The C Standard Library
 This section lists the remaining C headers that are not mentioned earlier.

 Header Contents

 <ciso646> Only useful for C. Defines macros such as and , or , not , and so on. In
C++, those are reserved words, so this header is empty.

 <csetjmp> longjmp() and setjmp() . Do not use these in C++.

 <csignal> signal() and raise() . Do not use these in C++.

 <cstdalign> The __alignas_is_defined macro: always expands to 1 for C++.

 <cstdarg> The va_list type and functions va_start() , va_arg() , va_end() ,
and va_copy() to handle variable-length argument lists. In C++, it is
recommended that you use type-safe variadic templates instead.

 <cstdbool> The __bool_true_false_are_defined macro: expands to 1 for C++.

 <cstddef> Types ptrdiff_t , size_t , max_align_t , and nullptr_t . The macro
 offsetof() and the constant NULL .

 <cstdlib> String conversion functions: atof() , strtof() , and so on.
 Multibyte character functions: mblen() , mbtowc() , and wctomb() .
 Multibyte string conversion: mbstowcs() and wcstombs() .
 Searching and sorting: bsearch() and qsort() (use <algorithm>).
 Random numbers: rand() and srand() (deprecated; use <random>).
 Memory management: calloc() , free() , malloc() , and realloc() .
 Integer functions: abs() , div(), labs() , ldiv() , llabs() , and lldiv() .
 Functions abort() , atexit() , at_quick_exit() , exit() , getenv() ,
 quick_exit() , system() , and _Exit() .

http://dx.doi.org/10.1007/978-1-4842-1876-1_8

201© Peter Van Weert and Marc Gregoire 2016
P. Van Weert and M. Gregoire, C++ Standard Library Quick Reference,
DOI 10.1007/978-1-4842-1876-1

 A
 abs() , 1, 8
 accumulate() , 98
 acos() , 2
 acosh() , 2
 add_x type trait , 49
 adjacent_difference() , 99
 adjacent_fi nd() , 85
 adjustfi eld , 104
 ADL , 26
 adopt_lock , 171
 advance() , 54
 <algorithm> , 82
 Aliasing , 32
 alignment_of , 49
 all_of() , 84
 Allocators , 79
 any_of() , 84
 app , 113
 Append , 56
 arg() , 8
 Argument-dependent lookup (ADL) , 26
 Arithmetic type properties , 5
 array , 60
 ASCII , 125
 asctime() , 42
 As-if rule , 176
 asin() , 2
 asinh() , 2
 Assertions , 183
 Associative containers

 ordered , 71
 unordered , 75

 async() , 165
 Asynchronous programming , 165 .

See also Futures

 atan() , 2
 atan2() , 2
 atanh() , 2
 ate , 113
 Atomic variables , 178

 compare_exchange() , 179
 construction , 179
 exchange() , 179
 integral and pointer types , 178, 180
 lock_free() , 180
 nonmember functions , 181
 specializations , 178
 store() and load() , 179
 synchronization , 180

 atomic_fl ag , 181
 atomic_signal_fence() , 182
 atomic_thread_fence() , 182
 auto_ptr , 31

 B
 back_inserter() , 99
 back_insert_iterator , 99
 bad_alloc , 163, 176, 184
 bad_array_new_length , 184
 badbit , 106, 108
 bad_cast , 184
 bad_exception , 184
 bad_function_call , 35, 184
 bad_typeid , 184
 bad_weak_ptr , 184
 basefi eld , 104
 basic_string , 125
 begin() , 53
 bernoulli_distribution , 14
 binary , 113
 binary_function , 33

 Index

■ INDEX

202

 binary_negate , 35
 binary_search() , 85
 bind() , 36
 Binding function arguments , 36
 bind2nd() , 33
 bind1st() , 33
 binomial_distribution , 14
 bit_and , 34
 bit_not , 34
 bit_or , 34
 bitset , 66
 bit_xor , 34
 boolalpha , 104

 C
 call_once() , 173
 Capacity , 57
 CAS operations , 179
 <cassert> , 183
 cauchy_distribution , 14
 cbegin() , 53
 cbrt() , 2
 <cctype> , 130
 ceil() , 3
 cend() , 53
 cerr , 109
 C error numbers , 190
 <cerrno> , 190, 192
 Character classes , 130
 Character classifi cation , 130, 141
 Character-encoding conversion , 131
 Character encodings , 125, 131
 char16_t , 125
 char32_t , 125
 chi_squared_distribution , 14
 <chrono> , 39
 chrono_literals , 40
 cin , 111
 classic() , 136
 <clocale> , 147
 “C” locale , 134
 C locales , 147
 clock() , 42
 Clocks , 41
 CLOCKS_PER_SEC , 42
 clock_t , 42
 clog , 109
 Closure , 38
 cmatch , 156
 <cmath> , 1

 <codecvt> , 131
 collate , 143
 common_type , 49
 Compare-and-swap , 179
 <complex> , 8
 complex_literals , 8
 Complex numbers , 8
 Concatenate , 56
 <condition_variable> , 174
 condition_variable_any , 175
 Condition variables , 175

 exceptions , 176
 notifi cation , 175
 synchronization , 177
 timeouts , 175
 waiting , 175

 conditional , 50
 conj() , 8
 Container adaptors , 67
 Containers , 51
 copy() , 88
 copy_backward() , 89
 copy_if() , 88
 copy_n() , 89
 copysign() , 4
 cos() , 2
 cosh() , 2
 count() , 84
 count_if() , 84
 cout , 109
 crbegin() , 53
 cref() , 34
 crend() , 53
 Critical section , 177 . See also Mutexes
 <cstdint> , 5
 <cstdio> , 45, 117
 C-style date and time utilities , 42
 csub_match , 156
 ctime() , 42
 <ctime> , 42
 ctype , 141
 Currency symbol , 139
 current_exception() , 185
 <cwctype> , 130

 D
 Data race , 178, 179
 Date formatting , 105
 Date utilities , 39
 Deadlock , 163, 170, 172–173

■ INDEX

203

 dec , 104
 decay , 49
 Decimal separator , 137
 defaultfl oat , 105
 default_random_engine , 12
 defer_lock , 172
 deque , 60
 Diff erence , 96
 difftime() , 42
 Digit grouping , 137
 discard_block_engine , 11
 discrete_distribution , 15
 distance() , 54
 Distribution . See Random number

distributions
 divides , 34
 domain_error , 184
 Dot product , 99
 Double-checked locking , 174
 Double-ended queue , 60
 Doubly linked list , 61
 duration , 40
 duration_cast() , 40

 E
 ECMAScript grammar . See Regular

expressions
 Emplacement , 56, 72
 enable_if , 50
 end() , 53
 endl , 109
 ends , 109
 eofbit , 106, 108
 Epoch , 41
 Epsilon , 7
 equal() , 88
 equal_range() , 86
 equal_to , 34
 erf() , 3
 erfc() , 3
 errc , 187, 192
 errno , 190
 error_category , 187–188
 error_code , 187–188
 error_condition , 187, 189
 Exception pointers , 184
 exception_ptr , 184
 Exceptions , 108, 163, 167, 173, 176, 184
 Exceptions class hierarchy , 184
 exchange() , 26

 exp() , 2
 exp2() , 2
 expm1() , 2
 exponential_distribution , 15
 extent , 49
 extreme_value_distribution , 15

 F
 fabs() , 1
 Facets , 136 . See also Localization
 failbit , 106, 108
 failure , 184
 fdim() , 2
 Fences , 177, 182
 File streams , 113
 File utilities , 45
 fi ll() , 89
 Fill character , 105, 107
 fi ll_n() , 89
 fi nd() , 84
 fi nd_end() , 86
 fi nd_fi rst_of() , 85
 fi nd_if() , 84
 fi nd_if_not() , 84
 Fire-and-forget , 162, 166
 First-in fi rst-out (FIFO) , 68
 fi sher_f_distribution , 14
 fi xed , 104
 Fixed-width integer types , 5
 fl oatfi eld , 104
 Floating-point numbers

 Epsilon , 7
 Infi nity , 7
 NaN , 2, 4, 7

 fl oor() , 3
 fl ush , 109
 fma() , 2
 fmax() , 2
 fmin() , 2
 fmod() , 1
 fmtfl ags , 104
 for_each() , 83
 Formatting . See also to_string() ;

 printf() ; and Stream I/O
 date , 43, 105
 monetary , 105
 numerical , 105
 time , 43, 105

 forward() , 25
 forward_as_tuple() , 28

■ INDEX

204

 Forwarding reference , 25
 forward_list , 61
 fpclassify() , 4
 FP_INFINITE , 4
 FP_NAN , 4
 FP_NORMAL , 4
 fpos , 102
 fprintf() , 118
 FP_SUBNORMAL , 4
 FP_ZERO , 4
 frexp() , 3
 front_inserter() , 100
 front_insert_iterator , 100
 fscanf() , 122
 <fstream> , 113
 function , 35
 Function object , 33

 for class members , 37
 <functional> , 33
 Functor , 33
 future_errc , 168
 future_error , 168, 184
 Futures , 164

 exceptions , 167
 providers , 164

 async() , 165
 packaged tasks , 166
 promises , 167

 shared state , 164
 synchronization , 177

 G
 gamma_distribution , 15
 generate() , 90
 generate_canonical , 13
 generate_n() , 90
 Generic function wrappers , 35
 geometric_distribution , 14
 get() , 27
 getline() , 111
 get_money() , 105
 get_terminate() , 190
 get_time() , 105
 get_unexpected() , 190
 global() , 135
 gmtime() , 42
 goodbit , 106, 108
 Grammar

 printf() , 118
 regular expressions , 149, 154

 scanf() , 122
 time and date formatting , 43

 greater , 34
 greater_equal , 34
 gslice , 20

 H
 hardware_concurrency() , 163
 has_facet() , 136
 Hash functions , 76
 Hash map , 76
 Header

 <algorithm> , 82
 <array> , 60
 <atomic> , 178
 <bitset> , 66
 <cassert> , 183
 <cctype> , 130
 <cerrno> , 190, 192
 <chrono> , 39
 <clocale> , 147
 <cmath> , 1
 <codecvt> , 131
 <complex> , 8
 <condition_variable> , 174
 <cstdint> , 5
 <cstdio> , 45, 117
 <ctime> , 42
 <cwctype> , 130
 <deque> , 60
 <exception> , 184
 <forward_list> , 61
 <fstream> , 113
 <functional> , 33
 <future> , 164
 <initializer_list> , 39
 <iomanip> , 105
 <ios> , 102–103, 106
 <istream> , 110, 112
 <iterator> , 51, 99, 115
 <limits> , 5
 <list> , 61
 <locale> , 134
 <map> , 71
 <memory> , 28
 <mutex> , 168
 <numeric> , 98
 <ostream> , 108
 <queue> , 68
 <random> , 10

■ INDEX

205

 <ratio> , 9
 <regex> , 148
 <set> , 72
 <shared_mutex> , 171
 <sstream> , 112
 <stack> , 69
 <stdexcept> , 184
 <streambuf> , 117
 <string> , 125
 <system_error> , 187
 <thread> , 161
 <tuple> , 27
 <typeindex> , 45
 <typeinfo> , 45
 <type_traits> , 46
 <unordered_map> , 75
 <unordered_set> , 75
 <utility> , 23
 <valarray> , 17
 <vector> , 54

 Heaps , 97
 hex , 104
 hexfl oat , 105
 high_resolution_clock , 41
 hypot() , 2

 I, J
 ifstream , 113
 ilogb() , 4
 imag() , 8
 I18n . See Localization
 in , 113
 includes() , 95
 independent_bits_engine , 11
 indirect_array , 21
 Infi nity , 7
 <initializer_list> , 39
 Initializer-list

constructors , 39
 inner_product() , 98
 inplace_merge() , 95
 Input streams . See Stream I/O
 inserter() , 100
 insert_iterator , 100
 internal , 104
 Internationalization . See Localization
 Intersection , 96
 int_fast X _t , 5
 int_least X _t , 5
 intmax_t , 5

 intptr_t , 5
 int X _t , 5
 invalid_argument , 184
 I/O . See Stream I/O
 I/O Manipulator . See Stream I/O
 <iomanip> , 105
 ios_base , 103
 <ios> , 102–103, 106
 iostate , 106, 108
 iostream , 112
 iota() , 90
 is_base_of , 49
 is_convertible , 49
 is_error_code_enum , 189
 is_error_condition_enum , 189
 isfi nite() , 4
 isgreater() , 4
 isgreaterequal() , 4
 is_heap() , 98
 is_heap_until() , 98
 isinf() , 4
 isless() , 4
 islessequal() , 4
 islessgreater() , 4
 is_literal_type , 48
 isnan() , 4
 isnormal() , 4
 is_partitioned() , 92
 is_permutation() , 96
 is_pod , 48
 is_same , 49
 is_sorted() , 94
 is_sorted_until() , 94
 is_standard_layout , 48
 <istream> , 110, 112
 istream_iterator , 116
 istringstream , 112
 is_trivial , 48
 isunordered() , 4
 <iterator> , 51, 99, 115
 Iterator adaptors , 99
 Iterators

 bidirectional , 51
 categories , 51
 forward , 51
 input , 81
 output , 81
 random , 51
 stream iterators , 115
 tags , 52

 iter_swap() , 89

■ INDEX

206

 K
 knuth_b , 12

 L
 Lambda expressions , 38, 82, 161
 Last-in fi rst-out (LIFO) , 69
 Launch policy , 165
 Lazy initialization , 173
 LC_ALL , LC_COLLATE … , 148
 ldexp() , 4
 left , 104
 length_error , 184
 less , 34
 less_equal , 34
 lexicographical_compare() , 94
 lgamma() , 3
 <limits> , 5
 linear_congruential_engine , 10
 Line-by-line input , 111
 list , 61
 List-specifi c algorithms , 62
 llrint() , 3
 llround() , 3
 localeconv() , 148
 Localization , 134

 C locales , 147
 combining facets , 145
 custom facets , 146
 global locale , 135
 locale facet categories , 137
 locale facets , 136
 locale names , 134
 standard facets , 137

 character classifi cation and
transformation , 141

 character-encoding
conversions , 143

 formatting and parsing,
monetary values , 140

 formatting and parsing,
numeric values , 138

 formatting and parsing,
time and dates , 141

 message retrieval , 144
 monetary punctuation , 139
 numeric punctuation , 137
 string ordering and hashing , 143

 std::locale , 136

 localtime() , 42
 lock() , 172
 Lock-free data structures , 180
 lock_guard , 169, 171
 Locks . See Mutexes
 log() , 2
 log2() , 2
 log10() , 2
 logb() , 3
 logical_and , 34
 logical_not , 34
 logical_or , 34
 logic_error , 184
 lognormal_distribution , 14
 log1p() , 2
 lower_bound() , 85
 lrint() , 3
 lround() , 3

 M
 Magic statics , 174
 main() , xxii
 make_error_code() , 189
 make_error_condition() , 189
 make_exception_ptr() , 185
 make_heap() , 97
 make_move_iterator() , 99
 make_pair() , 27
 make_reverse_iterator() , 99
 make_shared() , 32
 make_tuple() , 27
 make_unique() , 29
 make_y , 49
 Manipulator . See Stream I/O
 map , 71
 mask_array , 21
 match_fl ag_type , 155, 160
 match_results , 156–157
 Mathematical functions

 basic functions , 1
 classifi cation functions , 4
 comparison functions , 4
 error functions , 3
 error handling , 5
 exponential functions , 2
 fl oating-point manipulation

functions , 3
 gamma functions , 3
 hyperbolic functions , 2

■ INDEX

207

 logarithmic functions , 2
 power functions , 2
 rounding of fl oating-point numbers , 3
 trigonometric functions , 2

 MATH_ERREXCEPT , 5
 math_errhandling , 5
 MATH_ERRNO , 5
 max() , 87
 max_element() , 87
 Maximum representable number , 6
 Member function object , 37
 mem_fn() , 37
 mem_fun() , 33
 mem_fun_ref() , 33
 Memory model , 176, 181
 memory_order , 181–182
 <memory> , 28
 merge() , 95
 mersenne_twister_engine , 10
 messages , 144
 min() , 87
 min_element() , 87
 Minimum representable number , 6
 minmax() , 87
 minmax_element() , 87
 minstd_rand , 12
 minstd_rand0 , 12
 minus , 34
 mismatch() , 88
 mktime() , 42
 modf() , 3
 modulus , 34
 Monetary formatting , 105
 money_get , 140
 moneypunct , 139, 147
 money_put , 140
 move() , 24, 89
 move_backward() , 89
 move_if_noexcept() , 24
 move_iterator , 99
 Move semantics , 24
 mt19937 , 12
 mt19937_64 , 12
 multimap , 71
 multiplies , 34
 multiset , 72
 Mutexes , 170

 critical section , 177
 exceptions , 173
 locking , 169, 171
 locking multiple mutexes , 172

 lock types
 lock_guard , 171
 shared_lock , 172
 unique_lock , 171

 native_handle() , 170
 RAII , 169, 171
 readers-writers , 171
 recursion , 170
 reentry , 170
 sharing ownership , 171
 synchronization , 177
 timeouts , 170

 N
 NaN , 2, 4, 7
 nan() , 2
 nanf() , 2
 nanl() , 2
 NDEBUG , 183
 nearbyint() , 3
 negate , 34
 negative_binomial_distribution , 14
 nested_exception , 186
 Neutral locale , 134
 next() , 54
 nextafter() , 4
 next_permutation() , 97
 nexttoward() , 4
 none_of() , 84
 norm() , 8
 normal_distribution , 14
 not1() , 35
 not2() , 35
 not_equal_to , 34
 notify_all_at_thread_exit() , 176
 npos , 126
 nth_element() , 93
 <numeric> , 98
 Numerical formatting , 105
 numeric_limits , 5
 num_get , 138
 numpunct , 137, 146
 num_put , 138

 O
 oct , 104
 ofstream , 113
 once_fl ag , 174
 openmode , 113–114

■ INDEX

208

 operator<< and >> ,
custom types , 115

 Ordered associative containers , 71
 <ostream> , 108
 ostream_iterator , 115
 ostringstream , 112
 out , 113
 out_of_range , 184
 Output streams . See Stream I/O
 overfl ow_error , 184

 P
 packaged_task , 166
 pair , 26
 Parsing . See stoi() ; scanf() ; Regular

expressions; Stream I/O
 partial_sort() , 93
 partial_sort_copy() , 93
 partial_sum() , 98
 partition() , 92
 partition_copy() , 92
 partition_point() , 93
 Perfect forwarding , 25
 Permutations , 96
 perror() , 190
 Person class , xxii
 piecewise_constant_distribution , 15
 Piecewise construction , 27, 72
 piecewise_linear_distribution , 16
 plus , 34
 poisson_distribution , 15
 polar() , 8
 pop_heap() , 97
 POSIX error codes , 187
 pow() , 2
 Predefi ned functors , 34
 prev() , 54
 prev_permutation() , 97
 printf() , 118

 conversion specifi ers , 118
 fl ags , 121
 formatting syntax , 120
 length modifi ers , 121

 priority_queue , 68
 proj() , 8
 promise , 167
 ptr_fun() , 33
 push_heap() , 97
 put_money() , 105
 put_time() , 105

 Q
 queue , 68
 quoted() , 105

 R
 RAII , 28, 169, 171–172
 rand() , 10
 <random> , 10
 random_device , 12
 Random number distributions , 13

 Bernoulli , 14
 Normal , 14
 Poisson , 15
 Sampling

 Discrete , 15
 Piecewise constant , 15
 Piecewise linear , 16

 Uniform , 13
 Random number generators , 10

 Non-deterministic , 12
 Pseudorandom number engines , 10

 Engine adaptors , 11
 Predefi ned engines , 12

 Random numbers , 10
 Seeding , 13

 random_shuffl e() , 94
 range_error , 184
 rank , 49
 ranlux24 , 12
 ranlux24_base , 12
 ranlux48 , 12
 ranlux48_base , 12
 <ratio> , 9
 ratio_add , 9
 ratio_divide , 9
 ratio_equal , 9
 ratio_multiply , 9
 Rational numbers , 9
 ratio_subtract , 9
 rbegin() , 53
 Readers-writers locks . See Mutexes
 real() , 8
 recursive_mutex , 170
 recursive_timed_mutex , 170
 ref() , 34
 reference_wrapper , 34
 Reference wrappers , 34
 <regex> , 148
 regex_error , 153, 156, 160, 184

■ INDEX

209

 regex_iterator , 158
 regex_match() , 155
 regex_replace() , 159
 regex_search() , 155
 regex_token_iterator , 159
 Regular expressions , 149

 grammar , 149, 154
 assertions , 151
 atoms , 150
 back reference , 150
 character classes , 152
 disjunction , 149
 greediness , 153
 lookahead , 151
 quantifi ers , 151

 grammar options , 154
 matching and searching patterns , 155
 match iterators , 158
 match results , 156
 raw string literals , 149
 replacing patterns , 159
 std::regex , 153

 Relational operators , 28
 rel_ops , 28
 remainder() , 1
 remove() , 45, 90
 remove_copy() , 91
 remove_copy_if() , 91
 Remove-erase idiom , 58, 91
 remove_if() , 90
 remove_x type trait , 49
 remquo() , 1
 rename() , 45
 rend() , 53
 replace() , 91
 replace_copy() , 91
 replace_copy_if() , 91
 replace_if() , 91
 resetiosfl ags() , 105
 Resource Acquisition Is Initialization .

See RAII
 result_of , 49
 rethrow_exception() , 185
 rethrow_if_nested() , 186
 reverse() , 91
 reverse_copy() , 92
 Reverse iterator , 53
 reverse_iterator , 99
 right , 104
 rint() , 3
 rotate() , 92

 rotate_copy() , 92
 round() , 3
 runtime_error , 184
 Runtime type identifi cation , 45

 S
 scalbln() , 4
 scalbn() , 4
 scanf() , 122

 conversion specifi ers , 122
 formatting syntax , 123
 length modifi ers , 124

 scientifi c , 104
 search() , 86
 search_n() , 86
 seekdir , 109
 Selection algorithm , 94
 Sequence comparison , 88
 Sequential containers , 54

 reference , 63
 set , 72
 setbase() , 105
 set_difference() , 96
 setfi ll() , 105
 set_intersection() , 96
 setiosfl ags() , 105
 setlocale() , 147
 setprecision() , 105
 set_symmetric_difference() , 96
 set_terminate() , 190
 set_unexpected() , 190
 set_union() , 96
 setw() , 105
 SFINAE , 50
 shared_future , 164
 shared_lock , 172
 shared_mutex , 170–171
 shared_ptr , 31
 shared_timed_mutex , 170
 showbase , 104
 showpoint , 104
 showpos , 104
 shuffl e() , 94
 shuffl e_order_engine , 11
 signbit() , 4
 sin() , 2
 Singleton , 174
 sinh() , 2
 SI ratios , 9
 skipws , 104

■ INDEX

210

 Sleeping , 163
 slice , 19
 Smart pointers , 28 . See also RAII
 smatch , 156
 sort() , 93
 sort_heap() , 98
 Splicing , 62
 Splitting strings . See regex_token_iterator
 sprintf() , 118
 Spurious wakeups , 175
 sqrt() , 2
 sscanf() , 122
 <sstream> , 112
 ssub_match , 156
 stable_partition() , 92
 stable_sort() , 93
 stack , 69
 Standard Template Library , xix
 std , xxi
 stderr , 109
 <stdexcept> , 184
 stdin , 111
 stdout , 109
 steady_clock , 41
 STL , xix
 stof() , stod() , stold() , 129
 stoi() , stol() , stoll() , stoul() ,

 stoull() , 129
 Stream Buff ers , 117
 Stream I/O

 class hierarchy , 101
 default initialization , 107
 error handling , 108
 fi le streams , 113
 formatting fl ags , 104
 helper types , 102
 I/O manipulators , 105, 109, 111
 input streams , 110
 open modes , 113–114
 output streams , 108
 standard input streams , 111
 standard output

streams , 109
 redirect , 117

 state bits , 106, 108
 stream iterators , 115
 string streams , 112
 thread safety , 110

 <streambuf> , 117
 streamoff , 102
 streamsize , 102

 strerror() , 190
 strftime() , 42
 string_literals , 128
 Strings , 125

 comparing , 129
 constructing , 128
 formatting , 130 (see also Formatting)
 length , 128
 modifying , 126–127
 npos , 126
 parsing , 129 (see also Parsing)
 searching , 126
 string literal operator , 128
 substrings , 128
 types , 125

 String streams , 112
 student_t_distribution , 14
 sub_match , 156
 Subsequence search , 86
 Substrings , 128
 subtract_with_carry_engine , 10
 swap() , 26
 swap_ranges() , 89
 Symmetric diff erence , 96
 Synchronization , 176 . See also

Memory model
 sync_with_stdio() , 110–111
 system_clock , 41
 system_error , 163, 168, 173, 176, 184, 187

 T
 tan() , 2
 tanh() , 2
 terminate() , 190
 tgamma() , 3
 Th ousands separator , 137
 Th reads , 161

 exceptions , 163
 fi re-and-forget , 162
 identifi ers , 162
 joining , 162
 launching , 161
 sleeping , 163
 synchronizing , 177
 yielding , 163

 throw_with_nested() , 186
 tie() , 27
 time() , 42
 timed_mutex , 170
 Time formatting , 105

■ INDEX

211

 time_get , 141
 time_point , 41
 time_point_cast() , 41
 time_put , 141
 time_t , 42
 Time utilities , 39
 tm , 42
 tmpfi le() , 45
 tmpnam() , 45
 Tokenizing . See regex_token_iterator
 tolower() , 130, 142
 Torn reads and writes , 179 . See also Atomic

variables
 to_string() , 130
 toupper() , 130, 142
 transform() , 83
 Transparent operator functors , 34
 trunc , 113
 trunc() , 3
 try_lock() , 173
 try_to_lock , 172
 <tuple> , 27
 tuple_element , 28
 tuple_size , 28
 Type classifi cation , 46
 Type comparisons , 49
 typeid() , 45
 <typeindex> , 45
 <typeinfo> , 45
 Type properties , 47
 Type property queries , 49
 <type_traits> , 46
 Type traits , 46
 Type transformations , 49

 U
 uint_fast X _t , 5
 uint_least X _t , 5
 uintmax_t , 5
 uintptr_t , 5
 uint X _t , 5
 unary_function , 33
 unary_negate , 35
 uncaught_exception() , 190
 underfl ow_error , 184
 underlying_type , 49
 unexpected() , 190

 Unicode , 125, 131
 uniform_int_distribution , 13
 uniform_real_distribution , 13
 Union , 96
 unique() , 91
 unique_copy() , 91
 unique_lock , 171
 unique_ptr , 29
 unitbuf , 104
 Universal reference , 25
 Unordered associative

containers , 75
 unordered_map , 75
 unordered_multimap , 75
 unordered_multiset , 75
 unordered_set , 75
 upper_bound() , 85
 uppercase , 104
 use_facet() , 136
 u16string , 125
 u32string , 125
 UTF-8, UTF-16, UTF-32 , 125, 131
 <utility> , 23

 V
 <valarray> , 17
 vector , 54
 vector<bool> , 59

 W, X, Y, Z
 wbuffer_convert , 132
 wcerr , 109
 wchar_t , 125
 wcin , 111
 wclog , 109
 wcmatch , 156
 wcout , 109
 wcsub_match , 156
 weak_ptr , 33
 Weak reference , 33
 weibull_distribution , 15
 ws , 111
 wsmatch , 156
 wssub_match , 156
 wstring , 125
 wstring_convert , 132

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Numerics and Math
	Common Mathematical Functions <cmath>
	Basic Functions
	Exponential and Logarithmic Functions
	Power Functions
	Trigonometric and Hyperbolic Functions
	Error and Gamma Functions
	Integral Rounding of Floating-Point Numbers
	Floating-Point Manipulation Functions
	Classification and Comparison Functions
	Error Handling

	Fixed-Width Integer Types <cstdint>
	Arithmetic Type Properties <limits>
	Complex Numbers <complex>
	Compile-Time Rational Numbers <ratio>
	Random Numbers <random>
	Random Number Generators
	Pseudorandom Number Engines
	Engine Adaptors
	Predefined Engines

	Non-Deterministic Random Number Generator
	Seeding

	Random Number Distributions
	Uniform Distributions
	Bernoulli Distributions
	Normal Distributions
	Poisson Distributions
	Sampling Distributions
	Discrete Distribution
	Piecewise Constant Distribution
	Piecewise Linear Distribution
	Example

	Numeric Arrays <valarray>
	std::slice
	std::gslice
	std::mask_array
	std::indirect_array

	Chapter 2: General Utilities
	Moving, Forwarding, Swapping <utility>
	Moving
	Forwarding
	Swapping

	Pairs and Tuples
	Pairs <utility>
	Tuples <tuple>

	Relational Operators <utility>
	Smart Pointers <memory>
	Exclusive-Ownership Pointers
	std::unique_ptr
	std::auto_ptr

	Shared-Ownership Pointers
	std::shared_ptr
	std::weak_ptr

	Function Objects <functional>
	Reference Wrappers
	Predefined Functors
	Generic Function Wrappers
	Binding Function Arguments
	Functors for Class Members

	Initializer Lists <initializer_list>
	Date and Time Utilities <chrono>
	Durations
	Time Points
	Clocks
	C-style Date and Time Utilities <ctime>

	C-Style File Utilities <cstdio>
	Type Utilities
	Runtime Type Identification <typeinfo>, <typeindex>
	Type Traits <type_traits>
	Type Classification
	Type Properties
	Type Property Queries
	Type Comparisons
	Type Transformations

	Chapter 3: Containers
	Iterators <iterator>
	Iterator Tags
	Non-Member Functions to Get Iterators
	Non-Member Operations on Iterators

	Sequential Containers
	std::vector <vector>
	Construction
	Iterators
	Accessing Elements
	Adding Elements
	Size and Capacity
	Removing Elements
	Remove-Erase Idiom
	std::vector<bool>
	Complexity

	std::deque <deque>
	Complexity

	std::array <array>
	Complexity

	std::list and std::forward_list <list>, <forward_list>
	Complexity
	List-Specific Algorithms

	Sequential Containers Reference
	Iterators
	Size and Capacity
	Access
	Modifiers
	Non-Member Functions

	std::bitset <bitset>
	Complexity
	Reference
	Access
	Operations

	Container Adaptors
	std::queue <queue>
	std::priority_queue <queue>
	std::stack <stack>
	Example
	Reference

	Ordered Associative Containers
	std::map and std::multimap <map>
	std::set and std::multiset <set>
	Searching
	Order of Elements
	Complexity
	Reference
	Iterators
	Size
	Access and Lookup
	Modifiers
	Observers
	Non-Member Functions

	Unordered Associative Containers <unordered_map>, <unordered_set>
	Hash Map
	Template Type Parameters
	Hash Functions
	Complexity
	Reference
	Observers
	Bucket Interface
	Hash Policy
	Non-Member Functions

	Allocators

	Chapter 4: Algorithms
	Input and Output Iterators
	Algorithms <algorithm>
	Terminology
	General Guidelines
	Applying a Function on a Range
	Example

	Checking for the Presence of Elements
	Example

	Finding Elements
	Example

	Binary Search
	Example

	Subsequence Search
	Min/Max
	Sequence Comparison
	Copy, Move, Swap
	Generating Sequences
	Example

	Removing and Replacing
	Example

	Reversing and Rotating
	Example

	Partitioning
	Sorting
	Example

	Shuffling
	Example

	Operations on Sorted Ranges
	Permutation
	Heaps
	Numeric Algorithms <numeric>
	Example

	Iterator Adaptors <iterator>

	Chapter 5: Stream I/O
	Input and Output with Streams
	Helper Types <ios>
	std::ios_base <ios>
	I/O Manipulators <ios>, <iomanip>
	Example
	std::ios <ios>
	Error Handling

	std::ostream <ostream>
	Example

	std::istream <istream>
	Example

	std::iostream <istream>

	String Streams <sstream>
	Example

	File Streams <fstream>
	Example

	operator<< and >> for Custom Types
	Stream Iterators <iterator>
	std::ostream_iterator
	std::istream_iterator

	Stream Buffers <streambuf>
	C-Style Output and Input <cstdio>
	std::printf() Family
	Example

	std::scanf() Family
	Example

	Chapter 6: Characters and Strings
	Strings <string>
	Searching in Strings
	Modifying Strings
	Constructing Strings
	String Length
	Copying (Sub)Strings
	Comparing Strings
	String Conversions

	Character Classification <cctype>, <cwctype>
	Character-Encoding Conversion <locale>, <codecvt>
	Localization <locale>
	Locale Names
	The Global Locale
	Basic std::locale Members
	Locale Facets
	Numeric Formatting
	Numeric Punctuation
	Formatting and Parsing of Numeric Values

	Monetary Formatting
	Monetary Punctuation
	Formatting and Parsing of Monetary Values

	Time and Date Formatting
	Character Classification, Transformation, and Conversion
	Character Classification and Transformation
	Character-Encoding Conversions

	String Ordering and Hashing
	Message Retrieval

	Combining and Customizing Locales
	Combining Facets
	Custom Facets

	C Locales�<clocale>

	Regular Expressions <regex>
	The ECMAScript Regular Expression Grammar
	Character Classes
	Greedy vs. Non-Greedy Quantification

	Regular Expression Objects
	Construction and Syntax Options
	Basic Member Functions

	Matching and Searching Patterns
	Match Results
	std::sub_match
	std::match_results

	Example

	Match Iterators
	Replacing Patterns

	Chapter 7: Concurrency
	Threads <thread>
	Launching a New Thread
	A Thread’s Lifetime
	Thread Identifiers
	Utility Functions
	Exceptions

	Futures <future>
	Return Objects
	Providers
	Async
	Packaged Tasks
	Promises

	Exceptions

	Mutual Exclusion <mutex>
	Mutexes and Locks
	Example

	Mutex Types
	Common Functionality
	Recursion
	Timeouts
	Sharing Ownership <shared_mutex>

	Lock Types
	std::lock_guard
	std::unique_lock
	std::shared_lock <shared_mutex>

	Locking Multiple Mutexes
	Exceptions
	Calling a Function Once <mutex>

	Condition Variables <condition_variable>
	Waiting for a Condition
	Notification
	Exceptions

	Synchronization
	Atomic Operations <atomic>
	Atomic Variables
	Template Specializations and Typedefs
	Common Atomic Operations
	Atomic Operations for Integral and Pointer Types
	Synchronization

	Atomic Flags
	Nonmember Functions
	Fences

	Chapter 8: Diagnostics
	Assertions <cassert>
	Exceptions <exception>, <stdexcept>
	Exception Pointers <exception>
	Nested Exceptions <exception>
	System Errors <system_error>
	std::error_category
	std::error_code
	std::error_condition

	C Error Numbers <cerrno>
	Failure Handling <exception>
	std::uncaught_exception()
	std::terminate()
	std::unexpected()

	Appendix A: Standard Library Headers
	Numerics and Math (Chapter 1)
	General Utilities (Chapter 2)
	Containers (Chapter 3)
	Algorithms (Chapter 4)
	Stream I/O (Chapter 5)
	Characters and Strings (Chapter 6)
	Concurrency (Chapter 7)
	Diagnostics (Chapter 8)
	The C Standard Library

	Index

